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Abstract. Most existing zero-shot learning approaches exploit transfer
learning via an intermediate-level semantic representation such as visual
attributes or semantic word vectors. Such a semantic representation is
shared between an annotated auxiliary dataset and a target dataset with
no annotation. A projection from a low-level feature space to the seman-
tic space is learned from the auxiliary dataset and is applied without
adaptation to the target dataset. In this paper we identify an inher-
ent limitation with this approach. That is, due to having disjoint and
potentially unrelated classes, the projection functions learned from the
auxiliary dataset/domain are biased when applied directly to the target
dataset/domain. We call this problem the projection domain shift prob-
lem and propose a novel framework, transductive multi-view embedding,
to solve it. It is ‘transductive’ in that unlabelled target data points are
explored for projection adaptation, and ‘multi-view’ in that both low-
level feature (view) and multiple semantic representations (views) are
embedded to rectify the projection shift. We demonstrate through ex-
tensive experiments that our framework (1) rectifies the projection shift
between the auxiliary and target domains, (2) exploits the complemen-
tarity of multiple semantic representations, (3) achieves state-of-the-art
recognition results on image and video benchmark datasets, and (4) en-
ables novel cross-view annotation tasks.

1 Introduction

Humans can distinguish 30,000 basic object classes [3] and many more subordi-
nate ones (e.g. breeds of dogs). To recognise such high number of classes, humans
have the ability to “learning to learn” and transfer knowledge from known classes
to unknown ones. Inspired by this ability and to minimise the necessary labelled
training examples for conventional supervised classifiers, researchers build the
recognition models that are capable of classifying novel classes with no train-
ing example, i.e. zero-shot learning. The key underpinning idea is to exploit
transfer learning via an intermediate-level semantic representation. Specifically,
two datasets with disjoint classes are considered: a labelled known auxiliary set
where a semantic representation is given for each data point, and a target dataset
to be classified with no labelled instance and semantic representation. Such a
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Fig. 1. An example of the projection domain shift problem. Zero-shot prototypes are
shown as red stars and image low-level feature projections shown in blue. See text for
details.

semantic representation is assumed to be shared between the auxiliary and tar-
get datasets. More specifically, apart from class label, each auxiliary data point
is labelled by a semantic representation such as visual attributes [18, 6, 21, 11],
semantic word vectors [23, 7, 34] or others [28]. A projection function mapping
low-level features to the semantic space is learned from the auxiliary dataset
by either classification or regression models. Such a projection is then applied
directly to map each unlabelled target class instance into the same semantic rep-
resentation space. Within this semantic space, a zero-shot classifier is pre-defined
by “extra-knowledge” to recognise all unseen instances. In particular, a single
‘prototype’ of each target class is specified in the semantic space. Depending on
the semantic space, this prototype can be an attribute annotation vector [18] or
a word vector inferred from the target class name [7].

An inherent problem exists in this zero-shot learning approach: Since the
two datasets have different and potentially unrelated classes, the underlying
semantic prototypes of classes also differ, as do the ‘ideal’ projection functions
between the low-level feature space and the semantic spaces. Therefore, using
the projection functions learned from the auxiliary dataset/domain without any
adaptation to the target dataset/domain causes an unknown shift/bias. We call it
the projection domain shift problem. This problem is illustrated in Fig. 1, which
shows two object classes from the Animals with Attributes (AwA) dataset [20]:
Zebra is one of the 40 auxiliary classes whilst Pig is one of 10 target classes.
Both of them share the same ‘hasTail’ attribute, but the visual appearance of
their tails differs greatly (Fig. 1(a)). Similarly, many other attributes of Pig are
visually very different from those in the 40 auxiliary classes. Fig. 1(b) plots (in
2D using t-SNE [22]) a 85D attribute space representation of the image feature
projections and class prototypes (85D binary attribute vectors) to illustrate the
existence of the projection domain shift problem: a great discrepancy between
the Pig prototype position in the semantic attribute space and the projections
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of its class member instances is observed, while the discrepancy does not exist
for the auxiliary Zebra class. This discrepancy is caused when the projection
functions learned from the 40 auxiliary classes are applied directly to project the
Pig instances – what ‘hasTail’ (as well as the other 84 attributes) visually means
is different now. Such a discrepancy will inherently degrade the effectiveness of
zero-shot recognition of the Pig class. This projection domain shift problem is
uniquely challenging in that there is no labelled information in the target domain
to guide domain adaptation in mitigating the problem. To our knowledge, this
problem has neither been identified nor addressed in the literature.

