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Abstract

Music production is an essential element in the value chain of modern music. It includes

enhancing the recorded audio tracks, balancing the loudness level of multiple tracks as well

as making artistic decisions to satisfy music genre, style and emotion. Similarly to related

professions in creative media production, the tools for music making are now highly com-

puterised. However, many parts of the work remain labour intensive and time consuming.

The demand for intelligent tools is therefore growing. This situation encourages the emerg-

ing trend of ever increasing research into intelligent music production tools. Since audio

effects are among the main tools used by music producers, there are many discussions and

developments targeting the controlling mechanism of audio effects. This thesis is aiming

at pushing the boundaries in this field by investigating the intelligent control of one of the

essential audio effects, the dynamic range compressor.

This research presents an innovative control system design. The core of this design is

to learn from a reference audio, and control the dynamic range compressor to make the

processed input audio sounds as close as possible to the reference. One of the proposed

approaches can be divided into three stages, a feature extractor, a trained regression model,

and an objective evaluation algorithm. In the feature extractor stage we firstly test feature

sets using conventional audio features commonly used in speech and audio signal analyses.

Substantially, we test handcrafted audio features specifically designed to characterise audio

properties related to the dynamic range of audio samples. Research into feature design has

been completed at different levels of complexity. A series of feature selection schemes are

also assessed to select the optimal feature sets from both conventional and specifically

designed audio features. In the subsequent stage of the research, feature extraction is

replaced by a feature learning deep neural network (DNN). This is addressing the problem

that the previous features are exclusive to each parameter, while a general feature extractor

may be formed using DNN. A universal feature extractor can reduce the computational

cost and become easier to adapt to more complex audio materials as well. The second

stage of the control system is a trained regression model. Random forest regression is

selected from several algorithms using experimental validation. Since different feature

extractors are tested with increasingly complex audio material, as well as exclusive to the

DRC’s parameters, e.g., attack time or compression ratio, separate models are trained and



tested respectively. The third component of our approach is a method for evaluation. A

computational audio similarity algorithm was designed to verify the results using auditory

models. This algorithm is based on estimating the distance between two statistical models

fitted on perceptually motivated audio features characterising similarity in loudness and

timbre. Finally, the overall system is evaluated with both objective and subjective methods.

The main contribution of this Thesis is a method for using a reference audio to control

a dynamic range compressor. Besides the system design, the analysis of the evaluation

provides useful insights of the relations between audio effects and audio features as well

as auditory perception. The research is conducted in a way that it is possible to transfer

the knowledge to other audio effects and other use case scenarios, providing an alternative

research direction in the field of intelligent music production and simplifying how audio

effects are controlled for end users.
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To dream the impossible dream,

To fight the unbeatable foe,

To bear with unbearable sorrow,

To run where the brave dare not go.

To right the unrightable wrong,

To love pure and chaste from afar,

To try when your arms are too weary,

To reach the unreachable star.

Man of La Mancha

Don Quixote

“The Impossible Dream”
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Chapter 1

Introduction

Music is a widely loved art form with a long history. In the modern age, the storage, distri-

bution, and consumption of music are mostly in digital format, not to speak of music mixing

and production. Like many new expression forms emerged in the twentieth century, music

mixing evolved along with the development of technology. It started from the invention of

the multitrack tape machine, which makes recording different instruments separately pos-

sible. Audio effects are designed for individual audio track processing as well as multitrack

mixing. With the digitalisation of the industry, especially the invention of Digital Audio

Workstation (DAW) and standard audio processing plugin formats such as Virtual Studio

Technology (VST), more advanced digital audio effects are developed as audio plugins for

mixing and production. Early digital audio effects were inspired by hardware implemen-

tations of effects that used a physical process or analogue circuits to transform or enhance

audio signals. Many digital signal processing techniques were developed for this purpose.

With the increase in computational power, even physical modelling and circuit simulation

became possible. Modern audio effects use a wide range of techniques to transform or

enhance sounds. The processing power of computer gradually improved, and it leads to

a further development of the digital audio effects. In the recent decade, thriving machine

learning and artificial intelligence motivates a new research topic, Intelligent Music Pro-

duction. This topic combines audio engineering, acoustic modelling, signal processing and

machine learning together. High level control of audio effects becomes possible with the

development of signal processing techniques and machine learning models.

This Thesis is under the scope of this topic. The author proposed an innovative intelli-

gent system for controlling audio effects. The system is designed and tested primely on one
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of the most complex and important audio effect, the Dynamic Range Compressor (DRC).

This chapter provides the motivation and aim for this research. The contribution of this

research has been summarised first, which is followed by a detailed Thesis structure. The

publications that are associated to this research are provided at the end of this chapter.

1.1 Motivation

The production of music today is largely digitised, with the most commonly used tool for

production and mixing is the DAW software. However music production still remains time

consuming and labour intensive. Repetitive procedures still exist in this profession. This

problem creates an opportunity to use intelligent tools to improve the process. A high level

control mechanism is able to smooth the process for professional producers by releasing

them from time consuming routine jobs. Similarly to other professions in the information

era, intelligent tools can be built to assist music production. Such tools may also provide

unexpected artistic inspirations.

Music production is a profession and craft that relies heavily on experience and know-

how. It requires many years of training, while to become good at audio production or

engineering requires both objective knowledge of the tools and the ability to make good

aesthetic judgement. Therefore there is a high barrier between amateurs and professionals.

The development of DAW and audio signal processing plugins bring the studio into bed-

rooms, which promotes many bedroom producers. Many famous artists, especially electronic

and hip-hop musicians, started from making music using DAW and digital instruments

[Vice, 2018]. This is an exciting trend in the music industry, especially since it encourages

young people and hobbyists to create their own music with less effort. However the use of

these convenient tools still requires deep understanding of the underlying signal process-

ing. Bedroom producers still need to spend significant amount of their time on learning the

underlying technologies rather than focus on their music. For casual users, the time and

effort required might become a barrier they could not conquer, and the reason that stops

them from making music. The author believes that further development of mixing tools

should take this into consideration, and bring more intelligent tools for the casual users

and hobbyists.

This Thesis is motivated by the possibility of improving the music production process.

Intelligent tools can be beneficial for both professional and causal users. There are many
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possible ways to improve this process. Before introducing the approach that is proposed

in this Thesis, it is worth to mention how people normally use audio effects. Practitioners

who use audio effects often follow an intuition. For instance, casual users of audio effects

often lack practical experience or knowledge of low-level signal processing parameters of

audio effects, therefore, they often describe a desired effect by providing an example, e.g.,

name a particular style, artist or song, instead of articulating specific features, e.g., “I’d like

a short attack” [McGrath et al., 2016]. This Thesis proposes a control system that follows

this intuition. The author proposes a new intelligent controlling mechanism. The system

uses an audio example as reference. A series of experiments led to the development of an

intelligent control mechanism for audio effects. An evaluation mechanism and a method for

optimisation have also been developed for the proposed system. The details of the system

design and experiments will be outlined in the following sections.

1.2 Aim

This Thesis has multiple aspects and focusses on several areas of related research. The

first research target is at proposing an innovative system design. The proposed system

in this Thesis is a new approach to interacting with audio effects. The author aims at

bringing new ideas and new opportunities to the domain of Intelligent Music Production

research. This Thesis is written to present the whole research cycle around the proposed

approach, which includes system design, optimisation and evaluation. Since there is very

little discussion on a similar approach in the literature, the author intends to provide a

thorough discussion of the proposed solution. Discussion of the design process and the

application scenario is provided. The author also aims to provide insights and analysis so

that it would be easier for fellow researchers to adapt this approach to other audio effects

or derive a more efficient system.

1.3 Contributions

This Thesis is aiming at contributing to the research area of Intelligent Music Production.

It is a fairly new area but has a huge potential. More research and discussion are needed

to push forward the development of this research area. This Thesis therefore aims to evoke

discussion in a new mechanism of controlling audio effects.

First, the main contribution of the Thesis is the system design. It presents the de-
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sign, analysis, evaluation, and optimisations of a system. Second, this Thesis contributes

to audio feature engineering for audio effect parameter recognition as well. The relations

between low level audio features and DRC are analysed. New audio features are intro-

duced for specific DRC parameters. The author also trains a Deep Neural Network feature

learning model to generate an universal and robust feature embedding. Finally, this Thesis

contribute to the audio similarity research domain. There has been very little discuss in the

literature on the audio dis-similarity caused by audio effects. Yet it is a valuable research

topic as there are many potential applications. For example, a method for audio sample

retrieval for professional music library that contains samples processed by different effects.

This Thesis provides a model to measure the similarity caused by DRC. The Thesis also

contributes to the idea of optimising the accuracy of the predicted audio effect parameter

prediction using a multi-stage search algorithm.

This Thesis presents a listening test focused on the audibility threshold of the ballistic

parameters of DRC. The listening test on audibility threshold is a highly complex test,

therefore, substantial work is required. The experiment presents in this Thesis is served

as a support of the results out of the computational model. It can also be considered as a

starting point of a series of research in this direction.

1.4 Thesis structure

Chapter 1 Introduction

In this chapter the author presents the context and motivation of this research. The

research aims, contributions, and thesis structure are also outlined.

Chapter 2 Background

This chapter provides essential background needed in developing this Thesis. The

discussion starts from a brief introduction of music production. This is an essential

process for making music in the modern era. Music production involves music editing,

mixing and mastering. The processing chain relies heavily on audio effects. Therefore,

an overview of widely used audio effects is provided along with their underlying signal

processing and basic use cases.

Intelligent Music Production is still a relatively new research area. The author there-

fore presents a walkthrough of previous research. A large part of this research requires
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audio feature extraction and a vast variety of audio signal processing algorithms. Re-

lated research has also been included. Furthermore, a brief introduction of auditory

models and similarity is provided.

This research is aiming at making an intelligent system, therefore, machine learning

related algorithms are frequently used, including feature engineering, feature selec-

tion, regression models, and Deep Neural Networks. A brief description of these

methods is also presented in this chapter.

Chapter 3 Intelligent System Design

The proposed system designs are described in detail in this chapter. It provides the

motivation and inspiration of the design, and the reason why this research focuses

on the Dynamic Range Compressor. A thorough workflow of the proposed system is

provided as well as the design path. A simple dataset of isolated notes is generated

and used to evaluate the efficiency of the initial design.

Chapter 4 Feature Design and Selection for Mono-instrument Loops

The key to the performance of the proposed system is the efficiency of audio features.

This chapter provides a full list of features that the author considers relevant to the

problem. It includes both conventional audio features and handcrafted features,

which the former are the ones widely used from the literature and the latter are

the ones designed in this research by the author. This chapter focuses on more

complex audio material than the previous one, mono-instrument loops. Therefore,

audio decomposition algorithms are considered as part of the feature design. Since it

is possible that handcrafted features contain noise and redundancy, a feature selection

scheme has been proposed and evaluated in this chapter as well.

Chapter 5 Siamese Model for Feature Learning

This chapter proposes another approach for feature extraction. The methods pro-

posed in the previous chapters extract one set of feature for each parameter. This

chapter aims at designing a universal feature extractor using a feature learning neural

network. This feature learner will empower the system to predict several parameters

jointly rather than separately. More complex audio materials, polyphonic music, are

tested in this chapter and convincing results are produced using this approach that

outperform the previous approaches in most cases.
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Chapter 6 Audio Similarity Model focusing on the Perceptual Aspects of Sound

Modified by Audio Effects

The author proposes an audio similarity model as an objective evaluation method for

the intelligent audio effect control system. This chapter proposed a novel similarity

model incorporating the use of auditory filters and loudness model. A substantial

evaluation experiments have been run to test the efficiency of the model design.

Chapter 7 Optimisation and Subjective Evaluation of the Intelligent System

Two final experiments are presented in this chapter. In the first experiment, an

optimisation method has been proposed and evaluated. This Thesis has proposed

a prediction model and an objective evaluation function. The author assumes that

using the objective evaluation function as an optimisation function will improve the

prediction performance. The second experiment is a subjective listening test. It

is designed to discover the minimal audibility distance between parameters. This

knowledge can be used to inform if the prediction error of the intelligent model is

audible. The two parts of the research has been put together because the results

from both experiments can serve as a perceptual support for the proposed method of

intelligent audio effect control. The first experiment in this chapter is an optimisation

of the prediction model with an emphasis on the perceptual aspects. The second

experiment is a perceptual test to support the prediction model.

Chapter 8 Conclusion

The conclusion of the Thesis is presented in this chapter. The efficiency of the audio

features is important for the proposed system. Both handcrafted features and the

learnt feature embeddings are proved to be able to improve the performance for audio

in different complexity level. The components, e.g. filters from the computational

auditory models are also useful in terms of evaluating audio similarity focusing on

audio effects. The ideas of the future research are also outlined.

1.5 Associated publications

Portions of the work detailed in this thesis have been presented in national and international

scholarly publications, as follows:

• Chapter 3: was published as conference paper in DAFx, 2017.
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Di Sheng and György Fazekas. Automatic control of the dynamic range compressor

using a regression model and a reference sound. In Proceedings of the 20th Interna-

tional Conference on Digital Audio Effects (DAFx-17), 2017.

• Chapter 4: Section 4.3 and Section 4.5.1-4.5.2 was published as a conference paper

in ICASSP, 2018.

Di Sheng and György Fazekas. Feature design using audio decomposition for intelli-

gent control of the dynamic range compressor. In 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 621 - 625. IEEE, 2018.

• Chapter 4: Section 4.4 and Section 4.5.3-4.5.5 was published as a complete-manuscript

peer-reviewed convention paper in AES Convention, 2018.

Di Sheng and György Fazekas. Feature selection for dynamic range compressor pa-

rameter estimation. In Audio Engineering Society Convention 144. Audio Engineer-

ing Society, 2018.

• Chapter 5: was published as a conference paper in IJCNN, 2019.

Di Sheng and György Fazekas. A Feature Learning Siamese Model for Intelligent

Control of the Dynamic Range Compressor. In the International Joint Conference

on Neural Networks (IJCNN), 2019.

• Chapter 6: is under review as a journal paper in the Journal of the Audio Engineering

Society.

Di Sheng and György Fazekas. Estimating Similarity Between Sounds Processed

Through Audio Effects. Under review of the Journal of the Audio Engineering Society

(JAES).

• Chapter 7: Section 7.1 is submitted as a journal paper in the Special Issue "Digital

Audio Effects" of Applied Sciences.
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Chapter 2

Background

This research is built with the support of the experiences accumulated by previous re-

searchers and audio engineers. In this chapter, the background and related work is sum-

marised. The discussion begins with an introduction to music production. Introducing

this as the context of application will help with the understanding of the system design,

and many more research choices the author has made along this research period. An in-

troduction of audio effects with an in-depth presentation of dynamic range compressor is

also provided in Section 2.1. It is followed by an overview of intelligent music production,

editing and automatic mixing, which involves previous works related to DRC in Section

2.2. In Section 2.3, related music features are outlined as well as the signal processing

algorithms that helps to build the audio features in this work. The author goes on to

summarise the auditory model and audio similarity algorithms that are related to the ob-

jective evaluation model this research has developed. A large part of this research relies on

machine learning models and techniques. The usage of machine learning in audio signal

processing is discussed, especially in the intelligent production field in Section 2.5.

2.1 Music Production

Music production plays a very significant role in modern music. The choices made by

producers, to some extent, decide the music mood, the emotion it would provoke and also

the response it should elicit. The same song can be dramatically different if produced

or mixed by different producers and engineers. The reader can find two versions of "All
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Apologies" by Nirvana mixed by Scott Litt1 and Steve Albini2 and feel the differences.

A common workflow for music production is illustrated in Figure 2.1 [Izhaki, 2013]. The

Songwriting and Arranging stages involve artistic creation and decisions. The Recording

and Editing stages mainly focus on capturing the best quality sound. A good recording

would provide more creative opportunities to the mixing engineers because there will be

no need to think about fixing the flaws. Having a reasonable recording, the Mixing and

Mastering stages are the ones that balance the tracks and add desirable effects on each

group of tracks. These are the stages where audio effects are widely applied. A more

detailed introduction of these stages are provided in Section 2.1.1.

Songwriting Arranging Recording Mixing Mastering

Editing

Figure 2.1: Common production chain for recorded music.

The main research subject in this Thesis is the area of audio effect. The implemen-

tation of audio effects involves a wide range of signal processing. A basic introduction of

audio effects including classification and some of the underlying signal processing details

is provided in Section 2.1.2. The detailed overview of Dynamic Range Compressor which

is the main focus of this Thesis will be outlined in Section 2.1.3. The author also includes

the basics of adaptive audio effects which inspires the design of the system proposed in this

research.

2.1.1 Music Editing, Mixing, and Mastering

Music production is a complex process, and will be easier to understand if divided into

multiple stages. Production normally happened after or along with the music recording

session. There are many stages in Figure 2.1, and the ones related to this research are

outlined in this section.

Editing is normally the final stage for audio engineers to prepare all the audio materials

before sending them to a mix engineer. Music editing involves choosing the right recording

takes as well as repairing any bad performance or recordings from the live recording stages.

Mixing is a process that balances, treats and combines the multitrack materials into a

stereo, sometimes mono or multi-channels signal. To start the mixing process, many audio
1https://www.youtube.com/watch?v=1KPiElw6qy8
2https://www.youtube.com/watch?v=nu0rYx2wKX8
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engineers would start with a rough mix. A rough mix is an initial mix with little thought

and less care than a final mix. It is a good starting point for audio engineers to become

familiar with the structure of the material, the sound quality of the raw audio, as well as to

capture the mood of the song. This is a stage where intelligent systems could be developed

and where they fit the best in the music production workflow. There is no standard for

"perfect" mixing. At mixing stage, the process needs to balance the loudness, avoiding

masking effects across tracks, as well as to spread sound evenly on the frequency axis and

sound field. In general, the fundamental problem for mixing is to shape the audio into a

desirable sound. This is where normally audio engineers would use a reference to describe

a desirable sound. The final stage of music production is mastering. This is a stage where

the audio engineers create the final mix suitable for all kinds of playback systems. This

stage requires choosing the right amount of equalisation and dynamic range compression

to perfect the final version of the music. Most of the tasks in these stages can be achieved

through audio effects.

2.1.2 Audio Effects

Due to technical and aesthetic requirements, the music industry developed an increasingly

large number of tools for the manipulation of audio content to achieve desired sound qual-

ities. Changing the dynamic range, timbre or frequency balance of recordings have first

become widely possible with the introduction of analogue signal processing techniques, for

instance, linear filters like the Equaliser and non linear process like the Compressor. Digital

technologies such as software plug-ins or audio effects embedded in Digital Audio Work-

stations have significantly extended and, to some extent, replaced analogue effects. Digital

audio effects play an essential role to shape a desirable sound in the post-processing of

music nowadays. They have also evolved with the new technology, e.g. adaptive real-time

DSP techniques have been included in the design of effects. Due to the plethora of audio

effects, it is not easy to classify them into general categories. Some previously classification

methods will be introduced in this section. In the view of signal processing, especially in

this research, commonly used effects can be classified as time domain, frequency domain,

and time-frequency domain effects [Zölzer et al., 2002]. They can also be classified as linear

and non linear systems. Examples given in Table 2.1 and Table 2.2.

Users will have different demands for the audio effects with respect to their roles. Audio

engineers or researchers are more likely to pay attention to the signal processing aspects,
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Time domain

Dynamics(Compressor; Extender; Limiter;
Noise Gate;...)

Delay-Line(Vibrato; Slapback; Echo;...
Filter: Flanger, Phaser, Wah-wah...

SOLA; PSOLA(Time/pitch shifting; Time scaling;...)

Time-shuffle; Resampling; Amplitude modulation;...

Frequency domain

Equaliser; Spectrum non linear modification;
Spectrum envelope modification;
Morphing;
Robotisation; Whisperization;...

Time-Frenquency domain Phase vocoder;

Table 2.1: Audio effects classification I, classifying the common effects according to their
domain of application.

LTI Equalisation; Filter;
Spectrum envelope modification;

Non Linear Dynamics effects; Adaptive filter;...

Table 2.2: Audio effects classification II, classifying the common effects by linear and non
linear process. LTI stands for Linear Time-Invariant.

whereas, composers and performers will focus on perceptual aspects. From a different

point of view, audio effects are more than the underlying signal processing but are also

designed to manipulate audio perception. Thus, another way to classify them is based

on perceptual attributes. There are several common categories at the perceptual level:

loudness, time/rhythm, pitch, spatial hearing and timbre. Table 2.3 illustrates a rough

classification.

Loudness Dynamics; Gain control; Phrasing(legato, pizzicato); tremolo;...

Time\Rhythm duration, tempo, rhythm related effects:
accelerando, deccelerando; time-scaling;

Pitch Pitch shifting; Autotune; other effects related to chroma;...

Spatial Hearing Doppler; Reverberation; Panning...

Timbre
Vibrato and other modulation related effects; Chorus and
other delay line effects; Equaliser; Whisperisation; Adaptive
filters; and much more...

Table 2.3: Audio effects classification III, classifying the common audio effects by the
perceptual attributes they can alter.

In most cases, one effect can be used for different purposes. For example, the Compres-

sor is designed to manipulate dynamics, while it can also be used creatively which leads to

some artistic effect. It can add a punch effect or create a more powerful and thicker sound
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in pop music [Huber and Runstein, 2010]. A single system of categorisation is not suffi-

cient as many effects affect multiple musical and perceptual dimensions. The introduction

of interdisciplinary classification addresses this problem by connecting different disciplines

together, from acoustics and electronic engineering to psychoacoustics and music cogni-

tion [Verfaille et al., 2006a]. In this structure, three discipline-specific classifications are

presented: they are based on the underlying techniques, control signals, and perceptual at-

tributes. The interdisciplinary classification will place links between layers, and one effect

can therefore fall into multiple categories.

Based on the idea of interdisciplinary classification, Zölzer et al. [2002] provides exam-

ples of how to classify Distortion, Equaliser, and the Wah-wah Effect. In a similar fashion,

and based on the author’s own understanding, a Compressor can be classified as Figure

2.2.

Compressor

Timbre Loud-
ness

Non-Linear

Warm; Cold Loud; Quiet

Time Domain

Peak detection; RMS; Side-chain; 
Decision function;...

Semantic
Descriptors

Perceptual
Attribute

Effect
Name

Control
Type

Processed
Domain

Techniques

EXAMPLES:

Figure 2.2: Interdisciplinary classification relations for Dynamic Range Compressor.

There are also sound effects that are mostly used in movies, television, and radio pro-

grammes. They are typically arranged in a library of recorded or synthesised audio. Cheer,

applause, or laughter are the typical effects within this category [Cai et al., 2003]. Although

they are very important effects and are frequently used in production, they are not nec-

essarily related to music or altering existing sounds. Therefore, in this research they are
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considered out of scope.

Manipulating a linear system, for example reverse engineering, is not a particularly

hard problem. Therefore the intelligent control of these systems has already been studied

relatively thoroughly. This PhD focuses on non linear audio effects. This research studies

one particular non linear audio effect: the Dynamic Range Compressor. The study is also

purely on the digital level of this effect and analogue hardware implementations are not

discussed or analysed. The following subsections focuses on this effect and other higher

control mechanism of audio effects.

2.1.3 Dynamic Range Compressor

DRC is a common tool of dynamics control for audio. It is wildly used in sound recording,

music production, radio broadcasting, and live performance. The function of a simple

compressor is to reduce the loud parts of the sound and amplify the quiet parts, which

results in smaller dynamic range. This can be beneficial for the perceived loudness, or it can

assist to reduce the coding rate for any transmission channel with a bandwidth limitation.

A compressor can be designed to compress loud sounds that pass a certain threshold; it

can also be designed to amplify quiet sounds that lie below a certain threshold. The first

type is called a downward compressor, and the latter is called an upward compressor. Here,

the research will focus on downward compression but we assume that the same mechanics

applies to upward compression.

Equation 2.1 describes compressor in general condition. X represents the audio sample

energy or the root-mean-square (RMS) energy, depending on the design. G, G1 and G2

are the gain factors of audio signal samples in dB. The threshold is one of the parameters

that users need to configure. The signal above will be compressed according to the ratio,

i.e. Equation 2.2. A more apparent illustration is provided in Figure 2.3. The threshold

decides above which energy level the signal needs to be compressed. Ratio decides how

much it will be compressed. For the sake of simplicity, the figure demonstrates the hard

knee compressor. Soft knee will apply a smooth curve for the gain turning point, where

the knee length will decide the curvature of the smooth curve.

G =





G1 if X < threshold

G2 ∗ (X − L) if X > threshold
(2.1)

31



ratio = G2/G1, normally G1 = 1, so ratio = G2. (2.2)
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Figure 2.3: Dynamic Range Compressor gain control behaviour

where G1, G2 are signal gain, L is threshold in dB scale, and X is signal magnitude.

The attack time and release time are another two essential parameters of the com-

pressor. They decide how fast the compression will operate or recover. If the compressor

acts directly when the sound reaches the threshold, it can lead to some unnatural results

that are not pleasant to listen to. The attack time is the approximate time for compres-

sor to reach the threshold. The release time is the approximate time for the compression

to recover. In implementation, these time constants are normally transferred through a

smoothing factor as shown in Equation 2.3, where τ represents the attack or release time.

Make-up gain is another commonly used parameter, which can be added to the output

of the compressor to adjust the overall energy level. Figure 2.4 shows an example when

applying DRC to a square wave. It illustrates the attack and release phase of the effect

working along with threshold, ratio, and make-up gain.

β = 1− exp[−2.2/(fs ∗ τ)] (2.3)

Being familiar with the basic mechanics of the DRC is not exactly the same as knowing

how to operate this audio effect. Similar to all audio effects, the DRC can be used in

a technically correct way, as well as an artistic way. The latter may not be technically

perfect, but can provide immense listening experience. The ordinary way is to use the

compressor to control loudness. Loudness is a notion that people sometimes confuse with
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Figure 2.4: Illustration for some of the parameters of Compressor, when applying to a
square wave.

the magnitude of the waveform. It is however a perceptual attribute that depends on the

non linear auditory phenomena and therefore strongly influenced by the dynamic range.

The control of loudness and dynamics can create a compact, thick, and powerful feeling,

which is very popular in the music of the 21st century. A correct attack and release time

for the compressor is also how the "punch" sound in pop music is created. Alternatively,

one might use longer release time to compress one instrument track in order to smear the

attack of another to create unexpected psychedelic perception or other artificial effects. In

conclusion, the DRC is a very common audio effect, but the use of it can be various. The

common use cases are listed in Table 2.4 [Izhaki, 2013].

Accentuate the sound details amplify the low volume, and reduce the large
volume;

Balancing levels multi-tracks balancing when one specific track
is louder than others;

Increasing perceived loudness smaller dynamic range sometimes means higher
loudness perceptually;

Reshaping the dynamic envelope
changing attack or release time; possibly using
to adjust tempo, add punch effect, or enhance
decay, etc.;

De-essing reduce the sudden "hissing" sound;

Ducker side-chain compressor can control the loudness
of one track based on the other track;

Table 2.4: Compressor use case examples

DRC can be used as a single effect, as a parallel DRC or as a serial one. Parallel

compression provides a louder sound while retaining their dynamics. Serial compressors

33



are able to separate multiple compression tasks into single compression tasks. It may

also be used on a certain frequency band. These applications are out of the scope of this

research.

2.1.4 Adaptive Audio Effects

Comparing with the usual audio effects, adaptive audio effects are able to provide a high-

level control, or to create completely new effects. They are normally designed through

combining an effect with an adaptive control method, more specifically, a time-varying

control derived from audio features. Figure 2.5 shows a general structure of adaptive effect

[Verfaille et al., 2006b, Zölzer et al., 2002].

Feature 
Extraction 

sound features to 
control values

DAFX

s[n]

x[n]

c[n]

y[n]

Figure 2.5: Adaptive audio effect structure

An adaptive effect can be controlled by the feature extracted from input signal x[n],

i.e. auto-adaptive. It can be controlled from another one or more input signal s[n], for

instance, in the case of a ducker (see Table 2.4), or features extracted from the input signal

s[n]. This type of control scheme is referred to as external adaptive. The ones controlled

by the output y[n] are called feedback adaptive, and those which are controlled by both

internal and external signals are cross adaptive effects. Adaptive effects can be extended

to gestural control as well.

Simple examples in this adaptive effect category are auto-tune, compressors, cross-

synthesis, and so on. There are also methods for commonly used effects, for example,

adaptive Equaliser (EQ), adaptive panning, etc.

2.2 Review and Applications of Intelligent Music Pro-

duction

Audio engineers play an important role in the music creation process. They are required

in recording sessions, the mixing process, the mastering process, and many more. Audio
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engineers have to shape the music track into a desirable sound, which involves, but not

limited to, tune the single tracks to a pleasant timbre, balance the loudness level, frequency

spread, and sound source positions of multi-tracks. With the development of digital signal

processing techniques, this profession is being digitalised rapidly. However, some parts of

the job still remains labour intensive and time consuming, for example, matching loudness

level. These parts of the process do not require artistic creativity, which give researchers

an opportunity to develop intelligent systems to assist the process. The essential tools for

audio engineers in the digital era are Digital Audio Workstation (DAW) and digital audio

effects. In the following sections, the previous applications of intelligent music editing,

mixing and production systems with an emphasis on Dynamic Range Compressor are

outlined.

2.2.1 Intelligent Editing Applications

In this section, the Intelligent Editing refers to the research area that designs and anal-

yses tools, applications or functions that helps with the music editing. More specifically,

“Editing” refers to the applications that present higher level audio features in music editing

applications, i.e. adding semantic descriptors or simplified graphical interfaces. Loviscach

[2008] describes a control method for Equaliser that allows users to draw points or use free-

hand curves instead of setting parameters. Subsequent work [Kolhoff et al., 2006] provides

a creative method to map features to shapes. However, the shapes of this system do not

link directly with the “meaning” of settings, rather they are classifications of a group of

presets. Cartwright and Pardo [2013] outlines a control strategy using descriptive terms

such as “warm” or “muddy”, and demonstrates a method of applying high-level semantic

controls to audio effects. Wilmering et al. [2012] describes a semantic audio compressor

that learns to associate control parameters with musical features such as the occurrence of

chord patterns. This system provides intelligent recall functionality. Another type of the

audio effects is identified as metering and diagnostics. It represents the applications which

preserve the function of the audio effects but provide more information when analysing

the high-level audio features on top of the traditional controls, e.g. [De Man et al., 2017]

discuss an application that generates alerts when reverb reaches a certain level. Ford et al.

[2015] provides a tool for analysing masking effects for instrument arrangement. The re-

search mentioned in this section inspires design ideas by providing the solutions of using

additional control for music signal processing.
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2.2.2 Intelligent Production and Mixing

As discussed previously, automatic mixing and production applications can be divided into

two categories. The first one can be described as a blackbox type of application, which

refers to the case where applications leave no or little control to the users. Ma et al. [2015]

provides an automation system that aims at finding the optimal dynamic range for each

track considering domain knowledge gathered from audio engineers. The second category

represents the ones that leave fewer controls to users compared to the original effect design,

e.g. [Dannenberg, 2007, Liu et al., 2010, Giannoulis et al., 2013], which can be referred to

as an assistant type.

Most of the control tools for DRC can be fitted into these two categories. The earlier

applications in this field are mostly assistant type, which are designed to provide sim-

plified or alternative control mechanism. Maddams et al. [2012] proposes a method to

match loudness and loudness range across the multi-tracks leaving two control knobs for

the user: automation level, and compression mode. Another approach proposed in [Gian-

noulis et al., 2013] requires threshold as input, and gives limited automation for the time

constants and ratio. An alternative implementation of DRC using non-negative matrix

factorisation (NMF) is proposed in [Sarver and Klapuri, 2011]. Here, the authors consider

raising the NMF activation matrix to 1
R to obtain a compressed signal with ratio R after

re-synthesis. This is viewed as a compressor without a threshold parameter. The more

recent works are mainly blackbox applications. Authors propose a statistical method for

intelligent compression in [Hilsamer and Herzog, 2014]. This method aims at matching

the statistical moments with a reference audio, while missing the automation of the attack

and release time. Mason et al. [2015] presents a personalised compression method con-

trolled by the environmental noise. The method modified threshold and ratio using the

loudness of noise while leaving the rest of the parameters fixed. However, this method

has not been evaluated by subjective or objective test. A recent application applied deep

neural network (DNN) in [Mimilakis et al., 2016]. It directly transfers the signal by us-

ing neural networks instead of predicting parameters and applies the learnt audio effect

accordingly. An end-to-end approach is proposed in [Martínez and Reiss, 2018] where the

method uses a generative model to simulate a certain configured audio effect. The results

are promising, but as with other approaches using Deep Learning, the control over the

model is very limited, and it appears to move the control problems from audio effects to
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a neural network. From the feature learning perspective, some works learn the relevant

features solely based on the audio to be compressed [Maddams et al., Giannoulis et al.,

2013, Mason et al., 2015]. While Mimilakis et al. [2016] applies machine learning methods

using compressed and uncompressed audio as training set. This work aims at learning

the parameter configuration, or “artistic choices” from the data sets generated by experts.

The system is fundamentally a rule based system but instead of having rules defined by

human, the rules are learnt by a DNN. The problem with this approach is that the training

set normally requires human effort to build. Moreover it is usually small and not easy to

obtain. Hilsamer and Herzog [2014] has the most similar approach to the method proposed

in this Thesis, since they apply a statistical model to match the statistical characteristics

of one audio to the reference, while this Thesis uses machine learning model trained on

audio features to predict DRC parameters’ configuration in order to make one audio sound

as close as possible to the reference.

2.3 Audio Features and Audio Signal Processing

The Thesis proposes a solution to a problem that fundamentally falls into the domain

of audio signal processing. As many research in this area nowadays, this work takes the

approach that involves the design and extraction of efficient features, and then uses them

to train machine learning models to solve research tasks. Key to the performance in

this approach is the effectiveness of the features and their relevance to the task. In this

section, an overview of audio features and audio signal processing will be given first in

Section 2.3.1. This is followed by the details of audio features related to DRC in Section

2.3.2. There are handcrafted features in this research specifically designed to represent

compression related audio characteristics, and their design require the assistance of audio

decomposition algorithms in cases where audio events overlap. Details of three types of

decomposition algorithms are provided in Section 2.3.3.

