
Fully Homomorphic Encryption

Applications: The Strive Towards

Practicality

by

Jack Lik Hon Crawford

A thesis submitted to the University of London for the degree of

Doctor of Philosophy

Department of Electronic Engineering and Computer Science
Queen Mary, University of London

United Kingdom

January 2019

2

I, Jack Lik Hon Crawford, confirm that the research included within this thesis is my

own work or that where it has been carried out in collaboration with, or supported by

others, that this is duly acknowledged below and my contribution indicated. Previously

published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge break any UK law, infringe any third party’s

copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check

the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or infor-

mation derived from it may be published without the prior written consent of the author.

Signature: Jack Crawford

Date: 31/01/2019

Details of collaboration and publications:

1. JLH. Crawford, C. Gentry, S. Halevi, D, Platt and V. Shoup, “Doing Real

Work with FHE: The Case of Logistic Regression,” WAHC ’18: 6th Workshop on

Encrypted Computing. (Accepted)

2. JLH. Crawford, H. Hunt, “Fractions for Fully Homomorphic Computations”

2018 (Revising)

3. FHE patent with IBM (Filed)

I would like to dedicate this thesis to my family and friends
who continually provide me support and inspiration.

Acknowledgements

I would like to thank my primary supervisor Dr. Søren Riis, my second supervisor Dr.
Greta Yorsh and independent assessor Prof. Pasquale Malacaria for their input and

feedback throughout the process of my doctoral programme.

I would like to thank my collaborators at IBM Research for their incredible insights
and support. Most notably, Hamish Hunt, Shai Halevi and Victor Shoup whom I

worked with during the course of my doctoral research.

Finally I would like to thank my fellow doctoral students for providing their advice,
support and friendship.

Abstract

Fully Homomorphic Encryption (FHE) schemes are becoming evermore prevalent in the

cryptography domain. They allow computation on encrypted data without the necessity

of decryption, thus opening a plethora of new applications relating to cloud computing

and cryptography.

FHE schemes have been viewed generally as being impractical in a real-world scenario,

thus leading to a relatively slow uptake within industry despite the high level of interest

in the topic. This has caused a lack of FHE applications and thus various practical

questions have not been tackled due to such problems not arising or going unnoticed

within research.

This thesis explores three contrasting FHE applications, each of which contain new ideas

and overcome challenges within FHE. Namely, we analyse applications that require sig-

nificant levels of bootstrapping, alternative data representations as well as the possibility

of using FHE in the anonymity domain. Proofs of concept have been developed for each

application to display the feasibility of each idea.

The aim of this research is to present the mathematics of FHE in a comprehensive

manner to improve the accessibility of concepts within FHE. Furthermore we analyse

the usability and versatility of FHE in various scenarios with the aim to demonstrate

the practicality of using FHE in a real-world setting.

5

Table of Contents

Abstract 5

Table of Contents 6

List of Figures 10

List of Tables 11

1 Introduction 1

1.1 Background of HE . 1

1.1.1 BGV Scheme . 2

1.2 The Current State-of-Art . 3

1.3 Outline of the thesis . 3

2 History of FHE 5

2.1 Before FHE . 5

2.1.1 RSA . 5

2.1.2 El Gamal . 6

2.1.3 Paillier . 7

2.2 The Birth of FHE . 8

2.2.1 Gentry’s Breakthrough . 9

2.2.2 The BGV Scheme . 11

2.2.3 The FV Scheme . 11

6

2.2.4 The GSW Scheme . 12

2.2.5 Non-LWE-Based FHE Schemes . 13

2.3 Summary . 13

3 Mathematics of FHE 15

3.1 Introduction To Lattices and Rings . 15

3.2 The Learning with Errors Problem . 16

3.2.1 The Ring Learning with Errors Problem 19

3.2.2 The General Learning with Errors Problem 20

3.3 The BGV Scheme . 21

3.3.1 Setup . 22

3.3.2 Key generation . 23

3.3.3 Encryption and Decryption . 24

3.3.4 Arithmetic operations . 25

3.3.5 Modulus Switching . 28

3.3.6 Key-Switching . 29

3.3.7 Batching . 30

3.3.8 Cryptographic Usage . 32

3.4 Summary . 32

4 Anonymous Routing 34

4.1 Introduction . 34

4.2 Existing Methods for Anonymity . 36

4.3 Mathematics . 38

4.4 The Algorithm . 39

4.5 Implementation . 42

4.5.1 Pre-Computation . 42

4.5.2 Anonymous Routing . 45

4.5.3 Retrieving The Message . 49

4.6 Discussion . 49

7

4.7 Conclusion . 51

5 Implementing Fractional Arithmetic in FHE 52

5.1 Introduction . 52

5.2 Implementation of Fractions . 55

5.2.1 The Plaintext Space . 55

5.2.2 The Quasi-Rationals . 56

5.2.3 Simple Linear Regression . 59

5.3 Implementation of Linear Regression . 60

5.4 Evaluation of the use of QuasiQs . 68

5.5 Comparison with Previous Methods . 70

5.6 Conclusion . 72

6 Performing Logistic Regression using FHE 73

6.1 Introduction . 73

6.1.1 Somewhat vs. Fully Homomorphic Encryption 73

6.1.2 The iDASH Competition . 74

6.1.3 Our Logistic-Regression Procedure 76

6.1.4 Homomorphic Computation of the Approximation Procedure . . . 77

6.1.5 The End Result . 79

6.1.6 Related Work . 80

6.1.7 Organization . 81

6.2 Logistic Regression and Our Approximation 81

6.2.1 A Closed-Form Approximation Formula for Logistic Regression . . 82

6.2.2 Validity of the Approximation . 84

6.3 Overview of Our Solution . 85

6.3.1 The procedure that we implement 85

6.3.2 Homomorphic Evaluation . 87

6.4 Using Table Lookup to Compute Arbitrary Functions 96

6.5 Binary Arithmetic and Comparisons . 100

8

6.5.1 Adding Two Integers . 101

6.5.2 Adding Many Integers . 103

6.5.3 Integer Multiplication . 104

6.5.4 Comparing Two Integers . 105

6.5.5 Accumulating the bits in a ciphertext 106

6.6 Solving a Linear System . 109

6.6.1 Randomized Encoding with Rational Reconstruction 109

6.6.2 Are We Still Leaking Too Much? 113

6.7 Implementation and Performance . 113

6.7.1 Timing Results . 114

6.7.2 Is this Procedure Accurate Enough? 115

6.7.3 Timing results for the Various Components 116

6.8 Conclusions and Discussion . 117

7 Conclusions and future work 119

7.1 Summary . 119

7.2 Conclusion . 120

7.3 Future work . 120

9

List of Figures

4.1 Plaintext slot representation where a ∈ Ap is a polynomial and each slot

Ri ≡ a mod Fi is a polynomial modulo a factor Fi of the cyclotomic

polynomial Φm(x). 39

5.1 Random noise distribution from two Gaussian distributions. 61

5.2 Fitting of the regression line on the input data with additive noise from

N (0, 1). 63

5.3 Fitting of the regression line on the input data with additive noise from

N (0, 9). 65

5.4 Fitting of the regression line on the input data with additive noise from

N (0, 25). 65

5.5 Regression lines with gradients belonging to the same equivalence class. . 66

5.6 Regression lines with intercepts belonging to the same equivalence class. . 67

6.1 Randomized encoding for the rational linear-system solver, f(A,~b) = A−1~b.112

10

List of Tables

6-A Timing results (minutes) of different phases of the logistic-regression pro-

gram . 115

6-B Complexity measures and performance results. Time in seconds, RAM in

MB. 118

11

Chapter 1

Introduction

Throughout history, the security of the transmission and storage of data has always been

an issue of high importance. Numerous cryptographic schemes have been developed to

accommodate this need for information security. However due to the ever increasing

prominence of cloud computing, merely the process of encrypting data is no longer

sufficient. Encrypting data provides a means of securely storing and transmitting data

to trusted parties. Yet what if the intended recipient of the data is not trusted by the

sender? In the general case of communication this may not be the case but there are

numerous scenarios where the user will not want to reveal their data to other parties but

require them to have access. An example of a common use case is when the user wants

to outsource computations on sensitive data.

1.1 Background of HE

Homomorphic Encryption (HE) schemes allow for computations to be performed directly

on ciphertexts without the need for decryption. This allows users to outsource compu-

tations to the cloud without revealing their data. Achieving such a scheme that can

evaluate useful circuit depths has been an open problem for numerous years [69]. Since

then numerous different types of HE schemes have been proposed by the cryptographic

1

Chapter 1. Introduction 2

community. Among them are the Partially Homomorphic Encryption (PHE) schemes

that only allow limited types of homomorphic operations, namely addition but not mul-

tiplication or vice versa.

The community began to look at lattice based cryptography to perform HE and it

was not until Gentry’s breakthrough in 2009 [39] that Fully Homomorphic Encryption

(FHE) schemes were shown to be possible. FHE schemes, unlike partially homomorphic

schemes, allow for arbitrary computations on encrypted data. Gentry [39] presented

a scheme that was Somewhat Homomorphic (SWHE) that through a novel technique

called “bootstrapping” could evaluate its own decryption circuit in addition to a NAND

gate to construct a Fully Homomorphic scheme.

Currently there are public-key encryption schemes that rely on the factorisation of

prime numbers for their security, namely RSA [70]. Since the formulation of Shor’s algo-

rithm [71], which presents an algorithm that can factorise an integer N in polynomial

time using a quantum computer. Prior to this discovery there has been increased inter-

ested in developing quantum secure cryptographic schemes. A previously well-studied

set of problems that was explored was lattice problems, thus leading to lattice based

cryptography.

1.1.1 BGV Scheme

The scheme proposed in 2012 by Brakerski, Gentry and Vaikuntanathan [13], known as

the BGV scheme, was one of the more prominent FHE schemes. It was an extension

upon Gentry’s original scheme that mitigated the need for bootstrapping through the

introduction of a concept called “levels”.

Rather than building a scheme that is required to perform the computationally expen-

sive bootstrapping technique, the BGV scheme produces a ciphertext that has an arbi-

trary number of pre-computed “computation levels”. As operations are performed upon

the ciphertext levels are consumed until the ciphertext reaches the base level and no

further computations can be performed.

Chapter 1. Introduction 3

This scheme produced considerable gains in the efficiency of FHE thus improving the

practicality of using such schemes. Theoretically, one can build a scheme with infinitely

many levels although this is infeasible in practice thus technically making the BGV

scheme a Somewhat Homomorphic Encryption (SWHE) scheme in practice.

In later implementations of the scheme [46] would utilise both the “leveled” scheme

with the inclusion of Gentry’s bootstrapping technique. This allows a user to evaluate

circuits using the more efficient leveled scheme until the ciphertext reaches the base level

and then use the bootstrapping technique to “refresh” the ciphertext back to the top

level before performing additional operations. The BGV scheme is described later in the

thesis in Section 2.

1.2 The Current State-of-Art

Research and development on FHE schemes is ongoing in both academia and industry.

Particular organisations of note are Microsoft Research and IBM Research who have

developed the homomorphic encryption libraries S.E.A.L. [18] and HElib [46] respec-

tively. In addition to this, other notable encryption libraries that implement FHE are

PALISADE [66] and Fast Fully Homomorphic Encryption over the Torus (TFHE) [24].

Despite the various available FHE libraries, currently the libraries are not mature

enough for practical use within the real world in a commercial environment. This further

enforces the overall impracticality of FHE schemes however as improvements in hardware,

algorithm efficiency and implementational techniques continue, practical uses of FHE

have been shown and the feasibility of FHE schemes will continue to grow.

1.3 Outline of the thesis

Chapter 2 covers the history of FHE from the initial statement of the open problem,

to Gentry’s breakthrough thesis through to the current stage of FHE research.

Chapter 1. Introduction 4

Chapter 3 provides an in-depth description of the mathematics behind FHE schemes,

providing a detailed breakdown of how FHE schemes work mathematically.

Chapter 4 describes an anonymous routing algorithm implemented using an open-

source homomorphic encryption library that protects against global adversaries.

Chapter 5 presents a method for representing and computing on rational numbers

within FHE.

Chapter 6 proposes an FHE algorithm that performs logistic regression homomor-

phically.

Chapter 7 presents the conclusion and some thoughts for future work.

Chapter 2

History of FHE

This chapter provides an extensive literature review of the history of how homomorphic

encryption schemes developed over time and aims to describe the differing types of FHE

schemes that have emerged.

2.1 Before FHE

The ability to perform computations on encrypted data without the need to decrypt it

has been an interesting open problem for a long time since its first mention by Rivest et al.

[68]. Prior to the development of fully homomorphic encryption schemes, there existed

encryption schemes that allowed the computation of only certain types of operations

directly on the ciphertext itself. These schemes were known as partially homomorphic

encryption schemes (PHE) which will be described in this section.

2.1.1 RSA

The Rivest-Shamir-Adelman (RSA) scheme [70] is one of the first public-key cryptosys-

tems and is the earliest known encryption scheme capable of homomorphic computations.

This scheme is multiplicatively homomorphic, although is not additively homomorphic.

However, textbook RSA is deterministic and thus is not used in practice due to it being

5

Chapter 2. History of FHE 6

insecure. In other words, there is no element of randomness during the encryption of

plaintexts under textbook RSA resulting in multiple encryptions of the same plaintext

message yielding identical ciphertexts.

Below is a description of the multiplicatively homomorphic property of textbook RSA:

Definition 2.1.1 (Rivest-Shamir-Adelman). Given two randomly generated primes r

and s, generate a public key (q, e) where q = rs,gcd(e, φ(q)) = 1 and φ(q) = (r−1)(s−1).

The secret key is d = e−1(mod φ(q)). Given a message m, encryption of the message

produces ciphertext c = me(mod q). To decrypt, the ciphertext is raised to the power

of the secret key cd(mod q) = (me)e
−1 = m. Multiplying two ciphertexts c1 and c2

encrypting m1 and m2 respectively, produces the encryption of m1 ·m2.

In order to improve the security of RSA, randomised padding is introduced prior to

the encryption of the message. Therefore we are encrypting p(m) for random padding

function p instead of just encrypting m. Unfortunately, this removes the homomorphic

properties of padded-RSA as we have E(p(m1) · p(m2)) 6= E(p(m1)) · E(p(m2)).

2.1.2 El Gamal

The El Gamal cryptosystem [37] is another multiplicatively homomorphic public-key

cryptosystem which is based upon the Diffie-Hellman (DH) key exchange. The security

of this scheme is reliant on the hardness of discrete logarithm problem, more specifically

the Decisional Diffie-Hellman (DDH) assumption:

Definition 2.1.2 (Decisional Diffie-Hellman). Given a group G with generator g, dis-

tinguishing between the distributions 〈gx, gy, gxy〉 and 〈gx, gy, gz〉 is known to be hard,

where x, y and z are randomly chosen integers in G.

Given this definition we can now define the El Gamal cryptosystem as follows:

Definition 2.1.3 (El Gamal). Let g be a generator of the cyclic group G with order q.

Choose a random element s ∈ Zq as the secret key and generate the public key h = gs.

Chapter 2. History of FHE 7

To encrypt the message m ∈ G, we define the ciphertext (c1, c2) where c1 = gu and c2 =

mhu, where u ∈ Zq is chosen randomly. To decrypt the ciphertext, compute m = c2 ·c−s1 .

Multiplying two ciphertexts c1 = (gu1 ,m1h
u1) and c2 = (gu2 ,m2h

u2) component-wise to

produce c3 = (gu1+u2 ,m1m2h
u1+u2) is a valid encryption of the message m1m2.

It is noted that although standard El Gamal only supports multiplicative homomor-

phisms it can be modified to become additively homomorphic, this variant sometimes

being known as exponential El Gamal. This additively homomorphic variant has been

used in electronic voting systems[30] and is preferred over the use of the Paillier cryp-

tosystem when handling messages of “small” size.

The construction of the exponential El Gamal encryption scheme is based on alter-

ing the message space to Zq with addition modulo the prime q as a group operation.

In contrast to using the standard message space Gq with multiplication as its group

operation as used in regular El Gamal. This is achieved by encrypting messages m as

exponents, in other words, the messages that are to be encrypted are of the form gm

for group generator g ∈ Gq. This produces the necessary additive homomorphism for

we have gm1 · gm2 = gm1+m2 as required. However, encrypting messages of this form

increases the complexity of the decryption procedure as it requires the computation of

the discrete log, which is notably a difficult problem. Therefore exponential El Gamal

is only used for “small” messages where the discrete log can be computed efficiently

using either a lookup table or algorithmically. Otherwise if one was looking to use an

additively homomorphic encryption scheme that supported messages of arbitrary length

efficiently, they would consider using the following encryption scheme.

2.1.3 Paillier

Paillier introduced an additively homomorphic encryption scheme [64] that is used for

electronic voting systems for homomorphically counting votes. The security of this

scheme is based upon the Decisional Composite Residuosity Assumption (DCRA):

Definition 2.1.4 (Decisional Composite Residuosity Assumption). Given a composite

Chapter 2. History of FHE 8

integer q and x ∈ Zq2 it is hard to find y ∈ Zq2 such that x ≡ yq(mod q2).

Subsequently we can define the Paillier cryptosystem as follows:

Definition 2.1.5 (Paillier). Two prime numbers r, s are chosen at random to generate

the public key q = rs. From this the secret key is defined as the tuple (λ, µ) where

λ = LCM(r − 1, s − 1) and µ = λ−1(mod q). Encrypting a plaintext message m ∈ Zq

produces the ciphertext c = (1 + q)muq(mod q2) where u ∈ Z∗q .

The Paillier cryptosystem is only additively homomorphic as there is no known

method for multiplying two given ciphertexts encrypted under the same Paillier encryp-

tion without knowing the secret key. However it is possible to multiply an encrypted

plaintext E(m1) with an ordinary plaintext m2 via exponentiation E(m1)
m2 . We obtain

D(E(m1)
m2 mod n2) = m1 ·m2.

2.2 The Birth of FHE

Having seen various partially homomorphic encryption schemes based on group homo-

morphisms, the subsequent natural step was to develop fully homomorphic encryption

schemes. It must be noted that before the breakthrough in 2009 there were previous

attempts at proposing such schemes.

The most notable of these is the work of Boneh et al. [6]. This homomorphic, public

key encryption scheme is based upon finite groups which support a bilinear map. It is

additively homomorphic via the use of a construction based upon the Paillier cryptosys-

tem but allows a single multiplication operation via the bilinear map.

The main idea behind this scheme is we have two finite multiplicative cyclic groups

G and G1 and a bilinear map e : G × G → G1. Thus for all u, v ∈ G and a, b ∈ Z

we have e(ua, vb) = e(u, v)ab. Therefore given two ciphertexts c1 := gm1hr1 ∈ G and

c2 := gm2hr2 ∈ G we set the ciphertext c := e(c1, c2)h
r
1 ∈ G1. Resulting in the ciphertext

c = gm1m2
1 hr̃1 ∈ G1. Since the groups G and G1 are additively homomorphic, an arbitrary

Chapter 2. History of FHE 9

number of additions can be performed followed by a single multiplication that can then

be succeeded by arbitrarily more additions.

Prior to the following subsection, it is useful to note the difference between a some-

what homomorphic encryption (SHE) scheme and a fully homomorphic encryption scheme.

An encryption scheme is known as fully homomorphic if it can evaluate a binary arith-

metic circuit of unbounded size and depth. An encryption scheme is known as somewhat

homomorphic if it can evaluate a non-empty set of binary arithmetic circuits of limited

size and depth.

2.2.1 Gentry’s Breakthrough

It was not until 2009 that a breakthrough into fully homomorphic encryption was made in

Gentry’s thesis [39]. The work proposed building a somewhat homomorphic encryption

(SHE) scheme from ideal lattices.

Given a plaintext element which exists within an ideal, the encryption of this element

alters the plaintext to another element within the ideal such that it is infeasible to

compute the nearest ideal element to the ciphertext without having access the secret key

to remove the alteration. To ensure that the scheme is circularly secure the encryption

procedure must be non-deterministic so that multiple encryptions of the same plaintext

produce different ciphertexts. This is achieved by adding a small “error” or “noise”

element that is chosen at random.

This “noise” element is removed during the decryption procedure, however the noise

is only removed correctly if it is “small”. This is due the addition and multiplication

operations not only affecting the original plaintext element but the noise element as well.

Each operation has the affect of moving the ciphertext further away from the original

ideal element as the noise grows in size. This continues to happen until the decryption

algorithm incorrectly removes the noise as it erroneously correlates the ciphertext to

another element in the ideal.

Chapter 2. History of FHE 10

Subsequently the number of operations that can be performed on a single cipher-

text is limited by the growth of the noise variable. The problem was trying to make

this somewhat homomorphic encryption scheme into one that is fully homomorphic, in

other words a scheme that allowed an unbounded number of operations to be performed

without the requiring the secret key.

Gentry proposed a solution known as bootstrapping, which was a technique of con-

necting a succession of SHE schemes together an arbitrary number of times to form a

fully homomorphic encryption scheme. Computations are specified as arithmetic circuits

within FHE schemes and the decryption procedure can also be represented as such. The

concept of bootstrapping is a FHE cryptosystem that can homomorphically evaluate its

own decryption circuit. This insinuates that if one can create an SHE scheme that can

evaluate its own decryption circuit followed by at least one NAND gate then they would

obtain an FHE scheme.

The decryption circuit has two input gates, one that accepts a ciphertext and the

other accepting a secret decryption key, which outputs a single plaintext message. The

general idea to homomorphically evaluate this circuit involves providing an encryption

of the secret key to the circuit along with the ciphertext that you want to refresh the

noise level for. This produces another ciphertext encrypting the same plaintext message

under the same public key, except the noise level is at the level of a freshly encrypted

ciphertext. Thus further operations can be computed without removing the correctness

of decryption. In theory this bootstrapping technique can be computed arbitrarily many

times thus producing an FHE scheme. However this is a computationally expensive

procedure and has led to cryptographers searching for an alternative method to boot-

strapping for managing the noise levels. A variant of this bootstrapping method will be

described in more detail in Chapter 3.

Gentry’s scheme was one of the first of many schemes to begin using lattice based

cryptography which relied on a known mathematical problem known as the learning

with errors (LWE) problem [67] which will be introduced formally later in this thesis in

Chapter 2. History of FHE 11

section 3.2. This lattice problem also forms the basis of the security for the next three

schemes described in this chapter.

Ultimately Gentry’s breakthrough led to considerable developments on lattice based

fully homomorphic encryption schemes as described in the following subsections.

2.2.2 The BGV Scheme

Brakerski, Gentry and Vaikuntanathan [13], after which the scheme is named, produced

an alternative method of noise management that mitigated the need for Gentry’s expen-

sive bootstrapping method. The scheme utilised two new techniques, key-switching and

modulus switching introduced by Brakerski and Vaikuntanathan [15, 16]. Key-switching

allows the user to reduce the dimension of the ciphertext and modulus switching is used

to decrease the magnitude of the noise element. Thus using these techniques mitigates

the need for Gentry’s bootstrapping method as well as the requirement to “squash” the

decryption circuit in order to reduce its circuit complexity.

These innovative techniques produced what are known as leveled fully homomor-

phic encryption schemes. Briefly, the scheme contains a chain of moduli relative to a

ciphertext, the number of moduli in the chain corresponds to the number of levels in the

scheme. Given a ciphertext c ∈ Rq that is an element of a modulo ring Rq for modulus

q, one can convert the ciphertext into c′ ∈ R′q where q′ < q, such that c and c′ encrypt

the same plaintext message but relative to a different ciphertext modulus. The key dif-

ference between the two ciphertexts is the noise level has been approximately reduced

by a factor of q
q′ . This scheme will be described in more detail in Chapter 3.

2.2.3 The FV Scheme

Following the work of Brakerski [12], Fan and Vercauteren [38] developed an FHE scheme

that is similar to the BGV scheme conceptually. The scheme differs from the previously

described BGV scheme in that it obtains high levels of security through the introduction

of additional “noise” elements thus allowing for the use of smaller parameters and thus

Chapter 2. History of FHE 12

a smaller algebra. The benefit of this is utilising a smaller algebra for the homomorphic

operations increases the speed of the processes without sacrificing the level of security.

Fan and Vercauteren achieve this by introducing a scaling factor that is present within

the ciphertext throughout the algorithm up to and including the decryption phase defined

as follows:

m =

[⌊
p

q
[〈~c,~s〉]q

⌉]
p

(2.1)

where p is the plaintext prime and p/q is the scaling factor. The idea for preventing the

scaling factor from affecting the correctness of the decryption procedure is to multiply

the message polynomial by a large factor in order to make to the scale negligible and

easily removed through rounding. This FHE variant results in slower noise growth.

2.2.4 The GSW Scheme

Gentry et al. [41] proposed an alternative LWE-based FHE scheme that made the

homomorphic operations easier to compute. Previous schemes relied on key-switching in

order to reduce the dimension of the ciphertext after each homomorphic multiplication

because in previous schemes multiplication is the tensor product of two ciphertexts.

The GSW scheme proposed a FHE scheme where the plaintext messages are inte-

gers instead of polynomials and the data is encrypted into matrices as opposed to vec-

tors as in the BGV scheme. This mitigates the need for both modulus switching and

key-switching as a result, which although creates a conceptually simpler FHE scheme

arguably decreases the efficiency as opposed to previous FHE schemes as additions and

multiplications are now performed using matrix additions and multiplications.

Khedr et al. [54] ported the GSW scheme to the RWLE setting in order to improve

the scheme’s efficiency. However the scheme continues to have a higher complexity than

previous schemes.

Chapter 2. History of FHE 13

2.2.5 Non-LWE-Based FHE Schemes

In addition to the LWE-based schemes that have been described previously, Gentry’s

framework for building an SHE scheme that can evaluate its own decryption circuit

homomorphically was explored using alternative cryptosystems. Two of note are AGCD

and NTRU-based [49] schemes.

Such a scheme of note is the one proposed by van Dijk et al. [32]. Using Gentry’s

framework [39], van Dijk et al. made it conceptually simpler by reducing the security

problem of their scheme from the LWE problem to the Approximate Greatest Common

Divisor (AGCD) problem. As a result of this the homomorphic operations are performed

on integers rather than operations on ring elements in the LWE-based scheme. However

to ensure a practical level of security within this scheme the size of the public key is

O(λ10) for security parameter λ which is too large for practical purposes.

It is also noted that NTRU-based HE schemes are conceptually similar to LWE-

based schemes however ciphertexts can be represented using a single polynomial element

as opposed to the two polynomial elements required to represent ciphertexts in LWE-

based schemes. This allows for faster homomorphic operations although the noise growth

rate is considerably higher in NTRU-based schemes as shown by Lepoint and Naehrig

[57].

2.3 Summary

As it has been presented in this section, the concept of achieving a fully homomorphic

encryption scheme had been an open problem first mentioned in 1978 [68]. It was

not until the 2009 breakthrough by Gentry [39] that such a scheme was first shown

to be achievable. Although lacking in practical efficiency the concept of building a

SHE scheme that can evaluate its own decryption circuit was further explored using the

various cryptosystems LWE, AGCD and NTRU. This eventually led to new techniques

being proposed that improved the overall efficiency of FHE schemes such as modulus

Chapter 2. History of FHE 14

switching and key-switching.

Gentry’s work has led to numerous FHE variants that have in turn produced imple-

mentations such as HElib [48] which is based on the BGV scheme [14] and S.E.A.L.

[18] which is based on the FV scheme [38] as well as TFHE [24] which is based on the

GSW scheme [41]. In addition to this there is an encryption library called PALISADE

[66] which supports multiple FHE protocols including the FV, BGV and various other

schemes.