In addition to the projection domain shift problem, conventional approaches
to zero-shot learning are also limited in exploiting multiple intermediate se-
mantic spaces/views, each of which may contain complementary information. In
particular, while both visual attributes [18, 6, 21, 11] and linguistic semantic rep-
resentations such as word vectors [23, 7, 34] have been independently exploited
successfully, it remains unattempted and not straightforward to exploit syner-
gistically multiple semantic ‘views’. This is because they are of very different
dimensions and types and each suffers from different domain shift effects dis-
cussed above. This exploitation has to be transductive for zero-shot learning as
only unlabelled data are available for the target classes and the auxiliary data
cannot be used directly due to the projection domain shift problem.

In this paper, we propose a transductive multi-view embedding framework
to solve both the problems of projection domain shift and synergistic exploita-
tion of multiple semantic views. Specifically, in the first step, each instance of
an unlabelled target class is represented by multiple views: its low-level feature
view and its (biased) projections in multiple semantic spaces (visual attribute
space and word space in this work). To rectify the projection domain shift be-
tween auxiliary and target datasets, we introduce a multi-view semantic space
alignment process to correlate different semantic views and the low-level feature
view by projecting them onto a latent embedding space learned using multi-view
Canonical Correlation Analysis (CCA) [13]. The objective of this new embed-
ding space is to transductively (using the unlabelled target data) align each
semantic view with each other, and with the low-level feature view to rectify the
projection domain shift and exploit their complementarity. This can be seen as
an unalignment process and its effects are illustrated by Fig. 1(c), where after
alignment, the target Pig class prototype is much closer to its member points in
this embedding space, making zero-shot recognition more accurate.

In the second step of our framework, we introduce a novel transductive multi-
view Bayesian label propagation (TMV-BLP) algorithm for recognition. This
allows us to exploit the manifold of unlabelled test data to compensate for the
impoverished supervision available in zero-shot learning, as well as N-shot learn-
ing scenario where few target classes instances are available. In particular, a
graph is constructed from the projection of each view in the embedding space,
plus any available zero-shot prototypes. Zero-shot learning is then performed
by semi-supervised label propagation from the prototypes to the target data
points within and across the graphs. Overall our framework has the following
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advantages: (1) TMV-BLP can accommodate multiple semantic representations
and exploit their complementarity to better rectify the projection domain shift
problem and improve recognition. (2) Recognition generalises seamlessly whether
none (zero-shot), few (N-shot), ample (fully supervised) examples of the target
classes become available. Uniquely it can also synergistically exploit zero + N-
shot (i.e., both prototypes and examples) learning. (3) It enables a number
of novel cross-view annotation tasks including zero-shot class description and
zero attribute learning. Extensive experiments on benchmark object and video
activity datasets demonstrate that our method outperforms state-of-the-art al-
ternatives on both zero-shot and N-shot recognition tasks.