2.3.1 Overview

There is a great variety of audio effects. Different audio features are designed to suit various

purposes. In general audio features can be classified as low level and high level features.

The former are normally directly computable signal-level attributes, i.e. temporal features

and frequency features. The latter focuses on the perceptual level, i.e. those that require
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perceptual or machine learning models to characterise perceptual musical or semantic de-

scriptors. To provide a few examples, temporal features include, for instance, statistical

features, i.e. mean, variance; zero-crossing rate; and energy features, e.g. Root mean

square (RMS) curve. Frequency domain features include the signal bandwidth, spectral

centroid, etc. An important feature set which is commonly used in prior works related to

speech signal processing is Mel-frequency Cepstral coefficients (MFCC). This parametric

description of the spectral envelope has the advantage of being level-independent and of

yielding low mutual correlations between elements in an MFCC vector for both speech and

music [Logan et al., 2000, Breebaart and McKinney, 2004]. Harmonic features consist of

chroma-based features. The chromagram is derived from the spectrogram, such that it ag-

gregates all spectral information that relates to a pitch class or tone height into one single

coefficient [Müller, 2015]. The author will not discuss these types of features in detail in

the following subsection since harmonic features are not very relevant to DRC. Perceptual

features, or others may be referred to as psychoacoustic features, examples include de-

scription terms like roughness, loudness, or sharpness. Normally they can not be described

by a single low level feature, but require a model for each corresponding descriptor, e.g.

roughness model by Daniel and Weber [1997] and loudness model by Moore [2014]. More

details about the perceptual features that are related to DRC are given in Section 2.4.1.

Most music related research tasks rely on signal processing algorithms. From using

Fourier transform and its derivatives to extract frequency domain information, to music

structure retrieval, e.g. chord recognition, onset event detection, rhythm detection, and

source separation. It is not feasible to cover all algorithms in this field in this chapter. In

the following sections, the author will focus on the audio features and signal processing

algorithms that will be used in this research. The algorithms and equations are presented

in detail in the following chapter where they are applied.

2.3.2 Audio Features for Dynamic Range Compressor

DRC is an effect to alter the dynamic range of audio. Changes in dynamic range can

impact certain statistical characteristics of the signal, therefore these can represent changes

induced by the DRC to an extent. Statistical moments can be used on the audio sample

level or across larger blocks using frame-wise audio signals to devise features related to

dynamics. Starting with the frequency domain, spectral centroid is a commonly used

statistical measure computed from the spectra. It indicates the “center of the spectrum”
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and can be used to describe the “brightness” of the sound [Schubert et al., 2004]. Centroid

is the weighted mean spectra, i.e.

∑K−1
k=0 fk ∗ Y (k)
∑K−1
k=0 Y (k)

, (2.4)

where fk is the center frequency of a Short-time Fourier transform (STFT) bin, and Y (k) is

the magnitude of bin k. Higher order moments such as variance, skewness and kurtosis can

also be defined to characterise spectra. Another popular frequency domain representation

is the Mel-spectrogram. It is calculated by passing spectrogram through Mel-scaled filter

banks. Mel-scale is a perceptual unit or a scale of pitches judged by listeners to be equal

in distance from one another. It is a non linear scale devised to simulate the non linear

perception of pitch in the human auditory system. It is most famously used to calculate

Mel-frequency cepstral coefficients (MFCC). In the implementation of MFCC, frequency

is converted to Mel scale using the following equations: M(f) = 2595 log10 (1 + f/700) or

M(f) = 1127 ln (1 + f/700) [Ganchev et al.]. Triangle filter banks with center frequencies

arranged according to Mel bands are applied to the spectrogram. The resulting coeffi-

cients are logarithmically compressed and this is followed by the Discrete Cosine Transform

(DCT). In most prior works in speech recognition and music information retrieval, the top

13 coefficients are used typically as MFCC vectors. Fewer or a larger number of coefficients

are used in some cases, balancing the size of the feature space with the level of detail in

the spectral envelope representation. If the DCT and log compression are not applied to

concentrate the energy, it is called Mel-warped spectra or simply a Mel-scale spectrogram.

Higher order statistical moments can be used in conjunction with Mel-scaled spectra to

calculate dynamic range related features. In this way, both perceptual information and

frequency domain information are included.

Temporal features are equally important in this research. They are either based on

audio samples, or energy envelope e.g. calculated using Root Mean Square (RMS) energy

on a short time frame basis. Statistical moments can be applied to audio samples directly

or a series of RMS energy measurements, where the RMS is calculated using Equation 2.5.

N is the frame size and xn is the audio sample amplitude in this equation.

XRMS = (
1

N

N−1∑

n=0

x2n)
1
2 (2.5)

Statistical calculation can be applied on time domain signal as well. For example, the
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mean, variance, and higher statistical moments can be extracted from short time framed

audio samples or RMS signals. They are also directly related to the dynamics of the signal.

Another common feature often computed in the time domain is the well-known ADSR

(Attack, Decay, Sustain, Release) envelope structure. Since the DRC has parameters,

often referred to as ballistics, alerting the attack and release phase of the audio, the author

designed specific features based on the note structure. Details of this will be discussed in

Chapter 4. A diagram of the ADSR is provided in Figure 2.6.
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Figure 2.6: ADSR (Attack, Decay, Sustain, Release) envelope structure

Crest factor is a low level audio feature that is strongly correlated to dynamics [Peeters,

2004]. Crest factor is calculated by dividing the peak amplitude of a signal by the RMS

value of the signal. It can be applied to the whole signal to measure the global dynamics

or applied to windowed signal to represent the local dynamics. Equation 2.6 represents

the formula of this feature, where XRMS can be referred to Equation 2.5. This feature is

commonly used for the analysis of the DRC [Schneider and Hanson, 1991, Ma et al., 2015,

Giannoulis et al., 2012].

C =
|Xpeak|
XRMS

=
maxn∈N |X(n)|

XRMS
(2.6)

2.3.3 Audio Decomposition

In this research, the author applies the conventional audio features along with the features

designed specifically for representing changes in the parameters of the DRC. Handcrafted

features are strongly dependent on the note envelope structure, c.f. Chapter 4. With the

increase of the complexity of the audio, the note structures become less easy to capture.

There are different solutions for different levels of complexity. For mono-instrument loops,

the author considers to apply audio decomposition before extracting handcrafted features.
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There are three algorithms within consideration. The most straightforward method is based

on onset event detection. Separate loops by detected onsets can help with extracting note

structures. Guidelines for choosing the appropriate detection function is provided in [Bello

et al., 2005]. Time domain methods are normally adequate for percussive signals, while

spectral methods based on spectral or phase difference are suitable for pitched instruments.

Complex-domain spectral difference [Bello et al., 2004] works well but with higher compu-

tational cost while state-of-the-art methods using deep learning [Schluter and Bock, 2014]

performs better for polyphonic material. Since mono-timbral loops do not have such com-

plex structure, the author opts for the simple High Frequency Content (HFC) [Bello et al.,

2005] detection function as a starting point. The HFC function is constructed by summing

the linearly-weighted values of the spectral magnitudes, such as: DH [n] =
∑N
k=0 k|Xk[n]|,

where X[n] is the STFT of a time domain signal x. Xk[n] is the value of the kth bin of

X[n]. A temporal peak picking process is applied thereafter to detect the onsets.

The second approach is based on source separation using Non-negative Matrix Factori-

sation (NMF) [Berry et al., 2007]. NMF is a type of algorithm that factorises a matrix V

into two matrices W and H, with the property that all three matrices have no negative

elements. There are many approaches to achieve this. The author’s research follows a

popular and simple implementation, i.e. using a multiplicative update rule proposed by

Lee and Seung [2001] to iteratively decompose a magnitude spectrogram into audio event

templates and activations. NMF has shown to be a powerful decomposition for multivariate

data [Lee and Seung, 1999]. It has an increasing use in the audio domain. It can be used

on multiple levels. Wang et al. [2017] uses NMF on mono-instrument loops to decompose

them into notes. Bertin et al. [2007] also provides an NMF based algorithm to decompose

complex audio into activation patterns.

The third approach the author considered is transient/stationary audio separation. Re-

searchers used orthogonal wavelet bases to separate transient in [Evangelista, 1993], while

others combined Modified Discrete Cosine Transform (MDCT) and wavelet bases [Daudet

and Torrésani, 2002]. A more recent work using the Iterative Shrinkage Threshold Algo-

rithm (ISTA) [Siedenburg and Doclo, 2017] shows state-of-the-art performance, therefore,

this method is selected as an additional audio decomposition approach. ISTA was first

proposed for linear inverse problems in signal processing [Boyd et al., 2011]. It aims at

reversing a process applied to a signal. Similarly to NMF, by recovering the processed sig-

nal, the processing matrix can be obtained, and therefore, can be used to compute audio
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transient/stationary separation.

Most of the decomposition algorithms work better when the signals are smooth. The

commonly, or traditionally, used smoothing filters are FIR/IIR filters, e.g. moving average

(MA) filters. A MA filter is normally a simple lowpass filter. It takes L samples of

input at a time and takes the average of L-samples and produces a single output. The

Kolmogorov-Zurbenko (KZ) filter [Yang and Zurbenko, 2010] that is applied in this research

(see Chapter 4) is a series of iterations of a moving average filter of length M . A MA filter

can be described as Equation 2.7. The KZ filter is described in Equation 2.8. As it can be

implied from the equation, M needs to be a positive, odd integer.

y[n] =
1

L

L−1∑

k=0

x[n− k] (2.7)

y[n] =

k(m−1)/2∑

s=−k(m−1)/2
x[t+ s]× am,ks (2.8)

where am,ks =
cm,k
s

mk and cm,ks are the polynomial coefficients which can be obtained from

equation:

k(m−1)∑

r=0

zrck,mr−k(m−1)/2 = (1 + z + ...+ zm−1)k (2.9)

Equation 2.8 resembles to Equation 2.7. The difference is that KZ filters have a weight

multiplied with each sample within the filter length. It can be seen as a repetitive MA

filter, as the equation can be rewritten as an iteration of MA filtering. It has a better

performance in terms of attenuating the frequency components above the cutoff frequency.

2.4 Auditory Models and Audio Similarity

To recap the discussion from Chapter 1, this research proposes a similarity model as an

optimisation as well as objective evaluation tool for the intelligent control system. The

model will be used to test if the output audio is similar to the reference compared to the

original. This section provides the essential background for the similarity model.

Audio similarity is a broad subject because audio, especially music, is more than just

signal, but it introduces emotion, related to culture, and has perceptual qualities. Audio

similarity discussed in this section is focused on capturing the change in perceptual at-
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tributes of sound due to the application of DRC. Perceptual attributes are not simple to

capture or define. To capture them, computation models that simulate the human auditory

system are needed, i.e. auditory models. In the following order, Section 2.4.1 outlines the

auditory filters and loudness model that are applied in this research. Section 2.4.2 discusses

some related work in audio similarity.

2.4.1 Auditory Filters and Loudness Model

As discussed in the previous subsection, the audio similarity, more specifically, dis-similarity,

in this research relates to the subtle perceptual differences caused by an audio effect. To

have a better representation of the perceptual attributes, it is reasonable to consider audi-

tory models. Before discussing auditory models, the author needs to clarify the perceptual

attributes this research focuses on. There are a vast variety of perceptual attributes and

they are not all necessarily altered by audio effects. There is also no universal auditory

model to represent all perceptual attributes yet. Audio effects typically alter several per-

ceptual attributes including loudness, pitch, time, spatial hearing, and timbre [Amatriain

et al., 2003]. In [Wilmering et al., 2013], the authors conduct a listening test to demon-

strate that most of the audio effects are able to modify at least two aspects. In the case of

the DRC, the primary attribute is loudness while the secondary attribute is timbre. This

assumption is supported by the listening test. There are also logical arguments for ex-

plaining certain behaviour of audio effects. Reducing the dynamic range reduces the crest

factor and allows for increasing the average gain. This results in an increase in perceived

loudness [Wendl and Lee, 2014]. The influence on timbre is more subtle. Due to non

linear signal processing, compressors colour the sound, while different designs even have a

signature sound [Moore et al., 2016] that is typically recognised by engineers with critical

listening skills. Different parameter settings of the DRC can also lead to timbre changes.

Setting the attack and release times appropriately is how the “punch” sound in pop music

is created for example, while using a longer release time to compress one instrument track

in order to smear the attack of another can create unusual perception or other artificial

effects [Izhaki, 2013].

To model music perception, researchers have developed many computational models to

simulate the behaviour of the human auditory system. A brief introduction to the human

auditory system is provided. The human ear has several components: The outer ear is

the sound collector with the help of the pinna. The middle ear contains the ear canal and

43



the ear drum. They are used to pass and amplify sound and convert sound to mechanical

vibration. The inner ear contains the cochlea and other components. They pass and filter

the vibration and convert them into neural signals. A diagram of the auditory system

is illustrated in Figure 2.7. In this research, we do not consider and discuss the neural

excitation patterns in the central auditory system. Apart from the structure, there are

also auditory phenomenas, e.g. critical bands within the cochlea [Fletcher, 1940] and non

linear behaviour in pressure sensitivity leading to perceived loudness [Moore, 2014]. Most

of the processing within the ear is non linear, for example, the critical bands are distributed

on a non linear frequency scale as well. Based on these research, there are computational

models designed to simulate the response of the human auditory system.
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Figure 2.7: A brief diagram of human auditory system

As this research focuses on DRC, only the perceptual attributes related to DRC are

considered. As it is explained at the beginning of this section, the two main perceptual

attributes related to DRC are loudness and timbre. Because these are both perceptual

qualities that depend on the behaviour of the auditory system, they are not directly mea-

surable from the waveform or audio signal without the use of perceptual models. These

models are designed to simulate the structure of ear, the transmission of hearing nerves,

as well as the triggering of auditory neurons. Hearing functions are usually replicated

by auditory filters. The construction of such filters have been the subject of studies over

decades to construct models that fit psychophysical models of the cochlea as well as human

listening experiments.

The Gammatone family of filters introduced in [Patterson et al., 1987] have become

widely used to model the cochlea response. Equation 2.10 defines the impulse response of

Gammatone filters, where b = 1.019 ∗ERB(f) = 1.019 ∗ (24.7 + 0.108f) [Slaney, 1993]. To

improve simulation and provide a better fit to psychophysical data compared to previous

approaches [Unoki et al., 2006], the Gammachirp filter was introduced by Irino and Patter-
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son [1997] as a theoretically optimal auditory filter derived from the Gabor function, which

is known to be able to achieve minimum uncertainty in a joint time-scale representation

[Gabor, 1946]. The Gammachirp filters also have a sharp drop in the high frequency part

compared with Gammatone filters, which are able to reflect the temporal masking effects

of the auditory system better. The Gammachirp filter is described in Equation 2.11, where

σ is a time constant and φ is the phase. In both equations, f represents the center fre-

quencies placed along the Equal Rectangular Bandwidth (ERB) scale. Similarly to the

Mel-scale introduced in Section 2.3.2, the ERB scale approximates auditory bands [Moore

and Glasberg, 1983]

g(f, t) = t3exp(−2πbt)cos(2πft) (2.10)

g(f, t) = exp(−t/2σ)cos(2π(ft+ c/2t2) + φ) (2.11)

There are several works simulating the middle ear filters as well, c.f. Allamanche et al.

[2001]. This filter has been suggested to apply in many research. For instance, Pampalk et.

al. considered outer to middle ear transmission as well as the frequency masking effect in

their work regarding audio similarity [Pampalk et al., 2008]. The filter response is defined

in Equation 2.12.

HdB(fkHz) = −3.64× f−0.8 + 6.5× exp[−0.6× (f − 3.3)2]− 10−3 × f4 (2.12)

Another notable area of research is auditory modelling focusses on the perception of

loudness. In terms of estimating perceived loudness, Moore and his colleagues have been

developing a series of loudness models since the 90’s [Moore and Glasberg, 1996], [Moore

and Glasberg, 1997], [Moore and Glasberg, 2007]. A thorough review and a walk-through

the development over several decades is given in [Moore, 2014], starting from models for

stationary sounds to time-varying sounds, as well as models for impaired hearing. As

introduced in Chapter 1, there is an audio similarity model designed in this Thesis. Both

auditory filters and loudness models are considered to serve as the signal preprocessing

step in the proposed similarity model. More details can be found in Chapter 6.
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2.4.2 Audio Similarity

Audio and music similarity is a broad area of research with many existing models and algo-

rithms concerning problems in difference levels and modalities. The authors in [Kaminskas

and Ricci, 2012] provide a thorough review in the context of content-based music infor-

mation retrieval. Although most algorithms focus on polyphonic music, they still provide

useful insight of the problems addressed in this Thesis. In content based audio similarity,

most systems rely on statistical models fitted on low or mid-level audio features. In the

context of music tracks, Gaussian models trained on cepstral coefficients have been shown

to work well in [Aucouturier and Pachet, 2002]. This has been considered as baseline in

several subsequent studies. A similar approach was introduced earlier in [Logan and Sa-

lomon, 2001] with a histogram-based probability distribution instead of a Gaussian model.

A substantial part of this Thesis is concerned with mono-instrument audio materials. There

are related works for the similarity of individual instrument samples. Researchers outline a

model for drum samples in [Pampalk et al., 2008]. Even though music similarity is a widely

discussed subject, similarity for particular production features has not been explored. The

differences caused by audio effects like the DRC are relatively subtle. Audio effects are

mostly designed to alter the perceptual attributes, c.f. Section 2.1.2. Therefore, it is

important to consider perceptual features when designing the similarity models targeting

audio effects. There are works taking audio perception into account, for instance, Ter-

rell et al. [2012] investigates the dependency of similarity models on listening conditions.

The authors proposed level dependent auditory spectrum cepstral coefficients (ASCCs) to

improve on MFCCs by making the system more perceptually relevant. Other similarity

methods that consider symbolic information such as lyrics or metadata are out of the scope

of this Thesis because this research only focuses on audio signal level similarity.

Even in audio signal level, there are many similarity algorithms targeting different prob-

lems. For example, genre classification, instrument recognition, and music fingerprinting,

etc. Since our problem is very specific, there are not much previous research focused on

the similarity caused by the application of audio effects. However, there are also works in

the related areas we can gain useful insights from. Some research related to audio tim-

bre similarity is reviewed next. Tzanetakis and Cook [2002] provides an automatic genre

classification method. It averages the timbre features of a certain genre, therefore, each

music piece can be matched to a group of music pieces. A critical review of genre clas-
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sification can be found in [Sturm, 2012a]. Another related area is instrument recognition

aiming at grouping similarly sounding instrument samples based on timbre. A summary of

instrument recognition systems can be found in [Fu et al., 2011], and the commonly used

instrument classification techniques are outlined in [Herrera et al., 2000]. Some similarity

research focuses on relative similarity rather than absolute similarity. They may need to

compare one music piece to another. Welsh et al. [1999] provides a timbre similarity al-

gorithm, which extracts 1248 timbre features per song, and uses k-nearest neighbour to

retrieve similarity songs. Timbre related features are frequently used in related research as

well as statistical models to capture global characteristics of the audio that are important

in the estimation of similarity. Some models important in this context are reviewed next.

Audio features are commonly extracted from a short time window of the audio signal.

This is often based on the assumption that the signal, or some important aspect of it, is

stationary for a short period of time. Additionally, when designing features, it is often the

case that a local measure or estimate of some audio characteristic is sought for. However,

these short-time features are unable to represent long term structural or global character-

istics of the audio. To solve this problem, statistical aggregates such as mean and variance

may be used if the distribution of a feature is known. For complex or unknown feature

distributions, it is necessary to develop more complex statistical models, with parameters

learnt or estimated from data. Statistical models represent probability and the divergence

between probability distribution may be used as a proxy for estimating the similarity be-

tween those distributions, hence they are a proxy for audio similarity. Logan and Salomon

[2001] proposed an approach, which is based on Gaussian Mixture Model (GMM) of MFCC

features. GMM is a commonly used probability model to represent an audio signal. As

audio signals are sometimes more complex than a single Gaussian distribution, multiple

Gaussian can be a better representation. A possible similarity measure method between

Gaussian models is called Earth Mover’s Distance (EMD) which is provided by [Rubner

et al., 2000].

Kullback-Leibler divergence (KL divergence) is a popular way to measure how one

probability distribution is different from another. More specific, for discrete probability

distributions P and Q defined on the same probability space, KL divergence can be calcu-

lated as Equation 2.13. KL divergence is often applied to compute the divergence between

Gaussian distributions for the measurement of the information loss when using one distri-

bution to approximate the other. Compared to estimating similarity using other distance
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metrics, the success of using the KL divergence is crucially linked to it asymptotically go-

ing towards infinity when one of the distribution goes towards zero [Jensen et al., 2009].

Alternative methods include the Jensen-Shannon divergence [Fuglede and Topsoe, 2004],

which is a symmetric version of the KL divergence. The divergence between mixtures of

Gaussian models is not analytically tractable, therefore the similarity estimation method

proposed in this Thesis uses the approach proposed in [Hershey and Olsen, 2007] which is

based on variational Bayes approximation.

DKL (P ||Q) = −
∑

x∈X
P (x) log(

Q(x)

P (x)
) (2.13)

Such algorithm performs well in modelling timbre similarity focussing on the spectral

envelope [Aucouturier and Pachet, 2002] although with some limitations, for instance,

similarity estimation using this method may be perturbed by modification of the spectral

envelope using equalisation in the audio domain [Sturm, 2012b]. However, this may be

detrimental if the objective is to estimate a high-level semantic descriptor such as genre,

but beneficial for measuring the impact of audio effects, since similar methods are sensitive

to these types of transformations.

2.5 Machine Learning

A large part of this Thesis relies on machine learning techniques. It is a popular trend in

audio signal research that low level audio features are engineered to complement machine

learning models designed to perform well in high level tasks. Many parts of this research

benefit from machine learning techniques in different ways. Firstly, a predictor that learns

the association between audio features and DRC control parameters and provides for the

estimation of optimal parameters are required in this research. This work uses a trained

regression model as the predictor. The details of training the model and using it for DRC

parameter estimation are presented in Chapter 3. Feature selection as a commonly used

machine learning technique for data preprocessing will be beneficial to form an efficient

feature set, since the audio features as outlined in Section 2.4 have a great variety and

may overlap in terms of the audio characteristics they describe. Related work is provided

in Section 2.5.2. Deep Neural Networks (DNNs) have become exceptionally successful for

many research areas including audio signal processing. This research applied a DNN feature

learning model as an improvement on the handcrafted features. The essential background
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of the models this research applied is presented in Section 2.5.3 and the proposed method

is discussed in Chapter 5.

2.5.1 Regression

Regression is a form of supervised machine learning. The goal of regression is to predict

the value of one or more continuous target variables t, given the value of a D-dimensional

vector x of input variables. A commonly used model is linear regression. It aims to fit a

linear function to represent the relation between the targets and inputs variables. More

generally, a regressor aims to model the predictive distribution p(t|x) as the uncertainty

about the value of t for each value of x. From this conditional distribution users can make

predictions of t for any new value of x. Regression models are trained in such a way that

minimises the expected value of a suitable loss function. Normally the loss function for

regression is the squared loss. To be concise, this subsection introduces only the regression

model applied in this research: linear regression and random forest regression.

A linear regression model involves a linear combination of the input variables:

y(x,w) = w0 + w1x1 + ...+ wDxD. (2.14)

The training process would take input features x and the output observations y and min-

imise the loss function, for example, the mean square error (MSE) = (y− ŷ)2. The training

process would optimise the weight value w, and therefore, the model can be used for pre-

diction. Linear regression is the basic regression model, with the strong assumption that

the relation between x and y is linear. To model non linear relations in general, one of the

most effective machine learning models, random forest regression can be applied [Breiman,

2001b]. Random forest regression is a combining model or ensemble learning model which is

a combination of multiple learning algorithms aiming at improving performance compared

to linear models [Bishop and Mitchell, 2014]. A random forest is constructed by multiple

decision trees. A decision tree is an algorithm that uses a sequence of binary selections

corresponding to the traversal of a tree structure. This algorithm can be used for both

classification and regression tasks. Having a “forest” instead of a “tree” is introduced to

solve the overfitting problem for a single decision tree. An illustration diagram for the

algorithm is provided in Figure 2.8. The algorithm firstly selects a random sample with

replacement of the training set and fits trees to these samples, i.e. bagging. The tree
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structure is generated and the split criteria is optimised using a loss function. Figure 2.8

shows a general structure of the forest. The nodes of the tree are trained to split based on

one or several features. If after the splits the node only contains one category, this node

would be labelled the leaf node and would stop splitting further. After training, the inputs

propagate through the tree structure and fall into one node. This node will decide which

category it is classified as. The random forest algorithm uses several trees, so the final

result is the majority of the outcome of each tree. The green and red nodes in Figure 2.8

can represent the classes of the classification problem. In a regression case, the average of

the output of each tree can be used as the final prediction.

Tree 1 Tree 2 Tree 3

Input X

∑

Figure 2.8: A random forest algorithm diagram

2.5.2 Feature Selection

Feature selection is a commonly used data preprocessing technique for optimisation of a

machine learning model. By selecting the optimal features using large amounts of data, the

number of features can be reduced, irrelevant or redundant features can be removed and

computational cost will be reduced. The system is expected to become more robust to noisy

data. This brings immediate benefits for applications: speeding up data mining algorithms

and improve mining performance such as predictive accuracy and result comprehensibility

[Baeza-Yates et al., 1999, Liu and Yu, 2005]. The general steps of feature selection are

• subset generation;

• subset evaluation;

• selecting a stopping criterion;
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• result validation

in a sequence. When classifying the methods by subset generation, the strategies can

be identified into these categories: 1) complete search, 2) sequential search or 3) random

search. They represent the different ways of how to generate the subset from the full

feature set. At subset evaluation stage, feature selection algorithms can be classified as

filter model, wrapper model, and hybrid model.

A filter model is a model that evaluates the relations across features. It will select

the features that contain the least shared information among them. It is not taking the

performance into account. The selected feature set may contain the most information,

but it is not guaranteed to be the most related to the training target. A wrapper model

considers only the algorithm performance, which means it selects the best performing

subset, but it can be easily overfitted. To solve this problem, a third type of model has

been proposed. This is called hybrid model, which combines the filter and wrapper model.

The stopping criterion is normally defined as the search being complete, or reaching a

certain given bound such as the number of iterations. The most common result validation

method is the direct use of the machine learning model performance.

In terms of audio feature selection, Doraisamy et al. [2008] considered several correlation

based filter models, while in [Baume et al., 2014], researchers applied a wrapper model.

There are embedded methods which combine selection strategy with machine learning

algorithms. Since random forest regression is used in this Thesis, the author will also

consider several feature ranking algorithms specific to random forest. Originally proposed

in [Genuer et al., 2010] and implemented in [Ronan et al., 2015, Martínez Ramírez and

Reiss, 2017], the feature importance method measures the change in the out-of-bag (OOB)

error rate for each individual tree when replacing a certain feature with random values. The

average performance change can be used as a measure of feature significance. In addition,

another commonly used method described in [Stone et al., 1984] is mean decrease impurity.

This is defined as the total decrease in node impurity averaged over all trees of an ensemble.

Node impurity is a measure of the homogeneity of the labels in a node, for example a tree

node in Random Forest algorithm. It can be approximated by the proportion of samples

reaching a certain node.
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2.5.3 Deep Neural Network

Neural networks are a set of algorithms inspired by the human brain’s neural connections.

The idea of neural network can be traced back to the 1940s. The invention of backpropa-

gation and the development of GPUs and distributed computing helped these algorithms

thrive in the 1980s and after 2010s. An artificial neuron is a computational node, which has

linear weights and bias along with a non linear activation function. With a vast amount

of artificial neurons connected, the model is able to learn a highly sophisticated function.

Schmidhuber [2015] provides a good overview of the history, development and techniques

of neural networks until 2014.

A node represents a scalar value as X in Figure 2.9. An activation function is normally

applied to each node as f(z). A layer consists of a set of nodes representing a vector.

They are not inter-connected, but connected by weight vector w to the subsequent layer as

z =
∑

(wx). The bias is treated as w0 in the equation. In a network with multiple layers,

there are intermediate layers as well as the input and the output layer. The intermediate

layer can also be referred as hidden layers.

x

x

z=Σwx
a=f(z)

Figure 2.9: An example of nodes and the connections in a neural network.

Convolutional Neural Networks for Audio

A conventional DNN takes a single feature vector as input. In audio recognition tasks

however, the objective is often to learn increasingly complex patterns that unfold in fre-

quency and/or time. For this reason, convolutional networks that look at a region of some

time-frequency representation such as STFT or learn temporal patterns from time-domain

audio signals may be used. A convolutional layer in neural network normally uses a fixed

size kernel to sweep over an input. The same weights (convolutional kernels) are applied to

the whole input area. This results in vastly reducing the number of trainable parameters.

The output is a representation of local activations of patterns. It has been widely used in

2D signals, e.g. image signals. It has shown an encouraging performance in audio domain
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as well.

As it is discussed in the Chapter 1, DNN has an increasing trend in audio signal

processing. It has shown outstanding performance in speech recognition [Palaz et al.,

2015], music genre classification [Li et al., 2010], onset event detection [Schlüter and Böck,

2013], etc. There are attempts that use generative model to synthesise audio with certain

effects. Most of these research use one DNN model to represent one effect with a specific

parameter settings. Controlling the parameter configuration by generative model is not yet

possible, c.f. Section 2.2.2. This research uses neural network to learn a feature embedding

that would be used for parameter prediction rather than using it as an end-to-end model.

There are two ways to use CNN for audio related tasks. Since CNN is originally de-

signed for image signal, i.e. 2D signal per channel, it is straightforward to transform the

1D audio signal into a 2D time-frequency representation and apply 2D CNN directly. Pop-

ular representation includes spectrogram [Pons et al., 2017c] and Mel-spectrogram [Choi

et al., 2016, Ullrich et al., 2014]. Whether time-frequency representation of audio can be

considered equivalent to an image remains a question, even it is proved to be powerful for

tasks like classification and music tagging. For instance, images can be shifted in any axis

and the information remains the same, but a shift in frequency axis will be different for

audio, for example, it can result in perceived pitch shifting and potentially other effects.

Many research shows that given raw audio input, it is possible for the model to learn an

appropriate hierarchical representation [Cakır and Virtanen, 2018]. Therefore, to reduce

information loss during the preprocessing, many recent research applied raw audio as the

input for a CNN model. Normally raw audio is fed into the network as relatively long

sequences of time-domain samples forming a large 1D input vector. Many researchers use

comparatively large convolution filters, e.g. 10-20ms (441-882 samples if the sample rate

is 44100Hz) [Ardila et al., 2016, Dieleman and Schrauwen, 2014]. There are also "sample

level" networks which apply small filters, e.g. 3 samples Lee et al. [2017] and achieve a

comparable level of accuracy in the state-of-the-art music tagging tasks. Since this research

would require a model to learn multiple parameters of an audio signal processing task, the

model needs to capture features at different scales. The multi-kernel model [Dieleman and

Schrauwen, 2013, Pons et al., 2017b] designed to enhance the versatility of the model would

be a benefit for model design.

There are a great amount of network architectures in the research area of deep learning.

It is not feasible to cover them all in this section. Apart from CNN, one architecture
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this Thesis applies is Residual Block. The intuition behind the Residual Block can be

represented as follows: a normal block operates as y = F (x), and a residual one operates

as y = F (x) + x. The Residual Block was proposed to solve the problem of vanishing

gradient [He et al., 2016]. It is a case where as the network gets deeper and therefore more

complex, the gradient becomes so small that the numerical precision of the processor is

unable to represent it and the value becomes zero and make optimisation, which relies on

gradient, impossible. Good performance as a result of Residual Blocks make very deep

network possible.

Siamese Model

The problem this research aims to solve requires the model to pay attention to subtle

changes in an audio signal, such as changes in note attack times and learn features related

to them. Therefore, the author considers to use a siamese model structure [Bromley et al.,

1994]. The siamese model is a network structure that conceptually contains two or more

identical subnetworks with shared weights. Figure 2.10 illustrates the structure, where the

two branches have shared weights. These branches can be merged in the later stage of the

network and followed by more neural network structures.

Wx1 h

Wx2 g
merge NN Labels

Figure 2.10: An example of siamese model.

The Siamese model is an appropriate structure when a model needs more than one

input or branch, and all inputs are from the same domain. This structure is powerful

especially when the multiple inputs are similar or linked in a certain relationship [Yu et al.,

2016]. The siamese model is firstly proposed to target “one-shot” learning, where training

example for one class is very limited [Koch, 2015]. This model will naturally rank the

inputs by similarity, which is ideal for the problem this Thesis is focusing on. In this

research, the inputs are linked by compression, i.e. the audio inputs differ only in their

dynamic range related characteristics, which make it possible to use siamese model to learn

feature embeddings that characterise these differences well. Similar structures are also used

in other audio applications and it is shown to be useful for feature learning [Yang et al.,

2018].
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2.6 Conclusion

In this chapter, the author reviewed the related research within the topics of intelligent

production, audio signal processing, audio similarity and auditory system, and machine

learning. Relying on many previous works build the solid foundations of this research.

This chapter started with an introduction of audio effects with an emphasis on DRC.

The author introduces the basic mechanism of this audio effect with explanations of its

parameters. An overview of how producers and artists normally apply DRC is provided as

well. It is followed by the introduction of adaptive audio effects.

Related research in a broad sense of intelligent production are introduced as well. The

author provides a general overview, and compares the related applications. The audio

features and signal processing algorithms are outlined in Section 2.3.

Since this research includes an audio similarity estimation method for evaluation pur-

poses, an overview of audio similarity applications are provided in Section 2.4. This section

also includes an introduction of the human auditory system and models for simulating the

behaviour of the auditory system.

Section 2.5 reviews related machine learning models that are used in this research. It

starts with the introduction of the typical regression models. Since conventional machine

learning models require the selection of efficient feature, the author also introduces feature

selection algorithms. The audio features are extended from handcrafted features to DNN

feature learning. The review of related model structures is included in this chapter as well.

