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Abstract

Simplicial complexes are a generalization of networks that can encode

many-body interactions between more than two nodes. Whereas net-

works represent the interactions between the parts of a complex system

using nodes and links, the simplices in a simplicial complex represent

interactions between any number of nodes.

In a number of applications these many-body interactions have been

shown to carry important information about the complex system. Fur-

thermore, the representation of systems as simplicial complexes has made

it possible to characterise their structure in ways not possible with net-

work representations, including using new tools inspired by algebraic

topology or geometry.

However, the use of simplicial complexes as a network science tool is

still new and there remains an urgent need for a theoretical framework

that can allow us to interpret the highly complex, high-dimensional data

associated with real simplicial complexes. How do the new measures of

structure that are being introduced relate to each other? And what can

they tell us about the evolution or function of the simplicial complex?

How can we best model simplicial complexes based on incomplete infor-

mation? And what constitutes ‘interesting’ or ‘significant’ structure?

In this thesis we tackle these problems through the development of

stochastic models of simplicial complexes that can help us to disentangle

the interactions, dependences and correlations between the structural

5



properties of simplicial complexes and their evolution.

First, we propose two maximum entropy models of a simplicial complex

with given generalised degrees of the nodes (the number of simplices of a

given dimension that a node participates in). These models have a clear

use as null models for simplicial complexes as they are the most sta-

tistically appropriate models for simplicial complexes given knowledge

of the generalized degrees. Importantly, they allow for a statistically

rigorous understanding of the implications of particular choices of the

generalized degrees for the structure of simplicial complexes and dynam-

ics taking place upon them.

Second, we propose a model of a simplicial complex that is weighted and

growing. This model follows in the tradition of growing network mod-

els that seek to characterize the relations between simple mechanisms

of growth (of the network) and reinforcement (of the weights) and their

structural properties. The model exhibits a very rich variety of topolo-

gies and weight distributions for different values of the model parameters

and different dimensions of simplices. Remarkably each of these distri-

butions and scalings could be exhibited simultaneously within a single

simplicial complex for faces of different dimension. The model shows that

simple, plausible mechanisms of growth and reinforcement in simplicial

complexes can produce a broad range of topologies and distributions,

and shows the important role that dimension plays in determining these

properties.

Third, we propose a modelling framework for producing weighted net-

works and simplicial complexes which are both dense and scale-free. The

growth mechanisms of the models contained within our framework are

analogous to the Pitman-Yor process, a ‘ball-in-the-box’ process well-

known among probability theorists for producing power-laws with expo-

nent γ ∈ (1, 2]. Our framework demonstrates the difficulty of producing
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a simple network which is both dense and scale-free. By relaxing the

requirement for the network to be simple, either by a direction to the

link or by reinterpreting the weight of a link as the number of multilinks

between two nodes, we found that it was easy to create scale-free net-

works and simplicial complexes with tunable dense exponent γ ∈ (1, 2].
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Chapter 1

Introduction

The representation of complex systems as networks of interacting parts has provided

insight into the workings of systems as diverse as on-line social networks, global trade

networks, protein interaction networks, the brain and the financial system [1–6]. The

nodes of a network represent the parts of a system and the links represent some kind

of interaction between the parts. Networks thus encode the ‘interaction structure’

underlying real systems, and in network science the aim is to gain useful insight

about these systems by studying their underlying network structures.

However the use of networks relies on the simplifying assumption that all of the

information crucial to understanding how the parts of a system interact is encodable

in a set of pairwise relations between them (i.e. as links between pairs of nodes).

This assumption fails to recognise that for some systems, interactions can intrin-

sically involve more than two nodes. For example in the case of the interactions

between proteins in a cell [5], the proteins interact in complexes composed of multi-

ple proteins, which together have some function in the cell. It is possible that three

proteins could interact together in a single complex involving all three of them, or

they could also interact together in three separate complexes, each of which includes

only two of them. The network representation of these two cases would be the same:

three nodes connected into a triangle by three links. Networks thus map higher

dimensional interactions that intrinsically involve more than two nodes to cliques,

and so a large number of distinct higher dimensional structures can be mapped to
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a single network. While for some applications this simplification may be appropri-

ate, for others the ability to distinguish interactions of different dimension may be

important.

Simplicial complexes [7–9] are a generalization of networks that are able to encode

these many-body interactions between more than two nodes. Whereas networks are

constructed from nodes and links, simplicial complexes are constructed from some-

thing called simplices. These simplices represent groups of nodes for which there is

an interaction that intrinsically involves all of the nodes. Nodes and links are sim-

plices of dimension 0 and 1 respectively, while triangles are simplices of dimension 2

and tetrahedra are dimension 3. In general d-dimensional simplices represent inter-

actions involving d+1 nodes, and for d > 3 can be thought of as higher dimensional

generalisations of tetrahedra.

Simplicial complexes thus extend the descriptive power of networks by distin-

guishing between interactions involving different numbers of nodes. In the protein

interaction example, the three proteins interacting in a single complex would be

represented by a single triangle simplex, while in the case of the three ‘pairwise’

interactions between each pair of nodes, the interactions would be represented by

three links but no 2-dimensional simplex (this can be thought of as a triangular

‘hole’ in the network in contrast to the ‘filled’ triangle in the first case). Figure 1.1

illustrates this idea: panels A-F show a number of different simplicial complexes

which all correspond to the same ‘skeleton’ network shown in panel A. Note that

the network shown in panel A is itself a simplicial complex composed of simplices

of dimension 0 and 1 only.

This extra descriptive power can be helpful in a variety of ways. On a simple

level, modelling with simplicial complexes rather than networks could help us to

understand the evolution of systems for which group membership may influence the

dynamics, such as academic collaboration [10–12] amongst researchers or social net-

works [13–15].

