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Abstract 

 

The local structures and conductivities of glass samples with general compositions (50 

− x) Li2O: xMnO: 50P2O5 (metaphosphate glasses) and (60 − x) Li2O: xMnO: 40P2O5 

(polyphosphate glasses), were studied using a range of techniques including molecular 

dynamics (MD) simulation of neutron scattering data, a.c. impedance spectroscopy, density 

measurements, infrared spectroscopy, thermal analysis and X-ray diffraction.  

For the first system, glasses of the selected composition (50 − x) Li2O: xMnO: 50P2O5 

(x = 10.0, 25.0, 33.3, 40.0 and 50.0) were prepared successfully. At low MnO content 50P2O5 

(x = 10.0, 25.0 and 33.3), glass transition temperature increases, free volume decreases and 

activation energy increases, with increasing x value. In the compositional range x ≥ 33.3, the 

glass transition temperature decreases, free volume increases and activation energy decreases, 

with the increasing x. The critical composition, x = 33.3, is where the structure is most compact.  

Manganese cations show both network forming and network modifying behaviour in 

these systems. MD simulation of neutron pair distribution functions reveals two main 

competing phenomena: (1) increasing concentration of network forming [MnO2]
2− Q4 

manganate tetrahedra causes a strengthening of the network leading to higher glass transition 

temperatures and a more compact structure; (2) reduction in the total number of modifying 

cations leads to a more open structure and a reduction in cross-link density resulting in a 

decrease in Tg and increase in free volume.  

The electrical measurement show that the charge carrier concentration is the main factor 

controlling the level of ionic conductivity with values in the order of 10-3 S cm-1 at 300 C 

obtained in the (60 − x) Li2O: xMnO: 40P2O5 system. However, this comes at the expense of a 

reduced ability to form glasses due to the lower phosphate content.  
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Chapter 1 Introduction 

 

1.1 Batteries and lithium ion batteries 

1.1.1 Introduction to batteries 

A battery can be defined as a device that has one or more electrochemical cells that 

transform stored chemical energy into electrical energy via redox reactions. All batteries are 

composed of two electrodes, i.e. a positive terminal and a negative terminal, namely the 

cathode and anode respectively. These are either spatially separated or occupy the same 

compartment 1. Separated electrodes are spaced by an electrolyte, a conductive material or 

medium. Due to the difference of chemical potentials of the two electrodes, redox reactions 

occur, resulting in the movement of ions through the electrolyte between them. This provokes 

the flow of electrons through an external circuit and this is the electrical current that can be 

used to power a huge range of devices. 

Batteries generally can be classified into two types: primary and secondary. Primary 

batteries work irreversibly and cannot be recharged after the supply of reactants is exhausted. 

Interestingly, in some kinds of primary battery the electrodes can be replaced to allow the 

battery to continue to work again at the original level 2. Secondary batteries are rechargeable, 

which means that, when electrical energy is provided, the chemical reaction can be reversed. 

This approximately restores the cell to its initial composition. Consequently, a secondary 

battery may be regarded as an electrochemical energy storage unit where the energy drawn 

from the external current is stored as chemical energy 3. It should be noted that secondary 

batteries eventually dissipate the active materials and electrolyte, leading to internal corrosion. 

Thus, they are not indefinitely rechargeable.  

From the end of the 20th century, conversion and storage of renewable energy has 

attracted worldwide attention due to the depletion of fossil fuel reserves and concerns over the 

environmental consequences of the combustion of these fossil fuels. This has led to increased 

effort in the development of developing high-performance batteries. 
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1.1.2 The role of batteries in the development of modern technology 

Batteries have played a critical role in the development of modern technology. Two 

notable historic examples are the progression of wireless communication and electric cars (Fig. 

1.1) 4. In the case of the former, the first wireless device was developed in Pennsylvania in 

1920 (top-right image) 4. Roughly one century later the shrinking of batteries (along with other 

new technologies) has allowed modern smartphones, with various functions, to dominate the 

field of communication. At the beginning of the 20th century the early models of electric 

powered automobiles, running on lead-acid batteries, were able to reach speeds up to 30 m/s 4. 

In this period - i.e. between 1900 and 1920 - the limitations in size and storage capacity of 

batteries caused the production of electric cars to fall from 60% of the market to 4% (data 

collected in America), due to their inability to keep up with driving range and speeds allowed 

by petrol engines. Now, 100 years later, the development of efficient battery technology has 

pushed fully electric cars towards the speed and driving range of traditional fossil fuelled 

vehicles, and in some cases, beyond. The Tesla Roadster can be taken as an excellent and 

topical example. Thus, the public appeal and commercialisation of fully electric cars is 

beginning to grow.  

At the present time, a particular interest is the development of advanced, lithium ion 

rechargeable batteries that can support systems with higher voltage and energy densities 3,5. 

Currently low-impedance lithium ion batteries (also referred to as Li-ion batteries or LIBs) are 

common in consumer electronic devices, for example mobile phones and laptop computers. 

Additionally, they are widely applied in electric vehicles, and even used in military-grade 

devices and weaponry. In lithium ion batteries, charged particles (lithium ions) transport from 

the anode to the cathode during charging and this process reverses when discharging. 

Rechargeable LIBs can convert and store renewable energy extremely well, as the result of 

their properties. Lithium (group one in the periodic table of the elements) is the lightest metallic 

element (atomic number 3), with only one valence electron, and its atomic mass, of only 6.941 

g/mole, allows it to achieve very low density. Its thermodynamic potential and high specific 

capacity (3.86 A h/g and 7.23 A h/cm3) make lithium an appealing anode material 3. 

Furthermore, it may form a passivating layer that prevents chemical corrosion 3. These 

properties give lithium ion batteries advantages, such as high conductivity, longevity, high 

energy density and excellent storage of charge. 
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Fig. 1.1 Developments in electric cars and wireless communication in the past century 4. 

 

 

1.1.3 Types of lithium ion batteries 

There are different types of LIBs which have differences in their characteristics 

regarding aspects such as safety, chemistry, cost, and performance. Nowadays, the prevalent 

electrode material is LiCoO2 (lithium cobaltate) which was commercialised by Sony in 1992 6. 

While it has a high energy density, it is expensive and presents safety risks when damaged. The 

most widely known safety problem caused in LIBs is from dendrite formation at the electrode-
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electrolyte interface during cycling. These dendrites can penetrate the separator leading to 

short-circuits and in the case of flammable electrolytes can lead to fire. A well-known case is 

that of the  Samsung Galaxy Note 7s mobile phones, which had to be withdrawn following 

safety concerns  in 2016 7. In addition, there are concerns over the toxicity of cobalt and its 

cost due to its relatively small worldwide abundance. Much work has been carried out to 

address these issues including the development of alternatives to LiCoO2, that have higher 

capacity, are safer, and cheaper 6,8,9. For some alternative materials such as lithium nickel 

manganese cobalt oxide (NMC), lithium iron phosphate, and lithium manganese oxide (LMO), 

the energy density is relatively low in comparison to LiCoO2. However, safety as well as longer 

battery life makes them highly attractive, and allows them to be possible candidates to replace 

LiCoO2. Lithium iron phosphate (LiFePO4) has a high lithium intercalation voltage (~3.5 V 

relative to lithium metal) and a high theoretical capacity (170 mA h g–1). It also has advantages 

of ease of synthesis, low cost, safety, and stability when used with common organic electrolyte 

systems 10,11. 

One advantage of lithium transition metal phosphate-based batteries lies in the strong 

binding force of the P−O bond. This is the strongest of the typical glass-forming cations (Si4+, 

B3+ and P5+) 12,13. This contributes to the chemical stability of these materials and other 

advantages include their relatively low cost and high capacity. Tremendous interest has been 

shown in lithium transition metal phosphates (as well as related compounds) due to the 

framework that can reversibly intercalate/deintercalate interstitial lithium ions. The tetrahedral 

phosphate groups have an inductive effect when used in batteries, and this effect contributes 

towards a higher lithium ion conductivity, and higher working voltage in lithium ion phosphate 

batteries, when compared to those based on traditional oxides. The tetrahedral phosphate 

groups decrease the covalency of the Me−O bond, decreasing the potential of Men/Men-1 pair 

with respect to Li+/Li0 14. Thus, lithium transition metal phosphate batteries display better 

thermal stability, long-term cycling, high energy density and electrochemical stability 

(essentially no loss of oxygen from the framework or reactivity with the electrolyte). 

Unfortunately, it is generally accepted 15-18 that lithium transition metal phosphate compounds 

have relatively low electronic conductivity, which makes them ideally suitable for solid 

electrolytes, but not for applications as electrodes. Many previous studies of these compositions 

reveal that they are unable to achieve an appreciable electronic conductivity (>10–6 S cm–1) at 

room temperature. In the case of the application as electrodes, Tarascon et al. 15 comments in 

a review that “one of the main drawbacks with using these materials is their poor electronic 

http://www.powerelectronicsnews.com/technology/special-report-beyond-the-exploding-battery
http://www.powerelectronicsnews.com/technology/special-report-beyond-the-exploding-battery


12 
 

conductivity, and this limitation had to be overcome through various materials processing 

approaches…” Indeed, there are some effective methods to improve their electronic 

conductivities. For example, it is reported by Chung et al. 19 that the electronic conductivity of 

LiFePO4 can be raised by a factor of more than 108 relative to the pure end member, by selective 

doping with some cations. In LiMPO4 compositions (where M is a transition metal, such as Fe, 

Cu, Mn etc.), electrons are provided by M when these materials present electronic conductivity. 

Increasing the percentage of M or doping with some other effective cations can improve the 

electronic conductivity. However, both approaches reduce the amount of Li+ ions (to maintain 

electroneutrality), which decreases the ionic conductivity as a result. Thus, when introducing 

electronic conductivity to the LiMPO4 system, the ratio of Li+ ions to cations (M) must be taken 

into consideration. 

Some other disadvantages of traditional LIBs include interfacial and grain boundary 

resistances which lead to reductions in conductivity. Passivation, or corrosion can lead to 

increases in interfacial resistance. Birke et al 20 proposed a design of a monolithic all solid-

state glass lithium battery to overcome some of the problems associated with conventional 

LIBs. In their system, the electrolyte is solid. Its simple design provides a natural seal, 

resistance to shocks and vibrations, solves the problems of liquid seals and prevents passivation 

or corrosion. Although glass is structurally disordered, glass materials can possess higher ionic 

conductivity when compared to crystalline materials. In such batteries, the electrodes and 

electrolyte are composed of a common network that enables lithium ions to transfer 

continually. When compared to a crystalline system, the glass system has no grain boundaries 

and higher isotropic conductivity. This allows for easier ion movement and higher conductivity 

through the battery. 

 

1.1.4 Electrochemistry of lithium ion batteries 

Electrochemical reactions in LIBs happen in all three components: aqueous or solid 

lithium ion conducting electrolyte; the anode; and cathode 3. Oxidation happens at the anode 

and reduction takes place at the cathode 1. The anode acts as a reducing agent, transferring 

electrons to the external circuit and lithium ions to the electrolyte. The cathode acts as an 

oxidising agent, it accepts electrons and lithium ions, from the external circuit and the 

electrolyte respectively 3. Typically, the cathode consists of a transition metal oxide which is 

reduced during discharge and oxidised during recharge. Lithium ions can move in and out of 
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both electrodes during the reaction. These processes are insertion (or intercalation) and 

extraction (or deintercalation). An intercalation or insertion host, in the form of AzBy, captures 

lithium ions in a reversible lithium battery. Suitable materials for this type of host usually have 

rigid lattices, with a layer of open structure to allow insertion (or extraction) of lithium ions. 

These lattices can accept (or eject) compensating electrons into (or from) their electronic bands 

3. 

A series of intercalation/extraction reactions occur at the electrodes to create 

positive/negative charges 21. As a result, the electrical energy from the power supply at the 

electrodes is converted into stored chemical energy and the battery charges. Fig 1.2 illustrates 

this mechanism of discharge and charge in a lithium ion battery. 

 

 

Fig. 1.2 Charge and discharge processes in an LIB. 

 

A typical anode material is lithium intercalated graphite, on discharge Li+ ions and 

electrons are created through oxidation: 

LixC → xLi+ + xe− + C       (1.1) 
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while the cathode is typically a transition metal oxide such as LiCoO2 where reduction can 

occur through acceptance of Li+ ions and electrons:  

Li1-xCoO2 + xLi+ + xe− → LiCoO2      (1.2) 

For a cell based on these electrodes, the total discharge reaction is given by: 

LixC + Li1-xCoO2 → LiCoO2 + C      (1.3) 

On charging, the reverse reactions occur: 

Anode: LiCoO2 → Li1-xCoO2 + xLi+ + xe−      (1.4) 

Cathode: xLi+ + xe− + C → LixC       (1.5) 

The total redox reaction for charging in lithium ion battery is: 

LiCoO2 + C → LixC + Li1-xCoO2      (1.6) 

Over-discharging and overcharging in lithium ion batteries can occur. Over-discharging 

can possibly lead to an irreversible chemical reaction which produces lithium oxide 16: 

Li+ + e− + LiCoO2 → Li2O + CoO      (1.7) 

Similarly, overcharging can lead to the production of cobalt (IV) oxide, which can be 

observed by x-ray diffraction 22: 

LiCoO2 → Li+ + CoO2 + e−       (1.8) 

In addition to ion transport in LIBs, electronic movement is essential in the cathode and 

anode as mentioned in Section 1.1.3. Obviously, cations and electrons transport in opposite 

directions. Mixed electronic-ionic conductivity is necessarily required for preservation of 

overall charge neutrality when batteries are in operation, and importantly the chemical 

(ambipolar) diffusion coefficient is rate-limited by the slower species 19. 

 

1.2 Glass 

1.2.1 Introduction to glasses 

To get a better understanding of the term “glass”, we should begin with an 

understanding of the word “amorphous”. The term “amorphous” refers to a structure without 

long-range order. This type of structure may still have some short-range order, which is very 
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similar to that in related crystalline phases. A common way to produce amorphous material is 

to quickly quench liquid, where the atoms do not have time to organise themselves into a crystal 

lattice. Thus, amorphous materials can be defined as materials without the long-range periodic 

character of a crystal 23. The terms non-crystalline and amorphous can be used interchangeably 

because they are synonyms according to this definition. 

There are several definitions for the term “glass” which is a type of amorphous material. 

A useful definition among them is that “a glass is an amorphous solid which exhibits a glass 

transition” 23. At the glass transition there is a discontinuity in thermodynamic properties such 

as thermal expansion and heat capacity, and a change from liquid like behaviour to solid-like 

behaviour 23. 

 

1.2.2 Structures of glasses 

The atoms in a glass are linked in a three-dimensional network. However, this network 

is not a periodic one but exhibits short-range order, which occurs due to the atoms being 

arranged in regular polyhedral structures. Although the units of local structure in the glass and 

in the crystal may be very similar, glasses, unlike crystals, do not possess sharp X-ray 

diffraction patterns. In crystals, the structural units are put together as a regular lattice. 

However, the existence of sufficient flexibility and distortion of bond angles in a glass results 

in structural units can be arranged in a non-periodic way to form a random network 24. 

In crystalline materials (Fig 1.3), atoms and/or ions are arranged and located regularly 

and consistently in the crystalline structure. Once the crystalline structure is defined, each 

location can be exactly specified, with a far more continuous pattern than will be demonstrated 

by a glass structure. In contrast, glasses do not possess this long-range order, which means the 

positions of atoms or ions are not specifically defined in three-dimensional space (Fig 1.3). 

Although the long-range structure is disordered, there are many similarities to crystalline 

phases, and they share the same regular polyhedra. In other words, most glasses possess a 

continuous random network.  
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Fig. 1.3 Schematic illustration of (a) a glass with no long-range periodicity and (b) a crystalline 

material with a periodic network 24.  

 

It is inappropriate to describe glass materials in the same ways used to describe crystals, 

such as using phrases like lattice, unit cell and lattice parameters, atomic coordinates and 

symmetry. In this case, Pair Distribution Functions (PDFs) are used as a common method to 

describe pair correlations as a function of distance 25. 

Certain polyhedra are more likely to form the disordered networks of glasses. In 

silicates and phosphates, glasses and crystals have the same building blocks (cation polyhedra) 

arranged in different patterns. While the bond angles between polyhedra are well defined in 

crystals, glasses have broader distributions of bond angles 26. 

 

1.2.3 Network formers, modifiers and intermediates 

Zachariasen 26 proposed certain conditions for the formation of oxide glass-structures, 

these including the following requirements (empirical observations for oxides): 

1. No oxygen atom may be linked to more than two cations. 

2. The cation coordination number is small: three, four or six. 

3. Oxygen polyhedra must share corners, not edges or faces. This would impose 

greater order. 
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4. 3D networks, at least three corners must be shared 

Zachariasen suggested that for consistent glass formation all four rules should be 

obeyed. The rules mean that certain oxides such as SiO2, B2O3, GeO2 and P2O5 readily form 

glasses and others such as MgO, Al2O3, Na2O, CaO do not.  

Oxides such as SiO2 and P2O5 which form individual glasses are labelled as “network 

formers”. In these oxides, chemical bonds have a bond energy greater than 334.7 kJ/mole. 

Aliovalent network formers are connected in different ways to form network structures in 

glasses. B (boron) has a valence electron configuration of 2s2 2p1. All three valence electrons 

are involved directly in bonding such as in BCl3, which means each boron atom has three bonds 

connected to other atoms. In borate glasses, the network former (B2O3) consists of corner-

sharing BO3 triangles connected by bridging oxygens which form boroxol rings which is the 

basic structural unit in boric oxide glass (see Fig. 1.4). When network modifiers are introduced, 

boron may be hybridised in an sp3 fashion to generate borate tetrahedra. In SiO2 (silica glass), 

like other network formers from group Ⅳ, each Si (silicon) atom is connected to four oxygen 

atoms, since the valence electron configuration 3s2 3p2 of Si generates four equivalent bonds 

via sp3 hybridization. In silica glasses, the network predominantly is made of corner-sharing 

SiO4 tetrahedra interconnected by bridging oxygen (Fig. 1.4). P2O5 (phosphate glass) is a 

typical network former from group Ⅴ in the periodic table, which is characterised by a rigid 

network formed from PO4 tetrahedra. The valence electron configuration of P (phosphorus) is 

3s2 3p3. In some cases, all five valence electrons directly contribute to -bonds as in PCl5, while 

phosphorus also exhibits the lone pair effect to form trivalent species such as PPh3 and PCl3. 

In phosphate glasses, the P atoms are sp3 hybridised to give PO4 tetrahedra, three of the bonds 

may be considered to be single -bonds and the fourth a double -bond. In reality crystal 

structures containing the orthophosphate anion PO4
3- show the bonds to have equal lengths 

indicating the -bond is delocalised over the anion. In vitreous P2O5 three of the oxygen atoms 

bridge P atoms, and the fourth oxygen atom forms a double bond with the P atom and is non-

bridging, or terminal. When network modifiers are added to P2O5 glass, a depolymerisation 

occurs leading to various phosphate species. The phosphate tetrahedra are connected to each 

other through corner sharing (shown in Fig. 1.4). In some cases, there are two or more different 

glass formers in a glass network. For example, silica and boron trioxide acts as the main glass-

forming constituents in borosilicate glasses, in which boroxol rings and SiO4 tetrahedra are 

linked to each and share some oxygen atoms. 
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Fig. 1.4 Aliovalent network formers in different glass systems: (a) borate glass, (b) silica glass, 

and (c) phosphate glass. 

 

In addition to network formers, there are some oxides which do not directly participate 

in formation of a structure, but instead disrupt the existing network. These are labelled as 

“network modifiers”, and the bonds they cause are generally ionic with energy less than 251.0 

kJ/mole. Typical network modifying oxides include Li2O, Na2O, K2O, MgO, CaO etc.  

There are three ways for network modifiers to affect an A2O3 type glass network 

formation: 

1. Breaking up oxygen bridges between structure units such as A-O-A bonds and 

create non-bridging oxygen atoms.  

2. Increasing the oxygen coordination of cation A. 

3. A combination of both. 
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Fig. 1.5 SiO2 glass system with added sodium as a network modifier.  

 

An example structure of SiO2 modified with Na2O is shown in Fig. 1.5. It is worth 

mentioning that some network modifying oxides can change the number of oxygen atoms 

directly linked to the network forming atoms, For example when Na2O is added to B2O3 glass 

(Fig. 1.6), the trigonal T3 species are converted to tetrahedral Q4 species (where Tn and Qn 

represent tertiary and quaternary species, respectively and n is the number of bridging oxygen 

atoms).  

A third type of oxide commonly found in glasses are known as “network intermediates” 

or “conditional glass formers”, which have a bond energy between 251.0 to 334.7 kJ/mol. The 

network intermediates (conditional glass formers) cannot be used to form glasses directly and 

individually from other elements. Instead, they can act as glass formers in combination with 

other network formers. Meanwhile, they decrease the melting point and viscosity of melting in 

a similar manner to a network modifier. Examples of intermediates include TiO2, ZnO, PbO, 

and Al2O3. Fig. 1.7 shows Ti4+ acting as a network former in SiO2. 
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Fig. 1.6 The conversion of T3 to Q4 borate caused by the addition of Na2O to B2O3 glass. 

 

 

Fig 1.7 SiO2 glass system with added titanium as a network intermediate 

 

1.2.4 Melting, crystallisation and glass transition 

The melting temperature (or melting point) can be defined as the temperature at which 

a substance transforms from its solid state to its liquid one at atmospheric pressure. At this 
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point, the solid and liquid both exist in equilibrium. When this temperature is considered as the 

point of the reverse change from liquid state to solid state, it is referred to as the freezing point 

or crystallisation point. However, since some substances can be supercooled, the freezing point 

is not considered as a characteristic property of a substance and certainly is not equal to the 

melting temperature. In fact, glasses, in contrast to crystalline solids, do not possess a melting 

point; when heated they undergo a smooth glass transition into a viscous liquid. Upon further 

heating, they gradually soften, a process which can be characterised by certain key softening 

points in the change in state. 

Crystallisation is the process of formation of solid crystals, in which substances are 

precipitated from a solution, the liquid state of a melted solid, or more rarely, are deposited 

directly from a gas. The crystallisation process can be divided into two major parts: nucleation, 

and crystal growth. Nucleation is the step in which the solute molecules dispersed in the solvent 

gather into clusters on the nanometre scale, which causes an elevated solute concentration in a 

small region. These stable clusters constitute the nuclei. To become stable nuclei, the clusters 

need to reach a critical size which is dictated by the operating conditions (temperature, 

supersaturation, etc.) or the nucleus will dissolve quickly, and the crystal will not grow. The 

crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical 

cluster size. 

Fig. 1.8 shows the variation of volume as a function of temperature on cooling a liquid. 

Lowering the temperature will initially cause contraction of the liquid and once the temperature 

reaches the point of solidification (or freezing) Tf, if the liquid crystallises, a discontinuous 

change in volume is introduced in the curve. In this case, the solidification temperature at the 

discontinuity point is called the crystallisation temperature. As the temperature decreases 

further contraction will continue. However, the slope of the curve becomes more gradual than 

that of the original liquid. 
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Fig. 1.8 Volume changes associated glass formation 27. 

 

The manufacturing process of glasses requires that the raw materials be heated to a 

temperature sufficient to produce a fused melt and then be cooled in a special way. 

Vitrification, an artificial cooling method, is the supercooling of a viscous liquid to form the 

glass state. This process occurs when the liquid is rapidly cooled, such that there is insufficient 

time for the atoms to align into a crystal structure 27, because the rate of cooling of the melt is 

faster than the rate of crystallisation. 

To understand glass formation, the term glass transition should be explained accurately. 

The process of glass transition involves the transformation of an amorphous materials between 

a hard state and a molten state 28. In addition, it is necessary to consider a thermodynamic 

variable, for example, the specific volume, V as a function of temperature, in order to study the 

process with greater accuracy. 
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As shown in Fig. 1.8, considering a liquid heated and kept at a relatively high 

temperature, contraction will initially occur when the temperature drops. As the temperature 

decreases, the viscosity of the liquid continuously increases resulting in progressive freezing 

to its final solidification point Tf. Two phenomena may happen. As mentioned above, the liquid 

can crystallise. Alternatively, a second phenomenon could occur, where crystallisation does 

not happen and the liquid passes to a supercooled state. The point representing the supercooled 

state follows an extension of the liquid curve, which passes the point Tf without discontinuity 

29. From Fig. 1.8, we can see that the temperature decreases initially resulting in a contraction 

of the supercooled liquid, with a coefficient that is the same as that of the original liquid. A 

change in slope of the curve starts at a certain temperature Tg (glass transition temperature) and 

the volume decreases to a value that is closer to that of the crystalline solid. This break observed 

in the cooling curve represents the transformation from a supercooled liquid to a rigid, 

amorphous glass 29. 

However, the position of Tg is not constant even under constant pressure. Instead, the 

time scale of the experiment plays an essential role in the glass transition process. In other 

words, the experimental value obtained for Tg varies with the cooling rate of the liquid. As 

shown in Fig. 1.8, a higher cooling rate results in a shift of Tg to higher temperature, whereas 

a slower cooling rate moves Tg towards lower temperatures. Because of this instability, the 

concept of a transition interval or a transformation interval [Tg] is used to describe the glass 

transition. The value of the upper limit of the transformation interval [Tg] is decided by the 

highest possible cooling rate in forming glass, while the lower limit is defined by the lowest 

cooling rates. 

 

1.3 The chemistry of vitreous phosphates 

1.3.1 Phosphate tetrahedra 

Inorganic phosphates play an essential role in higher life forms as the main inorganic 

components of bone and are widely used artificially both industrially and in agriculture. 