2 Related Work

Semantic spaces for zero-shot learning Learning visual attributes has
been topical in the past 5 years. Attribute-centric models have been explored
for images [18, 6, 12, 31] and to a lesser extent videos [8, 11, 21]. Most existing
studies [18, 17, 25, 26, 30, 37, 1] assume that an exhaustive ontology of attributes
has been manually specified at either the class or instance level. However, anno-
tating attributes scales poorly as ontologies tend to be domain specific. This is
despite efforts exploring augmented data-driven/latent attributes at the expense
of name-ability [6, 21, 11]. To overcome this problem, semantic representations
that do not rely on an explicit attribute ontology have been proposed [29, 28],
notably word vectors. A word space is extracted from linguistic knowledge bases
e.g. WordNet or Wikipedia by natural language processing models e.g. [5, 23].
Instead of manually defining an attribute prototype, a novel target class’ textual
name can be projected into this space and then used as the prototype for zero-
shot learning [7, 34]. Importantly, regardless of the semantic space used, existing
methods focus on either designing better semantic spaces or how to best learn
the projections. The former are orthogonal to our work – any semantic spaces
can be used in our framework and better ones would benefit our model. For the
latter, no existing work has identified or addressed the projection domain shift
problem.
Learning multi-view embedding spaces Relating the low-level feature view
and semantic views of data has been exploited in visual recognition and cross
modal retrieval. Most existing work [33, 13, 16, 36, 10, 9] focuses on modelling
images/videos with associated text (e.g. tags on Flickr/YouTube). Multi-view
CCA is often exploited to provide unsupervised fusion of different modalities.
However, there are two fundamental differences between previous multi-view em-
bedding work and ours: (1) our embedding space is transductive, that is, learned
from unlabelled target data from which all semantic views are estimated by pro-
jection rather than being the original views; These projected views thus have
the projection domain shift problem that the previous work does not have. (2)
The objectives are different: we aim to rectify the projection domain shift via
the embedding in order to perform better recognition and annotation while they
target primarily cross-modality retrieval.
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Multi-view label propagation In most previous zero-shot learning studies
(e.g., direct attribute prediction (DAP) [20]), only semantic space prototypes are
used for classification. Since the available knowledge (single zero-shot prototype
per target class) is very limited, there has been recent interests in additionally
exploiting the unlabelled target data by transductive learning [27]. However,
apart from suffering from the projection domain shift problem, [27] has lim-
ited ability to exploit multiple semantic representations/views. In contrast, after
alignment in the embedding space, our framework synergistically integrates the
multiple graphs of low-level feature and semantic representations of each instance
by transductive multi-view Bayesian label propagation (TMV-BLP). Moreover,
TMV-BLP generalises beyond zero-shot to N-shot learning if labelled instances
are available for the target classes. Classification on multiple graphs (C-MG) is
well-studied in semi-supervised learning. Most solutions are based on the sem-
inal work of Zhou et al [38] which generalises spectral clustering from a single
graph to multiple graphs by defining a mixture of random walks on multiple
graphs. However crucially, the influence/trustworthiness of each graph is given
by a weight that has to be pre-defined and its value has a great effect on the
performance of C-MG [38]. In this work, we extend the C-MG algorithm in [38]
by introducing a Bayesian prior weight for each graph, which can be measured
automatically from data. Our experiments show that our TMV-BLP algorithm
is superior to [38] and [27].
Our contributions are as follows: (1) To our knowledge, this is the first attempt
to investigate and provide a solution to the projection domain shift problem in
zero-shot learning. (2) We propose a transductive multi-view embedding space
that not only rectifies the projection shift, but also exploits the complementarity
of multiple semantic representations of visual data. (3) A novel transductive
multi-view Bayesian label propagation algorithm is developed to improve both
zero-shot and N-shot learning tasks in the embedding space. (4) The learned
embedding space enables a number of novel cross-view annotation tasks.

3 Learning a Transductive Multi-View Embedding Space

Problem setup We have cS source/auxiliary classes with nS instances S =
{XS , Y

i
S , zS} and cT target classes T =

{
XT , Y

i
T , zT

}
with nT instances. X

indicates the t−dimensional low-level feature of all instances; so XS ⊆ Rns×t

and XT ⊆ RnT×t. zS and zT are the training and test class label vectors. We
assume the auxiliary and target classes are disjoint: zS ∩ zT = ∅. We have I
different types of intermediate semantic representations; Y iS and Y iT represent
the i− th type of mi dimensional semantic representation for the auxiliary and
target datasets respectively; so Y iS ⊆ RnS×mi and Y iT ⊆ RnT×mi . Note that
for the auxiliary dataset, Y iS is given as each data point is labelled. But for the

target dataset, Y iT is missing, and its prediction Ŷ iT from XT is used instead.
As we will see later, this is obtained using a projection function learned from
the auxiliary dataset. Each target class c has a pre-defined class-level semantic
prototype yic in each semantic view i. In this paper, we consider two types of
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intermediate semantic representation (i.e. I = 2) – attributes and word vectors,
which represent two distinct and complementary sources of information.