On the other hand for some real world systems the absence of an interaction
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Figure 1.1: Figure showing a variety of simplicial complexes which all correspond
to the same ‘skeleton’ network. Panel A is a 1-dimensional simplicial complex (a
network) composed of 0-simplices (nodes) and 1-simplices (links). Panels B-F show
higher dimensional simplicial complexes. The coloured shapes indicate simplices
of different dimensions: blue indicates a 2-simplex (triangle), purple indicates a
3-simplex (tetrhadra) and green represents a 4-simplex. Many more simplicial com-
plexes could be constructed corresponding to the network shown in panel A.

between a group of nodes may be just as important as the presence of one. Re-

cently there has been much interest in the homological properties of complex sys-

tems [13, 16–18], which characterises the shape of data coming from the systems

in terms of its cavities at different dimension. In [17] the authors examined sim-

plicial complexes constructed from the fMRI data of patients who had either been

given psilocybin (the pschoactive element of magic mushrooms) or a placebo. The

two groups were distinguishable from each other by the homological structure of

their simplicial complexes. Another study [18] found that the responses to differ-

ent stimuli in a simulated neocortical circuit (a small region of a brain) could be

distinguished from the number of simplices at different dimensions and the Betti

numbers. Similar tools have also been applied to study social, infrastructure and

biological networks in [13] resulting in the identification of new classifications for

real networks not apparent using traditional network tools.

Simplicial complexes also have a use in the uncovering of hidden geometries.

In [19] it was found that the shape of a maze being explored by a mouse could be
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recovered by examining neuron coactivation data in the mouse’s brain. A simplicial

complex was constructed from the data on coactivation of a number of neurons in

the mouse’s brain that were known to be involved in the navigation of its surround-

ings. The topology of this simplicial complex was found to accurately reflect the

topology of the maze. Meanwhile in the unrelated area of quantum gravity models

of simplicial complexes have been developed with the aim of showing that discrete

combinatorial objects can produce an ‘emergent’ geometry [20–23]. These examples

demonstrate the relevance of simplicial complexes to another area of network science

that is currently receiving a lot of attention, namely networks with an underlying

geometry [24,25].

As can be seen from the examples mentioned above, simplicial complexes are a

useful tool for modelling many real systems. In comparison to networks they are

able to capture an even richer variety of highly complex structures in real systems,

and examining this structure has already enabled classification and distinction of

systems and their phenomena that has previously not been possible using the tra-

ditional tools of network science.

However the use of simplicial complexes as tools for network science is still

new, and there is a need for basic research to make such high-dimensional, high-

complexity data interpretable. Firstly, there is a need for new measures of the

structure of simplicial complexes that are relevant to the real systems being mod-

elled. Then there is a need to understand how these new measures of structure

relate together, and what they mean for the evolution or function of the systems

they describe.

To do this we need simple models of simplicial complexes that can act as bench-

marks or as null models to which real simplicial complexes can be compared or that

function as toy models that help reveal the connections between simple rules for

generating simplicial complexes and their resulting structure. By comparing real

simplicial complexes to these models we can answer questions such as how might

the simplicial complex have evolved? Does it have ‘significant’ higher level structure

that does not have an explanation in terms of more simple aspects of their structure
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(e.g. do higher level ‘homological’ properties follow naturally from simple ‘connec-

tivity’ properties like the degree)? And how can we best model a simplicial complex

based on incomplete data?

Recently models of simplicial complexes have been proposed that emulate their

evolution [11,26], that establish relations between their stochastic construction and

their homology [27,28] or other topological features [29–31], that have an emergent

geometry [30], or that can act as simple null models [8, 9, 27, 32]. In this thesis

we present a number of models of simplicial complexes that add to this combined

literature and help to build a picture of how the structural properties of simplicial

complexes relate to each other, how they emerge from simple construction rules, and

how we can model simplicial complexes in a statistically rigorous way.

The structure of this thesis is detailed below.

In Chapter 2 we define simplicial complexes and a few simple measures of their

structure. The purpose of this chapter is mainly to provide the basic concepts nec-

essary for understanding the rest of the thesis, although we do present some simple

results which have a relevance throughout the thesis.

Chapter 3 provides some background on models of networks and simplicial com-

plexes. These models have a particular relevance to our own models of simplicial

complexes which we present in Chapters 4, 5 and 6. Contained within this chapter

is also a brief introduction to entropy maximisation, which is relevant in Chapter 4.

Chapter 4 contains research first published in our paper Generalized network

structures: The configuration model and the canonical ensemble of simplicial com-

plexes [33]. In this chapter we present two maximum entropy models of simplicial

complexes, which generalise the network configuration model and canonical ensem-

ble (or soft configuration model). The primary purpose of these models is to act

as null models for simplicial complexes with given generalised degrees of the nodes

(definition in Chapter 2). We explore these models both analytically and numer-

ically via algorithms we develop to sample simplicial complexes from the models.
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We derive some important quantities associated with the models in terms of the

generalised degrees, including the model entropies.

These maximum entropy ensembles have a clear use as null models as they are the

most appropriate way to model simplicial complexes given knowledge of their gener-

alized degrees. Furthermore they allow for a statistically rigorous understanding of

the implications of particular choices of the generalized degrees on other aspects of

the structure of simplicial complexes. We believe that the models constitute a first

step in modelling simplicial complexes with equilibrium statistical mechanics tools

and that this work will open up new perspectives for investigating a new generation

of maximum entropy models of simplicial complexes.

Chapter 5 contains research first published in our paper Weighted Growing Sim-

plicial Complexes [34]. In it we present a model of a simplicial complex that is

weighted and growing. This model follows in the tradition of growing network mod-

els that seek to characterize the relations between simple growth mechanisms of

networks and their structural properties. The model evolves stochastically via the

addition of new simplices and the ‘reinforcement’ of existing simplices (increasing

their weight), and our interest is in the kinds of topologies that can be produced

and the distribution of weight over these topologies.