Complex polymeric phosphates are fundamental components in glasses, synthetic ceramics and 

glass ceramics. The basic unit of phosphates is the phosphate-tetrahedron where one 

phosphorus atom is bonded to four oxygen atoms. In glasses these are linked by covalent 

oxygen atoms to form a network. Oxygen atoms, called bridging oxygens (BOs), act as 

connections between the individual structural units. A phosphate tetrahedron has maximum 
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connectivity index of three, i.e. there can be up to 3 BOs connecting it to other units. In 

amorphous P2O5, the maximum connectivity of phosphate tetrahedra is achieved giving an 

average neutral species of PO2.5 
30. The remaining oxygens are non-bridging oxygen atoms 

(NBOs). In phosphate networks the P-(BO) bond length ranges from 1.56 to 1.60 Å, while the 

P-(NBO) bond lengths are shorter and vary between 1.43 and 1.45 Å 31. 

 

1.3.2 Phosphate speciation and the Qn notation 

Since degrees of polymerisation in glasses vary, it is best to describe the anionic 

networks through the speciation of the phosphorous atom. The terminology Qn may be the best 

choice for speciation description. Here n indicates the number of bridging oxygen atoms per 

tetrahedron. There are four possible tetrahedral phosphate units for phosphorous, differentiated 

by the number of bridging oxygen atoms which link one tetrahedron to another 32. These are 

summarised diagrammatically in Fig. 1.9. A cross-linked 3-dimensional network structure is 

achieved in a pure Q3 system i.e. (PO2.5)m, as in vitreous P2O5. The Q2 unit defines a network 

in the form of polymer-like meta-phosphate chains, (PO3)n
n−. The pyrophosphate unit, Q1 

(PO3.5)
2− is often encountered in glasses as a chain end, while the Q0 (PO4)

3− unit is the isolated 

orthophosphate anion 28. Thus, the oxygen-to-phosphorus ratio can be used to classify and to 

characterise the network structures of phosphate glasses. 

Introducing network modifying oxides (e.g. M2O) into vitreous P2O5, breaks bridging 

oxygen bonds (P-O-P) to increase the number of non-bridging oxygen atoms. These coordinate 

to the modifier 33,34. As the number of tetrahedra linked through bridging oxygen atoms 

decreases, the oxygen-to-phosphorus ratio changes, as does Qn. 

2Qn + M2O → 2Qn−1 + 2M+     (1.9) 

The coordination of the electropositive modifying cation makes the P-(NBO) bond 

more ionic by increasing the charge separation between phosphorous oxygen ions 28. 

  



25 
 

 

Fig. 1.9 Phosphate speciation in glasses. P and O atoms are dark and light shaded circles 

respectively. 

 

1.3.3 Compositional dependence of phosphates and disproportionation 

In different vitreous phosphates, the ratio of Qn (n = 0, 1, 2, 3) varies a lot. The fraction 

of a particular Qn species f(Qn) in a phosphate glass is important and is calculated from the 

composition and the role of all cations in the system. A glass of general composition xMOy: 

P2O5, where M represents a network modifying cation or mixture of cations with an average 

charge 2y +, is discussed below. 

There are four possible Qn species (Q0, Q1, Q2 and Q3) and a, b, c and d are the numbers 

of Q0, Q1, Q2 and Q3 phosphorus atoms per formula unit, respectively. Overall electroneutrality 

must be maintained, so the total charge on any given anionic phosphate framework species 

must equal the total cationic charge: 

2xy = 3a + 2b + c     (1.10) 

The number of phosphorus atoms is 2 per formula unit: 
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2 = a + b + c + d     (1.11) 

 

Table 1.1 Qn fractions f(Qn), in glasses of general composition xMOy: P2O5 

2xy  

(cationic or anionic charge) 

Qn Species f(Qn) 

6 Q0 f(Q0) = 1 

4 – 6 Q0 + Q1 f(Q0) = xy - 2, f(Q1) =3 - xy 

4 Q1 f(Q1) = 1 

2 – 4 Q1 + Q2 f(Q1) = xy - 2, f(Q2) =3 - xy 

2 Q2 f(Q2) = 1 

0 – 2 Q2 + Q3 f(Q2) = xy - 2, f(Q3) =3 - xy 

0 Q3 1 

 

When just one form of possible Qn species is present in the glass, we directly get a value 

of xy = 3, 2, 1 and 0 for Q0, Q1, Q2 and Q3 respectively. When xy is non-integral, the glass is 

predicted to contain a mixture of the two nearest Qn species. Since there are two phosphorus 

atoms per formula unit formula unit, the values of f(Qn) are readily calculated by dividing the 

values by 2. 

The f(Qn) formula given in Table 1.1 assumes only a maximum of two types of Qn 

species in a particular glass. However, occasionally more than two species occur through 

disproportionation of Qn species. These require an experimentally determined degree of 

disproportionation. 

Although the ratio of oxygen atoms to phosphorus directly determines the ratio of 

bridging to non-bridging oxygen atoms, some factors such as quenching rate can affect the 

distribution of NBOs. It is reported 35 that in polyphosphate glasses (60Li2O: 40P2O5), [O] / 

[P] ˃ 3.0, higher quenching rate affects the arrangement of NBOs in the glass matrix, which 

reveals that in comparison to normally quenched samples more (PO4)
3− (Q0) and (PO3)

– (Q2) 

units are generated when glasses are quenched rapidly. This can be explained by the existence 

of an equilibrium between various phosphate units in the glass melt:  

2(PO3.5)
 2− ↔ (PO4)

3− + (PO3)
– (2Q1 ↔ Q0 + Q2)    (1.12) 
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In traditional methods, the lower cooling rate provides enough time for (PO4)
3− (Q0) 

and (PO3)
– (Q2) units to combine and makes the equilibrium shift to the (PO3.5)

2− (Q1) side, 

while the higher quenching rate seems to be sufficiently rapid to freeze all the three species. 

Thus, an appreciable number of the species exist when the higher quenching rate method is 

applied, while traditionally quenched glasses consist predominantly of (PO3.5)
 2− (Q1) units. 

Similar disproportionation processes can occur with other phosphate species so that 

generally: 

2Qn ↔ Qn−1 + Qn+1     (1.13) 

Thus, although Q-speciation can be approximately calculated through a mathematical 

method, quenching rate can have an influence on the distribution of non-bridging oxygens so 

that other Q-species may form. Higher quenching rates can cause a disproportionation to 

convert a part of predominant Qn to Qn−1 and Qn+1 species.  

 

1.3.4 Networks modifiers and intermediates introduced to phosphate glasses 

Network modifiers change various properties related to the transformation of the glass 

structure when introduced into a phosphate glass. Considering the addition of Li2O to P2O5, the 

network modifiers alter the structure of the phosphate glass to change the glass transition 

temperature, Tg 
36. The Tg of vitreous Li2O-P2O5 decreases from 635 K 37 to about 505 K after 

addition of 10 mole% of Li2O. The decreasing trend in Tg continues with the addition of Li2O 

until concentration reaches 20 mole%. However, further addition of Li2O results in an increase 

in Tg, although the fraction of NBOs also increases. The only explanation is that a greater 

concentration of Li2O increases the entanglement of long chains. This transforms a 3-

dimensional network of interconnected Q3 groups within P2O5 to a 1-dimensional chain 28. 

Network intermediates can also be incorporated into phosphate glass to improve their 

physical and chemical properties. An illustrative example of how intermediates affect the 

structure is the addition of Al2O3 to alkali metaphosphate glasses which results in increased 

chemical durability and glass transition temperature 38. This is because, at high concentrations, 

Al(OP)4 and Al(OP)5 become more important, which contribute to cross-linking of phosphate 

chains. 
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1.4 Ionic conduction in crystalline solids and glasses 

1.4.1 Nernst-Einstein relation 

High concentration, high diffusivity and high mobility of charge carriers are the main 

requirements for high ionic conductivity in solids. Experiments on ion migration in solids with 

and without the application of an external electric field, concluded that there was no difference 

between ion migration caused by an electric field and that caused by diffusion due to 

concentration gradients 39. The diffusion coefficient D is used to characterise ion transport due 

to the presence of a concentration gradient, while transport of ions caused by an electric field 

is characterised by the overall drift or unidirectional mobility μ. The Einstein equation presents 

the relationship between these two parameters 39-42. 

D = μkBT     (1.14) 

where kB is the Boltzmann constant and T is absolute temperature. When a charged particle is 

placed in a uniform electric field E, it will be accelerated to a constant drift velocity vd which 

is related to the drift mobility μ through the equation: 

vd = qμE     (1.15) 

where q is the ion charge. Fick’s flux law of migrating ions can be applied to both ion migration 

due to concentration gradients and that due to an electric field, generating two separate 

equations: 

𝐉 =  −𝐷𝛁𝑐     (1.16) 

𝐉 =  −𝐷𝛁𝑐 + 𝑐𝑞𝜇𝐄            (1.17) 

where J is the ion flux and c is ion concentration. Through Ohm’s law, the flux of migrating 

ions J is related to ion charge q, ionic conductivity σ and electric field E, which can be 

described as  

J = σE/q     (1.18) 

If the concentration gradient is zero (∇c = 0), then combining Eqn. 1.17 and 1.18, the ionic 

conductivity is equal to:  

σ = q2cμ     (1.19) 
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From Eqn. 1.14, the relationship between ionic conductivity and diffusion coefficient (Nernst-

Einstein relation) can be derived as 

σ = q2cD/kBT     (1.20) 

 

1.4.2 Ion transport mechanism and hopping models in crystalline solids 

In ionic conducting solids, a large number of low energy vacant sites, connected to each 

other in such a way as to create diffusive pathways for migration, is required to form a suitable 

structural environment for high mobility of charge carriers. Generally, a larger number of 

available sites than the number of charge carriers is required for high performance 43-46. 

Therefore, ionic conduction needs the presence of various types of defects (vacancies and/or 

interstitials), which are intrinsic properties of crystalline materials. In addition, the size of 

charge carriers must be taken into consideration, since if ions are too large then they will be 

incompatible with the narrow widths of the bottlenecks. These bottlenecks are typically the 

face of an interstitial site formed by atoms of the immobile sublattice. For example, the 

triangular face to an interstitial octahedral or tetrahedral site will be formed by three atoms of 

the immobile sublattice.  

Despite over 50 years of study, no universal theory can be successfully used to describe 

ionic conduction mechanisms in crystalline materials. Due to the complex nature of the non-

periodic structure, it is even more difficult to resolve the conductivity behaviour of glasses 

satisfactorily 47. 

Ionic conductivity in solid materials depends on various parameters, among which 

concentration, diffusivity and mobility of charge carriers are the most important. The mobility 

is related to the structure and depends on the level of the structural disorder caused by different 

types of defects. Considering the type of defects involved, five possible mechanisms are 

presented below for the ionic conduction process 39: 

a. Exchange Mechanism – two ions exchange sites with each other directly. 

b. Ring Mechanism – three or more ions move within a ring to occupy each other’s 

position. 

c. Vacancy Mechanism – ions jump to occupy a vacant site, or vacancies move from 

site to site. 
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d. Direct Interstitial Mechanism – ion jump from one interstitial site to another. 

e. Indirect Interstitial Mechanism – interstitial ions move into crystallographic lattice 

sites forcing the atom or ion that was there, to move into interstitial site.  

Only mechanisms c to e result in long-range ion diffusion. All these defect-based 

mechanisms are developed on the assumption that, ion migration is realized by hopping from 

one available site to another, and this kind of hopping is treated as fully random without being 

affected by other immobile ions or existing dipoles. Based on these defect mechanisms, there 

are some possible models for hopping. Although the single ion hopping model is simple and 

ideal, it presents a valuable theoretical basis for understanding the main features of how ions 

migrate in solids. Some basic aspects of the model will be briefly discussed below. 

 As described in the single ion hopping model, successive hops between available sites 

allow ions to move through the solid and these motions can be characterised by the hopping 

frequency f. Hopping is a thermally activated process and associated with the thermal 

vibrations of atoms. Thus, the hopping frequency only depends on the absolute temperature T 

and the relation can be described by an Arrhenius type equation: 

𝑓 = 𝑓0exp(−𝑄𝑚 𝑘𝐵𝑇⁄ )    (1.21) 

where f0 is the vibrational frequency of atoms in the immobile sublattice and Qm is the hopping 

activation energy. Due to the randomness of hopping, this motion leads jumping ions to 

perform either forward or backward jumps in the process. In addition, the probabilities of 

forward or backward jumps are dependent on the surrounding environment and associated 

energy barriers. When there is no external electrical field the probabilities are equal, whereas 

when an external electric field, E, is applied, jumps in the field direction (forward jumps) have 

a higher probability, i.e. the applied field reduces the activation energy in the forward direction. 

Therefore, the activation energy in the presence of an electric field, E, can be described as:   

𝐸𝑎 = 𝑄𝑚 −
1

2
𝑞𝐸𝑙     (1.22) 

where l is the hopping distance and Ea is activation energy. The energy barrier for backward 

jumps will be enhanced by the same amount and it is given by: 

𝐸𝑎 = 𝑄𝑚 +
1

2
𝑞𝐸𝑙     (1.23) 

The process of ion hopping is illustratively represented in Fig. 1.10. 
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Fig. 1.10 Schematic view of the thermal energy needed for forward and backward jumps of a 

hopping ion from its equilibrium position, with and without applied electrical field, 

respectively  ( ε = E), taken from reference 39. 

There are some other more accurate models which take more factors into consideration 

and improve significantly the deficiencies of the single ion hoping mechanism, The Correlated 

Model and especially, the Cooperative Model involve interactions between all species in a 

solid, such as mobile ions, ions from the immobile lattice, dipoles and defects 41. In addition, 

many other models of ionic conductivity (ion hopping) in solids have been proposed, such as 

defect cluster models and the quasi-liquid model. 
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1.4.3 Activation energy of conductivity in glasses 

Like crystalline ion conductors, the conductivity of glasses is mainly related to 

temperature and concentration of charge carriers as well as many other minor factors such as 

ion polarizability, chemical bonding effects, ion size compared to diffusion pathway, and the 

size of channels in the glass network 48-50. As in crystalline ion conductors, there is still no 

uniform and widely accepted theory of ion transport in glasses. Instead, a few theories have 

been established, such as Anderson-Stuart’s strong electrolyte model. In the Anderson-Stuart 

model 51 it is assumed that Ni (effective carrier density of ion i) is independent of ion 

concentration and temperature, whereas the mobility is a quantity that depends on both 

parameters, ion concentration and temperature. A representation of the energetics associated 

with this model are shown in Fig. 1.11. 

In the Anderson-Stuart model cations play the essential role of transporting the 

electrical current. To be able to do that, cations need to firstly escape from an occupied site 

which is next to a negative ion. Then, they jump to a new vacant space which correlates with a 

new negative ion. The positions of these two negative ions need to be close enough to support 

the movement of the cation. In phosphate glasses, where the phosphate network is negatively 

charged, the negative ions in the model are represented by non-bridging oxygen atoms. 

Together with the strain energy Es which is associated with long range motion, the binding 

energy Eb contributes to the total activation energy Ea in this process:  

Ea = Eb + Es      (1.24) 

According to Coulomb's law, with approximations, Eb can be described as 

𝐸b =
𝛽𝑧𝑧0ⅇ

2

𝛾(𝑟+𝑟0)
         (1.25) 

where z and r indicate the charge and radius of the cation, respectively, z0 and r0 are the charge 

and radius of the O2− ion, respectively, γ is a covalence parameter, and β stands for a non-

periodic lattice parameter which is determined by the distance between neighbouring sites. 

Similarly, it follows that Es can be shown as  

𝐸𝑠 = 4π𝐺𝑟𝐷(𝑟 − 𝑟𝐷)
2

                (1.26) 

where r and rD are the cation radius and the bottleneck (effective) radius respectively, and G 

represents the elastic modulus.  
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Fig. 1.11 The strong-electrolyte model showing the energetics of the cation conduction process 

in glasses, taken from reference 39. 

 

After substitutions, the total activation energy Eσ can be shown to be 

𝐸σ =
𝛽𝑧𝑧0ⅇ

2

𝛾(𝑟+𝑟0)
+ 4π𝐺𝑟𝐷(𝑟 − 𝑟𝐷)

2
                                                     (1.27) 
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Chapter 2 Methods 

 

2.0 Introduction 

This chapter deals with the theory and brief description of characterisation techniques 

used in this work and general synthetic methods. 

 

2.1 Density measurements 

All the density measurements were carried out using a gas displacement method which 

can measure the volume of solid objects. As shown in Fig. 2.1, Vcell and Vexp are the volume of 

the cell and of the expansion chamber respectively. The cell and expansion chamber begin at 

ambient pressure Pa, and ambient temperature Ta when the valve is closed. Then, the pressure 

of the cell is increased to an elevated pressure P1. The mass balance equation becomes: 

P1(Vcell − Vsamp) = nCRTa     (2.1) 

where nC is the number of moles of gas in the sample cell and R is the gas constant. The equation 

for calculating the expansion volume can be expressed as: 

PaVexp = nERTa          (2.2) 

where nE is the number of moles of gas in the expansion volume. Opening the valve decreases 

the pressure to P2 and the new mass balance equation is given by: 

P2(Vcell – Vsamp + Vexp) = ncRTa + nERTa   (2.3) 

After rearranging the equations above, then introducing Pa into the equation, we obtain: 

𝑉samp = 𝑉cell −
𝑉exp

𝑃1−𝑃a
𝑃2−𝑃a

−1
                (2.4) 

P1g and P2g need to be written as gauge pressures: 

                                                                P1g = P1 – Pa              (2.5) 

                                                               P2g = P2 – Pa              (2.6) 
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                                Cell                                                          Expansion Chamber 

 

Fig. 2.1 Simplified block diagram for density measurements using gas displacement. 

 

Finally, Vsamp can be rewritten as: 

                                                        𝑉samp = 𝑉cell −
𝑉exp
𝑃1g

𝑃2g
−1

            (2.7) 

The equation above provides the results of the volume of the sample. In detail, Vcell and Vexp 

are decided by calibration procedures and the pressures can be measured by a gauge pressure 

transducer. The mass measurement is achieved by using an electronic balance, and density is 

then calculated using density = mass / volume. 

 

2.2 Thermal analysis 

The most widely-used thermal analysis techniques are Differential Thermal Analysis 

(DTA) and Differential Scanning Calorimetry (DSC) 1,2. Both can be used to detect the smallest 

temperature (heat) changes in a studied material. 

The principles behind DTA are summarised as follows 3: 

1. An inert reference material is required; 

2. The reference material must be stable across the entire temperature range; 

3. The heating/cooling rates are equally applied to the tested sample and reference material; 

4. This is performed in a strictly controlled, inert or oxidising atmosphere, e.g., N2, Ar, He, air; 
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5. ΔT, the difference in temperature between the sample and reference material is measured 

throughout the experiment; 

6. The instrument is equipped with a single heater for both the sample and reference material. 

DSC shares the first four principles with DTA. However, DSC instruments require a 

different heating control apparatus, namely two programmable heaters, one for the sample and 

another for the reference material. In addition, ΔT = 0 remains unchanged in DSC testing. 

Instead, the difference in heat flow (ΔQ) between sample material (Qs) and reference material 

(Qr) is measured in this method. 

Both DTA and DSC can be applied in identical thermal cycles while recording changes 

of temperature. Any changes (exothermic or endothermic) are detected relative to the inert 

reference, which can reflect transformations, such as glass transitions, crystallisation and 

melting. 

 

2.3 Infrared spectroscopy (IR) 

As with many other spectral methods, infrared spectroscopy derives its information by 

the process of energy absorption. The bonds within each functional group either vibrate, rotate 

or sway in response to radiation. Infrared spectroscopy (IR) is a type of vibrational 

spectroscopy which deals with the infrared part of the electromagnetic spectrum 3 in the 

wavelength (λ) range from 0.78 μm to 1000 μm. For practical purposes, researchers divide the 

IR spectrum into three parts: near, mid and far. For this project the only relevant part of the 

spectrum will be mid-infrared (2.5 to 25 μm), which is used to study the fundamental vibrations 

and associated rotational-vibrational structure.  For practical applications the reciprocal value 

of wavelength, wave number 𝑣̃  (cm−1) is more widely used than the wavelength itself. The 

relation between wavelength and wave number is shown below: 

                                                                  𝑣̃ =
1

𝜆
         (2.8) 

As shown in Table 2.1, IR features in the phosphate glasses studied in this work are in 

the mid-infrared region from 4000 to 400 cm−1
 which corresponds to 2.5 to 25 μm. 
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Table 2.1 IR features frequently observed in phosphate glasses 4,5. 

Frequency (cm−1) Assignment 

~ 1260 P = O vibration superposed with (PO2)as mode in Q2 units. 

~ 1190 (P—O−) vibration in Q2 units  

~ 1100 to 1140 Broad band for (P—O−)as vibration in Q2 units 

~ 1040 Vibration of PO4
3− tetrahedra 

~ 970 (P—O−)as vibration in Q1 units 

~ 880 to 900 (P—O—P)as vibration of BOs 

~ 720 to 780 (P—O—P)s
 vibration of BOs  

~ 530 Deformation mode of P—O− groups 

 

When absorption happens, it transitions occur between vibrational and rotational 

energy levels. Only vibrational transitions are typically observed in solids. Vibrations can be 

divided into stretching and bending. Stretching vibrations can be symmetric or asymmetric, 

which involve changes in the inter-atomic distance along the bond. Bending vibrations relate 

to changes in the angle between two bonds. This includes twisting, rocking, wagging and 

scissoring. Functional group must undergo a change in dipole moment to be IR active. A 

permanent dipole is not necessary, however, a change in dipole moment is. If the frequency of 

the electromagnetic radiation matches the vibrational frequency of the functional group, the 

radiation interacts with the changing dipole moment and excites functional group to a higher 

energy level, changing the amplitude of vibration. 

Using IR spectroscopy, we can analyse the intensities and shapes of absorption bands 

which occur in a relevant region, to derive some qualitative information. The mid-IR spectrum 

region can be divided into two parts. The first part of IR spectrum from 4000 to 1200 cm‒1, is 

always used for identification of functional groups, since their vibrations always occur in the 

same frequency band. The other part (referred to as the fingerprint region) of the spectrum 

which ranges from 1200 to 200 cm‒1, can be compared with standard patterns to identify 

unknown materials. Thus, the frequency of absorbed radiation can be associated with a bond 

type 6. This contributes to a further understanding of the sample structure. 
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2.4 Scattering measurements 

2.4.1 Bragg’s law and diffraction 

In 1912, von Laue, Friedrich and Knipping showed that crystalline solids could diffract 

incident X-rays, first demonstrating the occurrence of diffraction in crystalline structures 7.  In 

the next year, the Bragg father-and-son team successfully determined the crystal structure of 

sodium chloride by implementing this new phenomenon practically. With further studies, these 

finding contributed to their Nobel Prize. Nowadays, diffraction techniques have become the 

most commonly used methods for structural analysis of crystalline materials 8. 

Diffraction can be defined as a process by which a material with a periodic internal 

order scatters incident radiation to cause constructive and destructive interference of the 

scattered radiation. It is important to mention that both X-rays, and neutrons, can be treated as 

forms of radiation characterised by wave-like behaviour. As shown in Fig. 2.2, both the angle 

of incidence and the angle of reflection are represented as θ (when orientated correctly, θ is 

called the Bragg angle). Waves are reflected from planes of atoms separated by a distance d. 

For diffraction to occur the wavelength of incident radiation and the distance between the 

scattering objects must share the same order of magnitude. Only when this is the case will the 

distances of each beam of the scattered radiation be equal to an integral multiple of the 

wavelength, nλ. It follows that,  

                                                            nλ = 2d sinθ      (2.9) 

In applications, three integers h, k, l, commonly referred to as Miller Indices, are used 

to define each group of parallel planes (Miller planes) 9. dhkl is the perpendicular distance 

between nearest neighbour (hkl) planes. For beams at certain angle of incidence, each plane 

possesses its own specific angle θhkl. n is usually absorbed into the (hkl) Miller plane when we 

simplify the equation. Bragg's law can be given as 

                                                           λ = 2dhkl sinθhkl      (2.10) 

Using Miller indices, a diffraction pattern can be indexed and can be used to directly 

obtain the unit cell parameters.  
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Fig. 2.2 Illustration of Bragg’s law for crystal diffraction, taken from reference 10, where  λ is 

the wavelength of the radiation, d is the distance between two atom planes and θ is the angle 

of incidence (and reflection). A reflection will occur if nλ = 2d sinθ.  

 

2.4.2 Diffuse scattering and total scattering 

2.4.2.1 Diffuse scattering  

As early as 1913, Friedrich discovered that there were weak radial streaks in the pattern 

along the Laue spots in an X-ray experiment of KCl, representing the first observation of 

diffuse X-ray scattering. During the next year, Debye first started his theoretical work on this 

special scattering and predicted that atomic vibration was the main cause of diffuse scattering 

and would lead to a continuous contribution to single crystal X-ray scattering.  

From diffuse scattering data, information on the deviation from the average structure 

can be obtained, since diffuse scattering is caused by any temporary or permanent modulation 

of space group symmetry. Notably, the occurrence of diffuse scattering can be anywhere in 

reciprocal space. Diffuse scattering often occurs as a broad undulation in diffraction patterns 

and its intensity is generally weak when it is compared to Bragg peaks, and as such diffuse 

scattering is often treated as part of the background scattering produced in crystalline systems. 
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2.4.2.2 Total scattering  

In addition to Bragg diffraction, diffuse scattering is nowadays becoming a necessary 

part of research on amorphous materials and in partially disordered crystalline materials. Local 

disorder exists inevitably, and, in these materials, the short-range structures have different 

characteristics from the long-range average structure.  