We use X , A and V to denote the low-level feature, attribute and word vector
spaces respectively. The attribute space A is typically manually defined using a
standard ontology. For the word vector space V, we employ the state-of-the-art
skip-gram neural network model [23, 24] on all English Wikipedia articles1 which
has higher accuracy and lower computational cost than alternatives such as [5].
Using this learned model, we can project the textual name of any class into the V
space to get its word vector representation. It is a ‘free’ semantic representation
in the sense that the generating process does not need any human annotations.
We next address how to project low-level features into these spaces.
Learning the projections of semantic spaces Mapping images and
videos into a semantic space i requires a projection function f i : X → Yi. This
is typically realised by classifiers [18] or regressors [34]. In this paper, using the
auxiliary set S, we train support vector classifiers fA(·) and support vector re-
gressors fV(·) for each dimension of the attribute and word vectors respectively.
Then the target class instances XT have the semantic projections: Ŷ AT = fA(XT )

and Ŷ VT = fV(XT ). However, these predicted intermediate semantics have the
projection domain shift problem illustrated in Fig. 1. To solve this, we learn a
transductive multi-view semantic embedding space to align the semantic projec-
tions with the low-level features of target data.
Learning transductive multi-view semantic embedding To learn an
embedding space capable of rectifying the domain shift, we employ multi-view
Canonical Correlation Analysis (CCA) for E views, each denoted as Φi. Specif-
ically, in this work we project three views of each target class instance fA(XT ),
fV(XT ) and XT (i.e. E = I + 1 = 3) into a shared embedding space and the
three projection functions W i are learned by

min
∑E
i,j=1 Trace(W iΣijW

j)

=
∑E
i,j=1 ‖ ΦiW i −ΦjW j ‖2F

s.t.
[
W i
]T
ΣiiW

i = I
[
wi
k

]T
Σijw

j
l = 0

i 6= j, k 6= l i, j = 1, · · · , E k, l = 1, · · · , nT (1)

where W i is the projection matrix which maps the view Φi (a nT row matrix)
into the embedding space and wi

k is the kth column of W i. Σij is the covariance
matrix between Φi and Φj . The dimensionality of the embedding space is the
sum of that of Φi – there is obviously feature redundancy. Since the importance
of each dimension is reflected by its corresponding eigenvalue [14, 13, 4], we use
the eigenvalues to weight the dimensions and define a weighted embedding space
Γ :

Ψ i = ΦiW i
[
Di
]λ

= ΦiW iD̃i, (2)

1 Only articles are used without any user talk/discussion. To 13 Feb. 2014, it includes
2.9 billion words and 4.33 million vocabulary (single and bi/tri-gram words). It is
downloadable from Yanwei’s website.
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where Di is a diagonal matrix with its diagonal elements set to the eigenvalues
of each dimension in the embedding space, λ is a power weight of Di and em-
pirically set to 4 [13], and Ψ i is the final representation of data from view i in
Γ . In this work, three views are considered; for notational convenience, we index
i ∈ {X ,V,A}. The same formulation can be used if more than three views are
available.

Similarity in the embedding space The choice of similarity metric is im-
portant for the high-dimensional embedding spaces Γ [13]. In particular, ex-
tensive evidences in text analysis and information retrieval have shown that
high-dimensional embedding vectors are naturally directional and using cosine
similarity provides significant robustness against noise [2, 13, 14]. Therefore for
the subsequent recognition and annotation tasks, we compute cosine similarity
in Γ by l2 normalisation: normalising any vector ψik ∈ Ψ i to unit length (i.e.
‖ ψik ‖2= 1). Thus cosine similarity is given by the inner product of any two vec-
tors in Γ . Finally, equipped with a weighted and normalised embedding space Γ ,
any two vectors can be directly compared no matter whether the original view
is X , A or V.

4 Recognition by Multi-view Bayesian Label Propagation

We now introduce a unified framework for exploiting unlabelled target data
transductively to improve zero-shot recognition as well as N-shot learning if
sparse examples are available. We assume a target class c has a prototype yic
(either a manual binary attribute vector, or the class name representation in the
word space as a word vector) in each semantic view for zero-shot, and/or a few
labelled instances for N-shot classification. To exploit the learned embedding Γ
for recognition, we project three views of each target class instance fA(XT ),
fV(XT ) and XT as well as the target class prototypes into this space. The
prototypes yic for views i ∈ {A,V} are projected as ψic = yicW

iD̃i. So we have
ψAc and ψVc for the attribute and word vector prototypes of each target class c
in Γ . In the absence of a prototype for the (non-semantic) low-level feature view
X , we synthesise it as ψXc = (ψAc + ψVc )/2.