Having the support of these previous work, from the next chapter onwards, this Thesis

will start to discuss a series of system design, feature design, and evaluation mechanisms.

Experiments and evaluation for each proposed system component and method are included

as well.
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Chapter 3

Intelligent Control of Audio

Effects

Digital audio effects are essential for all processes in music post-production. Since almost all

music consumed by audiences are polished, a good mix may be taken for granted. However,

professional quality sound requires substantial expertise, experience, time and labour to

achieve. This Thesis acknowledges the substantial experience and craft of established

audio engineers and producers. The approach proposed in this Thesis is also designed to

improve and smooth the procedure for both professionals and amateurs. In this chapter,

the proposed intelligent system is introduced in detail. This discussion starts with the

motivation of the design, and define the main problem the author is aiming to tackle. The

overall system design and the research schematic for individual research stages are also

provided. This chapter focuses on describing workflows. It introduces the basic design for

the functional parts of this research. For example, the feature extractor and audio similarity

model will be improved in the following chapters. The system is evaluated on simple audio

examples. With the improvement of each part of the system, specific components of our

model will be evaluated with more complex audio examples in the following chapters.

3.1 Motivation

This section is started by discussing some motivating examples for automating audio effect

configuration. Controlling effects requires significant experience and know-how, especially

when used for aesthetic purposes during music production [McGrath et al., 2016]. This
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often involves mapping a concept or idea concerning sound qualities to low-level signal

processing parameters with limited meaning from a musical perspective. For instance,

they often describe a desired effect by providing an example, e.g., name a particular style,

artist or song, instead of a specific audio feature. Knowledge of signal processing, which

was requisite for engineers in early studios, as well as good understanding of their control

parameters and function constitute the skills of sound engineers and producers. Acquiring

these skills however present a high barrier to musicians and casual users in applying today’s

production tools as discussed in Chapter 1. Consequently, the development of intelligent

tools, as it has been done in other content production industries such as desktop publishing

or word processing, may greatly benefit music production too.

Substantial amount of works in this area are concerned with automating the mixing

and mastering process (see e.g. Reiss [2011] or Ma et al. [2015]). The approach proposed

in this Thesis is significantly different from previous studies in that it does not directly

target multitrack mixing and mastering, or attempt to use high-level semantic descriptors to

control effects [Wilmering et al., 2012, Cartwright and Pardo, 2013]. The focus of this work

is on the novel task of estimating the parameters of audio effects given a sound example,

such that the processed audio sounds similar in some relevant perceptual attributes (e.g.

timbre or dynamics) to the reference sound. This has applications in various stages of

music production. For instance, while creating an initial rough mix of a track, artists

may describe how they would like an instrument to sound using an actual sound example

[McGrath et al., 2016]. An intelligent tool that provides audio effects settings based on a

reference audio track is useful to meet this requirement. It may also help hobbyists and

amateurs to make their own music or create remixes, an activity encouraged by well-known

bands, such as Radiohead, by releasing stems and multitrack recordings.

As mentioned in Chapter 1, an innovative control mechanism is proposed in this Thesis

by using a reference audio example. To investigate this idea, a single effect is selected:

Dynamic Range Compression as a research subject for system design and evaluation. This

Thesis focuses on this particular effect due to its several stages of non linearity within

the typical signal processing algorithms involved in its implementation as well as its wide

usage in music mixing and production c.f. Section 2.3.2. This chapter focuses on the

introduction of the workflow and system design, therefore, the audio materials are kept

simple: mono-timbral notes. Since the problem to be solved is to learn a parameter setting

that brings the input audio closer to the reference, the system is designed in a way that
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the machine learning model is fitted to the difference between the input and the reference.

The proposed solution consists of

1. an audio feature extractor that generates features corresponding to each parameter,

2. a regression model that maps audio features to audio effect parameters,

3. a music similarity measure to compare the processed and the reference audio

The details are provided in the following section.

3.2 System Design

The system details are presented in this section. Section 3.2.1 provides the system work-

flow. The initial approach to this research introduces a simple feature extractor using

conventional audio features introduced in Chapter 2, such as crest factor or spectral cen-

troid. The training method for the regression model is described in Section 3.2.2. The test

mechanisms are also introduced in this section.

This study uses a single-channel, open-source dynamic range compressor developed in

the SAFE project [Stables et al., 2014]. It is a downward compressor with an amplitude de-

tector. In the interest of brevity, the author will not discuss the operation of the compressor

again in this chapter and assume the reader is familiar with relevant principles introduced

in Section 2.1.3. Further discussion can be found in Zölzer et al. [2002], Giannoulis et al.

[2013].

3.2.1 System Design and Workflow

There are several ways to frame the research problem, generate training data and evaluate

the feature extraction and machine learning algorithms proposed in this Thesis. A high-

level overview of the proposed method is shown in Figure 3.1. The purpose of the system

is to make the Output audio, which is a processed version of the Input, sound as close

as possible to the second input Reference. A vector of low level features related to each

specific compressor parameter threshold (θ), ratio (γ), attack time (τa) and release time

(τr), i.e. ρ = {θ, γ, τa, τr} are extracted from both Input and Reference. They are served as

training features for the random forest regression model. The approach requires selecting

or designing relevant audio features and training a machine learning model that maps the

difference between reference and input audio features to audio effect parameters. In a real
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world application of the proposed system, the reference audio would be different from the

input audio, making the feature design more challenging. Therefore a simplification is

introduced first, assuming that the difference between reference and target sound is only

the application of the audio effect, i.e. the audio content to be processed is the same as

the reference, except with a difference in dynamic range compression. This restriction is

relaxed in later research, however it is useful as large amounts of training data can be

generated automatically.

Feature 
Extraction Model

DRC: f(x,ρ)

Reference

Input Output

Figure 3.1: System overview

A thorough research schematic diagram is proposed in Figure 3.2. This diagram is

aiming at abstracting the research problems this Thesis covers. It aims to introduce several

problems that may be framed around the core challenges of this research, including possible

methods of evaluation. The reader should note that this Thesis only covers a subset of

the approaches proposed in the diagram. The description of each procedure is a high level

recapitulation of the experiments in this chapter. Detailed description, evaluation, and

results of each experiment will be followed in Section 3.2.2.

In the diagram, the nodes represent the audio materials used and generated in this

research. Different combination represents different research process and problems. The

details are as follows:

◦ I. Training procedure: Node 1, 2. Datasets are generated by manually controlling

parameters ρ1. Most of the training datasets in this research are generated in this way

- with controlled parameter settings, and including both processed and original audio.

The training process normally uses this dataset and the ground truth parameter

settings to train a regressor. This process of the research, i.e. the details of the

training procedure is demonstrated in Section 3.2.2 - 1.

◦ II. Test procedure 1 (model evaluation, numerical prediction accuracy test): Node 3,

4, 5. In this case, an audio B, which is different from the training examples, is used

as Input. The assumption is that the reference, B′′ is generated from the input B by
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⇢ = {✓, �, ⌧a, ⌧r}
Model: trained model using selected audio features.

f() : Compressor process function.

E(): extraction function for selected audio features.

P (): prediction function parameters ⇢.

D(): distance measurement for audio examples.

Original
Audio

A

Processed
Audio

A0
f (A;⇢1)

Original
Audio

B

Processed
Audio

B0
f (B; ⇢̂2)

Processed
Audio

B00
f (B;⇢3)

⇢̂2 = P (Model, E(A0, B))

⇢̂2 =
P (Model, E(B00, B))

Ds = Similarity(A0, B0) or
D⇢ = Euclidean(⇢1, ⇢̂2)

Ds = Euclidean(B0, B00) or
D⇢ = Euclidean(⇢̂2,⇢3)

In this section, we provide a thorough description of the proposed system. The inputs and potential inputs are audio A, A0, B, and A00. Our purpose is using the
reference audio A0 to control the compressor function and make processed audio B0 sounds as close as A0. The potential input could be the origin uncompressed
audio of the reference: A, and the best possible processed audio provided by human expert: B00. The signal processes mentioned in the figure are all aimed at bring
B0 as close to A0 as possible. The processes in the diagram include a compressor function f(;✓), a regression model used for prediction; and several similarity
measurement.

This diagram is a concentrated web, which contains several situation and therefore, contains di↵erent research problems and solutions. Start from the simple
situation. If A, A0, B, B0 are active

7

1 2

3 4

5

Figure 3.2: Overall schematic diagram

ρ3. Having the trained Model, it is able to predict this parameter. The prediction is

denoted as ρ̂2. The distance between ρ̂2 and ρ3 can be measured as the numerical

test, i.e. Dρ. Details of this process are given in Section 3.2.2 - 3. The value of

the parameters do not represent audio perception. In this situation, the Euclidean

distance or similarity between B′ and B′′, i.e. Ds can be calculated as well.

◦ III. Test procedure 2 (similarity assessment): Node 1, 2, 3, 4. In this case, the

Reference is A′. This reference is not generated from the Input B′. In this process,

it is assumed that the origin of A′ is available to help with the prediction. This

test is detailed in Section 3.2.2 - 4. After predicting ρ̂2, B′ can be generated and

perform evaluation. The low level features and the similarity between A′ and B′ can

be compared, i.e. Ds.

◦ IV. Test procedure 3 (similarity assessment in a realistic scenario): Node 2, 3, 4. A
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more realistic situation is that the users only have the processed audio A′ instead of

both A and A′. The same evaluation as III can be performed in this procedure as

well. Details are given in Section 3.2.2 - 5.

◦ V. Test procedure 4: Node 2, 3, 4, 5. Assuming it is possible to get the parameter

setting ρ3 by either professional audio engineers or other sources, under the require-

ment of making B′′ as close as possible to A′. In this case, Reference is A′, the output

is B′ and B′′ can be considered as the ground truth. Refinement and optimisation

can be conducted using the similarity distance between A′ and B′. The same eval-

uation procedure as described in II can be accomplished. One possible optimisation

mechanism will be detailed in Chapter 7.

This diagram helps to outline many design aspects of the proposed system. The param-

eters and process function of DRC are decided out of the training process. The regression

model needs to be trained, which directly links to the prediction function P (). The fea-

ture extractor E(), the distance measure D() need to be devised too. More details about

the feature extraction stage will be provided in Chapter 4 and Chapter 5. The distance

measurement function can be in different complexity level. In this chapter, 1D Euclidian

distance as well as an audio similarity model from literature is used. An advanced audio

similarity model designed to model differences in audio characteristics related to dynamic

range compression is introduced in Chapter 6.

The following sections describe the first (proof of concept) experiment, with several

simplifying assumptions on the type of audio material and the use case conditions of the

proposed system.

3.2.2 Training and Testing Procedures

Regression model training

This section outlines the datasets and training procedure for the regression models that are

used in the first experiment to map features to effect parameter settings. In the first stage

of this research, the author considers two types of instruments: snare drum and violin. The

former is one of the most common instruments that requires at least a light compression

to even out dynamics. The drum samples are typically short and exhibit only the attack

and release (AR) part of the typical sound energy envelop, c.f. Section 2.1.3. The violin

recordings typically consist of a long note with fairly clear attack, decay, sustain and release
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(ADSR) phase. All audio samples in this chapter are taken from the RWC isolated note

database [Goto et al., 2003].

Table 3.1 describes the four violin note datasets denoted A, ...,D that are used for

training. In each dataset, one parameter of the effect is varied while the others are kept

constant. The number of training samples in each dataset equals to the number of notes,

i.e., 60 in case of the violin dataset, times the number of grid points (subdivisions) for

each changing parameter. In this study, 50 settings are used for threshold and ratio, and

100 settings for attack and release time as it is shown in the first column of Table 3.1.

The same process is applied to 12 snare drum samples to form the drum datasets. Each

training set A, ...,D is used for predicting a specific parameter.

Training sets (size) Conditions

θ(dB) γ τa(ms) τr(ms)

A (60*50) 0:1:49 2 5 200

B (60*50) 37.5 1:0.4:20 5 200

C (60*100) 37.5 2 1:1:100 200

D (60*100) 37.5 2 5 10:10:1000

Table 3.1: Training set generation details for violin notes

Original Note

N
Processed Note

Npro

Compressor

θ_i = a

Features

(as reference)

low level 

feature extraction
1

Features

low level 

feature extraction
1

division

Training Data

Feed to regression models, 

with training target θ_i = a

Figure 3.3: Flowchart of training data generation

Figure 3.3 describes the training process. Taking training set A as an example, the

original notes N are the recorded violin notes. The processed notes, denoted Npro on the

right hand side of the figure, are generated from N , which are processed by the compressor

with different threshold values. There are 60 different notes N , and each N generates

50 processed notes Npro. This yields 60 × 50 = 3000 Npro in the training dataset for

threshold. Because the features from Npro are highly correlated with the original note
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N , the difference between these two audio is used to focus on how the features change

as a result of dynamic range compression. Therefore, it is the calculated ratio value this

research actually uses to train the regression model. There are l features related to the

threshold extracted from each note. The conventional audio features used in training is

listed in the next subsection. The detailed list of features will be provided in Chapter 4.

Training data A comprises 3000 Npro × l feature vectors. In the following, this training

data is used to train the regression model. The same principle applies to training sets B,

C and D.

At this stage of the research, two regression models are compared and evaluated: linear

regression, and random forest regression [Breiman, 2001b]. Random forest uses averaging

over sub-samples from the dataset to improve the prediction accuracy of the model as well

as to mitigate over-fitting problems. The use of this latter model is motivated by the hy-

pothesis that the relationship between the audio features and the compressor parameters

may not be modelled accurately enough with simple linear regression due to the non linear-

ities in the process. In the evaluation, the implementations of the machine learning models

are available in the scikit-learn python module [Pedregosa et al., 2011]. The theoretical

background and more details about the machine learning models used in this study are

introduced in Chapter 2, Section 2.5.

Feature extraction

The experiments described in this chapter require audio features that are targeting each

individual effect parameter. There will be some features shared by all parameters. Since

DRC affects the dynamics of the signal, for instance, statistical features can be selected

for all four parameters. By statistical features, the author means to extract audio features

frame-wise, and then calculate the statistical features based on the frame-wise vectors. In

terms of audio features, the author considers the perceptual attributes that are affected

by the DRC, loudness and timbre [Wilmering et al., 2013]. The RMS features in the

feature set reflect energy, which are related to loudness, while the spectral features reflect

the spectral envelope, which is related to timbre. The statistical features are calculated

frame-wise, with a frame size of 1024 samples and a 50% overlap. For spectral features,

the spectrogram is calculated using 40 frequency bins up to 22kHz. It can be assumed that

this bandwidth is sufficient for the control of selected DRC parameters.

The magnitude spectrogram is defined as Y (n, k) = |X(n, k)| with n ∈ [0 : N − 1] and
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k ∈ [0 : K] whereN is the number of frames and k is the frequency index of the spectrogram

of the input audio signal with a window length of M = 2(K + 1). The spectral features

are extracted as described in Equations 3.1 - 3.4:

SCmean = E

[∑K−1
k=0 k · Y (n, k)
∑K−1
k=0 Y (n, k)

]
, (3.1)

SCvar = V ar

[∑K−1
k=0 k · Y (n, k)
∑K−1
k=0 Y (n, k)

]
, (3.2)

SVmean = E[(E[Y (n, k)2]− (E[Y (n, k)])2)1/2], (3.3)

SVvar = V ar[(E[Y (n, k)2]− (E[Y (n, k)])2)1/2], (3.4)

where SC stands for Spectral Centroid, and SV stands for Spectral Variance. The mean

and variance of SC and SV in the equations are calculated across all M length frames.

The following temporal RMS features are also extracted as described in Equations 4.3 -

4.4:

RMSmean = E[(
1

M

M−1∑

m=0

x(m)2)1/2], (3.5)

RMSvar = V ar[(
1

N

N−1∑

m=0

x(m)2)1/2], (3.6)

where x(m) represents the magnitude of audio sample m within each M length frame, and

the mean and variance are calculated across all the N time frames as with the previous

spectral features.

Four types of time domain features related to the attack and release of the notes as

well as the speed of the compressor are also extracted. These are designed for isolated

notes primarily or non-overlapping sound events. The attack and release times TA =

TendA − TstartA and TR = TendR − TstartR are calculated using the RMS envelope through
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a fixed threshold method (c.f. Peeters [2004]) that determines start and end times of the

attack and release parts of the sound. Note that the attack and release of the notes are

different from the attack and release time (τa, τr) as the DRC parameters. The end of the

attack is considered to be the first peak that exceeds 50% of the maximum RMS energy.

The RMS curve is smoothed by a low-pass filter with a normalised cut-off frequency of 0.47

rad/s. The RMS amplitude at the end of the attack and the start of the release are also

extracted, i.e., rms(TendA) and rms(TstartR) respectively, as well as the mean amplitude

during the attack and release parts of the sound.

Aatt =
1

TA

TendA∑

n=TstartA

rms(n), (3.7)

Arel =
1

TR

TendR∑

n=TstartR

rms(n), (3.8)

where Tstart and Tend are indices of the start and end of the attack or release. At last, a

feature related to how fast the compressor operates is calculated. Firstly, the ratio between

the time-varying amplitudes of input or original sound and the reference sound is calculated

s(n) = rmsref (n)/rmsorig(n). Then the amount of time for s(n) to reach a certain value

using a fixed threshold is calculated. The features described in this chapter are used to

demonstrate a proof of concept system. A broader set of features are considered in Chapter

4. A feature selection scheme will also be investigated in Chapter 4 to optimise the use

of audio features and improve the prediction accuracy. In addition to this, handcrafted

features designed specifically to describe DRC related audio characteristics corresponding

to the DRC parameters are presented in this research, for mono-instrument notes as well

as higher complexity audio materials, c.f. Chapter 4.

Numerical accuracy evaluation

As described in Section 3.2.1, there are several stages of evaluation. In this section, a nu-

merical test designed to evaluate the regression model will be demonstrated, corresponding

to the Test procedure 1 in Figure 3.2. This evaluation aims only at verifying the basic idea

behind the use of a reference sound (or note) to be approximated. This is not a realistic

scenario, because it assumes the user have access to both the processed and unprocessed
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(original) version of the sound which is used as reference. This is needed because the pre-

dictor variables, i.e., the input to the regression model is calculated as the ratio of the audio

feature data extracted from these recordings. This requires access to all pairs of (N,Npro)

(see Figure 3.3) in the training data. This scenario is presented in Figure 3.4 consisting of

two parts. The components within the dashed line box represent the actual control system

for the compressor with three inputs: the input note I to be processed, the reference note

R to be approximated, and its corresponding original note N from the training set. The

output note O outside of the dashed line box will be used in the evaluation, where it is used

to compare the similarity of the output and the reference. As it is mentioned in Section

3.2.2, the regression model is trained on the difference between features extracted from the

processed and unprocessed audio pairs. When testing, the same data is needed to predict

the compressor parameters. Therefore, the original note N is provided in the process of

generating feature vectors for testing.

Before using the similarity model depicted in the next subsections, e.g. the right hand

side of Figure 3.4, this numerical test is performed to evaluate the regression model accuracy

first. The experiment will compare predicted parameter values with the actual ones. The

workflow is the same as Figure 3.3, providing a standard testing step for regression models.

In this study, repeated random sub-sampling validation (Monte Carlo variation [Burman,

1989]) is applied to provide a more general model performance evaluation. The results and

analysis are reported in Section 3.3.1.

Similarity assessment

Considering the motivations and use cases described previously, the desired output of this

algorithm is to make an unrelated note I sound similar to the reference note R, where R

is generated from N through a compressor with e.g. its threshold set to xdB. However,

even if the prediction is perfect with xp = x, the same compressor for note I and note N

can give different perceptual results. Therefore, a similarity model which takes this into

account is needed to evaluate the similarity between R and the algorithm output O. The

processing and evaluation workflow is represented in Figure 3.4 with the structure within

the dashed line box used to control the system while the components on the right hand

side are used in the similarity test.

The similarity method used in this experiment is a simple and frequently used audio

similarity model [Aucouturier and Pachet, 2002]. A simple audio feature which is a good
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(although partial) indicator of the overall dynamics of the signal, i.e. crest factor (c.f.

Section 2.3.2) is applied as well. The first stage of the experiment reports the crest factor

difference between the reference R and the output O. Secondly, the similarity between the

two audio is measured using a Gaussian Mixture Model trained on Mel Frequency Cep-

strum Coefficients (MFCC). Accordingly, the feature extraction in the workflow indicates

the calculation of the divergence between two multiple Gaussian models, which provides

the similarity information. The symmetrised divergence, Jensen - Shannon divergence (JS

divergence) [Jensen et al., 2009], which is commonly used for Gaussian models, is applied.

It is similer to KL divergence, but symmetrical and smooth. It is used to measure the

similarity between two Gaussian distributions. The divergence between mixtures of Gaus-

sian models is not analytically tractable, therefore the approach proposed in [Hershey and

Olsen, 2007] is applied which is based on variational Bayes approximation. This model is

a baseline technique that provides a proxy for timbre similarity. A further development

of the similarity model is provided in Chapter 6. The results of this test and analyses are

provided in Section 3.3.
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Figure 3.4: Workflow of initial system with access to the reference sound and its corre-
sponding unprocessed version.

Similarity assessment in a realistic scenario

This section repeats the previous experiments under different assumptions. In a real world

scenario, if the reference audio R is a commercial audio track, its corresponding unprocessed

original sound N is not likely to be available. In this condition, the proposed solution is

outlined in Figure 3.5, where the input of the system is limited to the input note I to be

processed and the reference note R. In the feature computation workflow, the original note
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N is replaced by the input note I, because the features capture the difference between the

reference note and the original note. Measuring the difference between the reference note

N and the input I can be seen more reasonable and closer to a real world scenario. This

process is corresponding to the Test procedure 3 in the overall diagram depicted in Figure

3.2. The evaluation of this system design is provided in the following section.
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Figure 3.5: Realistic workflow with only the input and reference sound available.

3.3 Evaluation on Mono-instrument Notes

The previous section includes three stages of evaluation. The first stage is a numerical

test and the results for this part are given in Section 3.3.1. The two stages of similarity

tests are provided in Section 3.3.2. The audio materials used in these experiments are

mono-instrument notes. All details are provided in Section 3.2.2.

3.3.1 Direct assessment of parameter estimation

Using the test procedure outlined in Section 3.2.2, here the author reports the accuracy

of direct parameter estimation using random sub-sampling validation. Eighty percent of

the data are used as training and twenty percent for testing. Two regression models are

compared and evaluated: simple Linear Regression (LR) and Random Forest Regression

(RF) [Breiman, 2001a]. Table 3.2 & 3.3 show the mean absolute errors for both instruments

and regression models. Since the observed feature values are relatively small, we linearly

scale the feature values to [0, 1] and compare the errors. The highlighted values in the

table show that the smallest error is always observed when using the scaled features and

the random forest regression model. For completeness, the range for the four parameters
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are (0,50] dB for threshold, [1,20] for ratio, (0,100] ms for attack time, and (0,1000] ms for

release time. Scaling is reasonable in this pilot experiment, because the test data (reference)

is selected randomly from the database, which means all R has its original N available.

However, in a real world scenario, the reference sound is not taken from the database

prepared to train the regression models. It is more likely to be a produced sound or track

without access to its unprocessed version. Therefore the scaling factor of the training and

test sets may differ. Scaling will not be used in the subsequent studies. Please note that

there is no overfitting to the models, because in the evaluation the reference note and the

corresponding original are excluded from the training set of the regression model.

The results also illustrate that the prediction accuracy for drums is better than violins

in all cases. One reason might be that drum samples are shorter and exhibit a simpler

structure - short sustain, followed by release and there is no pitched content. It shows that

the system can predict the compressor parameters for drums better than for violins.

Violin LR RF

Threshold(dB) error 3.756 2.601

scaled features - error 1.860 1.731

Ratio error 2.065 1.583

scaled features - error 0.110 0.091

Attack(ms) error 15.503 0.719

scaled features - error 1.012 0.686

Release(ms) error 210.43 13.973

scaled features - error 78.913 10.583

Table 3.2: Numerical test using linear and random forest regression model for violin notes

Snare Drum LR RF

Threshold(dB) error 1.185 0.800

scaled features - error 0.408 0.345

Ratio error 1.571 0.999

scaled features - error 0.669 0.305

Attack(ms) error 6.867 0.860

scaled features - error 2.260 0.017

Release(ms) error 40.960 6.851

scaled features - error 23.045 0.999

Table 3.3: Numerical test using linear and random forest regression model for snare drum
samples
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3.3.2 Evaluation of similarity assessment between notes

The evaluation focuses on estimating the audio similarity in this section. The experiment

is outlined in the right hand side of Figure 3.4 and Figure 3.5. Firstly, the crest factor is

extracted, i.e., peak-to-RMS ratio as the similarity feature because it is correlated with the

overall dynamic range of the signal. Based on the design, the crest factor of the reference

note R should be closer to the output note O than the input note I. An example of this

test is given in Figure 3.6 with 25 randomly picked test cases. The crest factor of the

input signal is represented by the constant at the top of the figure and the crest factor of a

series of reference notes are depicted by the blue curve at the bottom. The crest factor of

the output signal from the system is shown in the middle (green curve). It is consistently

brought closer to the reference which fits the expectation of this research.

Figure 3.6: Example of changing crest factor with a fixed input and decaying reference
sound

Additionally, 50 reference notes are tested and the results are presented in Table 3.4

for violin notes and Table 3.5 for snare drum, where DCrest(A,B) = mean(|Crest(A) −

CrestB|). The results indicate that the system manages to bring the output closer to the

reference using both regression models. In all parameters except threshold, the random

forest model outperforms simple linear regression.

Next, this section discusses the results of similarity assessment as described in Section

3.2.2. At this stage, a simple audio similarity model is used to test the efficiency of the

system. The procedure starts from extract MFCC coefficients as features using fixed-length

overlapping time windows, and fit a GMM on the MFCC vectors. An approximation of
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Violin Threshold Ratio Attack Release

DCrest(Npro, R) 60.31 94.13 104.93 85.31

DCrest(Npro, O)LR 12.53 39.72 46.76 48.62

DCrest(Npro, O)RF 15.27 38.24 45.23 47.19

Table 3.4: Average of Crest factor difference - Violin

Snare Drum Threshold Ratio Attack Release

DCrest(Npro, R) 49.14 70.04 50.47 70.68

DCrest(Npro, O)LR 27.99 43.85 27.28 44.63

DCrest(Npro, O)RF 29.33 43.45 27.20 43.44

Table 3.5: Average of Crest factor difference - Snare Drum

the symmetrised KL divergence is then calculated and used as a dissimilarity measure.

Using the same procedure as in the previous part, the compressor settings provided by this

algorithm should bring the output note O closer to the R compared to the input note I.

Thus it is reasonable to assume that D(R, I) > D(R,O) holds and the performance of the

regression models can be tested. In this experiment, 50 original notes N are selected and

the reference R are generated by changing one parameter 50 times at a time. The average

similarity of the all 50 ∗ 50 = 2500 cases for each parameter and both regression models

are demonstrated in Table 3.6 & 3.7. The distances between the output notes and the

reference are closer to the ones between inputs and references. This result provides strong

support for the assumption that since the similarity algorithm theoretically captures the

timbre information as well, it will yield different results on different instruments. In this

test, the distance reduction achieved by the system is larger for violins, i.e., the violin

notes exhibit better results than the snare drums. This is possibly due to the fact that the

MFCC features used here do not model the drum sounds well enough.

Finally, the author investigates how the proposed algorithm works in a more realistic

scenario. When the original note N is not available, it is reasonable to use the input note

I in place of N . Under this condition, the same test for both crest factor and the MFCC-

based similarity model are repeated. The results for crest factor are provided in Table 3.8

for violin and in Table 3.9 for snare drum samples. The system is still able to bring the

crest factor of the output O closer to the reference R, but the efficiency is worse compared

to the case when the original note is available. Random forest regression still yields better

performance in almost all cases.

The result using the MFCC-based similarity model is illustrated in Figure 3.7 & 3.8.
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Violin Threshold Ratio Attack Release

D(R, I) 38.122 53.187 44.018 55.206

D(R,O)LR 19.799 20.911 22.852 20.994

D(R,O)RF 19.742 20.856 22.213 20.807

Table 3.6: KL Divergences for the first workflow in Figure 3.4 - Violin

Snare Drum Threshold Ratio Attack Release

D(R, I) 77.497 112.368 73.559 91.487

D(R, I)LR 73.749 88.574 73.307 85.022

D(R, I)RF 73.696 88.487 73.238 86.081

Table 3.7: KL Divergences for the first workflow in Figure 3.4 - Drum

Violin Threshold Ratio Attack Release

DCrest(R, I) 60.31 94.13 104.93 85.31

DCrest(R,O)LR 34.86 29.37 68.74 75.94

DCrest(R,O)RF 30.11 25.36 67.82 54.02

Table 3.8: Average of Crest factor difference - Violin

Snare Drum Threshold Ratio Attack Release

DCrest(R, I) 49.14 70.04 50.47 70.68

DCrest(R,O)LR 38.01 66.18 21.37 44.05

DCrest(R,O)RF 42.90 45.24 27.37 42.75

Table 3.9: Average of Crest factor difference - Drum

In each subplot, D(R, I) is on the left, D(R,O)LR is in the middle and D(R,O)RF is

on the right. In Figure 3.7 for violin notes, the average divergence is not as promising,

especially when comparing with the results in Table 3.6, but it is clear that even if the given

reference sounds have a large diversity, the algorithm reduces this significantly, and shows a

very stable improvement in the similarity result. On average, the random forest regression

performs better than linear regression in all cases except when predicting threshold. This

shows the benefit of modelling non linearities. Therefore the system will use random forest

regression in the following experiments. Figure 3.8 shows that the output of the system

did not manage to achieve a dramatic reduction in the similarity distance in case of the

snare drum. As explained before, further investigation is needed for the influence of timbre

on this similarity algorithm. Furthermore, larger datasets will be considered in subsequent

experiments.
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Figure 3.7: Similarity for four parameters in the second workflow, assuming the origin note
N is not available. - Violin. The first column of each sub-figure is the distance between
the reference and input, the second is the distance between the output and input using
linear regression, and the third one is using random forest. D(R) is equivalent of D(R,I),
and D(T) is equivalent of D(R,O).

Figure 3.8: Similarity for four parameters in the second workflow, assuming the origin note
N is not available. - Snare drum. Three columns of each sub-figure are the same as the
previous figure. D(R) is equivalent of D(R,I), and D(T) is equivalent of D(R,O).
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3.4 Conclusion

In this chapter, an innovative method to estimate dynamic range compressor parameter

settings using a reference sound is proposed. The author demonstrates the first steps

towards a system to configure audio effects using sound examples, with the potential to

democratise the music production workflow. The progress from using a linear regression

model to a random forest model is discussed. As DRC is a highly non linear audio effect,

random forest regression shows better performance in almost all the evaluation cases. The

evaluation progresses from a designated test case to a real world scenario as well. The

results shows a promising trend in most cases and provides an initial indication of the

utility of this approach. Drums samples also show better performance in almost all the

cases. This may be due to the fact that the structure of drum samples are somewhat

simpler than violin notes.

In the following chapters, the author will improve the feature sets by designing and

selecting handcrafted features as well as building a feature learning model. The audio

materials will be extended from simple mono-instrument notes to loops and polyphonic

music tracks to fit the real world scenario better. In terms of evaluation, the similarity

algorithm is improved using an approach that targets the audio perceptual aspects affected

by DRC. A objective experiment related to audibility threshold of DRC parameters is

carried out in Chapter 7 focussing on evaluation.
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Chapter 4

Feature Design and Selection for

Mono-instrument Loops

As described in the previous chapter, the proposed system has been divided into several

components. In this chapter, the author will discuss further investigations aiming to im-

prove the feature extractor component first. It can be assumed that using features with

an emphasis on specific DRC parameters will improve the performance. Therefore, four

feature sets are designed and selected for four DRC parameters. There are overlapping

features in these feature sets, but there are also feature designed specifically for a single

parameter. An extended set of features are tested in this chapter, including conventional

features and handcrafted features specially designed for DRC parameter estimation. The

previous chapter focuses on illustrating the system design, thus the audio materials used

in the experiments are simple isolated notes. In this chapter, not only the features will

be developed further and discussed in more detail, but the study is extended to a more

complex scenario, mono-instrument loops. A loop is a short snippet of musical audio that

may be tiled and repeated seamlessly to provide accompaniment. Some handcrafted fea-

tures are designed based on the note structure, therefore, audio decomposition algorithms

(see Section 2.3.3 in Chapter 2) are required when the objective is to separate note struc-

tures from a loop. In the second half of the chapter, several feature selection algorithms

(see Section 2.5.2 in Chapter 2) are tested and applied on the full feature lists due to the

possibility of redundancy in the feature set and to improve computational efficiency. Fi-

nally this chapter concludes with proposing an optimal set of features for each individual
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compression parameter.

4.1 Motivation

To recap, this research is aiming to help with the labour intensive and time consuming

problem of controlling audio effects. In the system design proposed in the previous chap-

ter, a set of acoustic features are used to capture important characteristics of simple sound

examples. These are then mapped to audio effect control parameters using regression. It

can be assumed that the key to the performance of the proposed system is the efficiency of

the feature extractor. It can also be assumed that designing specific handcrafted features

will lead to improved performance. These considerations govern the research discussed in

this chapter. Specific sets of features are proposed for each parameter. Audio decomposi-

tion algorithms are also applied for feature extraction on more complex audio materials.

In addition to the proposed feature sets in this and the previous chapter as already men-

tioned, there is a possibility that redundant information may exist, especially the possible

overlap between the DRC parameter specific features and the conventional ones. Many

machine learning research includes a feature selection step before training a prediction

model. This step may be beneficial in this research as well. One reason for investigating

this is to remove possible redundancies. Another reason is that the computational cost may

drop if the prediction model works well with fewer features. It may also have the potential

to improve the performance. This chapter includes several selection strategies to balance

relevance, generality, and performance. It aims to find the optimal feature set using feature

selection methods. The final set of features are settled by balancing the results from all

the possible selection strategies.