Total scattering, as described for example by Dove et al. 11, is the scattering of radiation 

by matter that covers most scattering vectors and includes scattering with all possible changes 

of energy of the radiation. In the total scattering method, lattice parameters and average 

positions of atoms can be obtained as well as fluctuations of the atomic arrangement from the 

average structure, i.e. local disorder.  

In summary, total scattering contains two parts: Bragg diffraction and diffuse scattering. 

From the aspect of this project, the structures of studied materials were obtained mostly by 

using total scattering methods, including X-ray and neutron scattering.    

 

2.4.2.3 X-ray and X-ray scattering 

Nowadays X-rays are the most accessible and the most commonly used radiation for 

diffraction methods. In the laboratory, X-rays can be produced when a beam of electrons strikes 

a metal target (usually copper or molybdenum) 11. The X-rays are generated by two different 

mechanisms. When the electrons enter the metal, they are rapidly decelerated, and an 

accelerating or decelerating charge will produce electromagnetic radiation (X-rays). This 

mechanism is called Bremsstrahlung. In the second mechanism, high energy electrons are 

accelerated towards a metal target and this process causes electrons to be ejected from one of 

the inner electron shells. The process of by which an electron drops from a higher to lower 

orbital results in the production of X-ray radiation. The generated X-rays are electromagnetic 

waves which possess wavelengths from 0.1 Å to 100 Å. In the case a copper target, transitions 

from the 2p to 1s (Kα) and 3p to 1s (Kβ) orbitals generate X-ray wavelengths of 1.5418 Å and 

1.392 Å, respectively. The stronger K peak is typically used for diffraction experiments and 

in fact consists of two peaks K1 ( = 1.54065 Å) and K2 ( = 1.5433 Å) due to the two 

possible spin transition. Since experiments are always performed using a fixed wavelength, 

absorbing filters are used to remove the rest of X-rays apart from that at the required 



45 
 

wavelength. Alternatively, a monochromator (a specially mounted crystal in the form of a flat 

plate) can used to diffract only the Kα (or K1) peak onto the sample.  

X-rays of higher intensity and wider wavelength range can be utilised by using 

synchrotron sources 11. In a synchrotron an electron travelling in a circular orbit accelerates in 

a radial direction and decelerates tangentially, which makes that the circular beam continuously 

lose energy as photons. The synchrotron radiation is emitted as a continuous band of X-rays 

wavelengths from which a monochromator can be used to select a specific wavelength for 

experiments. 

X-rays with a wavelength of about 1 Å are suitable for diffraction methods since this 

wavelength is in the order of the interatomic spacing of crystals or amorphous materials. In 

practice, a scattering effect is a result of the interaction of X-rays with the electrons of different 

atoms. To be more exact, X-rays interact with the electronic density distribution around the 

nuclei of different atoms. Because atoms with bigger atomic number in the periodic table 

possess more electrons, they can have more interactions with X-rays. Therefore, the X-ray 

scattering power correlates directly with the number of electrons that the atoms possess. 

Generally, f(Q) (Q is scattering vector and 𝑄 = |𝐐| = 4𝜋 sin 𝜃 𝜆⁄ ), is used to characterise each 

atom  12. In the limitation that Q goes to zero, where the X-rays are scattered without deflection, 

the scattering factor f equals the atomic number Z. In summary, the atomic number of a given 

element reflects the intensity of the effect on the scattered X-ray.  

In 1914, Debye and Scherrer in Germany, and Hull in the United States developed the 

X-ray powder diffraction method independently. In this method, samples are required to be 

ground into powder, in which there are many randomly orientated crystallites. Thus, at least 

some of the crystallites can be correctly orientated to satisfy Bragg’s law for each set of allowed 

reflections. Different solid crystalline substances possess different characteristic X-ray powder 

patterns and they can be used as a "fingerprint" for the identification of the crystalline solid 13. 
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Fig. 2.3 The PANalytical Empyrean Ag-anode X-ray diffractometer, located at Queen Mary 

University of London. The X-ray wavelength is λ = 0.5609 Å, the maximum diffraction angle 

2θ = 156, which corresponds to Qmax = 21.9 Å−1.  

 

Glasses possess an amorphous structure, in other words they contain no 

crystallographic planes. Thus, the X-ray diffraction patterns of glasses do not show Bragg 

peaks 13. However, they do contain broad features which can be measured through the total 

scattering method and can be further analysed using the PDF method introduced in the 

following section. In the total scattering method, Ag, instead of Cu, is chosen as the anode 

material, thus achieving a higher Qmax. Ag Kα radiation has a shorter wavelength of 0.5609 Å, 

leading to a better resolution when compared to that of Cu. The diffractometer that used for 

this in the present work was a PANalytical Empyrean Ag-anode X-ray diffractometer (Fig. 

2.3). Additionally, data with a larger Qmax of 40 Å−1, corresponding to the wavelength of 0.1617 

Å, can be collected using synchrotron X-ray radiation. The synchrotron data in this project 

were collected on the XPDF I51-1 diffractometer at the Diamond facility, Rutherford Appleton 

Laboratory. 
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2.4.2.4 Neutron and neutron scattering 

Sir James Chadwick proved the existence of neutrons in 1932. Neutron are one kind of 

subatomic particle with no charge. They have a mass that is roughly equal to a proton, and 

neutrons have a magnetic moment caused by the combination of their constituent quarks. When 

travelling, a neutron shows a wave-like behaviour, which can be described by the de Broglie 

relation as given: 𝜆 = ℎ 𝑚𝑣⁄ , where λ is the neutron wavelength, h and m are Planck’s constant 

and the particle’s rest mass, respectively, and ν is the particle velocity 14.  

Both nuclear reactors and spallation sources can be used to produce neutrons. 

Compared with reactor sources, pulsed or spallation neutron sources operate with less 

radioactive and toxic waste, which makes them safer. In the present work, neutron diffraction 

data were collected at the ISIS Facility, Rutherford Appleton Laboratory, UK, where neutrons 

are generated using a spallation source (Fig. 2.5 and Fig. 2.6). In the production process (Fig. 

2.4) protons are injected into a synchrotron ring where they are accelerated to relativistic 

speeds. These high energy protons (ca. 800 MeV) are periodically fired as a pulse at a heavy-

metal (such as tungsten) target. This knocks out neutrons from the nucleus of the target atom. 

The neutron yield of this method is very high (roughly 30 neutrons per proton) 15. After the 

generation of neutrons, moderators (e.g. hydrogen, methane or water) that surround the target 

are used to slow the neutrons, so suitable wavelengths can be obtained for related experiments. 

This neutron beam has a spectrum of wavelengths that is determined by the type of moderator 

being used. The time of flight (tof) of the neutrons from the target to the detector (via the 

sample) is measured and is directly proportional to the wavelength. 

Over the last 40 years, neutron scattering techniques have become one of the most 

successful structural analysis methods and are a widely used alternative to X-rays in diffraction 

experiments 16. Since neutrons are electrically neutral, compared to the charged particles with 

the same kinetic energy, they can penetrate much deeper into materials and interact with nuclei 

with strong nuclear forces. Furthermore, neutron spins may also interact with the magnetic 

moment of atoms originating from unpaired electrons in the outer electronic orbitals, resulting 

in magnetic scattering.  
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Fig. 2.4 The production process of a spallation neutron source, taken from reference 17. A beam 

of protons is accelerated in a synchrotron to achieve high-energy, then it is used to bombard a 

heavy-metal target to produce neutrons.  

 

 

 

Fig. 2.5 A map of ISIS, showing the proton synchrotron and the two target stations with the 

beamlines (instruments) shown in different colours and departing radially from the respective 

target stations, taken form reference 18. 
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Fig. 2.6 Overview of the SANDALS diffractometer, taken from reference 18, which is the 

instrument used for collection of sample data in this project. SANDALS is an abbreviation of 

“Small Angle Neutron Diffractometer for Amorphous and Liquid Samples”, a total scattering 

instrument designed for the diffraction of liquids and glasses and other disordered systems. 

 

 

 

Fig. 2.7 Variation of neutron-scattering length with atomic number, taken from reference 19.  
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The nuclear interaction strength (scattering power) between the atom and the neutron 

is reflected by the scattering length b and a scattering cross section,  20,  where 𝜎 = 4𝜋𝑏2 

(units of area). The sizes of atomic nuclei are 10−5 times those of the atoms, while the 

wavelength of neutrons in diffraction experiments are similar to those in X-ray experiments 

i.e. similar to the size of the atom. In this case, the scattering function is so wide in Q that it 

can be regarded as a constant for all values of Q of practical interest 11. Thus, unlike the X-ray 

scattering factor, f, which is Q-dependent, the neutron scattering length b, is constant for each 

isotope and has no obvious relation with the value of Q. Indeed, it seems to vary in an irregular 

manner on moving across the periodic table, which means that it is independent of atomic 

number (Fig. 2.7). Usefully, the values of some lighter atoms have relatively large values of b, 

when compared to heavier atoms. Furthermore, because the neutron-nucleus scattering may or 

may not result in a change of phase of π of the neutron wave, the sign of the scattering amplitude 

can be either positive or negative 11.  

 

2.4.2.5 Comparison of the characteristics of X-ray diffraction and neutron scattering  

Electron shells of the atoms and the atomic nuclei scatter X-rays and neutrons, 

respectively. Different ways of interaction contribute to the advantages and disadvantages of 

each technique. Thus, these two are complementary to each other, and the proper choice of one 

method over the other, or combination of two methods in one studied material, is very 

important 21.  

The scattering of X-rays is stronger than that of neutrons and X-ray beams are much 

more intense than neutron beams 11. Also, large samples can absorb X-rays. Thus, much smaller 

samples are used for X-ray diffraction than in neutron beams. However, neutrons have 

relatively weak interactions with atoms, which makes them a highly sensitive and non-

destructive probe, which can deeply penetrate a material. In this way, it can be used to 

investigate the bulk of a material rather than just its surface. Neutron scattering methods can 

locate the atomic nuclei precisely at relatively high angles, while X-ray scattering methods can 

only provide information on the distribution of the electron density in the same case. This is an 

important difference, since usually the nuclei are not located at the centre of the electron cloud, 

because of valence effects (electron cloud induced effects).  
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Fig. 2.8 Variation in X-ray atomic scattering factors of oxygen (blue), chlorine (green), Cl− 

(magenta), and K+ (red) with sinθ/λ. 

 

In the periodic table neighbouring elements with similar atomic number, such as Mn 

and Fe or Co, possess similar X-ray scattering powers. Therefore, it is very difficult to 

distinguish them in compounds. Furthermore, in systems containing both light (i.e. low atomic 

number) and heavy (i.e. high atomic number) atoms, it is difficult to obtain precise scattering 

from relatively light atoms, since X-ray scattering will be dominated by the larger scattering 

power of the heavy atoms. As mentioned in Section 2.4.2.3, two neighbouring elements with 

similar atomic number can possess completely different neutron scattering powers (neutron 

scattering length). Thus, neutron scattering methods have the advantage of being able to 

distinguish neighbouring elements in the Periodic Table. Furthermore, none of the elements 

have exceptionally large neutron scattering lengths which could swamp the scattering of other 

atoms. In the case of studying a material including mixture of light and heavy atoms, neutron 

scattering might be the best possible structural analysis method 22.  For example, the hydrogen 

atom is virtually invisible to X-rays, but it has the same order of neutron scattering length as 
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any other atom. However, there are some pairs of atoms with completely different atomic 

numbers, but with similar neutron scattering length, such Cl and Br. In this case, structural 

elucidation might be better performed using X-ray techniques. In short, comparisons need to 

be made on a case by case basis before deciding whether X-ray or neutron scattering techniques 

are ideal for a particular system. 

The size of the electron cloud of each atom is of the same order of magnitude, 10−10 m, 

which is comparable to that of the X-ray wavelength. This means that the electron cloud cannot 

be considered as a point; thus, waves scattered from different parts of a given atom (electron 

cloud) may have different path lengths. This small difference causes destructive interference, 

which consequently results in a reduction in diffraction intensity. The extent of destructive 

interference increases with Bragg angle. When X-rays with same wavelength λ, are scattered 

by a given atom, according to the relation between increasing wave vector Q and Bragg angle 

θ, 𝑄 = |𝐐| = 4𝜋 sin 𝜃 𝜆⁄ , the value of scattering factor f decreases as the value of Q increases 

(Fig. 2.8). Due to the size of the nucleus being in the order of 10−15 m, they can be treated as 

points when compared to the wavelength of the neutron beam. Thus, scattering angles cannot 

affect the nucleus-neutron scattering power. In summary, the X-ray scattering power of an atom 

falls off with increasing scattering angle to an extent that is determined by the inverse of the 

size of the atom, whereas with nucleus-neutron scattering the scattering power is independent 

of the scattering angle 11. Thus, in cases where scattering at high angles is needed, neutron 

scattering may be the preferred method.  

Unlike X-ray experiments, there is no laboratory alternative for neutron diffraction. 

Thus, neutron scattering cannot be implemented routinely, due to its high cost and being only 

accessible at national central facilities. X-ray methods are more widely used and are always the 

first choice to determine the structure of a given material, before further study for more precise 

information using neutron scattering.   

 

2.4.3 Pair distribution functions 

2.4.3.1 The basic scattering equations 

Following the formalism given in 21,23, we can define the structure factor F(Q) as  

                                          𝐹(𝐐) = ∑ 𝑓𝑗exp (𝑖𝐐 ∙ 𝐫𝑗)𝑗          (2.11) 
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which represents the scattering from a collection of particles, where fj is the scattering length b 

for neutrons or the form factor f(Q) for X-rays, and Q is the scattering vector. Neutron or X-

ray diffraction experiments give the scattered intensity per unit atom |𝐹(𝐐)|2, S(Q) as: 

                                   𝑆(𝐐) =
1

𝑁
|𝐹(𝐐)|2 =

1

𝑁
∑ 𝑓𝑗𝑓𝑘exp (𝑖𝐐 ∙ 𝐫𝑗𝑘)𝑗,𝑘    (2.12) 

where rjk is the separation between pairs of atoms rjk = rj − rk, and N is the total number of 

atoms in the sample. 

 

2.4.3.2 Orientational average 

In practice, the samples for total scattering analysis are usually non-crystalline or 

polycrystalline material solids. No matter which case, it is necessary to average over all 

orientations of Q and rjk: 

                          〈exp (𝑖𝐐 ∙ 𝐫𝑗𝑘)〉 =
1

4𝜋
∫ d𝜙
2𝜋

0
∫ exp (𝑖𝑄𝑟𝑗𝑘 cos 𝜃) sin 𝜃 d𝜃
𝜋

0
       (2.13) 

where Q = |Q|, rjk = |rj − rk|, and where θ and ϕ are angles in spherical coordinates (θ is the 

polar angle between Q and rjk, and ϕ is the azimuthal angle). The integration over ϕ leads to a 

simple factor of 2π. Hence the equation is written as: 

                                   〈exp (𝑖𝐐 ∙ 𝐫𝑗𝑘)〉 =
1

2
∫ exp (𝑖𝑄𝑟𝑗𝑘𝑥)d𝑥
+1

−1
=
sin(𝑄𝑟𝑗𝑘)

𝑄𝑟𝑗𝑘
         (2.14) 

As a result, the orientation average scattering function is described as: 

                                                  𝑆(𝑄) =
1

𝑁
∑ 𝑓𝑗𝑓𝑘

sin(𝑄𝑟𝑗𝑘)

𝑄𝑟𝑗𝑘
𝑗,𝑘            (2.15) 

 

2.4.3.3 Defining the pair distribution function 

When j = k, Eqn. 2.15 contains two identical terms, and it is necessary to separate these 

terms from those where j ≠ k: 

                                        𝑆(𝑄) =
1

𝑁
∑ 𝑓𝑗

2
𝑗 +

1

𝑁
∑ 𝑓𝑗𝑓𝑘

sin(𝑄𝑟𝑗𝑘)

𝑄𝑟𝑗𝑘
𝑗≠𝑘         (2.16) 

In the first term, we can assume that there are cmN atoms that are of type m; cm is defined as 

the fraction of all atoms of type m, with ∑ 𝑐𝑚𝑚 = 1. Thus: 
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1

𝑁
∑ 𝑓𝑗

2
𝑗 = ∑ 𝑐𝑚𝑓𝑚

2
𝑚       (2.17) 

In the second term of the Eqn. 2.16, there is a double summation over all atoms. Taking 

into consideration the average behaviour expected from each atom type, the first part of the 

equation covers the sum of all individual atom types. On the other hand, because the second 

half of the equation is a sum covering all neighbouring atoms, it is feasible that the scanning 

distances and the probability of finding the next atom can be applied to replace it. This 

probability can be written as gmn(r), which represents the distribution of atoms of type n with 

respect to an atom m at the origin, as a function of distance (partial Pair Distribution Function). 

Assuming that cn ρ is the overall density of atoms of type n, where ρ means the overall number 

of atoms per volume, the number of atoms of type n (dNmn) lying within a spherical shell of 

thickness dr at a distance r from an atom of type m can be written as 4πr2dr × cn ρ × gmn(r), i.e. 

dNmn = 4πcnρgmn(r)r2dr. For application, if we consider a bond with a spread of distances R ± 

ΔR, the coordination number (CN) will be: 

                                             𝐶𝑁𝑚𝑛 = 4π𝑐𝑛𝜌 ∫ 𝑔𝑚𝑛(𝑟)𝑟
2d𝑟

𝑅+𝛥𝑅

𝑅−𝛥𝑅
       (2.18) 

In practice, we expect gmn(r) to be equal to 0 for values of r that fall below the smallest 

interatomic distance and to go to 1 when 𝑟 → ∞, as the atoms of type m and n have no 

correlations at large distances. As a result, the pair sum can be written as: 

                     
1

𝑁
∑ 𝑓𝑗𝑓𝑘

sin(𝑄𝑟𝑗𝑘)

𝑄𝑟𝑗𝑘
𝑗,𝑘 = 4π𝜌 ∫∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑟

2𝑔𝑚𝑛(𝑟)
sin(𝑄𝑟)

𝑄𝑟
d𝑟𝑚,𝑛      (2.19) 

Thus, we can obtain: 

                        𝑆(𝑄) = ∑ 𝑐𝑚𝑓𝑚
2

𝑚 + 4π𝜌 ∫∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑟
2𝑔𝑚𝑛(𝑟)

sin(𝑄𝑟)

𝑄𝑟
d𝑟𝑚,𝑛        (2.20) 

and define: 

                                     𝑖(𝑄) = 4π𝜌 ∫∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑟
2𝑔𝑚𝑛(𝑟)

sin(𝑄𝑟)

𝑄𝑟
d𝑟𝑚,𝑛          (2.21) 

which is the total scattering structure factor. Because the function 𝑔𝑚𝑛(𝑟) → 1 as 𝑟 → ∞, i(Q) 

diverges at Q = 0. We can then separate the function into two parts 

𝑖(𝑄) = 4π𝜌 ∫∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑟
2(𝑔𝑚𝑛(𝑟) − 1)

sin(𝑄𝑟)

𝑄𝑟
d𝑟𝑚,𝑛 + 4π𝜌∫∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑟

2 sin(𝑄𝑟)

𝑄𝑟
d𝑟𝑚,𝑛

 (2.22) 
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The second term of i(Q) is non-zero only when Q = 0 which is experimentally inaccessible and 

therefore can be ignored. Thus, just the first term remains. If we define the PDF as  

                                        𝐷(𝑟) = 4π𝜌𝑟 ∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛(𝑔𝑚𝑛(𝑟) − 1)𝑚,𝑛           (2.23) 

then i(Q) can be written as  

                                                          𝑖(𝑄) = ∫𝐷(𝑟)
sin(𝑄𝑟)

𝑄
d𝑟           (2.24) 

We can obtain following transformations:  

                                                      𝑄𝑖(𝑄) = ∫𝐷(𝑟) sin(𝑄𝑟) d𝑟              (2.25) 

                                                     𝐷(𝑟) =
2

𝜋
∫𝑄𝑖(𝑄) sin(𝑄𝑟) d𝑄           (2.26) 

We can see that the two functions D(r) and Qi(Q) are the Fourier transform of each other.  

If we consider that 𝑔𝑚𝑛(𝑟) → 0 for value of r smaller than the location of the first peak 

in the PDF, we can obtain that 𝐷(𝑟) → −4π𝜌𝑟 ∑ 𝑐𝑚𝑐𝑛𝑓𝑚𝑓𝑛𝑚,𝑛  for small r. Similarly, D(r) goes 

to 0 for large values of r, as 𝑔𝑚𝑛(𝑟) → 1. 

 

2.5 Electrical conductivity measurements 

2.5.1 Introduction to electrochemical impedance spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) represents a very significant method to 

electrically characterise materials. In the past a few decades, this method has been extended 

and broadened to the study of materials involving ionic conduction both in solid and liquid 

sates, especially in liquid. Further application of EIS has been made to the study of solids 2,24-

26. Nowadays, EIS has become a useful method of evaluating many of the electrical properties 

of materials and their interfaces 27 including ionic, semiconducting and mixed electronic-ionic 

materials. 

EIS can be conducted using different methods, including AC Bridges, Lissajous 

Curves, Fast Fourier Transforms (FFT), Phase Sensitive Detections (PSD) and Frequency 

Response Analysis (FRA). FRA is regarded as the standard for EIS and is precise and sensitive.  

In these impedance measurements, an alternating voltage is required. The frequency 

range is commonly from 0.01 Hz to 10 MHz. The general approach is to observe the response 
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to an alternating voltage through measurement of impedance (complex resistance). Typically, 

this involves the application of a range of single-frequency voltages and measurement of 

impedance in the frequency domain. 

When the alternating voltage (at frequency of ω/2π) is applied, an alternating current is 

produced and shifted in phase from the voltage by θ. The delay (phase difference) represents 

the electrical response of the sample 28. Both the magnitude (resistive) and phase shift (reactive) 

parts of impedance are frequency dependent. 

The conventional definition of impedance is: 

                                                              𝑍(𝜔) =
𝑉𝜔

𝐼𝜔
=
𝑣(𝑡)

𝑖(𝑡)
           (2.27) 

where ν(t) = V0 sin (ωt) is a signal at frequency of ω/2π applied to the system, and i(t) = I0 sin 

(ωt + θ) is the measured current. θ is therefore the phase difference between the voltage and 

the current. When θ is zero the impedance Z(ω) represents purely resistive behaviour.  

The alternating voltage and current can be described by complex quantities including 

real and imaginary components. Assuming a linear response to the applied voltage, the 

waveforms can be sinusoidal. The voltage V (t, ω) can be given as  

                                           𝑉(𝑡, 𝜔) = 𝑉0[cos(𝜔𝑡) − 𝑖sin(𝜔𝑡)] = 𝑉0𝑒
𝑖𝜔𝑡          (2.28) 

and then the current I (t, ω) follows in the formula of  

                                 𝐼(𝑡, 𝜔) = 𝐼0[cos(𝜔𝑡 + 𝜃) − 𝑖sin(𝜔𝑡 + 𝜃)] = 𝐼0𝑒
𝑖(𝜔𝑡+𝜃)        (2.29) 

where V0 and I0 are the amplitudes of voltage and the current separately, θ is the phase 

difference between the voltage and the current, and ωt is the angle in radians. 
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Fig. 2.9 Complex impedance spectrum for an ionic conductor, taken from reference 29. The 

value of R1 is the bulk contribution from microcrystalline conductor (intra-grain), the value of 

R2 represents the total resistance, while R3 is the grain boundary resistance. 

 

In 1886, Heaviside 30 adapted the complex exponential functions above to the study of 

electrical circuits. In the complex form impedance can be described as: 

                                               𝑍(𝜔) =
𝑉(𝜔)

𝐼(𝜔)
= |𝑍|𝑒𝑗𝜑 = 𝑍′ + 𝑗𝑍′′         (2.30) 

where 𝑍′ = |𝑍| cos 𝜃  and 𝑍′′ = |𝑍| sin 𝜃 . When 𝜃 = 0, 𝑍′ = 𝑅ⅇ  and when 𝜃 = 𝜋 2⁄ , 𝑍′′ =

1

𝜔𝐶
. Re is the frequency independent resistance and C is the capacitance. 

In a right-hand orthogonal system of axes (complex plane) (Fig. 2.9), the magnitude 

and direction of the planar vector Z can be expressed by the value of the components Z' and 

Z''. Measurement of the impedance magnitude |Z| and phase θ allows for the calculation of the 

real and imaginary parts of impedance, Z' and Z'' respectively. 

 

2.5.2 Calculation of conductivity and activation energy 

As shown in Fig. 2.9, in crystallised glasses the total resistance R (R2) is represented by 

the sum of bulk Rb (R1) and grain boundary Rgb (R3) resistances, R = Rb + Rgb (R2 = R1 + R2). 
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However, in glasses the bulk resistance is the only resistance of the electrolytes. Thus, the 

conductivity of all investigated glass compositions can be calculated using the formula: 

                                                                 𝜎 =
1

𝑅
×
𝑙

𝑆
             (2.31) 

where l is the thickness of the pellet, S is the cross-sectional area (bottom area) of the pellet 

and R is the total resistance. The values of R, at each of the measuring temperature, were 

derived from the fitted complex impedance spectra. 

The temperature dependence of conductivity is given by: 

                                                            𝜎 = 𝜎0exp (
−𝐸a

k𝑇
)            (2.32) 

where k is Boltzmann’s constant and Ea is the activation energy for conductivity. Therefore, 

the activation energy can be calculated directly from the slope of a plot (Arrhenius Plots) of 

the logarithm of conductivity against the reciprocal of absolute temperature. 

 

2.6 Molecular dynamics method 

2.6.1 The integration algorithms 

Molecular dynamics (MD) is a computer simulation method that can be considered a 

form of virtual reality. It is applied to the study of physical movements at the atomic scale, in 

particular N-body (multiple atoms and molecules) systems. In this simulation method the atoms 

and molecules interact with each other, based on the equation of Newtonian mechanics, namely 

𝑓𝑜𝑟𝑐𝑒 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛.  