Most if not all of the target class instances are unlabelled. To exploit the
unlabelled data transductively for classification, we consider graph-based semi-
supervised learning in Γ . However, since our embedding space contains multiple
projections of the target data, it is hard to define a single graph that exploits the
manifold structure of each view. We therefore consider the graphs defined by the
projection of each view in a multi-view label propagation algorithm (TMV-BLP).
Thanks to the shared embedding space Γ , these heterogeneous graphs become
comparable and can be connected by a Bayesian prior weight estimated from
data. TMV-BLP provides multi-view label propagation by unifying the multi-
graph into a single graph via a random walk within and across the graphs. The
initial label information from the prototypes (zero-shot) and/or the few labelled
target data points (N-shot learning) is then propagated to the unlabelled data.
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Multi-view Bayesian graph construction In Γ we aim to build a graph
G relating labelled and unlabelled data and prototypes. Each view projection
defines a node, and the distance between any pair of nodes is:

ω(ψik, ψ
j
l ) = exp(

< ψik, ψ
j
l >

2

δ
) (3)

where < ψik, ψ
j
l >

2 is the square of inner product between the i− th and j − th
projections of nodes k and l with a free parameter2 δ. However, exhaustively
connecting all projections of all data is computationally expensive. To balance
efficiency and reflecting the topological manifold structure of the graphs, we
simplify Eq (3) by two strategies: (1) We construct a k-nearest-neighbour graph
Gi within each projection i, i.e., i = j and k 6= l in Eq (3) with K = 30 nearest
neighbours3. (2) To connect heterogeneous graphs Gi and Gj (i 6= j), we only
compute the similarity across projections at the same data point (k = l but i 6= j
in Eq (3)).

To propagate label information from labelled nodes to other target instances,
a classic strategy is random walks [38]. We define a random walk process within
and across graphs. A natural random walk within Gi for two nodes k and l has
the following transition probability,

p(k → l|Gi) =
ω(ψik, ψ

i
l)∑

m ω(ψik, ψ
i
m)
, (4)

and the stationary probability for node k,

π(k|Gi) =

∑
l ω(ψik, ψ

i
l)∑

k

∑
l ω(ψik, ψ

i
l)
. (5)

To connect the graphs across views i 6= j, we need to model the overall graph
probability. Let p(Gi) denote the prior probability of graph Gi in the random
walk. This prior reflects how informative Gi is. Then the posterior probability
to choose graph Gi at projection/node ψik will be:

p(Gi|k) =
π(k|Gi)p(Gi)∑
i π(k|Gi)p(Gi)

. (6)

For any pair of nodes k and l, the transition probability across multiple graphs
can be computed by Bayesian model averaging,

p(k → l) =
∑
i

p(k → l|Gi) · p(Gi|k). (7)

2 Most previous work [27, 38] needs to do cross validation for δ. Inspired by [19], a
rule of thumb for setting δ is δ ≈ median

k,l=1,··· ,n
< ψi

k, ψ
j
l >

2 to balance roughly the same

number of similar as dissimilar example pairs. This makes the edge weight invariant
to the value scale of the heterogeneous graph.

3 It can be varied from 10 ∼ 50 with little effects in our experiments.
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In addition, the stationary probability across multiple graphs is computed as:

π(k) =
∑
i

π(k|Gi) · p(Gi). (8)

Finally, the prior probability of each graph p(Gi) is computed as

p(Gi) =
∑

k

∑
j∈{X ,V,A},j 6=i ω(ψ

i
k,ψ

j
k)∑

k

∑
r∈{X ,V,A}

∑
u∈{X ,V,A},r 6=u ω(ψ

r
k,ψ

u
k )

(9)

The intuition is that this is the relative consensus of each graph to all the others.
A graph that is on average similar/in consensus with the others gets a stronger
prior compared to an outlying graph which is not in consensus with others.
Label propagation Given the graph and random walk process defined above,
we can derive the semi-supervised label propagation. Let P denote the transition
probability matrix defined by Eq (7) and Π the diagonal matrix with the ele-
ments π(k) computed by Eq (8). The Laplacian matrix L combines information

of different views and is defined as: L = Π − ΠP+PTΠ
2 . The label matrix Z for

labelled N-shot data or zero-shot prototypes is defined as:

Z(qk, c) =


1

−1

0

qk ∈ class c
qk /∈ class c
unknown

(10)

Given the label matrix Z and Laplacian L, label propagation on multiple graphs
has the closed-form solution: Ẑ = η(ηΠ + L)−1ΠZ where η is a regularisation
parameter4. Note that in our framework, both labelled target class instances and
prototypes are modelled as graph nodes. Thus the difference between zero-shot
and N-shot learning lies only on the initial labelled instances: Zero-shot learning
has the prototypes as labelled nodes; N-shot has instances as labelled nodes; and
a new condition exploiting both prototypes and N-shot together is possible. This
unified recognition framework thus applies when either or both of prototypes and
labelled instances are available.