These ‘growth’ and ‘reinforcement’ dynamics differ in a significant way from

those in network models. They act on simplices of dimension d − 1 and d respec-

tively, with probabilities that depend on properties belonging to those simplices.

Thus the model dynamics is not limited to depending only on ‘node properties’ but

instead considers the properties of groups of nodes represented by simplices. We

study the model analytically, finding that relatively simple growth mechanisms for

generating simplicial complexes can give rise to a rich variety of weight distributions

and topologies. These mechanisms could provide a plausible explanation for the

origins of such distributions in real simplicial complexes.

Chapter 6 contains research first published in our paper Dense Power-law Net-

works and Simplicial Complexes [35]. In it we present a modelling framework for
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producing networks and simplicial complexes which are dense (have an average de-

gree or generalised degree that grows with the system size) and have power-law

distributions of the degrees or generalised degrees. The growth mechanisms of the

models contained within our framework are analogous to the Pitman-Yor process,

a stochastic process well-known among probability theorists for generating random

partitions with power-law distributions of block sizes.

Our models address the question of to what extent it is possible to produce net-

works that are both dense and power-law. On the one hand there are numerous

examples in the literature of real networks that appear to be dense and power-law.

On the other hand in [36] it has been suggested that such degree distributions are

ungraphical, i.e. no network can be produced with such a degree distribution with-

out adding links that connect a node to itself or add more than one link between

two nodes. Our models show that its is in fact possible to generate dense networks

that for the most part appear to be power-law.

Finally, in Chapter 7 we give our conclusions.
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Chapter 2

Basic definitions

In this chapter we introduce the basic concepts and definitions that will be used

throughout the thesis. The simplicial complexes that we use in this thesis should

more precisely be called abstract simplicial complexes. These are combinatorial

structures indicating interactions (or the lack of them) between collections of nodes.

An abstract simplicial complex defined on a set of nodes V is a collection of sub-

sets of V such that if some α ⊂ V is in the collection then every subset α′ ⊂ α

is also in the collection. These sets are called simplices, and can be visualised as

geometric objects: A node is a zero dimensional simplex, having the dimension of

a point, while links, triangles and tetrahedra are simplices of dimension 1, 2 and 3

respectively. In general we call a d-dimensional simplex a ‘d-simplex’ or sometimes

a ‘d-face’ when the simplex is itself a face of some higher dimension simplex.

The requirement that subsets of simplices must be simplices means that the faces

of a simplex must always be present as simplices in a simplicial complex. For ex-

ample if a 3-simplex on the nodes {1, 2, 3, 4} exists in a simplicial complex then its

lower dimensional faces {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}, {1}, {2}, {3}, {4} must all also be included in the simplicial

complex as well. This distinguishes simplicial complexes from the related concept

of hypergraphs in which there is no such restriction.

A d-dimensional simplicial complex is one consisting of simplices of dimension
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less than or equal to d with at least one simplex actually having dimension d. A pure

d-dimensional simplicial complex is one constructed exclusively from d-simplices and

their sub-simplices, i.e. every simplex of dimension less than d must be a face of

a d-simplex, there are no ‘independent’ simplices of dimension less than d. Figure

2.1 shows examples of a pure 1-dimensional simplicial complex (a network) in panel

A, and a pure 2-dimensional simplicial complex constructed from in panel B. In

contrast, in figure 1.1 of the introduction the only pure simplicial complex is panel

A. The structure of a pure d-dimensional simplicial complex is determined totally

by its d-simplices, which determine whether or not simplices of lower dimensions

are present in the simplicial complex. As such pure simplicial complexes are easier

to work with both analytically and numerically in comparison to impure simplicial

complexes. For this reason, the models of simplicial complexes that we explore in

this thesis the simplicial complexes are always pure.

In network science it is typical to represent networks using adjacency matrices

{aij}i,j=1,...N (where N is the total number of nodes in the network) with entries

aij = 1 if nodes i and j are connected by a link and aij = 0 otherwise. We define

an adjacency tensor of a simplicial complex similarly: Let Qδ(N) be the set of all

possible simplices of dimension equal to δ in a d-dimensional simplicial complex with

N nodes. The adjacency tensor {aα}α∈Qδ(N) has entries aα = 1 if the δ-simplex α is

present or aα = 0 if it is not. We write the set of all δ-simplices actually present in

the simplicial complex as Sδ(N) = {α ∈ Qδ(N)|aα = 1}. If the simplicial complex

is also pure, then the adjacency tensors {aα}α∈Qδ(N) and sets Sδ(N) for simplices

of dimension δ < d are completely determined by {aα}α∈Qd(N), as in this case a

δ-simplex may only exist if it is a face of some d-simplex. A pure d-dimensional

simplicial complex is thus entirely defined by its adjacency tensor {aα}α∈Qd(N).

In the next sections we define some simple measures of the local structure of

a simplicial complex: the generalised degrees and generalised strengths of the sim-

plices.
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Figure 2.1: (Color online) Examples of simplicial complexes of dimension d = 1
(panel A) and d = 2 (panel B) are shown. Simplicial complexes of dimension d = 1
are simple networks. Simplicial complexes of dimension d ≥ 2 characterize inter-
actions occurring between more than two nodes, (specifically interactions occurring
between d+ 1 nodes).

2.1 Generalised degrees

The simplest measure of the local structure around a node in a network is its degree.

The degree of a node is the total number of links it is a part of, and so is a simple

measure of how connected it is to the rest of the network. In [31] the concept

of degree was generalised to describe the connectivity of simplices in a simplicial

complex. We use this definition of generalised degree extensively in the research

presented in this thesis. Unlike the concept of degree in network science, it is not

only nodes that have a generalised degree but simplices of higher dimension as well.