A sequence of snapshot configurations is generated in the interaction process and each 

of the previous snapshots which are described by the positions, velocities and forces, can 

develop new snapshots. Nevertheless, in nature, the process of the interaction happens 

continuously. Therefore, time is continuous when the equation is integrated. However, in the 

simulation there is no choice but to separate the snapshots by the time interval Δt, which we 

shall call the time step. If the snapshots were given at times t, 𝑡 − ∆𝑡, 𝑡 − 2∆𝑡 etc, the snapshot 

at time 𝑡 + ∆𝑡 can be generated by a studied method which is required to satisfy time reversal 

and to be robust over many timesteps. The spatial coordinates ( 𝐫(𝑡 + ∆𝑡) in the forward time 

direction and  𝐫(𝑡 − ∆𝑡)   in backward time direction) need to be expanded as a Taylor 

expansion: 
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                            𝐫(𝑡 + ∆𝑡)  = 𝐫(𝑡) +
𝜕𝐫(𝑡)

𝜕𝑡
∆𝑡 +

1

2

𝜕2𝐫(𝑡)

𝜕𝑡2
(∆𝑡)2 +⋯    (2.33) 

                            𝐫(𝑡 − ∆𝑡)  = 𝐫(𝑡) −
𝜕𝐫(𝑡)

𝜕𝑡
∆𝑡 +

1

2

𝜕2𝐫(𝑡)

𝜕𝑡2
(∆𝑡)2 +⋯    (2.34) 

In the theory of Newtonian mechanics, we know that 𝑓𝑜𝑟𝑐𝑒 = 𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

If m is the particle mass, the velocity is defined as  𝐯(𝑡) = 𝜕𝐫(𝑡) 𝜕𝑡⁄  and the acceleration is 

defined as 𝐚(𝑡) = 𝜕2𝐫(𝑡) 𝜕𝑡2⁄ , we can develop the force 𝐟(𝑡) = 𝑚𝜕2𝐫(𝑡) 𝜕𝑡2⁄ . Therefore, 

𝐫(𝑡 + ∆𝑡) and 𝐫(𝑡 − ∆𝑡)  are derived in the forms: 

                           𝐫(𝑡 + ∆𝑡)  = 𝐫(𝑡) + 𝐯(𝑡)∆𝑡 +
𝒇(𝑡)

2𝑚
(∆𝑡)2 +⋯    (2.35) 

                           𝐫(𝑡 − ∆𝑡)  = 𝐫(𝑡) − 𝐯(𝑡)∆𝑡 +
𝒇(𝑡)

2𝑚
(∆𝑡)2 +⋯    (2.36) 

Equations for the position 𝐫(𝑡 + ∆𝑡)  and the velocity v(t) can be obtained after 

subtracting, adding and slightly rearranging the two equations above: 

                        𝐫(𝑡 + ∆𝑡)  = 2𝐫(𝑡) − 𝐫(𝑡 − ∆𝑡) +
𝒇(𝑡)

𝑚
(∆𝑡)2 + 𝑂(∆𝑡)4   (2.37) 

                                          𝐯(𝑡) =
𝐫(𝑡+∆𝑡) −𝐫(𝑡−∆𝑡)

2∆𝑡
+ 𝑂(∆𝑡)3      (2.38) 

Both equations are called the Verlet Integration Algorithm. From the equations above, 

it seems that values obtained from focussing on positions rather than velocity will return a 

higher level of accuracy. Besides this, there are additional steps required to calculate the 

velocities. Meanwhile, through the method of Verlet Integration Algorithm, the equation of 

new positions is of no reference to the velocities. Thus, the lower accuracy of the velocities 

does not affect the new positions. Fortunately, more accurate values of velocities at the same 

time step can be generated through a refinement of the Verlet Integration Algorithm which is 

called the Velocity Verlet Method. To obtain these more accurate velocities, an intermediate 

point between two steps (one half of a timestep) needs to be taken into consideration for 

calculation. The velocity at the time 𝑡 + ∆𝑡 2⁄  can be written as a Taylor expansion: 

                                           𝐯(𝑡 + ∆𝑡 2⁄ )  = 𝐯(𝑡) +
1

2

𝜕2𝐫(𝑡)

𝜕𝑡2
∆𝑡        (2.39) 

By adding, subtracting and rearranging this equation with Eqn. 2.33, we can obtain: 

                                           𝐫(𝑡 + ∆𝑡)  = 𝐫(𝑡) + 𝐯(𝑡 + ∆𝑡 2⁄ )∆𝑡        (2.40) 
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At timestep 𝑡 + ∆𝑡, the updated velocity can be generated as: 

                                          𝒗(𝑡 + ∆𝑡)  = 𝒗(𝑡 + ∆𝑡 2⁄ ) +
1

2

𝜕2𝒓(𝑡+∆𝑡)

𝜕𝑡2
∆𝑡         (2.41) 

The derived equation above seems like a Taylor expansion at time 𝑡 + ∆𝑡 2⁄  in step of 

∆𝑡 2⁄ , which is considered at a wrong time. However, it is the fact that this equation is behind 

an expansion at 𝑡 + ∆𝑡 in step of −∆𝑡 2⁄ . After substituting, it follows that 

                                         𝒗(𝑡 + ∆𝑡)  = 𝒗(𝑡) +
1

2
(
𝜕2𝒓(𝑡+∆𝑡)

𝜕𝑡2
+
𝜕2𝒓(𝑡)

𝜕𝑡2
)∆𝑡         (2.42) 

which is the final expression and is commonly used in DL_POLY to calculate the velocity. 

 

2.6.2 Thermodynamic ensembles 

Molecular dynamics simulation always requires different ensembles associated with 

temperature, pressure and other quantities, to represent various environments. There are some 

relevant ensembles denoted as NVE, NPT, NVT etc., where N, V, E, P and T stand for the 

number of atoms, volume, the total energy, pressure, and temperature, respectively. For 

different purposes of the simulation, different ensembles are chosen accordingly, since each 

ensemble represents a particular conserved environment. 

 

2.6.2.1 Microcanonical (NVE) ensemble 

Through the integration algorithm mentioned in the previous section, the updated 

positions and velocities can be obtained after a related derivation and calculation. The 

equations form a scientific basis that ensures the conservation of the total energy, the sum of 

potential and kinetic energy. Meanwhile, in the studied system, the volume (or the shape) of 

the configuration and the number of particles must both be kept consistent. As such, this system 

has consistent levels of number of particles, volume, and energy, hence it is known as the 

microcanonical (NVE) ensemble in statistical thermodynamics.  

The Hamiltonian for the microcanonical ensemble is written as   

                                                    𝐻 = ∑
𝑝𝑖
2

2𝑚𝑖
𝑖 +

1

2
∑ 𝐸(𝒓𝑖)𝑖       (2.43) 
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where mi is the mass of atom labelled i with the corresponding modulus of the momentum pi, 

and E(ri) is the potential energy of the atom with position ri. When summing up, each of the 

particles are counted twice. Therefore, the value of 1/2 is added to the equation. 

 

2.6.2.2 Constant pressure (NPH) or constant stress (NSH) ensembles 

In some studied particle systems, the volume can be allowed to change. Instead, the 

pressure is kept constant along with the number of particles. Thus, a constant value exists in 

this system, which is enthalpy. This kind of system is called a constant pressure (NPH) or 

constant stress (NSH) ensemble. For work on these ensembles, the volume (the size and shape 

included) change must be taken into consideration, which holds a special requirement which is 

fulfilled by adding new dynamical variables to the equation. They are the components of the 

edge vectors of the configuration, or the components of a strain tensor which can be related to 

the atomic variables through rescaling the coordinates. Rahmann and Parinello 31 demonstrated 

the first successful method to achieve this system with variable shape, after the problem of 

implementing a variable size by uniform shape system had been solved. In this case, the three 

edge vectors of the sample configuration are defined as a, b and c. A square matrix h is 

constructed by arranging these three vectors into columns. It follows that 𝑉 = det (𝐡)  = 𝐚 ∙

(𝐛 × 𝐜), where V is the volume. By defining the column vector si containing the fractional 

coordinates xi, yi and zi, the position of a particle can be written in the form of 𝐫𝑖 = 𝐡 ∙ 𝐬𝑖 =

𝑥𝑖𝐚 + 𝑦𝑖𝐛 + 𝑧𝑖𝐜 , where ri is the position vector. Therefore, the square of the distance between 

the two particles can be derived in the form of 𝐫𝑖𝑗
2 = 𝐬𝑖𝑗

T ∙ (𝐡T ∙ 𝐡) ∙ 𝐬𝑖𝑗 . As we know, the 

particle's equation of motion is derived from a Hamiltonian (or Lagrangian), with both potential 

energy and kinetic energy terms included, with the variables being the coordinates and the 

velocities. When new dynamic variables are introduced into the same framework as the 

microcanonical ensemble, analogous terms need to be constructed in the Hamiltonian. Thus, 

the Hamiltonian is obtained in this form: 

                 𝐻 =
1

2
∑ 𝑚𝑖𝐬̇𝑖

T ∙ (𝐡T ∙ 𝐡) ∙ 𝐬̇𝑖𝑖 +
1

2
∑ 𝐸(𝐬𝑖, 𝐡)𝑖 +

1

2
𝑀Tr(𝐡̇T ∙ 𝐡̇) + 𝑃𝑉     (2.44) 

where M can be treated as an effective mass of the particle.  
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2.6.2.3 Constant temperature (NVT or NPT) ensemble 

One tradition of the MD simulation requires researchers to generate a way to control 

temperature. In most cases, a given temperature will have a corresponding initial set of atom 

velocities. However, potential energy is released and converts into kinetic energy in the initial 

time steps because the distribution of potential energies of the atoms cannot be treated in the 

same way. It indicates that the samples would have to be heated up and many codes allow the 

velocities to be periodically changed until the simulation temperature fluctuates around a mean 

value which is roughly at the intended temperature. In this framework, the simulation is run in 

a system called the constant temperature (NVT or NPT) ensemble. Whilst this practical 

approach seems reasonable, it has no robust basis in statistical mechanics. Therefore, it is not 

feasible when a simulation process needs to continuously change its heat energy to maintain a 

constant temperature. A number of variants on the rescaling theme were proposed, and some 

of these are implemented in DL_POLY. Such methods ensure the MD simulation continues to 

progress around a chosen temperature. Unfortunately, no conservation laws exist in these 

methods, and as such they do not belong to any statistical mechanics ensemble. However, Nosè 

32 developed a method which was refined by Hoover 33. Nosè solved these problems by 

introducing a new variable, s, into the Hamiltonian. He scaled the momentum instead of space: 

                            𝐻 = ∑
𝑝𝑖
2

2𝑚𝑖𝑠
2𝑖 +

1

2
∑ 𝐸(𝒓𝑖)𝑖 +

1

2
𝑄𝑠̇2 + (3𝑁 + 1)𝑘𝐵𝑇 ln 𝑠      (2.45) 

where N is the number of particles, Q is the effective mass and s scales the time. This 

Hamiltonian provides a distribution of particle energies consistent with the canonical ensemble. 

In this ensemble, the temperature is not a constant but instead fluctuates around an average 

value corresponding to the temperature of an effective heat bath in contact with the sample. 

 

2.6.3 Ewald sum 

In MD simulations, problems exist when researchers handle the Coulomb interaction 

due to its long range. This means that codes cannot use standard cut-offs for the interactions as 

for the short-range interactions. To solve this problem, the Ewald sum can be applied in MD 

simulations directly and is widely used in normal lattice simulations. In the method of Ewald 

34 (described by Born and Huang 35), the quantity 1/r was recognized to equal to a definite 

integral of the Gaussian function: 
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1

𝑟
=

2

√𝜋
∫ exp(−𝑟2𝜌2)d𝜌
∞

0
         (2.46) 

Therefore, the Coulomb energy can be expressed as: 

                                     𝐸C =
1

2
∑ ∑

𝑄𝑖𝑄𝑗

2𝜋3/2𝜖0
𝑖,𝑗𝑙 ∫ exp(−𝑟𝑖𝑗

2(𝑙)𝜌2)d𝜌
∞

0
       (2.47) 

where i and j label the pairs of atoms of charge Qi and Qj respectively, and l is the label of the 

copy of the configuration. By separating the integral in this equation into two parts, we can 

obtain: 

∫ exp(−𝑟2𝜌2)d𝜌
∞

0

= ∫ exp(−𝑟2𝜌2)d𝜌
𝑔

0

+∫ exp(−𝑟2𝜌2)d𝜌
∞

𝑔

= ∫ exp(−𝑟2𝜌2)d𝜌
𝑔

0

+
√𝜋

2

erfc(𝑔𝑟)

𝑟
 

 (2.48) 

where g indicates an adjustable parameter and erfc(x) is the complementary error function 

which is defined as: 

                                                  erfc(𝑥) =
2

√𝜋
∫ exp(𝑦2)d𝑦
∞

𝑥
          (2.49) 

It is obvious that r plays a critical role in this system. When r is increased, the second 

term in Eqn. 2.48 decreases to the value of zero quickly. On the other hand, the first term turns 

out to be useful with a transformation to reciprocal space. Ewald's transformation is shown as: 

                  
2

√𝜋
∑ exp(−𝑟𝑖𝑗

2(𝑙)𝜌2)𝑙 =
2𝜋

𝑉
∑ 𝜌−3exp(−𝐺2 4𝜌2⁄ )exp(𝑖𝐆 ∙ 𝐫𝑖𝑗)𝐆     (2.50) 

where rij is the distance vector between atoms i and j, V is the volume of the MD configuration, 

and G is the vector of the reciprocal lattice of the system with periodic boundaries. We need 

the integral: 

            ∫ 𝜌−3exp(−𝐺2 4𝜌2⁄ )exp(𝑖𝐆 ∙ 𝐫𝑖𝑗)d𝜌
𝑔

0
=
2exp(−𝐺2 4𝑔2⁄ )

𝐺2
exp(𝑖𝐆 ∙ 𝐫𝑖𝑗)  (2.51) 

Rearranging all the equations, we can obtain: 

𝐸C =
1

2
∑
𝑄𝑖𝑄𝑗

4𝜋𝜖0
𝑖𝑗

∑
erfc (𝑔𝑟𝑖𝑗(𝑙))

𝑟𝑖𝑗(𝑙)
𝑙

+
1

2
∑
𝑄𝑖𝑄𝑗

4𝜋𝜖0

4𝜋

𝑉
𝑖𝑗

∑
exp(−𝐺2 4𝑔2⁄ )

𝐺2
exp(𝑖𝐆 ∙ 𝐫𝑖𝑗)

𝑮

 

(2.52) 
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One point was not discussed in the equations above; the terms i = j for l = 0 must be 

included when the transformation to reciprocal space is being made, and this important point 

needs to be accounted for when the equations are derived. To solve this problem, the term needs 

to be separate from the real-space summation, which is obtained by subtracting the raw term. 

As a result, the term known as the self-energy is given as: 

                                                     𝐸self = lim
𝑟→0

𝑄𝑖
2

4𝜋𝜖0

erfc(𝑔𝑟)−1

𝑟
        (2.53) 

The numerator is equal to the error function, erf(gr), which is the limit of small argument 

erfc(𝑔𝑟) → 2𝑔𝑟 √𝜋⁄ . Thus, the term can be shown as: 

                                                     𝐸self = −
1

4𝜋𝜖0
∑

𝑔𝑄𝑖
2

√𝜋𝑖       (2.54) 

We also have to consider the situation for G = 0 in the reciprocal space term. The value of the 

term for G = 0 is zero in a system with a centre of symmetry. However, it is difficult to calculate 

and analyse the term in a system without a centre of symmetry, because of dependence of the 

result on the direction in which G approaches the value of 0. Therefore, researchers frequently 

neglect the term for G = 0. 

 

2.6.4 Potentials 

Potentials, usually known as “force fields”, are the mathematical equations that 

represent interactions between atoms in the studied system. These equations often include some 

parameters with values that can be obtained by fitting to data sets of experimental results. 

Crystallographic parameters (unit cell parameters, atomic positions) and physical properties 

(often elastic and vibrational quantities) are used for fitting processes. Researchers often obtain 

parameters by fitting to energies of crystals or clusters of atoms calculated by ab initio methods. 

In either case, values of parameters should have the best agreement with experimental data. 

In this work, the model was used for amorphous states rather than crystalline. The 

atomic forces in glasses and in the corresponding crystals are of the same order of magnitude, 

because of the observation of similar mechanical properties. Crystalline solids and the 

corresponding glasses share the same local structure. It can therefore be assumed that a force 

field able to reproduce the properties of crystals can be reasonably applied in the simulation of 

the corresponding glasses 36. 
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Many sets of potentials (force fields) can be chosen for systems. In this work, the model 

of Pedone et al. 36 was applied for the simulations. There were two main reasons for this choice. 

First, this potential was developed for a range of elements, including Li, O, P and Mn that are 

studied in this work. Second, the potential was specially developed for application to glasses. 

The form of the potential used is: 

𝐸𝑖𝑗 =
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖𝑗
+ 𝐷𝑖𝑗 [{1 − 𝑒

−𝑎𝑖𝑗(𝑟𝑖𝑗−𝑟0)}
2

− 1]       (2.55) 

where ε0 is the vacuum permittivity, rij is the distance between atom i and j, Qi and Qj are 

effective ionic charges of atom i and j, Dij is the bond dissociation energy (the minimum energy 

of the function), r0 is the is the equilibrium bond distance, and aij is the vibrational frequency.  

The first term is the long-range Coulomb interaction between the charged ions. The 

effective ionic charge is not an exact charge quantity that ions possess. Since some electrons 

are distributed within a chemical bond, ionic charges may vary with changing chemical 

composition. Pedone et al. assumed that the value of the ionic charge should be a fitted 

parameter rather than given too exactly. For example, the charge value of the oxygen anion is 

set to –1.2 e because this value has been successfully used in some force fields, such as BKS 

potential for silicates. The second term is the classical Morse potential, the interaction 

combining short-range attraction and repulsion. The attractive interaction is associated with 

covalent bonding and the repulsion is caused by the overlap of electrons of neighbouring ions. 

Although the Coulomb interaction is not contained between atoms that are bonded with the 

Morse potential, Pedone et al. took the method of including the Coulomb interaction. They 

considered the parameters in the Morse potential as fitting parameters and treated them to have 

no physical significance. The values of parameters for materials containing Li, O, P and Mn, 

were taken from 36 and are summarised in Table 2.2: 

 

Table 2.2 Potential parameters used in MD simulations 36. 

Atom Pair Dij (eV) r0 (Å) aij (Å
−1) 

O−1.2 − O−1.2 0.042395 3.618701 1.379316 

Li0.6 − O−1.2 0.001114 2.681360 3.429506 

P3.0 − O−1.2 0.831326 1.800790 2.585833 

Mn1.2 − O−1.2 0.029658 2.852075 1.997543 
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From Eqn. 2.55, it is observed that the model is a pair-potential excluding terms that 

depend on bond angles. In the simulation of a glass formation process, melting a solid-state 

configuration and then quenching causes a continuous change of atomic neighbours. Thus, it 

is preferred that the model does not need to include these terms.  

 Five crystal structures, Li2MnP2O7 
37, beta-Li2MnP2O7 

38, Li2MnP4O12 
39, LiMnP3O9 

40 

and LiMnPO4 
41, were taken as examples to test the performance of the chosen potential. The 

definition of lattice energy, is the sum of all pairwise interactions in the structure.  A lattice-

energy minimisation calculation was performed for each structure, which is used by most 

lattice simulation programs. The lattice program GULP package was used  42,43 for this work. 

Standard function minimisation techniques were used to determine the structure with lowest 

lattice energy and properties including vibrational frequencies at this minimum-energy 

structure. The structures generated for all five compositions are compared to those 

experimental observed in Fig. 2.10-2.14. The calculated structures contain the same structural 

elements that can be clearly identified. However, there are some small rotations of the structural 

polyhedra. For example, there are obvious differences between the experimental and calculated 

structures for Li2MnP4O12, with the calculated one more compact.   

 

 

Fig. 2.10 The crystal structure of Li2MnP2O7: (a) experimental and (b) calculated. 
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Fig. 2.11 The crystal structure of beta-Li2MnP2O7: (a) experimental and (b) calculated. 

 

 

 

Fig. 2.12 The crystal structure of Li2MnP4O12: (a) experimental and (b) calculated. 
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Fig. 2.13 The crystal structure of LiMnP3O9: (a) experimental and (b) calculated. 

 

 

 

Fig. 2.14 The crystal structure of LiMnPO4: (a) experimental and (b) calculated. 
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Fig. 2.15 Comparison of experimental and calculated lattice parameters for five crystalline 

lithium manganese phosphates. 

A comparison of experimental and calculated lattice parameters for the five 

compositions is shown in Fig. 2.15. Typically, it is expected that the agreement between 

calculated and experimental lattice parameters should be within around 3%, and this is the case 

for most of the results. For most cases, the points in the plot of the two values are close to a 

straight line of unit gradient, which means that the model is good. However, there are some 

very large discrepancies. For example, one of the lattice parameters for Li2MnP4O12 is far away 

from the straight line. The volume discrepancies between experimental and calculated results 

for Li2MnP2O7, beta-Li2MnP2O7, Li2MnP4O12, LiMnP3O9, and LiMnPO4 are about 8.53%, 

6.12%, 16.54%, 11.58%, 5.6%, respectively. Thus, the model is least satisfactory for 

Li2MnP4O12. This suggest that the force field differs somewhat in structures with different 

bonding frameworks. 

In Table 2.3 we compare the average bond lengths of each cation–oxygen pair between 

the experiment and calculated structures. Generally, the agreement is very good. The Li–O 

distances all show agreement better that 3% (usually with a slight under-estimate of the 

calculate values) and the Mn–O agreement 4% or lower (usually with a slight over-estimate for 
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the calculated value). The P–O distances are 3–6% under-estimated in the calculation, giving 

the most significant discrepancy between calculation and experiment. 

Overall, the tests show that the model of Perdone et al. is not perfect, but that we can 

judge it to be adequate for the simulation of Li–Mn–P–O glasses. The largest discrepancy, 

namely too short a P–O distance, is unlikely to be significant in the modelling of the glass 

states. For the application in this thesis it was felt inappropriate to try to improve the model, 

given that one of its advantages is that it is likely to be free of any biases that might arise from 

fitting to a more focussed set of data. 

 

Table 2.3 Average bond distances generated from the experimental and calculated, and 

differences for all five structures. 

Composition Bond type Exp. (Å) Cal. (Å) Difference (%) 

 

Li2MnP2O7 

Li−O 2.046 1.991 −2.68 

P−O 1.543 1.482 −3.98 

Mn−O 2.184 2.172 −0.52 

 

beta-Li2MnP2O7 

Li−O 1.999 1.998 −0.06 

P−O 1.544 1.494 −3.25 

Mn−O 2.208 2.235 +1.22 

 

Li2MnP4O12 

Li−O 2.169 2.157 −0.55 

P−O 1.534 1.448 −5.61 

Mn−O 2.185 2.276 +4.01 

 

LiMnP3O9 

Li−O 2.068 2.044 −1.14 

P−O 1.540 1.477 −4.09 

Mn−O 2.108 2.201 +4.23 

 

LiMnPO4 

Li−O 2.142 2.179 +1.69 

P−O 1.543 1.489 −3.47 

Mn−O 2.207 2.222 +0.67 
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2.6.5 MD code 

The algorithms given above are implemented in the general Molecular Dynamics (MD) 

code DL_POLY 44, with high performance for both parallel and serial simulations. All the MD 

simulations in this project were performed using DL_POLY version 4.08 44 on Apocrita (a part 

of the MidPlus consortium).   
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Chapter 3 Structure and Conductivity in (50-x) Li2O: xMnO: 50P2O5 Glasses 

 

3.0 Introduction 

This chapter deals with synthesis and structural investigation of two crystalline 

compositions LiMn(PO3)3 (lithium manganese metaphosphate) and Li2Mn(PO3)4 (di-lithium 

manganese metaphosphate), and five glass compositions (50 − x) Li2O: xMnO: 50P2O5 (x = 

10.0, 25.0, 33.3, 40.0 and 50.0). Assuming, the MnO is network modifying, the samples are all 

metaphosphates, with an O:P ratio of 3. These compositions were chosen because of the 

expected ease of synthesis of the glasses (in general glasses with higher O:P ratios crystallise 

more easily). The crystalline systems have been studied used X-ray diffraction and the glass 

systems have been studied used density measurements, infrared spectroscopy, thermal analysis, 

neutron scattering, molecular dynamics simulations and electrical measurements. 

 

3.1 Experimental  

3.1.1 Synthesis 

Samples of general composition (50−x) Li2O: xMnO: 50P2O5 (Table 3.1) were 

prepared using appropriate amounts of reagent-grade Li2CO3 (BDH, 99.9%), MnO (BDH, 

99.6%), and NH4H2PO4 (May & Baker, 98.0%). For the neutron scattering PDF analysis 

Li2CO3 isotopically enriched in 6Li (American Elements, 6Li2CO3, 94.61%; 7Li2CO3, 5.39%) 

was mixed with naturally abundant Li2CO3 (
7Li 92.41%; 6Li, 7.59% 1) to obtain “null lithium” 

glasses in which the average neutron scattering length of Li is approximately equal to zero.  
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Table 3.1 Compositions studied in this chapter. 