Chapter 3

Mathematics of FHE

This chapter will introduce important mathematical concepts that will be referenced

throughout the duration of the thesis. We begin with a brief introduction to the concept

of algebraic lattices and rings which are integral to the learning with errors problem.

Naturally this leads into a description of the mathematical problem with which the FHE

schemes used in this thesis are based upon. Finally, the remaining chapters of this

thesis describe applications that are based upon a BGV variant of FHE. Due to this an

introduction and detailed description of the BGV scheme will be provided in section 3.3,

along with descriptions of the algorithms which make up the scheme.

3.1 Introduction To Lattices and Rings

This section will introduce the theoretical concepts on which the LWE-based schemes

are based upon.

Given an m-dimensional Euclidean space Rm, a lattice is the vector space

L(~b1, ...,~bn) =

{
n∑
i=1

xi~bi : xi ∈ Z

}
(3.1)

15

Chapter 3. Mathematics of FHE 16

defined by all integral linear combinations of n linearly independent vectors ~b1, ...,~bn ∈

Rm for m ≥ n. The set of vectors ~b1, ...,~bn, or lattice basis can also be represented as a

matrix

B = [b1, ..., bn] ∈ Rm×n (3.2)

where each basis vector is a column of the matrix. Thus equation 3.1 can be rewritten

using matrix notation as L(B) = {Bx : x ∈ Zn} where Bx is a matrix-vector multiplica-

tion. The integers m and n are called the dimension and rank of the lattice respectively.

Recall that a ring R is a set of elements with two binary operations, addition and

multiplication. We define an ideal as follows

Definition 3.1.1. Given a ring R, the ideal I is a subset of R that forms an additive

group and is a left ideal if for all a ∈ I and r ∈ R there exists ra ∈ I. Likewise a I is a

right ideal if for all a ∈ I and r ∈ R there exists ar ∈ I. A two-sided ideal is an ideal

that is both a left and right ideal.

We consider two-sided ideals and refer to these as simply ideals. The rings we use in

this thesis are quotient rings defined below.

Definition 3.1.2. Given a ring R and a two-sided ideal I, the quotient ring of R mod I

is the group of cosets R/I with the operations of coset addition and coset multiplication.

We will be mostly working with integer polynomial rings of the formR = Z[X]/(Φm(X))

where Φm(X) is the m’th cyclotomic polynomial. Furthermore the quotient ring Rp =

R/pR is the ring of integer polynomials modulo p ∈ Z.

3.2 The Learning with Errors Problem

Cryptographic schemes are commonly based upon hard mathematical problems in terms

of security. Examples of these types of problems would be the discrete logarithm problem

and integer factorisation, both of which will be described in the following section. The

security of fully homomorphic encryption is similarly based upon the hardness of a

Chapter 3. Mathematics of FHE 17

mathematical problem, namely, the learning with errors (LWE) problem [67] which will

now be introduced.

Prior to introducing the mathematical problems of which the security of FHE schemes

are based upon, we introduce the inner product, also known as the dot product or scalar

product, between two vectors

Definition 3.2.1 (Inner product). Given two vectors ~a = (a1, a2, . . . , an) and ~b =

(b1, b2, . . . , bn) we define the inner product as

~a ·~b =

n∑
i=1

aibi = a1b1 + a2b2 + · · ·+ anbn

where n denotes the dimension of the vector space. Note that the dimension of the two

vectors must always be equal.

For the duration of this thesis we denote the inner product of two vectors ~a and ~b as

〈~a,~b〉.

The LWE problem is based on the “learning from parity with error” problem defined

as follows:

Definition 3.2.2 (Learning from parity with error). Given a system of equations with

“errors”

〈s, a1〉 ≈ε b1(mod 2)

〈s, a2〉 ≈ε b2(mod 2)

...

where the ai’s are chosen independently from a uniform distribution over Zn2 . The

problem is finding the value of s ∈ Zn2 when the bi’s are correct with probability 1 − ε

for integer n ≥ 1 and real number 1 ≥ ε ≥ 0.

Note that when ε = 0 the problem is trivial to solve via Gaussian elimination. This

Chapter 3. Mathematics of FHE 18

is the standard “learning from parity” problem. Blum et al. [5] contributed the current

best known sub-exponential algorithm for solving the LWE problem.

The Learning with Errors (LWE) problem is an extension of the learning from parity

with error problem defined above. The LWE problem introduced by Regev [67] is defined

as follows:

Definition 3.2.3 (LWE). For security parameter λ, let n = n(λ) be an integer dimen-

sion, let q = q(λ) ≤ 2 be an integer, and let χ = χ(λ) be a distribution over Z. The

LWEn,q,χ problem is to distinguish the following two distribution: In the first distri-

bution, one samples (~ai, bi) uniformly from Zn+1
q . In the second distribution, one first

draws ~s ← Znq uniformly and then samples (~ai, bi) ∈ Zn+1
q by sampling ~ai ← Znq uni-

formly, ei ← χ, and setting bi = 〈~a,~s〉 + ei. The LWEn,q,χ assumption is that the

LWEn,q,χ problem is infeasible.

It was proven by Regev [67] that for specific Gaussian error distributions χ and

moduli q that the LWEn,q,χ assumption is true if and only if certain worst-case lattive

problems are hard to solve using a quantum algorithm.

Brakerski et al. [14] state a definition of Regev’s result using B-bounded distributions,

which is a distribution over the integers where the magnitude of a sample is bounded

with high probability. Before presenting the definition for B-bounded distributions, we

introduce the definition of a negligible function

Definition 3.2.4 (Negligible function). A function µ is negligible if and only if for all

c ∈ N, there exists n0 ∈ N, such that for all n ≥ n0, we have µ(n) ≥ n−c.

Using definition 3.2.4 we can now define B-bounded distributions

Definition 3.2.5 (B-bounded distributions). A distribution sample {χn}n∈N supported

over the integers, is called B-bounded if

e
Pr← χn[|e| > B] = negl(n),

Chapter 3. Mathematics of FHE 19

where negl(n) is a negligible function.

Regev [67] presented a worst-case to average-case reduction for the LWE problem

which is captured in the following theorem:

Theorem 1 (Regev [67]). For any integer dimension n, prime integer q = q(n), and

B = B(n) ≥ 2n, there is a B-bounded distribution χ that can be efficiently sampled such

that if there exists an efficient (possibly quantum) algorithm that solves LWEn,q,χ, then

there is an efficient quantum algorithm for solving Õ(qn1.5/B)-approximate worst-case

SIVP.

Recall the definition of the known lattice problem,

Definition 3.2.6 (Shortest Independent Vectors Problem (SIVP)). Given a lattice L

with rank n, find n linearly independent vectors v1, . . . , vn ∈ L such that

‖vi‖p ≤ cλ
(p)
n (L)

for all i = 1, . . . , n.

Theorem 1 shows that LWE is as hard as the well known lattice problem SIVP. This

problem was subsequently extended to a ring variant known as the ring learning with

errors.

3.2.1 The Ring Learning with Errors Problem

First introduced by Lyubashevsky et al. [60], the ring learning with errors (RLWE)

problem is defined as follows

Definition 3.2.7 (RLWE). For security parameter λ, let f(x) = xd+1 where d = d(λ) is

a power of 2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/(f(x)) and let Rq = R/(qR).

Let χ = χ(λ) be a distribution over R. The RLWEd,q,χ problem is to distinguish the

following two distributions: In the first distribution, one samples (ai, bi) uniformly from

R2
q . In the second distribution, one first draws s ← Rq uniformly and then samples

Chapter 3. Mathematics of FHE 20

(ai, bi) ∈ R2
q by sampling ai ← Rq uniformly, ei ← χ, and setting bi = ai · s + ei. The

RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

The RLWE problem is known to be hard as the extensively studied shortest vector

problem (SVP) over ideal lattices can be reduced to it [60]. The shortest vector problem

is defined as follows:

Definition 3.2.8 (SVP). Given a basis B ∈ Zm×n, find a non-zero lattice vector Bx for

x ∈ Zn\{0} such that ‖Bx‖ ≤ ‖By‖ for all y ∈ Zn\{0}.

This problem has been shown to be NP-hard [62], thus making the RLWE problem

to be at least NP-hard.

3.2.2 The General Learning with Errors Problem

Brakerski et al. [14] noticed that the LWE and RLWE problems were identical syntacti-

cally, aside from using difference rings and different vector dimensions. This led to their

definition of the general learning with errors (GLWE) problem

Definition 3.2.9 (GLWE). Let n,m, q ∈ Z; let R = Z[X]/(Φm(X)), Rq = R/(qR); and

let χ be a distribution over R. Given arbitrarily many samples (~x, yi) ∈ Rn+1
q , where

yi = 〈~xi, ~s〉+ ei, with ~xi, ~s← Rnq sampled uniformly and ei ← χ, find ~s.

The specific LWE variant of the GLWE problem is when m = 1 in definition 3.2.9. In

other words R is the ring of integers Z. The ring learning with errors (RLWE) problem

uses a polynomial ring m ≥ 1 as opposed using Z and the dimension is different, namely

n = 1 in definition 3.2.9 for the RLWE case.

Using the GLWE problem, Brakerski, Gentry and Vaikuntanathan [14] defined an

FHE scheme known as the BGV scheme, named after the authors.

Chapter 3. Mathematics of FHE 21

3.3 The BGV Scheme

The BGV scheme [14] is based upon the GLWE problem and is the scheme which the

remaining sections of the thesis will be based upon. This section discusses the algorith-

mic overview of the BGV scheme followed by a more in-depth description of the two

techniques that were introduced to replace Gentry’s bootstrapping algorithm.

Given a polynomial ring modulo a cyclotomic polynomial A = Z[X]/(Φm(X)) we

define the plaintext space Ap = A/pA to the polynomial ring modulo plaintext prime

p. In addition to this, the corresponding ciphertext space is defined to be Aq = A/(qA)

where q � p for odd modulus q. Since all FHE data is contained within polynomial

rings, plaintext messages need to be encoded into polynomials m ∈ Ap before they are

encrypted into ciphertext polynomials c ∈ Aq.

The BGV scheme is a public key encryption scheme comprising of the following main

algorithms:

• Setup(λ, L): Given a security parameter λ and the number of levels L, generates

a ladder of decreasing moduli from qL to q0 of size (L + 1) · µ bits and µ bits

respectively. The parameter µ is chosen alongside other parameters to ensure

the scheme is based on a General Learning With Errors (GLWE) instance which

provides 2λ bit security against known attacks. Let the ring A = Z[x]/(xd + 1)

and let the set paramsj = (qj , dj , nj , Nj , χj) be the set of parameters defining the

scheme at a specific level 0 ≤ j < L. Thus this routine generates L parameter sets.

• KeyGen(params): Given the security parameter λ, generates the public encryption

key pk and a corresponding secret decryption key sk.

• Encrypt(m, pk): Given a plaintext message m and public key pk, encrypts the

message into a ciphertext c.

• Decrypt(c, sk): Given a valid ciphertext c and a secret key sk, decrypts the cipher-

text to obtain the plaintext message m.

Chapter 3. Mathematics of FHE 22

A mathematical description of these algorithms will be provided in the following sub-

sections. Note that the above list of algorithms describes a plain GLWE-based encryp-

tion scheme without homomorphic operations. The following detailed descriptions will

be followed with a description of the homomorphic additions and multiplications. Finally

the section will be concluded with a description of the two novel techniques that were

introduced to the BGV scheme to mitigate Gentry’s bootstrapping operation, namely

modulus switching and key-switching.

3.3.1 Setup

This section provides a description of the setup phase of the BGV scheme given a security

parameter λ, representing 2λ security against known attacks. This value is typically

chosen to be λ = 100 [14].

Firstly we determine if we are setting parameters for a LWE-based scheme or a

RLWE-based scheme. Recall from the description of the GLWE problem 3.2.9 that

LWE is GLWE with d = 1 which defines the ring A = Z[X]/(x+ 1) = Z. Alternatively,

the RLWE problem is GLWE with n = 1 which defines the vector dimensions over the

polynomial ring An. Note that when selecting a RLWE-based scheme, the degree d of

the polynomial xd + 1 is chosen to be a power of 2.

To create the scheme we select the vector dimension n, an odd modulus q, a noise

distribution χ over the ring A, which is typically chosen to be a Gaussian distribution,

and N = d(2n+ 1) log qe. Note, given a ciphertext space Aq = A/qA we can assume the

plaintext space is A2 = A/2A for simplicity. However larger plaintext spaces are possible

of the form Ap = A/pA for prime number p where p� q.

It must be noted that the noise distribution χ is chosen to be as small as possible. The

reason for this will become clearer after the introduction of homomorphic operations to

the scheme which will be described in subsequent subsections. As mentioned in [14, p.8],

to achieve 2λ security against known lattice attacks, one must have n·d = Ω(λ·log(q/B))

where B is the bound on the length of the noise.

Chapter 3. Mathematics of FHE 23

Thus, prior to the setup phase, we should obtain a set of parameters params =

(q, d, n,N, χ) defining the scheme that shall be used. However, looking back at the defi-

nition of Setup(λ, L) notice that there are multiple of levels L and the set of parameters,

paramsj , define the ladder of decreasing moduli from qL to q0. It is noted that the

ring dimension dj and noise distribution χj are independent of L and can be denoted as

d = dL and χ = χL respectively. The vector dimension nj may depend on the circuit

level.

3.3.2 Key generation

Following the description provided in [14, p.11], we proceed to provide a description of

the generation of both the secret and public keys of an FHE scheme. Given the set of

parameters paramsj we create a secret ~sj ∈ An+1
q and public counterpart Aj ∈ An+1×1

q

for each circuit level 0 ≤ j ≤ L that make up the secret key sk and public key pk

respectively.

More specifically, the secret key sk is a collection of randomly chosen vectors ~sj

where each ~s ← (1, s′1, s
′
2, . . . , s

′
n) ∈ An+1

q and each s′ ← χn. Namely, each s′ is an

n-dimensional vector chosen randomly from a Gaussian distribution χ. For simplicity

we shall denote the secret key element ~sj = (1, s′) where s′ ∈ Anq .

Using the previously generated secret key sk and the set of parameters paramsj we

generate a uniform matrix A′ ← AN×nq and choose an N -dimensional “noise” vector

~e ← χN . We then set ~b ← A′s′ + 2~e. Now we can define our public key as the (n + 1)-

column matrix consisting of ~b followed by the n columns of −A′. Thus our public key

is the collection of A′js. Note prior to the key generation steps we can now perform the

operation A·~s = 2e, which is an important property that will be useful for the decryption

phase.

As mentioned previously the public and secret keys are a collection of A′js and ~sj
′s

respectively, with each element corresponding to a specific level 0 ≤ j ≤ L. Therefore it

is necessary to provide a method of switching between each of the keys. This is achieved

Chapter 3. Mathematics of FHE 24

through the novel method introduced in [14] called key switching which is described in

more detail in section 3.3.6, thus concluding the description of the key generation phase.

3.3.3 Encryption and Decryption

Having generated the necessary secret and public keys of the FHE scheme it is now

possible to encrypt and decrypt messages. This section will describe this stage of the

scheme.

Encryption

Let the message m ∈ A2 be the message that we want to encrypt. Given a previously

generated public key A as described in the previous section and message m we set the

message vector ~m ← (m, 0, . . . , 0) ∈ An+1
q for vector dimension n and modulus q as

defined in the parameter set paramsj in the previous sections.

We then randomly choose a vector ~r ← AN2 typically from a uniform distribution.

Note that the coefficients of the vector are from the range [0, 2) where [·, ·) denotes a half-

open interval that only includes the endpoint of the left side of the interval. Specifically in

our case the coefficients are integers chosen to be greater than or equal to 0 and less than

2. This is to ensure the vector has a low norm, where the norm we use is the Euclidean

norm or L2-norm. Given an n-dimensional Euclidean space Rn the Euclidean norm of

a vector ~v = (v1, v2, . . . , vn) is defined as ‖~v‖2 :=
√
v21 + · · ·+ v2n. Choosing ~r to have

low norm reduces the size of the “noise” which is important to keep small, the reason

for this will become apparent in the following subsection describing the homomorphic

arithmetic operations.

Having obtained the message vector ~m, the randomly chosen vector ~r and given the

public key A we define the ciphertext ~c ← ~m + AT r ∈ An+1
q , where AT denotes the

transpose of matrix A.

Note that when encrypting, the resultant ciphertext ~c always begins at the highest

circuit level L. Thus the public key received as an input to the encryption method is

Chapter 3. Mathematics of FHE 25

typically AL, which in turn produces a ciphertext ~c ∈ An+1
qL

.

Decryption

Suppose we have a ciphertext that is encrypted under some secret key ~sj . In [14, p.11]

it is noted that the ciphertext could be augmented with an index which indicates which

level it belongs to. In order to decrypt the ciphertext we perform an inner product, as

defined in definition 3.2.1. This is then followed by two modulo operations, first with

the ciphertext modulus q and then with the plaintext modulus p. We use the notation

[e]q to denote the modulo operation e mod q for some element e and modulus q.

The decryption formula as stated on [14, p.8] produces a plaintext message m ←

[[〈~c, ~sj〉]q]2. This decryption formula involves three steps. Firstly the inner product

between the input ciphertext ~c with its corresponding secret key ~sj . This is then followed

by the reduction of the output with q, note that this modulus will also be relative to

the same level as the secret key, namely qj . Finally reducing the output again with the

plaintext modulus, which in our case is chosen to be 2, produces the desired plaintext

message m.

3.3.4 Arithmetic operations

Subsequent to obtaining the ability to decrypt and encrypt homomorphically, we can

now explore how this enables us to perform arithmetic operations between ciphertexts,

namely

• Add(pk, c1, c2): Given two ciphertexts c1 = E(m1) and c2 = E(m2) perform an

addition operation resulting in a ciphertext c3 containing the sum of the two cipher-

texts c3 = E(m1 +m2) = E(m1) + E(m2) = c1 + c2.

• Mult(pk, c1, c2): Given two ciphertexts c1 = E(m1) and c2 = E(m2) perform a

multiplication operation resulting in a ciphertext c3 containing the product of the

two ciphertexts c3 = E(m1 ×m2) = E(m1)× E(m2) = c1 × c2.

Chapter 3. Mathematics of FHE 26

Notice that each method also takes the set of public keys pk as an input. This is

necessary for performing any key switching of modulus switching as pk contains every

public key as well information on how to switch between them.

Prior to describing these arithmetic operations, we remind the reader that we encrypt

our messages with an added “noise” element, previously defined as ~r ← AN2 in the

encryption phase and ~e ← χN in the public key generation phase. This is in order to

ensure the security of our homomorphic encryption scheme based on the GLWE problem.

However a byproduct of this method is the noise element grows when homomorphic

operations are performed on a ciphertext. This is the reason why it is important to keep

the noise elements as small as is feasible without jeopardising the security. Due to all

elements existing within a modulo ring Aq, the coefficients of the noise polynomial must

be kept smaller than qj as to avoid wraparound. If wraparound occurs, in other words

the noise grows larger than q and is reduced to a smaller element, then the decryption

process will not successfully remove all of the noise.

This in turn means there are a limited number of operations that one can perform on

a ciphertext before the noise element grows too large and no further operations can be

performed while continuing to preserve the correctness of the message when decrypted.

Gentry introduced the computationally expensive operation known as bootstrapping [39]

however the BGV scheme introduced modulus switching as a computationally cheaper

alternative.

Brakerski et al. begin by defining an arithmetic circuit of depth L and generating

the necessary parameters. This is the reason for generating a chain of moduli, each

corresponding to a specific level of the arithmetic circuit that we want our FHE scheme

to be capable of evaluating. A more detailed description of this method is provided in

section 3.3.5.

It is therefore preferable to have a ciphertext which has been freshly encrypted to

have a minimal amount of noise so as to maximise the number of operations that can be

Chapter 3. Mathematics of FHE 27

performed before the requirement of modulus switching.

Addition

The addition of two ciphertexts produces another ciphertext containing an encryption

of the sum. A byproduct of this is the noise, n, grows at most linearly at a rate of 2n in

the number of addition operations.

Given two ciphertexts ~c1 and ~c2, first ensure they are both encrypted under the same

secret key ~sj as the BGV scheme does not support operations between two ciphertexts

encrypted under different keys. If they are not initially encrypted under the same key

then perform a “FHE.Refresh” method [14, p.12] which involves a modulus switch oper-

ation followed by a key switch operation so that the ciphertext corresponding to the

higher circuit level is brought down to the same level as the ciphertext which to be

operated with.

Now that the two ciphertexts correspond to the same secret key ~sj , set ~c3 ← ~c1 +

~c2 mod qj . This is a vector addition, which is an entry-wise addition operation. We then

interpret ~c3 as a ciphertext under the secret key ~sj
′ = ~sj ⊗ ~sj , the tensor of the secret

key ~sj .

We then “refresh” the ciphertext ~c3 by modulus switching from qj to qj−1 and then

key switching from ~sj
′ to ~sj−1. This produces another “refreshed” ciphertext ~c4 corre-

sponding to the secret key ~sj−1 and is output by the addition method.

Multiplication

The addition of two ciphertexts produces another ciphertext containing an encryption

of the product. As with addition, the noise grows with each operation. However, the

noise, n, grows at a faster rate of at most n2 in the number of multiplications.

Given two ciphertexts ~c1 and ~c2, first ensure they are both encrypted under the same

secret key ~sj as in the addition routine. If not then perform the necessary modulus and

Chapter 3. Mathematics of FHE 28

key switching operations to bring the ciphertext corresponding to the higher level down

to the level of the other ciphertext.

Subsequent to obtaining two ciphertexts correspond to the same secret key ~sj , set

~c3 ← ~c1 ⊗ ~c2 mod qj . The multiplication of two ciphertexts is a vector tensor product,

also known as the outer product, operation defined as follows:

Definition 3.3.1 (Tensor product). Given two vectors v = (v1, v2, . . . , vn) and w =

(w1, w2, . . . , wm), we can form a tensor denoted by v ⊗ w which is equivalent to vwT .

This produces a matrix

v ⊗ w =

v1w1 v1w2 . . . v1wm

v2w1 v2w2 . . . v2wm
...

...
. . .

...

vnw1 vnw2 . . . vnwm

The resultant ciphertext ~c3 representing the product is encrypted under the secret

key ~sj
′ = ~sj ⊗ ~sj and thus needs to be “refreshed” as in the addition phase via modulus

switching from qj to qj−1 and then key switching from ~sj
′ to ~sj−1. This produces another

“refreshed” ciphertext ~c4 corresponding to the secret key ~sj−1 and is output by the

multiplication method.

It is remarked that since addition increases the noise considerably slower than mul-

tiplication, it is not necessary to refresh the ciphertext after each addition operation.

3.3.5 Modulus Switching

Modulus switching is the novel technique proposed by Brakerski et al. [14][Section 3.3]

that introduced the concept of leveled FHE schemes. The concept involves a “chain”

of moduli q0 < q1 < ... < qL where L is the number of levels in the scheme and newly

encrypted ciphertexts begin being defined in AqL and the lowest level ciphertext defined

in Aq0 . Ciphertexts at the i’th level are vectors of two dimensions ~c = (c0, c1) ∈ (Aqi)2.

Chapter 3. Mathematics of FHE 29

Given a ciphertext ~c that encrypts a plaintext message m, suppose the noise element

is reaching the upper threshold and we require to reduce its relative magnitude without

altering the encrypted message. This is achieved by scaling the ciphertext down by a

factor ∆ = q/q′ where q is the current ciphertext prime and q′ is the ciphertext prime

that we are modulus switching down to. We require the ciphertext ~c′ that is the A-vector

closest to ∆ · ~c such that ~c′ ≡ (q/q′)~c(mod p).

It is formally shown in [13, Lemma 4] that it is possible to change the inner modulus of

the decryption equation m = [[〈~c,~s〉]q]p while maintaining the correctness of decryption

under the same secret key.

Following the optimised procedure described in [40] the method of modulus switching

down is as follows:

• Let ~d = ~c mod ∆

• Add or subtract multiples of ∆ from the coefficients of ~d until ~d mod p ≡ 0

• Set ~c′ = ~c− ~d

3.3.6 Key-Switching

Also known as dimension reduction, the key-switching method [14][Section 3.2] is used

to reduce the dimension of the ciphertext after a multiplication operation. Given two

ciphertexts ~c1,~c2 the multiplication of two ciphertexts is the tensor product ~c1⊗~c2. This

ciphertext can still be decrypted using the tensor product of the secret key ~s ⊗ ~s using

the same decryption technique, this is shown in Section 4.5.2. Naturally, the dimension

of the ciphertext cannot continue to increase indefinitely if the efficiency of the scheme is

to be preserved since otherwise, the ciphertext grows in size exponentially in the number

of multiplications performed.

The procedure converts a tensored ciphertext ~c1 decryptable by the tensored secret

key ~s1 ⊗ ~s1 into a smaller two dimensional ciphertext ~c2 that is decryptable by a new

Chapter 3. Mathematics of FHE 30

secret key ~s2. The reason for switching to a different secret key is to avoid the issue of

circular security.

Given the resultant ciphertext from a multiplication operation ~c = (c0, c1, c2) which

is decryptable under the secret key ~s = (1, s, s2) as shown in Section 4.5.2. We want

to key-switch to a canonical ciphertext ~c′ = (c′0, c
′
1) that is decryptable under a new

secret key ~s′ = (1, s′) so as to reduce the ciphertext to a 2-dimensional vector. This is

achieved through defining a key-switching matrix W = (a, b) ∈ A2×3 where ai ∈R Aq is

a polynomial chosen randomly from the ring Aq and bi = si + p · e − ai · s′. Note that

the i-th column of W contains an encryption of the new secret key under the i-th part

of the old secret key where ~si = si. Then we obtain our the ciphertext ~c′ as so:

~c′ := (c′0, c
′
1) = W~cT =

∑
i

(bi · ci, ai · ci) (3.3)

This correctness of this is shown in [48][Section 3.1.6] in addition to an optimisation

that reduces the total amount of noise added through this operation via decomposing

the ciphertext into sections known as “digits”.

3.3.7 Batching

Batching was as optimisation introduced in the BGV scheme [14, p.16] which reduced the

per-gate computation from quasi-linear in the security parameter λ to poly-logarithmic

by packing data into a single ciphertext.

Smart and Vercauteren [74] were the first to rigorously analyse batching in a FHE

context. They observed that RLWE-based ciphertexts can have many plaintext slots,

associated to the factorisation of the plaintext space into algebraic ideals.

For simplicity reasons the plaintext space was previously defined as A2, however the

FHE scheme functions correctly in the same way when using a plaintext space Ap for some

prime p. This allows for the batching of several modulo-p entries into a single ciphertext

Chapter 3. Mathematics of FHE 31

which are treated independently. Additionally, it allows the possibility of manipulating

polynomials in each slot each of degree n, where n is the dimension defined in the setup

phase described in section 3.3.1.

Given the plaintext space Ap = Zp[x]/(xd + 1) for some plaintext prime p and some

degree d that is a power of 2. Despite each element of Ap being a polynomial of degree

d − 1, it is possible to use a specific encoding to perform operations in an entry-wise

manner. This is due to evaluating an arithmetic circuit over Ap on input x ∈ Anp

implicitly evaluates, for each i, the same arithmetic circuit over Api on input x projected

down to Anpi . This is formally captured in [14, Theorem 4, p.18] as follows

Theorem 2. Let p = 1 mod 2d be a prime of size polynomial in λ. The RLWE-based

instantiation of FHE using the ring R = Z[x]/(xd+1) can be adapted to use the plaintext

space Rp = ⊗di=1Rpi, while preserving correctness and the same asymptotic performance.