The generalised degree kd,δ(α) of a δ-simplex α is the number of d-simplices that α

is a face of, i.e.

kd,δ(α) =
∑

α′∈Qd(N)|α′⊇α

aα′ , (2.1)

where Qd(N) is the set of all possible d-simplices that could be constructed on N

nodes, labelled 1 to N . The generalised degree kd,δ(α) therefore measures how con-

nected the δ-simplex α is at dimension d. It should be noted that rather than saying
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Figure 2.2: Figure showing a 2-dimensional simplicial complex composed of nodes,
links and triangles. Node 7 has the generalised degrees k2,0(7) = 3 and k1,0(7) = 4
counting the number of triangles and links that 7 participates in respectively. In
contrast node 3 has the same number of triangles as node 7, k2,0(3) = 3 but a
different number of links k1,0(7) = 5. The generalised degree is also defined for the
links in this simplicial complex. The link (2, 7) participates in two triangles and so
k2,1(2, 7) = 2.

the generalised degree of α we should probably say a generalised degree of α as we

can measure the connectivity of α at different dimensions by varying d (and in fact

the generalised degree k1,0(i) of a 0-simplex i is simply the standard network degree

of i). Figure 2.2 shows an example of the different generalised degrees that can be

calculated for the simplices of a 2-dimensional simplicial complex.

The generalised degrees in a simplicial complex are defined for simplices of all di-

mensions and characterize the connectivity of each simplex at each higher dimension,

and so therefore carry very detailed information about the connectivity structure

of the simplicial complex in comparison to the information carried by the degrees

of the nodes in a network. An obvious question is how do the generalised degrees

of simplices of different dimension δ or measured at different dimension d relate to

each other? When does fixing one fix the other, and can we find exact combinatorial

expressions relating the quantities? If one generalised degree does not fix another,

can we still make some kind of statistical argument about what values the other gen-

eralised degree could likely take, given our observation of the first? These questions

provide a key part of the motivation for the research we present in Chapter 4, first
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published in our paper Generalized network structures: the configuration model and

canonical ensemble of simplicial complexes [33]. The bulk of our results from [33]

are covered in Chapter 4, however we present here two simple but important results

about the generalised degrees that have a broader importance in our research.

2.1.1 Combinatorial relation for the generalised degrees

For a δ-simplex α we found that its generalised degree kd,δ(α) may be related to

the generalised degrees of the δ′-simplices of which α is a face with the following

combinatorial expression:

kd,δ(α) =
1(

d− δ
δ′ − δ

) ∑
α′∈Qδ′ (N)|α′⊇α

kd,δ′(α
′). (2.2)

The above equation is true for both pure and impure simplicial complexes. On the

left hand side the generalised degree kd,δ(α) counts the number of d-simplices for

which α is a face. On the right hand side in the sum, α′ is a δ′-simplex of which α is

a face and the generalised degree kd,δ′(α
′) counts the number of d-simplices incident

to α′. Every d-simplex of which α′ is a face, α must also be a face, as α ⊂ α′ and so

it is the same d-simplices being counted on both sides of Eq. 2.2. The expression

may be understood by considering how many times each of the d-simplices which

are counted on the left side are counted on the right side. Each of these d-simplices

contains d + 1 nodes, and so therefore also contains
(
d+1
δ′+1

)
δ′-simplices, however

not all of these δ′-simplices contain α. The total number of δ′-simplices in the d-

simplex for which α is a face is instead
(
d−δ
δ′−δ

)
, as we are asking how many distinct

combinations of δ′ − δ nodes we can make from the d − δ nodes in the d-simplex

that aren’t also in α. Noting also that any δ′-simplex which is not a face of any

d-simplex will contribute 0 to the sum on the right hand side of 2.2, we see that

every d-simplex counted once on the left hand side will be counted exactly
(
d−δ
δ′−δ

)
times in the sum on the right hand side and so dividing the sum by this amount

allows us to write our expression.
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2.1.2 Structural cutoff for simplicial complexes

Another relatively simple result from our paper [33] is an expression for the struc-

tural cutoff for the generalised degrees of the nodes in a pure d-dimensional simplicial

complex. In network science the structural cutoff [37] for the degrees of the nodes

in a network is the maximum degree that a node can possess before the network

must necessarily have degree correlations. We say a network is ‘uncorrelated’ when

the degrees of the nodes at either end of a randomly chosen link are independent.

This concept is elaborated on in detail in Chapter 4, but here we just say that this

independence requirement on the degrees of nodes at opposite ends of a link imposes

a restriction on the maximum degree that nodes in the network can have. Above

this ‘structural cutoff’ it is impossible for the network to be uncorrelated.

The network structural cutoff K1 is given by [37]

K1 = (N〈k〉)
1
2 . (2.3)

Networks where the maximum degree is less than K1 can be correlated or uncorre-

lated while networks where the maximum degree is greater than K1 have unavoidable

natural correlations.

For sparse networks with a finite average degree that does not grow with num-

ber of nodes in the network the cutoff shown in Eq. (2.3) scales like N
1
2 . Most real

networks that have been studied are sparse, however dense networks with diverging

average degree do exist [38–40] and are the subject of interest in Chapter 6 of this

thesis. More specifically, in Chapter 6 we are interested in producing networks and

simplicial complexes that are simultaneously dense and and scale-free, meaning that

the degrees of the nodes follow a power-law distribution P (k) ∼ k−γ. As will be

discussed in the next chapter and also in Chapter 6, in order for a network to be

both dense and scale-free it must have a exponent in the range γ ≤ 2. The struc-

tural cutoff in such a network has been studied in [39]. Unlike in the sparse case,

for dense scale-free networks, imposing any kind of maximum degree kmax on the

degree distribution will affect the average degree 〈k〉. In fact the average degree

must scale like 〈k〉 ∼ k2−γmax for N � 1. In [39] this fact was used in combination with
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the equation for the structural cutoff that we have given here in Eq. (2.3) to obtain

the scaling for the structural cutoff of a dense scale-free network which is K1 ∼ N
1
γ .