Compositions (50−x) Li2O: xMnO: 50P2O5 Value of x 

40Li2O: 10MnO: 50P2O5 10.0 

25Li2O: 25MnO: 50P2O5 (or Li2Mn(PO3)4) 25.0 

16.7Li2O: 33.3MnO: 50P2O5 (or LiMn(PO3)3) 33.3 

10Li2O: 40MnO: 50P2O5 40.0 

50MnO: 50P2O5 50.0 

 

For standard glasses i.e., those containing naturally abundant lithium, appropriate 

amounts of the starting materials (Li2CO3, MnO, and NH4H2PO4) were weighed accurately to 

give approximately 5 g of glass. The starting materials were ground together using an agate 

mortar and pestle as a slurry in industrial methylated spirits (IMS, VWR, 99%) for 15 min. The 

slurry was then dried in air at ambient temperature for at least 3 h. The dried mixture was placed 

in a platinum crucible and transferred to an electric muffle furnace (Lenton Laboratory Furnace 

AWF 12/5). The mixture was heated at 300 °C for 30 min to release the volatile decomposition 

products (H2O and NH3), then cooled and reground. The sample was reheated to 650 °C for 1 

h to release CO2. The sample was then heated to 1100 °C to achieve the melt, remaining at this 

temperature for at least 1 h. Glasses were obtained by quenching in air between two stainless-

steel plates. Glasses were either dry ground in an agate mortar or broken up into small chunks. 

In both cases glasses were stored under vacuum over silica gel. The decomposition reactions 

at 300 and 650 C are shown below: 

 

2 NH4H2PO4 (s)  
300 C
→     P2O5 (s) + 4 NH3 (g) + 3 H2O (g)    (3.1) 

 

Li2CO3 (s)  
650 C
→     Li2O (s) + CO2 (g)      (3.2) 

 

For preparations of “null lithium” glasses, all the processes such as grinding, heating 

and quenching were identical to those used for standard glasses. However, the 6Li/7Li isotopic 

ratio was adjusted to give “null lithium” i.e. to give an average neutron scattering length (baver) 

for lithium approximately equal to zero. These were prepared to create data sets where the 
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scattering was entirely due to the non-Li atoms. In this way the pair correlations involving Li 

could clearly be identified by subtracting the total pair distribution function of the null lithium 

sample from that of the natural lithium sample. The neutron scattering lengths of 6Li (b6) and 

7Li (b7) are 2.00 fm and −2.22 fm respectively while that for natural Li (bN) is −1.90 fm 2. 

Assuming that x and y indicate the mole percentages of 6Li and 7Li, respectively, to 

make the average scattering length baver equal to 0, it follows that:  

                                         xb6 + yb7 = baver = 0    (3.3) 

Obviously, the total mole percentage has a value of 100%:   

                                              x + y = 100%     (3.4) 

Thus, using the scattering lengths given above we obtained x = 52.61% and y = 47.39%. Using 

the isotopic abundances of natural and isotopically enriched Li2CO3 the required masses of 

each are readily calculated for each composition.   

Traditional solid-state reaction methods were used to prepare polycrystalline samples. 

As for the glass preparations, appropriate amounts of the starting materials (Li2CO3, MnO, and 

NH4H2PO4) were ground together using an agate mortar and pestle as a slurry in IMS for 15 

min and then dried in air at ambient temperature for 3 h. The dried mixture was placed in a 

platinum crucible and heated to 300 C for 30 min and reheated to 650 C for 1 h. The samples 

were then cooled and reground. In the case of LiMn(PO3)3, the mixture was reheated to 350 °C 

for 72 h, before slow cooling to room temperature in the furnace. In the case of Li2Mn(PO3)4, 

the mixture was heated to 700 °C for 24 hours and then slow cooled to room temperature in the 

furnace. 

A summary of the different synthesis conditions used for glass and crystalline samples 

is given in Table 3.2. 

The compositions (50−x) Li2O: xMnO: 50P2O5 (x = 25 and x = 33.3) were chosen for 

the glasses since they are isocompositional with the crystalline systems Li2Mn(PO3)4 and 

LiMn(PO3)3 and hence a direct comparison can be made between the amorphous and crystalline 

structures.  
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Table 3.2 Summary of preparation parameters for samples of composition (50−x) Li2O: xMnO: 

50P2O5 described in this work, where G and C represent “glass” and “crystalline”, respectively 

and “Li Type” indicates whether the samples were “natural” for naturally abundant Li or “null” 

for null-lithium. Slow cooling indicates that samples were left to cool exponentially in the 

furnace over a period of 6 to 12 h, while quenching involved rapid cooling onto a stainless-

steel plate. 

 

x 

 

G /C 

 

Li Type 

Reaction 1 Reaction 2 Reaction 3 

T 

(°C) 

Time 

(h) 

T 

(°C) 

Time 

(h) 

T 

(°C) 

Time 

(h) 

Cooling 

Procedure 

33.3 C natural 300 0.5 650 1 350 72 slow 

25.0 C natural 300 0.5 650 1 700 24 slow 

33.3 G Null 300 0.5 650 1 1100 1 quenched 

25.0 G Null 300 0.5 650 1 1100 1 quenched 

50.0 G natural 300 0.5 650 1 1100 1 quenched 

40.0 G natural 300 0.5 650 1 1100 1 quenched 

33.3 G natural 300 0.5 650 1 1100 1 quenched 

25.0 G natural 300 0.5 650 1 1100 1 quenched 

10.0 G natural 300 0.5 650 1 1100 1 quenched 

 

 

3.1.2 Density measurements 

Density measurements were performed by helium gas displacement (AccuPyc 1330 

Pycnometer). Measurements were repeated at least five times and average values used. Density 

values are required for the calculation of free volume which is an essential measure of the 

structure compactness which can influence Li+ mobility. In addition, density values are 

required for accurate data correction for PDF measurements and for the MD simulations.  

 

3.1.3 Infrared spectroscopy 

Infrared spectroscopy was carried out on a Perkin Elmer: Spectrum 65 FT-IR 

spectrometer in the range 600-1500 cm−1 with a resolution of 32 cm−1. The measurements were 

made on powdered samples and all spectra were measured at room temperature. This 
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measurement was used to detect the approximate distribution of phosphate Q-species in studied 

glasses. 

 

3.1.4 Thermal analysis 

Combined thermogravimetric analysis (TGA) and differential thermal analysis (DTA), 

as well as differential scanning calorimetry (DSC) were used to investigate the thermal 

behaviour of glass and crystalline compositions, using a Thorn Scientific STA 1500 and a 

Perkin Elmer DSC-7, respectively. Samples of approximate mass 30 mg were subjected to 

controlled heating and cooling cycles. Thermograms were collected in air over the temperature 

range 20 C to 1000 C, with heating and cooling rates of 20 C min–1. TGA was used to 

confirm that no decomposition of the glass took place (eg. through volatilization), while DTA 

and DSC were applied to obtain the key temperatures of Tg, Tc and Tm, which give information 

on the network strength and the workability of the glass. 

 

3.1.5 X-ray diffraction 

Standard X-ray powder diffraction data were collected on a PANalytical X'Pert Pro 

diffractometer in flat plate θ/θ geometry using Ni filtered Cu-Kα radiation (λ = 1.5418 Å), in 

the 2θ range 5-70, in steps of 0.033 with an effective count rate of 100 s per step. In the case 

of glass samples these measurements were used to confirm the amorphous nature. For Rietveld 

analysis of the crystalline samples Li2Mn(PO3)4 and LiMn(PO3)3 data were collected on a 

Malvern PANalytical Cubix 3 diffractometer in flat plate θ/θ geometry using Ni filtered Cu-

Kα radiation (λ = 1.5418 Å), in the 2θ range 5-120, in steps of 0.0158 with an effective count 

rate of 400 s per step. These data were analysed using the GSAS refinement software 3 to yield 

details of the crystal structure. For X-ray scattering analysis, data were collected on 

PANalytical Empyrean diffractometer using Rh-filtered Ag-Kα radiation ( = 0.5609 Å). Data 

were collected from 3-148 2θ in θ/θ geometry with samples mounted in 1 mm diameter 

Kapton capillaries. Data were collected in steps of 0.033 2θ, with a scan time of 440 s per 

step. For each sample five scans were summed to give the final data. Data sets for an empty 

Kapton capillary and the empty instrument were collected under the same conditions for data 

correction purposes, which was carried out using the GudrunX software 4. In addition, further 

X-ray diffraction data were collected on the XPDF I51-1 diffractometer at the Diamond 
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Facility, Rutherford Appleton Laboratory. For these experiments, samples were loaded into 1 

mm diameter silica glass capillaries. A wavelength of 0.1617 Å (E = 76.69 keV) was used over 

a large area detector (Qmax = 40 Å−1) for 10 min for each sample. Data were analysed in the 

same way as the laboratory X-ray data using GudrunX 4. Combined with the results from 

neutron diffraction, PDFs generated from X-ray data can provide some basic information, such 

as bond lengths. 

 

Table 3.3 Dimensions of the loaded cans used to collect neutron data on glass compositions of 

general formula (50−x) Li2O: xMnO: 50P2O5 (x = 10, 25, 33.3 and 50), where “Li Type” 

indicates whether the samples contained “natural” for naturally abundant Li or “null” for null-

lithium. 

Composition (x) Li Type Diameter (mm) Height(mm) Weight (g) 

33.3 null 11 56 6.60 

25.0 null 11 54 7.21 

50.0 natural 11 58 8.66 

40.0 natural 11 53 7.92 

33.3 natural 11 57 7.66 

25.0 natural 11 58 5.37 

10.0 natural 11 57 6.59 

 

 

3.1.6 Neutron scattering 

Neutron scattering data were collected on the SANDALS diffractometer at the ISIS 

facility, Rutherford Appleton laboratory. Samples were loaded as large glass chunks into thin 

walled 11 mm diameter vanadium cans. The dimensions of the loaded cans are presented in 

Table 3.3. Total data collections of around 1800 μA h were made for each sample. Data sets 

for an empty can and empty instrument were collected for data correction purposes and data 

for a vanadium/niobium rod used for normalisation. Data correction was carried out using the 

GudrunN software 4. Like the X-ray PDFs, neutron PDFs can offer experimental information 

about the structure of the studied glasses, with the added advantage of greater Q-range yielding 
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more accurate PDFs compared to those from X-ray scattering and the enhanced contribution 

of lithium to the neutron data.   

 

3.1.7 Molecular dynamics (MD) simulations 

MD simulations were performed using DL_POLY version 4.08 5,6 on Apocrita (a part 

of the MidPlus consortium). Mentioned in Section 2.6.4, the form of the potential used is: 

𝐸𝑖𝑗 =
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝑟𝑖𝑗
+ 𝐷𝑖𝑗 [{1 − 𝑒

−𝑎𝑖𝑗(𝑟𝑖𝑗−𝑟0)}
2

− 1]   (3.5) 

The values of parameters were taken from the reference 7 and are summarised in Table 2.2.     

The initial model was based on an NaCl lattice with random replacement of atoms to 

give the required stoichiometry. In each case, the size of the model was around 11000 atoms. 

MD simulations were performed with a constant temperature (NPT) ensemble. The equations 

of motion were integrated using the Nosé-Hoover algorithm 6. Simulations were carried out in 

steps of 0.01 ps over a total of 20000 ps. Parallel calculations at different temperatures were 

carried for each composition to establish the melting temperature. This was judged by assessing 

the degree of crystallinity in the resulting D(r) distributions. Final simulated melting 

temperatures of 2000, 2500, 3000, 2500 and 2000 K were used for the x = 10.0, 25.0, 33.3. 

40.0 and 50.0 compositions, respectively. In each case, after 20000 ps a simulated quench to 

300 K was performed to obtain the glass. 

 

Table 3.4 Parameters for pellets of glass compositions (50−x) Li2O: xMnO: 50P2O5 used in 

electrical measurements. 

Composition x Bottom Area 

(mm2) 

Height 

(mm) 

Tmax 

(C) 

Tmin 

(C) 

40Li2O: 10MnO: 50P2O5 10.0 70.12 1.68 317 200 

25Li2O: 25MnO: 50P2O5 25.0 39.29 1.62 300 161 

16.7Li2O: 33.3MnO: 50P2O5 33.3 122.5 1.31 401 212 

10Li2O: 40MnO: 50P2O5 40.0 75.96 1.05 347 203 

50MnO: 50P2O5 50.0 76.34 1.29 300 203 
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3.1.8 Electrical measurements 

Conductivity and related activation energy are very important properties for electrode 

materials and can be obtained through electrical measurements. Five glass samples (Table 3.4) 

were selected. Pellets were produced by pouring the melt into a stainless-steel cylindrical 

mould. For all samples, pellets were polished using a selection of abrasive papers 1200 to 4000 

grit. Finally, silver film electrodes were applied to the polished faces of sample pellets. 

Electrical measurements were carried out using a computer controlled Autolab 

PGSTAT302N frequency response analyser in the frequency range from 0.1 to 330 kHz in air 

with an ac signal amplitude of 100 mV. Experiments were carried out at a set of stabilised 

temperatures during controlled heating and cooling cycles. The cooling measurements were 

performed to investigate possible thermal hysteresis. To avoid sample softening, the highest 

measurement temperature was about 30 to 60 C below the corresponding glass transition 

temperature. The lowest measurement temperature was around 160 to 200 C. Table 3.4 

summarises the pellet parameters and corresponding measuring conditions of the studied 

samples. 

 

3.2 Results & discussion  

3.2.1 Crystalline LiMn(PO3)3 and Li2Mn(PO3)4 

To provide a comparison with the glasses the crystal structures of two crystalline 

compositions LiMn(PO3)3 and Li2Mn(PO3)4 were analysed. These crystalline phases are 

isocompositional with the x = 33.3 and 25.0 glass samples, respectively.  Both powders were 

purple (lilac) in colour. The fitted X-ray powder diffraction profiles for crystalline LiMn(PO3)3 

and Li2Mn(PO3)4 are shown in Fig. 3.1. The starting model for LiMn(PO3)3 was taken from 

Murashova and Chudinova, while that for  Li2Mn(PO3)4 was taken from an unpublished single 

crystal structure from the Abrahams group 8. Crystal and refinement parameters are given in 

Tables 3.5 and 3.6, refined structural parameters in Tables 3.7 and 3.8, significant bond lengths 

and angles given in Tables 3.9 and 3.10, for LiMn(PO3)3 and  Li2Mn(PO3)4, respectively. 
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(a) 

 

(b) 

 

Fig. 3.1 Fitted X-ray powder diffraction profiles for (a) LiMn(PO3)3 and (b) Li2Mn(PO4)4 

showing observed (+ symbols), calculated (green line), and difference (lower magenta line) 

profiles. Reflection positions are indicated by markers. 
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Table 3.5 Crystal, Data Collection and Structure Refinement Data for LiMn(PO3)3. Estimated 

standard deviations are given in parentheses. 

 

(a) Crystal data  

Name Lithium manganese metaphosphate 

Empirical formula LiMnO9P3 

Structural formula LiMn(P3O9) 

Formula weight 298.79 g mol-1 

Crystal system Orthorhombic 

Space group P212121 

Unit cell dimensions a = 8.4495(1) Å, b = 8.6711(1) Å,  

c = 8.7558(1) Å 

Volume 641.50 (2) Å3 

Z 4 

Density (calculated) 3.094 g cm-3 

Absorption coefficient  24.59 mm-1 

F(000) 580 

Sample description Purple powder 

Synthesis Solid state synthesis from Li2CO3, MnO and 

NH4H2PO4 

 

(b) Data collection 

 

Diffractometer PANalytical Cubix 3 

Scan mode / 

Temperature 293 K 

Wavelength 1.5418 Å 

2 range collected 5-120 

Step size 0.0158 

Scan time 400 s 

Monochromator/filter Ni-filter 

 

 

(c) Refinement 

 

Refinement software GSAS (Larson and Von Dreele, 1986) 

Initial model source E. V. Murashova and N. N. Chudinova, 

Crystallography Reports 46 (2001) 942. 

2 range refined 10-120 

Excluded regions 5-10 

Data corrections None 

Secondary phases Li(PO3) not modelled 

No. of 

observations/restraints/parameters 

6982/0/63 

Total no. of reflections used  1161 

Peak shape Pseudo-Voigt 

Final R-factors Rp   = 0.0179, Rwp  =  0.0117 

Rex  = 0.0101, 2   =   3.165 

RB =   0.0953 

Maximum atomic shift (Å) 0.00 
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Table 3.6 Crystal, Data Collection and Structure Refinement Data for Li2Mn(PO3)4. Estimated 

standard deviations are given in parentheses. 

 

(a) Crystal data  

Name Di-lithium manganese metaphosphate 

Empirical formula Li2MnO12P4 

Structural formula Li2Mn(P4O12) 

Formula weight 384.70 g mol-1 

Crystal system Orthorhombic 

Space group Pnma 

Unit cell dimensions a = 9.4333(2) Å, b = 9.2814(2) Å, c = 

10.1063(3) Å 

Volume 884.85(5) Å3 

Z 4 

Density (calculated) 2.888 g cm-3 

Absorption coefficient  22.13 mm-1 

F(000) 748 

Sample description Purple powder 

Synthesis Solid state synthesis from Li2CO3, MnO and 

NH4H2PO4 

 

(b) Data collection 

 

Diffractometer PANalytical Cubix 3 

Scan mode / 

Temperature 293 K 

Wavelength 1.5418 Å 

2 range collected 5-120 

Step size 0.0158 

Scan time 400 s 

Monochromator/filter Ni-filter 

 

(c) Refinement 

 

Refinement software GSAS (Larson and Von Dreele, 1986) 

Initial model source A. Nadarajah, BSc project dissertation, School 

of Biological and Chemical Sciences, Queen 

Mary University of London 2013. 

2 range refined 10-120 

Excluded regions 5-10 

Data corrections Preferred orientation 

Secondary phases None 

No. of 

observations/restraints/parameters 

6982/0/65 

Total no. of reflections used  1422 

Peak shape Pseudo-Voigt 

Final R-factors Rp   = 0.0255, Rwp  =  0.0167 

Rex  = 0.0108, 2   =   5.628 

RB =   0.1297 

Maximum atomic shift (Å) 0.00 
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Table 3.7 Atomic Coordinates and Isotropic Thermal Parameters for LiMn(PO3)3. Estimated 

standard deviations are given in parentheses. 

 

Atom Site x y z Occ. Uiso (Å2) 

Mn1 4a 0.1283(4) 0.8581(4) 0.1615(4) 1 0.015(3) 

P1 4a 0.2014(7) 0.8070(8) 0.5634(7) 1 0.012(2) 

P2 4a 0.3074(7) 0.5229(8) 0.6911(6) 1 0.012(2) 

P3 4a 0.0308(6) 0.3243(6) 0.6824(8) 1 0.012(2) 

O1 4a 0.1583(14) 0.8651(15) 0.4052(13) 1 0.009(3) 

O2 4a 0.3127(13) 0.9085(11) 0.6592(13) 1 0.009(3) 

O3 4a 0.2662(13) 0.6420(14) 0.5488(14) 1 0.009(3) 

O4 4a 0.0388(12) 0.7728(12) 0.6504(13) 1 0.009(3) 

O5 4a 0.3698(14) 0.6142(12) 0.8205(15) 1 0.009(3) 

O6 4a 0.1243(14) 0.4702(14) 0.7346(13) 1 0.009(3) 

O7 4a 0.5846(11) 0.8878(13) 0.8569(13) 1 0.009(3) 

O8 4a -0.1087(14) 0.3677(13) 0.5809(11) 1 0.009(3) 

O9 4a 0.1252(13) 0.1919(13) 0.6156(11) 1 0.009(3) 

Li1 4a 0.3464 0.8649 0.8842 1 0.02 

 

 

 

Table 3.8 Atomic Coordinates and Isotropic Thermal Parameters for Li2Mn(PO3)4. Estimated 

standard deviations are given in parentheses. 

 

Atom Site x y z Occ. Uiso (Å2) 

  Mn1 4c 0.5132(5) 0.25 0.3018(4) 1 0.088(4) 

  P1 8d 0.7926(5) 0.0411(8) 0.3912(4) 1 0.081(4) 

  P2 4c 0.8010(7) 0.25 0.6023(7) 1 0.081(4) 

  P3 4c 0.7755(8) -0.25 0.5126(7) 1 0.081(4) 

  O1 8d 0.6267(10) 0.0494(15) 0.3743(10) 1 0.010(3) 

  O2 8d 0.8340(10) 0.1139(15) 0.5157(10) 1 0.010(3) 

  O3 4c 0.6490(15) 0.25 0.6273(14) 1 0.010(3) 

  O4 4c 0.6215(19) -0.25 0.5104(14) 1 0.010(3) 

  O5 8d 0.8245(12) -0.1223(15) 0.4198(8) 1 0.010(3) 

  O6 4c 0.8406(15) -0.25 0.6356(12) 1 0.010(3) 

  O7 4c 0.8975(15) 0.25 0.7006(15) 1 0.010(3) 

  O8 8d 0.8789(12) 0.0688(14) 0.2710(9) 1 0.010(3) 

  Li1 8d 0.5031 0.1020 0.6694 1 0.010(3) 
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Table 3.9 Significant contact distances (Å) and angles () in LiMn(PO3)3. Estimated standard 

deviations are given in parentheses. 

 

Mn1-O1 2.149(12)  P1-O1 1.518(12) 

Mn1-O2 2.085(10)  P1-O2 1.537(12) 

Mn1-O5 2.203(11)  P1-O3 1.537(10) 

Mn1-O7 2.170(11)  P1-O4 1.599(10) 

Mn1-O8 2.131(10)  P2-O3 1.656(12) 

Mn1-O9 2.165(11)  P2-O5 1.479(13) 

Li1-O1 2.349(13)  P2-O6 1.658(11) 

Li1-O2 2.026(12)  P2-O7 1.543(12) 

Li1-O5 2.253(10)  P3-O4 1.639(10) 

Li1-O7 2.036(9)  P3-O6 1.560(12) 

Li1-O8 2.031(11)  P3-O8 1.523(12) 

Li1-O9 2.099(10)  P3-O9 1.515(11)  

     

O1-Mn1-O2 87.4(6)  O1-P1-O2 117.0(7) 

O1-Mn1-O7 97.0(5)  O1-P1-O3 108.6(9) 

O1-Mn1-O8 175.5(5)  O1-P1-O4 106.9(7) 

O1-Mn1-O9 94.4(5)  O2-P1-O3 111.1(6) 

O2-Mn1-O7 173.7(5)  O2-P1-O4 111.8(7) 

O2-Mn1-O8 88.3(5)  O3-P1-O4 100.0(7) 

O2-Mn1-O9 87.8(4)  O3-P2-O5 108.5(8) 

O7-Mn1-O8 87.2(5)  O3-P2-O6 98.5(6) 

O7-Mn1-O9 87.3(4)  O3-P2-O7 113.1(7) 

O8-Mn1-O9 84.1(4)  O5-P2-O6 107.7(8) 

O1-Li1-O2 83.6(4)  O5-P2-O7 113.9(7) 

O1-Li1-O5 169.3(5)  O6-P2-O7 113.9(7) 

O1-Li1-O7 85.9(5)  O4-P3-O6 98.1(6) 

O1-Li1-O8 87.7(4)  O4-P3-O8 108.1(6) 

O1-Li1-O9 99.2(4)  O4-P3-O9 109.1(7) 

O2-Li1-O5 87.2(4)  O6-P3-O8 111.3(7) 

O2-Li1-O7 90.4(4)  O6-P3-O9 117.4(7) 

O2-Li1-O8 90.3(5)  O8-P3-O9 111.7(7) 

O2-Li1-O9 176.8(4)    

O5-Li1-O7 88.8(5)    

O5-Li1-O8 97.8(5)    

O5-Li1-O9 90.1(4)    

O7-Li1-O8 173.4(5)    

O7-Li1-O9 91.3(5)    

O8-Li1-O9 88.3(4)    
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Table 3.10 Significant contact distances (Å) and angles () in Li2Mn(PO3)4. Estimated standard 

deviations are given in parentheses. 

 

Mn1-O1 2.270(13)  P1-O1 1.576(9) 

Mn1-O1 2.270(13)  P1-O2 1.480(11) 

Mn1-O4 2.285(16)  P1-O5 1.573(13) 

Mn1-O6 2.173(14)  P1-O8 1.485(10) 

Mn1-O8 2.231(13)  P2-O2 1.568(13) 

Mn1-O8 2.231(13)  P2-O2 1.568(13) 

Li1-O1 1.915(12)  P2-O3 1.456(15) 

Li1-O3 1.991(10)  P2-O7 1.347(14) 

Li1-O4 2.563(13)  P3-O4 1.452(18) 

Li1-O5 3.013(10)  P3-O5 1.581(11) 

Li1-O7 2.146(11)  P3-O5 1.581(11) 

Li1-O8 2.192(11)  P3-O6 1.386(12) 

     

O1-Mn1-O1 110.3(6)  O1-P1-O2 109.4(6) 

O1-Mn1-O4 89.66(34)  O1-P1-O5 104.9(8) 

O1-Mn1-O6 87.15(35)  O1-P1-O8 116.6(6) 

O1-Mn1-O8 173.3(4)  O2-P1-O5 103.5(6) 

O1-Mn1-O8 75.9(4)  O2-P1-O8 118.1(9) 

O1-Mn1-O4 89.66(34)  O5-P1-O8 102.2(8) 

O1-Mn1-O6 87.15(35)  O2-P2-O2 107.3(10) 

O1-Mn1-O8 75.9(4)  O2-P2-O3 107.0(6) 

O1-Mn1-O8 173.3(4)  O2-P2-O7 106.1(6) 

O4-Mn1-O6 174.4(6)  O2-P2-O3 107.0(6) 

O4-Mn1-O8 87.6(4)  O2-P2-O7 106.1(6) 

O4-Mn1-O8 87.6(4)  O3-P2-O7 122.5(10) 

O6-Mn1-O8 96.1(4)  O4-P3-O5 106.5(7) 

O6-Mn1-O8 96.1(4)  O4-P3-O5 106.5(7) 

O8-Mn1-O8 97.9(6)  O4-P3-O6 117.2(10) 

O1-Li1-O3 154.0(4)  O5-P3-O5 97.1(9) 

O1-Li1-O4 86.4(5)  O5-P3-O6 113.7(7) 

O1-Li1-O7 108.3(4)  O5-P3-O6 113.7(7) 

O1-Li1-O8 84.4(5)    

O3-Li1-O4 78.2(5)    

O3-Li1-O7 90.58(35)    

O3-Li1-O8 104.4(5)    

O4-Li1-O7 83.0(4)    

O4-Li1-O8 162.3(4)    

O7-Li1-O8 114.3(4)    
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Fig. 3.2 Crystal structure of LiMn(PO3)4, oxygen atoms in red, phosphorus atoms in grey, 

manganese atoms in purple and lithium atoms in green.  