For any boolean circuit f of depth L, the scheme can homomorphically evaluate f on `

sets of inputs with per-gate computation Õ(λ · L3/min{d, `}).

Theorem 2 relies on a well known theorem in number theory known as the Chinese

Remainder Theorem (CRT) defined as

Theorem 3 (Chinese Remainder Theorem). Let R be a commutative ring with unity,

and I1, I2, . . . , In be finitely many ideals of R such that Ii + Ij = R for any two distinct

elements i and j of {1,2,. . . ,n}. Then, I1I2 . . . In = I1 ∩ I2 ∩ · · · ∩ In and the canonical

ring homomorphism R/(I1I2 . . . In)→ R/I1 ×R/I2 × · · · ×R/In is an isomorphism.

Applying this theorem to the FHE scheme, given a plaintext space Ap = Zp[x]/(xd +

1), for some prime p, it is possible to break the ring down into n ideals Ii = Fi(x) where

Fi(x) is an arbitrary factor of xd + 1 modulo the p for 0 < i ≤ n. These ideals are

relatively prime, thus applying the Chinese Remainder Theorem yields the isomorphism

Ap ∼= Ap/I1 × Ap/I2 × · · · × Ap/In. This result means that applying a sequence of

arithmetic operations in the ring Ap is equivalent to performing the same operations in

each Ap/Ii independently and then applying the isomorphism on the result.

Chapter 3. Mathematics of FHE 32

3.3.8 Cryptographic Usage

Generally, FHE is useful in scenarios in which a client wishes to outsource computations

on data without revealing the data being computed upon. This causes FHE to typically

be used against an honest-but-curious adversary.

The honest-but-curious adversary is a legitimate participant in a protocol who will

not deviate from the defined protocol but will attempt to learn all possible information

from received messages.

Since messages received in an FHE protocol are encrypted and remain so throughout

the protocol, the honest-but-curious adversary is unable to learn any information about

the data being processed.

FHE can be of use in scenarios where data needs to be processed, however the data

itself is confidential, such as in the medical sector. For example, there has been extensive

work on using FHE to perform analytics, like logistic regression, on medical data [23, 9,

2, 76, 56].

There has also been various work applying FHE to private information retrieval (PIR)

[78, 34, 55, 1]. PIR is when a client desires to query a server and retrieve data from

its database at index i while preserving the privacy of the index from the server. This

led to work on a version of PIR which had a stronger security requirement, known as

single-database PIR. Single-database PIR retains the property of keeping the index secret

from the server but has the added requirement of the client only receiving the entry it

requested. This is also known as oblivious transfer which saw further application of FHE

schemes [25, 58, 42, 7].

3.4 Summary

This section has provided a description of the underlying theoretical structure of the

BGV-variant of a FHE scheme that will be used throughout the future research in this

Chapter 3. Mathematics of FHE 33

thesis. The LWE problem, which the security of FHE schemes are reliant upon was

introduced by Regev and shown to be sufficiently hard. This led to the lattice-based

encryption schemes that allowed the breakthrough of Gentry’s FHE scheme in 2009.

Having shown the community it was theoretically possible to build an FHE scheme,

albeit an inefficient one, this sparked increased interest and research into building new

HE schemes. This was eventually followed by the two major techniques introduced to

Gentry’s scheme to create the “leveled” FHE scheme. More specifically, the modulus

switching and key-switching techniques that were described in this section.

Chapter 4

Anonymous Routing

This chapter will attempt to further improve the understanding of FHE, in particular

the BGV scheme. This will build upon the theory introduced in section 3.3 through

applying the foundational operations such as addition and multiplication to a concrete

example.

As mentioned previously, a common use case for FHE is the outsourcing of computa-

tion on sensitive data. One common application of FHE is for a homomorphic compari-

son algorithm, often used for homomorphic database queries. This section explores and

demonstrates the capability for FHE and namely a homomorphic comparison algorithm

to be applied to scenarios outside of database queries. We demonstrate the possibil-

ity of using FHE to provide a different type of security than just data security but

user anonymity. This section describes a routing algorithm that uses FHE to provide

anonymity against a global adversary.

4.1 Introduction

In the technological era, communication has clearly become an important service whether

it be over long or short distances. A desirable property for communications is the privacy

of the information being sent or received. However, providing data security is sometimes

34

Chapter 4. Anonymous Routing 35

not enough for clients to be confident in using such a service for communicating. Clients

may often desire to remain anonymous when communicating with others, whether it be

the sender, recipient, or both. This can be achieved in various ways, including encryption.

This chapter is particularly interested in using Fully Homomorphic Encryption to provide

communications which are not only private but also anonymous.

Private Information Retrieval (PIR) was initially introduced in 1995 by Chor et al.

[26]. The concept involves a client desiring to query a database, held on some server,

using an index while maintaining the privacy of the index from the server. The trivial

solution to this scenario would be to simply return the entire database to the client

however this would incur a large communication cost and be impractical. An extensively

explored solution to this problem is a homomorphic database query [78, 34, 55, 1]. The

technique enables a client to query a database without showing the intent of the query

by encrypting it. This is a natural application of a homomorphic comparison algorithm.

This chapter explores the versatility of FHE through the use of such an algorithm outside

of the “typical” scenario. Specifically, in applying FHE to the anonymity domain.

Using the terminology proposed by Pfitzmann and Hansen [65], anonymity can be

defined as when a “subject is not identifiable within a set of subjects, the anonymity

set.” Specifically, given a set of possible participants within a network it is impossible

to identify the active participants at any given time. From this definition we can define

specific subsets with respect to the roles of the participants. Namely, we can define sender

and recipient anonymity as the ability for a particular individual to be unidentifiable

within the sender and recipient anonymity sets respectively.

Anonymity schemes generally aim to provide message unlinkability, which is when it

is not possible for an adversary to discriminate who is communicating with whom within

a network where they can observe both sets of the senders and recipients.

Chapter 4. Anonymous Routing 36

4.2 Existing Methods for Anonymity

Due to the increase in interest for anonymity tools there has been a lot of previous

research into this area. As a result of this, there exist various available services, among

them are Tor [33], Freenet [28] and I2P [79]. These three are effective and readily acces-

sible tools which have gained considerable momentum in usage and popularity. As with

many schemes in security, these anonymity services are also susceptible to adversaries

and a range of different attacks. Thus constant work is being performed to improve the

usability and strength of these schemes.

Numerous anonymity schemes are based upon early work on a tool known as mix

networks [17]. They route packets across a network via proxies known as mixes. Each

mix in the path uses public key encryption, therefore an additional layer of encryption

is applied proportional to the number of mixes in the path. Due to the message being

relayed across the network via intermediary proxies, a passive attacker at the entry and

exit point to the network is unable to determine the recipient and sender of the message

respectively. In order to improve the scheme’s strength against de-anonymisation, more

notably correlation attacks, the mixes implement aggregation and introduce random

delays upon packets received. Although these techniques improve the robustness against

attacks, they in turn decrease the performance of the network. Thus mix networks are

known as a high latency anonymous communication network. This type of anonymous

communication network (ACN) is useful for services such as email or other services where

the anonymity is more important than the speed of transmission.

As there became a higher demand for real time communication there developed a

greater need for a new type of ACN, more notably, low-latency anonymous communi-

cation networks. This gave rise to an onion routing service known as Tor. Tor relies

on routing packets across an overlay network know as a circuit. Circuits are paths in

the network that contain numerous nodes known as onion routers. A packet that is sent

across the network is encrypted with several layers of encryption. Each layer is encrypted

under a different symmetric key relative to the pre-negotiated secret key held by each

Chapter 4. Anonymous Routing 37

onion router in the designated path that the packet will take across the network. As

a result of the following set-up, each node in the network only knows the immediately

preceding and succeeding node in the path. Thus the exit node, i.e. the last node in

the network before the final destination does not know the original sender of the packet

but only the final recipient. In addition to this, since it is not necessary for users of

the service to also run their own Tor onion router, they may not necessarily be a part

of the Tor network. Therefore there will exist an entry node into the network from the

recipient. Due to Tor being a low-latency anonymity service, the onion routers do not

utilise delays or permutations of the packets. Subsequently, Tor is susceptible to attacks

and more notably, like all low latency anonymous communication networks, does not

protect communications against a global adversary [52].

As previously mentioned, Tor does not consider the participants of the network to

individually be a part of the routing network itself. Unlike Tor there are other ACNs that

regard the set of users as additional possible routing nodes within the network. Among

these peer-to-peer (P2P) networks, Freenet and I2P are among the most renowned.

Freenet provides an anonymous distributed file system. Each node of the network main-

tains a local data store and a routing table containing addresses of other available nodes

within the system. This allows for the publication and retrieval of information across

the network anonymously without the requirement of a centralised infrastructure.

Like Tor, I2P provides an anonymous communication service that is peer-to-peer

using an overlay network. This tool also utilises ideas from early work on mix networks,

end-to-end encryption and similar to Tor, provides an additional layer of encryption for

each node that the packet is routed through. Packets sent across the network are routed

through a user-defined set of routers known as tunnels. These tunnels also contain the

node of the user as a member of the path. Other than the nodes owned by the users

being directly involved in the anonymous routing procedure, unlike Tor the ACN is also

fully distributed as it does not rely upon any centralised directory servers.

The aim of these types of networks is to provide greater protection against attackers,

Chapter 4. Anonymous Routing 38

especially in regard to the previous scenario involving the exit/entry nodes in the Tor

environment. More specifically each node within a P2P network is unable to discern

whether the previous node in the path is the original source of the information or simply

a relay node. The same applies to discerning whether the succeeding node in the path is

the intended recipient of the information. This aids in protecting users from attackers but

as stated before, as I2P and Tor are low-latency anonymous communication networks,

they fail to protect against an adversary that has the ability to monitor the majority of

the network, which the scheme in this section aims to provide.

4.3 Mathematics

Before we go into the description of the algorithm, we will provide a brief description of

the mathematical structure that is required for an FHE scheme to function.

The FHE scheme used is a variant of the BGV scheme [14], described in section 3.3

which uses a polynomial ring A = Z[X]/(Φm(X)) that is defined as an integer ring over

a chosen m’th cyclotomic number field. Our plaintext space is defined to be the ring Ap,

where p is our prime plaintext modulus which reduces our ring Ap = A/(pA).

A plaintext element a ∈ Ap is a polynomial of degree φ(m) with coefficients modulo

p, where φ(m) is Euler’s totient which coincides with the number of numbers smaller

than m which are co-prime. As described in sections 3.3.7 and 4.5.1, we can decompose

our plaintext a into a ‘slot‘ representation to give us SIMD (Single Instruction Multiple

Data) capabilities shown in figure 4.1.

Recall from section 3.3.7, we have the isomorphism Ap ∼= Ap/(F1(x))×Ap/(F2(x))×

· · ·×Ap/(Fl(x)), where the number of slots is defined by l = φ(m)/d, where d is the degree

of Fi(x). This implies that our cyclotomic polynomial decomposes into l irreducible

polynomials each of degree d, namely Φm(x) = F1(x) · F2(x) . . . Fl(x)(mod p).

To maximise the efficiency of packing data into the plaintext slots, we can encode

data across the coefficients of the polynomials in each slot. The specific encoding is

Chapter 4. Anonymous Routing 39

described in section 4.5.1.

For the remainder of this chapter we will consider our plaintext encoded in ‘slot’

representation as defined in figure 4.1, where each slot 0 < i ≤ l contains a degree-d

polynomial Ri. Since the underlying structure of the plaintext and ciphertext are the

same, we shall use the term ‘plaintext slots‘ to describe the slot structure of both the

plaintext and ciphertext. We will use ciphertext when describing something specific to

the ciphertext space.

Figure 4.1: Plaintext slot representation where a ∈ Ap is a polynomial and each slot
Ri ≡ a mod Fi is a polynomial modulo a factor Fi of the cyclotomic polynomial Φm(x).

The ciphertext space is defined using a ciphertext modulus q to be Aq = A/(qA)

where the q is an odd number such that q � p. Note that q is a product of a ‘chain’ of

odd prime numbers q0, . . . , qL which makes up a modulus chain as described in section

3.3.

In order to decrypt our ciphertexts we perform an inner product operation, denoted

by 〈~u,~v〉 where ~u,~v are vectors of equal length. Therefore we have 〈~u,~v〉 =
∑n

i=1 ui · vi,

where ui is the i-th element of ~u. This is subsequently followed by a modulus reduction

function which we denote as [a]p, which equates to calculating a mod p.

4.4 The Algorithm

A brief description of the algorithm will be presented below. The FHE scheme used is

a variant of the BGV scheme [14] described in detail in section 3.3. We will attempt to

use notation consistent with the previous chapter wherever possible.

Chapter 4. Anonymous Routing 40

At a high level, each message sent across the network is encrypted using FHE and

contains a tag within the message, which is also encrypted into the same ciphertext.

The tag is a label stating the recipient of the message and thus the route it should take

across the network. Each node will contain a local list of possible labels that will be

encoded using FHE. The node will then perform a homomorphic comparison operation

between the tag and the locally stored labels. The node then will send a ciphertext

along each outbound channel but only a single ciphertext will contain the message.

Once the ciphertext has reached its destination, the recipient can decrypt the message

conventionally using FHE. This removes the trust of the individual nodes in the network

and provides anonymity against a global adversary through the security assumptions of

FHE.

For simplicity, the algorithm will be described using a server-client model where the

sever containing an arbitrary number of nodes and the sender and receiver are the clients.

The algorithm consists of three major phases as follows:

1. Pre-Computation: Performed on client side, the sender encodes their message

into a plaintext polynomial. The encoded plaintext will then be encrypted using

the public encryption key of the intended recipient. This section of the algorithm

can be broken into the following sub-algorithms:

(a) Encode: Encode the plaintext message as a polynomial a ∈ Ap as depicted in

figure 4.1.

(b) Encrypt : Using the recipients public key, encrypt the plaintext polynomial a

as a ciphertext c := Enc(a).

2. Anonymous Routing: Performed on the server side, a node receives a message

and a label both of which are encrypted. The node contains a list of labels corre-

sponding to each output wire and compares the query label with each local label

homomorphically. The homomorphic comparison will produce an encrypted mask.

This message is multiplied with each mask and then sent to the next node in the

Chapter 4. Anonymous Routing 41

network. This is performed using the following sub-algorithms:

(a) Homomorphic Comparison: Compares the query label of the ciphertext with

the labels held locally. This is carried out through the following:

i. Subtraction: Compute the difference via a slotwise subtraction opera-

tion between the encrypted query label and the local labels. Produces a

ciphertext with 0 in the slots that matched and non-zero otherwise.

(b) Mask Creation: Using the computed difference, generate a mask which will be

an encryption of {0,1}, where 1 represents the matching label and 0 otherwise.

This can be broken into the following:

i. Fermat’s Little Theorem (FLT): Given the difference c, use the result of

FLT: cp−1 ≡ 1 mod p to map all slots with non-zero values to 1 and 0

otherwise.

ii. Mask Inversion: Invert the values of the slots such that 1 is mapped to

0 and vice versa.

iii. Partial Match Removal: Remove partial matches through an inter-slot

multiplication of the mask. Produces an encryption of 1 if there was an

exact match and 0 otherwise.

(c) Message Split: Given a mask ciphertext for each output wire of the node,

multiply the message ciphertext with the mask and then send the result to the

next node in the network. If there was a matching label the original message

is sent unmodified, otherwise the message is multiplied by an encryption of 0

and the zeroed out message is sent.

3. End Phase: The recipient receives an encrypted message from the routing server

and retrieves the message.

(a) Decrypt: Decrypt the received ciphertext c′ using the secret key of the recip-

Chapter 4. Anonymous Routing 42

ient to obtain a plaintext polynomial a ∈ Ap.

(b) Decode: Decode the plaintext polynomial from polynomial representation to

ASCII.

This algorithm can be viewed as an implementation of a variant of an anonymous

communication technique known as “the mix” but in a Fully Homomorphic environment.

The benefit of this over using the generic method which utilises a public encryption

scheme at each node present in the network, the nodes must be trusted to not leak any

information about the recipient of any messages it receives. Thus if a node in the network

becomes compromised by an adversary then the anonymity of the recipient will become

compromised. This scheme removes the trust required of the nodes in the communication

network.

4.5 Implementation

This section contains a description of the implementation of the anonymous routing

algorithm mentioned in section 4.4, providing a description of how each step is performed

homomorphically.

4.5.1 Pre-Computation

The first step in using any FHE scheme is the parameter selection. This is highly

dependent on the algorithm being performed as well as the data involved but most

importantly on the security level as described in section 3.3.1.

In order to select suitable parameters, we must understand how data is represented

in the BGV leveled homomorphic encryption scheme [14]. As described in section 3.3.7,

this variant of the BGV scheme enables batching of several modulo-p entries into slots

of a single plaintext which are treated independently. It also allows for the possibility

of manipulating polynomials of d degree in each slot of the plaintext, where d is a value

determined by the chosen parameters.

Chapter 4. Anonymous Routing 43

Using a plaintext space Ap := Zp[x]/(Φm(x)) for some prime number p and integer

m. The elements of Ap are polynomials, with coefficients modulo p, of degree φ(m)− 1,

where φ(m) is Euler’s totient that defines the number of integers smaller than m which

are co-prime. We are able to encode our data in a way that enables us to perform

operations in an entry-wise manner. This is possible due to the following decomposition

into a direct product

Ap ∼=
⊗̀
i=1

Ei (4.1)

using the Chinese remainder theorem for rings shown in Theorem 3 where each Ei

is isomorphic to Ap/(Fi(x)), where Fi(x) is an arbitrary degree-d factor of the m-th

cyclotomic polynomial Φm(x) modulo p. The maximum number of slots is defined as

l = φ(m)/d, where d is the order of p in the multiplicative group Z∗m. This also coincides

with the degree of Fi(x). Since the rings Ei are isomorphic to each other we can set

E := E1 and thusly consider the isomorphism Ap ∼= El. More specifically we have

Φm(X) = F1(X) ·F2(X) . . . Fl(X) (mod p). Thus a plaintext polynomial message a ∈ Ap

represents an l-vector containing entries a mod Fi for i in the range 1 ≤ i ≤ l. Therefore

consideration must be taken to choose m and p to define the correct size and shape of

the plaintexts given our data as well as the level of security.

Encoding the Message Data

In this chapter we consider messages that can be packed into a single plaintext, however

if the number of characters exceeds φ(m) then we can encode the message across multiple

plaintexts. Due to the ability to pack data across the slots of a plaintext, we can use

logical SIMD capabilities. Therefore we encode our message across the plaintext slots.

A typical representation of data is ASCII. Assuming we want to represent all print-

able ASCII characters in decimal representation then we must choose an algebra that

enables us to represent at least 95 characters. Thus we choose a plaintext prime of

p = 97 to represent all of the necessary characters. Due to the first 32 characters being

non-printable characters, when encoding the message, the printable characters will be

Chapter 4. Anonymous Routing 44

remapped by subtracting 32 from the original decimal representation of the character

(i.e. The white space character 32 is mapped to 0, the letter ‘A’ is mapped from 65 to

33 etc.). With this mapping, all printable characters can be represented as an integer in

the range (0, 95).

Given an algebra, each slot of our plaintext is a polynomial in Ei, as in equation

4.1, for slot i with coefficient vector ~v = (v0, . . . , vd). We encode each ASCII character

as a single entry of the coefficient vector ~v, repeating the process for each slot of the

plaintext. This means we can pack up to d characters per plaintext slot. As a single

plaintext element is a polynomial in the ring Ap ∼= El, where l = φ(m)/d, then we can

pack up to d · l = φ(m) characters across an entire plaintext. For typical levels of security

λ ≈ 100 we can expect φ(m) values of around 10000.

Encoding the Labels

For simplicity of describing the scheme we assume that each label is encrypted in a

single plaintext. We consider a label to be a unique identifier to a single node in the

network. This can be a single integer number represented in binary. Considering the

current standard of Internet Protocol (IP) addresses, IPv6 uses an address size of 2128

which is considered to be sufficient for the foreseeable future. Therefore we require a

plaintext that allows us to represent 128-bit numbers.

Since we are using a single plaintext per label we can pack the number across the

coefficient vector ~v = (v0, . . . , vd) of each slot. It is possible to pack multiple labels into a

single plaintext to optimise for efficiency which will be discussed in section 4.6, however

for simplicity we consider a single plaintext encoding a single label, represented as a

128-bit integer.

It is noted that the labels of each local node must be encoded in the same way as the

label sent by the client to ensure the correctness of the homomorphic matching algorithm.

Chapter 4. Anonymous Routing 45

Encryption

Since we are using a public key encryption scheme, the encoded plaintexts are encrypted

using the public key of the intended recipient. The client encrypts both the label and the

message data with the same public key using the encryption routine described in section

3.3.3. The ciphertexts are then sent to recipient via the anonymous routing network.

4.5.2 Anonymous Routing

In this phase of the scheme, a node in our communication network receives two cipher-

texts, one containing the label of the destination node and another containing the mes-

sage data. The job of this node is to route the information received onto the correct

path of the network to the intended recipient(s).

To achieve this, the node performs a homomorphic comparison of the encrypted

label with each label held locally. For each output wire from the node, there will be a

corresponding list of unique labels of all subsequent nodes in the network. Also each list

of labels will be disjoint from each other. This means a maximum of one list can contain

a matching label, furthermore there can only be a maximum of one match across all lists.

The result of the homomorphic comparison will be used to produce a single mask

ciphertext for each outward path from the node which will be described in detail in

section 4.5.2. The mask will be an encryption of one if the label was present in the list

and a zero otherwise. Using this mask the node will multiply it with the message and

send the new message ciphertext with the initially received label along each output edge.

The original message will only be sent through at most one output edge. All other edges

will receive a ciphertext containing an encryption of zero.

We make the assumption, without loss of generality, that the network is a directed,

thus a message cannot be sent along the same wire from which it was received. In other

words, each node has one input edge and there exists no loops within the network. This

can be achieved through introduction of a protocol.

Chapter 4. Anonymous Routing 46

Homomorphic Comparison

The node performs a homomorphic comparison of the received label, which we will call

the query label, with the labels held locally at the node. Each node in the network will

contain a list of labels, one list for each output wire. The labels correspond to each node

further along the network. Each list contains unique labels and each list is disjoint from

each other. Subsequently a homomorphic comparison will only produce a maximum of

one unique match across the union of lists of a single node.

For each list of labels we start by computing the difference between the query label

and each node label from the list. This is achieved by subtracting the query label from

each node label slotwise.

We note that the labels held locally are known to the node and need not be encrypted.

However, the computation between the query label and local node label results in a

ciphertext that is encrypted under the initial public key of the client. Thusly, each node

cannot see any result subsequent to the first operation.

Subsequent to the subtraction operation, the difference of the query label and the

compared node label is held in the resultant ciphertext. This ciphertext will be an

encryption of zero if and only if the query label matched the node label, otherwise it

will be non-zero if they did not match. Now the node will need to convert the resultant

difference into a mask of ones and zeroes. Given that we have polynomials in the slots

of our ciphertext as described in section 4.5.1, to achieve this we will use a variant of

Fermat’s Little Theorem for polynomials:

Theorem 4 (Fermat’s Little Theorem). If we have a prime number p, then for any

non-zero polynomial a of degree d which is not divisible by p, the number ap
d−1− 1 is an

integer multiple of p i.e.

ap
d−1 ≡ 1 mod p

We adapt this result to create a generic function to achieve the behaviour desired.

Chapter 4. Anonymous Routing 47

This can be achieved naively through exponentiation, yet this would be expensive both

computationally and in terms of noise growth due to the large number of necessary

multiplications. To mitigate this we use a less noise expensive method of exponentiation

[44] which is implemented in HElib [46], namely the Frobenius automorphism

σ : X → Xp

Given our ciphertext c containing the difference, we must compute cp
d−1 and we note

the result

pd − 1 = (p− 1)

d−1∑
i=0

pi

We can then compute cp
d−1 = c(1+p+···+p

d−1)(p−1) by initially computing cp−1 through

exponentiation and then applying the Frobenius automorphism σ(cp−1) = c(p−1)p. Thus

we calculate the function

f(c) =

d−1∏
i=0

σi(cp−1) (4.2)

where σi(c) = cp
i
.

Using the function in equation 4.2 we obtain a method for computing the desired

mask as follows:

1− f(c) =

1, iff c = 0

0, otherwise.

(4.3)

Applying equation 4.3 to the difference ciphertext c, we obtain a one in each slot

where there was a match and a zero in all other slots of the ciphertext where no match

was present.

Chapter 4. Anonymous Routing 48

Since the local list contains unique labels, there can only be at most one label which

is an exact match corresponding to the query label. This matching label will produce a

mask containing a one across all slots of the ciphertext. However, partial matches can

occur and must be removed.

To achieve this we perform a slotwise multiplication of the mask ciphertext. This is

done via creating a copy of the mask ciphertext, performing a rotation of the slots and

then multiplying the rotated mask with itself. This results in a slotwise multiplication

and is repeated for all permutations of the ciphertext slots which is l = φ(m)/d. There-

fore, if a mask ciphertext contains at least one slot containing a zero, this slot will be

multiplied across the remaining slots of the ciphertext, resulting in a mask of zeroes.

Since there will always be a maximum of a single unique match, the resultant masks

can be aggregated into a single ciphertext. This will produce a single mask ciphertext for

each list corresponding to each output edge of the node. The mask will be an encryption

of one for the correct onward path and a zero otherwise.

Routing the Message

Using the resultant masks for each output edge of the node, we perform a multiplication

between the mask and the received message data. For the edge containing the matching

label (producing the mask ciphertext of ones), multiplying the mask with the message

data will leave the data unchanged as this is the intended route of the message. For all

other routes the message data will be multiplied with a mask of zeros, thus zeroing out

the data and producing a ciphertext of zeroes.

These resultant ciphertexts are then sent along the output edges to the next node

where another homomorphic comparison takes place until it reaches the edge of the

network. Since a ciphertext is sent along each edge of the network, it provides total

anonymity against a global adversary, which will be discussed further in section 4.6.

Chapter 4. Anonymous Routing 49

4.5.3 Retrieving The Message

Subsequent to the receiving a message from the routing server, the recipient decrypts the

encrypted message data. As described in section 3.3.3, the recipient calculates [〈~c, ~sk〉]p.

Namely, the inner product of the ciphertext with their secret key followed by a modulo

operation with the plaintext prime p. This produces a plaintext containing an encoding

of the original message data sent by the client.

The plaintext is a polynomial with coefficients representing ASCII characters. The

recipient computes the inverse of the encoding algorithm to reproduce the original ASCII

data.

4.6 Discussion

Through the use of FHE, this algorithm provides security and anonymity against a

network that is an honest-but-curious adversary. Conventional routing algorithms use

standard public key encryption to secure the data begin sent across the network as well

as provide a level of anonymity. However, trust must still be placed in the individual

nodes of the network as each node is aware of the previous node in the chain as well as

the subsequent node to relay the message to. This is because the data is encrypted in

layers and as each node in the chain decrypts a layer, it reveals the address of the next

node in the chain.

The main disadvantage of these conventional algorithms such as Tor and I2P are they

are not secure against a global adversary. Given an entity that can passively observe the

network globally, it can deanonymise users of the network [52]. The algorithm described

in this chapter removes this vulnerability because none of the nodes in the network need

to decrypt and thus the nodes themselves do not know the route of the data across the

network.