In [33] we derived a structural cutoff for pure d-dimensional simplicial complexes

with given sequence of the generalised degrees of the nodes {kd,0(i)}i=1,...N . Each

node i has a specified number of d-simplices that it takes part in, and we say that

the simplicial complex is uncorrelated if the generalised degrees of the nodes of a

randomly chosen d-simplex are independent of each other. Later in Chapter 4 we

show that the maximum generalised degree Kd of the nodes in the simplicial complex

for which this can be true is

Kd =

[
(〈k〉N)d

d!

]1/(d+1)

. (2.4)

The quantity Kd is the structural cutoff in a pure d-dimensional simplicial complex,

above which natural correlations must exist in the simplicial complex.

Eq. (2.4) reduces to the network structural cutoff given in Eq. (2.3) for d = 1.

Interestingly Kd scales like (〈k〉N)d/(d+1), i.e. it is increasing with an exponent that

is larger for larger dimensions d. For sparse networks the structural cutoff thus

scales like Nd/(d+1). For dense simplicial complexes with scale-free distribution of

the generalised degrees the average generalised degree is the same as in the dense

scale-free network, 〈k〉 ∼ k2−γmax. Setting kmax = Kd yields the scaling Kd ∼ N
d

1−(1−γ)d .

2.2 Generalised strengths

In some of the simplicial complexes considered in this thesis the simplices have an as-

sociated weight. These weights could represent intensities of interaction, or perhaps

the number of instances of an interaction (e.g. the number of papers coauthored by

a ‘simplex’ of academics).

Analogously to how we record the presence of simplices in a simplicial complex,

we record the weights of the simplices in a weight tensor {wα}α∈Qd(N). We can
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then define the generalised strength sd,δ(α) of a δ-simplex in a way that mirrors our

definition of the generalised degree:

sd,δ(α) =
∑

α′∈Qd(N)|α′⊇α

aα′wα′ . (2.5)

The generalised strength above measures the total weight of the simplices of di-

mension d of which α is a face. Depending on the interpretation of the weights

the inclusion of aα′ in the sum on the right hand side of Eq. 2.5 may not be nec-

essary, for example if a non zero weight wα′ > 0 implies aα′ = 1 while wα′ = 0

implies aα′ = 0. Like the generalised degrees, the generalised strengths constitute a

rich source of information about the structure of a simplicial complex. In order to

interpret this information it would be useful to understand the basic relationships

amongst the generalised strengths of different simplices at different dimension and

also their relation with the generalised degrees.

In our paper Weighted Growing Simplicial Complexes [34] (presented in Chapter

5) we derive a combinatorial relation between the generalised strength sd,δ(α) of a

δ-simplex α and the generalised strengths of the δ′-simplices of which α is a face. In

particular we find

sd,δ(α) =
1(

d− δ
δ′ − δ

) ∑
α′∈Qδ′ |α′⊇α

aα′sd,δ′(α
′). (2.6)

The above expression is of course very similar to that given in Eq. 2.2 relating the

generalised degrees, and is easily justified following the same logic as we used to

justify Eq. 2.2.

The way that the generalised strengths relate to the generalised degrees con-

veys interesting information about the distribution of weight across the simplicial

complex. In studies of real weighted networks [41–44] it has been found that many

networks fall into one of two classes: class I networks in which the strengths of the
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nodes scales linearly with the degrees:

si ∝ ki, (2.7)

and class II networks in which the strength scales super-linearly with the degree:

si ∝ kθi wth θ > 1, (2.8)

In the first of these classes, the weight must be distributed homogeneously across

the links of the network, while in the second nodes with higher degree have links

with higher average weight. We refer to these correlations as weight-topology correla-

tions. Examples of class I networks include collaboration networks, while examples

of networks in class II include the networks of flight routes between airports where

the weights measure the number of passengers using each route.

In Chapter 3 we discuss as background a model first proposed in [43] that can

produce weighted networks in either class I or class II depending on competing

effects or growth and reinforcement. This model shows that the two distinct classes

can be produced within a single framework based on simple growth mechansims.

In Chapter 5 (reporting results of our paper [34]) we propose a model of a growing

simplicial complex that generalises the network model of [43]. In our model the

stochastic evolution depends on the generalised degrees and generalised strengths

of the simplices, and we find that it is possible to produce linear and super-linear

scalings of generalised strength with generalised degree as well as a third possible

scaling: sd,δ(α) ∝ eβkd,δ(α). Interestingly these different ‘classes’ can be observed

within a single simplicial complex for faces of different dimension δ.

2.3 Skeleton networks

In the introduction to this thesis we highlighted the ability to distinguish many-body

interactions from cavities as a key advantage of modelling real systems with simpli-

cial complexes compared to networks. However, models of simplicial complexes can

have a use even when we ignore this ‘higher order’ information and focus only on
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the network structure that remains when we neglect all information about simplices

with dimension greater than 1. We call these structures skeleton networks and they

are formed from the 0-simplices (nodes) and 1-simplices (links) of a d-dimensional

simplicial complex.

In this thesis we present a number of generative models of simplicial complexes

which are designed to explore the relations amongst structural properties of the

simplicial complexes such as the generalised degrees and generalised strengths, or

to examine what effect growth processes depending on these properties have on the

global structure of the simplicial complexes. On the one hand, studying the skeleton

networks produced by these models could give insight into hidden simplicial complex

structure underlying systems for which only network data is available, on the other

hand the skeleton of a d-simplex is a clique of d + 1 nodes and our models can be

viewed as generative models based on the structural properties belonging to ‘motifs’

that in our case happen to be cliques.