 

 

Fig. 3.3 Crystal structure of Li2Mn(PO3)4, oxygen atoms in red, phosphorus atoms in grey, 

manganese atoms in purple and lithium atoms in green. 

 

The structure of LiMn(PO3)3 (Fig. 3.2) consists of infinite (PO3)n
n- chains, which corner 

share with MnO6 octahedra to give the three dimensional structure. Each phosphate tetrahedron 

is therefore linked to two other phosphate tetrahedra and two manganate octahedra. Li+ ions 

are located in octahedral sites, which edge share with the manganate octahedra. The P-O bond 
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lengths are in the range 1.48 to 1.66 Å, while the average Li−O and Mn−O distances are 2.13 

Å and 2.15 Å. 

The structure of Li2Mn(PO3)4 is shown in Fig. 3.3 and consists of Q2 phosphate chains 

running parallel to the b-axis. These chains are linked together via corner sharing manganate 

octahedra. The Li atoms are 5-coordinate in distorted 4 pyramidal sites (defect octahedral) 

which face share with each other and corner share with the phosphate chains. A sixth Li-O 

contact at 3.0 Å is too long to be considered to be bonding. The average Mn-O distance is 2.24 

Å, while that for Li-O and P-O are is 2.16 Å and 1.50 Å, respectively.  

Subsequent to the start of this work, the structure of Li2Mn(PO4)2 was published by 

Moutataouia et al.9. The structure reported here and in that in the literature are very similar.  

 

3.2.2 Glass formation 

3.2.2.1 General results 

All the glasses were transparent and purple in colour due to the high concentration of 

Mn2+. The purple colour deepened with increasing Mn2+ concentration. After grinding samples 

to fine powders, the samples had a light pink colouration (Fig. 3.4).  

X-ray powder diffraction patterns for synthesised standard glass compositions (50−x) 

Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50) are shown in Fig. 3.5. The patterns 

each show a single broad halo centred at approximately 25 2, characteristic of an amorphous 

solid with no indication of crystallisation as shown by the absence of Bragg peaks. The results 

confirm that glass formation was successful for this range of compositions.  
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                                   (a)                                                                          (b) 

Fig. 3.4 Appearance for glass samples of compositions 25Li2O:25MnO:50P2O5 in forms of 

bulk (a) and powder (b). 

 

 

Fig. 3.5 XRD patterns for synthesised standard glass compositions (50−x) Li2O: xMnO: 50P2O5 

(x = 10.0, 25.0, 33.3, 40.0 and 50.0). 
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Fig. 3.6 DSC thermogram for glass sample with composition 25Li2O: 25MnO: 50P2O5. 

 

DSC was used to measure the thermal behaviour of the glass samples. Fig. 3.6 shows 

the DSC thermogram for the x = 25.0 glass sample, which is typical. On heating, the 

endothermic deflection at 360 C represents the glass transition temperature, Tg, while the first 

exothermic peak, indicates the crystallisation of the glass Tc at 512 C. This is followed by an 

endothermic peak corresponding to the melting temperature Tm at 751 C. The value of Tg 

depends on the thermal history of the studied material (i.e. the rate of cooling of the melt) and 

can occur over a broad temperature range. The stability of the glass against crystallisation (the 

value of Tc - Tg) is relatively high at 152 C, which means that the glass is relatively easy to 

form by quenching in air. The high value of Tg means that this material could potentially be 

used in a solid-state battery, up to 360 C, without softening or crystallising.  

The thermal event temperatures for all compositions are listed in Table 3.11. The 

compositional variation of Tg, Tc, Tc − Tg and Tm is shown in Fig. 3.7. It is evident that as the 

concentration of manganese increases, Tg firstly increases to a maximum value (at x = 33.3) 

and then drops. For the melting temperature (Tm), the trend is similar to that for Tg.  
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Table 3.11 Summary of thermal parameters for glass samples of general composition (50−x) 

Li2O: xMnO: 50P2O5 (Estimated uncertainty is ±5%). 

Glass Composition(s) (x) Tg (C) Tc (C) Tc − Tg (C) Tm (C) 

10.0 340 484 144 650 

25.0 360 512 152 751 

33.3 447 610 163 847 

40.0 408 548 140 749 

50.0 364 603 239 729 

 

 

Fig. 3.7 Compositional variation of Tg, Tc, Tc - Tg and Tm in glasses of composition (50-x) Li2O: 

xMnO: 50P2O5  

 

Tg reflects the strength of the glass network, i.e. higher Tg values indicate a stronger 

network. To explain the observed trend in Tg the role of Mn2+ needs to be considered. This ion 
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can act as a network former or a network modifier and is therefore termed a network 

intermediate. As x increases, the Mn content increases, while the Li content decreases. Since 

each Mn2+ replaces 2Li+ cations, the total number of cations decreases with increasing x. This 

means there would be fewer cross-links between the phosphate chains which would be 

expected to cause a weakening of the phosphate network. However, the fact that up to x = 33.3, 

Tg increases, suggests that at least some of the Mn acts as a network former, strengthening the 

glass network. At low Mn concentrations the network forming Mn2+ cations would have a 

coordination number of 4 and form a local tetrahedral arrangement of oxygen neighbours. As 

the Mn concentration increases above x = 33.3, the coordination number increases to 5 or 6. 

Additionally, as the concentration of Mn increases, the concentration of lithium decreases by 

twice as much, which allows more oxygen atoms to be closer to Mn to form these higher 

coordination geometries. At the same time, as discussed above, the decreasing number of 

cations as x increases results in fewer cross-links between the phosphate chains, which also 

contributes to the decreasing Tg when x is above 33.3. 

It is helpful at this stage to consider the theoretical speciation in the glass. If it is 

assumed that only the phosphate units constitute the network and that Li+ and Mn2+ are network 

modifiers, then for each composition the total modifying charge is simply the sum of the 

contributions from Li+ and Mn2+. For example in the case of the x = 33.3 composition, the 

formula may be written as LiMn(PO3)3. In this case the total modifying charge is +3. This must 

be balanced by the charge on the phosphate network. In a glass, four phosphate species are 

possible depending on the number of bridging oxygens i.e. Q0, Q1, Q2 and Q3. These have 

average formulae of (PO4)
3-, (PO3.5)

2-, (PO3)
- and (PO2.5)

0. For the x = 33.3 composition, since 

there are 3 P atoms per formula unit, the modifying charge can be entirely balanced using only 

Q2 phosphate species. The possibility of other species cannot be excluded since for example an 

equal number of Q3 and Q1 species would give the same total network charge. This could occur 

through disproportionation Eqn. 3.6. 

                                                2(PO3)
− → (PO2.5)

0 + (PO3.5)
2−        (3.6) 

However, if the Mn2+ adopts a network forming role (usually 4 coordinate) then other 

types of species may be present. For example, in the x = 33.3 composition if all the manganese 

was network forming in 4 coordinate geometry then just as with P, a variety of species could 

form depending on the number of bridging oxygens, such as (MnO4)
6− (Q0), (MnO3.5)

5− (Q1), 

(MnO3)
4− (Q2), (MnO2.5)

3− (Q3) and (MnO2)
2− (Q4). In this case, the total modifying charge is 
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solely from the Li+ i.e. +1 per formula unit. The total anionic network charge would be the sum 

of the contributions from the manganate and phosphate species. If it is assumed that the Mn is 

present as a Q4 species i.e. (MnO2)
2- then there is too much anionic charge to achieve 

electroneutrality. If it is assumed that only 3/4 of the Mn are network forming Q4 species, then 

the total cation charge is now +1.5 per formula unit. This cation charge is entirely balanced by 

the manganate Q4 species meaning that the phosphate species would all have to be Q3. Thus, it 

is entirely possible in this glass composition to have a proportion of the manganese in a network 

forming role, but no more than 75%. Similar calculations can be performed for the other 

compositions. 

From the discussion above, it is highly possible that the x = 33.3 composition may be 

viewed as a critical composition above which point Mn2+ must adopt octahedral geometry.  

 

Table 3.12 Summary of densities of all glass samples in the series (50-x) Li2O: xMnO: 50P2O5 

(x = 10.0, 25.0, 33.3, 40.0 and 50.0) and “Li Type” indicates that samples were standard for 

naturally abundant Li or “null lithium”. 

Composition(s) Li Type Density (g/cm3) 

16.7Li2O: 33.3MnO: 50P2O5 Null lithium 2.764 (±0.004) 

25Li2O: 25MnO: 50P2O5 Null lithium 2.666 (±0.004) 

50MnO: 50P2O5 Standard 2.950 (±0.002) 

10Li2O: 40MnO: 50P2O5 Standard 2.846 (±0.003) 

16.7Li2O: 33.3MnO: 50P2O5 Standard 2.784 (±0.003) 

25Li2O: 25MnO: 50P2O5 Standard 2.683 (±0.006) 

40Li2O: 10MnO: 50P2O5 Standard 2.493 (±0.003) 

 

 

Table 3.12 shows the measured densities for synthesised glasses in the series (50−x) 

Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50.0). The compositional variation for the 

glasses made with naturally abundant Li (standard) is shown in Fig. 3.8. The plot shows an 

increase in density with increasing x-value. This is to be expected since the formula mass 

increases as the heavier manganese substitutes two lighter lithium atoms as x-increases. 
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Fig. 3.8 Compositional variation of density for the synthesised standard glasses in series (50−x) 

Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50.0). Estimated standard deviations are 

smaller than the symbols used. 

 

In order to assess the underlying trend in density independent of the formula mass 

increase it is helpful to examine the change in free volume. The free volume is essentially a 

measure of how compact the studied glasses are. The percentage free volume (%Vfree) can be 

defined as 10: 

                                               %𝑉free = 100% ×
𝑉𝐹𝑈−𝑉ion

𝑉𝐹𝑈
     (3.7) 

where VFU is the volume per formula unit and Vion is the calculated ionic volume, respectively, 

as shown by equations 

                                                              𝑉𝐹𝑈 =
𝑀𝑟

𝜌𝑁𝐴
        (3.8) 

                                                        𝑉ion = ∑ 𝑛𝑖
4

3
𝜋𝑟𝑖

3
𝑖      (3.9) 

in which Mr indicates the formula unit mass in g mol−1, ρ stands for the measured density in g 

cm−1, NA is Avogadro’s constant, ni is the number of ions of type i per formula unit and ri is the 

ionic radius in Å of ion type i. By using the measured density, the %V of various compositions 
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were calculated (the values of ionic radius are taken from Shannon; for Mn2+, a value of 0.75 

Å was assumed corresponding to the ion in high spin state coordinate geometry 11). The 

compositional variation of the free volume (%Vfree) is presented in Fig. 3.9.  

 

Fig. 3.9 Compositional variation of %Vfree for the synthesised standard glasses in series (50-x) 

Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50.0) 

 

The data show that there is a decrease in %𝑉free with increasing x-value from x = 10.0 

to x = 33.3. This indicates that in this range, with increasing 𝑥-value, the glass becomes more 

compact through a strengthening of the bonding. This may be attributed to an increase the 

number of P-O-Mn bridges, as MnO content increases. Above x = 33.3, %𝑉free increases with 

increasing x-value, suggesting a less compact structure and a weakening of bonds. The results 

are consistent with the compositional variation of Tg shown in Fig. 3.7.  

It is important to note that the true values of %𝑉free may vary since the ionic radius of 

Mn2+ will vary according to whether it is network forming or network modifying (i.e. its 

coordination number) and whether it is in high or low spin state. Similarly, the ionic radius of 

Li+ ions in coordination numbers 4, 6 and 8, have ionic radii of 0.59, 0.76 and 0.92 Å, 

respectively 11. As will be shown later in the molecular dynamics analysis, the coordination 

numbers vary only by a small amount with composition and the assumption used here of a 
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constant ionic radius for each ion type appears to be valid. Hence the observed compositional 

trend in free volume can be considered to be real.  

 

3.2.2.2 Structural analysis 

Fig. 3.10 shows the IR spectra of the studied standard glass compositions (50−x) Li2O: 

xMnO: 50P2O5 (x = 10.0; 25.0; 33.3; 40.0 and 50.0). All peaks are broad, which is typical for 

a disordered glass system. In this system, several bands are evident and are consistent with 

metaphosphate chains. All glass compositions show peaks at around 1280 cm−1 and 900 cm−1, 

which are attributed to (PO3)
– (Q2 species, metaphosphate) and the P-O-P asymmetric stretch, 

respectively. In addition, a broad band at around 780 cm−1 corresponds to (P-O-P) symmetric 

vibration of bridging oxygen atoms 12,13. A weak band characteristic of (PO3.5)
2− (Q1 species, 

pyrophosphate) can be seen at around 1100 cm−1. This may be associated with some of the 

manganese atoms adopting a network forming role.  

 

Fig. 3.10 Infrared spectra of standard glass compositions (50-x) Li2O: xMnO: 50P2O5 (x = 10.0; 

25.0; 33.3; 40.0 and 50.0). 
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Fig 3.11 shows the X-ray total pair correlation functions D(r), generated from Ag-K 

radiation ( = 0.5609 Å) for samples of compositions (50-x) Li2O: xMnO: 50P2O5 (x = 10.0; 

25.0; 33.3; 40.0 and 50.0). The profiles are all similar to each other. Each shows a strong broad 

correlation with a maximum around 1.5 Å, corresponding to the P-O bond in the phosphate 

tetrahedra 14. A weaker broad correlation with a maximum around 2.3 Å, is likely attributable 

to Mn-O, while a stronger peak at around 3.3 Å, corresponds to a combination of P-P, P-Mn 

and Mn-Mn correlations. The broadness of these profiles makes detailed analysis difficult and 

therefore further data were collected using synchrotron X-ray radiation at the Diamond facility.  

 

 

Fig. 3.11 X-ray total pair correlation functions D(r), generated from Ag-K radiation ( = 

0.5609 Å) for samples of compositions (50-x) Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 

and 50.0). 

 

Fig. 3.12 shows a comparison of D(r) profiles generated from laboratory and 

synchrotron radiation sources for the x = 33.3 composition. The resolution of the pair 

correlations is greatly enhanced in the synchrotron data, due to the larger Qmax of 40 Å-1.   
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Fig. 3.12 Comparison of D(r) profiles for 16.7Li2O:33.3MnO:50P2O5 glass composition from 

Ag K (black) and synchrotron radiation (red). 

 

Fig. 3.13 show the D(r) profiles derived from synchrotron X-ray diffraction data for 

glass compositions x = 10.0, 33.3 and 50.0. The D(r) profiles of all glass samples show a strong 

correlation centred at around 1.52 Å, corresponding the P-O bonds 14. Unfortunately, the data 

did not permit separation of the shorter non-bridging P-O bonds from those in P-O-P bridges. 

The Mn-O correlation is seen here at about 2.11 Å. These peaks are far clearer in the data 

derived from synchrotron radiation. The intensity of the Mn-O peak compared to that of the P-

O peak increases with increasing x value, reflecting the increasing Mn content. Li-O 

correlations (expected at around 2.0 Å) are not readily visible since Li, with only three 

electrons, makes a relatively small contribution to the X-ray scattering, and the Li-O correlation 

remains hidden, by the much stronger Mn-O correlation peak nearby. In order to resolve the 

local structure around lithium atoms, neutron scattering data were collected on the SANDALS 

diffractometer at the ISIS facility. 
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Fig. 3.13 X-ray (collected from Diamond) pair distribution functions D(r) for (50-x) Li2O: 

xMnO: 50P2O5 (x = 10.0, 33.3 and 50.0) glass compositions. 

 

D(r) total pair functions derived from neutron scattering data for glass compositions x 

= 10.0, 25.0, 33.3, 40.0 and 50.0 are shown in Fig. 3.14. As in the X-ray PDFs, all profiles 

show a strong P-O correlation at about 1.52 Å. Unlike in X-ray scattering, the neutron scattering 

lengths of lithium and manganese are of the same order of magnitude, −2.22 fm and −3.78 fm, 

respectively 2 and interestingly both have negative scattering lengths. This means that the 

impact of correlations involving both these atoms on the data is visible. In the x = 50 glass 

composition (MnO: P2O5), the P-O bond correlation is followed by a negative peak with a 

minimum around 2.10 Å, corresponding to the Mn-O pair correlation. With decreasing value 

of x (increasing Li2O), the minimum peak gradually shifts to around 2.02 Å, reflecting the 

larger contribution of Li-O correlations (at around 1.9 Å) to this negative peak. To explore the 

extent of the Li-O and Mn-O overlap, a set of further measurements were made on samples 

containing null lithium.  
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Fig. 3.14 Neutron Scattering Pair Distribution Functions D(r) for (50-x) Li2O: xMnO: 50P2O5 

(x = 10.0, 25.0, 33.3, 40.0 and 50.0) glass compositions. 

 

Comparisons of D(r) profiles for the x = 25.0 and 33.3 compositions containing natural 

and null lithium are shown in Fig. 3.15 and Fig. 3.16. Only very small differences are seen 

between the profiles most noticeably in the large negative peak around 2.1 Å. For null lithium 

containing samples, this negative peak is shaper, while the corresponding peak is broader and 

shifted to lower r-space at about 2.0 Å in the natural Li sample. The difference in the profiles 

is more significant in for the x = 25 composition reflecting the higher Li content. 
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(a) 

 

(b) 

 

Fig. 3.15 Comparison of D(r) profiles for natural and null lithium containing glass samples of 

25Li2O: 25MnO: 50P2O5 (a), with detail shown in (b).   
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(a) 

 

(b) 

 

Fig. 3.16 Comparison of D(r) profiles for natural and null lithium containing glass samples of 

16.7Li2O: 33.3MnO: 50P2O5 (a), with detail shown in (b).   
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Subtraction of D(r) profile for the null Li containing samples from those for the 

corresponding natural Li samples gives a difference profile dominated by the Li pair 

correlations (i.e. Li-O, Li-Li, Li-P and Li-Mn) as shown in Fig. 3.17. The data show a sharp 

negative peak at around 1.98 Å for x = 33.3 and 2.00 Å for x = 25.0, corresponding to Li−O 

pair correlations. This is followed by a positive peak at around 2.6 Å, likely due to Li−Li 

correlation, overlapping the Li−Mn correlation peak at around 2.8 Å. The Li-P correlations 

would be expected to result in a negative peak and may be associated with the dip in the profile 

seen at around 3.1 Å. Among these correlations, the Li−Li distance of 2.6 Å directly indicates 

the average elementary hopping distance in Li+ diffusion.  

It is very important to choose a suitable melting temperature before the quenching step 

in the MD simulation. If the melting temperature is not high enough, the simulation process 

cannot generate the glass and the simulated sample can be partially crystalized. This can be 

recognised in the D(r) profiles as sharper peaks at intermediate and high r values, rather than 

broad distributions for the simulated glass (Fig. 3.18).  In other words, the D(r) profile of the 

simulated composition can be used to judge whether the melting temperature is high enough to 

generate a glass when quenched. It should be noted that due to the limits of the simulation, the 

simulated temperature is significantly higher than observed experimentally. The trend in 

melting temperature is however similar to the experimental trend, with the x = 33.3 composition 

requiring the highest simulated melting temperature.  
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(a) 

 

 

(b) 

 

 

Fig. 3.17 Difference D(r) profiles obtained by subtracting the D(r) profile for the null Li 

containing samples from those for the corresponding natural Li samples (a) composition x = 

33.3, (b) composition x = 25.0. 
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Fig. 3.18 Comparison of simulated neutron scattering D(r) profiles for the x = 33.3 composition 

at different simulated melting temperatures (2000 K and 3000 K). 

 

From the figure, we can obviously observe that in the range of 1 Å to 3 Å, the patterns 

are similar. However, above around 3 Å significant differences are seen, with the higher 

simulated temperature data generating a much more glass-like profile. The resulting simulated 

glass compositions show similar neutron scattering D(r) profiles patterns (Fig 3.19).  

While the MD derived neutron D(r) profiles for glass samples are similar to those for 

the corresponding compositions found experimentally, including peak location, relative 

intensity of peak and compositional variations, some differences, such as the shape of peaks, 

(shaper in the MD derived data, due to the limit of the finite size of the model) are observed. 

In order to obtain more realistic MD results when compared to the experimental data, a 

Gaussian convolution was performed on the simulated D(r) profiles: 

                                               𝐺(𝑥) =
1

𝛼
√
2

𝜋
exp [−2 (

𝑥

𝛼
)
2

]                (3.10) 

A comparison between the Gaussian broadened simulated D(r) profiles with the 

corresponding experimental data is shown in Fig. 3.20. 
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(a) 

 

(b) 

 

Fig. 3.19 Neutron D(r) profiles for glass samples of composition (50−x) Li2O: xMnO: 50P2O5 

(x =10.0, 25.0, 33.3, 40.0 and 50.0) generated from MD simulations showing (a) full profile 

and (b) detail at low r-values. 
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                                     (a)                                                                      (b) 

 

                                     (c)                                                                      (d) 

 

                                     (e)                                                                      (f) 
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(g) 

Fig. 3.20 Comparison of simulated (Gaussian broadened, CMD, red lines) and experimental 

(EXP, black lines) neutron D(r) profiles for glass samples of composition (50−x) Li2O: xMnO: 

50P2O5 (x =10.0, 25.0, 33.3, 40.0 and 50.0). 

 

Over the short range up to 3 Å, experimental and simulated patterns are very similar to 

each other, but above 3 Å some differences appear. In the range 3 to 12 Å, differences in the 

shape and relative intensity of peaks are observed, but the peak locations roughly match each 

other. Thus, from the comparison, it can be concluded that the simulated structures reflect the 

short-range structure of each composition accurately but are less accurate at the intermediate 

and long range. Nevertheless, very important structural information is contained in the short-

range structure, such as coordination number and correlation distances. Selected partial pair 

correlation functions gij(r) derived from the MD simulations are shown in Fig. 3.22, with the 

derived coordination numbers and average contact distances given in Table 3.13. Fig. 3.23 

shows the selected pair correlation distance distribution for the glass composition 16.7 Li2O: 

33.3MnO: 50P2O5. The Li-O, Li-Li, Li-P and Li-Mn partial pair correlations gij(r) for the x = 

25.0 composition are shown in Fig. 3.21. The correlations show good agreement with the 

experimental D(r) derived by subtracting the null Li data from that of natural Li. It confirms 

the assignment of the correlations discussed above.    
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Fig. 3.21 Li-Li, Li-O, Li-P and Li-Mn pair correlations gij(r) generated from MD simulations 

for glass samples of composition 25Li2O: 25MnO: 50P2O5 (x = 25.0).  

 

Fig. 3.23 Selected pair correlation distance distribution for the glass composition 16.7 Li2O: 

33.3MnO: 50P2O5 
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                                     (a)                                                                      (b) 

 

                                     (c)                                                                      (d) 

 

(e) 

Fig. 3.22 selected partial pair correlations gij(r) generated from MD simulations for glass 

samples of composition (50-x) Li2O: xMnO: 50P2O5 (a) x = 10.0, (b) x = 25.0 (c) x = 33.3 (d) 

x = 40.0 and (e) x = 50.0. 
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From the results in Table 3.13, we can see that the P-O bond length vary little with 

composition and combined with the coordination number of around 4, confirms that the 

simulation models the phosphate tetrahedra reasonably well. The Li-O coordination numbers 

of around 3.8 suggest predominantly tetrahedral coordination for Li, with a distance range of 

around 1.96 to 1.99 Å, in good agreement with the data in Fig. 3.17 (subtracted D(r)). The Mn-

O distance is seen to decrease up to x = 33.3 and then increase above this. Similarly, the 

manganese coordination number reaches a minimum at x = 33.3. These trends (Fig. 3.24) 

reflect the changes in free volume and Tg, where the x = 33.3 composition was the most compact 

structure with the highest Tg. 

 

Table 3.13 Coordination numbers (CN) and selected correlation distances d (Å) derived from 

MD simulations for glasses of compositions (50-x) Li2O: xMnO: 50P2O5. Uncertainties are 

estimated at 0.5%. 

Composition x 10 25 33.3 40 50 

Li−O CN 3.83 3.83 3.78 3.77 / 

Li−O d (Å) 1.98 1.98 1.96 1.99 / 

Mn−O CN 4.80 4.72 4.68 4.69 4.71 

Mn−O d (Å) 2.16 2.14 2.13 2.14 2.17 

P−O CN 4.07 4.10 4.09 4.10 4.11 

P−O d (Å) 1.50 1.49 1.51 1.50 1.50 

O−O CN / / / / / 

O−O d (Å) 2.46 2.47 2.47 2.46 2.44 
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(a) 

 

 

(b) 

 

 

Fig. 3.24 Compositional variation of Mn-O bond distance (a) and coordination number CN (b) 

for glasses of composition (50-x) Li2O: xMnO: 50P2O5.  
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Table 3.14 Manganese coordination number (CN) distributions for studied glass composition 

(50−x) Li2O: xMnO: 50P2O5 (x =10.0, 25.0, 33.3, 40.0 and 50.0) derived from MD models.   

x CN 2 CN 3 CN 4 CN 5 CN 6 CN 7 

10.0 0 0 0.3217 0.5566 0.1217 0 

25.0 0 0.0104 0.3576 0.5156 0.1164 0 

33.3 0 0.0082 0.3982 0.4976 0.0938 0.0012 

40.0 0 0.0097 0.3973 0.4835 0.1085 0.0010 

50.0 0 0.0139 0.3655 0.5191 0.1007 0.0008 

 

The coordination numbers for manganese suggest a mixture of 4 and 5 coordinate and 

possibly 6 coordinate manganese. Table 3.14 summarises the distribution of manganese 

coordination numbers for the studied compositions, derived from MD simulations. The data 

confirm mainly 4, 5 and 6 coordinate manganese.  