4.2 Feature Sets

This section provides details about the feature set this work has used and developed. In

this research, four DRC parameters are in the prime focus: threshold, ratio, attack and

release time, i.e. ρ = {θ, γ, τa, τr}. These are the most commonly used parameters of the

DRC. Other parameters, e.g. the make-up gain are not considered in this Thesis as it is

a simple level shift operation. The standard frequency and time domain features partly

introduced in Chapter 3 are used as universal features for the prediction of all parameters,

as described in Subsection 4.2.1 and 4.2.2. The features designed specifically for τa, τr, γ,
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are detailed in Section 4.2.3.

The feature design discussed in this chapter starts with the features applicable to iso-

lated notes. These will be adapted to audio loops and more complex polyphonic material

using audio decomposition techniques such as NMF.

4.2.1 Frequency Domain Features

Frequency domain statistical features are the most commonly used features for predicting

DRC parameters [Ma et al., 2015, Zölzer et al., 2002] because the statistical features are

strongly related to dynamics as explained in the Background Chapter (see Section 2.3.2).

In this research, the author defines the magnitude spectrogram Y (n, k) = |X(n, k)| with

the notations of n ∈ [0 : N − 1] and k ∈ [0 : K] where n is the frame index and k

is the frequency index of the STFT, X(n, k), of the input audio signal with a window

length of M = 2(K + 1). Since the signal Y (n, k) has two dimensions, the author uses

two typefaces to distinguish the mean and variance over the temporal dimension and the

frequency dimension. E and Var are used to represent the calculation over time, while

E and V ar are used across frequency. The mean and variance operations across both

dimensions are aimed to capture most of the dynamic changes. The features related to the

first order statistical frequency feature, spectral centroid, are given in Equation 4.1-4.2.

The list is extended until the 4th moment, therefore, the frequency domain feature set is

as follows: SCmean, SCvar, SVmean, SVvar, SSmean, SSvar, SKmean, SKvar, where SC

stands for spectral centroid, SV stands for spectral variance, SS for spectral skewness, and

SK for spectral kurtosis. They are calculated in the same way as the provided equations.

SCmean = E

(∑K−1
k=0 k ∗ Y (n, k)
∑K−1
k=0 Y (n, k)

)
, (4.1)

SCvar = Var

(∑K−1
k=0 k ∗ Y (n, k)
∑K−1
k=0 Y (n, k)

)
, (4.2)

Additionally MFCC features are extracted. As the Cepstrum represents the envelope

of Mel-scaled spectrograms, MFCC are commonly used to represent certain aspects of the

timbre of an audio signal. Given frame-wise MFCCs, M(n, k), with k ∈ [0, 13] represents

the first 13 Mel-frequency Cepstrum coefficients, and n ∈ [0 : N − 1] represents the index

77



of the time frame. Using M(n, k) to replace Y (n, k) in Equation 4.1-4.2, the statistical

features can be obtained based on MFCCs too. It is safe to assume the higher order

statistical frequency characteristics have already been included in the previous frequency

domain features, therefore, only the mean and variance of the first two moments of MFCCs

is used, i.e. MCmean, MCvar, MVmean, MVvar.

4.2.2 Temporal Features

Statistical features in the time domain are calculated in the same fashion as the frequency

domain features. Unlike spectrograms, time domain audio samples are in one dimension.

Therefore, this work calculates the mean and variance up to the second moment of x(m), the

magnitude of audio sample m within each M-length frame. Therefore there will be T1mean,

T1var, T2mean, T2var as time domain features. Since many of the DRC interventions may

happen over short time periods and work directly on the audio sample level, we are hoping

these features could help to capture the dynamic characters changing at the sample level.

RMS features are considered as well using the RMS curves also with a window size ofM .

The mean and variance, RMSmean and RMSvar across N time frames which correspond

to the average and variance of energy are also used as temporal features. The RMS features

are calculated by Equation 4.3 - 4.4. The time domain features are calculated in the same

fashion.

RMSmean = E

[( 1

M

M−1∑

m=0

x(m)2
)1/2]

, (4.3)

RMSvar = V ar

[( 1

N

N−1∑

m=0

x(m)2
)1/2]

, (4.4)

4.2.3 Features specific to DRC parameters

Although parameters are not working independently in the DRC process, it is still possible

to design specific features that reflect the role of each parameter. In this section, the author

introduces one feature for ratio and six features for attack and release times respectively.

The feature for ratio is the average of all the samples of which amplitudes are above

the threshold, assuming there has been already a fairly accurate prediction of threshold

78



before predicting ratio. The amplitude reflects the compression ratio directly, except for

the attack and release phases, where a smooth curve instead of the real ratio is applied.

Ra =
1

M

M−1∑

m=0

|x(m)|,∀|x(m)| > threshold (4.5)

Since the attack and release times are parameters that affect only a certain phase of the

audio, the author proposes attack/release phase related features to improve the prediction.

Equation 4.6-4.8 are the features representing the length, the average energy of the attack

phase, and the energy at the end of the attack phase, where the attack time TA is calculated

using the RMS envelope through a fixed thresholding method (c.f. Peeters [2004]). The end

of the attack, NendA, is considered to be the first peak that exceeds 90% of the maximum

RMS energy and the start of the attack, NstartA, is the first sample of the RMS envelope

that exceeds 10%. The RMS curve is smoothed by a low-pass filter with a normalised

cut-off frequency of 0.47 rad/s.

TA = (NendA −NstartA)/Fs, (4.6)

A1att =
1

NendA −NstartA

NendA∑

n=NstartA

rms_curve(n), (4.7)

A2att = rms_curve(NendA), (4.8)

Procedure 1 Calculate A3att
Input:

rms1 : non-compressed audio rms curve;
rms2 : compressed audio rms curve;

Output:
A3att;

1: γ = rms1/rms2
2: n1→ ∀γ[0 : n1] ≤ 1.0
3: n2→ ∀γ[n1 : n2] ≤ 1.0
4: A3att = n2− n1

Additionally A3att is calculated using the pseudocode shown in Procedure 1. For vi-
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sualisation, an example is plotted in Figure 4.1(a). The ratio between the time-varying

amplitudes of input or original sound and the reference sound is shown in the top figure.

The ratio curve before intersect "n1" corresponds to the noise part before the actual audio

content. Noise passed through a system will generate an arbitrary gain, so the start of the

audio can be found through this ratio curve (intersect "n1") while it can also be used as

a threshold to find when the ratio rises back to the threshold of interest (intersect "n2"

and "n3"). The distance between the two dots clearly shows the speed of the operation

of the compressor, where a short distance between "n2" and "n1" is corresponding to a

small attack time, and the longer distance between intersect "n3" and intersect "n1" is for

a longer attack time.

(a) Feature A3att

(b) Feature A4att, A5att

Figure 4.1: Examples to demonstrate the procedure of generating attack time features

A4att, A5att are calculated using the pseudocode in Procedure 2. During the transient

part of the note, there are most likely several ripples. The slope of the ripples can reflect

how fast the compressor operates, c.f. Figure 4.1(b). The RMS curve which has larger

energy slope responds to a longer attack time. Based on this observation, the author

designed A4att, A5att, which correspond to the mean and variance of the slopes. Features
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Procedure 2 Calculate A4att, A5att;
Input:

rms : the rms curve of the input audio;
threshold : the threshold of the compressor;

Output:
A4att, A5att.

1: rms1 ← rms[NstartA : NendA]
2: ω ∈ Ω, Ω = peaks over threshold in sequence rms1,
3: φ ∈ Φ, Φ = notches after each peak,
4: for ωi ∈ Ω do
5: si = (ωi − φi)/dist(ωi − φi)
6: end for
7: A4att = 1

M

∑M
i=0 si

8: A5att = [ 1
M

∑M
j=0(sj − 1

M

∑M
i=0 si)

2]1/2

corresponding to release time, TR, A1rel-A5rel, are calculated in the same fashion but at

the release phase.

Overall, 25 features are calculated for each note, of which 18 features are used for

threshold, 19 for ratio and 24 for attack and release time. In the following section, these

features will need to be adopted to more complex audio. The author will introduce several

decomposition methods before extracting these features.

There is a possibility that the features contain redundancy. Especially the frequency do-

main features may not be able to reflect the change of attack and release times significantly,

albeit it may be assumed that these temporal processes affect the spectral characteristics

and/or perceived timbre of sounds. Therefore, feature relevance with respect to individual

parameters will be assessed using different feature selection processes later in this chapter.

4.3 Audio Decomposition and Feature Design for Loops

As introduced earlier, this work uses standard audio features along with novel ones. Frame-

wise spectral centroid, variance, RMS and many more are extracted and the mean and

variance across the frame are used as standard features due to their relation to dynamics.

DRC involves several stages of non linearity and has a different behaviour during transient

and stationary parts of sounds due to the attack and release time parameters. The strategy

is to decompose loops into simpler audio excerpts so that the attack and release phases can

be measured more accurately. The workflow involves decomposing the audio into excerpts

and then extract the features as listed before. The average of each excerpts will be used

as the final features.
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Three approaches are applied and examined including onset event detection, Non-

negative Matrix Factorisation (NMF) and transient/stationary separation using Iterative

Shrinkage Threshold Algorithm (ISTA).

The first and most straightforward method proposed here is using onset event detection

to cut a long audio recording into short excerpts following the “note” structure. Guidelines

for choosing the appropriate onset detection function can be found in [Bello et al., 2005].

More details are provided in the Background Chapter. In this section, the audio materials

are mono-instrument loops, which are not highly complex material in the audio decompo-

sition research area, therefore the commonly used, easy to implement and computationally

light method, High Frequency Content (HFC) [Bello et al., 2005], is applied. The second

approach is based on source separation using NMF to decompose complex audio into ac-

tivation patterns. Finally, the author explores the transient/stationary audio separation

algorithms to locate notes. The ISTA [Siedenburg and Doclo, 2017] is used for this purpose.

4.3.1 Onset event detection

The loops can be separated into notes using High Frequency Content (HFC) with a strong

assumption of little overlap across adjacent notes. As outlined in Section 2.3.3, HFC is

a relatively accurate method for onset event detection, and it is sufficient for the types

of material investigated in this chapter. The author then applies feature extraction as

described in Procedure 3. Several stages of selection schemes is applied to relax the as-

sumption mentioned at the beginning of this paragraph. After obtaining onset positions,

notes with attack/release phases that have not been smeared by other notes are selected

using two conditions. Firstly, the notes that are longer than 1ms are kept. Shorter notes

normally indicate significant overlap. The second condition is goodness of fit using two

functions motivated by assumptions on the note envelope. A polynomial function fitted

on the ascending part of the note envelope and an exponential decay function on the de-

scending part. If the fitted parameters do not show the ascending/descending trend the

note is discarded. The procedure secures that only the clear attack/release phases within

the loops are selected. Features are calculated according to Equation 4.6-4.8 and averaged

over selected notes. The parameters α and β in Procedure 3 are the start window and

the forward window size respectively. The detected onset positions are forwarded by a

forward window, in case the actual onsets do not appear at the beginning of the transient.

Afterwards, it is assumed the start of the transient is the minimum point of the first 10%
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of the "note". In this section, by "note", the author refers to the interval between two

onsets. Since the roughness can affect the performance, a smoothing filter is applied to the

RMS curve before the process. A Kolmogorov - Zurbenko (KZ) filter [Yang and Zurbenko,

2010] with 10 samples window size and 5 iterations is used. Compared to a moving average

filter, this type of filter has a better performance of attenuating the frequency components

above the cutoff frequency [Yang and Zurbenko, 2010].

Procedure 3 Calculate features designed for mono loops.
Input:
A = Audio_Loop ; α = 10%; β = 0.2ms.

Output:
TA; A1att; A2att.

1: K = OnsetEventDetection(A)
2: k ∈ K, K = all the onset positions in the given loop
3: for ki ∈ K do
4: if ki − ki−1 < 1ms then
5: skip;
6: end if
7: ki = ki − β
8: R = RMS(A[ki−1 : ki])
9: C = KZ_filter(R)

10: s = argmin(C[0 : α])
11: p = argmax(C)
12: e = size(C)
13: [a1, b1, c1]=fit_poly(C[s : p])
14: [a2, b2, c2]=fit_exp(C[p : e])
15: if (a1 > 0 ∧−b1/2a1 > β) ∨ (a1 < 0 ∧−b1/2a1 < β) ∨ (a2/(e− p− b2) > 0) then
16: skip;
17: end if
18: ti = TA(C); a1i = A1att(C); a2i = A2att(C)
19: end for
20: TA = average(t); A1att = average(a1); A2att = average(a2)

4.3.2 NMF

The second decomposition method uses spectral modelling, i.e., Non-negative matrix fac-

torisation. NMF (c.f. Equation. 4.9) aims at decomposing the matrix V into a product of

two non-negative matrices W and H. The target matrix V is the magnitude spectrogram

of a the audio. In the case of this Thesis, the objective is to decompose a loop with poten-

tially overlapping sound events into individual events so that compression related features

can be more readily extracted. The spectrogram is calculated using a window size of 4096

samples and an overlap of 1024 samples. The matrix W is the dictionary which contains C

basis vectors. Details of obtaining the dictionary will be given in the following paragraphs.

Meanwhile the matrix H is the activation pattern corresponding to each basis vector. In
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this approach, the author uses the activations H instead of the actual audio waveform to

extract features. Since each row of H corresponds to a specific fraction of the loop, it is

sparse and hence it can be used to retrieve the attack/release phases.

VM×N ≈WM×C ∗HC×N (4.9)

Unsupervised NMF suffers from a common limitation related to the dictionary recovery

problem [Wang, 2017]. In another word, the objective function of NMF is to minimise the

distance between the input spectrogram and the one reconstructed by multiplying the

spectral template matrix and the activation matrix. It may not produce a meaningful

decomposition that would serve our purpose. Reasonable results can only be obtained for

simple loops with only a small amount of non-overlapping notes. Without prior knowledge

on the basis vectors, the activations may not correspond to note events the author wishes

to characterise. Informal observations confirmed these limitations.

To reduce the influence of this problem, semi-supervised NMF has been used. In a real

world scenario, given a random loop, pre-trained dictionary based on the notes within this

specific loop is not available. Therefore, the author proposes an alternative instrument

specific method. Recent works on NMF based audio information retrieval methods are

built upon fixed spectral templates representing harmonic components [Bertin et al., 2010]

or trained in an instrument specific manner [Benetos et al., 2014]. Similarly, this research

uses a set of twelve tone equal temperament acoustic guitar notes from RWC [Goto et al.,

2003] library as the template set. This solution made the pre-trained dictionary sensitive

to acoustic guitar timbre as well as the instrument’s pitch range. Forty-eight guitar notes

across 3 octaves are used to form 4 such sets as training data for our dictionary, i.e.

wi ∈ [w1 ,w2 , ...,wC ], wi = 1/4
∑j=4

j=1 wij , with C = 12.

This dictionary is tested and verified on different acoustic guitar loops from the Ap-

pleLoops1 library. An example of a loop which contains 13 notes is displayed. Its magnitude

spectrogram is given in Figure 4.2(a). One dictionary element w12 from the fixed matrix

W is given in Figure 4.2(b) which corresponds to the first activation pattern from the top

in Figure 4.2(c). Although it is not possible to deliver perfect decomposition, it shows

significant improvement over unsupervised NMF. Similar results are observed for other
1https://support.apple.com/kb/PH13426?locale=en_US&viewlocale=en_US

84

https://support.apple.com/kb/PH13426?locale=en_US&viewlocale=en_US


(a) Spectrogram

(b) Template No.12 (c) Activation pattern

Figure 4.2: The spectrogram of an acoustic guitar loop (a), one of the fixed note template
(b) and its decomposed activation pattern (c), using semi-supervised NMF.

acoustic guitar loops.

The activation curves are examined to see if they are similar to the actual energy

curves when compressing the audio. The test shows positive results, since the activation

curves are essentially the responses of individual notes. The activation patterns have a

clear note-like shape and are sparse in general. As a result, there is no need to apply the

complex selection strategies in Procedure 3, which makes this a more stable solution. The

author then calculates and average using Equation. 4.6-4.8 from each activation and use

the results as features.

4.3.3 Transient/Stationary audio separation

The final approach proposed in this part of the study is the decomposition of loops into

transient and stationary (T/S ) parts instead of individual notes. A state-of-the-art algo-

rithm is proposed in [Siedenburg and Dörfler, 2013] using Iterated Shrinkage/Threshold

Algorithm [Beck and Teboulle, 2009] framework, with a Matlab toolbox implementation2.

An improvement over this using cross shrinking is proposed in [Siedenburg and Doclo,

2017] which provides good results for this case. This algorithm has been introduced in the
2https://kaisiedenburg.net/research/
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Background Chapter, c.f. Section 2.3.3. An example of the separation is shown in Figure

4.3(a), 4.3(b). This algorithm is able to retrieve the start and stop positions of both tran-

sients and the stationary parts. The retrieved transient positions can be used as NstartA

and NendA in Equation. 4.6-4.8 for attack features, and the stationary positions can be

used for release features. The author then computes features similarly to the previous

cases.

(a) Spectrogram (b) Transient

Figure 4.3: The spectrogram of an acoustic guitar loop and its transient positions, using
ISTA.

4.4 Feature Selection

In the previous sections, a full feature set for isolated notes are presented in Section 4.2. The

handcrafted features are further developed in Section 4.3 for more complex audio materials.

In this section, a series of feature selection strategies are tested aiming at achieving better

performance as well as removing redundancy.

The two typical categories of feature selection are model dependent methods and model

independent methods. Others may refer to them as "wrapper model" and "filter model",

c.f. Section 2.5.2. The wrapper models rank features by measuring system performance.

This can be fitted into any machine learning framework, however, it may suffer from over-

fitting [Bennasar et al., 2015]. The filter methods rank features by measuring relevance

between the feature and a label or across features. The measurement may be correlation

or mutual information. Filter models normally have less computational cost compared to

wrapper models, however, they do not consider performance. This drawback may lead to

suboptimal selection of features from the perspective of the learning task. The details of
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the models are reported along with the selection results of one example, the 24 features

for attack time, in Section 4.4.1, 4.4.2, 4.4.3. The audio set is generated by manually

compressing 60 violin notes from RWC isolated note database [Goto et al., 2003] using

100 attack time settings within the range of (0,100]ms using the DRC designed in SAFE

project [Stables et al., 2014]. The features are extracted from the audio above. Section 4.4.3

illustrates two strategies this research employed specifically for random forest regression.

The same procedures are applied to the rest of the three parameters and the final results

are presented in Section 4.5.3.

To simmarise and recap, Table 4.1 is provided here that sort abbreviations of each

audio feature into categories. To be concise, only the categories are displayed in the table.

Details of each feature can be found in Section 4.2.

Domains Types Feature abbreviations

Frequency domain Spectrogram based SCmean, SCvar, SVmean, SVvar,
SSmean, SSvar, SKmean, SKvar

Melspectrogram based MCmean, MCvar, MVmean, MVvar

Time domain Sample based T1mean, T1var, T2mean, T2var

RMS based RMSmean, RMSvar

Designed feature
Ratio feature Ra

Attack time feature TA, A1att, A2att, A3att, A4att, A5att

Release time feature TR, R1att, R2att, R3att, R4att, R5att

Table 4.1: Summary of the feature abbreviations.

4.4.1 Filter Model

I. Ranking features based on the relevance between the features and the label

The first and simplest strategy of feature ranking using the filter model is based on the

relevance between the label and the feature, where the labels are the parameter values used

as training target for the regression model. The Pearson correlation coefficient [Benesty

et al., 2009] and the adjusted mutual information [Vinh et al., 2010] are calculated as the

two measurements for relevance. This strategy assumes that the higher the correlation or

mutual information is, the more important the feature is. The ranking results are given

in Table 4.2 for the attack time feature set. Different superscript are used to represent

three types of features. ? and blue text is for frequency domain features, † and red text for

handcrafted features, and the rest are temporal features.
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Corr RMSmean >T1mean >MV ?var> T2mean >

MC?var> RMSvar >T1var >A3†att>T2var >

A4†att> A5†att> A2†att> A1†att> T †A>SK
?
var>

SC?var>SK
?
mean> SK?

mean>SV
?
var> SS?mean

>SV ?mean>SC
?
mean>MV ?mean>MC?mean

Mu_info MV ?mean>MV ?var>MC?mean> RMSmean >
T1mean > T2mean > MC?var> T1var >

RMSvar>A3†att> T2var > A2†att> A4†att>
A5†att >A1†att>T

†
A> SC?mean> SV ?mean> SC?var

> SV ?var>SS
?
mean>SK

?
mean> SK?

var> SV ?var

Table 4.2: Ranking for attack time features based on two relevant measure, Corr for
cross-correlation, and Mu_info for mutual information.

Both methods tend to choose temporal features in a higher ranking position than fre-

quency domain features, except for the MFCC features in the mutual information case. It

partially proves the assumption that the frequency domain features cannot provide suffi-

cient information for attack and release time prediction. This theory is investigated further

in subsequent feature selection experiments using different methods.

II. Ranking features based on the relevance across the features

The previous ranking method is able to show the relevance between features and the

label. However, it does not exploit redundant information between features or discard

features that contain overlapping information. It is possible that two features are highly

related and actually using only one is sufficient. For this reason the relevance across all

features is examined.

Figure 4.4 shows a dendrogram resulting from clustering features using mutual infor-

mation. For the purpose of demonstration, the figure plots 1−mutual_info. The result

seems reasonable since it groups temporal features together. The same effect is observed

for frequency domain features as well. The rule here is to choose the features such that

redundant information is reduced. If two features have a high mutual information, this

strategy would use only one of them instead of both. Based on this rule, a threshold is set

and all features within the clusters which have the mutual information above the threshold

are selected. For the clusters lower than the threshold, one feature will be selected using

the Max-Relevance and Min-Redundancy (mRMR) strategy [Peng et al., 2005]. The con-

dition is described in Equation. 4.10, where X represents the full feature set, and Sm is

the m-sized cluster where one feature needs to be selected. The condition maximises the

mutual information between the feature and label while minimises the mutual information
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for the selected feature and all the features outside of the selected cluster. In this test, the

threshold is experimentally set to 0.5.

max
xj∈Sm

[I(xj ; c)−
1

m

∑

xi∈X−Sm

I(xj ;xi)] (4.10)

where X represents the full feature set, and xi is one of the feature. c represents the label,

and I is the operation of calculating the mutial information.

The resulting selected features are as follows:

MCmean, SCvar, SKmean, SVmean, TA, A5att, A3att,MCvar;

Since this method compares relevance across features, the clustering tends to put the

same type of features together, e.g. frequency domain features are grouped together.

Theoretically, the repeated features are discarded in terms of mutual information. However,

the same as all other filter models for feature selection, this process does not consider if

the features are related to the problem. This method will yield features that provide the

most information, but not necessarily the ones most related to the target label.

Figure 4.4: Relevance between features

4.4.2 Wrapper model

In the next stage, the author applies the wrapper model of feature selection suggested in

[Baume et al., 2014], and originally introduced in [Liu and Yu, 2005]. The selection strategy
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is described using the pseudo-code in Procedure 4. This algorithm avoids exhaustive search

and hence reduces the computation time significantly. N in the pseudo-code represents the

feature set size set to 24. At the starting point of the algorithm n is set to 2. For each

iteration, top m feature sets are passed to the next step, this experiment sets m = 6.

The algorithm stops when the sub_set features size equals to the full_feature size. The

best_features are sorted according to the regression performance. Repeated random sub-

sampling validation (Monte Carlo variation [Burman, 1989]) is used for evaluation, such

that the dataset is split into 90% training and 10% testing. The process is repeated 100

times and the average of the Mean Absolute Error (MAE) is used as the performance

measure. The best prediction accuracy is displayed in Figure 4.5. The best performance

is provided when using 7-10 features, since the value is very close in this range. It is

reasonable to choose fewer features in wrapper models to reduce overfitting. In this case,

the author chooses eight features:

TA, A1att, T1mean, T2mean,MCmean,MCvar,MVmean,MVvar.

The wrapper model is able to provide the best possible accuracy, but it may be overfitted

to this particular dataset and therefore may lose its universality or generalisability.

Procedure 4 Feature selection using wrapper model
full_set = D(F0, F1, ..., FN−1)
sub_set = combination(N, n)
for i ∈ [n+ 1 : N ] do
best_feature = sort(evaluation(∀{sub_set}))
sub_set = best_feature[0:m]
for j ∈ [1 : m] do
for k ∈ [1 : N ] do
if full_set[k] /∈ sub_set[j] then
sub_set[j].append(sub_set[j], full_set[k])

end if
end for

end for
end for

4.4.3 Feature significance

In this research, the author also considers two methods specifically designed for the random

forest algorithm. The first method randomises the value of a certain feature and use the

change in the out-of-bag (OOB) error rate to assess feature significance. Assuming there is

a feature setX = {X0, ...Xj , ...XM}, and the task is to rank theM features. The algorithm

grows T decision trees. For each decision tree t, the prediction error is calculated using the
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Figure 4.5: Accuracy performance for the wrapper model with the increase of the number
of features used.

out-of-bag samples OOBt as ε = errOOBt. If replacing Xj to random values, it will lead

to a new error ε̃t. The variable importance is defined as V I(Xj) = 1/T
∑T
t (ε̃t − εt). In

this implementation, the feature set size M is set to 24, and the amount of decision trees

in the forest is set to T = 10. The top 10 most significant features are selected as follows:

MCmean,MCvar,MVmean,MVvar, RMSvar, A4att, SVmean, RMSmean, A5att, A2att;

The second approach uses the decrease in node impurity to decide on the feature im-

portance. Every node in the decision trees is a condition on a single feature, designed to

split the dataset into two, so that similar response values end up in the same set. The

optimal condition is chosen based on variance in the case of regression, and this measure is

called impurity. When training a tree, it can be computed how much each feature decreases

the weighted impurity in a tree. For a forest, the impurity decrease from each feature can

be averaged and the features are ranked according to this measure. For this method, the

amount of trees T need to be larger than the number of features M . Therefore the author

chooses T = 100. The most important features are chosen as follows:

A3att,MCmean,MCvar, SCvar, SSmean, A2att, A5att, A1att,MVvar,MVmean;

4.5 Evaluation

To recap, the workflows in Section 4.2, 4.3, and 4.4 firstly provides a full feature set. Then

the handcrafted features are developed targeting more complex audio materials, mono-

instrument loops. A series of feature selection strategies are tested to choose the optimal
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feature set for each DRC parameter.

In this section, two stages of evaluation will be performed. The first stage evaluates the

features’ efficiency when developed in the context of mono-instrument loops. The process

starts from a numerical test presented in Section 4.5.1. It evaluates the regression model

trained by the handcrafted features designed in Section 4.3. The predicted mean absolute

error (MAE) of each parameter is reported when using each decomposition method to ex-

tract features. The other evaluation test is a similarity test using an audio similarity model

discussed in Section 4.5.2. The audio materials for this experiment are 29 acoustic guitar,

30 electronic bass, and 12 drum loops from AppleLoop. The second stage evaluates the

feature selection strategies and provides the final selection results for all DRC parameters.

The evaluation across each selection algorithms will be presented, along with the relations

across each parameter. The feature set is generated using 60 violin notes from the RWC

isolated note database. Feature sets for threshold, ratio, release time are calculated in the

same fashion as the attack time test outlined in Section 4.4, where the author manually sets

100 settings for each parameter within (0,50]dB for threshold, [1,20] for ratio, (0,1000]ms

for release time using the SAFE DRC. For the random forest regression model, the feature

sets are the training data while the training targets are the parameter values.

4.5.1 Numerical accuracy test for DRC specific features

Since the overall numerical evaluation for all four parameters has been done in Chapter 3,

and the results show it is harder to predict the ballistic parameters, the handcrafted features

proposed in this section focus on attack time and release time. The dataset is generated

by compressing N loops respectively to both parameters and leave the other parameters as

default, (0,100]ms for attack time with step of 1ms, and (0,1000]ms for release time with

step of 10ms. Therefore, there are N ∗ 100 compressed audio excerpts respectively. The

model is aimed at learning the difference between the Input and the Reference, c.f. Figure

3.1. The training data is formed by extracting features from each compressed audio and

dividing them by the features extracted from the originals. The corresponding compressor

parameters are used as training target for a random forest regression model. The validation

method in this experiment is random sub-sampling validation (Monte Carlo variation).

Twenty percent of each feature vectors are selected for testing, while the remaining data

are used for training. The process is repeated 100 times and the average MAE is reported in

Table 4.3. τa stands for attack time and τt for release time. Std stands for standard features,
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which represents the 6 high order statistical features c.f. Section 4.2. The following labels,

Onset, NMF, and T/S, represent the feature sets that contain both standard features and

the ones extracted using the labelled note event detection method.

For the test cases, the error drops when the standard features and the DRC specific

features extracted using the decomposition methods are combined. NMF features provide

the best performance compared to the other individual features. However, using all features

together produces the lowest error rate. Therefore, even though NMF stands out in this

numerical evaluation, instead of choosing this specific feature, it is possible to use all three

together for a better performance.

MAE(ms) Std Onset NMF T/S All

Guitar, τa 0.934 0.897 0.845 0.863 0.807

Bass, τa 1.449 1.196 1.071 1.244 0.995

Drum, τa 1.384 1.361 1.194 1.274 1.134

Guitar, τr 12.115 10.604 10.442 11.802 9.981

Bass, τr 11.701 11.143 10.733 10.886 9.381

Drum, τr 16.327 14.946 12.714 13.315 12.043

Table 4.3: Predicted Mean Absolute Error(MAE) using different feature sets for loops of
three instruments.

4.5.2 Similarity test for designed features

In the previous section, the dataset is split into training and testing set to evaluate the

efficiency of the prediction model. In a more realistic situation, the Reference and the

Input should be independent (for more details see Figure 3.1 and the similarity simulation in

Section 3.2.2). In this section, 50 pairs of audio are randomly selected in the audio set, using

one as reference and the other one as input audio. The model is able to give a predicted

parameter set according to these two inputs. An output audio can be generated accordingly.

Therefore, the system can be evaluated by comparing D1 and D2, which represented

the dissimilarity between input and reference, and prediction and reference respectively

(c.f. Equation.4.11). D() represents the dissimilarity measure function. Theoretically, the

distance between prediction and reference should be smaller than the distance between

input and reference.
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D1 = D(Output,Reference);

D2 = D(Input,Reference);

(4.11)

A simple audio similarity model is used to test the efficiency of the system, which is

also used in the author’s earlier research [Sheng and Fazekas, 2017] and Chapter 3 . Details

demonstrated in Section 3.2.2. A further development on the similarity measurement will

be delivered in Chapter 6. To recap, the model extracts MFCC coefficients and they are

used to fit a Gaussian Mixture Model(GMM). An approximation of the symmetrised KL

divergence is then calculated and used as a dis-similarity measure. The average of 50 cases

are displayed in Table 4.4. Results show D2 are smaller than D1 for all cases, which means

this method is able to bring the Output close to the Reference compared to the Input.

Since the actual value of the divergence does not have practical meaning, D2 is normalised

according to D1, i.e. set D1 = 1, and only the normalised results are reported.

D2std D2onset D2nmf D2t/s D2all

Guitar, τa 0.918 0.916 0.914 0.916 0.916

Bass, τa 0.384 0.375 0.371 0.383 0.362

Drum, τa 0.251 0.252 0.251 0.257 0.252

Guitar, τr 0.934 0.936 0.940 0.919 0.917

Bass, τr 0.738 0.732 0.726 0.733 0.729

Drum, τr 0.583 0.589 0.580 0.582 0.584

Table 4.4: D1 and D2 comparison using different feature sets, when D() is the audio
perceptual similarity.

The trend from the numerical test is not fully consistent with the similarity test. The

top two closest distances in each case are highlighted. NMF still outperformed the other

decomposition methods, however, the closest distance does not always appear when using

all three types decomposition methods. One observation is that the average similarities

are not distinguishable between different feature sets. The author then examined the

individual predictions. The predicted parameter values are rather close (<1ms, c.f. Table

4.3), correspondingly the outputs of the similarity model are very close. It is reasonable

because even if the features are extracted by different decomposition methods, it is the exact

same features that are extracted after decomposition. They are designed to provide similar

information. The difference is their efficiency and complexity. Considering the results from
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both evaluation processes, it can be stated that the most efficient decomposition method

is NMF both numerically and perceptually, while using all three sets of features together,

the proposed model is able to provide better numerical performance.

4.5.3 Overall performance of feature selection

In this and the subsequent section, the evaluation of the feature selection algorithms will

be discussed. Six selection algorithms are demonstrated in Section 4.4, where the features

for attack time are used as an example. Based on the selection results from six algorithms,

this research consider the wrapper model in advance of other models, since it will guarantee

optimal performance. The balancing strategy is to choose the wrapper model results plus

the features that are selected more than four times among the five algorithms. The selected

feature set is given in Table 4.5 for all four parameters.

Parameters Selected Features

Threshold MCmean, MCvar, MVmean, RMCmean, SCmean,
SCvar, SVmean, SVvar, SSvar, SKmean, SKvar.

Ratio MCvar, MVvar, T1mean, RMCmean, RMCvar,
SCmean, SCvar, SVmean, SVvar, SSmean, SSvar,
SKvar, Ra.

Attack time T1var, T2var, A3att, A1att, TA, A2att,
A5att, MCmean, MCvar, MVmean, MVvar.

Release time TR, A1rel, A2rel, A4rel, A5rel,T1mean, T1var,
RMSmean, RMSvar, MCmean, MVvar, SVmean.

Table 4.5: The final selected features for four parameters, balancing the selection models.

Parameters Threshold Ratio Attack Release

Selected 1.242dB 0.919 0.830ms 9.265ms

Full-list 1.295dB 0.950 1.122ms 12.572ms

Corr 1.808dB 1.103 0.978ms 12.259ms

Mu_info 1.461dB 0.934 0.837ms 12.157ms

Across 1.663dB 1.016 1.147ms 11.635ms

RF_1 1.452dB 0.987 0.908ms 12.604ms

RF_2 1.580dB 1.098 0.982ms 13.808ms

Wrapper 1.218dB 0.892 0.725ms 8.759ms

Table 4.6: Prediction MAE comparing the selected features, full set, and individual selec-
tion results.