More specifically, an adversary that can observe the entire network will see a message

being sent to every node of the network, thus hiding the true recipient in the entire

Chapter 4. Anonymous Routing 50

recipient set. This makes it hard for a global adversary to deanonymise the recipient as

the message path cannot simply be observed. Additionally, if an adversary intercepts a

message, not only will they be required to solve the Learning With Errors (LWE) problem

to decrypt the message without the secret key, there is no guarantee the ciphertext will

contain the message. Thus ‘zeroing’ the message data at each node increases the security

of the algorithm.

Additionally, with quantum computing looking to become prevalent in the future, it

is advantageous that FHE is a lattice based cryptography scheme as it is assumed hard

for polynomial-time quantum algorithms [61]. Due to Shor’s algorithm [71], conventional

public key encryption that is used in current anonymous routing algorithms may become

obsolete in a future where quantum computers are prevalent. Thus, this chapter presents

a scheme that is not only secure against a global adversary but also quantum resistant.

This type of algorithm also would not be possible with partially homomorphic encryp-

tion schemes as they only provide a single type of homomorphic operation, either addi-

tion or multiplication. This algorithm relies on the use of FHE to provide the operations

necessary to perform a comparison algorithm homomorphically.

Nevertheless, this algorithm also introduces the natural algorithmic overhead of using

FHE. This is evident in section 4.5.2, from the number of additional operations that are

needed to perform the comparison and mask creation homomorphically. This is due to

the inability to perform branching operations within FHE. This chapter demonstrates

how when using FHE, every branch of computation must be computed, similar to how

a ciphertext is sent along every edge of the network.

In order to provide total anonymity, this algorithm causes the network to be spammed

with encryptions of zeroes. Every node of the network must receive a ciphertext as it is

oblivious to the destination of the data. This is the main disadvantage of the algorithm

presented here.

Chapter 4. Anonymous Routing 51

4.7 Conclusion

This chapter has shown the versatility of applying FHE to use cases within a realis-

tic scenario. This was demonstrated by applying a homomorphic matching algorithm

outside of the typical use-case of Private Information Retrieval.

It has been shown that FHE is useful for scenarios where a client is not willing to trust

a server in a client-server model, the routing network being the server in this example.

Despite the added algorithmic overhead, as hardware continues to increase in efficiency

and speed, FHE algorithms will continue to move ever closer to feasible running times.

Nevertheless, the main drawback of FHE is the inability to efficiently compute con-

ditional operations. FHE currently requires algorithms to compute every branch of

computation. Thus it remains an open question as to how to use FHE for anonymous

routing without spamming the network.

Chapter 5

Implementing Fractional

Arithmetic in FHE

Previously, the use of FHE in a contrasting scenario to outsourcing computation with-

out revealing the data was explored, this was shown to be possible however extremely

impractical. Moving on from applying FHE to the field of networking, another interest-

ing aspect to explore is applying FHE on different types of data. This section presents

my work on defining and implementing rational numbers within an FHE scheme and the

application of this data representation to perform simple linear regression.

5.1 Introduction

Since, Gentry’s breakthrough [39] there have been numerous FHE schemes published

to date [10, 32, 59, 38, 41]. However the scheme of note [14], the BGV scheme, made

considerable gains in terms of efficiency and practical use of FHE.

Computing directly on encrypted data inherently comes at a cost in computational

resources, namely, computation time and memory for adequate levels of security. How-

ever, with more efficient algorithms, implementations, and hardware acceleration tech-

52

Chapter 5. Implementing Fractional Arithmetic in FHE 53

niques, practical work using FHE can be done [31, 47] and this cost will continue to

reduce. This section does not focus on these major topics of practical FHE; instead,

we address another major obstacle to practical FHE, namely that of how to represent

numbers within FHE that approximate the real numbers or rationals so that useful

computation in analysis can be performed on encrypted data. This has far reaching

consequences in today’s data driven world.

The developer implementing homomorphic algorithms has to make use of an FHE

scheme’s particular algebra. This algebra is mostly not flexible to represent other alge-

bras required or data structures and care has to be taken when designing an appropriate

representation. Security and algrebas in FHE schemes are based on the Learning with

Errors (LWE) problem [67]. The FHE scheme that is used in this section is the BGV

variant implemented in the C++ library HElib [46]. The library makes use of the ring

LWE (RLWE) a variant of the LWE which uses integer polynomial rings as its algebra

where the message polynomial ring is given by A ∼= Z[X]/(Φm(X)) which is a univariate

integer ring Z[X] modulo the m’th cyclotomic polynomial.

A developer is challenged to understand the data and algorithm that will be used

and build the FHE solution accordingly in order to accommodate the data and how it

has to be computed on. This requires the user to have an in-depth understanding of

the underlying structure of the FHE scheme and its algebra as it is highly dependent

on numerous parameters which have a relatively complex relationship between them.

Parameter selection is out of scope of this thesis. To do analysis, the problem becomes

how to represent the required data in the available algebra. The issue of using the ring

A to represent data is that it does not represent an adequate approximation of the real

numbers or rationals. This limits the algorithms that can be performed as it cannot

for example perform real analysis. There have been attempts to solve this issue using

different representations such as fixed-point [4, 29, 11, 35] or floating-point arithmetic

[22] and simpler solutions such as representing fixed precision rationals using a fixed

multiplier to map rationals into integers [51, 18, 23, 19, 8]. A method of particular

Chapter 5. Implementing Fractional Arithmetic in FHE 54

interest was that of representing rational numbers using continued fractions [27] which

introduced new challenges in efficiency in terms of computational complexity. Moreover,

there have been attempts to approximate certain continuous mathematical functions,

such as logistic regression, using a polynomial function such as the Taylor approximation

[9] and the minimax approximation [23].

The method of mapping the rationals into integers using a fixed scalar multiplier is

viewed to be a relatively efficient solution. However, it requires the user to keep track of

the scale as ciphertexts progress through an algorithm in order to ensure the messages are

decoded correctly. This is because as operations are performed upon each ciphertext, not

only the message within the ciphertext but the scale can also be modified via operations.

These schemes tend to have an increased rate of noise growth and thus require larger

values of p, the plaintext modulus, making it more challenging to select an optimal set

of parameters and causing increased difficulty in evaluating deeper circuits. There has

been work to improve this, such as the interesting method of changing the plaintext

modulus itself from an integer p to a polynomial instead [19]. This tackles the issue of

requiring larger values of p, although it creates a slightly more complicated scheme as

well as introducing some overhead, most notably in the decryption phase. Furthermore, a

number of previous attempts at representing rational numbers lack batching of data [22]

and thus the single instruction multiple data (SIMD) properties of ciphertexts cannot

be utilised.

The approach we have taken is to form objects that resemble fractions similarly to a

previous work [72] which was applied to feature detection and description of images. We

differ from the previous as it uses the Gentry-Sahai-Waters (GSW) scheme [41] which

is an LWE variant that produces ciphertexts as matrices whereas this chapter describes

the implementation of the fractions using the algebra given by the BGV variant scheme

found in HElib. This chapter takes the description of the underlying theory further by

elaborating upon why it is possible to form these types of fractions from the existing

algebra used in FHE schemes. Moreover, our scheme is applied to linear regression and

Chapter 5. Implementing Fractional Arithmetic in FHE 55

in contrast to [72] operates on the actual objects and not their components specific to a

computation.

Simple linear regression is performed where the input is a set of points of a straight

line with additive white Gaussian noise (AWGN). This creates a randomised “noisy” line

which is encrypted before the application of linear regression is performed homomorphi-

cally. The computation returns a line of best fit which ideally should be the equation of

the original line.

5.2 Implementation of Fractions

5.2.1 The Plaintext Space

The FHE scheme used will be a variant of the BGV scheme described in section 3.3. A

brief overview of the mathematical structures that will be used for the field of fractions

is given. The scheme has a plaintext space given by the ring Ap ∼= Zp[X]/(Φm(X))

where the prime number p is our plaintext space modulus. This leads to a structure

that supports SIMD operations per ciphertext where data can be packed into slots of

numbers in Fpλ where λ is the order of p in Z∗m, the multiplicative group modulo m.

The slots are the residues of the polynomial from Ap given by the modulo of a factor

of the cyclotomic polynomial Φm(X) mod p. The number of slots is dependent on the

corresponding Galois group size given by

∣∣∣∣Z∗m〈p〉
∣∣∣∣ =

φ(m)

λ

where φ is Euler’s totient function and λ is the smallest value given by pλ = 1 mod m.

The reader is reminded that the message or data polynomial is embedded in a larger

ring during encryption and with “noise” as required by the RLWE so the slots cannot

be seen without decryption.

Chapter 5. Implementing Fractional Arithmetic in FHE 56

5.2.2 The Quasi-Rationals

To make fractions, the approach makes use of a well known mathematical result, namely

that every integral domain contains a field of fractions [75]. From the plaintext space

described above, we have an integral domain in the slots namely Fpλ . This is due to p

always being chosen to be prime. It is noted that every finite integral domain is a field

and thus the field of fractions of Fpλ is isomorphic to the field itself. At this point, the

reader may wonder what advantages, if any, are there for mapping to a representation

of the same object. The trade-off, which will become clearer, is that calculations are

simpler to reason about and some costly operations such as finding the multiplicative

inverse are now negligible. However, it should be noted that memory usage is at least

doubled to store these numbers and addition is more costly. As a simplification λ = 1

in this chapter but for other cases larger λ may be required for a field of fractions from

polynomials.

Recall that a field of fractions is constructed by taking an ordered pair (n, d), also

written as n/d, where n, d ∈ Fp and d 6= 0 [75]. Therefore, using HElib’s ciphertexts a

field of fractions can be defined using two ciphertexts one to hold the numerator, n, and

the other to hold the denominator, d, which will be called QuasiQ . However, due to the

encryption of the plaintext to ciphertexts the QuasiQ objects will be slightly different

from a true field of fractions.

The first thing is that the denominator cannot be guaranteed to not hold a zero value.

This introduces an issue when using encrypted fractions, namely, what happens when

division by zero occurs? There is no way of knowing when performing a division of two

fractions whether the divisor is in fact zero and therefore producing a result that is not

defined. This remains an interesting problem of what should be done or can be done

in this situation. However, since the values of the ratios themselves are not computed

in decimal form, the algorithms will still be carried out regardless of the values. The

results when displayed after decryption however will not be defined as they will have a

zero for the denominator segment of the ratio.

Chapter 5. Implementing Fractional Arithmetic in FHE 57

Another difference is that normally a field of fractions has an equivalence relation

defined (n, d) ∼ (r, s) ⇐⇒ ns = dr where n, d, r, s ∈ Fp and d 6= 0, s 6= 0. The fraction

can be reduced to its lower representation by factoring. However, when encrypted this is

not possible as the values cannot be seen to be factored in the recursion procedure that

would be required. Plus, due to the integral domain used being finite, there is another

equivalence relation imposed on the field of fractions due to the modulus p and this can

cause issues as described in section 5.3 when evaluating the QuasiQ objects as well as

leading to the denominator zero problem described previously.

Defining the QuasiQ object as an ordered pair (n, d), the fraction arithmetic can be

defined as follows: addition operation: (a, b)+(c, d) = (a·d+c·b, b·d), negation operation:

for fraction r = (n, d) we define the additive inverse −r = (−n, d), subtraction operation:

(a, b) − (c, d) = (a · d − c · b, b · d), multiplication operation: (a, b) · (c, d) = (a · c, b · d),

reciprocal: for fraction r = (n, d) we define the multiplicative inverse r−1 = (d, n),

division operation: (a, b)÷ (c, d) = (a · d, b · c).

The ciphertext objects are operated on exactly as they normally would be in HElib,

but for the QuasiQ objects the operations for the field of fractions are implemented,

which include negation, reciprocal, addition, multiplication, as well as, subtraction, and

division. All inputs a, b to the following operations are QuasiQ objects, namely an

ordered pair of two ciphertexts (n, d) where n represents the numerator and d the denom-

inator. The numerator and denominator of a QuasiQ object a can be accessed with

a.numerator and a.denominator respectively.

Before we present the pseudocode, we note that as the underlying types of QuasiQ

objects are ciphertexts, we attempt to use procedures already available within HElib [48]

wherever possible. An instance of this is in the implementation of negation. We use the

HElib operation Ctxt.negate(c) where c is the input ciphertext to be negated and the

output is −c. This is achieved through a scalar multiplication (−1) · c.

The quasi-rational operations are described in the following pseudocode:

Chapter 5. Implementing Fractional Arithmetic in FHE 58

QuasiQ.add(a, b)

1 if a is b then return 2 · a.numerator

2 else

n← b.numerator

3 a.numerator ← a.numerator · b.denominator

4 n← n · a.denominator

5 a.denominator ← a.denominator · b.denominator

6 a.numerator ← a.numerator + n

7 return a

QuasiQ.negate(a)

1 a.numerator ← Ctxt.negate(a.numerator)

2 return a

QuasiQ.subtract(a, b)

2 b← QuasiQ.negate(b)

3 a← QuasiQ.add(a, b)

4 return a

QuasiQ.multiply(a, b)

1 a.numerator ← a.numerator · b.numerator

2 a.denominator ← a.denominator · b.denominator

3 return a

QuasiQ.reciprocal(a)

1 n← a.numerator

2 a.numerator ← a.denominator

3 a.denominator ← n

2 return a

Chapter 5. Implementing Fractional Arithmetic in FHE 59

QuasiQ.divide(a, b)

1 if a is b then

a.numerator ← a.numerator · a.denominator

2 a.denominator ← a.numerator

3 else

b← QuasiQ.reciprocal(b)

4 a← QuasiQ.multiply(a, b)

5 return a

The algorithms above which have two inputs, such as QuasiQ.subtract(a, b) for exam-

ple, can be read as calculating the operation a − b, as opposed to calculating b − a,

which would be QuasiQ.subtract(b, a). Subsequently, all of the necessary mathematical

operations between two QuasiQ rationals can be performed, thus our implementation

can be tested by applying it to a known mathematical algorithm.

It is noted, there is an “optimisation” in the operations QuasiQ.divide(a, b) and

QuasiQ.add(a, b), specifically line 1 of the pseudocode “if a is b”. The input QuasiQ

objects a, b in the previously defined pseudocode are pairs of ciphertexts, thus we cannot

tell if the inputs a and b are the same mathematically. Therefore this “optimisation”

only applies for when a and b are the same object in memory (i.e. if we call the method

QuasiQ.divide(a, a)).

5.2.3 Simple Linear Regression

Now that there is the ability to hold data in fractional form, this can be applied to new

problems to be tackled with FHE. One problem of note is linear regression, as rational

numbers can be used to accurately determine the equation of a line given a set of points.

Given a set of coordinates (xi, yi), the desire is to calculate a line of best fit of the form

y = b1x + b0 using simple linear regression. Therefore values must be calculated of the

line intercept b0 and the gradient of the line b1 using least squares. These values are

Chapter 5. Implementing Fractional Arithmetic in FHE 60

obtained via the following:

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, b0 = ȳ − b1x̄,

where x̄ and ȳ are the mean averages of the x′is and y′is respectively.

Recall from section 5.2.2 that our QuasiQ object is an ordered pair (n, d) where n

represents the numerator and d the denominator. In this implementation, the values

xi, yi are each encrypted as QuasiQ objects. Since xi and yi are integers, we encode each

xi as a rational of the form xi/1. Similarly we encode the yi values as a rational yi/1. In

other words, the input data xi, yi of our homomorphic regression algorithm are rationals

xi/1 and yi/1 encoded, as QuasiQ objects, into pairs (xi, 1) and (yi, 1) respectively.

These values are used to encode into our fractions, the numerator and the denomi-

nator of the fraction b1, storing these values in their respective locations in the QuasiQ

object before using this value to calculate b0.

5.3 Implementation of Linear Regression

The implementation of the simple linear regression discussed in section 5.2.3 is given

below using the QuasiQ implementation of a field of fractions. The linear regression

algorithm was tested on points of a straight line with added Gaussian noise. Firstly, the

gradient and intercept of a straight line are selected randomly from a uniform distribu-

tion. Then we select points of this line and a random rational number r selected from

a Gaussian distribution is then added to the corresponding y values to obtain a set of

points (xi, yi + ri). The Gaussian distribution is denoted by N (µ, σ2), where µ is the

mean and σ is the standard deviation. The mean that is set for the Gaussian distribu-

tion in our experiments is always zero as our concern is simulating random noise on the

data and not a systematic error. This new set of points is used to simulate a real-world

dataset with a notable correlation. The new x and y values are then encrypted into

ciphertexts and given to the linear regression algorithm to calculate the line of best fit.

Chapter 5. Implementing Fractional Arithmetic in FHE 61

(a) Noise chosen from a Gaussian
Distribution N (0, 1).

(b) Noise chosen from a Gaussian
Distribution N (0, 9).

Figure 5.1: Random noise distribution from two Gaussian distributions.

An example of noise chosen from a relatively small sample set of N (0, 1) containing

64 (xi, yi) values is given in Figure 5.1a. In the experiments shown the xi values are

selected to be at intervals of 0.5, in other words, the x values are selected to be xi = i
2

for i in the interval [0, 63]. The reason for choosing our data size to be in this range

was to keep the total noise growth to a reasonable level so as to circumvent the need for

bootstrapping.

Most of the noise variables ri are within the interval (−1, 1) with the largest offset

being within the range (−3, 3). This can be viewed as a “noise” vector ~r = (r0, . . . , r63)

that is added to our straight line vector ~y, where yi = mxi + c, to obtain the set of

points in Figure 5.2. The set of xi and corresponding yi + ri values are encrypted

and input to the linear regression algorithm, where the values b0 and b1 are calculated

homomorphically from the linear regression equation previously stated in Section 5.2.3.

However, prior to implementing the full linear regression algorithm, two subroutines are

required to calculate some of the intermediary terms. Namely, an algorithm calcMean to

calculate the mean of a set of given QuasiQ objects, which in turn requires a summation

subroutine sumFrac that sums a set of QuasiQ objects.

Given an ordered collection of QuasiQ objects v, sumFrac(v) computes the sum of

the collection. First we take a copy of the collection as this algorithm is destructive. The

additions are treated as nodes in a binary tree and the same collection is used to store the

Chapter 5. Implementing Fractional Arithmetic in FHE 62

intermediate results so memory usage is minimal. This keeps the depth of operations to a

minimum, dependent only on the collection size to log2 size(w), where w is the collection

of fractions and size(w) is the number of fractions contained in the collection. The final

sum is contained in the first element of the collection which is returned. The sumFrac

procedure is defined below:

sumFrac(v)

1 w ← v

2 e← size(w)

3 s← 1

4 while e > 1 do

5 for i← 0 to size(w) step 2 · s do # iterate through w by jumps of 2 · s

6 if i+ s > size(w)− 1 then break

7 wi ← wi + wi+s

8 if odd(e) = true then e← e+ 1

9 e← e/2

10 s← 2 · s

11 return w0

Once sumFrac is defined, calcMean(v) is relatively simple to implement, where v

is an ordered collection of QuasiQ objects. Now the full linear regression algorithm,

linearReg(x, y), can be implemented to calculate the equations stated in Section 5.2.3,

where x and y are ordered collections of the coordinates (xi, yi) as defined previously,

calcMean(v)

1 m← sumFrac(v)

2 m.denominator ← m.denominator · size(v)

3 return m

Chapter 5. Implementing Fractional Arithmetic in FHE 63

Figure 5.2: Fitting of the regression line on the input data with additive noise from
N (0, 1).

linearReg(x, y)

1 xMean← calcMean(x)

2 yMean← calcMean(y)

3 for i← 0 to n− 1 do

4 dxi ← xi − xMean

5 dyi ← yi − yMean

6 for i← 0 to n− 1 do

7 ddxi ← dxi · dxi

8 ddyi ← dyi · dxi

9 ddxSum← sumFrac(ddx)

10 ddySum← sumFrac(ddy)

11 b1 ← QuasiQ.divide(ddySum, ddxSum)

12 t← QuasiQ.multiply(xMean, b1)

13 b0 ← QuasiQ.subtract(yMean, t)

14 return b0, b1

The two values b0, b1 are returned by the linearReg as two separate QuasiQ objects,

representing the intercept and gradient of our regression line respectively. The user can

then decrypt these two values and plot the line of best fit y = b0 + b1x, on top of the

noisy data as shown in Figure 5.2.

Chapter 5. Implementing Fractional Arithmetic in FHE 64

After obtaining a graph showing the linear regression algorithm correctly fitting a

line to encrypted noisy data, the variance of the Gaussian distribution used to generate

the noise vector was increased. Setting the standard deviation σ = 3, produces the

noise shown in Figure 5.1b. An issue appeared once the noise was increased that when

generating the points for the line that the additive noise would send those points to the

“wrong” equivalence class in the QuasiQ if the point went beyond the [0, p− 1] interval

in the y-axis in the rationals. This causes a loss of information, as the resulting data

gets allocated to an equivalence class and thus the “true” value is lost within a set of

possible equivalent values.

An interesting problem to consider; however, to make further progress with the prac-

tical investigation we decided to modify the few noisy elements that fell outside the

interval [0, p − 1]. The noise selection process that tackled both the case yi + ri < 0 as

well as yi+ri > p−1. For the case of yi+ri < 0, the new data is forced to have the value

yi + ri = 0. This tends to occur at the smaller xi values as the original yi values start

close to 0 so there is a greater probability of obtaining a noise value |−ri| > yi, where

|−ri| is the absolute value of −ri. Examples of this can be seen in both Figure 5.3 and

Figure 5.4. For the case yi + ri > p− 1, during the noise selection process, only rational

numbers that can be represented using 1 decimal place are considered (note, that using

the smallest precision could have also been used, 1/p − 1). The decimal representation

is converted into the QuasiQ rational representation by multiplying the float by 10 and

then removing the remaining decimal places. Therefore always obtaining a fraction with

a maximum denominator of 10. By doing this, it keeps the starting denominator rela-

tively small compared to our plaintext modulus p to reduce the possibility of creating

a numerator greater than p and thus wrapping around. Thus, as the denominator of

the QuasiQ object increases, the maximum difference from 0 that can be represented

decreases. The most important property of the input data, as in all computing approx-

imations of the rationals, is that it exists within the bounds that accurately represents

the rationals. For QuasiQ , the data must ideally lie with x and y values both in the

Chapter 5. Implementing Fractional Arithmetic in FHE 65

Figure 5.3: Fitting of the regression line on the input data with additive noise from
N (0, 9).

Figure 5.4: Fitting of the regression line on the input data with additive noise from
N (0, 25).

interval [0, p− 1] in the rationals.

Multiple examples have been presented where our algorithm correctly fits a line of best

fit to some randomised encrypted data through simple linear regression. Unfortunately,

it must be noted that occasionally the final outputs b0, b1 appear to give an incorrect line.

Therefore upon initial inspection by the user, it looks like the algorithm has incorrectly

fitted a line to the input data such as in Figure 5.5a. This is due to the fraction in

the rationals being wrong, but in the correct equivalence class in QuasiQ , for reasons

described in more detail in Section 5.4. In other words, the result the user views is the

equivalence class in which the correct answer belongs to in the rationals. So it is possible

to find which element of our equivalence class is the “true” result of the algorithm.

Chapter 5. Implementing Fractional Arithmetic in FHE 66

(a) Initial “incorrect” fitting of
the regression line y = b0 + b1x,
where b1 = n/d.

(b) An equivalent fitting of the
regression line y = b0 + b′1x,
where b′1 = (n+ p)/d.

(c) An equivalent fitting of the
regression line y = b0 + b′′1x,
where b′′1 = (n+ 2p)/d.

(d) An equivalent fitting of the
regression line y = b0 + b′′′1 x,
where b′′′1 = (n+ 3p)/d.

Figure 5.5: Regression lines with gradients belonging to the same equivalence class.

Figure 5.5a shows the line fitted clearly is not aligned with the data. This is due

to the gradient of the line being the fraction within the plaintext space or at least the

representative equivalence class that contains the correct gradient. In other words, the

gradient that was output from the regression algorithm is always of the form 0 ≤ b1 < p,

where p is the plaintext modulus defining the plaintext space Ap. However, the QuasiQ

object b1 is a fraction b1 = n/d, where 0 ≤ n, d < p. Despite this being the b1 value

received, it belongs to the equivalence class b1 mod p. Alternatively, using the Euclidean

division algorithm, given b1 mod p there exists a set of solutions of the form x = k ·p+b1,

for k ∈ Z. This is slightly more complex given we are now dealing with a rational number

b1 = n/d rather than an integer in a sense that the value belongs to the set of rationals

a/b, where a = j · p+ n and b = k · p+ d for j, k ∈ Z.

Chapter 5. Implementing Fractional Arithmetic in FHE 67

(a) Initial “incorrect” fitting of
the regression line y = b0 + b1x,
where b0 = n/d.

(b) An equivalent fitting of the
regression line y = b0 + b′1x,
where b′0 = (n+ 3p)/d.

(c) An equivalent fitting of the
regression line y = b0 + b′′1x,
where b′′0 = (n+ 6p)/d.

(d) An equivalent fitting of the
regression line y = b0 + b′′′1 x,
where b′′′0 = (n+ 9p)/d.

Figure 5.6: Regression lines with intercepts belonging to the same equivalence class.

Since the important information is the ratio between n and d, choosing to keep the

denominator value constant and scanning through the elements of the equivalence class

for the correct rational should obtain the correct value in the rationals. In the case in

Figure 5.5, the denominator d is chosen to be kept constant. The individual graphs

are obtained by incrementing through the gradients b′1 = (n + k · p)/d for k = 0, 1, 2, 3,

where the case k = 0 is the starting line as an initial output. The correct line gradient is

shown in Figure 5.5c and the line of best fit that was calculated by the linear regression

algorithm. The same issue can happen to the intercept b0 as well. An example of this is

shown in Figure 5.6.

Moreover, the final case may be that neither the intercept b0 nor the gradient b1 have

the correct rational representation when decoded. As a result, obtaining the correct

Chapter 5. Implementing Fractional Arithmetic in FHE 68

rational values for the line of best fit can be challenging as there are many possible

combinations that will need to be compared. In practice for simple linear regression

it is not expected that wrap-around should occur very often during the computation,

so scanning through the set of the equivalence class for the correct rational should be

relatively quick for small k. However, for other algorithms this may not be the case.

5.4 Evaluation of the use of QuasiQs

It has been successfully shown that it is possible to not only represent fractions using

an FHE scheme but also compute on such data as well. However, there are a number of

new limitations, not present in previous solutions, which our solution introduces.

Arguably, the most significant limitation of this scheme is due to building a field frac-

tions from a finite integral domain which has implications of representing the rationals,

Q. Because of the way the fractions are constructed from a finite domain, there will be

rationals that are not present in an equivalence class. This is trivially seen by looking

at the set of rationals that define an equivalence class in such a finite field of fractions,

[n
d

]
p

=

{
up+ n

tp+ d
: u, t ∈ Z;n, d ∈ Zp; d 6= 0 and p is prime

}
.

Since d 6= 0, it means that there is a set that is given when d is zero that is not included

in the finite fractions. This is a problem because there are rational numbers that are

not members of one of the equivalence classes. As these rational numbers do not exist

in our field of fractions, attempting to perform operations with such rational numbers

can yield somewhat unexpected results. This unfortunately is not a scenario that is easy

to avoid when using the BGV scheme to compute using our QuasiQ objects. Detection

when a denominator becomes 0 while the data is encrypted is not possible. This can be

avoided at encoding of rationals by making sure that the n and d values being encoded

are in the bounds [0, p − 1] and [1, p − 1] respectively. However, during computation

wrap-around could occur sending d to zero and will not be noticed until the final result

Chapter 5. Implementing Fractional Arithmetic in FHE 69

from the algorithm is decrypted by the user and they realise the answer is not correct.