From the data in Table 3.14 it is then possible to calculate the phosphate speciation 

based on the arguments discussed above for the theoretical speciation (Section 3.2.2.1). For 

example, for composition x = 33.3 the percentage of manganese in network forming 4 

coordinate geometry (Fig. 3.25) is approximately 40%. This leaves approximately 60% of the 

manganese in network modifying 5 and 6 coordination. The total modifying charge would be 

the sum of the charge from Li+ and the remaining network modifying Mn2+ ions i.e. 1+ 0.6 × 2 

= 2.2. If the 4-coordinate manganese is considered to be Q4 i.e. (MnO2)
2- then it will contribute 

0.4 × (−2) = −0.8 to the network charge. The remaining phosphate network would have a total 

negative charge of − (2.2 − 0.8) = −1.4. This could be achieved with 47% Q2 and 53% Q3 

phosphate species, (PO3)
1- and (PO2.5)

0 respectively. Similar calculations can be performed for 

the other compositions. 
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Fig. 3.25 Selected regions of the glass composition x = 33.3 illustrating the Mn 4-coordination 

geometries. 

 

3.2.2.3 Electrical behaviour 

Electrical characterisation of the studied glass compositions was carried out using a.c. 

impedance spectroscopy. Typical impedance spectra (for x = 25.0 glass composition) are 

shown in Fig. 3.26 for three representative temperatures, 434 K (161 C), 503 K (230 C) and 

573 K (300 C). 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

Fig. 3.26 A.C. impedance spectra for 25Li2O: 25MnO: 50P2O5 at (a) low, (b) intermediate and 

(c) high temperatures, 434 K (161C), 503 K (230C) and 573 K (300C), respectively. 
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At these three temperatures a semicircle or part semicircle is observed at high 

frequencies corresponding to the bulk resistance of the sample. This is followed by a capacitive 

spike at lower frequencies due to the blocking electrodes, which is consistent with conductivity 

being predominantly ionic in nature in this system. At higher temperatures the bulk semi-circle 

starts to move out of the frequency window and only a part semi-circle is observed. Curvature 

in the blocking spike may be attributed to surface roughness effects. At all temperatures for all 

studied samples in the (50−x) Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50.0) system, 

the a.c. impedance spectra are similar, with the exception of the x = 50.0 composition, due to 

the lack of lithium ion carriers. Thus, the spectra of this composition were poorly resolved with 

very high resistances and it was not possible to extract reliable value.  

Arrhenius plots of conductivity for the x = 10.0, 25.0, 33.3, 40.0 compositions, are 

shown in Fig 3.27. The reported data correspond to the first cooling cycle.  

 

Fig. 3.27. Arrhenius plots of total conductivity for selected glass compositions (x = 10.0, 

25.0, 33.3, and 40.0) in the (50-x) Li2O: xMnO: 50P2O5 system 
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Linear Arrhenius behaviour is seen for all compositions. Out of all compositions 

investigated, the sample with the lowest level of substitution (x = 10.0) and the highest lithium 

ion concentration exhibits the highest conductivities over the whole temperature range studied. 

This shows that the carrier density plays an essential role in the conductivity of the studied 

glasses. 

Table 3.15 summarises the derived electrical parameters for the studied compositions, 

with the compositional variation at 200 C and 300 C shown in Fig. 3.28. Conductivity σ at 

both 200 C and 300 C decreases with increasing substitution level (x). In fact, this trend exists 

in all the temperature regions.   

 

Table 3.15 Derived electrical parameters for selected glass compositions in the (50−x) Li2O: 

xMnO: 50P2O5 system in (x = 10.0, 25.0, 33.3, and 40.0) (Estimated uncertainty is ±5%). 

Composition 

(x) 

σ200C / σ473K 

(S cm−1) 

σ 300C / σ573K 

(S cm−1) 

Activation Energy Ea 

(eV) 

10 7.20 ×10−6 4.08 ×10−4 1.00 

25 2.02 ×10−7 1.69 ×10−5 1.09 

33.3 3.71 ×10−8 4.84 ×10−6 1.28 

40 1.39 ×10−9 2.21 ×10−7 1.25 

 

 

As shown in Fig. 3.29, the activation energy Ea of the studied composition increases 

with increasing x value before it reaches a maximum (at x = 33.3) and starts to decrease. The 

trend of Ea follows that of Tg and of free volume and Mn-O coordination number and bond 

length as discussed above. All of them reflect that the glass composition x = 33.3 has the most 

compact structure.  
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(a) 

 

 

(b) 

 

 

Fig. 3.28 Compositional variation of total conductivity at (a) 473K (200 C) and (b) 573K 

(300 C) for compositions in the (50-x) Li2O: xMnO: 50P2O5 glass system. 
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Fig. 3.29 Compositional variation of activation energy in in (50-x) Li2O: xMnO: 50P2O5 

system. 

 

3.3 Conclusions 

Glasses were readily formed in the (50-x) Li2O: xMnO: 50P2O5
 system between x = 

10.0 and x =50.0. These glasses show a maximum in Tg and a minimum in free volume at x = 

33.3 indicative of a change in the role of manganese in this system as a function of composition.  

From MD simulations of neutron pair distribution functions of the studied glass compositions, 

manganese was found to mainly adopt 4, 5 and 6 coordinate geometries, with the average 

coordination number showing a minimum corresponding to the maximum in Tg and the 

minimum in free volume. The results show an increase in the percentage of network forming 

manganese species with increasing x-value up to x = 33.3, with higher x-value compositions 

showing increasingly greater network modifying behaviour for Mn. Thus, although these 

glasses are technically metaphosphates in terms of their stoichiometry in reality, the phosphate 

species are likely to be a mixture of Q2 and neutral Q3 species to maintain electroneutrality. 
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Since the glass formula involves the substitution of 2 Li+ ions by a single Mn2+ cations, fewer 

cross-links between the phosphate chains occur as x increases and would be expected to cause 

a weakening of the phosphate network, throughout the compositional range. This only becomes 

evident at higher x-values. Thus, the system involves two competing mechanisms, one which 

increases Tg and the other that decreases Tg, leading to a transition at x = 33.3, where the 

structure is most compact. The ionic conductivity of the glasses decreases with increasing x-

value due to the decrease in the total Li content.  
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Chapter 4 Structure and Conductivity in Composition (60-x) Li2O: xMnO: 40P2O5 

 

4.0 Introduction 

The results from Chapter 3 suggested that manganese acts as a network intermediate in 

the Li2O-MnO-P2O5 system, with the role of manganese changing with composition. However, 

total conductivity decreased with decreasing Li2O content. In this chapter compositions with 

higher Li2O content are investigated. Compositions of general formula (60 − x) Li2O: xMnO: 

40P2O5 (x = 10, 15, and 20), were synthesised and studied. These glasses compositions were 

based on a previous study 1 in the Abrahams group. In that work conductivities of around 10−3 

S cm−1 were attained at 300 C, but detailed structural characterisation was not performed. Here 

the structure and thermal behaviour of these glass compositions are characterised for the first 

time and the electrical measurements repeated.  

 

4.1 Experimental  

4.1.1 Synthesis  

Glass samples of general composition (60−x) Li2O: xMnO: 40P2O5 (Table 4.1) were 

prepared using appropriate amounts of reagent-grade Li2CO3 (BDH, 99.9%), MnO (BDH, 

99.6%), and NH4H2PO4 (May & Baker, 98.0%). For the neutron scattering PDF analysis 

Li2CO3 isotopically enriched in 6Li (American Elements, 6Li2CO3, 94.61%; 7Li2CO3, 5.39%) 

was mixed with naturally abundant Li2CO3 (
7Li 92.41%; 6Li, 7.59% 2) to obtain “null lithium” 

glasses. The glass synthesis was carried out as previously described in Chapter 3 as summarised 

in Table 4.2.  
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Table 4.1 Synthesised glass compositions in the system (60−x) Li2O: xMnO: 40P2O5.  

Composition of (60−x) Li2O: xMnO: 40P2O5 Values of x 

60Li2O: 40P2O5 0 

50Li2O: 10MnO: 40P2O5 10 

45Li2O: 15MnO: 40P2O5  15 

40Li2O: 20MnO: 40P2O5 20 

35Li2O: 25MnO: 40P2O5 25 

30Li2O: 30MnO: 40P2O5 30 

 

Table 4.2 Summary of preparation parameters for all glass samples of the composition (60−x) 

Li2O: xMnO: 40P2O5 described in this work, where “Li Type” indicates whether the samples 

contained naturally abundant Li (“natural”) or “null lithium”. “Quenched” indicates that the 

melts were quenched in air onto stainless steel.  

Value 

of 

x 

Li Type Reaction 1 Reaction 2 Reaction 3 

T 

(°C) 

Time 

(h) 

T 

(°C) 

Time 

(h) 

T 

(°C) 

Time 

(h) 

Cooling 

Procedure 

15 null 300 0.5 650 1 1100 1 quenched 

30 natural 300 0.5 650 1 1100 1 quenched 

25 natural 300 0.5 650 1 1100 1 quenched 

20 natural 300 0.5 650 1 1100 1 quenched 

15 natural 300 0.5 650 1 1100 1 quenched 

10 natural 300 0.5 650 1 1100 1 quenched 

0 natural 300 0.5 650 1 1100 1 quenched 

 

X-ray powder diffraction showed that only compositions (x = 10, 15 and 20) were 

synthesised successfully as glasses, with composition x = 20 showing a small degree of 

crystallisation. Thus, the x = 15 composition was selected to be synthesised using “null lithium” 

for neutron studies, as it was the highest x-value composition that showed no crystallisation.  
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4.1.2 Density measurements 

Density measurements were performed by helium gas displacement (AccuPyc 1330 

Pycnometer). Measurements were repeated at least five times and average values used. Density 

values are required for the calculation of free volume which is an essential measure of the 

structure compactness which can influence Li+ mobility. In addition, density values are 

required for accurate data correction for PDF measurements and for the MD simulations. 

 

4.1.3 Infrared spectroscopy 

Infrared spectroscopy was carried out on a Perkin Elmer: Spectrum 65 FT-IR 

Spectrometer in the range 600-1500 cm−1 with a resolution of 32 cm−1. The measurements were 

made on powdered samples and all spectra were measured at room temperature. This 

measurement was used to detect the approximate distribution of phosphate Q-species in the 

studied glasses and can be compared to the results of the glass systems in Chapter 3. 

 

4.1.4 Thermal analysis 

Differential scanning calorimetry (DSC) was used to investigate the thermal behaviour 

of glass and crystalline compositions, using a Perkin Elmer DSC-7. Samples of approximate 

mass 30 mg were subjected to controlled heating and cooling cycles. Thermograms were 

collected in air over the temperature range 20 C to 1000 C with heating and cooling rates of 

20 C min–1. DSC was applied to obtain the key temperatures of Tg, Tc and Tm, which give 

information on the network strength and the workability of the glass. 

 

4.1.5 X-ray diffraction 

Standard X-ray powder diffraction data were collected on a PANalytical X'Pert Pro 

diffractometer in flat plat θ/θ geometry using Ni filtered Cu-Kα radiation (λ = 1.5418 Å), in the 

2θ range 5-70, in steps of 0.033 with an effective count rate of 100 s per step. In the case of 

glass samples these measurements were used to confirm the amorphous nature. For X-ray 

scattering analysis, data were collected on PANalytical Empyrean diffractometer using Rh-

filtered Ag-Kα radiation ( = 0.5609 Å). Data were collected from 3-148 2θ in θ/θ geometry 
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with samples mounted in 1 mm diameter Kapton capillaries. Data were collected in steps of 

0.033 2θ, with a scan time of 440 s per step. For each sample, five scans were summed to give 

the final data. Data sets for an empty Kapton capillary and the empty instrument were collected 

under the same conditions for data correction purposes, which was carried out using the 

GudrunX software 3. In addition, further X-ray diffraction data were collected on the XPDF 

I51-1 diffractometer at the Diamond facility, Rutherford Appleton Laboratory. For these 

experiments, samples were loaded into 1 mm diameter silica glass capillaries. A wavelength of 

0.1617 Å (E = 76.69 keV) was used with a large area detector (Qmax = 40 Å−1) with count times 

of 10 min for each sample. Data were analysed in the same way as the laboratory X-ray data 

using GudrunX 3. Combined with results from GudrunN, PDFs generated from X-ray data can 

provide some basic information, such as bond lengths. 

 

4.1.6 Neutron scattering 

Neutron scattering data were collected on SANDALS diffractometer at the ISIS facility, 

Rutherford Appleton Laboratory. Samples were loaded as large glass chunks into thin walled 

11 mm diameter vanadium cans. Total data collections of around 1800 μA h were made for 

each sample. Data sets for an empty can and empty instrument were collected for data 

correction purposes and data for a vanadium/niobium rod used for normalisation. Data 

correction was carried out using the Gudrun software 3. Dimensions of the loaded sample cans 

are given in Table 4.3. Like the results of X-ray PDFs, neutron PDFs can offer experimental 

information about the structure of studied glasses, with the added advantage of greater Q-range 

yielding more accurate PDFs compared to those from X-ray scattering and the enhanced 

contribution of lithium to the neutron data.   
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Table 4.3 Dimensions of the loaded cans used to collect neutron data on compositions in the 

(60−x) Li2O: xMnO: 40P2O5 (x = 10, 15, and 20) system. “Li Type” indicates whether the 

samples contained naturally abundant Li (“natural”) or “null lithium”. 

Composition (x) Li Type Diameter (mm) Height(mm) Weight (g) 

15 null 11 54 6.21 

20 natural 11 53 6.70 

15 natural 11 52 6.11 

10 natural 11 54 6.94 

 

 

4.1.7 Molecular dynamics (MD) simulations 

MD simulations were performed using DL_POLY version 4.08 4,5  on Apocrita (a part 

of the MidPlus consortium) for selected compositions x = 10, 15 and 20. Morse type pair 

potentials were used to calculate the potential energy and its derivative. The size of the model 

was around 11000 atoms. MD simulations were performed with a constant temperature (NPT) 

ensemble. The equations of motion were integrated using the Nosé-Hoover algorithm 6. 

Simulations were carried out in steps of 0.01 ps over a total of 20000 ps. A final simulated 

melting temperature of 2000 K was used for all the selected compositions. After 20000 ps a 

simulated quench to 300 K was performed to obtain the glasses. 

 

4.1.8 Electrical measurements 

Conductivity and related activation energy are very important properties for electrode 

materials, which can be obtained through electrical measurements. Only one glass sample and 

one partial crystalized sample (Table 4.3) were selected as typical examples.  For these sample, 

pellets were produced by pouring the melt into a stainless-steel cylindrical mould. The resulting 

pellet was polished using a selection of abrasive papers (1200 to 4000 grit). Finally, silver film 

electrodes were applied to the polished faces of sample pellets.  
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Table 4.4 Parameters for pellets used in electrical measurements. 

Composition x Bottom Area 

(mm2) 

Height 

(mm) 

Tmax 

(C) 

Tmin 

(C) 

45Li2O: 15MnO: 40P2O5 15 33.05 0.83 293 212 

60Li2O: 40P2O5 0 77.95 0.82 282 197 

 

Electrical measurements were carried out using a computer controlled Autolab 

PGSTAT302N frequency response analyser in the frequency range from 0.1 to 330 kHz in air 

with an ac signal amplitude of 100 mV. Experiments were carried out at stabilised temperatures 

during controlled heating and cooling cycles. The measurements on cooling were performed to 

investigate possible thermal hysteresis. To avoid sample softening, the highest measurement 

temperature was about 30 to 60 C below the corresponding glass transition temperature. The 

lowest measurement temperature was around 160 to 200 C. Table 4.4 summarises the pellet 

parameters and corresponding measurement conditions of the studied samples. 

 

4.2 Results & discussion 

4.2.1 General results 

After several synthesis experiments, only two compositions (x = 10 and 15) were found 

to produce pure glasses. The x = 20 composition, although visibly glass-like, was found to 

show partial crystallisation, while the x = 25 and x = 30 compositions were visibly crystalline. 

The x = 0 composition also showed partial crystallisation. The results are summarised in Table 

4.5.  

As seen in the (50−x) Li2O: xMnO: 50P2O5 in Chapter 3, the glass samples in the 

(60−x) Li2O: xMnO: 40P2O5 system were transparent and purple in colour. After grinding 

samples to fine powders, the samples had a light pink colouration. The partial crystalized glass 

60Li2O: 40P2O5 was transparent and colourless. However subsequent X-ray analysis (see 

below) revealed partial crystallisation. The results are consistent with those of Kontor 1, who 

also found a glass forming limit of x = 15 in this system. Fig. 4.1. shows images of the 

crystallised glasses. There is a striking comparison between these and typical pure glass 

samples.   
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Table 4.5 Synthesis results for all the compositions, where G, PCG and C represent glass, 

partially crystalized glass and crystallised respectively, and “Li Type” indicates whether the 

samples contained naturally abundant Li (“natural”) or “null lithium”. 

Composition of  

(60−x) Li2O: xMnO: 40P2O5 

Values of x Li Type G/PCG/F 

60Li2O: 40P2O5 0 natural PCG 

50Li2O: 10MnO: 40P2O5 10 natural G 

45Li2O: 15MnO: 40P2O5  15 natural G 

40Li2O: 20MnO: 40P2O5 20 natural PCG 

35Li2O: 25MnO: 40P2O5 25 natural C 

30Li2O: 30MnO: 40P2O5 30 natural C 

45Li2O: 15MnO: 40P2O5  15 null G 

 

X-ray powder diffraction patterns for the synthesised compositions in the system (60−x) 

Li2O: xMnO: 40P2O5 (x = 0 10, 15 and 20) are shown in Fig. 4.2. The patterns of the x = 10 

and 15 compositions each show a single broad halo centred at approximately 25 2, 

characteristic of an amorphous solid with no indication crystallisation as shown by the absence 

of Bragg peaks. The results confirm that glass formation was successful for these two 

compositions. The diffraction pattern of the x = 20 composition shows a similar pattern to those 

of x = 10 and x = 15, except that some weak Bragg peaks are also observed indicating a small 

degree of crystallisation occurred.  

For the x = 0 composition many sharp Bragg peaks are observed in the diffraction 

pattern confirming partial crystallisation.  From the synthesis results, we can conclude that 

under the quenching conditions used in this project, only compositions in the range 10 ≤ x ≤ 

15, in the system (60−x) Li2O: xMnO: 40P2O5 can be successfully prepared as pure glasses, 

although even at x = 20 the majority of the sample is glassy.  
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(a)                                                                             (b) 

Fig. 4.1 Crystallised samples (a) x = 30 and (b) x = 25 in the system (60−x) Li2O: xMnO: 

40P2O5 

 

 

Fig. 4.2 XRD patterns for synthesised compositions (60−x) Li2O: xMnO: 40P2O5 (x = 0, 10, 

15, 20). 
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The thermal event temperatures for the x = 10 to x = 20 compositions are listed in Table 

4.6, with the compositional variation of Tg, Tc, Tc − Tg and Tm shown in Fig. 4.3. It is evident 

that as the concentration of manganese increases, Tg increases. Tc also increases with increasing 

Mn content while the melting temperature (Tm) remains fairly constant with composition. Tc − 

Tg, a measure of the stability of the glass to crystallisation, increases with increasing Mn 

content, but values are significantly smaller than those with higher phosphate content discussed 

in Chapter 3. Interestingly, the values differ in absolute terms from those reported by Kontor 

1, but the trends appear the same. 

 

Table 4.6 Summary of thermal parameters for selected glass samples of general composition 

(60−x) Li2O: xMnO: 40P2O5. Estimated uncertainties in temperatures is 5% 

Composition(s) (x) Tg (C) Tc (C) Tc − Tg (C) Tm (C) 

50Li2O: 10MnO: 40P2O5, x = 10 331 412 81 583 

45Li2O: 15MnO: 40P2O5, x = 15 340 418 78 584 

40Li2O: 20MnO: 40P2O5, x = 20 342  445 103 585 

 

Table 4.7 shows the measured densities for synthesised glasses in the series (60 − x) 

Li2O: xMnO: 40P2O5 (x = 10, 15 and 20). The compositional variation for the glasses made 

with naturally abundant Li is shown in Fig. 4.4. As expected, the plot shows an increase in 

density with increasing x-value as the heavier manganese substitutes two lighter lithium atoms. 

As mentioned in chapter 3, the free volume (%Vfree) can be used to confirm how 

compact the studied glasses are. The compositional variation of free volume (%Vfree) in the (60 

− x) Li2O: xMnO: 40P2O5 glasses is presented in Fig. 4.5. The data show that there is a decrease 

in %𝑉free with increasing x-value from x = 10 to x = 20. This indicates that in this range, with 

increasing 𝑥-value, the glass becomes more compact through a strengthening of the bonding. 

This may be attributed to an increase the number of P-O-Mn bridges, as MnO content increases. 

The results are consistent with the compositional variation of Tg shown in Fig. 4.3. As discussed 

in Chapter 3, this effect competes with a reduction in the extent of cross-linking due to the 

reduction in the total number of cations, which would result in a decrease in Tg. In the (60-x) 

Li2O: xMnO: 40P2O5 system, this latter effect is not evident.  
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Fig. 4.3 Compositional variation of Tg, Tc, Tc − Tg and Tm in glasses of composition (60 − x) 

Li2O: xMnO: 40P2O5 (x = 10, 15 and 20). 

 

Table 4.7 Summary of densities of glass samples in the series (60-x) Li2O: xMnO: 40P2O5
 (x 

= 10, 15 and 20). 

Composition(s) (x) Li Type Density (g/cm3) 

45Li2O: 15MnO: 40P2O5, x = 15 Null 2.592 (±0.003) 

50Li2O: 10MnO: 40P2O5, x = 10 Normal 2.514 (±0.003) 

45Li2O: 15MnO: 40P2O5, x = 15 Normal 2.600 (±0.002) 

40Li2O: 20MnO: 40P2O5, x = 20 Normal 2.678 (±0.005) 
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Fig. 4.4 Compositional variation of density for the synthesised “natural” glass samples in series 

(60-x) Li2O: xMnO: 40P2O5 (x = 10, 15, and 20). Estimated standard deviations are smaller 

than the symbols used. 

 

 

Fig. 4.5 Compositional variation of %Vfree for the synthesised “natural” glasses in series (60-

x) Li2O: xMnO: 40P2O5 (x = 10, 15 and 20) 
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4.2.2 Structural analysis 

Fig. 4.6 shows the IR spectra of the studied glass compositions, (60 − x) Li2O: xMnO: 

40P2O5 (x = 10, 15 and 20). As seen in the compositions studied in Chapter 3, all peaks are 

broad, typical for a disordered glass system. In this system, several bands are evident and are 

consistent with metaphosphate chains. All glass compositions show peaks at around 900 cm−1, 

which are attributed to the P-O-P asymmetric stretch. A weak band characteristic of (PO3)
– (Q2 

species, metaphosphate) can be seen at around 1280 cm−1. In addition, a broad band at around 

780 cm−1 corresponds to (P-O-P) symmetric vibration of bridging oxygen atoms 7,8. An obvious 

peak characteristic of (PO3.5)
2− (Q1 species, pyrophosphate) can be seen at around 1100 cm−1. 

This is expected in this system since the glasses now lie in the polyphosphate region i.e., they 

would be expected to contain mixtures of Q1 and Q2 phosphate species. When the IR spectra 

of glass compositions, (60-x) Li2O: xMnO: 40P2O5 are compared to those of glass 

compositions, (50-x) Li2O: xMnO: 50P2O5 discussed in Chapter 3, we can observe that peaks 

at around 1280 cm−1 (corresponding to (PO3)
–, Q2 species, metaphosphate) are commonly 

weaker, while peaks at around 1100 cm−1 (corresponding to (PO3.5)
2−, Q1 species, 

pyrophosphate) are of relatively higher intensity (Fig. 4.7). Thus, we can conclude that in the 

composition (60-x) Li2O: xMnO: 40P2O5 (x = 10, 15 and 20), there are less (PO3)
– (Q2) and 

more (PO3.5)
2– (Q1).  

As discussed in Chapter 3 it is possible to calculate the theoretical phosphate speciation 

in the synthesised glasses. Assuming manganese and lithium are exclusively network 

modifying glasses in the (60-x) Li2O: xMnO: 40P2O5 system should show equal amounts of Q1 

and Q2 phosphate species (i.e. total network modifying charge = 120). This would be expected 

to change if manganese adopted a network forming role. 

Fig 4.8 shows the X-ray total pair correlation functions, D(r), generated from Ag-K 

radiation ( = 0.5609 Å) for samples of composition (60-x) Li2O: xMnO: 40P2O5 (x = 10, 15 

and 20). The profiles are all similar to each other. Each shows a strong broad correlation with 

a maximum around 1.46 Å, corresponding to the P-O bond in the phosphate tetrahedra 9. 

Similar to those profiles seen in Chapter 3, a weaker broad correlation with a maximum around 

2.3 Å, is attributable to Mn-O, while, a stronger peak at around 3.3 Å, corresponds to a 

combination of P-P, P-Mn and Mn-Mn correlations. Synchrotron X-ray radiation data were 

subsequently collected on the Diamond facility to provide further detail (Fig. 4.9 and Fig. 