In [33] (Chapter 4 of this thesis) and [34] (Chapter 5 of this thesis) we study the

skeleton networks produced by the respective models presented in the papers.

In [33] the model we propose is a maximum entropy model based on constraints

on the generalised degrees of the nodes. The theory behind this is discussed ex-

tensively in Chapters 3 and 4, but in short this means that the model is the ‘least

biased’ assignment of probability to the set of all simplicial complexes such that the

nodes have exactly the generalised degrees specified by the constraints. Other prop-

erties of this model can in a sense be considered to be a natural consequence of the

generalised degrees of the nodes. We examine the effect that the generalised degrees

have on the structure of the skeleton network, in particular on the clustering (which

quantifies the tendency for the ‘friends’ of a node to be friends with each other).

Our maximum entropy model provides us with a rigorous way to study the effect of

the ‘propensity to group membership’ (characterised by the generalised degree of a

node) on the clustering (or any other measurable property) of a network.

In [34], we propose a model of a growing and weighted simplicial complex. The
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goal is to examine the effects that different growth mechanisms and simplex dimen-

sion have on the distributions of the generalised degrees and strengths. We also

examine the effect these things have on the degree distribution of the skeleton net-

works. Pivotal early discoveries of network science were that power-law distributed

degree distributions P (k) ∝ k−γ were ubiquitous in real networks [1–3,45] and that

networks with this property can be generated through a combination of growth and

preferential attachment of new nodes to existing nodes with high degree [45]. Since

then a range of other models have been proposed which exploit a variety of mecha-

nisms to produce power-law networks [24, 25, 46–55]. In [34] we show that a model

in which the new nodes attach to simplices of dimension greater than 0 with proba-

bilities dependent on the properties of these higher dimensional simplices can cause

power-law distributions of the degrees in the skeleton network. This demonstrates

that models exploiting properties belonging to simplices/cliques rather than solely

node-centric properties can be useful for explaining the structure observed in real

networks.
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Chapter 3

Background: Models of networks

In the previous chapter we defined simplicial complexes and showed how simple

measures of structure in networks could be extended for use in simplicial complexes.

These measures of structure provide us with a language to describe simplicial com-

plexes, and allow us to characterize the similarities or differences between them. We

would like to go further though, and understand what the structural properties we

have defined really mean for a simplicial complex.

For example, how do the rules governing the evolution of a simplicial complex

affect its structure, and can we make an informed guess at these rules based on

observing the structure of a real simplicial complex? How do different properties

(e.g. the generalised degrees at different dimensions) relate to each other? What is

the fairest way to model a simplicial complex based on incomplete data? And what

effect do structural properties have on dynamic processes (e.g. diffusion, epidemics)

occurring on a simplicial complex?

Models help us answer these kinds of questions. They allow us to understand the

dependences and relations between the structure of simplicial complexes, their evo-

lution and processes occurring upon them. They help us to form hypotheses about

the origins of simplicial complexes, to make informed guesses at their structure in

the absence of complete data, and to make generalisations and predictions about

simplicial complexes sampled from the same source.
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In order for models to be capable of achieving these goals they need to be well

designed. In particular, models should incorporate the assumptions we make about

simplicial complexes or their evolution in a transparent way, and shouldn’t incorpo-

rate additional unintended assumptions or biases. Introducing an element of ran-

domness into a model is a good way of reducing unintended biases. By controlling

one aspect of a simplicial complex (such as a specific set of its structural properties,

or the probability with which new simplices are added to it) but making everything

else ‘as random as possible’, we can in a sense isolate the effects of the controlled

aspect on the type of simplicial complex produced.

The models of simplicial complexes presented in this thesis are random. They

fall into two categories: explanatory models and null models. Explanatory models

are those in which our motivation is to develop a method for generating simplicial

complexes with a given set of properties, and that could plausibly explain how such

properties emerge in real simplicial complexes. Null models instead answer the ques-

tion, what is the ‘best’ way to model a simplicial complex given it has a given set

of properties?

Our models extend/generalise known models of networks. In this background

chapter we discuss models of networks which have a relevance to the simplicial

complex models we present in Chapters 4-6, and explain the key ideas behind them.

3.1 Explanatory network models

Network science seeks to build a common mathematical framework to understand

real world complex systems that on a superficial level may not seem related. The

belief that building such a framework might be possible has been motivated by the

discovery around twenty years ago that networks arising in diverse areas often have

a striking resemblance to each other [1–3].

The resemblances referred to here are the ‘universal properties’ present in almost

all real networks that have been observed, namely power law distributions of the
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degrees, short average path lengths, an abundance of short loops and non-trivial

community structure [1–3].

The development of explanatory models of networks which generate one or more

of these properties can provide insight into the underlying mechanisms that produce

the same properties in real networks. The objective with these models is not neces-

sarily to create the most ‘realistic’ networks but to isolate aspects of the generation

process that result in the desired property(s). These ‘aspects’ can be refined and

combined in future models in order to produce networks which better resemble real

networks while at the same time remaining simple and interpretable.

Some famous early models which were shown to reproduce universal properties

of complex networks include the Barabási-Albert model [45] which uses a ‘rich-get-

richer’ mechanism to produce power-law degree distributions and the Watts-Strogatz

model [56] which produces ‘small-world’ networks with low average path lengths and

high clustering.

In the next sections we discuss a number of explanatory models of networks and

simplicial complexes which have a particular relevance to our own explanatory mod-

els of simplicial complexes that we present in Chapters 5 and 6.