5 Annotation and Beyond

Our multi-view embedding space Γ bridges the semantic gap between low-level
features X and semantic representations A and V. Leveraging this cross-view
mapping, annotation [15, 36, 13] can be improved and applied in novel ways. We
consider three annotation tasks here.
Instance level annotation via attribute classification Given a new in-
stance u, we can describe/annotate it by predicting its attributes. The con-
ventional solution is directly applying ŷAu = fA(xu) for test data. However
as we have shown this suffers from projection domain shift problem. With the

4 It can be varied from 1− 10 with little effects in our experiments
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learned embedding Γ , we can now infer attributes for each target class instance

ŷAu = xuW
X D̃X

[
WAD̃A

]−1
.

Zero-shot class description From a broader pattern recognition perspective,
one might be interested to ask what are the attributes of an unknown class, based
solely on the name of the class. This zero-shot class description task could be
useful, for example, to hypothesise the zero-shot attribute prototype of a class in-
stead of defining it by experts [18] or ontology [11]. Our transductive embedding
space enables this task by connecting semantic word space (i.e. naming) and dis-
criminative attribute space (i.e. describing). Therefore, given the prototype yVc

from the name of a novel target class c, we compute ŷAc = yVcW
VD̃V

[
WAD̃A

]−1
to generate their class-level attribute description.

Zero attribute learning This task is the inverse of the previous task: in-
ferring the name of a class given a set of attributes. It is useful, for example,
to validate or assess a proposed zero-shot attribute prototype, or to provide
an automated semantic-property based index into a dictionary or database. To
our knowledge, this is the first attempt for evaluating the quality of a class
attribute prototype because no previous work has directly and systematically
linked linguistic knowledge space with visual attribute space. Specifically given

an attribute prototype yAc , we can use ŷVc = ŷAc W
AD̃A

[
WVD̃V

]−1
to name

the corresponding class and do retrieval on dictionary words in V using ŷVc .

6 Experiments

Datasets and settings We evaluate our framework on two widely used
image/video attribute datasets: Animal with Attribute (AwA) and Unstruc-
tured Social Activity Attribute (USAA). AwA [18] provides 50 classes of ani-
mals (30475 images) and 85 associated class-level attributes (such as furry, and
hasClaws). It provides a defined source/target split for zero-shot learning with
10 classes and 6180 images held out. USAA is a video dataset [8, 11] with 69
instance-level attributes for 8 classes of complex social group activity videos
from YouTube. Each class has around 100 training and testing videos respec-
tively. USAA provides instance-level attributes since there are significant intra-
class variabilities. We use the thresholded mean of instances from each class to
define a binary attribute prototype as in [11]. We use the same transfer learning
setting in [11]: 4 classes as source and 4 classes as target data. We used exactly
the same RGB colour histograms, SIFT, rgSIFT, PHOG, SURF and local self-
similarity histograms in [18] for AwA, and SIFT, MFCC and STIP as low-level
features for USAA as in [8]. We report absolute classification accuracy on USAA
and mean accuracy for AwA for direct comparison to published results. The
word vector space is trained by the skip model [23] with 100 dimensions5.

5 All codes/features are downloadable from Yanwei’s website: http://www.eecs.qmul.
ac.uk/~yf300/embedding/.
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Approach AwA USAA

TMV-BLP 47.1 47.8
DAP 40.5([18]) / 41.4([20]) / 38.4* 33.2([11]) / 35.2*
IAP 27.8([18]) / 42.2([20]) –

M2LATM [11] 41.3 41.9
ALE/HLE/AHLE [1] 37.4/39.0/43.5 –

Mo/Ma/O/D [29] 27.0 / 23.6 / 33.0 / 35.7 –
PST [27] 42.7 36.2*

[35] 43.4 –
Table 1. Comparison with the state-of-the-art on zero-shot learning on AwA and
USAA. Mo, Ma, O and D represent the highest results in the mined object class-
attribute associations, mined attributes, objectness as attributes and direct similarity
methods used in [29] respectively. Note *: our implementation.