The selection results for threshold and ratio show that the most related features for
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these parameters are frequency domain features and MFCC features, while for attack time

and release time, the frequency domain features are the least frequently selected. MFCC

features are the most popular among all four features, due to their relation with frequency

envelope as well as timbre. The prediction error comparison across models are provided

in Table 4.6, where the values are the average of MAE calculated through Monte Carlo

variation. Here, 20% of the dataset are randomly split as testing data 100 times and the

average MAE is reported. Variances across each random validation are very small, about

0.006 for threshold, 0.01 for ratio, 0.007 for attack time and 0.7 for release time in average

indicating a stable performance.

The final selected feature sets balanced all selection results. The performances are

comparable with the best performance selected by the wrapper model, and better than

the filter models, random forest feature importance methods, and the full feature set. The

results indicate that the selection improves the error rate, and the selected feature sets are

much smaller in size than the full feature set, which also reduces the computational cost.

The selection results of each algorithm and each parameter are represented in Figure 4.6-

4.9. The results for threshold and ratio show a preference for frequency domain statistical

features. The most commonly selected features in case of threshold are SCmean, SVmean,

SKmean,MCmean, and SSmean for ratio. The most commonly selected feature for attack

time isMCvar which has been selected by all methods. For release time, it isMVvar which is

an MFCC derived feature as well. The features designed specifically for the attack/release

phase are also selected frequently for these two parameters. Figure 4.8 shows a clear

trend that all methods overlook frequency domain features, which fits the assumption

that conventional features from literature are not the best choices when predicting these

parameters. Figure 4.9 does not show exactly the same trend as Figure 4.8, however, the

wrapper model does not choose any frequency domain feature, which means even with a

certain relevance, frequency domain features may harm the performance (c.f. Figure 4.5,

after the optimised feature set, adding more features increases the error rate). Therefore,

it can be stated that conventional features are satisfactory to predict threshold and ratio,

but to predict attack time and release time, the specifically designed features are necessary.
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Figure 4.6: Selection results of 6 algorithms for threshold. Grey blocks represents the
features that are selected by this method.
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Figure 4.7: Selection results of 6 algorithms for ratio. Grey blocks represents the features
that are selected by this method.
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Figure 4.8: Selection results of 6 algorithms for attack time. Grey blocks represents the
features that are selected by this method.
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Figure 4.9: Selection results of 6 algorithms for release time. Grey blocks represents the
features that are selected by this method.
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4.5.4 Relations across parameters

The observation in the overall performance is that the feature selection methods for attack

and release time tend to select similar features, while threshold and ratio likewise exhibit

similar behaviour. The overlap rate of the selected features across two pairs and six algo-

rithms are displayed in Table 4.7. Number I toVI represent Corr,Mu_info,Across,RF_1,

RF_2, and Wrapper as in Table 4.6 respectively. Except for the correlation selection

result for attack and release time, all overlap rates are higher than 50%. The results fit

the assumption that threshold and ratio have their similarity since they are more directly

affecting dynamic range. Attack time and release time are also similar due to the fact that

they are both timbre related parameters and they both related to the speed of the DRC’s

action.

Overlap I II III IV V VI

Attack/Release 0.17 0.58 0.50 0.60 0.70 0.56

Threshold/Ratio 0.89 0.89 1.00 0.56 0.56 0.69

Table 4.7: Feature overlap rate between parameter pairs

4.5.5 Relations across selection algorithms

In this section, the overlap rate of the selected features across each selection algorithm is

analysed for each parameter. Since different algorithms do not guarantee the selection of the

same amount of features, the overlap tables do not represent diagonal matrices. The overlap

rate for row i and column j is calculated as follows: rate = #overlap(i, j)/#feature(i).

Table 4.8-4.11 represent the overlap rates for four parameter features.

Overlap I II III IV V VI

I 1 0.22 0.56 0.89 0.22 0.67

II 0.22 1 0.22 0.22 0.56 0.33

III 0.83 0.33 1 0.83 0.17 0.33

IV 0.89 0.22 0.56 1 0.33 0.56

V 0.22 0.56 0.11 0.33 1 0.33

VI 0.67 0.33 0.22 0.56 0.33 1

Table 4.8: Feature overlap rate across 6 algorithms for threshold

Comparing Table 4.8-4.11, one of the common trend is that the wrapper model, as VI,

has the highest overlap with the filter models using correlation and mutual information. It

indicates that the features that are able to produce the optimal result are the ones that have
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Overlap I II III IV V VI

I 1 0.22 0.56 0.56 0.11 0.67

II 0.22 1 0.33 0.33 0.67 0.56

III 0.83 0.50 1 0.50 0.33 0.50

IV 0.56 0.33 0.33 1 0.44 0.67

V 0.11 0.67 0.22 0.44 1 0.67

VI 0.46 0.38 0.23 0.46 0.46 1

Table 4.9: Feature overlap rate across 6 algorithms for ratio features

Overlap I II III IV V VI

I 1 0.75 0.25 0.58 0.42 0.42

II 0.75 1 0.25 0.58 0.50 0.58

III 0.38 0.38 1 0.50 0.63 0.38

IV 0.70 0.70 0.40 1 0.60 0.50

V 0.50 0.60 0.50 0.60 1 0.50

VI 0.56 0.78 0.33 0.56 0.56 1

Table 4.10: Feature overlap rate across 6 algorithms for attack time features

the strongest relevance with the label. However, the two types of filter models do not have

a high overlap rate, which suggests correlation and mutual information do not necessary

select the same features, which is well known from a theoretical perspective as discussed in

[Li, 1990]. The results from this research corroborate this theory and also suggest that it is

reasonable to run both strategies and balance the results. The model comparing relevance

across features, Across, as III, in the tables, shares the lowest overlap rate with the other

methods. This method guarantees the least mutual information across the selected features,

but it does not consider any relation between the features and the label. This is the major

difference between this and all the other selection methods. Conversely, the filter model

using mutual information, II, as Mu_info, in the tables, shares the most overlap with

other methods, which shows it is an efficient method on its own.

4.6 Conclusion

This chapter started with a description of a thorough feature set for predicting four of

the important DRC parameters. The handcrafted features are extended by decomposing

audio loops and extracting note structure related information. The use of these features

have shown to be beneficial for the proposed framework for the intelligent control of the
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Overlap I II III IV V VI

I 1 0.25 0.58 0.33 0.58 0.33

II 0.25 1 0.25 0.33 0.33 0.50

III 0.88 0.38 1 0.63 0.50 0.38

IV 0.40 0.40 0.50 1 0.30 0.40

V 0.70 0.40 0.40 0.30 1 0.20

VI 0.40 0.60 0.30 0.40 0.20 1

Table 4.11: Feature overlap rate across 6 algorithms for release time features

dynamic range compressor in this Thesis. The benefit is clear both in terms of the accuracy

of predicting attack and release times as well as audio similarity using a simple perceptual

model. Overall results show that using all three feature sets works best numerically, while

NMF stands out in both numerical and perceptual tests.

In this chapter, the author also introduced a feature selection experiment using six

different selection strategies. The final selection is detailed in Section 4.5.3. The results

fit the assumption that using a smaller set of features is beneficial to reduce noise, com-

putational time and improve the performance at the same time. The results also show

that frequency domain features are less efficient when predicting attack and release time,

while the opposite is true when predicting threshold and ratio. The results indicate that

commonly used features are not sufficient when it comes to predicting the time constant

parameters of the DRC. For all four parameters, MFCC related features are the most often

selected, which is clearly due to their relations with both frequency domain information

and timbre.

This chapter aimed at improving the first component of the proposed intelligent system,

i.e. Feature Extraction. Feature selection results can be used as a guideline for the imple-

mentation as well as future research. A specific feature set can be applied when predicting

each parameter. The feature extraction process can be improved further in different ways.

It might be still possible to push the boundary of the handcrafted features, but this is out

of the scope of this Thesis. There is another problem the author attempts to tackle, which

is the problem of predicting four parameters jointly. In the next chapter, Chapter 5, a

DNN feature learning model is proposed to serve as a feature learning scheme, which is an

attempt to solve this problem. It will be compared with individual parameter prediction.

The optimisation of the other components of the final proposed system for DRC parameter

estimation will be provided in the following chapters of the Thesis.
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Chapter 5

Siamese Model for Feature

Learning

The research before this chapter has been focussing on simple audio materials, i.e. isolated

notes and mono-instrument loops, and simple prediction situation, i.e. predicting a single

parameter. Features were designed to predict each parameter individually. In this chapter,

the research moves on to more complex audio materials and more complex prediction

situation. This chapter focuses on learning a feature embedding from loops or polyphonic

music excerpts that can be used to predict multiple parameters jointly. To tackle this

problem, Deep Neural Networks (DNN) have been applied. Deep Learning is the most

popular and revolutionary scientific research trend in recent years. Deep Learning normally

refers to machine learning research using DNN. In this research, the advantages of DNN

are used to enhance the feature extraction process in the system design. In the rest of

this chapter, the motivation for using a DNN is provided, followed by the network designs

and model parameter tuning. The evaluation and the conclusion related to this particular

approach are also included to conclude the chapter.

5.1 Motivation

In this section, I will outline why moving beyond the previously introduced feature extrac-

tion methods may be beneficial and introduce the Deep Learning approach investigated

in the rest of this chapter. Deep Neural Networks, particularly Convolutional Neural

Networks (CNN) have become exceptionally successful in a wide variety of visual object
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recognition and classification tasks [Krizhevsky et al., 2012]. The reasons for this are

now well understood. For instance, CNNs can learn filters corresponding to increasingly

complex shapes in the target image hence becoming successful at classifying or labelling

images. In the domain of audio, the application of CNNs have also proved successful in

several tasks including audio labelling and similarity estimation. The input representation

is usually a time-frequency image, e.g. Fourier or Mel-spectrogram [Pons et al., 2017b,

Choi et al., 2016, Ullrich et al., 2014], but increasingly, raw audio samples are used as well

[Ardila et al., 2016, Dieleman and Schrauwen, 2014]. The reason for the success of these

approaches is less straightforward to see, because there is poor analogy between shapes or

objects in images and events, such as notes or chords in audio. Audio events are typically

distributed in frequency, e.g. the recording of a note played on a typical instrument and

its harmonic partials activate discontinuous bands along the frequency axis. The problem

becomes more acute when audio events overlap.

Finding an appropriate input representation and designing a neural network suitable

for recognising very specific aspects of an audio signal is also a difficult and generally

unsolved challenge. Standard approaches work well for common audio classification prob-

lems, but if the task becomes focussed on a specific aspect of audio that is often obscured

by large varying signal attributes, different input representations, network structures and

training methods should be adopted to develop a successful solution. For instance, the

dynamic range of an audio signal may be characterised by features such as the crest factor

[Giannoulis et al., 2013] and also correlate with note attack and release times. These are

measurable in a single note recording but become obscured by overlapping note events and

other changes in complex real-world recordings.

In previous chapters, the design of an intelligent control system targeting the DRC

using a reference audio is demonstrated. The key to the performance in this system is the

feature extractor. Chapter 4 provides details of conventional as well as designed features

used in previous research along with the optimised feature sets. Due to the fact that

different feature sets are used for each DRC parameter, four individual regression models

needed to be trained. A generic feature set to predict all parameters would therefore be

a great benefit. In addition to the above mentioned drawbacks, most of the handcrafted

features are based on note envelope structures. For audio materials like isolated notes, it is

easy to extract envelopes, however for more complex audio, for instance, audio loops with

overlapping note events, more complex algorithms like NMF and onset event detection are
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required to separately analyse note events in a loop. It is still relatively straightforward

to extract notes from loops, but polyphonic music brings additional difficulties to the

problem and may increase the computational cost dramatically. For instance, overlapping

note events may have different duration and timbre, making them difficult to identify and

decompose. For the reasons above, it is reasonable to assume that a deep learning model

can be beneficial in this task. Deep neural networks are capable of learning a complex

nonlinear function. With an appropriate audio input representation, it should be possible

to make the model learn a generic feature embedding for all four parameters. Meanwhile,

having one trained model to generate features will reduce the computational complexity.

The model also has the potential capability to generate efficient features regardless of audio

materials. The focus of this chapter is to design a feature learning model, so that it will be

possible to compare the efficiency between the trained features and handcrafted features.

The features are used in conjunction with a conventional regression model, as opposed

to end-to-end learning, for sake of reproducibility and easier comparison with previous

approach proposed in this Thesis.

To achieve this goal, the author proposed a siamese structure with the feature embed-

dings formed by the difference between the output of two branches. Several architectures

are tested within this two-branch framework, aiming to learn highly specialised audio fea-

tures that are invariant to large variations in several other attributes. The performance

is first evaluated using the baseline designs, and the model is tuned according to the task

and observations. The following sections in this chapter are organised as follows: Several

potentially suitable DNN model designs from the literature are adopted and evaluated in

Section 5.2. The models are tuned to this specific problem by altering the model structures

and hyperparameters in Section 5.3. Section 5.4 provides the evaluation results and the

most suitable model tested on a larger scale and using a more complex dataset. Finally

the conclusions of this chapter are outlined in Section 5.5.

5.2 Model Design

A neural network is a type of algorithm that uses a certain combination of artificial neurons

(see Section 2.5.3 in Chapter 2 for a more in-depth introduction.) The work in this chapter

has been built on one of the most popular structure, i.e. Convolutional Neural Network

(CNN). This type of network is able to detect the local patterns, and the recognition can
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become increasingly more complex with deeper networks.

The purpose of the work presented in this chapter is to learn a feature embedding that

represents all the characteristics of the DRC. A feature embedding can be considered an

intermediate output of a DNN. It is a lower dimensional vector that is learnt from the input

audio. To build the training dataset, we need raw audio samples and a series of compression

parameters. In this chapter, the audio materials are mono-instrument loops and polyphonic

music excerpts. The details of the dataset are provided in Section 5.2.4. In this chapter,

the audio data are denoted as Input 1 (original audio), Input 2 (reference audio) in Figure

5.1, and the ground truth parameters, i.e. training target, as Labels. As introduced in

previous chapters (see e.g. Section 3.2.1) the four DRC parameters the research focusses

on are, threshold, ratio, attack time, and release time, i.e. ρ = {θ, γ, τa, τr}. The main

novelty introduced here is the joint estimation of these parameters.

Input 1

Input 2

Unprocessed 
 audio branch

  Processed   
audio branch

Labels (4, ); 
ρ= {θ,γ,τa,τr}

Feature
Embedding

(50, )

Random
 Forest

 Regression
 

Labels (4, ); 
ρ= {θ,γ,τa,τr}

 

Figure 5.1: Workflow for the proposed system: it contains a twin-siamese DNN model for
feature learning with the learning targets being the DRC parameters, and a random forest
regressor trained using the DNN feature embedding for parameter prediction. Details of
the training process is given in Section 5.2.

Two audio files will be used as inputs for the twin siamese model, where as in Figure 5.1,

they are described as the Unprocessed branch and Processed audio branch. The identical

branches contain convolutional layers as well as dense layers, and the output of them are

feature embeddings. Three model designs are introduced for this branch in the following

paragraph. As it is mentioned in the Background Chapter, CNN is a popular model design

in both image and audio signal processing. The input representation of audio for DNN can
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be a time-frequency representation or raw audio samples. There will be two model designs

corresponding to these two types of input signals outlined in Section 5.2.1-5.2.2. Besides

these two structures, this research also considers the multi-kernel structure to capture the

features in multiple time and frequency scales. The output of the two branches, two feature

embeddings, will be merged by subtraction, and this will be followed by a fully connected

dense layer. The loss function the proposed method uses here is the mean squared error

(MSE). The training targets are the parameters ρ of the DRC. The learning rate is updated

adaptively using Adadelta [Zeiler, 2012]. The trained feature embeddings are then used as

features to train a random forest regression. It follows the same procedure of the previous

research, c.f. Section 3.2.2. This model is not designed as a predictor directly, but it is also

possible to use a DNN regressor after the feature embedding layer. At this stage of the

research, the goal is to focus on enabling the model to look for DRC related features rather

than designing a well performing regressor. In the initial evaluation, it is also reasonable

to use an approach that is comparable with the previous handcrafted features, and by

applying random forest regression model in both cases, so the comparison can be expected

to be more trustworthy.

A comparison of the workflows between the approach proposed in this chapter and the

previous chapters is provided in Figure 5.2. Figure 5.2(a) is reproduced from the workflow

diagram in Section 3.2.2, Figure 3.3. Figure 5.2(b) is the approach the author developed

in this chapter. The DNN model is pre-trained. The training dataset and process will be

provided in the following sections. The feature embeddings are generated by this trained

model, and then they are used to train the random forest regression model depicted in the

diagrams. The workflow involves two stages of training. A more detailed workflow of this

feature learning approach will be illustrated in Section 5.2.1-5.2.3.

5.2.1 Model design for the siamese branches - CNN structure -

Model 1

The first model design for the identical branches is the classical CNN structure [Krizhevsky

et al., 2012]. It is widely used in image processing as well as multiple audio signal processing

tasks. The CNN structure has outperformed the state of the art in many research tasks,

including onset event detection [Schluter and Bock, 2014], music boundary learning [Ullrich

et al., 2014] and many more. The action of the DRC creates change points in the audio

signal. These are not closely analogous to structural boundaries, yet it is reasonable to
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(a) Handcrafted feature approach
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(b) DNN learnt feature approach

Figure 5.2: Comparison of two workflows when using handcrafted and features learnt by
DNN.

assume that architectures designed to detect change points might work well in our case to

learn relevant features. This is reasonable, since the DRC is not operating through the

whole audio, but only a certain temporal segment that is above the threshold. Within these

parts, multiple aspects of the audio are changing along with different parameter settings.

It can be assumed that the CNN structure is able to learn the DRC characteristics in this

case.

As input representation, the commonly used Mel-spectrogram is used here (see Section

2.5.3). The first proposed network is a seven layer CNN. It consists of five convolutional

layers with max-pooling, and a drop-out rate of 0.1. They are then followed by two dense

layers. The model summary is provided in Table 5.1.

5.2.2 Model design for the siamese branches - Sample level CNN

- Model 2

The second model structure this research proposes is to use time domain audio samples

as input. As it is mentioned in the Background Chapter, a time-frequency representation

is not exactly equivalent of an image signal, therefore the research also considers to use

raw audio input directly. The models taking raw audio as input have previously provided

equivalent performance with the ones using time-frequency representations as input, c.f.

Section 2.5.3. Since DRC is operated at the audio sample level, this research applies a

sample-level small filter size, and follows the model design in [Lee et al., 2017], where

the proposed network contains seven 1D convolutional layers, batch-normalisation, and

six layers of max-pooling. This front end is then followed by two residual layers and two
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Input: Mel-spectrogram (128,690,1)
Conv2D: 3*3*10
MaxPool2D: 2*2
DropOut: 0.1

Conv2D: 3*3*15
MaxPool2D: 2*2
DropOut: 0.1

Conv2D: 3*3*15
MaxPool2D: 2*2
DropOut: 0.1

Conv2D: 3*3*20
MaxPool2D: 2*2
DropOut: 0.1

Conv2D: 3*3*20
MaxPool2D: 2*2
DropOut: 0.1

Flatten
Dense(feature embedding layer): 50

Dense: num_para
Output: Parameters

Table 5.1: Model summary for the CNN structure, i.e. Model 1.

dense layers. The residual layers are used to avoid the vanishing gradient problem [He

et al., 2016] typically caused by introducing too many layers. A summary of this model is

provided in Table 5.2. Some of the convolutional layers are duplicated, the notation “ *2 ”

is used to represent two groups of layers with the same settings. “ L* ” is the notation to

indicate reference to specific layers.

5.2.3 Model design for the siamese branches - Multi-kernel CNN

- Model 3

In this model proposal, the Multi-kernel CNN is introduced. The task is to make this

siamese model learn multiple aspects of changes to sound induced by the DRC, i.e. changes

in different time scales, as well as in magnitude domain, for example, attack time vs. ratio

and threshold. The author considers to use the multi-kernel model construction proposed in

[Pons et al., 2017b]. This model is designed to capture the audio features at multiple scales

at the same time which fits the purpose of this research to observe audio characteristics over

different decision horizons. Using multiple kernels in this problem is especially useful for

this problem because the model needs to learn four aspects of DRC at the same time. The

model with only one kernel size might neglect important audio features, such as transient

features. The model applies several temporal kernel as well as timbre kernel, as it is
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Input: Waveform (44100,1)

Front
End

Network

Conv1D: 3*1*64
Batch Normalisation

Conv1D: 3*1*64
Batch Normalisation
MaxPool1D: 3*1

*2

Conv1D: 3*1*128
Batch Normalisation
MaxPool1D: 3*1

*2

Conv1D: 3*1*256
Batch Normalisation
MaxPool1D: 3*1

*2

Flatten, Dimension_expand

Back
End

Network

Conv2D: 7*256*512
Batch Normalisation L1;

Conv2D: 7*256*512
Batch Normalisation L2;

Add (L1, L2) L3;
Conv2D: 7*256*512
Batch Normalisation L4;

Add (L3, L4)
Global Pooling;

Dense(feature embedding layer): 50
Dense: num_para

Output: Parameters

Table 5.2: Model summary for the waveform structure, i.e. Model 2. It can be separated
to front-end and back-end network, where the front-end is a combinations of sample level
1D Conv layers, and the back-end is two layers of residual layers.

illustrated in Figure 5.3. This model structure used Mel-spectrogram as input. It applies

six different kernel shapes with 2D convolutional layers, four different kernel shapes with

1D convolutional layers, and concatenate the outputs of all ten layers together as input

to the back-end network. The back-end network has two residual convolutional layers and

two dense layers, which is the same as in Model 2.

5.2.4 Dataset description

In these experiments, the datasets are generated from Apple Loops1, 64 guitar loops and

drum loops respectively. They are compressed using different DRC parameter settings and

the following datasets are generated:

For DS1 to DS4, the audio files are compressed with only one parameter changing

while the others are kept the same. For DM1 and DM2, each audio file is compressed

by two parameters changing at the same time. Take DM1 as an example, each audio file
1https://support.apple.com/kb/PH13426
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Input

Timbre
Feature

Temporal
Feature

Concatenate

Backend

Output

Mel-spectrogram
(128,690,1)

ZeroPad (3,0)
Conv2D (7*115*5)
BatchNormalisation
MaxPool2D (1,576)

ZeroPad (1,0)
Conv2D (3*115*10)
BatchNormalisation
MaxPool2D (1,576)

Conv2D (1*115*15)
BatchNormalisation
MaxPool2D (1,576)

ZeroPad (3,0)
Conv2D (7*51*5)

BatchNormalisation
MaxPool2D (1,640)

ZeroPad (1,0)
Conv2D (3*51*10)
BatchNormalisation
MaxPool2D (1,640)

Conv2D (1*51*15)
BatchNormalisation
MaxPool2D (1,640)

AveragePool (1,128)
Dimension squeeze

Conv1D (16*5)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (8*10)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (4*15)
BatchNormalisation

AveragePool (1,128)
Dimension squeeze

Conv1D (2*20)
BatchNormalisation

| {z }
Followed the backend design
of Model 2, c.f. Table II.

Output: Parameters

1

Figure 5.3: Model summary for the multi-kernel structure, i.e. Model 3. The front end
network concatenates 11 Conv layers with different kernel shapes. The back end network
is two layers of residual layers, which is the same as Table 5.2.

dataset generation dataset size

DS1 θ: 0 to 49dB with step of1dB guitar: 65*50;
drum: 64*50

DS2 γ: 0 to 20 with step of 0.4 guitar: 65*50;
drum: 64*50

DS3 τa: 1 to 100ms with step of 2ms guitar: 65*50;
drum: 64*50

DS4 τr: 10 to 1000ms with step of 20ms guitar: 65*50;
drum: 64*50

DM1
θ: 10 to 47.8dB with step of 0.6dB
γ: 1 to 19.9 with step of 0.3

guitar: 65*64;
drum: 64*64

DM2
τa: 1 to 95.5ms with step of 1.5ms
τr:10 to 955ms with step of 15ms

guitar: 65*64;
drum: 64*64

Table 5.3: Dataset details for two instruments

is compressed by 8 threshold settings and 8 ratio settings. This process will produce 64

compressed audio for each raw audio loop. For example, guitar1 is compressed using θ

[10.0dB, 14.8dB, 19.6dB, 24.4dB, 29.2dB, 34.0dB, 38.8dB, 43.6dB], guitar2 is compressed

using θ [10.6dB, 15.4dB, 20.2dB, 25.0dB, 29.8dB, 34.6dB, 39.4dB, 44.0dB], and so on. For

each audio file, the compression threshold grid is 4.8dB, but the combined set yields a finer

grid, 0.6dB as noted in Table 5.3.

In the following subsections, models for one and two parameters are trained and tested

using these datasets. A more complex dataset is generated and tested in Section 5.4.

5.2.5 Evaluation of different model designs

All models are trained using a small batch size of 8, and 15% of the data are used as

validation set. The validation error is monitored to avoid overfitting to the training data
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using an early stopping function. The training will stop when the validation error starts to

increase. After the model is trained, the feature embedding is generated using this model.

The feature embeddings are then used to train a random forest regression model, where the

data is split into 80% training and 20% testing. The process is repeated 50 times randomly.

The averages of the test prediction mean absolute errors (MAE) are reported in Table 5.4.

The DNNmodels are able to produce similar results for θ and γ. However, the prediction

error of τa and τr are relatively higher compared to handcrafted features. Because the

audio materials are not preprocessed to emphasise any DRC’s effect, the model would

react better when a specific DRC parameter has a more significant influence on the raw

audio, i.e. θ and γ. Moreover, the handcrafted features are tuned specifically to extract

information from a temporal region of the audio where a certain parameter is the most

effective. Comparing the two types of models, using raw audio as input provides better

performance in 6 out of 8 cases for single parameter prediction. Many reasons can lead to

this result. First of all, the frame size this research used for the Mel-spectrogram is 512,

which is considerably large given that this Thesis’ problem focuses on small transient times.

Secondly, Mel-spectrogram works well when researchers are aiming at retrieving high level

music information, but it may smear useful spectral information that is important in this

problem. The improvement of the model structure and hyperparameters are given Section

5.3.1-5.3.3.

θ γ τa τr

Guitar

Model 1 1.781dB 0.657 4.338ms 35.589ms
Model 2 1.206dB 0.751 3.192ms 32.893ms
Model 3 1.034dB 1.009 3.273ms 71.288ms

Handcrafted 0.903dB 0.623 0.845ms 10.442ms

Drum

Model 1 2.994dB 0.961 3.829ms 58.394ms
Model 2 2.627dB 0.932 3.480ms 43.668ms
Model 3 2.953dB 1.218 7.694ms 93.064ms

Handcrafted 0.915dB 0.655 1.194ms 12.714ms

Table 5.4: Prediction MAE for the regression model using feature embeddings learnt from
each DNN as well as handcrafted features, when predicting individual parameters of DRC.

The results are not encouraging when using the models trained to predict individual

DRC parameters. This might due to the scenario is simple and using a DNN is over

complicated and causing overfitting. The size of the models are relatively big. Model

1 has 60k parameters, and both Model 2 and 3 has over 5 millions parameters, which

may be a too complex model to the problem. In contrast, improvements are shown when
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θ, γ τa, τr

Guitar

Model 1 1.854dB, 0.529 2.081ms, 20.184ms
Model 2 1.666dB, 0.460 1.725ms, 18.357ms
Model 3 1.567dB, 0.618 1.565ms, 15.588ms

Handcrafted 0.912dB, 0.883 2.100ms, 25.079ms

Drum

Model 1 1.810dB, 0.800 5.061ms, 27.005ms
Model 2 1.112dB, 0.391 4.506ms, 13.609ms
Model 3 2.170dB, 0.782 6.463ms, 21.427ms

Handcrafted 3.233dB, 0.684 2.354ms, 14.980ms

Table 5.5: Prediction MAE for the regression model using feature embeddings learnt from
each DNN as well as handcrafted features, when the model predicts two DRC parameters
jointly.

training the model to learn two parameters simultaneously. The training data for the two

parameters model are DM1 and DM2, which has a larger size than the single parameter

model training dataset. The results are shown in Table 5.5. Comparing with Table 5.4,

the model produces better results, especially for release time. For θ, γ, and τr, the DNN

model is able to yield a better performance than handcrafted features. Model 2 is the best

performing model in this experiment. This model provides the best performance for 4 out

of 8 cases. For reference, the range of each parameters are 49dB for θ, 19 for γ, 99ms for

τa and 999ms for τr. The larger range of release time resulted in higher prediction error

compared to the other parameters.

5.3 Model Tuning

In the previous section, several model designs from the literature has been explored. In this

section, the author will tune the structures to fit the Thesis’ problem better, along with the

analysis of the model components’ impact on the result. The following three subsections

discuss the improvement of each model.

5.3.1 Improvement on Model 1

This section is aiming at improving the performance of Model 1. There are several reasons

to use time-frequency representation as input, including that the data size is reduced, the

ability to control the frequency and time resolution is increased, and using 2D convolution

will give users more choices of kernel size.

The previous settings for the hyperparameters are directly taken from the literature

[Pons et al., 2017b, Lee et al., 2017]. Here the network structures and hyperparameters
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will be optimised to fit this particular problem better. As it is explained in the Chapter 2,

many factors will influence the model’s performance. In this section there are three factors

considered: whether using Mel-spectrogram or spectrogram is benificial, the kernel shape

of the model, and the time frame length for STFT. One assumption in this section is that

the Mel-spectrogram smeared useful information and led to poor performance, therefore,

using spectrogram alone can be assumed to improve the performance. Due to the fact that

this Thesis’ problem requires focussing on a short transient time at some point, as well as

the sample-level Model 2 shows a better performance in the previous experiment, it can

be assumed that a short time frame, i.e. a better time resolution, and a smaller kernel size

will improve the performance. Based on these two assumption, the following experiments

are conducted.

Since changed experiments are designed to improve the model, there is no need to run a

thorough experiments for all the datasets. This section uses the drum dataset: DS3, DS4

and DM2, and the predicted attack/release time errors are reported. The first experiment

aims to select the most suitable input signal format. The same frequency resolution is

applied for both representations. The prediction error shows a large improvement in Table

5.6. Especially the prediction error of release time reaches a similar level performance with

Model 2. All cases exceed the performance of the original setting of Model 1 as well. It

can be concluded that spectrogram will be a more suitable representation for this model

and this problem.

Para(ms)
Input signal Melgram Spectrogram

τa 3.829 2.415

τr 58.394 33.085

Joint prediction 5.061 4.656
27.005 17.781

Table 5.6: Melgram vs Spectrogram, prediction performance when changing input repre-
sentations.

In the second experiment, the time frame length for spectrogram is investigated. The

results in Table 5.7 provides a clear trend showing that with the decrease of the time frame

length, the prediction error drops as well. This experiment did not progress the experiment

with frame sizes smaller than 128 samples because this scenario may be similar to using

raw audio input.

The third experiment is conducted while altering the kernel size of the model. The
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Para (ms)
Time frame length 512 256 128

τa 2.415 2.197 2.042

τr 33.085 30.546 26.698

Joint prediction 4.656 4.271 3.141
17.781 16.846 15.752

Table 5.7: Prediction performance when changing frame size of the input spectrogram

original design uses five 2D convolutional layers with 3 by 3 kernel. To capture the audio

features in multiple feature dimensions, the kernel sizes and combinations are altered. The

experiment reduces the depth of the 2D layers and increases the depth of 1D convolutional

layers at the same time. Except for the release time results, the rest of the performances

did not show significant improvement, c.f. Table 5.8. For simplicity, the five convolutional

layers with 3*3 kernels will be kept in further experiments.

Para (ms)
Kernel size 5(3*3) 4(3*3)+1(1*3) 3(3*3)+2(1*3)

τa 2.042 1.966 1.962

τr 26.698 21.173 18.491

Joint prediction 3.141 4.232 3.941
15.752 14.436 16.791

Table 5.8: Kernel shape changes for Model 1, with different combinations of 2D and 1D
Convolutional layers

5.3.2 Improvement on Model 2

Followed by the previous section, tuning the structure and hyperparameters of Model 1

leads to a performance improvement. In many cases, it exceeds the performance of using

raw audio signal as input. In this section, the author explores the improvement for Model

2. One conclusion can be drawn from the previous experiment is that having large filter

size in the time axis will result in poor performance in predicting τa, τr. Smaller filter size

have also been tested on prediction γ, θ, but the improvement is not as significant as the

temporal parameters, therefore this section did not present this result. Apart from the

size of the filters, the author also alters the number of filters and layers of the network.

The prediction errors are provided in Table 5.9. However, the results have not improved

as significantly as they do for Model 1. The advantage of the sample level CNN is having

a fine resolution in time domain, tuning the CNN model and its input time-frequency
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representation can counterbalance the differences and provide a decent prediction result.

Initial ↑ Filter size ↓ Filter number ↓ Layers
τa 3.480ms 7.772ms 3.227ms 3.784ms

τr 43.668ms 48.834ms 39.740ms 45.030ms

Joint
prediction

4.506ms
13.609ms

6.683ms
20.486

5.847ms
17.622ms

3.864ms
16.619ms

Table 5.9: Tuning results for Model 2, when the author increases filter size, reduce filter
numbers, and reduce layers respectively. The final hyperparameters used are: filter size:
5; filter number: 32; and 4 layer.

5.3.3 Improvement on Model 3

As it is mentioned in Section 5.2.3, the multi-kernel structure that has proved to be efficient

for music tagging problem [Pons et al., 2017b] is also considered. Since the DRCmay impact

audio events in the short and long-term and impact different frequencies in a non linear

fashion, it makes sense to use multiple kernels at the same time. The prediction results for

single model and joint model are given in Table 5.10.

Model 1 tuned Model 3 Model 3 tuned

θ 1.543dB 2.953dB 2.602dB

γ 0.746 1.218 1.184

τa 2.024ms 7.694ms 7.691ms

τr 26.698ms 93.064ms 41.678ms

Joint model

1.019dB 2.170dB 1.351dB
0.417 0.782 0.394

3.141ms 6.463ms 3.644ms
15.752ms 21.427ms 17.688ms

Table 5.10: Improvement for Model 3, with spectrogram and a reduction of window size

The results for Model 3 are not as good as the best performance in Section 5.3.1. Based

on the conclusion from the previous sections, the performance of Model 3 is improved by

using spectrogram with a small time frame size as input, as well as decreasing the kernel

size for the temporal features. These changes do not improve the prediction error rate

significantly however. Model 3 combines multiple feature representation layers, therefore,

the trainable parameters are much more comparable to Model 1 and Model 2. The small

performance improvement may due to the complexity of this model. It might also be

because of the shallowness of this model. The model concatenated multiple layers together,
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but they are all single layers, therefore the depth of the model is 3, which compared to the

other model design is very shallow. A deeper model can be considered in future work.