Another issue due to the fractions being encrypted, the values cannot be observed.

This is necessary for security, but has an undesired effect because in the field of fractions

there is supposed to be an equivalence relation defined as discussed in Section 4.3. As

a result of this, when performing an operation between two QuasiQ objects, a fraction

may be obtained where the numerator and denominator have common factors. However,

not being able to see the encrypted values, there is no way of knowing whether the

result can be simplified as well as the factor in which the fraction can be simplified by.

Therefore as operations are performed upon the data, the values of both the numerator

and denominator increase relatively quickly and thus increases the chance of obtaining

values which wrap around due to becoming larger than the plaintext modulus p. As a

result of this, the scheme currently requires the use of extremely large values of p which

is not a preferable parameter selection.

Moreover, another issue when using QuasiQ numbers is the unfortunate increase in

the computation complexity of performing addition in the field of fractions. Namely,

given two fractions a
b and c

d , the resulting sum of the two fractions is ad+bc
bd . Computa-

tionally this requires us to compute three multiplications as well as an addition, which

may not be too computationally costly in the plaintext domain but in the encrypted

domain is an undesired implication of our form of representation. A normal homomor-

phic addition under the BGV scheme is not computationally expensive in terms of the

amount of ciphertext noise it produces and thus usually more than one addition can be

performed before a level needs to be consumed in order to reduce the ciphertext noise

level. However, when performing an addition operation in a field of fractions, three

homomorphic multiplications as well as the single addition are required. Moreover, due

to multiplications having a greater impact on the ciphertext noise increase, it results

in the approximate consumption of three levels each time that an addition operation

is performed. This worsens how algorithms scale between the plaintext and encrypted

domain. Performing simple linear regression on a set of 64 data points was empirically

Chapter 5. Implementing Fractional Arithmetic in FHE 70

found to consume roughly 20 levels when using a plaintext prime p = 1009. Thus, for

larger data sets it is highly likely that bootstrapping may be required to perform the

algorithm.

However, despite the QuasiQ representation being more computationally expensive

in terms of additions it is more efficient at computing the multiplicative inverse. Since

the plaintext modulus p is always chosen to be prime, Zp is a field and thus the field of

fractions is itself Zp. Therefore the reason for choosing one representation over the other

needs to be considered. Given an element c ∈ Zp, obtaining the multiplicative inverse

c−1 is computationally expensive as it involves using Fermat’s Little Theorem to obtain

cp−2 ≡ c−1 mod p [40, 44] and therefore many multiplications. Given a QuasiQ object

(n, d) it is notably less expensive to compute the inverse as it involves swapping the two

elements of the ordered pair to produce (d, n); albeit swapping two pointers.

Although there are limitations, such as the inability to simplify fractions while they

are encrypted to mitigate the rapid increase of the numerator or denominator and limit-

ing the chance for wrap-around to occur, there are possible future solutions to consider.

In the case of simplification, one could possibly implement a method which computes

the inverse of 2 in Ap. Then after an arbitrary number of operations throughout the

algorithm, an intermediary step can be performed to multiply both the numerator and

denominator by the inverse of 2. This would be dividing both the numerator and denom-

inator by 2 which is equivalent to multiplying by 1, the identity. As the algorithm is

performed, a counter can record the number of occurrences of this operation and when

the user decrypts the final result, the correct answer can be reconstructed by multiplying

the result by the correct power of 2.

5.5 Comparison with Previous Methods

Comparing our solution with previous attempts at approximating real numbers, it is

evident that our method removes the problem of added bookkeeping when it comes

Chapter 5. Implementing Fractional Arithmetic in FHE 71

to keeping track of the scale in solutions using fixed scalar multipliers [51, 18, 23, 19,

8]. These previous solutions use a fixed scalar multiplier to map rationals to integers,

however it is important to keep track of this scalar in order ensure the output is decoded

correctly from an integer to a rational. Our solution mitigates this as we keep the ratio

as a QuasiQ object, thus adding no extra complexity to the decoding step.

Due to the use of a polynomial for the plaintext modulus as opposed to a prime

number p, [19] introduces a notable algorithmic overhead to the decryption phase. Our

solution does not introduce any overhead to the encryption and decryption phase as

we use standard ciphertext objects to represent both our numerator and denominator.

Despite doubling the memory usage, the numerator and denominator can be computed

in parallel, thus the computational overhead of encrypting and decrypting a pair of

ciphertexts will be minimal.

We found that similar to previous solutions, we tend to require larger values of p,

however, unlike [51, 18, 23, 19, 8], this is due to the lack of fraction simplification which

described in section 5.4. Previous solutions required larger values of p due to an increased

noise growth. Our solution results in an increased noise growth only during the addition

of two QuasiQ objects but not for other operations.

Due to our solution removing the extra bookkeeping of most previous solutions in

the literature, it makes our solution conceptually simpler when compared to the existing

literature. However it introduces an undesired computational overhead to rational addi-

tions. Thus our solution is computationally more expensive when used for algorithms

containing a large number of multiplications. Unlike previous solutions, our proposed

method makes computing the reciprocal free in terms of homomorphic operations, thus

division is as computationally expensive as multiplication.

The method we propose is conceptually similar to [72] which uses the Gentry-Sahai-

Waters (GSW) scheme [41]. Since our method uses the BGV scheme [14], we use vector

additions and multiplications as opposed to matrix multiplications and additions, thus

Chapter 5. Implementing Fractional Arithmetic in FHE 72

making our method less computationally expensive.

5.6 Conclusion

The ability to preform analytics in FHE is an important area of study and no one solution

has yet gained dominance. In this chapter, we have shown that a field of fractions can

naturally be constructed from the plaintext space algebra from the BGV scheme. The

practical implementation that we call QuasiQ has some limitations as opposed to an

actual field of fractions due to the encryption.

As an approximation to the rationals, the QuasiQ objects can be put to use for analyt-

ics. This has been demonstrated with a practical example use case, namely, performing

simple linear regression, implemented in FHE, upon simple generated noisy data. This

opens the possibility for performing more complex algorithms in the encrypted domain

with QuasiQ objects. There are some inherent limitations that a finite field of fractions

have to represent the rationals; due to being a subfield, the “wrong” fraction can be given

when decoding back to the rationals. A correction method for this has been described,

something which is not possible with other alternative methods in the literature. How-

ever, the limitations are similar to other current solutions that have been proposed in

the literature being limited to a bounded space and having a minimum precision and the

operations between QuasiQ objects are simple to implement, only requiring the basic

ciphertext operations. Therefore, this is a viable alternative option to perform analytics

and further study is warranted.

Chapter 6

Performing Logistic Regression

using FHE

Subsequent to exploring the feasibility of applying FHE to a networking environment as

well as to represent rational numbers, there is another key component of FHE that is

yet to be explored. Namely the feasibility of using FHE to compute complex functions

that are infeasible to compute using the somewhat homomorphic variant. This section

describes my experience in building a logistic regression model that worked on genomic

data within an FHE environment. This project was initially aimed to solve a real-world

problem proposed by the iDASH centre [50].

6.1 Introduction

6.1.1 Somewhat vs. Fully Homomorphic Encryption

Though only a theoretical plausibility result at first, the last decade saw major algorith-

mic improvements in FHE schemes, resulting in many research prototypes that imple-

ment this technology (e.g., [45, 36, 18, 24]) and attempt to use it in different settings

(e.g., [7, 42, 54, 29, 43, 56], among others).

73

Chapter 6. Performing Logistic Regression using FHE 74

Nearly all contemporary FHE schemes come in two variants: The basic underlying

scheme is somewhat homomorphic (SWHE), where the parameters are set depending

on the complexity of the required homomorphic operations, and the resulting instance

can only support computations up to that complexity. The reason is that ciphertexts

are noisy, with the noise growing throughout the computation, and once the noise

grows beyond some (parameter-dependent) threshold the ciphertext can no longer be

decrypted. This can be solved using Gentry’s bootstrapping technique (at the cost of

relying on circular security). In this technique the scheme is augmented with a recryption

operation to refresh the ciphertext and reduce its noise level. The augmented scheme

is thus fully homomorphic (FHE), meaning that a single instance with fixed parameters

can handle arbitrary computations. But FHE is expensive, as the computation must be

peppered with expensive recryption operations. So, it is often cheaper to settle for a

SWHE scheme with larger parameters (that admit larger noise) as in the previous two

cases proposed in Chapter 4 and 5.

Indeed, with very few exceptions, almost all prior attempts at practical use of FHE

used only the SWHE variant, fixing the target computation and then choosing parame-

ters that can handle that computation and no more. But SWHE has its limits: as the

complexity of the function grows, the SWHE parameters become prohibitively large. In

this work, we set out to investigate the practical feasibility of “deep FHE”, attempting

to answer the fundamental question of FHE’s usefulness in practice:

Can FHE realistically be used for complex functions?

It is noted that the term recryption will be used interchangeably with bootstrapping

as this is the name used for HElib’s [48] implementation of bootstrapping and is not to

be confused with the term re-encryption.

6.1.2 The iDASH Competition

Over the last few years, competitions by the iDASH center [50] provided a good source

of “real world problems” to grind our teeth on. iDASH promotes privacy-preserving

Chapter 6. Performing Logistic Regression using FHE 75

approaches to analysis of medical data, and since 2014 they have organized yearly com-

petitions where they present specific problems in this area and ask for solutions using

technologies such as differential privacy, secure multi-party computation, and homomor-

phic encryption.

In the homomorphic-encryption track of the 2017 competition, the problem to be

solved was to compute homomorphically the parameters of a logistic-regression model,

given encrypted data. The data consists of records of the form (~x, y), where ~x ∈ {0, 1}d

is a vector of d bits, with each bit xi representing an attribute of an individual (e.g.,

man or woman, over 40 or not, high blood pressure or not, etc.), and y ∈ {0, 1} is the

target attribute that we investigate (e.g., whether or not they have a heart disease).

A logistic-regression model tries to predict the probability of y = 1 given a particular

value of ~x, postulating that the probability p~x
def
= Pr[y = 1|~x] can be expressed as

p~x = 1/(1 + exp(−w0 − 〈~x, ~w′〉)) for some fixed vector of weights ~w = (w0, ~w′) ∈ Rd+1.

(The term w0 is typically called an “offset”.) Given sample data consisting of n records,

our task is to find the weight vector ~w ∈ Rd+1 that best approximates the empirical

probabilities (e.g., in the sense of maximum likelihood). For a more detailed exposition

see Section 6.2.

In addition to presenting the problem, the iDASH organizers also provided some

sample data on which to test our procedures. The data consisted of nearly 1600 records

of genomic data, each with 105 attributes (but they also accepted solutions that could

only handle much fewer attributes than this). With so many attributes, this appears

firmly outside the scope of SWHE1, hence we set out to design a solution to the iDASH

task using FHE.2

1Some entries in the iDASH competition, including the winner, found clever ways to use SWHE for
this problem, albeit only for a much smaller number of attributes. See for example [56].

2Unfortunately, our solution was not ready in time for the iDASH competition deadline, so we ended
up not participating in the formal competition.

Chapter 6. Performing Logistic Regression using FHE 76

6.1.3 Our Logistic-Regression Procedure

The starting point for our solution is a closed-form formula that we developed for approx-

imating the logistic-regression parameters. This formula, developed in Section 6.2 below,

involved partitioning the records into “buckets”, one per value of ~x ∈ {0, 1}d, then count-

ing the numbers of y = 1 and y = 0 in each bucket. These bucket counters are then

used to derive a linear system A~w = ~b whose solution is the vector of weights ~w that

we seek. As explained in Section 6.2, computing A,~b from the bucket counters involve

complicated functions such as rational inversion and the natural logarithm.

The first issue that we have to deal with, is that our approximation formula only

yields valid results in settings where the number of records n far exceeds the number of

attributes d. Specifically, it relies on the fraction of y = 1 records in each bucket ~x to

roughly approximate p~x, so in particular we must have n � 2d to ensure that we have

sufficiently many records in each bucket. But we aim at a setting with d > 100, which

is far outside the validity region of this approximation formula.

We thus added to our solution a “quick-n-dirty” pre-processing phase, in which we

homomorphically extract from the d input attributes a set of k � d attributes which

are likely to be the most relevant ones, then apply the approximation formula only to

these k attributes, and set wj := 0 for all the others. Specifically, in our solution we

used k = 5, since the sample iDASH data had very few attributes with significant wj

coefficients.

This quick-n-dirty procedure involves computing the correlation between each column

(attribute) xj and the target attribute y, this is essentially just computing linear func-

tions. Then we find the indexes j1, . . . , jk of the k columns xj that are most correlated

with y, and extract only these columns from all the records. The high-level structure of

our homomorphic procedure is therefore:

1. For each column j, compute Corrj = |Correlation(xj , y)|;

Chapter 6. Performing Logistic Regression using FHE 77

2. Compute j1, . . . , jk, the indexes of the k columns with largest Corrj values;

3. Extract the k columns j1, . . . , jk, setting

~x′i[1 . . . k] := (~xi[j1], . . . ~xi[jk]);

4. Compute the bucket counters, for every ~x ∈ {0, 1}k set

Y~x :=
∣∣∣{i ≤ N : ~x′i = ~x and yi = 1}

∣∣∣ ,
N~x :=

∣∣∣{i ≤ N : ~x′i = ~x and yi = 0}
∣∣∣ .

5. Compute A ∈ R(k+1)×(k+1) and ~b ∈ Rk+1 from the Y~x’s and N~x’s.

6. Solve the system A~w′ = ~b for ~w′ ∈ Rk+1, then output the coefficients w0 := w′0,

wji := w′i for the columns j1, . . . , jk, and wj := 0 for all other columns j.

Jumping ahead, about 55% of the computation time is spent in the first “quick-n-dirty”

phase, which is the only part of the computation that manipulates homomorphically the

entire input dataset.

6.1.4 Homomorphic Computation of the Approximation Procedure

We used the HElib library [48] as our back end to evaluate our approximation procedure

homomorphically. Devising a homomorphic computation of this procedure brings up

many challenges. Here we briefly discuss some of them.

Implementing complex functions. Obtaining the linear system A,~b from the bucket

counters Y~x, N~x involves computing functions such as rational division, or the natural log-

arithm. Computing these functions homomorphically, we have two potential approaches:

one is to try to approximate them by low-degree polynomials (e.g., using their Taylor

expansion), and the other to pre-compute them in a table and rely on homomorphic

table lookup.

Chapter 6. Performing Logistic Regression using FHE 78

In this work we opted for the second approach, which is faster and shallower when

applicable, but it can only be used to get a low-precision approximation of these func-

tions. In our solution we used six or seven bits of precision, see more details in Section 6.4.

Homomorphic binary arithmetic and comparisons. Other things that we needed

were the usual addition and multiplications operations, but applied to integers in binary

representation (i.e., using encryption of the individual bits). Somewhat surprisingly,

these basic operations were not discussed much in the literature, not in terms of proper

implementations. Computing them homomorphically is mostly a matter of implement-

ing textbook routines (e.g., carry look ahead for addition). But in this context we are

extremely sensitive to the computation depth, which is not typical in other implementa-

tions. We describe our implementation of these methods and their various optimizations

in Section 6.5.

Deciding on the plaintext space. HElib supports working with different plaintext-

space moduli, and different calculations are easier with different moduli. In particular,

the correlation computation in the first step is much easier when using a large plaintext

space, as this lets us treat it as a linear operation over the native plaintext space. But

most other operations above are easier when working with bits.

Here we use some features of the recryption implementation in HElib: When set to

recrypt a ciphertext whose plaintext space is modulo 2, HElib uses temporary ciphertexts

with plaintext space modulo 2e for some e > 2 (usually e = 7 or e = 8). In particular it

means that HElib can support computation with varying plaintext spaces of the form 2e,

and it also supports switching back and forth between them.

In our procedure, we used a mod-211 plaintext space for computing the initial corre-

lation, then switched to mod-2 plaintext space for everything else.

Setting the parameters. Setting the various parameters for bootstrapping is some-

what of an art form, involving many trade-offs. In our implementation we settled for

Chapter 6. Performing Logistic Regression using FHE 79

using the m-th cyclotomic ring with m = 215− 1, corresponding to lattices of dimension

φ(m) = 27000. We set the number of levels in the BGV moduli-chain so that at the end

of recryption we will still have nine more levels to use. Recryption itself for this value

of m takes 20 levels, so we need a total of 29 levels. This means that we used a maximum

ciphertext modulus q of size roughly 1030 bits, yielding a security level of just over 80

bits.

Solving linear systems. The last step in the approximation procedure above is to

solve a linear system over the rational numbers. Performing this step homomorphically

(with good numerical stability) is a daunting task. We considered some “pivot free”

methods of doing it, but none of them seemed like it would be a good solution to what

we need.

Since this is the last step of the computation, one option is to implement instead

a randomized encoding of this step, which may be easier to compute. We discuss that

option in Section 6.6, in particular describing randomized encoding of the linear-system-

solver function, that may be new. However we did not implement that scheme in our

solution, instead we settled for a leaky solution that simply sends the linear system to

be decrypted and solved in the clear.

6.1.5 The End Result

We implemented homomorphically all aspects of the procedure above, except the final

linear-system solver. The program takes a little over four and a half hours on a single

core to process the dataset of about 1600 encrypted records and 105 attributes. Over

two and a half hours of this time is spent on extracting the five most relevant columns,

about 45 minutes are spent on computing the bucket counters, and the remaining hour

and 15 minutes is spent computing A and ~b from these counters. We can use more cores

to reduce this time, down to just under one hour when using 16 cores. See more details

in Section 6.7. In terms of accuracy, our solution yields “area under curve” (AUC) of

about 0.65 on the given dataset, which is in line with other solutions that were submitted

Chapter 6. Performing Logistic Regression using FHE 80

to the iDASH competition.

6.1.6 Related Work

Surprisingly, not much can be found in the literature about general-purpose homomor-

phic implementation of basic binary operations. The first work that we found addressing

this issue is by Cheon et al. [21], where they describe several optimizations for binary

comparison and addition, in a setting where we can spread the bits of each integer among

multiple plaintext slots of a ciphertext. They show procedures that use fewer multipli-

cation operations, but require more rotations. These optimizations are very useful in

settings where you can ensure that the bits are arranged in the right slots to begin with.

But in our setting, we use these operations as a general-purpose tool, working on the

result of previous computation. In this setting, the need for many rotations will typically

negate the gains from saving on the number of multiplications. We thus decided to stick

to bit-slice implementation throughout our solution, and try to make them use as few

operations (and as small depth) as possible.

Other relevant works on homomorphic binary arithmetic are due to Xu et al. [77] and

Chen et al. [20], who worked in the same bitslice model as us and used similar techniques.

But they only provided partially optimized solutions, requiring deeper circuits and more

multiplications than we use. (For example, they only used a size-4 carry-lookahead-adder

for addition, and did not use the three-for-two procedure for multiplication.)

In terms of applying homomorphic encryption to the problem of logistic regression,

the work of Aono et al. [2] described an interactive secure computation protocol for

computing logistic regression, using additively-homomorphic encryption. Mohassel and

Zhang [63] also described related secure-MPC protocols (but using garbled circuits, not

HE). Wang et al described in [76] a system called HEALER that can compute homomor-

phically an exact logistic-regression model, but (essentially) only with a single attribute

and only with very small number of records (up to 30).

A lot more work on the subject was done as part of the iDASH competition in 2017,

Chapter 6. Performing Logistic Regression using FHE 81

but the only public report that we found on it is that of Kim et al. [56]. In this

report they describe their implementation, using the somewhat-homomorphic scheme

for approximate numbers due to Cheon et al. [22] to implement a homomorphic approx-

imation of logistic regression (with a small number of attributes) using gradient-descent

methods.

6.1.7 Organization

The rest of this chapter is organized as follows: In Section 6.2 we derive our closed-form

approximation formula for logistic regression. Then in Section 6.3 we provide a bird-

eye view of our solution, describing the individual steps and explaining how they are

implemented. In Sections 6.4-6.5 we describe many of the toolboxes that we developed

and used as subroutines in this solution, and in Section 6.7 we give performance results

of our implementation. Our randomized encoding for the linear-system solver over the

rational numbers in developed in Section 6.6, and we conclude with a short discussion

in Section 6.8.

6.2 Logistic Regression and Our Approximation

Logistic regression is a technique to model dependence between related attributes. The

input consists of n records (rows), each with d+ 1 attributes (columns), all of the form

(~xi, yi) with ~xi ∈ {0, 1}d and yi ∈ {0, 1}. Below we sometimes refer to a fixed value

~c ∈ {0, 1}d as a category. (We sometimes also refer to the different values ~c ∈ {0, 1}d as

“buckets”.) The ultimate goal is to estimate the probability p~x = Pr[y = 1|~x]. Logistic

regression is a model that postulates that this probability is determined as

p~x =
1

1 + exp
(
− w0 −

∑n
i=1 xiwi

) =
1

1 + exp
(
− 〈(1|~x), ~w〉

)
for some fixed vector of weights ~w ∈ Rd+1. The goal of logistic regression, given all

the records {(~xi, yi)}ni=1, is to find the vector ~w that best matches this data. Below we

denote ~x′
def
= (1|~x), and we use the expression for p~x as a function of ~w ∈ Rd+1, namely

Chapter 6. Performing Logistic Regression using FHE 82

we denote

p~x(~w)
def
=

1

1 + exp(−〈~x′, ~w〉)
=

exp(〈~x′, ~w〉)
1 + exp(〈~x′, ~w〉)

. (6.1)

For a candidate weight-vector ~w and some given record (~x, y), the model probability of

seeing this outcome y for the attributes ~x is denoted

P~x,y(~w)
def
= {1− p~x(~w) if y = 0, p~x(~w) if y = 1}. If we assume that the records are

independent and use maximum-likelihood as our notion of “best match”, then the goal

is to find ~w∗ = argmax~w
(∏n

i=1 P~xi,yi(~w)
)

= argmax~w
(∑n

i=1 ln(P~xi,yi(~w))
)
.

6.2.1 A Closed-Form Approximation Formula for Logistic Regression

To get our approximation formula for logistic regression, we partition the data into the

2d “categories” ~c ∈ {0, 1}d. For each category ~c, we denote the number of records in that

category by n~c, the number of records in that category with y = 1 by Y~c, and the number

of records with y = 0 by N~c = n~c − Y~c (‘Y ’ and ‘N ’ for YES and NO, respectively). We

also partition the last sum above into the 2d+1 terms corresponding to all the Y~c’s and

N~c’s,
n∑
i=1

ln(P~xi,yi(~w)) =
∑

~c∈{0,1}d
Y~c · ln(p~c(~w)) +N~c · ln(1− p~c(~w)).

Below it is convenient to do a change of variables and consider the “log odds ratio”,

r~c(~w)
def
= ln

(p~c(~w)
1−p~c(~w)

)
= 〈~c′, ~w〉,

where ~c′ = (1|~c). Then, p~c(~w) = 1/
(
1 + e−r~c(~w)

)
and 1 − p~c(~w) = 1/

(
1 + er~c(~w)

)
. With

this change of variables, we now want to find

~w∗ = argmax
~w

∑
~c∈{0,1}d

Y~c · ln
(

1

1 + e−r~c(~w)

)
+N~c · ln

(
1

1 + er~c(~w)

)
. (6.2)

Fix some category ~c ∈ {0, 1}d, and consider the term corresponding to ~c in the sum

Chapter 6. Performing Logistic Regression using FHE 83

above as a function of r = r~c(~w) (with Y~c, N~c as parameters), namely

fY,N (r)
def
= Y ln

(1

1 + e−r
)

+N ln
(1

1 + er
)
.

To develop our closed-form formula, we approximate fY,N (·) using Taylor expansion

around its maximum point r0 = ln(Y/N),

fY,N (r) ≈ someConstant − Y N

2(Y +N)
·
(
r − ln

(Y
N

))2

. (6.3)

(We discuss the validity of this approximation later in this section.) Recall that we are

seeking the weight-vector ~w that maximizes Eqn. (6.2), and hence we can ignore the

someConstant (as well as the 1/2 factor in Y N
2(Y+N)) since these do not depend on ~w.

Hence the value that we seek is

~w∗ = argmax~w

{
−
∑

~c

Y~cN~c
Y~c +N~c︸ ︷︷ ︸

def
= V~c

·
(
r~c(~w)− ln(Y~c/N~c)︸ ︷︷ ︸

def
= L~c

)2}

= argmin~w

{∑
~c V~c ·

(
〈~c′, ~w〉 − L~c

)2}
.

We continue by expressing the last expression in matrix form. Let ~V , ~L be 2d-dimensional

column vectors consisting of all the V~c’s and L~c’s, respectively. Also let Cd be a (d+1)×2d

0-1 matrix whose columns are all the ~c′ vectors (namely the m’th column is (1|bin(m))t).

For example for d = 3 we have

C3 =

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

. (6.4)

Then the expression above can be written in matrix form as

F (~w)
def
=
∑
~c

V~c ·
(
〈~c′, ~w〉 − L~c

)2
=
(
~wTCd − ~LT

)
× diag(~V)×

(
CTd ~w − ~L

)
.

Chapter 6. Performing Logistic Regression using FHE 84

F (~w) is a quadratic form in ~w, and it is minimized at

~w∗ = argmin
~w
F (~w) =

(
Cd × diag(~V)× CTd

)−1
× Cd × diag(~V)× ~L.

This finally gives us our closed-form approximation formula: Given all the records (~xi, yi)

we compute all the YES and NO counters for the different categories, Y~c and N~c, then

set V~c := Y~cN~c/(Y~c +N~c) and L~c := ln(Y~c/N~c).

We then let D be the 2d-by-2d diagonal matrix with the V~c’s on the diagonal and

~U be the 2d vector with entries V~c · L~c, and we compute the approximation ~w∗ :=

(Cd D CTd)−1 × Cd ~U .

6.2.2 Validity of the Approximation

It is clear that the approximation procedure above relies on the number of records being

sufficiently larger than the number of categories, so that we have enough YES and NO

instances in each category. (Indeed if any Y~c or N~c is zero then the value L~c becomes

undefined.)

Below we therefore assume that the number of records in each category is very large

(i.e., tends to infinity). This implies by the law of large numbers that Y~c and N~c (now

considered as random variables) can be approximated by normal random variables. In

particular they tend to their expected value p~c · n~c and (1− p~c) · n~c, and their log ratio

R~c := ln(Y~c/N~c) tends to ln(p~c/(1 − p~c)). Turning that around, it means that we

expect r~c = ln(p~c/(1− p~c)) to be close to its observed value ln(Y~c/N~c), and therefore the

formula from Eqn. (6.3) using the Taylor expansion of f(r) around ln(Y~c/N~c) should be a

good approximation. The remaining terms in the Taylor expansion represent a residual

contribution that is not explained by the model.

Remark 1. In situations where the system is over-determined, it is possible for the

model to spline the data. One way to reduce the impact of this over-fitting is to include

an ad hoc penalty to the likelihood against the variance in β. Commonly applied penalty

Chapter 6. Performing Logistic Regression using FHE 85

functions include linear L1, and quadratic L2 forms. However, it should also be recog-

nized that such penalty functions do not represent sampling variation that the binomial

and multinomial distributions seek to capture when sampled from disease/exposure pj ’s.

Remark 2. In the expansion, genotypes {0, 1, 2} and other similar constructions are

easily accommodated by the approximation.

6.3 Overview of Our Solution

Expanding on the description from Section 6.1.3, we now explain our approximate

logistic-regression procedure in more detail. We begin in Section 6.3.1 with a description

of the various functions that we want to compute, then in Section 6.3.2 we describe (still

on a high level) how we implement these functions homomorphically.