6.1 Evaluating Zero-Shot Learning

Comparisons with state-of-the-art Our method (TMV-BLP) is compared
against the state-of-the-art models for zero-shot learning in Table 1. For fair com-
parison, human effort exploited by all compared methods is limited to attribute
annotation as in [20, 8]. This excludes methods such as [37] which require ad-
ditional human interventions. Note that our semantic vectors are ‘zero’ cost for
human annotations, because they are generated by projecting classes’ textual
name into the V space. Apart from our method, the AHLE method in [1] also
use two semantic spaces: attribute and WordNet hierarchy. Different from our
embedding framework, AHLE simply concatenates the two spaces. Our TMV-
BLP outperforms all the other methods by a noticeable margin on both datasets,
showing the effectiveness of our approach.
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Fig. 2. (a)Effectiveness of transductive multi-view embedding for zero-shot learning
on AwA and USAA. [V,A] indicates the concatenation of semantic word and attribute
space vectors. Γ (X+V) and Γ (X+A) mean using low-level+semantic word spaces and
low-level+attribute spaces respectively to learn the embedding. Γ (X +V+A) indicates
using all 3 views to learn the embedding.(b) Comparing alternative label propagation
methods. Note: T-embed means Transductive embedding spaces.

Effectiveness of transductive multi-view embedding We validate the
contribution of our transductive multi-view embedding space by splitting up and
comparing the results of different combinations in Fig. 2 (a): V vs. Γ (X + V),
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A vs. Γ (X + A) and [V,A] vs. Γ (X + V + A) (see the caption of Fig. 2(a) for
definitions). We use DAP for A and nearest neighbour for V and [V,A], because
the prototypes of V are not binary vectors so DAP cannot be applied. We use
TMV-BLP for Γ (X +V) and Γ (X +A). We highlight the following observations:
(1) After transductive embedding, Γ (X+V+A), Γ (X+V) and Γ (X+A) outper-
form [V,A], V and A respectively. This means that the transductive embedding
is helpful whichever semantic space is used; and validates the effectiveness of
the embedding space in rectifying the projection domain shift by aligning the
semantic views with low-level features. (2) The results of [V,A] are higher than
those of A and V individually, showing that the two semantic views are indeed
complementary. However, our TMV-BLP on all views Γ (X + V + A) further
improves individual embeddings Γ (X + V) and Γ (X +A).
Comparison with alternative label propagation methods We also com-
pare two alternative label propagation methods: C-MG [38] and PST [27]. We
use equal weights for each graph for C-MG and the same parameters from [27]
for PST. We compare all methods before and after the embedding, as shown in
Fig. 2(b). The performance of [27] depends on good quality initial labels while
our TMV-BLP uses the trivial initial labels in Eq (10). We conclude that: (1)
TMV-BLP in our embedding space outperforms both alternatives. (2) The em-
bedding also improves C-MG and PST, due to alleviated projection domain shift
via aligning the semantic projections and low-level features. This result shows
that both the proposed embedding space and the Bayesian label propagation
algorithm contributes to the superior performance of our method.

6.2 Evaluating N-Shot Learning

We next consider N-shot learning on AwA and USAA varying the number of
training target class instances. This is challenging when there are few training
examples per target class. We also consider the situation [27] where both a few
training examples and a zero-shot prototype may be available (denoted with suf-
fix +), and contrast it to conventional N-shot learning (denoted with suffix −).
Note that our TMV-BLP can be used in both conditions but the PST method
[27] mainly applies to the + condition6. All experiments use the same training
instances and are repeated for 10 rounds to reduce variance. Evaluation is done
on the remaining available images from the test split after removing the N in-
stances. From the results shown in Fig. 3, we have the following observations
and conclusions: (1) TMV-BLP+ always achieves the best performance, particu-
larly given few training examples. This shows the effectiveness of our framework
by combining complementary semantic and low-level feature information. We
note that with 50 labelled instances per target class (fully supervised), using
SVM with RBF kernel in the embedded space Γ obtains the same results as our
TMV-BLP+, because the transductive kernel matrix (inverse of the Laplacian
matrix L) essentially models the same information as the SVM kernel matrix
[32]. (2) As clearly shown in the AwA results, PST+ outperforms TMV-BLP-

6 PST- corresponds to the standard label propagation (see Fig 3(b) in [27]).
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Fig. 3. N-shot learning comparison. PST+ is the method in [27] which uses prototypes
for the initial label matrix. SVM+ and M2LATM- are the SVM and M2LATM methods
used in [20] and [11] respectively. For fair comparison, we modify the SVM- used in
[20] into SVM+.