5.4 Evaluation on simultaneous parameter estimation

and polyphonic music data

In this section, the dataset is extended from only two parameters changing at a time,

to all four parameters changing simultaneously. The process is done in the same way as

described by Table 5.3. Changing four parameters together means a substantial growth

of the data, therefore, instead of 8 settings for each parameters, the amount of settings is

reduced to 5 in this case, i.e. drum1 is compressed using θ: [10.0dB, 18dB, 26dB, 34dB,

42dB], γ: [1.28:1, 5.12:1, 8.96:1, 12.80:1, 16.64:1], τa: [1ms, 21ms, 41ms, 61ms, 81ms], and

τr: [10ms, 210ms, 410ms, 610ms, 810ms]; drum2 is compressed using θ [11.0dB, 19dB,

27dB, 35dB, 43dB], γ: [1.76:1, 5.60:1, 9.44:1, 13.28:1, 17.12:1], τa: [3.5ms, 23.5ms, 43.5ms,

63.5ms, 83.5ms], and τr: [35ms, 235ms, 435ms, 635ms, 835ms], and so on. The dataset

details are outlined in Table 5.11.

dataset generation dataset size

D4P

θ: 10 to 49dB with step of 1dB
γ: 1.28 to 20 with step of 0.48

τa: 1 to 98.5ms with step of 2.5ms
τr:10 to 985ms with step of 25ms

drum: 64*625

Table 5.11: Dataset details for data generated by changing four parameters together

The results are compared between the prediction of the regressor trained on handcrafted

features and the feature embedding learnt by Model 1, c.f. Table 5.12. The predictions of

the four parameter model are not as good as the two parameter ones. However, the model

trained on four parameters shows its advantage when compared to handcrafted features.

When several attributes of the audio are changing at a time, handcrafted features, that

are designed to measure specific attributes like attack time differences, tend to lose their

benefit compared to a neural network. The MAEs for attack and release time have grown,

but as a reference, the range of the two parameters are 99ms vs. 999ms. The percentage

of the prediction error over parameter range is also outlined in Table 5.12.

The author is also interested in testing the model using more complex audio materials,

that is, polyphonic music. Fifty audio segments are randomly selected from the mixed
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Handcrafted features Feature embeddings

θ 2.937dB / 7.34% 2.369dB / 5.92%

γ 3.447 / 17.24% 3.265 / 16.33%

τa 13.926ms / 14.07% 10.868ms / 10.98%

τr 120.577ms / 12.07% 79.045ms / 7.91%

Table 5.12: Prediction MAE when using handcrafted features and feature embeddings on
large scale dataset, when predicting four DRC parameters. The percentage of the predicted
error over parameter range is also outlined

music of the MedleyDB dataset [Bittner et al., 2014]. The amount of 50*625 compressed

audio signals are generated using the same method described in as Table 5.11. In this

experiment, the random forest regression model trained by drum loops’ features is used

to predict the compression parameters of the polyphonic audio. The two types of features

are also handcrafted features and the feature embeddings from the best performing DNN

model. The predicted MAEs are reported in Table 5.13. The results from the model

trained by feature embeddings are obviously better. This result is reasonable because when

researchers train the DNN model, the twin model is designed in the way that the feature

embedding would focus on the difference between the two input audio signals. Meanwhile

the handcrafted features are highly depended on audio content. It is surprising that the

prediction MAE for mix audio is better than drum loops, when comparing the last column

of Table 5.12 and Table 5.13. This result might be explained by an assumption that having

a richer audio content provides a benefit for the DNN model. The results also show that

the model is still able to provide a decent prediction when using data from another dataset

that was not considered during the model design and was not used for training at all. This

indicates improved robustness and generalisation of the assessed method.

Handcrafted features Feature embeddings

θ 11.585dB 1.697dB

γ 5.104 2.194

τa 26.628ms 9.873ms

τr 268.420ms 160.629ms

Table 5.13: Prediction MAE for mixed audio whose feature embeddings are generated using
DNN model trained by drum loops
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5.5 Conclusion

In this chapter, the author proposed several DNN model designs to extend the feature

extractor in the proposed intelligent DRC control system. Handcrafted features failed

to provide good prediction when trying to predict several parameters together. DNN

models start to show their advantages compared to handcraft features when predicting

more than one DRC parameter. The improvement becomes substantial when predicting

all four parameters together, which is encouraging as it implies the DNN model would fit

the real world scenario better. Across the model designs, the CNN model using a high

temporal resolution spectrogram as input provides the best performance.

In this chapter, it was discovered that the performance would improve significantly

when an appropriate time-frequency representation is applied as input, for example to

use wavelet method. The multi-kernel model does not provide the best performance in

the experiments. This might be because of the complexity of the model, i.e., a large

network with more parameters to train, possibly requires more training data. However,

it is still worth considering to use the multi-resolution time-frequency representations as

input. When increasing the complexity of the model, i.e. predicting several parameters

together, the performance to predict two parameters are much better than only train it to

predict one. However, the performance for four parameters drop substantially compared

with predicting only two parameters. One explanation could be that the grid size are larger

when training data for the four parameters are generated. The results may improve using

a finer grid and consequently the increased size of the training dataset.

In conclusion, the DNN model provides the ability to train one generic model for all

parameters of an audio effect. It helps to reduce the limitations of the handcrafted features

approach. Further research includes optimisation on the designed intelligent control model,

which is presented in the following chapters.
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Chapter 6

Audio Similarity Model for the

Perceptual Aspects of Sound

Modified by Audio Effects

An innovative system design for the intelligent control system for DRC had been proposed

and developed from Chapter 3 to Chapter 5. From this chapter onwards, the focus is

moving to the optimisation and evaluation of the proposed system. Chapter 6 proposes an

audio similarity model that is targeting the audio perceptual aspects of sound affected by

DRC. An optimisation algorithm is proposed in Chapter 7. A subjective evaluation that

can serve as a perceptual support of the intelligent control model is presented in Chapter

7.

This chapter starts with an overview of music similarity as well as the speciality of the

similarity this Thesis requires. Section 6.1 also includes the motivation of the similarity

model designed in this chapter. This model is derived from the method proposed in Section

3.2.2. The model has been decomposed into several components and the design of each

component is provided in Section 6.2 and developed and evaluated in Section 6.3. The

overall evaluation and conclusion are followed at the end of this chapter in Section 6.4 and

6.5.
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6.1 Motivation

As discussed in Section 2.4.2, similarity assessment in music ranges from relatively simple

comparison between the sounds of instruments, through the assessment of complex music

theoretical concepts like melody, rhythm and structure, to matching high-level semantic

labels like genre and moods. Perceived similarity between two pieces of music results from

a combination of these aspects, including factors related to music performance and audio

production.

With the exception of work by Tardieu et al. [2011], relatively little attention has been

paid to the effects of production style and audio processing within the body of works on

music similarity and classification. The research in this chapter is attempting to fill this

gap by examining how audio effects transform sound and how their effect on different

perceptual attributes may be modelled.

Understanding and modelling how signal transformations introduced by audio effects

are perceived may help creating intelligent audio production tools, including audio effects

configured using descriptive terms or by the use of sound examples. Estimating similarity

between sounds or music pieces plays a crucial role in these applications, as well as in

broader areas of music informatics such as audio retrieval and recommendation systems.

Most audio effects can be modelled mathematically, however the perceptual impact of

them is beyond the scope of their mathematical representations. This chapter focuses on

the perceptual aspects of the dynamic range compressor. The mathematical approach to

analyse the compressor parameters is not within the scope of this research. Most audio

effects modify several perceptual attributes of sound, especially in the case of non linear

effects [Wilmering et al., 2013], it is therefore sensible to define success criteria using a

measure of audio similarity.

Defining a suitable similarity metric between sounds is a complex problem however,

since similarity depends on a number of perceptual qualities, a common approach in music

information retrieval is to use perceptually motivated audio features such as Mel-Frequency

Cepstral Coefficients (MFCC) [Jensen et al., 2009], for instance, to quantify timbre simi-

larity. This approach does not take auditory perception fully into account.

Auditory models incorporate the response of the outer, middle and inner ear and pos-

sibly more complex behaviour such as level dependence and non linearity in frequency

sensitivity and intensity. Therefore they can be useful in quantifying audio similarity. Nu-
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merous components have been proposed in auditory models, including different types of

auditory filters [Lyon et al., 2010]. Their ability to characterise changes introduced by

audio effects has not yet been assessed however.

This chapter focuses on the design and evaluation of a similarity model for DRC taking

relevant perceptual factors into account. The model design process assesses several au-

ditory model components and statistical modelling techniques commonly proposed in the

literature [Moore, 2014, Allamanche et al., 2001, Shao et al., 2009, Qi et al., 2013, Hershey

and Olsen, 2007], etc.

To assess individual model components, such as different types of auditory filters, a

series of experiments are performed with controlled audio transformations. By controlled

transformation, the author means a series of DRC parameter settings. The correlations

between the output of the designed model and the parameter settings are examined. There

are also experiments designed to cluster audio materials using the output of the model as

a feature. The quality of the clusters can be used to inform the design of our proposed

similarity model. We can assume audio examples of the same category or examples subject

to similar processing will be an easier target for clustering algorithms using the proposed

similarity measurement method, hence cluster quality can become a proxy for the quality

of similarity assessment. A commonly used audio similarity measure [Jensen et al., 2009]

is implemented as baseline to be compared with, albeit in different contexts than the

original algorithm. The perceptual validity of the models is not tested in this chapter. The

next chapter of the Thesis presents a listening test that looks instead at baseline human

performance in identifying DRC related perceptual effects to compare with.

The proposed model can be used in training, evaluation or optimisation in intelligent

DRC control methods. It also has applications in audio engineering and other music in-

formatics tasks. For instance, a music producer may search for heavily compressed drum

samples from a catalogue, a musician may want to find similarly sounding instrument

samples, or a listener may want to find similarly mastered recordings or separate remas-

tered tracks from earlier releases. The model design, development, and evaluation will be

introduced in the next section.
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6.2 Method

As outlined in Section 6.1, audio effects influence several perceptual aspects of sound

including timbre, loudness and pitch. It is challenging to unify all factors in a single

model. Therefore, the proposed model only considers the attributes modified by the DRC,

i.e. loudness and timbre [Wilmering et al., 2013].

Preprocessing Feature
Generation Modelling Similarity

Characterisation

Figure 6.1: Components of the proposed similarity modelling method

The proposed method uses the computation steps illustrated in Figure 6.1. In order

to derive perceptually relevant features, auditory models are considered during the pro-

cess. Some parts of the auditory system can be described as a single filter, others are

level dependent filter banks. The audio signals can be processed by the simulation filters

resembling to the process within the auditory system. This is considered preprocessing in

Figure 6.1. To model the non linear frequency resolution of the cochlea (see Section 2.4.1),

researchers proposed several types of filter banks, including Mel-scaled banks, Bark-scaled

banks, Gammatone family filter banks, etc. These differ in the distribution of center fre-

quencies as well as the shape and other properties, such as symmetry, of the individual

auditory filters [Lyon et al., 2010]. Therefore, different filter banks are used to compute

representative features (see Section 6.2.2 for details) and these are compared afterwards.

Subsequently, parametric statistical models are fitted on the features, and the distance or

divergence between the distributions can be used to estimate similarity between sounds.

The choice of fitting statistical models is due to the fact that timbre is a complex notion

and need to be modelled along multiple dimensions. A simple method such as Euclidean

distance between means or simple low-order statistics may not be able to capture the dif-

ference between complex multivariate and possibly multimodal distributions. A Gaussian

Mixture Model is therefore more suitable in this scenario. The following sections illustrate

the design details of our similarity model targeted at isolated instruments sounds.

6.2.1 Preprocessing - middle ear and loudness model

In general, auditory models contain the filter through the outer ear, filter through the

middle ear, and model the excitation pattern which leads to the loudness pattern [Moore,
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2014]. The first filter, from free field to out ear is related to the environment and the

position of the sound source with respect to the ear, therefore, this filter is not considered

in the proposed model. In this research, the author considers the filter from the outer to

middle ear as well as loudness equalisation.

The middle ear response is evaluated as suggested in [Allamanche et al., 2001], which

is also used in the similarity algorithm proposed in [Pampalk et al., 2008]. The filter

response is defined in Equation 6.1. The response curve is given in Figure 6.2(a). This

shows that the filter has a boost in the frequency range between 2-4kHz and reduces the

signal amplitude significantly at low and high frequencies.

HdB(fkHz) = −3.64× f−0.8 + 6.5× exp[−0.6× (f − 3.3)2]− 10−3 × f4 (6.1)

Loudness, as a perceptual correlate of sound intensity, is also in the focus of this work

[Moore and Glasberg, 1997]. A loudness model is useful in designing a feature representa-

tion that is relevant to perception. There are multiple components involved in a loudness

model too. In the preprocessing stage, we consider using equal loudness curves, c.f. Figure

6.2(b). There is little consensus about the transformation of neural patterns into percep-

tual measures [Röhl and Uppenkamp, 2012], therefore neural pattern encoding of the audio

will not be considered.

Robinson and Dadson [1956] introduces the equal-loudness relations for pure tones in

free-field conditions. This curve and its improvement are also included in the loudness

model illustrated in [Glasberg and Moore, 2006]. Equal-loudness contours are also pub-

lished in the ISO226 standard. These contours are plotted in Figure 6.2(b).

6.2.2 Feature extraction and timbre modelling

A primary concern in this part of the model is to represent spectral and temporal charac-

teristics of sounds closely corresponding to timbre changes induced by audio effects. This

is one of the perceptual aspects of sound modified by the DRC [Wilmering et al., 2013].

From an auditory perspective, this subsection considers the inner ear response and various

auditory filter banks.

Timbre is a multidimensional, subjective and context dependent phenomenon, therefore

it is not easy to provide a clear definition. A relatively widely accepted description is
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(a) Middle ear filter impulse response
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Figure 6.2: Two aspects of the auditory model that are considered in the preprocessing
stage

given in [American_Standards_Association and Acoustical_Society_of_America, 1960]:

Timbre is the quality that distinguishes sounds with the same pitch, loudness, and duration.

Related features can be divided into spectral/temporal features or static/transient features.

In the frequency domain, MFCCs can be used as non linear spectral scaled features to

represent timbre information. Spectral centroid and higher order statistical features are

often used as well [Peeters et al., 2011], while more recently Neural Networks have also

been proposed to model timbre [Pons et al., 2017a]. The focus at this stage of this work is

on conventional features for better understanding of the impact of signal components and

perceptual models.

Changes in the energy envelope can provide timbre information in the time domain. To

incorporate temporal information into the model, the use of delta features that correspond

to the changes in the energy curve are considered. These features can then be expected to

represent timbre changes influenced by attack and release times of audio effects. These are

important parameters in DRC designs [Giannoulis et al., 2012] and are expected to impact

transient sounds the most.

After applying the middle ear filter and equal loudness patterns to preprocess the audio

signal, it is reasonable to consider the model of the cochlea, c.f. Section 2.4.1. In related

similarity model designs, a popular feature of choice is MFCC features (cf. Aucouturier

and Pachet [2002], Heittola et al. [2009], Logan and Salomon [2001]). However, this work

aims to incorporate and characterise the response of the human auditory system more

faithfully. It is reasonable to consider more accurate biologically inspired alternatives to

MFCCs, for example, Gammatone cepstral coefficients [Shao et al., 2009].
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The Gammatone family of filters [Shao et al., 2009, Qi et al., 2013] are increasingly

used for this purpose. To improve simulation and provide a better fit to psychophysical

data compared to previous approaches [Unoki et al., 2006], the Gammachirp filter was

introduced by Irino and Patterson [1997] as a theoretically optimal auditory filter derived

from the Gabor function, which is know to be able to achieve minimum uncertainty in a

joint time-scale representation [Gabor, 1946]. The Gammachirp filters also have a sharp

drop in the high frequency part compared with Gammatone filters, which are able to

reflect the temporal masking effects of the auditory system better. Equation 6.2 defines the

impulse response of Gammatone filters, where b = 1.019∗ERB(f) = 1.019∗(24.7+0.108f)

[Slaney, 1993]. The implementation of this filter bank consists of 8th order linear (IIR)

filters corresponding to a bank of 4th order Gammatone filters centred around ERB critical

band frequencies. The Gammachirp filter is described in Equation 6.3, where σ is a time

constant and φ is the phase. In both equations, f represents the center frequencies placed

along the ERB scale. In this research, the experiments apply and compare the following

three types of auditory features: MFCC, Gammatone and Gammachirp derived features.

g(f, t) = t3exp(−2πbt)cos(2πft) (6.2)

g(f, t) = exp(−t/2σ)cos(2π(ft+ c/2t2) + φ) (6.3)

All time domain signals (e.g. filter bank outputs) are processed using short-time win-

dows, with a frame size of 1024 samples (23.22ms) and a hop size of 64 samples (1.45ms).

The time resolution in this research is at the millisecond level for both attack time and

release time. The window and hop sizes are chosen correspondingly. The time domain

input audio signals are processed by Gammatone or Gammachirp filter banks, and the

log energy within each time frame and for each frequency band is calculated. For energy

compacting and decorrelation, the Discrete Cosine Transform (DCT) is applied to the sub-

band energy signals of the Gammatone and Gammachirp filters. The type II DCT is used

for its favourable computational and energy compaction properties [Rao and Yip, 2014].

There are 40 frequency bands ranging from 0-22050Hz in all three types of filter banks.

This also helps to keep consistency across three types of auditory filter models we compare

and follows the procedure of the typical MFCC calculation (e.g. [Jensen et al., 2009]), once

band energies are computed. We take the same amount of coefficients as the output of

typical MFCC features, 13, due to the fact that the coefficients larger than 13 are relatively
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small in value while it is also a commonly accepted limit for such processing.

Another design consideration is the application of delta features, i.e., first and second

order differences between samples. These features are able to characterise dynamic infor-

mation in the similarity model [Qi et al., 2013]. In this experiment, the features using the

first and second order derivatives are calculated as shown in Equation 6.4 and 6.5,

∆F (n, u) =

∑K
k=1 k(F (n+ k, u)− F (n− k, u))

2
∑K
k=1 k

2
, (6.4)

∆∆F (n, u) =

∑K
k=1 k(∆F (n+ k, u)−∆F (n− k, u))

2
∑K
k=1 k

2
, (6.5)

where n is the time domain sample, u is the frequency band, and K is the offset of the time

sample. More implementation details will be provided in Section 6.3.2. In [Krishnan et al.,

2013] authors proposed a dynamic feature computation method based on Savitzky-Golay

(S-G) filter. This filter is normally used for data smoothing while it preserves the peak

shape as well as high frequency components. The implementation of the S-G filter can be as

simple as using polynomial approximation of an impulse sequence. The impulse sequence

is independent from the signal, therefore, it can be calculated beforehand. This smoothing

filter is tested along with auditory features and dynamic features in Section 6.3.2.

6.2.3 Statistical Modelling

At this stage, after the computation of features, a parametric statistical model is used

to characterise a sequence of feature vectors. All representations, regardless of the filter

bank considered, produce a matrix RN×T , where N = 13 is the number of coefficients and

T is the number of time frames. To facilitate the estimation of similarity between these

representations, we use parametric statistical models. However, typical audio signals do

not necessarily have a known parametric distribution.

To address this issue, many previous works suggest using Gaussian Mixture Models

(GMM), see e.g. [Jensen et al., 2009]. Most music signals do not necessarily follow a nor-

mal distribution [Arora and Kumar, 2014] but a number of normal mixture components

can capture complex distributions, with well understood and readily available methods to

estimate their parameters, such as Expectation Maximization [Bilmes, 1998]. Therefore a

GMM is used with several components, which will be able to provide a more precise ap-

proximation of audio signals. An example of histogrammed features is provided in Figure
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6.3. For the purpose of visual inspection, a violin loop from the RWS instrument database

[Goto et al., 2003] is used. This is processed using Gammachirp filter banks as described

in Section 6.2.2. Histograms of 6 of 13 coefficients are illustrated in Figure 6.3. Empir-

ical observations suggest that using 2-3 Gaussian components in this modelling stage is

appropriate.

To be rigorous however, the performance of different hyper-parameters is tested exper-

imentally as well. For instance, the exact number of Gaussian components and the type of

the covariance matrix are tested, analysed, and selected in Section 6.3.3.
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Figure 6.3: Histograms for DCT coefficients of Gammachirp subband signals for a short
violin sound example.

6.2.4 Similarity Estimation Between Statistical Models

A commonly used method to estimate the similarity between different distributions is cal-

culating the divergence (see Section 2.4.2). The Kullback-Leibler (KL) divergence is often

used to measure the information gain between a probability model when compared to a

reference. This divergence is chosen over other methods due to the observation that the

Kullback-Leibler divergence performs well in similar music information retrieval tasks [Au-

couturier and Pachet, 2002]. Its good performance is crucially linked to its value asymptot-

ically going towards infinity when one of the distribution goes towards zero density [Jensen

et al., 2009]. It is often applied to compute the divergence between Gaussian distributions

for the measurement of the information loss when using one distribution to approximate
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the other. Alternative methods include the Jensen-Shannon divergence [Fuglede and Top-

soe, 2004], which can be considered for evaluation in future work. The model introduced

in the previous section involves a GMM with several Gaussian components. The diver-

gence between mixtures of Gaussian models is not analytically tractable, therefore the

approach proposed in [Hershey and Olsen, 2007] is applied which is based on variational

Bayes approximation.

In the next section, each processing component of the proposed similarity model is

assessed in a series of tasks relevant to the similarity estimation of processed sounds.

6.3 Model Development

This section examines the design considerations discussed in Section 6.2. As baseline,

the first experiment considers a model similar to [Jensen et al., 2009], where the audi-

tory filters are omitted, 40-frequency bands, 13 coefficient MFCCs are used as features,

with two-components GMM and KL divergence as parametrisation and similarity measure

respectively. This is depicted in Figure 6.4.

In the following experiments, the model components will be replaced individually and

the performance will be compared with the baseline system. The final model design will

be decided based on the results. In the implementation of both Mel scale filter banks

and Gammatone filter banks, 40 frequency bands are used as mentioned in Section 6.2.2.

The features are calculated in a frame-wise manner, with the frame size of 1024 (23.22ms)

samples, 64 (1.45ms) hop size and smoothed with a Hanning window.

The overall performance of the final model will be examined in Section 6.4.
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Figure 6.4: Baseline system components

6.3.1 Preprocessing

To assess if the auditory filters discussed in Section 6.2.2 can improve similarity estimation,

there will be two experiments performed. Different preprocessing filters are applied to the

audio signals in the similarity model. Audio signals can be classified by either instrument
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types or audio effects applied on them. The experiment in this section uses the output of

the similarity model as feature, and uses it to classify audio materials. The inter and intra

class similarity algorithms [Manning et al., 2010] can be performed to evaluate the quality

of the classifier and therefore the efficiency of the similarity model. Two sets of audio

signals are selected and generated. The first one includes different instrument loops, and

second one contains the loops from the same instrument with different audio effects applied

to them. The timbre difference between instruments are relatively significant, therefore,

the second set of audio signals generated focuses on minor timbre changes. It is assumed

that applying auditory filters will improve the results for both tasks.

The proposed model settings are provided in Figure 6.5 where the model uses both

auditory filters individually and jointly. All the results are also compared with the baseline

system in Figure 6.4. Additional components i.e. using the distribution of Gammatone

features modelled with 2-component GMMs are also included. The reason of choosing

Gammatone filters and 2-component GMMs is justified using empirical observations dis-

cussed through experiments detailed in Section 6.2.3. The experiments described in this

section aim for a more precise choice of the preprocessing filters.
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Figure 6.5: Assessment of middle and inner ear responses. 1− 3 represents three types of
combinations of preprocessing filters.

Inter and intra class similarity is a notion that is widely used to verify the quality of

classification or clustering tasks [Bezdek and Pal, 1998]. Since the goal of this chapter is to

design a similarity model, it might not be a very strong argument to run classification tasks

to illustrate the performance of a similarity model. Instead, the author chooses to evaluate

the cluster quality based on the similarity results. In this experiment, the similarity across

guitar loops as well as between guitar and another 7 instruments loops are calculated. For

each type of instruments the author selects 40 loops from AppleLoops1 where it can be

assumed the recording condition is good and consistent. The 8 instruments are guitar,

piano, bass, violin, accordion, cello, dizi, and drum. All loops are loudness normalised to

−23dB to exclude the effect of loudness in this case. The similarity model outputs a 1D
1https://support.apple.com/kb/PH13426?locale=en_US&viewlocale=en_US
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signal for each audio pair. One of each pair is always a guitar loop. Since ground truth

of the other instrument is known, a pseudo_F index can be performed to evaluate if the

similarity can be a good feature to classify the instruments. The pseudo_F index describes

the ratio of between class variance to within-class variance. It can be used as a quality

measure for clustering or classification [Caliński and Harabasz, 1974]. It can be calculated

as shown in Equation 6.6, where GSS is the inter class sum of squares, and WSS is the

intra class sum of squares. N is the number of data points, and K is the number of classes.

In this case, N = 320 and K = 8. The same procedure will be applied to drum loops.

Psuedo_F =
GSS/(K − 1)

WSS/(N −K)
(6.6)

Model Type Performance (Pseudo_F)

Baseline
System

Experience I Experience II

Guitar 19.462 3.670

Drum 143.913 2.015

Gammatone
features

Guitar 13.508 10.020

Drum 253.284 7.146

Gammatone +
Middle Ear Filter

Guitar 42.963 12.718

Drum 333.045 17.921

Gammatone +
Eqloud Filters

Guitar 27.746 11.335

Drum 194.104 11.257

Gammatone +
Both auditory filters

Guitar 48.011 19.806

Drum 411.951 20.844

Table 6.1: Model performance with different preprocessing auditory filters. Experiments I
used different instrument loops, and experiment II used audio generated by different audio
effects.

There are two audio sets used in two experiments. Experiments I used different in-

strument loops, and experiment II used audio generated by different audio effects. The

generation of the second audio set is described in Table 6.2. The results of Experiment

I is provided in the first column of Table 6.1. Since the higher the psuedo_F index is,

the better quality the clusters are supposed to be, the best performing model is the one

that uses both middle ear filter and equal loudness filters in preprocessing. In most cases,

using Gammatone features improves the performance compared to baseline system where

MFCC features are used. This result is encouraging due to the fact that it is assumed that

Gammatone features are better representations of timbre information. In addition to this,
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the drum loops provide a good performance which is much better than any other cases in

Experiment I. It is because the first experiment is simpler than the second one. At the

same time, drum is the only percussion instrument among the test data. It has a much

different timbre comparing with the others.

The second experiment is designed for the same purpose, to evaluate the preprocessing

filters. The four audio effects used in this experiment are developed in SAFE project

[Stables et al., 2014]. These effects are used to process mono-instrument loops taken

from the AppleLoops library. There are 28 acoustic guitar loops and 4 audio effects.

Compressor, equaliser, reverb, and distortion are used to generate this audio set. The

details of the parameter settings of each effect are given in Table 6.2. According to the

settings, 28 ∗ 4 = 112 audio files are generated. Their loudness is normalised to avoid its

influence. The proposed models are used to estimate the similarity of every possible pairs

of audio. The inter and intra class measure is then performed for the four classes using

Pseudo_F index. The results are provided in the second column of Table 6.1.

Effecs Compressor Equaliser Reverb Distortion

Settings Thre: 42-45dB
Ratio: 13-16dB

Gain: 9dB
Freq: 400-700Hz

Dry/Wet:
10%-13%

Drive:
32-35dB

Table 6.2: Audio effect parameters settings.

Due to the fact that the focus of the second experiment is on subtle timbre information,

the value of pseudo_F index is much smaller than the first experiment. Meanwhile the

conclusions are also consistent with the first experiment. The best performance appears

when both auditory filters are used, and also Gammatone features improve the performance

compared to MFCCs. In the optimised model, both filters will be applied.

6.3.2 Feature extraction experiments

It has been discussed in Section 6.2.2, there are three types of filter banks considered

in this research: Mel-scale filters, Gammatone and Gammachirp filters, because they are

better fit with data obtained from physiological studies of the human auditory system

[Shao et al., 2009]. In the first experiment, the author compares three types of features

derived by these three types of filters introduced in Section 6.2.2. The correlation between

compressor parameters, Ratio, and the response of the proposed model will be calculated

and used as a measure. Secondly, the model’s sensitivity to ballistic parameters of DRC

is also evaluated when applying delta features on top of auditory features, c.f. Figure
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6.7. The delta features are considered because the attack/release time of DRC will change

the transient part of the audio which can be measured through characterising temporal

differences.
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Figure 6.6: Assessment of auditory filter bank types
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Figure 6.7: Assessment of first and second order delta features

Auditory features

The experiments are designed to evaluate which feature improves the model’s performance.

The output of the model designed which has the highest relevance and sensitivity to the

DRC parameter will be applied in the final design. The isolated notes from the RWC

database are compressed with increasing compression ratio. The similarity between the

compressed audio and its uncompressed version is calculated. The higher the compres-

sion ratio, the greater the distance between the compressed and uncompressed sound is

expected to be. The correlation between the similarity model’s output and the ratio is

calculated as well as the range between the lowest similarity and the highest. The former

measure represents relevance while the latter indicates sensitivity. For decorrelation and

to concentrate energy in the lower coefficients, DCT is used after the auditory filters in

the same fashion as with the calculation of MFCCs. Implementation details are provided

in Section 6.2.2. Figure 6.8 provides an example result. Figure 6.8(a) shows the changes

in mean-normalised similarity for 10 violin examples. Each sound is compressed using 20

ratio settings within the range [1,20] with a step of 1. The threshold is set to -37.5dB to

make sure the compression would actually take place. The rest of the parameters are kept

constant for all audio files. The results indicate that the MFCC features provide nearly

linear relation between ratio and similarity once the ratio parameter is above 5. However,
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it reflects little of the difference when the ratio is relatively small. On the contrary, Gam-

matone and Gammachirp are able to reflect small ratio differences better. Figure 6.8(b)

illustrates the non-normalised result of one of the violin examples. It is clear that Gamma-

tone and MFCC features produce monotonically increasing results, but Gammachirp does

not. Furthermore, MFCC features exhibit a substantially lower range of differences com-

pared to Gammatone features. This indicates that Gammatone features are more sensitive

to the change of DRC parameters.

A more general experiment has also been carried out with a larger audio set. One

hundred and eighty isolated notes from the RWC database are manually compressed with

different compression ratios. Sixty examples of violin, piano, and guitar samples are used

respectively. Each sound is compressed using 20 ratio settings within the range [1,20] with

a step of one. This process produces 1200 compressed recordings for each instrument. For

every 20 audio files that are generated from the same source, we compare the predicted

similarity with the ratio setting. The results of correlation and range are averaged across

1200 cases for each instrument. The recordings are between 5 to 10 seconds each. These

results are presented in Table 6.3. The results show that MFCC features have the highest

correlation with ratio, however, the Gammatone feature provides a much larger range,

which suggests more sensitivity. The difference between MFCC and Gammatone features

are not significantly different. In the comparison with the results given in Figure 6.8, the

Gammatone filter appears to be the best choice among the three auditory filter models.

(a) 10 violin audio (b) 1 violin audio

Figure 6.8: Similarity changes with the increase of compression ratio, comparing three
different types of filter banks used as audio features.
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Correlation Range

M T C M T C

Violin 0.98 0.90 0.84 11.92 74.31 60.80

Piano 0.96 0.89 0.90 13.28 63.72 29.28

Guitar 0.98 0.89 0.89 23.49 70.81 41.68

Table 6.3: Average correlation and range between the output similarity and the compres-
sion ratio, where "M" stands for MFCC, "T" stands for Gammatone, and "C" represents
Gammachirp. (a) contains normalised results and (b) shows the original scale.

Dynamic features

As mentioned in Section 6.2.2, attack and release times are essential temporal parameters

of the DRC. Using delta features along with Gammatone features can provide a benefit

when it comes to detecting the small differences, especially in the transient parts of audio

signals. In the next experiment, delta and delta-delta features are compared on top of

the Gammatone features, c.f. Figure 6.7. The feature vectors are shown in Eqn.6.4 and

Eqn.6.5. For simplicity, k is chosen to be 1 for both equations. The attack time of a

compressor is varied and applied to violin notes. The similarity between the processed

audio and its uncompressed original is compared. The results are shown in Figure 6.9.

Figure 6.9(a) shows the difference when using only Gammatone features, Gammatone

features with first order delta features, and with second order delta features. The results

are mean normalised. Figure 6.9(b) illustrates a single non-normalised curve of one violin

note. It is clear that the Gammatone feature plus the first order delta features has the

largest range, and the curve is the smoothest among the three feature combinations. We

also extend this experiment to isolated notes of piano and guitar. We compressed the note

using different attack times within the range [1,100]ms with a step of 5ms. The average

correlation and range for three types of instruments are given in Table 6.4, where "T"

represents Gammatone features only, and "D", "DD" represents the Gammatone features

plus the first and the second order delta features. Due to the negative correlation between

the similarity and attack time, we display the absolute value of the average correlation.

Gammatone plus the first order delta features provide the highest correlation for all three

instruments. The second order delta features have a lager range in two out of three cases.

Balancing the results of both correlation and range, Gammatone with the first order delta

features is an appropriate choice. The attempt of applying S-G filter introduced in Section

6.2.2 has also carried out to smooth the delta features. The results have not significantly
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improved (less than 3% in most cases), therefore this step is skipped in the final design to

avoid introducing additional computational expense for a small uncertain benefit.