4.10).  
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Fig. 4.6 Infrared spectra of the studied glass compositions, (60 − x) Li2O: xMnO: 40P2O5 (x = 

10, 15 and 20). 

 

 

Fig. 4.7 Infrared spectra of the glass composition 50Li2O:10MnO:40P2O5, compared to that of 

the glass composition 40Li2O:10MnO:50P2O5.  
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Fig. 4.8 X-ray total pair correlation functions, D(r), generated from Ag-K radiation ( = 

0.5609 Å) for samples of composition (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 15 and 20). 

.  

 

Fig. 4.9 Comparison of D(r) profiles for 50Li2O:10MnO:60P2O5 glass composition from Ag 

K (black) and synchrotron radiation (red). 
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Fig. 4.10 Synchrotron X-ray diffraction pair distribution functions D(r) for (60 − x) Li2O: 

xMnO: 40P2O5 (x = 10, 15 and 20) glass compositions. 

 

Fig. 4.10 show the D(r) profiles derived from synchrotron X-ray diffraction data for 

glass compositions x = 10, 15 and 20. The D(r) profiles of all glass samples show a strong 

correlation centred at around 1.53 Å, corresponding the P-O bonds, with Mn-O correlation at 

about 2.13 Å. The intensity of the Mn-O peak compared to that of the O-O peak (at around 2.5 

Å) increases with increasing x value, reflecting the increasing Mn content. As discussed in 

Chapter 3, the Li-O correlations (expected at around 1.9 Å) are absent due to the relatively 

small contribution of Li to the X-ray scattering. 

D(r) total pair functions derived from neutron scattering data for glass compositions x 

= 10, 15 and 20, are shown in Fig. 4.11, with details shown in Fig 4.12. The P-O bond 

correlation is clearly visible at around 1.5 Å, followed by the combined Mn-O/Li-O negative 

peak with a minimum around 2.00 Å, with increasing value of x, the minimum peak gradually 

shifts to around 2.05 Å (Fig 4.12), reflecting the greater contribution of Mn-O correlations (at 

around 2.1 Å) to this peak. For the x = 15 composition, measurements were performed on an 

additional null-Li sample to isolate the correlations involving Li.  
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Fig. 4.11 Neutron scattering pair distribution functions D(r) for (60 − x) Li2O: xMnO: 40P2O5 

(x = 10, 15 and 20) glass compositions. 

 

 

Fig. 4.12 Details (at the range of 1.4 to 2.6 Å) for neutron scattering pair distribution functions 

D(r) for (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 15 and 20) glass compositions. 
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A comparison of the D(r) profiles for the x = 15 compositions containing natural and 

null Li are shown in Fig. 4.13. A significant difference is seen in the Li-O/Mn-O negative peak 

around 2.1 Å. For the null Li containing sample, the peak has more structure, while for the 

natural Li sample the corresponding peak is broader and centred at about 2.0 Å. 

 

(a) 

 

(b) 

 

Fig. 4.13 Comparison of D(r) profiles for natural and null lithium containing glass samples of 

45Li2O: 15MnO: 40P2O5 (a), with detail shown in (b).   
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Fig. 4.14 D(r) profile derived by subtracting that of the null Li containing sample from the 

natural Li containing sample (x = 15). 

 

The result of subtracting the D(r) profile for the null Li containing sample from that of 

the corresponding natural Li sample is shown in Fig. 4.14. The data show a sharp negative peak 

at around 1.98 Å, corresponding to Li-O pair correlations. This is followed by a positive peak 

at around 2.7 Å, likely due to Li-Li and Li-Mn correlations and the Li-P at around 3.1 Å 

(negative peak). The results are even clearer than those seen in Chapter 3 due to the greater Li 

content.  

The experimental melting temperatures Tm of compositions (60 − x) Li2O: xMnO: 

40P2O5 (x = 10, 15 and 20) are relatively lower than most Tm values of compositions discussed 

in Chapter 3. Thus, lower simulated Tm values for these compositions were applied to the MD 

simulation. Fig. 4.15 shows the neutron scattering pair correlation function D(r) derived from 

the MD simulation, for (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 15 and 20) glass compositions. 
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(a) 

 

(b) 

 

Fig. 4.15 Neutron D(r) profiles for glass samples of composition (60-x) Li2O: xMnO: 40P2O5 

(x =10, 15 and 20) generated from MD simulations showing (a) full profile and (b) detail at 

low r-values.  
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                                     (a)                                                                      (b) 

 

                                     (c)                                                                      (d) 

Fig. 4.16 Comparison of simulated (Gaussian broadened) and experimental neutron D(r) 

profiles for glass samples of composition (60-x) Li2O: xMnO: 40P2O5 (x =10, 15 and 20). 

 

As for the compositions discussed in Chapter 3, while the MD derived D(r) profiles 

for glass samples are similar to those for the corresponding compositions found experimentally, 

in the MD derived data peaks are sharper, due to the limit of the finite size of the model and 

were therefore broadened using a Gaussian convolution (Eqn. 3.10). Comparisons between the 

Gaussian broadened simulated D(r) profiles with the corresponding experimental data are 

shown in Fig. 4.16.  
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Fig. 4.17 Li-Li, Li-O, Li-P and Li-Mn pair correlations gij(r) generated from MD simulations 

for glass samples of composition 45Li2O: 15MnO: 60P2O5 (x = 15).  

 

As seen in Chapter 3, while the MD simulations show good agreement with the 

experimental data up to 3 Å, differences appear above 3 Å. These differences are mainly in the 

intermediate range from 3 to 6 Å. Thus, it can be concluded that the simulated structures reflect 

the short-range structure of each composition accurately but are less accurate at the 

intermediate range. Selected partial pair correlation functions gij(r) derived from the MD 

simulations are shown in Fig. 4.18, with the derived coordination numbers and average contact 

distances given in Table 4.8. The Li-O, Li-Li, Li-P and Li-Mn partial pair correlations gij(r) 

for the x = 15 composition are shown in Fig. 4.17. The correlations show good agreement with 

the experimental D(r) derived by subtracting the null Li data from that of natural Li. This 

confirms the assignment of the correlations discussed above.    
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                                     (a)                                                                      (b) 

 

(c) 

Fig. 4.18 Selected partial pair correlations gij(r) generated from MD simulations for glass 

samples of composition (60-x) Li2O: xMnO: 40P2O5 (x =10, 15 and 20). 

 

From the results in Table 4.8, we can see that the P-O bond length vary little with 

composition, with a P-O coordination number of around 4. The Li-O coordination numbers of 

around 3.9 confirm predominantly tetrahedral coordination for Li, Li-O distances ranging from 

1.96 Å to 1.99 Å, in good agreement with the value obtained from subtracting the D(r) profile 

of the null lithium containing sample from that of the sample containing natural Li (Fig. 4.14).  
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Table 4.8 Coordination numbers (CN) and selected correlation distances d (Å) derived from 

MD simulations for glasses of composition (60-x) Li2O: xMnO: 40P2O5. Uncertainties are 

estimated at 0.5%. 

Composition x 10 15 20 

Li - O CN 3.90 3.87 3.88 

Li - O d (Å) 1.99 1.96 1.96 

Mn - O CN 4.79 4.87 4.86 

Mn - O d (Å) 2.16 2.15 2.13 

P - O CN 4.04 4.03 4.04 

P - O d (Å) 1.49 1.49 1.49 

O – O CN / / / 

O – O d (Å) 2.47 2.49 2.44 

 

Table 4.9 Manganese coordination number (CN) distributions for studied glass composition 

(60-x) Li2O: xMnO: 40P2O5 (x =10, 15, and 20) derived from MD models.   

x CN 2 CN 3 CN 4 CN 5 CN 6 CN 7 

10 0 0 0.3195 0.5714 0.1090 0 

15 0 0.0075 0.2481 0.6140 0.1278 0 

20 0 0.0019 0.2594 0.6109 0.1278 0 

  

The Mn-O distance is around 2.15 Å and decreases slightly with increasing Mn content. 

The Mn-O coordination number is around 4.8 in all compositions. It increases slightly from x 

= 10 to x = 15 but shows little change between x = 15 and 20. The observed values are consistent 

with a mixture of predominantly 4 and 5 coordinate manganese i.e. network forming and 

network modifying, respectively. The Mn-O coordination number distributions are 

summarised in Table 4.9 and confirm that the fraction of 4 coordinate network modifying 

manganese decreases from x = 10 to x = 15 but is fairly constant from x = 15 to x = 20. 

Remembering that the x = 20 composition was partially crystallised, this indicates that the 

residual glass phase is close in composition to x = 15.  

Based on the distributions shown in Table 4.9 it is evident that at x = 15 approximately 

25% of the manganese content is network forming. If it is assumed that this is in the Q4 state 
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i.e. [MnO2]
2- then there are 3.75 [MnO2]

2- units contributing to the network charge per formula 

unit and the remaining 11.25 Mn2+ ions per formula unit along with the 90 Li+ ions, make up 

the total network modifying charge of 112.5 per formula unit. Subtracting the network charge 

from the Q4 manganate units leaves a modifying charge of 105 per formula unit that needs to 

be balanced by the phosphate species. If x is the number of Q1 phosphate species and y is the 

number of Q2 phosphate species, then: 

105 = 2x + y             (4.1) 

and 

                                               80 = x + y          (4.2) 

Therefore x = 25 and y = 55 corresponding to 31.25% Q1 and 68.75% Q2 phosphate species. 

Thus, the structural formula of the glass can be written as: 

 

Li+
90 Mn2+

11.25 [(MnO2)
2-

3.75 (PO3.5)
2-

25 (PO3)
-
55] 

 

Of course, other phosphate species are possible such as Q4 and Q0 through disproportionation.  

 

4.2.3 Electrical characterisation 

Electrical characterisation of compositions of 60Li2O: 40P2O5 (x = 0) and 45Li2O: 

15MnO: 40P2O5 (x = 15) was carried out using a.c. impedance spectroscopy. At each measured 

temperature, a semicircle or part of semicircle was observed corresponding to the bulk 

resistance of the sample, followed by a low frequency tail corresponding to the blocking 

electrode. Arrhenius plots of conductivity for these two compositions are shown in Fig. 4.19. 

The data correspond to the first cooling cycle. 

The unsubstituted sample (x = 0) with the highest lithium ion concentration exhibits the 

highest conductivities over the whole temperature range studied. This sample was partially 

crystallised, but the conductivity of the glassy and crystalline components could not be 

separated. Table 4.10 summarises the derived electrical parameters at 200 C and 300 C for 

the studied compositions. The conductivity, of the unsubstituted sample is significantly higher 

at both temperatures and has a lower activation energy. For the x = 15 composition the value 
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of conductivity at 300 C is appreciably high in the order of 10−3 S cm−1 typical of the best 

solid-state Li+ ion conductors and in good agreement with the data reported by Kontor 1. The 

activation energy of the x = 15 sample is higher than at x = 0 reflecting a more compact structure 

with less free volume, resulting in lower ion mobility.  

 

 

Fig. 4.19 Arrhenius plots of conductivity for selected compositions (x = 0 and 15) in the (60 

− x) Li2O: xMnO: 40P2O5 system. 

 

Table 4.10 Derived electrical parameters for selected compositions in the (60 − x) Li2O: xMnO: 

40P2O5 system. (Estimated uncertainty is ±5%). 

Composition 

(x) 

σ200C / σ473K 

(S cm−1) 

σ 300C / σ573K 

(S cm−1) 

Activation Energy Ea 

(eV) 

0 3.04 ×10−4 5.28 ×10−3 0.71 

15 3.57 × 10−5 1.156 × 10−3 0.86 

 

 



151 
 

4.3 Conclusions 

The lower phosphate content of the composition (60−x) Li2O: xMnO: 40P2O5
 make the 

glass forming region narrower compared to the (50−x) Li2O: xMnO: 50P2O5 system in Chapter 

3. However, the conductivities are higher in these glasses compared to those in Chapter 3, due 

to the higher Li2O content. While the conductivity decreases with respect to that of the 

unsubstituted composition, due to the decrease in carrier concentration, the x = 15 composition 

shows appreciably high conductivity at 300 C. The activation energy is seen to rise from x = 

0 to x = 15 reflecting the greater compactness of the structure resulting in poorer ion mobility. 

Manganese again shows a mixture of predominantly 4 and 5 coordination geometries with 

some 6 coordinates. In contrast to the (50−x) Li2O: xMnO: 50P2O5 compositions, the fraction 

of network forming manganese decreases with increasing x-value up to x = 15, resulting in an 

increase in Tg, and also due to the decrease in the total number of cations resulting in fewer 

cross links. Li adopts mainly four coordinate geometry but is still considered to be essentially 

network modifying due to the ionicity of the Li-O interaction. 
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Chapter 5 Overall Conclusions and Future Work 

 

5.1 Conclusions 

The structures and conductivities of lithium manganese glasses of different 

compositions, (50 − x) Li2O: xMnO: 50P2O5 (x = 10.0, 25.0, 33.3, 40.0 and 50.0) and (60 − x) 

Li2O: xMnO: 40P2O5 (x = 10, 15, and 20) have been discussed. The work presented in this 

thesis has shown that structural information can be obtained by molecular dynamics 

simulations of the results of X-ray and neutron scattering experiments. 

Theoretically, the system (50 − x) Li2O: xMnO: 50P2O5 are metaphosphate glasses, 

with an [O] / [P] ratio of 3.0, and the phosphate speciation should be Q2, i.e. it should contain 

chains and/or rings of (PO3)n
n- with Li+ and Mn2+ cations cross-linking them. Similarly, the 

system (60 − x) Li2O: xMnO: 40P2O5 are polyphosphate glasses with an [O] / [P] ˃ 3.0, in 

which there should be there should be Q2 species, (PO3)
− and Q1 species, (PO3.5)

2−, which act 

as the chain ends. The IR results confirm this speciation. In the (50 − x) Li2O: xMnO: 50P2O5 

system, glasses are readily achieved over a wide compositional range (10  x  50). However, 

the conductivity of these glasses is relatively low due to the decreasing charge carrier 

concentration with increasing level of substitution. Therefore, a set of compositions with higher 

lithium ion concentration was chosen for further study. Unfortunately, due to the lower 

phosphate content, in the (60 − x) Li2O: xMnO: 40P2O5 system, the glass forming 

compositional region is limited to approximately 10  x  15 and at x = 20 partial crystallisation 

occurs, with the residual glass phase close in structure to that at x = 15, consistent with a 

previous study 1 in the Abrahams group. While, more rapid quenching techniques such as using 

rollers might yield glasses at a higher level of substitution, this conductivity is likely to be 

lower due to the reduced lithia content and consequently this was not pursued.    

  The structural results show that Mn plays a very important role in the structure of both 

systems. Mn2+ cations can act as both network modifiers and network formers in oxide glasses. 

The MD simulations show that in all the compositions studied most of Mn2+ cations have 5 or 

6 coordination geometries i.e. network modifying cations, but a significant proportion of the 

Mn2+ show network forming character with coordination number of 4. Based on 

electroneutrality consideration, these network forming species, are likely to be Q4 manganate 
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species i.e. [MnO2]
2− units. This means that in the system (50 − x) Li2O: xMnO: 50P2O5, the 

presence of [MnO2]
2− units in the network causes the generation of some neutral Q3 phosphate 

species, (PO2.5) to maintain electroneutrality. Similarly, in the system (60 − x) Li2O: xMnO: 

40P2O5, the presence of [MnO2]
2− units reduces the amount of Q1 species, (PO3.5)

 2− and 

increases that of Q2 species, (PO3)
−. 

 The stronger more covalent Mn-O interactions of the [MnO2]
2− units within the 

network make the structure stronger and more compact. This causes Tg to increase, free volume 

to decrease and activation energy for ionic conductivity to increase; the latter due to reduced 

mobility of the Li+ ions. One must also consider the case when cations act as network modifiers. 

As Hudgens et al. 2 reported, on addition of Li2O to metaphosphate glass P2O5 above 20 mol 

%, Tg increases, although the fraction of non-bridging oxygen still increases. In this case the 

network modifying cations act as chain cross-linkers, which also make the structure more 

compact. Thus, both these mechanisms would cause Tg to increase. However, in the present 

systems the total number of cations decreases with increasing level of substitution as one Mn2+ 

cation replaces two Li+ cations. In this case, one would expect Tg to decrease and free volume 

to increase as the number of cross links decreases and the structure becomes more open.  Thus, 

the system involves two competing mechanisms, the extent of which depends on the level of 

substitution and the proportion of manganese in network forming roles i.e. [MnO2]
2−. Table 

5.1 and Table 5.2 show the total numbers of modifying cations (Li+ and Mn2+) and network 

forming [MnO2]
2− units per formula unit in the studied systems, derived from the MD 

simulations. 
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Table 5.1 Numbers of network forming [MnO2]
2− units and modifying cations (Mn2+ and Li+) 

numbers per formula unit for glass compositions (50 − x) Li2O: xMnO: 50P2O5 (x = 10, 25, 

33.3, 40 and 50) derived from MD simulations. 

unit 10 25 33.3 40 50 

cations 86.8 65.8 53.0 43.7 31.0 

[MnO2]
2− 3.2 9.2 13.5 16.3 19. 0 

 

Table 5.2 Numbers of network forming [MnO2]
2− units and modifying cations (Mn2+ and 

Li+) numbers per formula unit for glass compositions (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 

15, and 20) derived from MD simulations. 

unit 10 15 20 

cations 106.8 101.2 94.8 

[MnO2]
2− 3.2 3.8 5.2 

 

The data in Table 5.1 and 5.2 are illustrated graphically in Fig. 5.1 and 5.2, 

respectively. It is evident from these that the concentration of modifying cations and hence the 

cross-link density decreases with increasing x value which would cause a weakning of the 

network, while the number of network-forming Q4 manganate units increases which would 

strengthen the network. In other words, on addition of MnO, there are two competing 

mechanisms, one strengthening the network and another weakening the network. In the case of 

the (50 − x) Li2O: xMnO: 50P2O5 system the structure becomes most compact when x = 33.3, 

which leads to a maximum in Tg, a minimum in free volume and a maximum in activation 

energy.   

In the case of the (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 15, and 20) system, Tg rises 

and free volume decrease across the glass forming region as x increases. From this it may be 

concluded that the main factor dominating the strength and openness of the network is the 

increase in the number of Q4 manganate species with increasing x-value. 
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Fig. 5.1 Compositional variation of [MnO2]
2− and total modifying cation (Mn2+ and Li+) 

numbers per formula unit for glass compositions (50 − x) Li2O: xMnO: 50P2O5 (x = 10, 25, 

33.3, 40 and 50) derived from MD simulations. 

 

 

Fig. 5.2 Compositional variation of [MnO2]
2− and total modifying cation (Mn2+ and Li+) 

numbers per formula unit for glass compositions (60 − x) Li2O: xMnO: 40P2O5 (x = 10, 15, and 

20) derived from MD simulations. 
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Table 5.3 Li+ concentration, conductivities at 473 K and 573 K, free volume, numbers of 

network forming [MnO2]
2− units per formula unit and activation energy for conductivity for 

glass compositions (50 − x) Li2O: xMnO: 50P2O5 (x = 10, 25, 33.3 and 40) 

Composition 10 25 33.3 40 

Li+ Concentration (nm−3) 13.34 8.40 5.62 3.35 

Conductivity at 473 K (×10−6 S cm-1) 408 16.9 4.84 0.22 

Conductivity at 573 K (×10−8 S cm-1) 720 20.2 3.71 0.14 

Free Volume (%) 46.96 46.56 46.44 46.71 

[MnO2]
2− units per formula unit 3.22 9.20 13.53 18.97 

Activation energy for conductivity (eV) 1.00 1.09 1.28 1.25 

 

From the electrical results the strategy of increasing the carrier concentration to 

improve conductivity was effective, with the conductivity of glass compositions (60 − x) Li2O: 

xMnO: 40P2O5 more than 10 times higher than that of glass compositions (50 − x) Li2O: xMnO: 

50P2O5 due to the higher Li+ concentration. In addition, the activation energy Ea is 

comparatively lower. However, the increase in the [O] / [P] ratio limits the glass forming region 

making synthesis more difficult. More details can be revealed by further analysis of the 

collected conductivity data. Some aspects of glass composition (50 − x) Li2O: xMnO: 50P2O5 

will be briefly discussed as follows and some relevant parameters for this composition in the 

range of x = 10, 25, 33.3 and 40, are listed in Table 5.3. As mentioned in Section 1.4.1, we can 

obtain the relation between the conductivity σ and the mobility μ through Eqn. 5.11:  

σ = q2cμ        (5.1) 

Thus, conductivity, σ, is dependent on the charge carrier concentration c and its mobility μ, 

since the charge of ion q is constant. In addition, the percentage free volume %Vfree changes 

little across the glass forming region as x increases, with values between 46% and 47%. The 

main influence of free volume is on mobility and is evident in the activation energy, with a 

maximum in activation energy corresponding to a minimum in %Vfree. The relation between σ 

and the charge carrier concentration, c, would be expected to be linear if mobility was constant. 

However, there is a clear deviation away from a linear relationship between these two quantities 

evident in Fig. 5.3. While %Vfree has a direct effect on ion mobility and hence conductivity 

other factors also need to be taken into account.  
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(a) 

 

 

(b) 

 

 

Fig. 5.3 The relation between conductivity σ and Li+ concentration for glass compositions (50 

− x) Li2O: xMnO: 40P2O5 (x = 10, 25, 33.3 and 40) (a) at 473 K, and (b) 573 K. 
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A helpful idea can be taken from the Anderson-Stuart strong electrolyte model 

presented in Section 1.4.3, which describes that Ni (the effective carrier density of ion i), not 

the theoretical charge carrier concentration, c, determines the conductivity, σ, with the charge 

of ion q and the mobility μ. If P indicates the fraction of charge carrier concentration, c, that 

are mobile, the relation is given by: 

Ni = Pc      (5.1) 

Thus, we can obtain: 

σ = q2cμ = q2Niμ = q2Pcμ    (5.2) 

P values less than 1, indicate that some of the Li+ ions lose their ability to move through 

the network. In the glass compositions (50 − x) Li2O: xMnO: 50P2O5, the Q species of main 

network former is Q2 i.e. (PO3)
−. As discussed above, some of the Mn cations act in a network 

forming role and becomes the Q4 manganate species i.e. [MnO2]
2− units. Since [MnO2]

2− has a 

greater nominal network charge than (PO3)
−, it can trap Li+ ions more easily, resulting in a 

reduction of effective carrier density Ni . 

Thus, the conductivities of the studied glasses are dependent on three parameters: 

1. The lithium ion concentration, c, as dictated by the stoichiometry. 

2. The effective carrier density Ni. 

3. The charge carrier mobility μ. 

In summary, Mn plays a complicated role in the studied glass systems. As a network 

intermediate Mn2+ cations can act as both network modifier and former and significant 

concentrations of both types are present in these systems. While the conductivities of both 

systems are relatively low at room temperature, the (60 − x) Li2O: xMnO: 40P2O5 system shows 

appreciable conductivity at 300 C.  

 

5.2 Future work 

Further study of structures of the glass compositions is needed to determine the 

intermediate and long-range structures. For example, using the simulated structures as starting 

models the D(r) distributions can be fitted using Reverse Monte Carlo (RMC) methods. This 

would enable a more accurate description of the intermediate and long-range structure in these 
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systems, since this is a fitting method rather than a simulation method. The RMC results would 

make an interesting comparison with those from the MD simulation and could help to improve 

the MD methodology. 

Armed with an accurate model describing the structure it will then be possible to 

monitor the lithium ion diffusion in these glasses through MD simulations at temperatures 

corresponding to the solid system. From these diffusion coefficients and activation energies 

can be calculated and compared to the experimental values. 

The glasses described in the present system are being developed as possible cathodes 

for all glass solid state cells. Compositions in the (60 − x) Li2O: xMnO: 40P2O5 system show 

reasonable Li+ ion conductivities at 300 C. While further optimisation of composition would 

be desirable with conductivity values in the order of 10−3 S cm−1 the system can now be 

investigated in a real device. This would first involve fusing the glass with a suitable electrolyte 

glass such as glasses in the system Li2O-TiO2-Al2O3-P2O5 
3 and cycling of the cell against a Li 

metal anode, to see if Li intercalation/deintercalation occurred at the cathode. A major 

remaining problem is the electronic conductivity of the glass. If this can be improved, for 

example by inclusion of carbon black in the melt, then the system could be quite effective. If 

so then an all solid cell involving both glass anodes and cathodes could be envisaged using a 

rocking chair type construction.  

The Mn2+/Mn3+ redox couple is one of many that could be suitable for the cathode of 

an all glass Li battery. Other transition metal couples, such as Fe2+/Fe3+, Ni2+/Ni3+, and 

Co2+/Co3+ are also possible and might exhibit better performance when incorporated into a 

glass system. The present study represents one of the first steps in the development of all glass 

monolithic battery systems and there is a huge unexplored compositional space in which new 

high-performance materials could be developed. 

  



161 
 

5.3 References 

 

1 Kontor, M. Lithium ion conducting glass-based batteries MSc thesis, Queen Mary 

University of London, (2004). 

2 Hudgens, J. J. & Martin, S. W. Glass Transition and Infrared Spectra of Low‐Alkali, 

Anhydrous Lithium Phosphate Glasses. Journal of the American Ceramic Society 76, 

1691-1696 (1993). 

3 Abrahams, I. & Hadzifejzovic, E. Lithium ion Conductivity and thermal behaviour of 

glasses and crystallised glasses in the in the system Li2O-TiO2-Al2O3-P2O5. Solid State 

Ionics 134, 249-257 (2000). 

 

 

 

 

 

 

 

 

 

 