In the Section 3.1.1 we briefly discuss the Barabási-Albert model and other mod-

els that produce power-law distributions of the degrees of the nodes. These models

and the preferential attachment mechanism that most of them rely on are of partic-

ular relevance to the simplicial complex models that we present in Chapters 5 and 6.

In Section 3.1.2 we discuss a model of a weighted network [43] closely related to

the Barabási-Albert model, in which competing effects of growth and reinforcement

produce interesting weight-topology correlations observed in real weighted networks.

Our model of a weighted simplicial complex presented in Chapter 5 is a generalisa-

tion of this model, and the mean-field techniques used in [43] and Section 3.1.2 are

of particular relevance to similar calculations in both Chapters 5 and 6.
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In Section 3.1.3 we present a model of a growing d-dimensional simplicial com-

plex [57]. This model explores the effects of dimension and attachment mechanisms

on the topologies of the simplicial complexes, and is closely related to the model of

a weighted simplicial complex presented in Chapter 5.

3.1.1 Producing Scale-free networks with growth and pref-

erential attachment

In this section we briefly discuss the Barabási-Albert model and other models that

produce power-law distributions of the degrees of the nodes. The degree distribution

P (k) of a network is power-law if it follows

P (k) ∝ k−γ, (3.1)

for k � 1, where γ is the exponent of the distribution and for most real networks

is in the range (2, 3] (a much smaller class of networks have exponent γ ∈ (1, 2],

and are the subject of Chapter 6). Power-law networks with γ ≤ 3 have a divergent

second moment and for this reason are called scale-free as they have no ‘typical’ scale.

The Barabási-Albert (BA) model produces scale-free networks with exponent

γ = 3 through a combination of growth of the network through the addition of new

nodes and new links and the preferential attachment of those new links to existing

nodes with high degree. The model progresses in discrete time steps, starting from

some suitable initial network at time t = 1. At each subsequent time step a new

node is added to the network with m links. Each of these links connects to an

existing node with a probability proportional to its degree. For an existing node i

with degree ki at time t the probability mΠi of gaining a new link is equal to

mΠi = m
ki∑
j kj
≈ ki

2t
, (3.2)

where Πi is the probability that a given link attaches to i. Eq. (3.2) implements

the preferential attachment mechanism according to which nodes that already have
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high degree ki are more likely to further increase their degree by acquiring new links.

The degree distribution P (k) of the BA model can be evaluated exactly in the large

network limit N(t)� 1 and is given by [48,58]

P (k) =
2Γ(m+ 2)

Γ(m)

Γ(k)

Γ(k + 3)
' 2m(m+ 1)k−3, (3.3)

where the latter approximated expression describes the tail of the distribution where

k � 1.

The BA model is thus a simple model of network growth that produces scale-

free networks and is also analytically amenable. At each time step of the model, the

selection of existing nodes is random with a probability that is proportional to the

degree of the node and has no dependence on any other aspect of the structure of

the network or on any hidden variables or attributes belonging to the nodes. Impor-

tantly, the m existing nodes selected at each time step are selected independently of

each other. In this sense the model can be thought of as isolating the effect of the

linear preferential attachment mechanism from other considerations.

Another set of models that exploit the preferential attachment mechanism to

produce scale-free networks include those that grow by ‘node copying’ [52–55] where

new nodes copy a subset of the links of (uniformly) randomly selected nodes. This

results in a form of preferential attachment, as the probability that an existing node

gains a new link is equal to the probability that one of its neighbours is copied and

so is proportional to its degree. Naturally, the nodes that a new node selects to be

its neighbours are in these models not independent but are always a short distance

from each other. Models of this type thus introduce a new ‘bias’ in comparison with

the BA model which can have the effect of inducing shorter average path lengths

and a higher clustering in the networks produced [59].

The BA model and these copying models form part of a family of models ca-

pable of producing scale-free networks, each with its own set of intentional biases

that have been introduced with the aim of replicating some aspect of the structure

of real networks. Other such models include those based on a hidden hyperbolic
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geometry [24, 25], models that assume that nodes possess an intrinsic ‘attractive-

ness’ [46, 47, 58] that affects their ability to attract new links, models that use

non-linear forms of preferential attachment [48] and models based on fractals or

hierarchically arranged motifs [49–51]. By studying these models analytically or nu-

merically a picture may be built of the effects of different construction methods on

networks topologies that can lend insight into the possible processes underlying real

networks and help guide the development of more sophisticated and realistic models.

3.1.2 Weight-topology correlations and the weighted BA

model

In this section we discuss a model [43] of a network that is both weighted and grow-

ing. This model is an explanatory model designed to explore the effects of competing

processes of growth and reinforcement on the emergence of the weight-topology cor-

relations which were mentioned in Section 2.2 of the previous chapter.

In particular the model is an adaptation of the BA model, in which each link

(i, j) in the network has a weight wij associated to it, and where these weights evolve

in time. The model can produce class I networks with homogeneous distributions of

the weights across the links or class II networks in which high degree nodes possess

links with higher average weight than low degree nodes.

As in the BA model, this model progresses in discrete time steps, starting from

some suitable initial network at time t = 1. At each subsequent time step two

processes take place:

A) Growth process:

A new node arrives and m new links with initial weight w0 are created between

the new node and existing nodes. The probability Πi that a given node i with

degree ki is selected by one of the new links is given by

Πi =
ki∑
i ki

. (3.4)
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B) Reinforcement process:

At this step m′ existing links are selected and their weights are increased by

w0. A link (i, j) with weight wij is selected for reinforcement with probability

Π̃ij proportional to its weight, i.e.

Π̃ij =
wij∑
ij wij

. (3.5)

The growth process is independent of the weights of the links, and when ignoring

these weights the model is exactly the BA model described in the previous section.

Process B implements a preferential attachment mechanism for the weights accord-

ing to which links with larger weights are more likely to gain additional weight.