AwA raccoon giant panda humpback+whale rat

top-5
furry, quadrupedal, vegetation, furry, hops, nest spot, slow, tail, tail, nest spot, weak,

tail, nest spot, tree grazer, quadrupedal. quadrupedal, weak quadrupedal, grazer

bot-5
smart, bipedal, swims, swims, ocean, claws, hands, big, tusks, small,

tough skin, hairless hairless, new world new world, bipedal new world, bipedal

Table 2. Ranking attributes of AwA unseen testing classes. Bold font illustrates true
positives; italic illustrates true negatives.

with less than 10 instances per class because PST+ exploits the prototypes. This
suggests that a single good prototype is more informative than a few labelled
instances in N-shot learning. This also explains when only few training labels
are observed why the N-shot learning results of TMV-BLP+ are worse than its
zero-shot learning results. (3) Nevertheless, TMV-BLP- still surpasses PST+
with more training instances because TMV-BLP combines the different views of
the training instances, and the strong effect of the prototype is outweighed as
more labelled instances become available.

6.3 Evaluating Annotation

Instance annotation by attributes To quantify the annotation performance,
we predict attributes/annotations for each target class instance for USAA. We
employ two standard measures: mean average precision (mAP) and F-measure
(FM) between the estimated and true annotation list. Using our three-view em-
bedding space, our method (FM:0.341, mAP: 0.355) outperforms significantly
the baseline of directly estimating yAu = fA(xu) (FM:0.299, mAP: 0.267).
Novel annotation tasks beyond visual recognition We next illustrate two
novel annotation tasks. In the Zero-Shot Description task, we explicitly infer
the member attributes, given only the textual name of a novel class. Table 2
illustrates this for AwA by showing that the top/bottom 5 attributes associated
with each class are meaningful (in ideal cases, all top 5 should be true positives
and all bottom 5 true negatives). In the Zero-Attribute Learning task we attempt
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the reverse, inferring class names given a list of attributes. Table 3(a) shows the
query attributes used for USAA (note that class name is shown for brevity,
but it is the attributes of the classes that are queried) and the top-4 ranked
list of classes returned. We emphasise the average rank of the true class is an
impressive 2.13 (out of 4.33M vocabulary with chance-level 2.3×10−7), compared
with the average rank of 110.24 by directly querying word space [23] by using the
textual descriptions of attributes. Table 3(b) shows an example of “incremental”
query of using ontology definition of birthday party [11]. We firstly query by the
wrapped presents attribute only, followed by adding small balloon and all the
other attributes (birthday songs and birthday caps). The changing list of top
ranked retrieved words intuitively reflects the expectation of the combinatorial
meaning of the attributes.

(a) Query via embedding space Query attribute words in word space

g party, graduation, audience, caucus cheering, proudly, dressed, wearing

m music, performance, musical, heavy metal sing, singer, sang, dancing

w c w c, wedding, glosses, stag nun, christening, bridegroom, w c

(b) Attribute Query Top Ranked Words

wrapped presents music; performance; solo performances;performing

+small balloon wedding; wedding reception; birthday celebration; birthday

+All attibutes birthday party; prom; wedding reception

Table 3. (a) Querying by attributes of classes. g,m and w c indicate graduation
party, music performance and wedding ceremony respectively. (b) An incrementally
constructed query for birthday party. Bold indicates true positive words retrieved.

7 Conclusions and future work

We identified the challenge of projection domain shift in zero-shot learning and
presented a new framework TMV-BLP to solve it by rectifying the biased projec-
tions in an embedding space. TMV-BLP synergistically exploits multiple inter-
mediate semantic representations, as well as the manifold structure of unlabelled
test data to improve recognition in a unified way for both zero and N-shot learn-
ing tasks. So we achieve state-of-the-art performance on the challenging AwA
and USAA datasets. Finally, we demonstrate that our framework enables novel
tasks of relating textual class names and their semantic attributes.
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