(a) 10 violin audio (b) 1 violin audio

Figure 6.9: Similarity changes with increasing compression attack time, comparison of
cases with and without using delta features

Correlation Range
T D DD T D DD

Violin 0.84 0.87 0.84 9.51 11.50 13.20
Piano 0.87 0.88 0.76 1.63 2.47 2.37
Guitar 0.52 0.60 0.53 12.02 19.02 20.62

Table 6.4: Average correlation and range between the output similarity and the compres-
sion attack time, where "T" represents Gammatone features, "D" represents Gammatone
features plus first order delta feature, and "DD" represents Gammatone features plus sec-
ond order delta feature.

6.3.3 Statistical modelling

The selected features are subsequently modelled using a GMM. As per Figure 6.3, two to

three Gaussian components would be sufficient based on empirical observation. An ex-

haustive search has been carried out to confirm this assumption. The model is tested using

Gaussian components ranging between one to four, and also test the type of covariance

matrices including ‘spherical’, ‘tied’, ‘diagonal’ and ‘full’ [Bishop, 2006]. The performance

of GMMs is measured using Bayesian information-theoretic criteria (BIC) [Schwarz, 1978].

For each audio, the model that yields the lowest BIC will be selected. This search is con-

ducted using mono-timbral loops from AppleLoops, more specifically, 40 examples of each

instrument (drum, violin, accordion, piano, guitar, and bass) as shown in Table 6.5. Since
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1 or 4 Gaussian components and ‘spherical’ or ‘tied’ covariance matrices are not selected

in any cases, Table 6.5 only shows the results for successful selected models. Using the

full covariance matrix yields the best performance in most cases, which suggests that the

features are not fully decorrelated. The most common choice for Gaussian components is

3 (77.5% in average). Therefore, the final statistical model we will use is a GMM with 3

components. Each component has a full covariance matrix.

Drum
Components Var

Piano
Component Var

2 3 diag full 2 3 diag full

30% 70% 0 100% 10% 90% 0 100%

Violin
Components Var

Guitar
Components Var

2 3 diag full 2 3 diag full

42.5% 57.5% 0 100% 15% 85% 0 100%

Accordion
Components Var

Bass
Components Var

2 3 diag full 2 3 diag full
25% 75% 20% 80% 12.5% 87.5% 0 100%

Table 6.5: Gaussian components and variance matrix selection for GMM. The model is
tested using several Gaussian components and the type of covariance matrices. The per-
formance of GMMs is measured using Bayesian information-theoretic criteria (BIC). For
each audio, the model that yields the lowest BIC is selected. The selection rate is provided
in this table.

In conclusion, the experiments above have been conducted to select the design of each

component in this similarity model. The selection criteria aimed to make the model more

sensitive to the DRC’s parameters, as well as timbre and loudness, the two audio perceptual

aspects of sound that are usually affected by the DRC.

Based on the experiments, the model is designed as follows. In the preprocessing stage,

the raw audio is being processed using both middle ear filter and equal loudness filters,

and 40-frequency bands Gammatone filter bank ranging from 0 to 22050Hz are used for

feature extraction. DCT is applied to the log energy of windowed subband outputs of the

Gammatone filter bank. The top 13 coefficients are selected as audio features. First order

delta features are computed from the features and a stacked feature vector is then formed.

The statistical model representing the features is a 3 components GMM with full covariance

matrices. The KL divergence approximated with variational Bayes [Hershey and Olsen,

2007] is then used to estimate the similarity of the GMM models. Figure 6.10 indicates the

final computation workflow. This model will be used in the overall performance evaluation

detailed in the next section.
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Figure 6.10: Final system components and workflow

6.4 Evaluation

After finalised the components of the model, the proposed model design need to be tested to

determine whether the model corresponds well enough to this research’s very specific task.

This means to evaluate the similarity that is caused by DRC. In this section, an overall

evaluation of the similarity model will be carried out. There are two experiments. The first

one tests the model performance when changing the compression parameters. The second

evaluates the relation between the similarity model outputs and loudness differences.

6.4.1 Dynamic Range Compression Parameters

In this experiment, the model’s performance is evaluated against DRC parameters. The

focus of this Thesis is on the following four DRC parameters: threshold (θ), ratio (γ), attack

time (τa) and release time (τr). As discussed in Section 2.1.3, there are other common

compressor parameters that are not considered in this work, including knee type and make-

up gain. Knee type controls the smoothness of gain reduction around the threshold and

typically results only in a subtle perceptual effect. Make-up or output gain is purely a

boost of level, therefore these two parameters are excluded in the test. As in previous

experiments, the compressed notes are compared with their uncompressed versions. Sixty

isolated violin notes from RWC database are used. The normalised results are shown in Fig.

6.11. The parameters ρ = {θ, γ, τa, τr}, i.e. threshold, ratio, attack time, and release time,

are varied as follows: θ ∈ [10, 12, ..., 46, 48]dB, γ ∈ [1, 2, ..., 19, 20], τa ∈ [5, 10, ..., 95, 100]ms,

and τr ∈ [10, 60, ..., 910, 960]ms. The curves in Figure 6.11 show that the divergences reflect

the changes in the compressor for all the parameters. Since the threshold and ratio are in

dB scale, their similarity is not changing in a linear fashion. Attack time and release time

are linear in the time domain, and consequently the similarity curve shows a change that

is closer to linear. A smaller attack time changes timbre more significantly than larger

attack, therefore the correlation between the similarity and the attack time is negative,

while the opposite is true for release time.
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Figure 6.11: Similarity change with the increase of compression parameters for threshold,
ratio, attack and release time.

6.4.2 The Influence of Loudness

The question investigated in the following assessment is whether the similarity model re-

flects changes in loudness, and whether the relationship between the two is linear. To

answer the first question an experiment is conducted on 60 violin loops for testing and one

violin loop as reference from AppleLoops. The similarity between the reference and test

loop are compared with their loudness difference. The integrated loudness is calculated

using the EBU-R 128 algorithm [ITU]. The loudness curve and the similarity curve show

a modest Pearson product-moment correlation (R=0.446). This indicates that the system

is able to account for similarity in loudness, i.e., the similarity estimation is related to

loudness change significantly, but it also shows that if the primary interest is in timbre,

the samples should be loudness normalised before similarity estimation.

To investigate further how loudness is related to the proposed model, another experi-

ment is carried out under a more controlled situation. Sixty drum loops are selected from

AppleLoops. Their integrated loudness1, introduced in EBU R128, is modified. The loud-
1The loudness level normalisation tool in Hindenburg Journalist PRO is used, a multitrack audio editor.

https://hindenburg.com/products/features/loudness-meter.
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Relation with loudness simi
√
simi log(simi)

error 0.071 0.010 0.037

corelation 0.971 0.999 0.977

Table 6.6: Relations between similarity and loudness using different transformation of
similarity.

ness normalisation is applied for each loop in 7 levels (0dB, -3dB, -6dB, -9dB, -12dB, -15dB,

and -18dB) starting from 23dB. For each loop, the other 6 levels are compared to 0dB level

and a 1∗6 vector is generated, i.e. simi = [s1, ..., s6], si = similarity(drum0dB , drumi∗3dB),

i ∗ 3 regarding to the 7 levels. A linear relationship is assumed between loudness and simi-

larity, i.e. the relation between loudness = [3, 6, 9, 12, 15, 18] and simi is linear. The vector

simi is fitted to a linear curve line using the least squares method, ˆsimi = a× loudness+b,

and calculate the fitting mean absolute error. For easier comparison, the simi is normalised

to the range [0, 1]. The average error given 60 loops is detailed in Table 6.6. The average

correlation between simi and loudness is provided as well. The analysis is extended by

taking the square-root and log of simi and repeating the same process. The similarity itself

shows a strong correlation with loudness. A stronger correlation and less error is produced

when comparing with the square of similarity as it is shown in Table 6.6.

6.5 Conclusion

This chapter discusses the design of an audio similarity model which targets timbre and

loudness.

The commonly used audio similarity estimation methods are outlined in Section 6.1.

The major difference between the proposed model compared to other methods is that the

proposed design targets subtle perceptual aspects of sound affected by audio effects. The

proposed model is designed in four stages. The specific methods and features that are

used in each stage are decided by the results of specific experiments discussed in Section

6.3. The proposed final model is illustrated in Figure 6.10. The overall performance is

outlined in Section 6.4 focussing on tasks relevant to audio effect parameter estimation

and classification. The results show that the proposed system is sensitive to loudness and

timbre. This model shows sensitivity to the changes in sound introduced by varying DRC

parameters, although to different extents.

The system uses middle ear filter and equal loudness curves as preprocessing which
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can be regarded as related to the key perspective aspects, loudness and timbre. There

are other aspects of auditory models that need to be considered if the targeted perceptual

aspects are changed. The results indicate that using preprocessing (i.e. using the middle

ear and equal loudness filters) does not always guarantee a better performance in the tasks

examined. In theory, and most of the test cases, auditory filters allows the system to better

reflect the changes in perceptual attributes induced by effects.

The proposed preprocessing filters may therefore be traded off if computational cost

is of concern. It is also worth considering how the given task relates to the experiments

presented here which could be a helpful hint suggesting when additional experimentation

may be beneficial. The system also applies a complex parametric statistical model to

represent the generated audio features. A three components GMM is chosen in the design.

Using three components is a good trade off as singularity (i.e. zero probability mass

assigned to a component during the EM parameter estimation process) is easier to occur

with more Gaussian components. Therefore having less Gaussian models is also more likely

to avoid the problem with calculating KL divergence.

The system can be applied to the proposed intelligent control system for dynamic range

compressor [Sheng and Fazekas, 2017, 2018a,b]. This system aims at using specifically

designed audio features and a regression model to bring the input audio sounds as close

as possible to a reference audio. The similarity model can be used as an evaluation tool

to compare the output audio of the system and the targeting audio. It can also serve

as an optimisation function to introduce perceptual aspects into model design or hyper-

parameter selection of intelligent control tools for audio effects. This can bypass conducting

time consuming and potentially expensive listening tests at various interim stages of the

development.
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Chapter 7

Optimisation and Subjective

Evaluation of the Intelligent

Control System

In the previous chapter, the author introduced an audio similarity model targeting loudness

and timbre. This approach has demonstrated its sensitivity for the changes of compressor

parameters. In the first part of this chapter, the author introduces a scheme that uses the

similarity model as an optimisation of the intelligent control system. The second half of the

chapter includes a subjective listening test. The primary aim of the listening test is to find

the minimal audible difference for the ballistic parameters of the DRC. Since the ballistic

parameters are the ones that are harder to predict, this subjective test is able to access

whether the prediction model has reached a level of performance that makes it suitable

for applications in real-world music production. If the error rate reaches lower than the

audible threshold, it can be considered as optimal prediction. The first experiment in this

chapter is an optimisation of the prediction model with an emphasis of perceptual aspects.

The second experiment is a perceptual test to support the prediction model. The results

from both experiments can serve as perceptual support for the designed intelligent model.
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7.1 Optimisation Design

The prime motivation of designing a similarity model is to evaluate the performance of

the intelligent system along its development. The author also considers to use it as an

optimisation method to improve the performance of the intelligent system. The adaptation

of a multi-stage search algorithm has been considered. The intelligent system will predict

the parameter settings at the first stage, and the similarity model will be used for a local

search at the second stage. Details of the design is presented in Section 7.1.2. The results

and evaluation follow Section 7.1.3.

7.1.1 Motivation

To recap, the training process of the intelligent system, c.f. Section 3.2.2, used the audio

pairs such that one is the original and the other is a compressed version. Therefore, the

regression model can be trained using the ground truth of the compression parameters. The

system is then evaluated using the audio perceptual similarity model. This design shows

decent performance in many scenarios that have been tested in the previous research. A

clear trend can be observed that when applying the system to real world scenario, i.e. when

the reference audio and the input audio are not from the same origin, c.f. Section 3.2.2

the proposed system still provide decent performance. In this situation, there is no ground

truth for each pair of audio.

This section is aiming at combining the two stages. It is reasonable to insert the

similarity model into the intelligent system as an extra optimisation stage. This approach

would incorporate the similarity measurement into the prediction process. The overall

system thus takes audio perceptual information into account, which is what this research

is aiming to achieve.

There are several applications in sound synthesis research that applies parameter search

strategies. Mitchell and Creasey [2007] demonstrate several Evolution Strategy-based algo-

rithms to perform synthesis matching, which equates to finding the synthesising parameters

that will provide a match to the target audio. The parameters are selected by the best

performing algorithm. The Subsequent work, [Mitchell, 2012], discussed the optimisation

issue more deeply. This paper also provides a novel clustering evolution strategy. Authors

in [Gabrielli et al., 2018] outline a multi-stage optimisation strategy. This work combines

two stages such that the first one contains several neural networks for parameter predic-
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tion as a global search. The second stage runs a local search after the first stage using a

Random Iterative Search (RIS). Inspired by these works, the author designed a two stages

optimisation strategy to predict DRC parameters.

7.1.2 Method and dataset

Since the performance for the simple situation is already good with relatively small error

rates that are probably inaudible, this research is aiming at improving the performance

for the complex scenario, i.e. predicting DRC parameters for polyphonic audio tracks. At

the end of Chapter 5, an experiment conducted on the polyphonic track from MedleyDB

dataset [Bittner et al., 2014] is presented. The optimisation is built as a further development

of this experiment. The data used in this research is the drum loops dataset described in

Table 5.11. It also includes 50 audio excerpts from MedleyDB, which are compressed in

the same fashion as Table 5.11. With less data, the resolution of parameter steps can

be slightly finer. Details are given in Table 7.1. There are 5 settings for each parameter

of ρ = {θ, γ, τa, τr}, and each audio is compressed using the parameters given by the

permutations. In a real world scenario, the input audio and the reference audio are from

different origins. This scenario makes the direct numerical evaluation impossible. The

similarity model designed in Chapter 6 becomes convenient for this scenario. The two

stage optimisation algorithm is proposed in this chapter. Based on the previous research,

the siamese model is used for feature embedding calculation, and a trained random forest

regressor is used for the first stage prediction. This process serves as the global search

stage. The similarity model is used in the second stage as a local search step. A Random

Iteration Search using parameter perturbation is applied in this stage. The final predicted

parameters are then used to generate the output audio. The system diagram is illustrated

in Figure 7.1.

Siamese

Net

RF

Regressor
DRC

Similarity

Model

Parameter
 perturbation
 

DRC

Parameter Prediction Random Iteration Search Output Audio

Figure 7.1: Two-stage algorithm overview

As it is presented in the system diagram, the CNN-based siamese model and random
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dataset generation dataset size

D4P

θ: 1 to 50dB with step of 1dB
γ: 1.38 to 20 with step of 0.38
τa: 1 to 99ms with step of 2ms
τr:10 to 990ms with step of 20ms

mixed audio excerpts: 50*625

Table 7.1: Dataset details for data generated when changing four parameters together

forest regression model is pre-trained by the experiments in Chapter 5. The siamese model

that predicts 4 parameters jointly is trained by dataset described in Table 5.11 and 7.1. The

CNN-based siamese model structure follows Table 5.1. The random forest model is trained

on the learnt feature embeddings as well as the ground truth compression parameters. The

experiment procedure is shown in Figure 7.1. The input audio and the reference audio

are randomly selected pairs from the original audio and the compressed audio. The first

step of prediction can provide a set of parameters, and the interim audio can be generated

based on this. The second step can be referred to as a local search. The similarity between

the interim audio and the reference is used as a guideline for the random iteration search.

The details of this strategy is provided in the pseudo code Procedure 5.

Procedure 5
Input:

n: test data set size;
O : a list of uncompressed audio files, with the size of n;
R: a list of compressed audio files with the size of n, will be used as references;
P : the predicted parameters out of O and R;
lr : learning_rate, the speed of updating the parameters;
m: the iterations that this algorithm is going to run;

Output:
P_new ;

1: for i ∈ range(n) do
2: a = DRC(input = Oi, para = Pi)
3: s = Similarity_Model(a, Ri)
4: ŝ = s
5: b = Pi
6: for _ ∈ range(m) do
7: ∆ = ŝ * (b * Γ) * Λ

8: P̂_newi = lr * ∆ + b

9: â = DRC(input = Oi, para = P̂_newi)
10: st = Similarity_Model(â, Ri)
11: if st < ŝ then
12: b = P_newi
13: ŝ = st
14: end if
15: end for
16: P_newi = b
17: end for

The random algorithm is based on the random perturbation of the parameter space.
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This algorithm has two audio sets as input. O = {O1, ..., On} is the input audio set with

the size of n, and R = {R1, ..., Rn} is the reference audio set. The parameter out of the

first stage, i.e. the prediction model is presented as P = {P1, ..., Pn}, with the size of

[n, 4]. The algorithm has a learning rate, lr, which is smaller than 1, and the number of

iterations, m. For each audio pair Oi and Ri, the initial similarity s is calculated and the

predicted parameters Pi is assigned as the temporal best parameters, i.e. b. The random

perturbation of the parameter space is performed m times. In line 7, Γ is a sparse random

vector with value ∈ 0,1. Using this vector allows only a random subset of the parameters

to be perturbed at each iteration. Λ is a normally distributed random vector. We use

a Gaussian distribution with the mean of 0 and variance of 1. b is the best performing

parameter setting that appeared in the previous iterations, and ŝ is the similarity between

reference audio and the compressed audio using the current best performing parameters.

This perturbation is then multiplied by a learning rate and added to the best parameters

so far. A new compressed audio â is generated according to P_newi. The new similarity

st is calculated. If new similarity is smaller than ŝ, the best parameters are updated to

P_newi, and the best similarity is updated to st. After m iterations, the best parameters

are assigned to P_newi as output.

7.1.3 Evaluation

The evaluation of the optimisation design is discussed in this section. For drum loops, the

reference audio is randomly selected from the 40000 compressed audio excerpts. The input

audio is randomly selected from the 64 original audio. Similarly, for polyphonic music, the

reference audio is randomly selected from 31250 compressed audio excerpts. The input

audio are randomly selected from the 50 original audio. The similarity results from the

reference and input audio pairs, after the first stage of the prediction model, and after

the second stage of the random iteration search are provided in this section. We set the

number of iterations to 20 and the learning rate to 0.1. This experiment generates 1000

audio pairs, and the similarity after two stages is represented in Table 7.2.

Initial First stage Second stage

Average similarity - Drum 308.221 105.087 82.549

Average similarity - Poly 263.088 248.071 171.590

Table 7.2: Similarity properties after two stages
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The second stage successfully decreases the distance between the reference and the out-

put. If we normalise the result by setting the initial similarity to 1, for drum loops the

distance drops to 0.268, and 0.652 for the polyphonic music. For reference, a similarity eval-

uation has been conducted on the random audio pairs for both drum loops and polyphonic

music without optimisation. The evaluation used both handcrafted features and learnt

feature embeddings. The average results are presented in Table 7.3. The optimisation

method is able to provide a closer perceptual distance.

Average Similarity

Drum Handcrafted features 287.878
Feature embeddings 105.087

Poly Handcrafted features 257.563
Feature embeddings 248.071

Table 7.3: Similarity evaluation in a real world scenario on drum loops and polyphonic
music, and predicting four parameters simultaneously.

To have a better understanding of the performance, other related features are also

extracted for the output audio of the two stages. The crest factor can be used to indicate

the dynamic range of the audio signals. This feature can not represent all the aspects

of sounds that the DRC can change, but to a certain extent, it can be used to measure

the performance of the system. If the crest factor differences are getting closer, it implies

the system is able to make the audio similar in terms of dynamic range. Loudness is also

measured for similar purpose. Loudness is computed using Steven’s power law [MacKay,

1963]. This algorithm computes loudness as the energy of the signal raised to the power of

0.67. The results are presented in Table 7.4 and 7.5, the data are the difference between

the output and the reference audio. The two features show a similar trend as the similarity

measure. The second stage managed to reduce the distance for these features as well. The

algorithm has thus provided improved performance.

Initial First stage Second stage

Average crest factor difference - Drum 70.051 68.270 56.321

Average crest factor difference - Poly 335.568 331.921 232.465

Table 7.4: Crest factor difference after two stages. "Initial" represents the initial difference
between the input and reference, and "First stage & Second stage" are the differences
between the output and reference.
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Initial First stage Second stage

Average loudness difference - Drum 12.273 11.261 10.953

Average loudness difference - Poly 63.717 60.544 45.801

Table 7.5: Loudness difference after two stages. "Initial" represents the initial difference
between the input and reference, and "First stage & Second stage" are the differences
between the output and reference.

7.2 Subjective evaluation on the audibility threshold of

DRC parameters

The research up to this subsection has been aiming at pushing the boundary of the pre-

diction model. To understand the efficiency of the model in real-world conditions, i.e.,

compare to human performance in a similar task, this experiment is designed to discover

the minimum audible difference between the ballistic parameters i.e., release and attack

times of the DRC. The test and the analysis is presented in this subsection, starting with

the motivation of the test. The procedures are outlined is Section 7.2.2. Evaluation and

analyses are followed in Section 7.2.3. The conclusion of this experiment along with the

conclusion from the optimisation experiment in the first half of this chapter will be pre-

sented in Section 7.3.

7.2.1 Motivation

As discussed several times before, DRC is one of the most commonly used audio effects

in music production. This Thesis is aiming at designing an intelligent computational sys-

tem for predicting the parameters of DRC. The performance can be evaluated using the

computational model proposed in Chapter 6. A more convincing evaluation would be a

subjective test. The results from this experiment can inform the efficiency of the compu-

tational system because we can safely assume that the prediction errors that are smaller

than the audibility threshold can be considered inaudible. Therefore this experiment is

able to serve as a support for the numerical evaluation results presented in the series of

previous chapters.

This listening test is designed to focus on the ballistics parameters partly due to com-

putational reasons. It is also because these parameters turned out harder to predict and

there are already studies focussing on the perception of loudness differences which allow

some insight into the audibility of compression ratio and threshold. To study the audibility
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threshold ideally requires a large audio dataset. Using all four parameters, the audio sets

would be much larger, therefore the experiment would be difficult to design and complete in

reasonable time while also avoiding the effects of listener fatigue. Since the effect of thresh-

old and ratio is more profound and has been discussed more often, the author focuses on

attack and release times in this test. There has been some discussion on the perceptual

impact of the ballistics parameters of the DRC in the literature, e.g. the influence of these

parameters to the perception music style is discussed in [Bromham et al., 2018]. A broader

discussion on DRC’s impact on music has been presented in [Wagenaars et al., 1986]. Apart

from the musical aspects, the audio perceptual impacts of the DRC is analysed along with

other audio effects in [Wilmering et al., 2013]. Little discussion has appeared in the litera-

ture about the audible difference of the DRC parameter changes. This experiment can be

the first step in a series of more detailed experiments. The experiments presented here also

aim to provide a better understanding of the perceptual behaviour of the DRC in general.

There are further possibilities of discovering the relations between age, experience, and the

perception of the DRC using the data collected in the study.

As introduced earlier, the main purpose of this test is to detect the minimum audible

difference of DRC ballistic parameters. We assume that when an audio is compressed with

a ballistic parameter set to t and t+ δ, the difference between the two compressed audio is

not audible even to experienced ears, if δ is small enough. This study is aiming at finding

the threshold δ.

7.2.2 Experiment design

Audio effects can alter many perceptual aspects of the audio [Wilmering et al., 2013]. The

amount of perceived change induced by an audio effect may also depend on the audio

material, e.g. the type of instrument sound the effect is operating on. Taking this into

account, four types of mono-instrument tracks were used as test materials: Bass, Guitar,

Drum and Vocal. All audio tracks are 5-6 seconds long with a normalised loudness of

-23dB. The four tracks are compressed using the parameter settings in Table 7.6. The

tracks are compressed in the way that we kept three parameters fixed and changed one

parameter with 5 different settings for each parameters. The fixed parameters have two

modes, a light and a deep threshold with a fixed ratio. In this way, the test is conducted on

4 instruments tracks, 2 compression modes, 2 ballistic parameters, and 5 settings of each

parameter, therefore 4*2*2*5=80 compressed audio tracks are generated. The attack time
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and release time are set to 10ms-30ms and 100ms-300ms respectively because they are the

most commonly used ranges based on the informal interviews of professional producers.

Parameter settings Mode

Attack time 10ms-30ms, step of 5ms Light : threshold: -35dB, ratio: 1:5
Deep: threshold: -45dB, ratio: 1:5Release time 100ms-300ms, step of 50ms

Table 7.6: DRC parameter settings: 2 modes of which one is heavy compression and the
other is light; 5 settings for attack time and release time.

An ABX listening test is conducted for this study [Clark, 1982]. The listeners are

presented a reference audio and two candidate audio excerpts. The reference audio would

be the same as one of the candidate audio, and the other is the same instrument track with

same compression mode but a different setting. The listeners are asked to pick the one

which is different from the reference. For each mode of attack time, we compare 30ms with

25ms, 20ms, 15ms and 10ms. The same procedure applies to release time. Therefore, for

the each instrument (4), each mode (2) and each parameter (2) we can generate 4 pairs. The

listeners are asked to compare 4*2*2*4=64 pairs. Having a reference helps the participants

to focus on the different parts between the audio. It can also be assumed that if the audio

pair’s difference is not audible, the responses will have a random distribution. Finding the

separating spot between random and not random distribution will enable determining the

audibility threshold.

Sixteen participants were recruited. Since this test is highly specific, only people who

have experience with production are recruited. A survey was also conducted using a post-

experiment questionnaire before the listening test to collect the demographic information

such as age, experience level, gender, occupations and so on. An overview of the partic-

ipants is provided in Table 7.7. There is a majority of male participants. This echoes

the gender imbalance of the music production industry. The distribution of proficiency

and age is fairly even. Section 7.2.3 contains both global analysis and analysis with data

break-down based on these information.

7.2.3 Analysis

Two analysis stages are presented in this section. First of all, the analysis of accuracy

is performed on each group of participants. Second, the analysis is carried out for the

prime purpose of this test, which is determining the audibility threshold of the ballistic

parameters.
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Gender Occupation Hearing
Impairment

Male 14 Music Producer 6 No 13
Female 2 Others 10 Unknown 3

Level Years of experience Age

Little 3 under 1 2 under 30 8
Average 2 1-3 2 30-45 4

Above-average 6 4-10 6 above 45 4
Expert 5 11-20 2

above 20 4

Table 7.7: Overview of the participants’ information.

Individual group accuracy analysis

The first analysis is to break down the data into age groups and years the participants

have spent in music production. The results are presented in Figure 7.2. The accuracy for

each individual is calculated using Eqn. 7.1, where Ri = 1 when the response of pair i is

correct, and Ri = 0 otherwise. T is the total audio pairs presented to each participants,

i.e. T = 64. The average accuracy of the individuals in each category is displayed in the

following figures.

Accuracy =

∑T
i=1(Ri)

T
(7.1)

(a) age (b) years of experience

Figure 7.2: Accuracy analysis on the attack time distance between the audio pairs with
respect to age and years of experience.

The assumption of the results is that the accuracy should increase with the growth of the

attack time distance between the audio pairs. Most of the participants fit this assumption.

Interestingly, participants with age under 30 or over 45 years fit this assumption the best,
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c.f. Figure 7.2(a). This may be the effect of relatively small sample size when participants

are grouped. Participants over 45 years old perform higher than average in all cases. There

are 4 participants in this category, and all of them have over 20 years experience, and they

are all professional music producers. This corroborates another assumption that expert

producers would be more sensitive to these differences. However, the results from Figure

7.2(b) and 7.3(b) does not fully support this assumption. Although people with longer

experiences in production provide a better performance when the distance are small and

subtle, people with less experience show a much higher accuracy when the distance is much

obvious. People with less than 3 years of experience are largely under 30 years old (75%).

One possible reason causing this result is because the sensitivity of the human auditory

system is better with a younger age. In other words, this result also shows that even

with little training, ordinary listeners are still able to hear the changes between different

attack and release time settings of the DRC. Figure 7.3(a) also indicates that there is a

performance gap between the people who answer "No" to the hearing impairment and

the ones who answer "Unknown", especially when the distance is small. The behaviour

difference between these two groups is relatively small when the distance is large. Further

experiments may be needed to confirm the impact of hearing impairment.

(a) hearing impairment (b) occupation

Figure 7.3: Accuracy analysis on the attack time distance between the audio pairs with
respect to hearing impairment and occupation.

Audibility threshold

The main purpose of this experiment is to find out the audibility threshold of the ballistic

parameters of the DRC. For each instrument, each compression mode and each parameter,

there are 16 responses from participants. In this analysis, the accuracy and the statistical

significance test results are represented. The chi-squared test is performed between the
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uniform distribution, i.e. random distribution and the participants’ responses, since the

responses are binary categorical data. For the p-value lower than the alpha value, it can

be assumed that the response distribution has a significant difference from the uniform

distribution. The alpha value is set to 0.1 due to the fact that the problem is rather

complex, therefore choosing a relaxed significance threshold is appropriate. If the accuracy

is higher than 50% and the distribution is different from uniform distribution, it can be

inferred that this audio pair’s difference is significant. If so, the parameter distance between

the audio pair can be considered audible.

One example is presented in Figure 7.4. These are the results for the Bass samples with

a light compression mode and different attack times. The accuracy results show most of

the responses have a better outcome than random, but only the audio pair 10ms/30ms and

15ms/30ms shows statistically significant difference compared to the the random response.

Therefore, when the attack time difference is 30− 15 = 15ms, it is audible. While when it

is 30−20 = 10ms, it is not. Furthermore, the attack time audibility threshold for this case

should be between 10ms to 15ms. The same evaluation is done on all audio examples. The

consistency is considered as well. For example, if the accuracy of the audio pair with 15ms

distance is above threshold and statistically significant, but it is not for the pair with 20ms,

it can be assumed that the results of 15ms is a singular result. The audibility threshold is

larger than 20ms. This is denoted in Table 7.8 as ">20ms" for attack time and ">200ms"

for release time. The summary of each instrument and each compression mode is provided

in Table 7.8.

Compression
Mode Parameters Bass Guitar Drum Vocal

Light Attack 10-15 >20 >20 >20

Release 150-200 >200 >200 >200

Heavy Attack 10-15 15-20 >20 >20

Release 150-200 150-200 100-150 >200

Table 7.8: Audible threshold in milliseconds for 4 instruments, 2 compression modes and
2 parameters.

An important trend that can be observed in Table 7.8 is that DRC has different effects

on different instruments. The audibility threshold of bass is smaller than all the other

instruments. Meanwhile, the audibility threshold of vocal is much higher. It has been as-

sumed that audio tracks with more transients should produce a smaller audibility threshold.

The results corroborate with this assumption to a certain extent but not entirely. Vocal
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Figure 7.4: Accuracy and chi-square test analysis for attack time with Bass audio samples
with a light compression mode.

signals are often dominated by steady state sounds. i.e., we can assume fewer transients in

general, but vocals also include plosive and fricative sounds which are transient like, and

these may be sufficient for people to identify the effects of the compressor ballistics. If this

assumption holds true, the audibility threshold of drum should be small, which does not

show in the results. Most of the audibility threshold of drum is over the maximum differ-

ence set in the experiment. This observation requests further investigation. The accuracies

for drum are reasonable, but not consistent. For example, the accuracy for drum pair with

heavy compression level with distance of 5ms is 0.81. However, the inconsistency makes

the threshold much larger. This may need further experiments that focus on drum tracks

to provide a more robust explanation. From the results of bass, guitar and drum, it can

be implied that the audibility threshold of ballistic parameters can be smaller when the

compression level is heavier. This outcome is more obvious for release time.

One of the aim of designing the listening test is that the audibility threshold can be used

to inform the efficiency of the prediction models introduced earlier as the main contribution

of this Thesis. The smallest prediction error for guitar and drum loops when predicting

attack time is between 0.9 - 1.2ms, and 11 - 13ms for release time c.f. Chapter 5.2.5. For

prediction model that predicts four parameters jointly, the prediction errors are around

10ms for attack time and 160ms for release time. 10ms is smaller than all the audibility

thresholds of attack time, although some of the audibility threshold of release time is
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smaller than 160ms. Therefore, further development of the prediction model may need to

focus more on release time. Overall, the audibility thresholds are at a similar level with

the prediction error of most systems presented earlier, which means the prediction model

has a good performance.

7.3 Conclusion

There are two experiments presented in this chapter. The investigation starts with the

design of an optimisation algorithm. The two stage algorithm is designed to optimise the

DRC parameters based on the perceptual aspects of the audio most affected by the DRC.

Since the audio perceptual aspects are measured by the audio similarity model designed

in Chapter 6, naturally the similarity performance is better if evaluated using the same

model. Therefore evaluation is also completed using audio features that are related to

DRC, such as crest factor and integrated loudness. The results indicate the efficiency of

the algorithm. The second experiment is a listening test that is designed to investigate

the audibility threshold of the ballistic parameters of the DRC. The results shows that the

prediction models for single parameter have an error rate much lower than the audibility

threshold. This backs up the efficiency of the prediction model design. In conclusion, both

experiments presented in this chapter provide strong support for the proposed intelligent

DRC control system from a perceptual perspective.
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Chapter 8

Conclusions

This Thesis describes the research process involved in the design and evaluation of an

innovative audio effect control system. The chapter summarises the main contributions by

the author first. This chapter also aims to draw fundamental conclusions from the system

design and experiments described throughout the Thesis. Suggestions for possible future

development of this research is also included at the end.

8.1 Summary of contributions

The idea of using a reference audio to control an audio effect is first introduced in Chapter

3. It is an innovative approach in the research area of audio effect control. This modality,

i.e. sound examples, received little attention in the significant body of work on intelligent

audio production. The proposed method has three components, a feature extractor, a

regression model for prediction, and a similarity model for evaluation and optimisation.

The development of the feature extractor involves the analysis of the relations between low

level audio features and the DRC. One discovery through the analysis is that each DRC

parameter is best characterised using different feature sets. This finding is reasonable

because each parameter corresponds to different aspects of the signal processing, however

they affect the signal jointly as well. Therefore different feature sets are selected to predict

different parameters, while there are also overlaps across the feature sets. For example,

frequency domain statistical features, e.g. spectral centroid, are highly related to dynamics,

which also shows high correlation with threshold and ratio of the DRC. Statistical features

based on spectrogram are not highly correlated to attack time and release time, but the
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statistical features based on MFCC are related to the ballistic parameters more strongly.