6.3.1 The procedure that we implement

Input & Output. The input consists of (the encryption of) n records (~xi, yi)
n
i=1, with

~xi ∈ {0, 1}d and yi ∈ {0, 1}. Below we view the input as an n-by-d binary matrix X

with the i’th row equal to ~xi, and a column vector ~y ∈ {0, 1}n containing the yi’s. The

output should be a logistic regression model, consisting of d + 1 real-valued weights

w0, w1, . . . , wd.

Extracting Significant Columns. We begin by considering each column of X sepa-

rately, extracting the the k columns that have the strongest correlation with the target

vector ~y. Below we use HW(~v) to denote the Hamming weight of ~v, and denote by X|j

the j’th column of X. We compute the following quantities:

• Let Y := HW(~y), i.e., the number of records with yi = 1;

• For j = 1, . . . , d, let αj := HW(X|j), i.e., count the records with ~xi[j] = 1;

• For j = 1, . . . , d, let βj := HW(X|j ∧ ~y), i.e., records with ~xi[j] = yi = 1;

Chapter 6. Performing Logistic Regression using FHE 86

• For j = 1, . . . , d, let Corrj := |n · βj − Y · αj |, i.e., the correlation magnitude

between ~y and X|j .

Then we redact the input records, keeping only the k attributes with the strongest

correlation to y. Namely we extract from X the submatrix X ′ ∈ {0, 1}n×k, consisting

of the k columns with the largest values of Corrj . In our implementation we used in

particular k = 5. Let j1, . . . , jk be the indexes of the selected columns, and denote by

(~x′i, yi)
n
i=1 the n redacted records, i.e., the rows of (X ′|~y).

Computing category counters, variance, and log-ratio. We accumulate the

redacted records in 2k buckets according to their ~x′i values. For each category ~c ∈ {0, 1}k,

we compute Y~c, N~c as the number of records in that category with y = 1, y = 0, respec-

tively,

Y~c :=
∣∣∣{(~x′i, yi) : ~x′i = ~c, yi = 1

}∣∣∣ , N~c :=
∣∣∣{(~x′i, yi) : ~x′i = ~c, yi = 0

}∣∣∣ .
Then we compute the variance and log-ratio, respectively, as V~c := Y~cN~c

Y~c+N~c
and L~c :=

ln(Y~c/N~c).

Setting up the linear system. We now arrange the V~c’s and L~c’s in vectors ~V , ~L:

For any m = 0, 1, . . . , 2k − 1, let bin(m) ∈ {0, 1}k be the binary expansion of m, we set

the m’th entry in ~V to Vbin(m), and the m’th entry in ~L to Lbin(m). Next we compute

the coefficients of a linear system from the vectors ~L, ~V as follows:

The matrix A. Let Ck be a fixed (k + 1) × 2k binary matrix, whose m’th column is

(1|bin(m))T . An example for k = 3 is illustrated in Eqn. (6.4). We compute a real

(k + 1)× (k + 1) matrix A := Ck × diag(~V)× CkT (over R), where diag(V) is the

diagonal matrix with ~V on the diagonal.

The vector ~b. Let ~U be an entry-wise product of ~V and ~L, i.e., Um := Vm · Lm for all

m ∈ [2k]. We compute the real (k + 1)-vector ~b := Ck × ~U .

Chapter 6. Performing Logistic Regression using FHE 87

Computing the output. Finally, we solve the linear system A~w′ = ~b (over R) for

~w′ ∈ Rk+1, then set the output vector ~w ∈ Rd+1 as follows:

• The offset is w0 := w′0;

• For the selected columns j1, . . . , jk we set wj` := w′`;

• For all other columns we set wj := 0.

6.3.2 Homomorphic Evaluation

We now proceed to give more details on the various steps we used for homomorphic

evaluation of the functions above. The description below is still a high-level one, with

many of the details deferred to later sections. In particular, this implementation relied

on many lower-level tools for homomorphic evaluation of binary arithmetic and binary

comparisons that will be described in Section 6.5, homomorphic table lookup in binary

representation that will be described in Section 6.4, and more.

6.3.2.1 Parameters and plaintext space

For our native plaintext space we use the cyclotomic ring Z[X]/(Φm(X), 211), with m =

32767 (so φ(m) = 27000). This native plaintext space yields 1800 plaintext slots, each

holding an element of Z[x]/(F (X), 211) for some degree-15 polynomial F (X), irreducible

modulo 211. (In other words, each slot contains the Hensel lifting of GF (215) to a mod-211

ring.)

We stress that HElib includes operations for extracting the bits of an encrypted

integer in a mod-2t plaintext space, so we can always switch to bit operations when

needed. The only limitation is that it roughly takes depth t to extract t bits, and we

can only use bootstrapping once we have encryption of individual bits. We therefore

must ensure that we always have enough homomorphic capacity left to extract the bits

of whatever integers we are manipulating.

These 1800 slots are arranged in a 30 × 6 × 10 hypercube, corresponding to the

Chapter 6. Performing Logistic Regression using FHE 88

generators g1 = 11628 ∈ Z∗m/(2) of order 30, g2 = 28087 ∈ Z∗m/(2, g1) of order 6, and

g3 = 25824 ∈ Z∗m/(2, g1, g2) of order 10.

We note that due to limitations of the BGV encryption scheme that we use, we cannot

realistically use a larger plaintext space. Using a large plaintext modulus adds to the

noise of operations in the scheme, and above 211 this added noise becomes too hard to

deal with. In fact a better optimized implementation would have used a smaller plaintext

space of perhaps 28 rather than 211. This would make computing the correlation a little

harder, but would reduce the noise everywhere else.

6.3.2.2 Encrypting the input

As we said in the introduction, computing the correlation is much simpler when work-

ing with a large plaintext space, but for other operations it is easier to work with bit

representation. We therefore encrypt the input more than one way, as follows:

• We keep two mod-211 ciphertexts as accumulators for the α and β counters, and

a few other ciphertexts for packing the raw data itself. Initially all the ciphertexts

are initialized to zero. The number of the raw-data ciphertexts depends on the

number of records in the dataset: The packing scheme that we use allows each

raw-data ciphertext to hold up to 150 records, and we “fill” these ciphertexts one

at a time until we encrypt all the records.

• Given a record (~xi, yi), we pack the bits in the next available raw-data ciphertext,

using a packing scheme that considers the 27000 coefficients in the native plaintext

space as arranged in a 180× 150 = (30× 6)× (10× 15) matrix. The j’th attribute

in the record is then stored in the coefficient with index (j, i) in this matrix.

In even more detail, let us consider the d+ 1 vector ~zi = (yi|~xi) (where we assume

that d < 180), and the bits of this record will be stored in the raw-data ciphertext

of index i div 150. We let i′ = i mod 150, i1 := i′ mod 15 and i2 := i′ div 15, and

for every j = 0, 1, . . . , d we also also let j1 := j mod 6 and j2 := j div 6. Then

Chapter 6. Performing Logistic Regression using FHE 89

the bit ~zi[j] is stored in the slot of index (j1, j2, i2) in the hypercube, in the i1’st

coefficient. To encrypt this record we prepare a fresh ciphertext that encrypts all

the bits from ~zi in the order above (and is otherwise empty), and homomorphically

add it to the appropriate raw-data ciphertext.

Then, we also add the bits ~xi[j] and yi · ~xi[j] to the accumulator ciphertexts α and

β. Again we prepare a fresh ciphertext that has each bit ~xi[j] in the j’th slot (and

zero elsewhere) and add it homomorphically to the α, accumulator, and similarly

we homomorphically add to the β accumulator a fresh ciphertext with yi · ~xi[j] in

the j’th slot (and zero elsewhere).

6.3.2.3 Computing the correlation

Once we have encrypted all the records, we have in the α, β ciphertexts all the counters

αj , βj (which we assume are sufficiently smaller than the plaintext-space modulus 211).

We also assume that we are given in the clear (a good approximation of) the value Y , i.e.

the number of records with yi = 1. 3 Similarly we know in the clear the number of records

n, so we would like to just compute homomorphically the linear combination n�β�Y �α.

Unfortunately our plaintext space is not large enough for this computation, as we expect

the result to exceed 211. Instead, what we do is use a low-resolution approximation of

n, Y , namely we compute the correlation values as

Ecorr = dn/Sc� β � dY/Sc� α

for an appropriate scaling factor S, chosen just large enough so we can expect the result

to fit in 11 bits.

An alternative implementation (that we did not try) is to use sub-sampling. Namely

instead of adding all the record data into the accumulators α, β, we can sub-sample (say)

only 1/8 of the records to add. This would give us three more bits, and we can even trade

3This is a valid assumption in the context of medical studies, since the fraction of YES records in the
overall population is always given in “Table 1” in such studies.

Chapter 6. Performing Logistic Regression using FHE 90

it off with the amount of precision in n and Y (i.e., make the scaling factor S smaller as

we sub-sample less records). Yet another option would have been to extract the bits of

all the integers in α, β and perform the computation using bit operations, bypassing the

plaintext-space issue altogether.

Once we have the Ecorr ciphertext, we extract the bits to get ciphertexts Ecorr1,Ecorr2,

Ecorr3, . . ., where Ecorri encrypts the i’th bit of all the correlation numbers (represented

as signed integers in 2’s-complement). I.e., the j’th slot in Ecorri encrypts the i’th bit of

the number Corrj .

Computing the absolute value. Once we have the bits of the Corrj ’s, we need to

compute their absolute value. Here we simplify things by computing the 1’s-complement

absolute value (rather than 2’s-complement). Namely, for a signed integer in binary

representation x = xtxt−1 . . . x0, we will set x′i = xi ⊕ xt (i ≤ t − 1). Note that this

introduces an error if x < 0 (since we now have x′ = −x− 1 rather than x′ = −x). But

we assume that the significant columns have much stronger correlation than the others,

so a ±1 error should not make a difference.

6.3.2.4 Finding the k most correlated columns

We now come to the most expensive part of our procedure, where we find the indexes of

the k columns with largest correlation magnitude.

We note that the correlation computations above were done on packed ciphertexts,

in a SIMD manner. This means that we now have a few ciphertexts (one for each bit

of precision), with the i’th bit of |Corrj | stored in the j’th slot of the i’th ciphertext.

We therefore find the top few values by a shift-and-MUX procedure, using a binary

comparison subroutine:

• Let ~C be the vector of values that we have, we compare point-wise ~C to ~C � `/2

(where ` is the number of slots), homomorphically computing in each slot j ≤ `/2

a bit bj which is zero if Cj < Cj`/2 and one otherwise. Then we set ~C ′ := ~b� (~C �

Chapter 6. Performing Logistic Regression using FHE 91

`/2) + (1 �~b) � ~C.

• Then we repeat the process with shifting by `/4, etc. After log(`) such steps we

have transformed the vector into a heap with the MAX value at the root (which

is at slot 0).

We then zero-out the MAX value at slot 0, and repeat the process to get the 2nd-

largest value, then the 3rd-largest value, etc. After running this procedure k times,

we have our k largest values.

We remark that this procedure that we implemented does not take any advantage

of the fact that after finding the largest value we have the values in a heap rather

than in arbitrary ordering. But note that in our SIMD environment we only need

log(`) operations to extract the next largest value, the same as extracting a value

from a heap. We do not know if there is a SIMD solution that uses less than log `

operations per extracted value.

• As described above, this procedure gives the k largest Corrj values, but our goal

here is to compute the argmax, namely the indexes of these k largest values.

To that end, we pack the indexes in the same order as we do the values. Namely we

keep another ciphertext that packs the index j in the same slot that Ecorr packs the

value Corrj . Then we perform the comparison on Ecorr, computing the ~b as before,

and apply the same shift-and-MUX operations to both Ecorr and the ciphertext

containing the indexes. This ensures that when the MAX value arrives in slot 0

in Ecorr, the index of the corresponding column will arrive at slot 0 of the other

ciphertext.

Extracting the k most correlated columns. Now that we computed the indexes

of the k significant columns, we proceed to extract these columns from the raw-data

ciphertexts. Note that with the packing scheme as described above, each column j is

packed in all the coefficients of all the slots with hypercube indexes (j mod 6, j div 6, ?).

Chapter 6. Performing Logistic Regression using FHE 92

We therefore implement a homomorphic operation, similar to the shift-and-MUX

from above, that given the bits of j, move each slot (j mod 6, j div 6, i) to position

(0, 0, i), then zero-out all other slots, thus extracting the raw data of column j. We

repeat this for column 0 (containing the yi’s) and columns i1, . . . , ik.

6.3.2.5 Computing the category counters

Now that we extracted the data corresponding to the relevant k + 1 columns, we need

to count for every value {0, 1}k+1, how many records (yi, ~x′i) we have with this value.

After the column extraction step above the bits of each column are packed in all the

coefficients of some of the slots (namely slots of index (0, 0, ?)) in several ciphertexts.

As a first step in computing the counters, we distribute the bits of each column j

among the slots of one ciphertext Cj , one bit per slot. This is doable since we have

1800 slots per ciphertext, and less than 1800 records in our dataset. (If we had more

records we could have used more ciphertexts to pack them, this would not have made

a big difference in running time.) Similar to other data movement procedures (e.g., the

replicate procedures from [44]), the bit distribution can be done using a shift-and-add

approach, and there are some time-vs.-noise trade-offs to be had. In our program we

somewhat optimized this step, but more optimizations are certainly possible.

After we have the bits from each column j in the slots of one ciphertext Cj , we proceed

to compute in a SIMD manner all the indicator bits χi,m, for i = 0, . . . , n and m ∈ [2k+1],

indicating whether the record ~x′i, yi belongs to category m. I.e., whether (yi|~x′i) = bin(m).

This is done simply by taking all the subset products of the k+1 ciphertexts Cj . Namely

we compute the product ciphertexts P0, P1, . . . , P2k+1−1 as follows:

Chapter 6. Performing Logistic Regression using FHE 93

P0 := (1− C0)� . . . �(1− Ck−1) � (1− Ck)

P1 := (1− C0)� . . . �(1− Ck−1) � Ck

P2 := (1− C0)� . . . � Ck−1 � (1− Ck)

P3 := (1− C0)� . . . � Ck−1 � Ck
...

P2k+1−1 := C0 � . . . � Ck−1 � Ck

Computing all these 2k+1 products is done in depth dlog2(k + 1)e, and using not

much more than 2k+1 multiplications, as we describe in Section 6.4. (Specifically, for our

choice of k = 5 we use 96 multiplies.)

At this point, each slot i in the ciphertext Pm contains the indicator bit χi,m. All that

is left is to sum up all the slots in each ciphertext Pi (as integers in binary representation),

getting the bits of the corresponding counter. In our program we implemented a special-

purpose accumulation procedure for this purpose, described in Section 6.5 (but that

procedure is not very well optimized). The accumulation of the Pm’s for m = 0 . . . , 2k−1

gives the counters Nm, and the accumulation of the Pm’s for m = 2k, . . . , 2k+1 − 1 gives

the counters Ym−2k .

Our accumulation routine also includes a transpose-like operation: In the input we

have different categories (buckets) represented by different ciphertexts, with the different

rows across the slots. In the output we have the different categories across the slots

and different ciphertexts for different bit positions. (We expect seven-bit counters in the

output, so we have seven ciphertexts Q0, . . . , Q6 encrypting the bits of the counters. The

slots in
∑

2iQi give all the counter values, with the m’th counter in the m’th slot.) We

therefore need to “transpose” from categories across different ciphertexts to categories

across slots in the same ciphertext. This transpose-like operation is handled at the same

time as the accumulation: Beginning with all the slots in the input corresponding to

bits of the same counter, we gradually accumulate many bits in larger integers, thereby

clearing the slots of these bits so we can pack in these slots the integers for other counters,

Chapter 6. Performing Logistic Regression using FHE 94

until we have the integers of all the counters packed across the slots of the result.

6.3.2.6 Computing the variance and log-ratio

Next we need to compute from Ym and Nm the values Vm = YmNm
Ym+Nm

and Um = Vm ·

ln(Ym/Nm). Computing the variance and log-ratio is done using table lookups: As

described in Section 6.4, for some function f that we want to compute, we pre-compute

a table Tf such that T [x] = f(x) for all x. These tables are computed with some fixed

input and output precision, which means that the values there are only approximate.

(In our program we use 7 input bits and 7 output bits for most tables.)

We use tables for three functions in our program, specifically Tinv[x] ≈ 1/x, Tinv1[x] ≈

1/(x+ 1), and Tln[x] ≈ ln(x)/(x+ 1). Then given Ym and Nm we compute

rm := Ym · Tinv[Nm] ≈ Ym/Nm,

Vm := Ym · Tinv1[rm] ≈ Ym · 1
Ym/Nm+1 = YmNm/(Ym +Nm)

Um := Ym · Tln[rm] ≈ ln(Ym/Nm) · YmNm/(Ym +Nm)

Since the counters are packed in the different slots of the ciphertexts Qi, then we only

need to perform these operations once to compute in SIMD all the Vm’s and Um’s.

6.3.2.7 Computing the matrix A and vector ~b

The next step is to compute A := Ck × diag(~V) × CTk and ~b := Ck × ~U (over the

rationals), using the bit representation of the Vm’s and Um’s (which in our program

are represented by seven bits each). Given the structure of the 0-1 matrix Ck, in our

k = 5 implementation these computations require computing a relatively small number

of subset-sums of these numbers (in binary representation). In particular, for every two

bits position `1, `2 ∈ {0 . . . k − 1}, we need to sum up all the number Vm corresponding

to indexes m with bits `1, `2 set (i.e, m`1 = m`2 = 1), and we also need one more subset

sum of all the numbers Vm of even index (m0 = 0). Similar subset sums should be

computed of the numbers Um, and we pack the numbers Um, Vm in such a way that the

Chapter 6. Performing Logistic Regression using FHE 95

sums for Um, Vm can be computed together.

Computing all the entries of A,~b for our case k = 5 takes only 16 subset sums. Note

that since the different numbers are packed in different slots, then adding two numbers

require that we rotate the ciphertext to align the slots of these numbers. Again we

carefully packed the numbers in the slots to reduce the number of rotations needed, and

this step in its entirety requires 50 different rotation amounts (each applied to all the

seven bits of the numbers, for a total of 350 rotation operations).

6.3.2.8 Solving A~w′ = ~b

The final operation that needs to be computed is solving the linear system A~w′ = ~b over

the rationals to find ~w′. Here, however, we have a problem: recall that the procedures

above only compute an approximation of A,~b (mostly due to our use of low precision

in the table-lookup-based implementation of inversion and logarithm). Hence we must

use a very numerically-stable method for solving this linear system in order to get a

meaningful result, and such methods are expensive.

One solution (which is what we implemented) is to simply send A,~b back to the client,

along with the indexes j1, . . . , jk of the significant columns. The client then decrypts and

solves in the clear to find ~w′ and therefore ~w. The drawback of this solution, of course, is

that it leaks to the client more information than just the solution vector ~w′. In Section 6.6

we describe a solution that prevents this extra leakage, leaking to the client only as much

information as contained in ~w′, without having to implement homomorphically expensive

linear-system solvers. However we did not get around to implementing this solution in

our program. (We remark that implementing it would not have added significantly to

the running time.)

6.3.2.9 Bootstrapping considerations

As it turns out, most of the runtime of our program is spent in the recryption operations,

between 66% and 75%. We must therefore be frugal with these operations. Some things

Chapter 6. Performing Logistic Regression using FHE 96

that we did to save on them include:

• Fully packed recryption. HElib can bootstrap fully packed ciphertexts, i.e., ones

that encode φ(m) coefficients in one ciphertext. The ciphertexts that we manipu-

late in our procedure, however, are seldom fully packed. Hence, whenever we need

to perform recryption, we first pack as much data as we can in a single ciphertext,

then bootstrap that ciphertext, and unpack the data back to the ciphertexts where

it came from.

• Strategic recryption. Instead of performing recryption only at the last minute,

we check the level of our ciphertexts before every big step in our program. For

example, before we begin to add two numbers in binary representation, we check

all the bit encryptions to ensure that we could complete the operation without

needing to recrypt. If any of the input bits is at a low enough level, we pack all the

input bits as above and recrypt them all. Then we unpack and perform the entire

big step without any further recryption operations. This way we ensure that we

never need to recrypt temporary variables that are used in internal computations,

only the real data which is being manipulated.

6.4 Using Table Lookup to Compute Arbitrary Functions

Unfortunately, due to the work of this chapter being done in collaboration with IBM, the

source code of the general implementation described previously is not available due to

copyright. However, the low-level functions that were written, such as the table lookup

of this section and the binary operations in section 6.5 were directly contributed to the

open source library HElib [48]. Wherever possible we will provide a reference to the

implementation of each procedure, providing the name of both the source and header

files which can be found here [48].

As explained in section 6.3, we used a solution based on table lookup to implement

a low-precision approximation of arbitrary functions. Namely, for a function f that we

Chapter 6. Performing Logistic Regression using FHE 97

need to compute, we pre-compute in the clear a table Tf such that Tf [x] = f(x) for every

x in some range. Then given the encryptions of the (bits of) x, we perform homomorphic

table lookup to get the (bits of) the value Tf [x].

Building the table. Importantly, implementing a function using table lookup relies

on fixed-point arithmetic. Namely the input and output must be encoded with a fixed

precision and fixed scaling. In our implementation, we have three fixed-point parame-

ters, precision p, scale s, and a Boolean flag ν that indicates if the numbers are to be

interpreted as unsigned (ν = false) or as signed in 2’s complement (ν = true). Given the

parameters (p, s, ν), a p-bit string (xp−1 . . . x1x0) is interpreted as the rational number

Rp,s,ν(xp−1 . . . x1x0) = 2−s ·

(
p−1∑
i=0

2ixi + (−1)ν · 2p−1xp−1

)
.

In our implementation we have two such sets of parameters, (p, s, ν) for the input (i.e.,

indexes into T), and (p′, s′, ν ′) for the output (i.e., values in T). With these parame-

ters, the table will have 2p entries, each big enough to hold a 2p
′
-bit number. In our

implementation we pack all the bits of the output in one plaintext slot, so we can only

accommodate tables with output precision up to the size of the slots.

Preparing the table Tf with parameters (p, s, ν, p′, s′, ν ′) for a function f(·), each entry

in the table consists of a native plaintext element (i.e, an element in Z[X]/(Φm(X), pr),

in our case m = 215 − 1, pr = 211). For every index i ∈ [2pin], we put in Tf [i], and

element that has in every plaintext slot the bits of the integer zi such that

Rp′,s′,ν′(bin(zi)) =
⌈
f
(
Rp,s,ν(bin(i))

)⌋
p′,s′

where dxcp′,s′ rounds the real value x to the nearest point in the set 2−s
′ · [2p′].

The implementation for building a lookup table was integrated into the HElib library

[48]. The Application Programming Interface (API) of the procedure buildLookupTable

can be found in tableLookup.h and the corresponding implementation is located in

Chapter 6. Performing Logistic Regression using FHE 98

tableLookup.cpp.

Saturated arithmetic. When building the table, we need to handle cases where the

function value is not defined at some point, or is too large to encode in p′ bits. In

these cases, the number that we store in the table will be either the largest or smallest

number (as appropriate) that can be represented with the given parameters p′, s′, ν ′.

(For example, in the table for f(x) = 1/x, the entry T1/x[0] will have the MAXINT

value 2p
′ − 1 encoded in all the slots.)

Computing all subset-products. The main subroutine in homomorphic table lookup

is a procedure that computes all the subset products of a vector of bits. The input is an

array of p encrypted bits σp−1, . . . , σ1, σ0, and the output is a vector of 2p bits ρm of all

the subset products of the σi’s the their negation, i.e.,

ρ0 := (1− σi)· . . . ·(1− σp−1) · (1− σp)

ρ1 := (1− σi)· . . . ·(1− σp−1) · σp

ρ2 := (1− σ0)· . . . · σp−1 · (1− σp)

ρ3 := (1− σ0)· . . . · σp−1 · σp
...

ρ2p−1 := σ0 · . . . · σp−1 · σp

Namely, for any m ∈ [2p], the bit ρm is set to ρm :=
∏
mj=1 σj ·

∏
mj=0(1− σj).

To compute all these products ρm we use a “product tree” that on one hand ensure

that the multiplication depth remains as low as possible (namely dlog2 pe), and on the

other hand tries to use as few multiplication operations as possible. For p power of two,

this can be done recursively as follows:

Chapter 6. Performing Logistic Regression using FHE 99

ComputeAllProducts(input: σp−1, . . . , σ0, output: ρ2p−1, . . . , ρ0)

1. if p = 1 return ρ0 := 1− σ0, ρ1 := σ0

2. else

2. ComputeAllProducts(in: σp/2−1, . . . , σ0, out: ρ′
2p/2−1, . . . , ρ

′
0)

4. ComputeAllProducts(in: σp−1, . . . , σp/2, out: ρ′′
2p/2−1, . . . , ρ

′′
0)

5. for i, j in 0, . . . , 2p/2, set ρ2p/2j+i := ρ′′j · ρ′i.

Essentially the same procedure applies when p is not a power of two, except that it

is better to split the array so that the first part is of size power of two (i.e., size 2` for

` = dlog2 pe − 1) and the second part is whatever is left.

The implementation of computeAllProducts was integrated into the HElib library

[48]. The API and corresponding implementation can be found in tableLookup.h and

tableLookup.cpp respectively.

We comment that this procedure is not quite optimal in terms of the number of

multiplications that it uses, but it is not too bad. Specifically the number of multi-

plications that it uses to compute the 2p products is only N(p) = 2p + 2N(p/2) =

2p+2p/2+1 +2p/4+2 + · · · . One optimization that we have in our program is that we stop

the recursion at p = 2 rather than p = 1, and compute the four output bits using just

a single multiplication (rather than four). Namely we set ρ3 = σ1σ0, ρ2 = σ1 − σ1σ0,

ρ1 = σ0 − σ1σ0, and ρ0 = 1 + σ1σ0 − σ1 − σ0.

This optimization can in principle be extended to higher values of p, but it gets more

complicated. The idea is that the ρm’s can be computed in terms of the “real subset

products” τm =
∏
mj=1 σj . The τm’s can be computed using a recursive formula similar

to the one above, except that in the last line if i = 0 or j = 0 we do not need to multiply.

(For i = 0 we set τ2p/2j := τ ′′j and for j = 0 we set τi := τ ′i .) Hence the number of

products is reduced to N ′(p) = (2p/2 − 1)2 + 2N ′(p/2) = 2p − p− 1. The problem with

this procedure is that recovering the ρm’s from the τm’s seems complicated (and the

Chapter 6. Performing Logistic Regression using FHE 100

savings are not that large), so we did not attempt to implement it.

Homomorphic table lookup. Once we have a table T [0, . . . , 2p−1] and an implemen-

tation of the subset-product procedure above, implementing homomorphic lookups into

the table with encrypted p-bit indexes requires just a simple MUX. Namely, we are given

p ciphertexts, encrypting the bits σi of an index into T . We apply the subset-product

procedure above to get all the products ρm, then return
∑

m T [m] � ρm.

Note that the input ciphertext could be packed, with a different bit σi,j in each slot j

of ciphertext i. In this case our lookup procedure would return a SIMD table lookup: the

coefficients of the j’th slot of the output will store the bits of T [xj], where xj =
∑

i 2iσi,j .

We also remark that it is possible to implement different tables in different slots, so

the j’th output slot will contain Tj [xj] instead of all using the same table T . This will

require only a minor change to our procedure for building the table (and no change to

the homomorphic lookup procedure), but we have not yet implemented this variant.