This may be explained by the timbre information captured by MFCC, since attack time

and release time also have their links to timbre.

Another contribution of the research is the design of handcrafted features. For isolated

notes, the author has zoomed into the audio signal, and identified the ascending and

descending parts of the audio that can be linked to attack time and release time. An

energy related feature has been designed for ratio as well. More effort has been placed

on the design of these parameters, because conventional features are proved to be able

to predict threshold fairly accurately. Parameter estimation turned out to be harder for

ratio, attack time and release time. Audio decomposition methods are applied to extend the

handcrafted features to work with more complex audio materials, mono-instrument loops.

When we process polyphonic music and predict parameter jointly, a deep neural network

feature learning approach is proposed. The deep neural network has shown its advantage in

learning the highly non linear functionality of the DRC as it does in other domains as well.

The features designed or learnt in this research can be applied to similar problems in the

future, for example, other non linear audio effects or audio synthesis parameter estimation

given a target sound.

The Thesis contributes to the domain of audio similarity as well. There is little discus-

sion on audio similarity differences induced by audio effects in the literature. This topic

remains challenging and therefore definitely worth more attention. Not only can it be ben-

eficial in the research area of Intelligent Music Production, more accurate similarity models

can also be applied to other domains such as music information retrieval or auditory system

analysis. A model focussing on the perceptual aspects of sound that can be altered by the

DRC has been proposed in this research. The author has thoroughly evaluated the perfor-

mance of each components of the model. Further research can be carried out to design a

more generic model focussing on other perceptual aspects that were not considered in this

Thesis.

A multi-stage random search based optimisation algorithm has been proposed in this

Thesis as well. This research used the prediction model as a first step to perform global

search, while the second stage is a local search based on the proposed similarity model. The

proposed algorithm is a relatively new way to optimise the prediction model by introducing

a second search stage.

A subjective test is included in this Thesis too. This experiment is designed to detect
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the audibility threshold of the ballistics parameters of the DRC. The results support the

prediction model by showing that most of the prediction errors are lower than the audible

threshold. This listening test can be considered an initial one in a sequence of further stud-

ies. Thorough research can be done for the other parameters and in different compression

modes.

Overall, the research has contributed to the discussion in the research area of Intelligent

Music Production, as well as Audio Signal Processing. Many future research directions can

be derived from this Thesis, as detailed in the next section.

8.2 Directions for Future Research

The author proposed an intelligent system targeting the DRC. This effect was chosen as

it is a widely used audio effect and it is difficult to analyse because it has several stages

of non linearity. The author hopes this Thesis would encourage similar research on other

effects. It is also possible to jointly train a model to predict the parameters of an effect

chain. This approach would have a more profound perceptual effect. There are some recent

works in the area of Intelligent Audio Effect domain using end-to-end DNN to generate

processed audio directly, instead of using it for feature learning. This is a different but

very interesting approach. The author hopes this Thesis will provide useful analysis for

this and other similar approaches.

The author has proposed handcrafted features for individual DRC parameters. This

Thesis has moved to a more general feature learning approach in the later research stage.

However, there are situations when handcrafted features provide more benefits than learnt

feature embeddings. For example, effect control systems designed to work with simple

audio materials. Handcrafted features provide the best performance for predicting single

parameter on mono-instrument loops in Chapter 5. Additionally, using handcrafted fea-

tures does not require training at least for the feature extraction component of the system.

Therefore, designing handcrafted features is still interesting and valuable research. It is

possible to dive into the signal level and find relative patterns. More efficient features can

be designed and used in future research.

In terms of the feature learning model, the author has tried a more complex structure

using three branches and a triplet loss to attempt feature learning [Sheng and Fazekas,

2018c]. In theory, this model should be more sensitive to the subtle difference than the twin
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structured siamese model. However this approach did not provide significant improvement.

Further research can be done on a more advanced model structure for feature learning

targeting audio effects.

The current optimisation methods used the proposed audio similarity model as a mea-

sure of the random search method. Another possible approach is to use the audio similarity

model as the optimisation function to train the feature learning model. Since the audio

similarity model is not differentiable, potentially reinforcement learning can be applied.

In this way, the features can become optimal for the perceptual aspects of the DRC or

the targeted effect directly. The audio similarity model can be improved as well. As it is

explained before, a model focussing on general audio perception can be a great benefit for

future research.

The author hopes the listening test proposed in this Thesis could become the starting

point of many similar works. It would be an interesting topic to find out what is the

audible threshold for each audio effect and their parameters. These data can be used as

important guidance for future research in Intelligent Music Production. These tests may

provide deeper insights of the human auditory system and its computational simulation

models.

Overall, there are many interesting works that can be completed in the domain of

Intelligent Music Production. It is a relatively small community, but hopefully by writing

this Thesis, the author encouraged other researchers to grow their interest and contribute

to this research topic.

157



Bibliography

Algorithms to measure audio programme loudness and true-peak audio level. https:

//www.itu.int/rec/R-REC-BS.1770-4-201510-I/en. Accessed Oct. 2015.

Eric Allamanche, Jürgen Herre, Oliver Hellmuth, Bernhard Fröba, Throsten Kastner, and

Markus Cremer. Content-based identification of audio material using mpeg-7 low level

description. In ISMIR, 2001.

Xavier Amatriain, Jordi Bonada, lex Loscos, Josep Lluís Arcos, and Vincent Verfaille.

Content-based transformations. Journal of New Music Research, 32(1):95–114, 2003.

American_Standards_Association and Acoustical_Society_of_America. American stan-

dard acoustical terminology:(including mechanical shock and vibration). American Stan-

dards Association, 1960.

Diego Ardila, Cinjon Resnick, Adam Roberts, and Douglas Eck. Audio deepdream: Op-

timizing raw audio with convolutional networks. In Proceedings of the International

Society for Music Information Retrieval Conference, New York, USA, 2016.

Vaibhav Arora and Ravi Kumar. Probability distribution estimation of music signals in

time and frequency domains. In Proceeding of the 19th International Conference on

Digital Signal Processing (DSP), pages 409–414. IEEE, 2014.

Jean-Julien Aucouturier and Francois Pachet. Music similarity measures: What’s the use?

2002.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval, volume

463. ACM press New York, 1999.

Chris Baume, György Fazekas, Mathieu Barthet, David Marston, and Mark Sandler. Se-

lection of audio features for music emotion recognition using production music. In Audio

158

https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en
https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en


Engineering Society Conference: 53rd International Conference: Semantic Audio. Audio

Engineering Society, 2014.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Juan Pablo Bello, Chris Duxbury, Mike Davies, and Mark Sandler. On the use of phase

and energy for musical onset detection in the complex domain. IEEE Signal Processing

Letters, 11(6):553–556, 2004.

Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies, and

Mark B Sandler. A tutorial on onset detection in music signals. IEEE Transactions on

speech and audio processing, 13(5):1035–1047, 2005.

Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation

coefficient. In Noise reduction in speech processing, pages 1–4. Springer, 2009.

Emmanouil Benetos, Sebastian Ewert, and Tillman Weyde. Automatic transcription of

pitched and unpitched sounds from polyphonic music. In Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on, pages 3107–3111. IEEE,

2014.

Mohamed Bennasar, Yulia Hicks, and Rossitza Setchi. Feature selection using joint mutual

information maximisation. Expert Systems with Applications, 42(22):8520–8532, 2015.

Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and Robert J Plem-

mons. Algorithms and applications for approximate nonnegative matrix factorization.

Computational statistics & data analysis, 52(1):155–173, 2007.

Nancy Bertin, Roland Badeau, and Gaël Richard. Blind signal decompositions for auto-

matic transcription of polyphonic music: Nmf and k-svd on the benchmark. In Acoustics,

Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,

volume 1, pages I–65. IEEE, 2007.

Nancy Bertin, Roland Badeau, and Emmanuel Vincent. Enforcing harmonicity and

smoothness in bayesian non-negative matrix factorization applied to polyphonic mu-

sic transcription. IEEE Transactions on Audio, Speech, and Language Processing, 18(3):

538–549, 2010.

James C Bezdek and Nikhil R Pal. Some new indices of cluster validity. 1998.

159



Jeff Bilmes. A gentle tutorial of the em algorithm and its application to parameter esti-

mation for gaussian mixture and hidden markov models. 1998.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Christopher M Bishop and Tom M Mitchell. Pattern Recognition and Machine Learning.

Springer, 2014.

Rachel Bittner, Justin Salamon, Mike Tierney, Matthias Mauch, Chris Cannam, and Juan

Bello. Medleydb: A multitrack dataset for annotation-intensive mir research. In in Proc.

the 15th International Society for Music Information Retrieval Conference (ISMIR),

2014.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed

optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends R© in Machine learning, 3(1):1–122, 2011.

Jeroen Breebaart and Martin F McKinney. Features for audio classification. In Algorithms

in Ambient Intelligence, pages 113–129. Springer, 2004.

Leo Breiman. Random forests. Journal of Machine Learning Research, 45(1):5–32, October

2001a. ISSN 0885-6125. doi: 10.1023/A:1010933404324. URL http://dx.doi.org/10.

1023/A:1010933404324.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001b.

Gary Bromham, Dave Moffat, Mathieu Barthet, and György Fazekas. The impact of

compressor ballistics on the perceived style of music. In Audio Engineering Society

Convention 145. Audio Engineering Society, 2018.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Sig-

nature verification using a “siamese” time delay neural network. In Advances in neural

information processing systems, pages 737–744, 1994.

Prabir Burman. A comparative study of ordinary cross-validation, v-fold cross-validation

and the repeated learning-testing methods. Biometrika, 76(3):503–514, 1989.

Rui Cai, Lie Lu, Hong-Jiang Zhang, and Lian-Hong Cai. Highlight sound effects detection in

audio stream. In Multimedia and Expo, 2003. ICME’03. Proceedings. 2003 International

Conference on, volume 3, pages III–37. IEEE, 2003.

160

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324


Emre Cakır and Tuomas Virtanen. End-to-end polyphonic sound event detection using con-

volutional recurrent neural networks with learned time-frequency representation input.

International Joint Conference on Neural Networks (IJCNN), 2018.

Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Communi-

cations in Statistics-theory and Methods, 3(1):1–27, 1974.

Mark Brozier Cartwright and Bryan Pardo. Social-eq: Crowdsourcing an equalization de-

scriptor map. In Proceedings of the 14th International Conference on Music Information

Retrieval (ISMIR), 2013.

Keunwoo Choi, George Fazekas, and Mark Sandler. Automatic tagging using deep convo-

lutional neural networks. arXiv preprint arXiv:1606.00298, 2016.

David Clark. High-resolution subjective testing using a double-blind comparator. Journal

of the Audio Engineering Society, 30(5):330–338, 1982.

Peter Daniel and Reinhard Weber. Psychoacoustical roughness: Implementation of an

optimized model. Acta Acustica united with Acustica, 83(1):113–123, 1997.

Roger B Dannenberg. An intelligent multi-track audio editor. In Proceedings of interna-

tional computer music conference (ICMC), volume 2, pages 89–94, 2007.

Laurent Daudet and Bruno Torrésani. Hybrid representations for audiophonic signal en-

coding. Signal Processing, 82(11):1595–1617, 2002.

Brecht De Man, Kirk McNally, and Joshua D Reiss. Perceptual evaluation and analysis of

reverberation in multitrack music production. Journal of the Audio Engineering Society,

65(1/2):108–116, 2017.

Sander Dieleman and Benjamin Schrauwen. Multiscale approaches to music audio fea-

ture learning. In 14th International Society for Music Information Retrieval Conference

(ISMIR-2013), pages 116–121. Pontifícia Universidade Católica do Paraná, 2013.

Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. In

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference

on, pages 6964–6968. IEEE, 2014.

Shyamala Doraisamy, Shahram Golzari, Noris Mohd, Md Nasir Sulaiman, and Nur Izura

Udzir. A study on feature selection and classification techniques for automatic genre

classification of traditional malay music. In ISMIR, pages 331–336, 2008.

161



Gianpaolo Evangelista. Pitch-synchronous wavelet representations of speech and music

signals. IEEE transactions on signal processing, 41(12):3313–3330, 1993.

Harvey Fletcher. Auditory patterns. Reviews of modern physics, 12(1):47, 1940.

Jon Ford, Mark Cartwright, and Bryan Pardo. Mixviz: A tool to visualize masking in

audio mixes. In Audio Engineering Society Convention 139. Audio Engineering Society,

2015.

Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A survey of audio-based

music classification and annotation. IEEE transactions on multimedia, 13(2):303–319,

2011.

Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert space em-

bedding. In Proceedings of the International Symposium on Information Theory (ISIT),

page 31. IEEE, 2004.

Dennis Gabor. Theory of communication. part 1: The analysis of information. Journal of

the Institution of Electrical Engineers-Part III: Radio and Communication Engineering,

93(26):429–441, 1946.

Leonardo Gabrielli, Stefano Tomassetti, Stefano Squartini, Carlo Zinato, and Stefano Gua-

iana. A multi-stage algorithm for acoustic physical model parameters estimation. arXiv

preprint arXiv:1809.05483, 2018.

Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. Comparative evaluation of

various mfcc implementations on the speaker verification task. In Proceedings of the

SPECOM.

Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable selection using

random forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

Dimitrios Giannoulis, Michael Massberg, and Joshua D Reiss. Digital dynamic range

compressor designâĂŤa tutorial and analysis. Journal of the Audio Engineering Society,

60(6):399–408, 2012.

Dimitrios Giannoulis, Michael Massberg, and Joshua D Reiss. Parameter automation in a

dynamic range compressor. Journal of the Audio Engineering Society, 61(10):716–726,

2013.

162



Brian R Glasberg and Brian CJ Moore. Prediction of absolute thresholds and equal-

loudness contours using a modified loudness model. The Journal of the Acoustical Society

of America, 120(2):585–588, 2006.

Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi Oka. Rwc music

database: Music genre database and musical instrument sound database. Proceedings of

the 4th International Conference on Music Information Retrieval (ISMIR 2003), pages

229–230, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

Toni Heittola, Anssi Klapuri, and Tuomas Virtanen. Musical instrument recognition in

polyphonic audio using source-filter model for sound separation. In Proceeding of the

10th International Society for Music Information Retrieval (ISMIR), 2009.

Perfecto Herrera, Xavier Amatriain, Eloi Batlle, and Xavier Serra. Towards instrument

segmentation for music content description: a critical review of instrument classification

techniques. In International symposium on music information retrieval ISMIR, volume

290, 2000.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between

gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech

and Signal Processing-ICASSP’07, volume 4, pages IV–317. IEEE, 2007.

Marcel Hilsamer and Stephan Herzog. A statistical approach to automated offline dynamic

processing in the audio mastering process. In Proceedings of the 17th International

Conference on Digital Audio Effects (DAFx-14), 2014.

D.M. Huber and R.E. Runstein. Modern Recording Techniques. Audio Engineering Society

Presents Series. Focal Press/Elsevier, 2010. ISBN 9780240810690. URL https://books.

google.co.uk/books?id=W9U7A-rSXtEC.

Toshio Irino and Roy D Patterson. A time-domain, level-dependent auditory filter: The

gammachirp. The Journal of the Acoustical Society of America, 101(1):412–419, 1997.

Roey Izhaki. Mixing audio: concepts, practices and tools. Taylor & Francis, 2013.

163

https://books.google.co.uk/books?id=W9U7A-rSXtEC
https://books.google.co.uk/books?id=W9U7A-rSXtEC


J. H. Jensen, M. G. Christensen, D. P. W. Ellis, and S. H. Jensen. Quantitative analysis of

a common audio similarity measure. IEEE Transactions on Audio, Speech, and Language

Processing, 17(4):693–703, May 2009. doi: 10.1109/TASL.2008.2012314.

Marius Kaminskas and Francesco Ricci. Contextual music information retrieval and rec-

ommendation: State of the art and challenges. Computer Science Review, 6(2):89–119,

2012.

Gregory Koch. Siamese neural networks for one-shot image recognition. In ICML Deep

Learning Workshop. Vol. 2, 2015.

Philipp Kolhoff, Jacqueline Preub, and Jorn Loviscach. Music icons: procedural glyphs

for audio files. In 2006 19th Brazilian Symposium on Computer Graphics and Image

Processing, pages 289–296. IEEE, 2006.

Sunder Ram Krishnan, Mathew Magimai Doss, and Chandra Sekhar Seelamantula. A

savitzky-golay filtering perspective of dynamic feature computation. IEEE Signal Pro-

cessing Letters, 20(3):281–284, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

pages 1097–1105, 2012.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788, 1999.

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization.

In Advances in neural information processing systems, pages 556–562, 2001.

Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and Juhan Nam. Sample-level deep con-

volutional neural networks for music auto-tagging using raw waveforms. arXiv preprint

arXiv:1703.01789, 2017.

Tom LH Li, Antoni B Chan, and A Chun. Automatic musical pattern feature extraction

using convolutional neural network. In Proc. Int. Conf. Data Mining and Applications.

sn, 2010.

Wentian Li. Mutual information functions versus correlation functions. Journal of statis-

tical physics, 60(5-6):823–837, 1990.

164



Huan Liu and Lei Yu. Toward integrating feature selection algorithms for classification

and clustering. IEEE Transactions on knowledge and data engineering, 17(4):491–502,

2005.

Yuxiang Liu, Roger B Dannenberg, and Lianhong Cai. The intelligent music editor: to-

wards an automated platform for music analysis and editing. In Advanced Intelligent

Computing Theories and Applications. With Aspects of Artificial Intelligence, pages 123–

131. Springer, 2010.

Beth Logan and Ariel Salomon. A music similarity function based on signal analysis. In

ICME, 2001.

Beth Logan et al. Mel frequency cepstral coefficients for music modeling. In In International

Symposium on Music Information Retrieval, 2000.

Jörn Loviscach. Graphical control of a parametric equalizer. In Audio Engineering Society

Convention 124. Audio Engineering Society, 2008.

Richard F. Lyon, Andreas G. Katsiamis, and Emmanuel M. Drakakis. History and future

of auditory filter models. In International Symposium on Circuits and Systems, pages

3809–3812. IEEE, 2010.

Zheng Ma, Brecht De Man, Pedro DL Pestana, Dawn AA Black, and Joshua D Reiss.

Intelligent multitrack dynamic range compression. Journal of the Audio Engineering

Society, 63(6):412–426, 2015.

Donald M MacKay. Psychophysics of perceived intensity: A theoretical basis for fechner’s

and stevens’ laws. Science, 139(3560):1213–1216, 1963.

Jacob A Maddams, Saoirse Finn, and Joshua D Reiss. An autonomous method for multi-

track dynamic range compression.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-

mation retrieval. Natural Language Engineering, 16(1):100–103, 2010.

Marco Martínez and Joshua Reiss. End-to-end equalization with convolutional neural

networks. Proceedings of the 21th International Conference on Digital Audio Effects

(DAFx-18), 2018.

165



M. A. Martínez Ramírez and J. D. Reiss. Stem audio mixing as a content-based transforma-

tion of audio features. In 19th International Workshop on Multimedia Signal Processing

(MMSP), IEEE, 2017.

Andrew Mason, Nick Jillings, Zheng Ma, Joshua D Reiss, and Frank Melchior. Adaptive

audio reproduction using personalized compression. In Audio Engineering Society Con-

ference: 57th International Conference: The Future of Audio Entertainment Technology–

Cinema, Television and the Internet. Audio Engineering Society, 2015.

Sean McGrath, Alan Chamberlain, and Steve Benford. Making music together: An ex-

ploration of amateur and pro-am grime music production. In Proceedings of the Audio

Mostly 2016, pages 186–193. ACM, 2016.

Stylianos Ioannis Mimilakis, Konstantinos Drossos, Tuomas Virtanen, and Gerald Schuller.

Deep neural networks for dynamic range compression in mastering applications. In Audio

Engineering Society Convention 140. Audio Engineering Society, 2016.

Thomas Mitchell. Automated evolutionary synthesis matching. Soft Computing, 16(12):

2057–2070, 2012.

Thomas J Mitchell and David P Creasey. Evolutionary sound matching: A test method-

ology and comparative study. In Sixth International Conference on Machine Learning

and Applications (ICMLA 2007), pages 229–234. IEEE, 2007.

Austin Moore, Rupert Till, and Jonathan Wakefield. An investigation into the sonic sig-

nature of three classic dynamic range compressors. In Audio Engineering Society Con-

vention 140. Audio Engineering Society, 2016.

BCJ Moore and BR Glasberg. A model of loudness perception applied to cochlear hearing

loss. Auditory Neuroscience, 3(3):289–311, 1997.

Brian CJ Moore. Development and current status of the âĂĲcambridgeâĂİ loudness

models. Trends in hearing, 18:2331216514550620, 2014.

Brian CJ Moore and Brian R Glasberg. Suggested formulae for calculating auditory-filter

bandwidths and excitation patterns. The journal of the acoustical society of America,

74(3):750–753, 1983.

Brian CJ Moore and Brian R Glasberg. A revision of zwicker’s loudness model. Acta

Acustica united with Acustica, 82(2):335–345, 1996.

166



Brian CJ Moore and Brian R Glasberg. Modeling binaural loudness. The Journal of the

Acoustical Society of America, 121(3):1604–1612, 2007.

Meinard Müller. Fundamentals of music processing: Audio, analysis, algorithms, applica-

tions. 2015.

Dimitri Palaz, Mathew Magimai Doss, and Ronan Collobert. Convolutional neural

networks-based continuous speech recognition using raw speech signal. In Acoustics,

Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages

4295–4299. IEEE, 2015.

Elias Pampalk, Perfecto Herrera, and Masataka Goto. Computational models of similarity

for drum samples. IEEE transactions on audio, speech, and language processing, 16(2):

408–423, 2008.

RD Patterson, Ian Nimmo-Smith, John Holdsworth, and Peter Rice. An efficient auditory

filterbank based on the gammatone function. In a meeting of the IOC Speech Group on

Auditory Modelling at RSRE, volume 2, 1987.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

G. Peeters, B. L. Giordano, P. Susini, N. Misdariis, and S. McAdams. The timbre toolbox:

Extracting audio descriptors from musical signals. The Journal of the Acoustical Society

of America, 130(5):2902–2916, 2011.

Geoffroy Peeters. A large set of audio features for sound description (similarity and clas-

sification) in the cuidado project. 2004.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual informa-

tion criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transac-

tions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005.

J. Pons, O. Slizovskaia, R. Gong, E. GÃşmez, and X. Serra. Timbre analysis of music audio

signals with convolutional neural networks. 25th European Signal Processing Conference

(EUSIPCO), Kos Island, Greece, 2017a.

167



Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and Xavier Serra. Timbre anal-

ysis of music audio signals with convolutional neural networks. In Signal Processing

Conference (EUSIPCO), 2017 25th European, pages 2744–2748. IEEE, 2017b.

Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and Xavier Serra. Timbre anal-

ysis of music audio signals with convolutional neural networks. In Signal Processing

Conference (EUSIPCO), 2017 25th European, pages 2744–2748. IEEE, 2017c.

Jun Qi, Dong Wang, Yi Jiang, and Runsheng Liu. Auditory features based on gammatone

filters for robust speech recognition. In Circuits and Systems (ISCAS), 2013 IEEE

International Symposium on, pages 305–308. IEEE, 2013.

K Ramamohan Rao and Ping Yip. Discrete cosine transform: algorithms, advantages,

applications. Academic press, 2014.

Joshua D Reiss. Intelligent systems for mixing multichannel audio. In 17th International

Conference on Digital Signal Processing (DSP), pages 1–6. IEEE, 2011.

Derek W Robinson and R So Dadson. A re-determination of the equal-loudness relations

for pure tones. British Journal of Applied Physics, 7(5):166, 1956.

Markus Röhl and Stefan Uppenkamp. Neural coding of sound intensity and loudness in the

human auditory system. JARO: Journal of the Association for Research in Otolaryn-

gology, 13(3):369–379, 2012.

DM Ronan, David Moffat, Hatice Gunes, Joshua D Reiss, et al. Automatic subgrouping of

multitrack audio. In Proceedings of the 18th International Conference on Digital Audio

Effects (DAFx-15), 2015.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a

metric for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

Ryan Sarver and Anssi Klapuri. Application of nonnegative matrix factorization to signal-

adaptive audio effects. In Proc. DAFx, pages 249–252, 2011.

Jan Schlüter and Sebastian Böck. Musical onset detection with convolutional neural net-

works. In 6th International Workshop on Machine Learning and Music (MML), Prague,

Czech Republic, 2013.

168



Jan Schluter and Sebastian Bock. Improved musical onset detection with convolutional

neural networks. In Acoustics, speech and signal processing (ICASSP), 2014 ieee inter-

national conference on, pages 6979–6983. IEEE, 2014.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,

61:85–117, 2015.

AT Schneider and JV Hanson. An adaptive dynamic range controller for digital audio.

In [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing Conference Proceedings, pages 339–342. IEEE, 1991.

Emery Schubert, Joe Wolfe, and Alex Tarnopolsky. Spectral centroid and timbre in com-

plex, multiple instrumental textures. In International Conference on Music Perception

and Cognition, North Western University, Illinois, pages pp. 112–116, 2004.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):

461–464, 1978.

Yang Shao, Zhaozhang Jin, DeLiang Wang, and Soundararajan Srinivasan. An auditory-

based feature for robust speech recognition. In Proceeding of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4625–4628,

2009.

Di Sheng and György Fazekas. Automatic control of the dynamic range compressor using

a regression model and a reference sound. In Proceedings of the 20th International

Conference on Digital Audio Effects (DAFx-17), 2017.

Di Sheng and György Fazekas. Feature design using audio decomposition for intelligent

control of the dynamic range compressor. In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 621–625. IEEE, 2018a.

Di Sheng and György Fazekas. Feature selection for dynamic range compressor parameter

estimation. In Audio Engineering Society Convention 144. Audio Engineering Society,

2018b.

Di Sheng and György Fazekas. Using triplet network for the intelligent control of audio

effects. In Proceedings of Digital Music Research Network Workshop 2018, (DMRN+13),

2018c.

169



Kai Siedenburg and Simon Doclo. Iterative structured shrinkage algorithms applied to

stationary/transient separation. In Proceedings of the 20th International Conference on

Digital Audio Effects (DAFx-17), 2017.

Kai Siedenburg and Monika Dörfler. Persistent time-frequency shrinkage for audio denois-

ing. Journal of the Audio Engineering Society, 61(1/2):29–38, 2013.

Malcolm Slaney. An efficient implementation of the patterson-holdsworth auditory filter

bank. Apple Computer, Perception Group, Tech. Rep, 35(8), 1993.

Ryan Stables, Sean Enderby, BD Man, György Fazekas, Joshua D Reiss, et al. Safe: A

system for the extraction and retrieval of semantic audio descriptors. 2014.

Charles J Stone, JH Friedman, L Breiman, and RA Olshen. Classification and regression

trees. Wadsworth International Group, 8:452–456, 1984.

Bob L Sturm. A survey of evaluation in music genre recognition. In International Workshop

on Adaptive Multimedia Retrieval, pages 29–66. Springer, 2012a.

Bob L Sturm. Two systems for automatic music genre recognition: What are they re-

ally recognizing? In Proceedings of the second international ACM workshop on Music

information retrieval with user-centered and multimodal strategies, pages 69–74. ACM,

2012b.

D. Tardieu, E. Deruty, C. Charbuillet, and G. Peeters. Production effect: Audio features

for recording techniques description and decade prediction. In in Proc. of the 14th Int.

Conference on Digital Audio Effects (DAFx- 11), Paris, France., 2011.

Michael J Terrell, György Fazekas, Andrew JR Simpson, Jordan Smith, and Simon Dixon.

Listening level changes music similarity. ISMIR, 2012.

George Tzanetakis and Perry Cook. Musical genre classification of audio signals. IEEE

Transactions on speech and audio processing, 10(5):293–302, 2002.

Karen Ullrich, Jan Schlüter, and Thomas Grill. Boundary detection in music structure

analysis using convolutional neural networks. In ISMIR, pages 417–422, 2014.

M. Unoki, T. Irino, B. Glasberg, BCJ. Moore, and RD. Patterson. Comparison of the

roex and gammachirp filters as representations of the auditory filter. The Journal of the

Acoustical Society of America, 120(3):1474–1492, 2006.

170



Vincent Verfaille, Catherine Guastavino, and Caroline Traube. An interdisciplinary ap-

proach to audio effect classification. Citeseer, 2006a.

Vincent Verfaille, Udo Zolzer, and Daniel Arfib. Adaptive digital audio effects (a-dafx): A

new class of sound transformations. IEEE Transactions on audio, speech, and language

processing, 14(5):1817–1831, 2006b.

Vice. Meet the nz producers making hits from their bed-

rooms, 2018. URL https://www.vice.com/en_au/article/9k8kxv/

meet-the-nz-producers-making-hits-from-their-bedrooms.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for

clusterings comparison: Variants, properties, normalization and correction for chance.

Journal of Machine Learning Research, 11(Oct):2837–2854, 2010.

Wil M Wagenaars, Adrianus J Houtsma, and Ruud A van Lieshout. Subjective evaluation

of dynamic compression in music. Journal of the Audio Engineering Society, 34(1/2):

10–18, 1986.

Siying Wang. Computational Methods for the Alignment and Score-Informed Transcription

of Piano Music. PhD thesis, Queen Mary University of London, 2017.

Siying Wang, Sebastian Ewert, Simon Dixon, Siying Wang, Sebastian Ewert, and Simon

Dixon. Identifying missing and extra notes in piano recordings using score-informed dic-

tionary learning. IEEE/ACM Transactions on Audio, Speech and Language Processing

(TASLP), 25(10):1877–1889, 2017.

Matt Welsh, N Borishov, Jason Hill, Rob von Behren, and Alec Woo. Querying large

collections of music for similarity. Technical report, Technical report, University of

California, Berkeley, CA, 1999.

Mark Wendl and Hyunkook Lee. The effect of dynamic range compression on loudness and

quality perception in relation to crest factor. In Audio Engineering Society Convention

136, Apr 2014. URL http://www.aes.org/e-lib/browse.cfm?elib=17168.

Thomas Wilmering, György Fazekas, and Mark B Sandler. High-level semantic metadata

for the control of multitrack adaptive digital audio effects. In Audio Engineering Society

Convention 133. Audio Engineering Society, 2012.

171

https://www.vice.com/en_au/article/9k8kxv/meet-the-nz-producers-making-hits-from-their-bedrooms
https://www.vice.com/en_au/article/9k8kxv/meet-the-nz-producers-making-hits-from-their-bedrooms
http://www.aes.org/e-lib/browse.cfm?elib=17168


Thomas Wilmering, György Fazekas, and Mark B Sandler. Audio effect classification based

on auditory perceptual attributes. In Audio Engineering Society Convention 135. Audio

Engineering Society, 2013.

Hao-Chun Yang, Fu-Sheng Tsai, Yi-Ming Weng, Chip-Jin Ng, and Chi-Chun Lee. A

triplet-loss embedded deep regressor network for estimating blood pressure changes us-

ing prosodic features. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6019–6023. IEEE, 2018.

Wei Yang and Igor Zurbenko. Kolmogorov–zurbenko filters. Wiley Interdisciplinary Re-

views: Computational Statistics, 2(3):340–351, 2010.

Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and Chen-Change

Loy. Sketch me that shoe. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 799–807, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

Udo Zölzer, Xavier Amatriain, and Daniel Arfib. DAFX: digital audio effects, volume 1.

Wiley Online Library, 2002.

172


	Introduction
	Motivation
	Aim
	Contributions
	Thesis structure
	Associated publications

	Background
	Music Production
	Music Editing, Mixing, and Mastering
	Audio Effects
	Dynamic Range Compressor
	Adaptive Audio Effects

	Review and Applications of Intelligent Music Production
	Intelligent Editing Applications
	Intelligent Production and Mixing

	Audio Features and Audio Signal Processing
	Overview
	Audio Features for Dynamic Range Compressor
	Audio Decomposition

	Auditory Models and Audio Similarity
	Auditory Filters and Loudness Model
	Audio Similarity

	Machine Learning
	Regression
	Feature Selection
	Deep Neural Network

	Conclusion
	Intelligent Control System and Audio Feature Design
	Intelligent Control of Audio Effects
	Motivation
	System Design
	System Design and Workflow
	Training and Testing Procedures

	Evaluation on Mono-instrument Notes
	Direct assessment of parameter estimation
	Evaluation of similarity assessment between notes

	Conclusion

	Feature Design and Selection for Mono-instrument Loops
	Motivation
	Feature Sets
	Frequency Domain Features
	Temporal Features
	Features specific to DRC parameters

	Audio Decomposition and Feature Design for Loops
	Onset event detection
	NMF
	Transient/Stationary audio separation

	Feature Selection
	Filter Model
	Wrapper model
	Feature significance

	Evaluation
	Numerical accuracy test for DRC specific features
	Similarity test for designed features
	Overall performance of feature selection
	Relations across parameters
	Relations across selection algorithms

	Conclusion

	Siamese Model for Feature Learning
	Motivation
	Model Design
	Model design for the siamese branches - CNN structure - Model 1
	Model design for the siamese branches - Sample level CNN - Model 2
	Model design for the siamese branches - Multi-kernel CNN - Model 3
	Dataset description
	Evaluation of different model designs

	Model Tuning
	Improvement on Model 1
	Improvement on Model 2
	Improvement on Model 3

	Evaluation on simultaneous parameter estimation and polyphonic music data
	Conclusion
	Evaluation of the Proposed Intelligent System
	Audio Similarity Model for the Perceptual Aspects of Sound Modified by Audio Effects
	Motivation
	Method
	Preprocessing - middle ear and loudness model
	Feature extraction and timbre modelling
	Statistical Modelling
	Similarity Estimation Between Statistical Models

	Model Development
	Preprocessing
	Feature extraction experiments
	Statistical modelling

	Evaluation
	Dynamic Range Compression Parameters
	The Influence of Loudness

	Conclusion

	Optimisation and Subjective Evaluation of the Intelligent Control System
	Optimisation Design
	Motivation
	Method and dataset
	Evaluation

	Subjective evaluation on the audibility threshold of DRC parameters
	Motivation
	Experiment design
	Analysis

	Conclusion

	Conclusions
	Summary of contributions
	Directions for Future Research