An implementation of the table lookup procedure, tableLookup, can be found in the

HElib library [48]. The API and corresponding implementation of this procedure can be

found in tableLookup.h and tableLookup.cpp respectively.

6.5 Binary Arithmetic and Comparisons

Much of our logistic-regression procedure manipulates the various variables in their

binary representation. To implement these manipulations, we rely on procedures that

implement various common low-level operations, such as arithmetic and comparisons in

binary representation. In this section we describe our implementation of these low-level

operations, which has been integrated into the HElib library [48].

Chapter 6. Performing Logistic Regression using FHE 101

6.5.1 Adding Two Integers

One basic operation that we need is adding two integers in binary representation. The

input consists of two sequences of ciphertexts, (at−1, . . . , a1, a0) and (bt−1, . . . , b1, b0),

encrypting the bits of two integers a, b, respectively (using padding, we can assume

w.l.o.g. that the two integers have the same bit size).4 The output is the sequence of

ciphertexts (st+1, . . . , s1, s0), encrypting the bits of the sum s = a + b. Of course the

hard part is to compute the carry bits in the addition, which we do as follows:

• For i = 0, ..., t− 1 we compute “generate carry” and “propagate carry” bits, gi :=

aibi and pi := ai + bi. (Note that at most one of pi, gi can be 1.)

• We extend the generate and propagate bits to intervals, where for any i ≤ j we

have p[i,j] =
∏j
k=i pk and g[i,j] = gi ·

∏j
k=i+1 pk.

• The carry bit out of position j is cj :=
∑j

i=0 g[i,j], and the result bits are si :=

ai + bi + ci−1 for i = 0, . . . , t.

To get all the carry bits ci, we therefore need to compute all the interval products g[i,j]

for all [i, j] ⊆ [0, t − 1], which we do using a dynamic-programming approach. Namely

we compute for all the intervals of size two, then all intervals of size up to four, etc.

To achieve this we use a directed acyclic graph (DAG) which is a finite, directed

graph made of finite vertices and directed edges. Additionally if one starts at any vertex

v and follows a sequence of edges which are consistently directed then it is not possible

to return to vertex v. In more detail, given the inputs ai, bi we build an addition DAG

(Directed Acyclic Graph) that encodes our plan for what ciphertexts to multiply in what

order. This is done to ensure that we consume the smallest number of levels, and use

as few multiplications as we can. Note that the input ciphertexts need not be all at the

same level, and the plan may vary depending on the input levels.

4We can have different bits in different plaintext slots of these ciphertexts, so each slot could represent
a different integer and the addition will be applied to all of them.

Chapter 6. Performing Logistic Regression using FHE 102

The DAG has two nodes for every interval [j, i] ⊆ [0, t − 1], representing p[i,j] and

g[i,j], and each node has two parents which are the nodes that should be multiplied to

form the variable of this node. We initialize the nodes in the DAG in the following order:

• First we initialize all the singleton nodes p[i,i], the parents are set to ai, bi and the

level is set to min(lvl(ai), lvl(bi)).

• Next we initialize all the other nodes p[i,j] in order of increasing interval size. To

initialize p[i,j+1], we compute

k = arg max
k∈[i,j]

{
min

(
lvl(p[i,k]), lvl(p[k+1,j+1])

)}
(breaking ties as described later in this section). The parents of p[i,j+1] are set to

p[i,k] and p[k+1,j+1], and its level to min
(
lvl(p[i,k]), lvl(p[k+1,j+1])

)
− 1.

• Next we initialize all the singleton nodes g[i,i], the parents are set to ai, bi and the

level is set to min(lvl(ai), lvl(bi))− 1.

• Finally we initialize all the other nodes g[i,j] in order of increasing interval size. To

initialize p[i,j+1], we compute

k = arg max
k∈[i,j]

{
min

(
lvl(g[i,k]), lvl(p[k+1,j+1])

)}
(breaking ties as described later in this section). The parents of p[i,j+1] are set to

g[i,k] and p[k+1,j+1], and its level to min
(
lvl(g[i,k]), lvl(p[k+1,j+1])

)
− 1.

This procedure ensures that each node ends up at the highest possible level (i.e. the

lowest possible multiplication depth), for the given levels of the inputs ai, bi. When all

the input bits ai, bi are at the same level, then the depth is dlog2(t+2)e, since the largest

term that we need to compute is the (t+ 1)-product g[0,t−1] = a0b0 ·
∏t−1
i=1(ai + bi + 1).

We note, however, that not all the nodes in the DAG must be computed: Only the

nodes g[i,j] are used in the carry calculation, and not every p[i,j] is necessarily an ancestor

Chapter 6. Performing Logistic Regression using FHE 103

of some g[i′,j′]. We can hope that by breaking ties in a clever way when computing argmax

above, we can minimize the number of nodes p[i,j] that need to be computed, hence

reducing the number of multiplications that must be performed. In our implementation,

we break ties heuristically by choosing among the highest-level k’s the nodes that already

have the largest number of children.

The homomorphic addition procedure. Given the input ciphertexts ai and bi, we

build a DAG as above, and check that the lowest-level node in this DAG is still at a level

above zero. If not, then we attempt to recrypt all the input ciphertexts, then re-build

the DAG with the new input levels. Once we have a valid DAG, we compute all the

g[i,j] nodes and from then add them as needed to compute all the carry bits, and then

compute the result bits.

While computing the g[i,j]’s, we try to compute the nodes in the DAG lazily, com-

puting each node only when it is needed (either directly for one of the carry bits or

indirectly for one of its children), and keeping the intermediate node ciphertexts around

only as long as they are still needed. (I.e., as long as they still have some descendants

that were not yet computed.) We also use parallelism when we can, computing different

nodes using different threads (if we have them).

The implementation of this procedure, called addTwoNumbers, has been integrated

into HElib [48]. The Application Programming Interface (API) of the procedure can be

found in binaryArith.h along with the implementation in binaryArith.cpp.

6.5.2 Adding Many Integers

When we need to add many integers (all in binary representation), we use the three-for-

two method (cf. [53]) to reduce their number: until we only have two integers left, then

use the routine from above to add the remaining two numbers.

The three-for-two procedure. Given three integers in binary representation, (ut−1,

. . . , u0), (vt−1 . . . v0), (wt−1 . . . w0), we can add the three bits in each position ui+vi+wi

Chapter 6. Performing Logistic Regression using FHE 104

(over the integers), yielding a number between zero and three that can be represented

in two bits. Namely ui + vi + wi = xi + 2yi, where xi = ui + vi + wi (mod 2) and

yi = uivi + uiwi + viwi (mod 2). Adding every triple of bits ui, vi, wi in this manner, we

get the two integers x = (xt−1 . . . x0), and y = (yt . . . y00), such that x+ y = u+ v + w

over the integers.

Computing the bits of x involves only additions, and each yi can be computed using

two multiplications and two additions, namely yi := uivi + (ui + vi)wi. Hence x is at the

same level as the input numbers u, v, w, and y is one level lower. (Note also that all the

xi’s and yi’s can be computed in parallel.)

The add-many-numbers procedure. Given many integers in binary, we apply the

three-for-two procedure to them in a tree manner, namely we partition them into groups

of three, apply the three-for-two to each group separately, then collect all the resulting

pairs (plus whatever leftover numbers were not part of any group) into one list, and

repeat the process until only two integers are left. This yields multiplication depth

d ≈ log3/2(n) to reduce n numbers into two, while adding at most d to the bitsize of the

input integers. Once we have only two integers left, we apply the addition routine from

above.

This procedure was implemented and added to the HElib library [48]. The API is

located in binaryArith.h under addManyNumbers and the corresponding implementa-

tion can be found in binaryArith.cpp.

6.5.3 Integer Multiplication

Given two integers in binary to multiply a = (at−1 . . . a0) and b = (bt′−1 . . . b0), we first

compute all the pairwise products biaj , and then use the add-many-numbers procedure

from above to add the t′ integers 2ibi · a. For example when multiplying a 3-bit b by a

Chapter 6. Performing Logistic Regression using FHE 105

4-bit a, we add the numbers

b0 · a = b0a3 b0a2 b0a1 b0a0

2b1 · a = b1a3 b1a2 b1a1 b1a0 0

4b2 · a = b2a3 b2a2 b2a1 b2a0 0 0

When both numbers are unsigned, we always choose t′ ≤ t, namely we let the longer

integer be a and the shorter one be b.

Dealing with negative numbers. In our implementation we also implemented a

multiplication of a 2s-complement number a by an unsigned number b. In that case

we always use the 2s-complement number as a and the unsigned number as b, and

we modify the procedure above by computing the sign extension of all the numbers

bi · a, namely replicating the top bit in each number all the way to the largest bit

position. For example, if we have a 2-bit 2s-complement number (a1 a0) and a three-bit

unsigned number (b2 b1 b0), then we compute and add the three integers (considered as

2s-complement numbers):

b0 · a = b0a1 b0a1 b0a1 b0a0

2b1 · a = b1a1 b1a1 b1a0 0

4b2 · a = b2a1 b2a0 0 0 .

An implementation of this procedure was integrated into the HElib library [48] under the

name multTwoNumbers. The implementation and API can be found in binaryArith.cpp

and binaryArith.h respectively. It is noted that we did not implement a 2s-complement

by 2s-complement multiplication, since we did not need it for the current project.

6.5.4 Comparing Two Integers

The procedure for integer comparison is somewhat similar to integer addition. We have

two integers in binary, a = (at−1, . . . , a1, a0) and b = (bt−1, . . . , b1, b0), and we want to

compute the two integers x = max(a, b) = (xt−1 . . . x0) and y = min(a, b) = (yt−1 . . . y0),

Chapter 6. Performing Logistic Regression using FHE 106

as well as the two indicator bits µ = (a > b) and ν = (b > a) (note that when a = b,

both µ, ν are zero).

We begin by computing for every i < t the bits ei := ai+ bi+1 (which is 1 iff ai = bi)

and gi := ai+aibi (one iff ai > bi). We then compute the products e∗i =
∏
j≥i ej and g∗i =

gi ·
∏
j>i ej , and the bits g̃i =

∑
j≥i g

∗
1 (one iff at−1...i > bt−1...i). Computing the products

e∗i , g
∗
i is done using a recursive procedure somewhat similar to ComputeAllProducts from

Section 6.4. Finally we compute the results by setting µ := g̃0, ν := 1 + g̃0 + e∗0, and for

i = 0, . . . , t− 1 we set xi := (ai + bi)g̃i + bi and yi := xi + ai + bi.

Note that we use all the g∗i ’s but only e∗0 for computing the output results, hence

we somewhat optimized our procedure for computing these products by skipping the

computation of e∗i ’s that are never used.

We remark that the last product (ai + bi)g̃i means that our procedure may use depth

one more than the minimum possible. Using the absolutely smallest possible depth is

challenging, straightforward solutions would take O(t2) multiplications (vs. O(t) multi-

plications in the procedure above). While getting minimal depth with O(t) multiplica-

tions is possible in theory, the procedure for doing this is overly complex (and extremely

hard to parallelize), so we opted for a simpler procedure with slightly non-optimal depth.

(Also, as opposed to the addition procedure from above, the simple procedure that we

implemented here does not vary depending on the level of the input ciphertexts for ai, bi.)

The implementation of this procedure, compareTwoNumbers, was integrated into the

HElib library [48]. The API and corresponding implementation of this procedure can be

found in binaryCompare.h and binaryCompare.cpp respectively.

6.5.5 Accumulating the bits in a ciphertext

As described in Section 6.3.2, when computing the category counters we at some point

have 64 ciphertexts, with ciphertext Cm encrypting in each slot i the indicator bits

χi,m, and we want to sum-up these indicator bits (over the integers) and compute the

Chapter 6. Performing Logistic Regression using FHE 107

64 counters Pm
∑

i χi,m. While this is theoretically just an instance of adding many

numbers (these numbers being the bits χi,m), there are two properties of this instance

that require special optimization:

• The input bits to be added are not aligned in the same slots of different ciphertexts,

but rather spread across the different slots of the same ciphertext.

• We need to perform this add-many-numbers procedure on 64 different lists in par-

allel, so we have an opportunity to use SIMD operations.

We therefore implemented a special-purpose shift-and-add procedure to do the accu-

mulation, combining the addition operations that we need to make with the “matrix

transpose” that transforms the input counter-per-ciphertext with different bits across

the slots into a ciphertext-per-bit-position in the output with the different counters

across the slots.

At every step in this procedure we keep a current list of (encrypted) arrays of integers

in binary representation. Each array in the list is represented by a vector of ciphertexts

(c0, c1, . . .), one per bit position, and the integers in the array are the different slots of∑
i 2i · ci. Initially the list consists of 64 arrays, each array corresponding to the different

slots of one of the input ciphertexts, and the integers all bits (so each array is represented

by length-1 vector). As the computation progresses, the integers represent partial sums

(so their bitsize is getting larger), correspondingly the arrays have fewer integers in them

(since the number of partial sums is getting smaller), and also the number of arrays get

smaller (as we pack more counters across the slots).

In each step we perform partial addition, adding each group of r partial sums into a

single larger sum. We first apply r rotations to all the ciphertexts representing all the

arrays, so as to align the numbers that we need to add. These rotations mean that we

are using fewer slots to hold these partial sums (since we only use one of each r slots as

the “pivot” where addition is to take place). So we can pack some number p ≤ r of these

sums and apply the add-many-numbers procedure to all of them in a SIMD manner.

Chapter 6. Performing Logistic Regression using FHE 108

This cuts the number of arrays by a p factor, and change the size of arrays by a p/r

factor. (Each array is cut by a factor of r because we add r partial sums into one, but

increased by a factor of p as we pack multiple arrays into one.)

The procedure that we actually implemented is slightly different, in that in the first

few steps we consider the different bit positions as different arrays (so we always work

with bits rather than larger integers) and just remember for each array the power of

two that it should be multiplied by. Only after we complete the “transpose” part of

this transformation and have just one slot per counter, we add together all the relevant

integers (shifted as needed to account for the powers of two). Specifically, we begin with

64 arrays, each containing 1800 single-bit integers. Then we perform these steps: of four

steps:

1. In the first step we group r1 = 15 bits together for addition (yielding 4-bit num-

bers), and pack p1 = 14 arrays together. This yields 4 · d64/14e = 20 new arrays

(of bits), and the data for each category counter is spread across 1800/15 = 120

slots.

2. In the second step we group r2 = 12 bits together for addition (again melding 4-bit

numbers), and pack p2 = 5 them together. This yields 4 · d20/5e = 16 arrays of

bits, and the data for each category counter is spread across only 120/12 = 10

slots.

3. In the this step we group r2 = 10 bits together for addition (again yielding 4-bit

numbers), and no further packing is needed. This yields again 4 · 16 = 64 arrays

of bits, but now the data for each category counter is all in just one slot position.

4. We note that our current 64 ciphertexts encrypt shifted bits, i.e., bits that should

be multiplied by some powers of two. No shift amount corresponds to more than

twelve ciphertexts, so we can re-arrange these 64 bits in just 12 integers. Then we

call our add-many-numbers procedure to add these 12 integers thereby completing

the accumulation of the category counters.

Chapter 6. Performing Logistic Regression using FHE 109

The specific choices of r1 = 15, p1 = 14 and r2 = 12, p1 = 5 were made so that the shift

operations involved in aligning numbers before addition could be implemented with 1D

rotation operations. These operations map directly to automorphisms in the underlying

cryptosystem, rather than the more expensive general-purpose shifts.

6.6 Solving a Linear System

The last thing that our solution needs to do, after setting the linear system A~w′ = ~b, is to

solve it and output the solution vector ~w′. But solving a linear system homomorphically

is complex, even if it is only a 6-by-6 system as in our application. Moreover, the linear

system that we computed was just an approximation (due mostly to the low-precision

inherent in our table-based approach to computing inversion and logarithms). Hence we

must ensure that our homomorphic solver is numerically stable, making it harder still.

Instead, in our program we opted for simply sending A and ~b to the client, having

the client decrypt and solve in the clear. This “solution”, however, leaks information

about the input data beyond what is implied by the vector ~w′. This extra leakage is

perhaps acceptable in the context of our application to logistic regression on medical

data, but surely there are applications where such a solution will not be acceptable. So

we would like to find a feasible solution that will eliminate the extra leakage, simpler

than implementing a homomorphic stable linear solver.

6.6.1 Randomized Encoding with Rational Reconstruction

An appealing approach for addressing this issue is to use randomized encoding (cf. [3]).

Namely, consider the function that we want to compute, f(A,~b) = A−1~b, as a function

over the rational numbers with bounded integer inputs. We would like to apply a ran-

domized transformation to the input u := enc(A,~b;R), such that (i) it is possible to

“decode” A−1~b from u; (ii) u does not yield any more information5 on A,~b than what is

5This property is formulated by requiring a simulator that can only see ~w′ and can output the same
distribution as enc(A,~b;R)

Chapter 6. Performing Logistic Regression using FHE 110

implied by ~w′ = A−1~b; and (iii) computing enc(·) is substantially easier than computing

f(·) itself.

If we had such randomized encoding, we could choose the randomness R and eval-

uate homomorphically enc(A,~b;R), send the encrypted u back to the client, who could

decrypt u and decode ~w′ from it. We note that the linear-system-solver function f(·) is in

NC1, so theoretically we could apply generic randomized encoding solutions here. This

solution yields a very low-depth encoding, but the size of the encoding is exponential in

the depth of the circuit for f , so we do not expect them to be practical.

Below we describe a randomized encoding for the linear-system-solver function f ,

that uses only integer addition and multiplication. This encoding can therefore be imple-

mented using the binary arithmetic routines that we described in Section 6.5. However

we did not implement that idea in our solution, we expect it to be doable but it will add

a significant overhead (see below).

Our first observation is that if we wanted to compute the linear-system-solver function

modulo some prime q then it would be easy to randomize (when A is invertible): All

we need is to choose a random invertible R ∈ Zn×nq and set A∗ := RA mod q and

~b∗ := R~b mod q. On one hand A∗ is just a random invertible function modulo q, and on

the other hand (A∗)−1 ~b∗ = A−1~b (mod q).

However, in our case we want to find the solution over the rational numbers, not

modulo some q. Our second observation is that we can apply here the tool of rational

reconstruction (cf. [73, Ch 4.6]). Recall that rational reconstruction is an efficient

procedure (denoted below by RationalRec(·)), such that

∀a, b, q ∈ Z s.t. |a| · |b| < q/2, RationalRec(q, ab−1 mod q) = (a, b),

provided that ab−1 is defined modulo q. In other words, the procedure gets as input a

modulus q and an element z ∈ Zq, and it is guaranteed to output the unique solution

Chapter 6. Performing Logistic Regression using FHE 111

(a, b) to az = b (mod q) satisfying |a| · |b| < q/2, if such a solution exists.

In our application we are given A,~b with some precision p, and the rational solution

that we seek is

~w′ = A−1~b = adj(A)~b/det(A).

Every entry of ~w′ is of the form x/d, where d = det(A) and x is one entry in adj(A)~b.

Since all the entries in A, ~B are smaller than 2p, then d and all the entries of adj(A)~b

are smaller in magnitude than (
√
n2p)n. If we choose q > 2(

√
n2p)2n = 22np+1nn, then

given the solution A−1~b mod q with entries of the form xd−1 ∈ Zq, we could use rational

reconstruction to get the rational numbers x/d. We could therefore get our randomized

encoding by randomizing A,~b modulo this large q.

But this solution is still not good enough, randomizing mod q implies in particular

that we need to implement a homomorphic mod-q operation, which is expensive (even

when q is in the clear). Our next observation is that we can replace the reduction mod-q

by adding a large enough multiple of q. Recall that for any fixed integer x, if we choose

a random s from a large enough domain (relative to |x|/q) then the random variable

x + qs depends only on the value of x mod q, and is essentially independent of x div q.

Specifically, if we have a bound |x|/q < B and we choose s at random from [B · 2k], then

the result is almost independent of x÷ q, up to statistical distance of at most 2k.

Hence instead of computing homomorphically the reduced matrix RA mod q, we note

that each entry in RA is smaller than n2pq in absolute value. We can therefore choose a

random integer matrix S ∈ [n2p+k] and compute RA+qS over the integers (and similarly

for ~b).

This solution is almost plausible, but it requires integer arithmetic with very large

numbers, even if n and p are small. In our application we have n = 6 and p = 7, so

q = 66 · 22·6·7+1 ≈ 2100. And even choosing a measly statistical parameter k = 10, the

entries of RA+ qS would be integers with about 120 bits.

Chapter 6. Performing Logistic Regression using FHE 112

Parameters: dimension n, precision p, security parameter k.

Let m := max(n, d2np+1
k e)

REncSolver (input: Invertible matrix A ∈ Zn×n2p , vector ~b ∈ Zn2p):
1. Choose m random primes q1, . . . , qm of bitsize n2k.
2. For each qi do
3. Choose a random invertible matrix R ∈ Zn×nq1

4. Choose at random a matrix Si ∈ Zn×n
n2p+k

and a vector ~ti ∈ Zn
n2p+k

5. Compute A∗i := Ri ×A′ + qSi and ~bi
∗

:= Ri × ~b′ + q~ti.

6. Output {(qi, A∗i , ~b∗i)}mi=1

DecSolver(input: {(qi, A∗i , ~b∗i)}mi=1):

7. Solve ~w∗i = (A∗i)
−1 ~b∗i (mod q)i for all i

8. Use Chinese remaindering to recover ~w∗ modulo q =
∏
i qi

9. Apply rational reconstruction and output ~w := RationalRec(q, ~w∗).

Figure 6.1: Randomized encoding for the rational linear-system solver, f(A,~b) = A−1~b.

Our final observation, therefore, is that we could express R and S relative to an appro-

priate CRT basis, thereby replacing each big-integer operation by a moderate number of

operations on much smaller integers. Specifically, we choose many “smallish” primes qi,

for each one choose a random Ri ∈ Zn×nqi and Si ∈ [n2p+k]n×n and compute homomorphi-

cally A∗i = RiA+ qiSi (and similarly for ~b). As above, the client who decrypts the A∗i ’s

only get RiA mod qi, then compute RA mod q (where q =
∏
qi

and R ≡ Rq (mod qi))

and proceed as before.

One drawback with this approach is that we may end up choosing a modulus qi that

divides det(A), in which case RiA mod qi will reveal mod-qi linear correlations between

the columns of A. We therefore must choose the qi’s of size slightly larger than 2k, to

ensure the same level of protection against this threat as we get against leakage from the

A∗i ’s. Setting qi ≈ n2k would mean that we only need to work with integers of total size

about n22p+2k. In our setting with n = 6, p = 7 we can choose the (admittedly weak)

k = 15 and work with 42-bit numbers, which is expensive but doable. (With 18-bit qi’s,

we would need six of them to reach the size of q that we need.) Our randomized encoding

procedure is described in Figure 6.1. From the discussion above we have:

Claim 1. The function REncSolver from Figure 6.1 is a randomized encoding for the

Chapter 6. Performing Logistic Regression using FHE 113

function f(A,~b) = A−1~b over the rational numbers, where A is invertible and A,~b are

bounded. �

6.6.2 Are We Still Leaking Too Much?

We end this section by pointing out that the above solution is a randomized encoding for

the exact solution function vector A−1~b, which by itself may already leak information. In

particular it usually reveals the determinant det(A) (or a factor of it), just by taking the

common denominator of all the entries in the solution vector. In the current application,

what we really want to compute is the limited precision solution function, that rounds

the exact solution to some given precision. (We can even tolerate small error in the

solution.) We do not know of any feasible randomized encoding for this limited precision

function.

6.7 Implementation and Performance

All of our testing was done on an Intel Xeon E5-2698 v3 (which is a Haswell processor),

with two sockets and sixteen cores per socket, running at 2.30GHz. The machine has

250GB of main memory, the compiler was GCC version 4.8.5, and we used NTL version

10.5.0 and GnuMP version 6.0.

Parameters. We worked with the cyclotomic ring Z[X]/Φm(X) with m = 215 − 1 =

32767 (so φ(m) = 27000) The largest modulus q in the moduli-chain was about 1030-

bit long, corresponding to about 80 bits of security. The plaintext space was set to

211 = 2048 (but as we explained in Section 6.3, most of the computation was done with

plaintext space modulo 2). This gave as a total of 1800 plaintext slots, arranged in a

30 × 6 × 10 hypercube with the first two 30 × 6 being “good dimensions” and the last

being a “bad dimension”.6 Each plaintext slot held a degree-15 extension of the ring Z211

(or an element of GF (215) when we used it for mod-2 computation).

6The distinction between “good” and “bad” dimensions in HElib is that 1D-rotations along a good
dimension take a single automorphism, while along a bad dimension it takes two automorphisms and
some constant multiplies to zero out some data.

Chapter 6. Performing Logistic Regression using FHE 114

This means that we could pack as many as 15 · 1800 = 27000 integers in a single

ciphertext each up to 11-bit long. But in our application we only packed in each of our

ciphertext either up to 27000 bits, or up to 180 11-bit integers, depending on the phase

of the computation.

Unfortunately, due to copyright reasons, access to the original code is restricted.

However, the core utility procedures were integrated into the open-source library HElib

[48], which have been indicated where necessary in the previous sections.

6.7.1 Timing Results

Single-threaded timing. A single-thread execution of the program took just under

five hours, from key-generation and encryption of the data up to and including the

computation of the matrix A and vector ~v. Homomorphic processing took just under

280 minutes of this time, and fifteen minutes were spent packing and encrypting the

raw data. The program used only about 4.5GB of RAM. Only 25% of the processing

time was spent on the application logic, and about 75% (210 minutes) was spent in 65

bootstrapping operations (so under 3 minutes per operation). The timing results for the

different phases of the computation are described in table 6-A:

• Computing the correlations and extracting its binary representation (corrBinary)

took almost no time, only 16 seconds;

• About 125 minutes (45% of the processing time) was spent comparing the corre-

lation numbers and computing the indexes of the five fields most correlated to the

disease (topIndexes);

• Once we found the indexes, it took 33 minutes (12%) to extract the actual data

corresponding to these fields (extractCols);

• Then it took 47 minutes (17%) to compute the 64 bucket counters and their binary

expansion (bucketCounters);

Chapter 6. Performing Logistic Regression using FHE 115

threads: 1 2 4 8 16 30

corrBinary .25 .18 .13 .13 .1 .1

topIndexes 125 72 42 35 24 24

extractCols 33 20 13 11 8.5 8.7

bucketCounters 47 28 18 16 12 12

compV&Y 60 35 20 16 10 10

compA&b 12 7.7 5.3 5 3.8 3.8

total 278 163 99 83 59 59

recrypt 210 119 70 56 38 38

Table 6-A: Timing results (minutes) of different phases of the logistic-regression program

• Computing the vectors ~v and ~y using table lookup operations (compV&Y) took

another hour (22%);

• Finally, computing the matrix A and vector ~b from the vectors ~v, ~y (compA&b)

took only 12 minutes (4%).

Multi-threaded timing. Multi-threading was very effective in reducing the compu-

tation time up to eight threads, but using more threads did not help very much (and

above sixteen threads the runtime leveled off completely). The processing time dropped

to 83 minutes with eight threads and just under one hour with sixteen threads. The

RAM consumption increased somewhat, from 4.5GB with one thread to 5.5GB with six-

teen. The fraction of time spend on bootstrapping dropped slightly, from 75% with one

thread to 64% with sixteen, indicating that multi-threading during bootstrapping was

somewhat more effective than in other parts of the computation. The ratio between dif-

ferent phases of the computation did not change much when switching to multi-threaded

implementation. See more details in table 6-A.

6.7.2 Is this Procedure Accurate Enough?

How good is the solution that we obtained from this procedure? As was done in the

iDASH competition itself, we measured our solution using the metric of “area under

curve” (AUC). The given data consisted of genomic data variables, and a target attribute

representing cancer. A random model is expected to give AUC result of 0.5. One of the

Chapter 6. Performing Logistic Regression using FHE 116

attributes in this data was the BRCA gene, and taking only that attribute already

gives AUC result close to 0.6. On the other hand even the best plaintext-based logistic-

regression model only yields AUC of about 0.7 on that dataset. Hence the game for

this dataset was to get as far above 0.6 as possible.7 We tested our solution by running

it on sub-sampled data from the training dataset, and the AUC results were usually

close to 0.65. This appears similar to other solutions that were submitted to the iDASH

competition.

6.7.3 Timing results for the Various Components

Since our application used a large setting of parameters (m = 215−1) and spent most

of its time bootstrapping, the performance results above do not tell the story of how

the different components perform for smaller parameters or when bootstrapping is not

needed. These numbers are reported in Table 6-B, with (a) reporting the number of

native multiplications and circuit depth for the different operations, while in (b)-(d) we

report some performance numbers in various settings.

The addition operations we tested added two n-bit numbers to get their n+1-bit sum,

while the multiplication operations multiplied two n-bit numbers but only computed the

lower n bits of the result. In the tests below we varied the security level (when processing

8-bit numbers), the number of input bits (at security level 125), and also tested the effect

of multi-threading

The runtime of the operations range from a few seconds for addition and comparison

in the smaller settings to about one minute for multiplication and table lookup in the

larger setting. Some trends that can be seen in these numbers include the following:

• As expected, the running times of the various operations grow quasi-linearly with

the cyclotomic index m (which is more or less proportional to the security level).

7These numbers are said to be typical for genomic data, but it probably means that this is not a good
dataset on which to develop an approximation procedure. Still this is what we had, so this is what we
used.

Chapter 6. Performing Logistic Regression using FHE 117

• As the input bitsize grows, the number of native multiplications (and hence the

running time) is roughly quadratic for addition, linear for comparison, and roughly

n2.3 for multiplication. (For table lookup, of course the number of products grows

exponentially with the bitsize, since the table itself grows exponentially with the

number of bits in the index.)

• Our table lookup implementation is embarrassingly parallel, and indeed we get

nearly linear speedup in the number of threads. For the other operations the

speedup is less pronounced. From one to eight threads we only get more or less

3X speedup, and above eight threads there are almost no additional gains.

6.8 Conclusions and Discussion

In this work we investigated the question of whether full blown FHE can be used for a

realistic use case. We devised a procedure to compute an approximate logistic regression

model on encrypted data, and demonstrated that this can be achieved in a matter of a

few hours (or even just one hour if we use multi-threading).

In the course of this work we developed many new tools for homomorphic computa-

tions. Many of these tools are general-purpose (such as binary arithmetic, table lookup,

etc.), but some are specific to the current setting (e.g., specific data packing and move-

ment schemes). Our experience in this work leads us to believe that the answer to our

motivating question is “Yes, but just barely.”

We stress that the main roadblock is not performance: devising a logistic regression

model in a matter of hours may be perfectly acceptable in many settings. (And clusters

or hardware acceleration can sometimes be brought to bear as well.) The main problem

was the lack of good development and support tools, developing an FHE application feels

a lot like programming using only assembly language. (Indeed the reason we did not

submit our work to the iDASH competition last year was because it was not debugged

in time.)

Chapter 6. Performing Logistic Regression using FHE 118

(a) Number of native multiplications and circuit depth vs. bit sizes
addition comparison table lookup multiplication

bitsize # mults depth # mults depth # mults depth # mults depth

4 12 3 17 3 18 2 14 3

8 45 4 37 4 292 3 79 6

12 96 4 58 4 205 8

16 166 5 81 5 411 10

(b) Performance (seconds) for single-threaded 8-bit operations
security cyclotomic addition comparison table lookup multiplication
param m (φ(m)) time RAM time RAM time RAM time RAM

70 8191 (8190) 1.8 153 1.4 142 12.8 342 2.9 180

85 11441 (10752) 3.7 277 2.9 262 28.5 568 6.2 318

210 15709 (15004) 3.8 295 3.0 275 28.5 639 6.3 343

440 32767 (27000) 9.2 610 7.2 576 68.2 1232 15.0 697

(c) Multithreaded performance for 8-bit operations m = 15709 (security=210)
addition comparison table lookup multiplication

threads time RAM time RAM time RAM time RAM

1 3.8 295 3.0 275 28.5 639 6.3 343

2 3.7 306 1.8 282 14.9 646 5.0 350

4 2.7 315 1.2 300 8.1 658 3.3 369

8 1.8 347 1.0 341 4.6 691 2.0 400

16 1.1 350 1.0 339 2.8 741 1.9 470

32 1.1 353 1.0 334 1.9 867 1.9 607

(d) Single-threaded performance for different input sizes
(encrypted at level 13, m = 15709, security parameter 125).

addition comparison table lookup multiplication
bitsize time RAM time RAM time RAM time RAM

4 1.3 359 2.0 355 2.5 375 1.4 368

8 5.5 415 4.4 387 43.1 937 9.1 486

12 12.0 482 6.8 419 23.7 636

16 21.3 564 9.4 451 47.4 880

Table 6-B: Complexity measures and performance results. Time in seconds, RAM in
MB.

Using FHE in real-world settings will require much more library and development

support, and many more FHE toolboxes beyond the few that we implemented in this

work. We believe that this is an important project, and expect to continue working along

these directions.

Chapter 7

Conclusions and future work

7.1 Summary

This thesis has explored the practicality and usability of FHE schemes within a real-

world environment through the study of three varying applications. A key attribute of

FHE schemes is the ability to provide total security by limiting the leakage of information

to either the client or the server as information can be kept encrypted throughout the

process of the algorithm. The only information that is known by both parties is the

algorithm that is performed, otherwise the client can be assured the server never learns

any information about their data.

Firstly it was seen that FHE can be applied to an anonymous routing environment. A

key component of this application is the added security gained against a global adversary

that can observe the entire network. However this introduces numerous inefficiencies and

reduces the practicality of the scheme

Secondly, another aspect of the practicality of FHE was explored, namely the ability

to represent more than one type of number in an FHE environment. As FHE schemes

are built on modulo rings it is clear to see that integer arithmetic can be performed on

data in the encrypted domain. However, it is common to have data that requires a higher

119

Chapter 7. Conclusions and future work 120

level of accuracy, thus a method of representing rational numbers was shown as well as

the application of this FHE scheme to evaluate linear regression homomorphically.

Lastly, a notable use case for FHE schemes is performing work on confidential infor-

mation such as medical data. Medical datasets can be very large and the algorithms

performed on them complex. True FHE schemes are known to be inefficient which leads

to most practical applications being a SWHE variant. Section 6 explored the feasibility

of “deep FHE” that performed logistic regression on a set of 1600 genomic data records.

7.2 Conclusion

The key contributions of this research are exploration of three aspects of the practicality

of FHE in real-world environment. One of these is a novel way of representing rational

numbers within FHE which opens the scheme to be applied to numerous additional

settings that require higher levels of precision without the need to increase the size of

the parameters. The other major contribution was showing the practicality of performing

complex functions homomorphically on real datasets.

Through these experiments it has been shown that FHE is still inefficient and may

be deemed impractical in settings that require algorithms that produce results in a short

time frame. However as the state-of-the-art continues to improve in addition to hardware

improvements, FHE schemes will eventually become prevalent in the near future. As for

the current practicality of the FHE schemes, in a setting where data security is more

important than the time it takes to homomorphically compute an algorithm, then FHE

can be the solution to performing such algorithms as has been shown in this thesis.

7.3 Future work

As was discussed in Section 6.8 a large problem of applying FHE to a realistic use case

is the fact that FHE libraries, especially from my experience using HElib, are still in

the process of maturing. A large portion of the work towards practicality is not simply

Chapter 7. Conclusions and future work 121

building schemes from libraries but extending the capabilities of the current libraries

and developing support tools for FHE first. There is a lot of scope for work in this area

and as libraries continue to mature, FHE can become prevalent in the cryptographic

community in the foreseeable future.

Bibliography

[1] Carlos Aguilar-Melchor et al. “XPIR: Private information retrieval for everyone”.

In: Proceedings on Privacy Enhancing Technologies 2016.2 (2016), pp. 155–174.

[2] Yoshinori AONO et al. “Privacy-Preserving Logistic Regression with Distributed

Data Sources via Homomorphic Encryption”. In: IEICE Transactions on Infor-

mation and Systems E99.D.8 (2016), pp. 2079–2089. doi: 10.1587/transinf.

2015INP0020.

[3] Benny Applebaum. “Randomized Encoding of Functions”. In: Cryptography in

Constant Parallel Time. Information Security and Cryptography. Springer, 2014,

pp. 19–31.

[4] Seiko Arita and Shota Nakasato. “Fully homomorphic encryption for point num-

bers”. In: Information Secruity and Cryptology. Ed. by Kefei Chen, Dongdai Lin,

and Moti Yung. Cham: Springer International Publishing, 2017, pp. 253–270.

[5] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-tolerant learning, the parity

problem, and the statistical query model”. In: Journal of the ACM (JACM) 50.4

(2003), pp. 506–519.

[6] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF formulas on

ciphertexts”. In: Theory of Cryptography Conference. Springer. 2005, pp. 325–341.

[7] Dan Boneh et al. “Private Database Queries Using Somewhat Homomorphic Encryp-

tion”. In: ACNS. Vol. 7954. Lecture Notes in Computer Science. Springer, 2013,

pp. 102–118.

122

https://doi.org/10.1587/transinf.2015INP0020
https://doi.org/10.1587/transinf.2015INP0020

Bibliography 123

[8] Charlotte Bonte et al. Faster Homomorphic Function Evaluation using Non-Integral

Base Encoding. Cryptology ePrint Archive, Report 2017/333. https://eprint.

iacr.org/2017/333. 2017.

[9] Joppe W Bos, Kristin Lauter, and Michael Naehrig. “Private predictive analysis on

encrypted medical data”. In: Journal of biomedical informatics 50 (2014), pp. 234–

243.

[10] Joppe W Bos et al. “Improved security for a ring-based fully homomorphic encryp-

tion scheme”. In: Cryptography and Coding. Ed. by Martijn Stam. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2013, pp. 45–64.

[11] Joppe W Bos et al. “Privacy-friendly Forecasting for the Smart Grid using Homo-

morphic Encryption and the Group Method of Data Handling”. In: Progress in

Cryptology - AFRICACRYPT 2017. Ed. by Marc Joye and Abderrahmane Nitaj.

Cham: Springer International Publishing, 2017, pp. 184–201.

[12] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching

from Classical GapSVP”. In: CRYPTO. Ed. by Reihaneh Safavi-Naini and Ran

Canetti. Vol. 7417. Lecture Notes in Computer Science. Springer, 2012, pp. 868–

886. isbn: 978-3-642-32008-8.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “Fully Homomorphic

Encryption without Bootstrapping”. In: Innovations in Theoretical Computer Sci-

ence (ITCS’12). Available at http://eprint.iacr.org/2011/277. 2012.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Homo-

morphic Encryption without Bootstrapping”. In: ACM Transactions on Computa-

tion Theory 6.3 (2014), p. 13. doi: 10.1145/2633600.

[15] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomorphic Encryp-

tion from (Standard) LWE”. In: 2011 IEEE 52nd Annual Symposium on Founda-

tions of Computer Science. IEEE. 2011, pp. 97–106.

[16] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption from

ring-LWE and security for key dependent messages”. In: Annual cryptology con-

ference. Springer. 2011, pp. 505–524.

https://eprint.iacr.org/2017/333
https://eprint.iacr.org/2017/333
http://eprint.iacr.org/2011/277
https://doi.org/10.1145/2633600

Bibliography 124

[17] David L Chaum. “Untraceable electronic mail, return addresses, and digital pseudonyms”.

In: Communications of the ACM 24.2 (1981), pp. 84–90.

[18] Hao Chen, Kim Laine, and Rachel Player. “Simple Encrypted Arithmetic Library

- SEAL v2.1”. In: Financial Cryptography Workshops. Vol. 10323. Lecture Notes

in Computer Science. Springer, 2017, pp. 3–18.

[19] Hao Chen et al. High-Precision Arithmetic in Homomorphic Encryption. Cryptol-

ogy ePrint Archive, Report 2017/809. https://eprint.iacr.org/2017/809.

2017.

[20] Jingwei Chen et al. “Faster Binary Arithmetic Operations on Encrypted Integers”.

In: WCSE’17, Proceedings of 2017 the 7th International Workshop on Computer

Science and Engineering. 2017. isbn: 978-981-11-3671-9.

[21] Jung Hee Cheon, Miran Kim, and Myungsun Kim. “Search-and-compute on encrypted

data”. In: International Conference on Financial Cryptography and Data Security.

Springer, 2015, pp. 142–159.

[22] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate

Numbers”. In: ASIACRYPT (1). Vol. 10624. Lecture Notes in Computer Science.

Springer, 2017, pp. 409–437.

[23] Jung Hee Cheon et al. “Privacy-preserving computations of predictive medical

models with minimax approximation and non-adjacent form”. In: Financial Cryp-

tography and Data Security. Ed. by Michael Brenner et al. Cham: Springer Inter-

national Publishing, 2017, pp. 53–74.

[24] Ilaria Chillotti et al. “Faster Packed Homomorphic Operations and Efficient Circuit

Bootstrapping for TFHE”. In: ASIACRYPT (1). Vol. 10624. Lecture Notes in

Computer Science. Springer, 2017, pp. 377–408.

[25] Chongwon Cho et al. “Laconic oblivious transfer and its applications”. In: Annual

International Cryptology Conference. Springer. 2017, pp. 33–65.

[26] Benny Chor et al. “Private information retrieval”. In: Proceedings of IEEE 36th

Annual Foundations of Computer Science. IEEE. 1995, pp. 41–50.

https://eprint.iacr.org/2017/809

Bibliography 125

[27] HeeWon Chung and Myungsun Kim. Encoding of Rational Numbers and Their

Homomorphic Computations for FHE-based Applications. Cryptology ePrint Archive,

Report 2016/344. https://eprint.iacr.org/2016/344. 2016.

[28] Ian Clarke et al. “Freenet: A distributed anonymous information storage and

retrieval system”. In: Designing Privacy Enhancing Technologies. Springer. 2001,

pp. 46–66.

[29] Anamaria Costache et al. “Fixed-Point Arithmetic in SHE Schemes”. In: SAC.

Vol. 10532. Lecture Notes in Computer Science. Springer, 2016, pp. 401–422.

[30] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A secure and opti-

mally efficient multi-authority election scheme”. In: European transactions on Telecom-

munications 8.5 (1997), pp. 481–490.

[31] Jack L.H. Crawford et al. Doing Real Work with FHE: The Case of Logistic Regres-

sion. Cryptology ePrint Archive, Report 2018/202. https://eprint.iacr.org/

2018/202. 2018.

[32] Marten van Dijk et al. “Fully Homomorphic Encryption over the Integers”. In:

Advances in Cryptology - EUROCRYPT’10. Vol. 6110. Lecture Notes in Computer

Science. Springer, 2010, pp. 24–43. isbn: 978-3-642-13189-9.

[33] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation

onion router. Tech. rep. DTIC Document, 2004.

[34] Changyu Dong and Liqun Chen. “A fast single server private information retrieval

protocol with low communication cost”. In: European Symposium on Research in

Computer Security. Springer. 2014, pp. 380–399.

[35] Nathan Dowlin et al. “Manual for using homomorphic encryption for bioinformat-

ics”. In: Proceedings of the IEEE 105.3 (2017), pp. 552–567.

[36] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic Encryp-

tion in Less Than a Second”. In: EUROCRYPT (1). Vol. 9056. Lecture Notes in

Computer Science. Springer, 2015, pp. 617–640.

https://eprint.iacr.org/2016/344
https://eprint.iacr.org/2018/202
https://eprint.iacr.org/2018/202

Bibliography 126

[37] Taher ElGamal. “A public key cryptosystem and a signature scheme based on

discrete logarithms”. In: IEEE transactions on information theory 31.4 (1985),

pp. 469–472.

[38] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic

Encryption. Cryptology ePrint Archive, Report 2012/144. https://eprint.iacr.

org/2012/144. 2012.

[39] Craig Gentry. “A fully homomorphic encryption scheme”. PhD thesis. Stanford

University, 2009.

[40] Craig Gentry, Shai Halevi, and Nigel Smart. “Homomorphic Evaluation of the

AES Circuit”. In: ”Advances in Cryptology - CRYPTO 2012”. Vol. 7417. Lecture

Notes in Computer Science. Full version at http://eprint.iacr.org/2012/099.

Springer, 2012, pp. 850–867.

[41] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic Encryption from

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based”.

In: Advances in Cryptology - CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan

A. Garay. Springer, 2013, pp. 75–92. doi: 10.1007/978-3-642-40041-4_5.

[42] Craig Gentry et al. “Private Database Access with HE-over-ORAM Architecture”.

In: ACNS. Vol. 9092. Lecture Notes in Computer Science. Springer, 2015, pp. 172–

191.

[43] Ran Gilad-Bachrach et al. “CryptoNets: Applying Neural Networks to Encrypted

Data with High Throughput and Accuracy”. In: ICML. Vol. 48. JMLR Workshop

and Conference Proceedings. JMLR.org, 2016, pp. 201–210.

[44] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: CRYPTO (1). Vol. 8616.

Lecture Notes in Computer Science. Springer, 2014, pp. 554–571.

[45] Shai Halevi and Victor Shoup. “Bootstrapping for HElib”. In: EUROCRYPT (1).

Vol. 9056. Lecture Notes in Computer Science. Springer, 2015, pp. 641–670.

[46] Shai Halevi and Victor Shoup. “Design and Implementation of a Homomorphic-

Encryption Library”. In: (2013).

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/099
https://doi.org/10.1007/978-3-642-40041-4_5

Bibliography 127

[47] Shai Halevi and Victor Shoup. Faster Homomorphic Linear Transformations in

HElib. Cryptology ePrint Archive, Report 2018/244. https://eprint.iacr.org/

2018/244. 2018.

[48] Shai Halevi and Victor Shoup. HElib - An Implementation of homomorphic encryp-

tion. https://github.com/shaih/HElib/. Accessed December 2017.

[49] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-Based

Public Key Cryptosystem”. In: ANTS. Ed. by Joe Buhler. Vol. 1423. Lecture Notes

in Computer Science. Springer, 1998, pp. 267–288. isbn: 3-540-64657-4.

[50] Integrating Data for Analysis, Anonymization and SHaring (iDASH). http://

www.humangenomeprivacy.org/2017/.

[51] Angela Jäschke and Frederik Armknecht. “Accelerating homomorphic computa-

tions on rational numbers”. In: Applied Cryptography and Network Security. Ed.

by Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Cham: Springer

International Publishing, 2016, pp. 405–423.

[52] Aaron Johnson et al. “Users get routed: Traffic correlation on Tor by realistic

adversaries”. In: Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security. ACM. 2013, pp. 337–348.

[53] Richard M. Karp and Vijaya Ramachandran. “Parallel Algorithms for Shared-

memory Machines”. In: Handbook of Theoretical Computer Science (Vol. A). Ed.

by Jan van Leeuwen. Cambridge, MA, USA: MIT Press, 1990, pp. 869–941. isbn:

0-444-88071-2. url: http://dl.acm.org/citation.cfm?id=114872.114889.

[54] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. “SHIELD: Scalable

Homomorphic Implementation of Encrypted Data-Classifiers”. In: IEEE Trans.

Computers 65.9 (2016), pp. 2848–2858. doi: 10.1109/TC.2015.2500576. url:

https://doi.org/10.1109/TC.2015.2500576.

[55] Aggelos Kiayias et al. “Optimal rate private information retrieval from homo-

morphic encryption”. In: Proceedings on Privacy Enhancing Technologies 2015.2

(2015), pp. 222–243.

https://eprint.iacr.org/2018/244
https://eprint.iacr.org/2018/244
https://github.com/shaih/HElib/
http://www.humangenomeprivacy.org/2017/
http://www.humangenomeprivacy.org/2017/
http://dl.acm.org/citation.cfm?id=114872.114889
https://doi.org/10.1109/TC.2015.2500576
https://doi.org/10.1109/TC.2015.2500576

Bibliography 128

[56] Miran Kim et al. Secure Logistic Regression based on Homomorphic Encryption.

Cryptology ePrint Archive, Report 2018/074. https://eprint.iacr.org/2018/

074. 2018.

[57] Tancrede Lepoint and Michael Naehrig. “A comparison of the homomorphic encryp-

tion schemes FV and YASHE”. In: International Conference on Cryptology in

Africa. Springer. 2014, pp. 318–335.

[58] Zengpeng Li, Can Xiang, and Chengyu Wang. “Oblivious transfer via lossy encryp-

tion from lattice-based cryptography”. In: Wireless Communications and Mobile

Computing 2018 (2018).

[59] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly multi-

party computation on the cloud via multikey fully homomorphic encryption”. In:

STOC. 2012, pp. 1219–1234.

[60] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and

Learning with Errors over Rings”. In: Advances in Cryptology - EUROCRYPT’10.

Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer,

2010, pp. 1–23.

[61] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and learn-

ing with errors over rings”. In: Journal of the ACM (JACM) 60.6 (2013), p. 43.

[62] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryp-

tographic perspective. Vol. 671. Springer Science & Business Media, 2012.

[63] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-

Preserving Machine Learning”. In: 2017 IEEE Symposium on Security and Privacy,

SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 2017,

pp. 19–38. doi: 10.1109/SP.2017.12. url: https://doi.org/10.1109/SP.

2017.12.

[64] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity

classes”. In: International Conference on the Theory and Applications of Crypto-

graphic Techniques. Springer. 1999, pp. 223–238.

https://eprint.iacr.org/2018/074
https://eprint.iacr.org/2018/074
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1109/SP.2017.12

Bibliography 129

[65] Andreas Pfitzmann and Marit Hansen. “Anonymity, unlinkability, undetectability,

unobservability, pseudonymity, and identity management-a consolidated proposal

for terminology”. In: Version v0 31 (2008), p. 15.

[66] Yuriy Polyakov, Kurt Rohloff, and Gerard W. Ryan. PALISADE Lattice Cryptog-

raphy Library User Manual (v1.2.0). Tech. rep. 2018. url: https://git.njit.

edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf.

[67] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-

raphy”. In: J. ACM 56.6 (2009). doi: 10.1145/1568318.1568324.

[68] R. Rivest, L. Adleman, and M. Dertouzos. “On data banks and privacy homomor-

phisms”. In: Foundations of Secure Computation. Academic Press, 1978, pp. 169–

177.

[69] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. “On data banks and pri-

vacy homomorphisms”. In: Foundations of secure computation 4.11 (1978), pp. 169–

180.

[70] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining

digital signatures and public-key cryptosystems”. In: Communications of the ACM

21.2 (1978), pp. 120–126.

[71] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[72] Thomas Shortell and Ali Shokoufandeh. “Secure SURF with Fully Homomorphic

Encryption”. In: Computing Research Repository (2017). url: http://arxiv.

org/abs/1707.05905.

[73] Victor Shoup. A computational introduction to number theory and algebra. Cam-

bridge University Press, 2006. isbn: 978-0-521-85154-1.

[74] Nigel P. Smart and Frederik Vercauteren. “Fully homomorphic SIMD operations”.

In: Des. Codes Cryptography 71.1 (2014). Early verion at http://eprint.iacr.

org/2011/133, pp. 57–81. issn: 0925-1022. doi: 10.1007/s10623-012-9720-4.

[75] Ian Stewart. Galois Theory. 3rd. Chapman and Hall/CRC, 2003. Chap. 16.5,

pp. 171–175.

https://git.njit.edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf
https://git.njit.edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf
https://doi.org/10.1145/1568318.1568324
http://arxiv.org/abs/1707.05905
http://arxiv.org/abs/1707.05905
http://eprint.iacr.org/2011/133
http://eprint.iacr.org/2011/133
https://doi.org/10.1007/s10623-012-9720-4

Bibliography 130

[76] Shuang Wang et al. “HEALER: homomorphic computation of ExAct Logistic

rEgRession for secure rare disease variants analysis in GWAS”. In: Bioinformatics

32.2 (2016), pp. 211–218. doi: 10.1093/bioinformatics/btv563. url: +http:

//dx.doi.org/10.1093/bioinformatics/btv563.

[77] Chen Xu et al. “Homomorphically Encrypted Arithmetic Operations Over the

Integer Ring”. In: Information Security Practice and Experience. Ed. by Feng Bao

et al. https://ia.cr/2017/387. Cham: Springer International Publishing, 2016,

pp. 167–181.

[78] Xun Yi et al. “Single-database private information retrieval from fully homomor-

phic encryption”. In: IEEE Transactions on Knowledge and Data Engineering 25.5

(2012), pp. 1125–1134.

[79] Bassam Zantout and Ramzi Haraty. “I2P data communication system”. In: Pro-

ceedings of ICN. Citeseer. 2011, pp. 401–409.

https://doi.org/10.1093/bioinformatics/btv563
+ http://dx.doi.org/10.1093/bioinformatics/btv563
+ http://dx.doi.org/10.1093/bioinformatics/btv563
https://ia.cr/2017/387

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background of HE
	BGV Scheme

	The Current State-of-Art
	Outline of the thesis

	History of FHE
	Before FHE
	RSA
	El Gamal
	Paillier

	The Birth of FHE
	Gentry's Breakthrough
	The BGV Scheme
	The FV Scheme
	The GSW Scheme
	Non-LWE-Based FHE Schemes

	Summary

	Mathematics of FHE
	Introduction To Lattices and Rings
	The Learning with Errors Problem
	The Ring Learning with Errors Problem
	The General Learning with Errors Problem

	The BGV Scheme
	Setup
	Key generation
	Encryption and Decryption
	Arithmetic operations
	Modulus Switching
	Key-Switching
	Batching
	Cryptographic Usage

	Summary

	Anonymous Routing
	Introduction
	Existing Methods for Anonymity
	Mathematics
	The Algorithm
	Implementation
	Pre-Computation
	Anonymous Routing
	Retrieving The Message

	Discussion
	Conclusion

	Implementing Fractional Arithmetic in FHE
	Introduction
	Implementation of Fractions
	The Plaintext Space
	The Quasi-Rationals
	Simple Linear Regression

	Implementation of Linear Regression
	Evaluation of the use of QuasiQs
	Comparison with Previous Methods
	Conclusion

	Performing Logistic Regression using FHE
	Introduction
	Somewhat vs. Fully Homomorphic Encryption
	The iDASH Competition
	Our Logistic-Regression Procedure
	Homomorphic Computation of the Approximation Procedure
	The End Result
	Related Work
	Organization

	Logistic Regression and Our Approximation
	A Closed-Form Approximation Formula for Logistic Regression
	Validity of the Approximation

	Overview of Our Solution
	The procedure that we implement
	Homomorphic Evaluation

	Using Table Lookup to Compute Arbitrary Functions
	Binary Arithmetic and Comparisons
	Adding Two Integers
	Adding Many Integers
	Integer Multiplication
	Comparing Two Integers
	Accumulating the bits in a ciphertext

	Solving a Linear System
	Randomized Encoding with Rational Reconstruction
	Are We Still Leaking Too Much?

	Implementation and Performance
	Timing Results
	Is this Procedure Accurate Enough?
	Timing results for the Various Components

	Conclusions and Discussion

	Conclusions and future work
	Summary
	Conclusion
	Future work