The parameters m and m′ are the number of links added or reinforced at each time

step respectively and the choice of values of these parameters relative to each other

determines the distribution of the weights over the links [43]. In fact, the model

produces class I networks (s ∝ k) when m > m′ and class II networks (s ∝ kθ,

θ > 1) when m < m′ [43]. In particular, for large t the strengths of the nodes scale

with the their degrees like

s(k) ∝


k if m > m′,

k log k if m = m′,

k2λ if m < m′,

(3.6)

where λ = m′

m+m′
is the proportion of the total weight added to the network via the

reinforcement mechanism and s(k) is the average strength of a node with degree k

in the network. Note that 2λ > 1 when m < m′ indicating that it this case the

network belongs to class II.

In the rest of this section we show how these results were first derived in [43].

The calculations below are especially relevant to the model of a simplicial complex

that we present in Chapter 5, which generalises the weighted BA model presented

here to simplicial complexes of dimension d. The techniques employed are also rel-

evant to calculations performed in Chapter 6.
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The nodes of the weighted BA model are differentiated from each other by the

time at which they arrived in the network, which we refer to as their birth time.

In [43] the average strength s(k) of nodes with degree k is approximated by making

the mean-field assumption that the degree and strength of a node i with birth time

ti are well approximated by their expected values conditioned on the birth time, i.e.

ki ≈ k(ti) , si ≈ s(ti). (3.7)

As long as k(ti) provides a one-to-one relation between birth times and (expected)

degrees then s(k) can be approximated by using ti(k) in s(ti).

In [43] the mean-field degrees and strengths of nodes born at ti are calculated

by making the further approximation that the degrees, strengths and time t may

be treated as continuous variables, resulting in differential equations that can be

solved to obtain the degrees and strengths. For the degree of a node i born at ti

this differential equation is

∂

∂t
ki = mΠi = m

ki∑
i ki
≈ ki

2t
, (3.8)

where in the last equality we have used the fact that
∑

i ki is equal to 2 times the

number of links in the network at time t and so
∑

i ki ≈ 2mt for large t. Eq. (3.8)

has initial condition ki = m at time t = ti and is solved to obtain

ki = m

(
t

ti

) 1
2

. (3.9)

The above equation can also be used to derive the degree distribution of the model

by observing that within the mean-field approximation the proportion of nodes with

degree greater than some value k is equal to t∗

t
where t∗ solves k = m

(
t
t∗

) 1
2 . It is

simple to check that this results in the degree distribution

P (k) =
d

dk
P (ki < k) =

d

dk

[
1− t∗

t

]
= 2m2k−3. (3.10)

The closeness of this result to the exact result [48, 58] shown in Eq. (3.3) supports
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the validity of the mean-field approach taken in [43] and which we present here.

To calculate the mean-field strength of a node born at ti we note that si =∑
j wijaij becomes si =

∑
j wijpij in the mean-field approximation, where pij is the

probability of the link (i, j) and we make the mean-field approximation wij = wij

(the expected value of wij). The probability that (i, j) increases at some time

t is given by Eq. (3.5) and so similarly to the degrees a mean-field continuous

approximation of the weight can be obtained from the differential equation

∂

∂t
wij = w0Π̃ij = w0m

′ wij∑
ij wij

≈ λ
wij
t
, (3.11)

where we have used
∑

ij wij ≈ (m′ +m)w0t is the total weight that has been added

to the network by time t and λ = m′

m+m′
. All links start with weight w0 and so the

initial condition is wij = w0 at time t = max(ti, tj). The solution is thus

wij = w0

(
t

tij

)λ
, (3.12)

where tij = max(ti, tj).

To calculate the probability pij that the link (i, j) actually exists in the network,

assume that ti < tj then the pij is the probability that at time t = tj the new node

j attaches one of its m initial links to i. Using Eq. (3.4) and the mean-field degree

given in Eq. (3.9) pij is found to be

pij = mΠi(t = tj) =
ki(t = tj)

2tj
=
m

2
(titj)

− 1
2 . (3.13)

Notice that Eq. (3.13) is symmetric with respect to i and j so that it also holds

when ti > tj.
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Using Eq.s (3.12) and (3.13) the mean-field strength can be calculated:

si =
∑
j

wijpij ≈ w0
m

2
tλt
− 1

2
i

∫ t

0

dtjt
− 1

2
j t−λij

= w0
m

2
tλt
− 1

2
−λ

i

∫ ti

0

dtjt
− 1

2
j + w0

m

2
tλt
− 1

2
i

∫ t

ti

dtjt
− 1

2
−λ

j (3.14)

where in the first line the approximation being made is to integrate over the birth

times of the nodes rather than summing over the nodes, and in the second line the

two integrals correspond to the contributions when tij = ti and tij = tj respectively.

Evaluating these integrals gives

si =

 w0m
(
1− 1

1−2λ

) (
t
ti

)λ
+ w0m

1
1−2λ

(
t
ti

) 1
2

if λ 6= 1
2
,

w0
m
2

(
t
ti

) 1
2
[
1 + log

(
t
ti

)]
if λ = 1

2
.

(3.15)

Keeping only the leading terms when t
ti
� 1, gives

si ∝



(
t
ti

) 1
2

if λ < 1
2
,(

t
ti

) 1
2

log
(
t
ti

)
if λ = 1

2
,(

t
ti

)λ
if λ > 1

2
.

(3.16)

Finally, using the fact that the degree scales like k ∝
(
t
ti

) 1
2
, Eq. (3.16) becomes Eq.

(3.6).

This model demonstrates that class I and class II networks can be produced

within the same framework based on simple mechanisms of growth and reinforce-

ment. These classes were originally observed in real weighted networks and so the

model provides a possible hypothesis about how such networks might evolve. In [43],

the mean-field results were compared to numerical simulations of the model and

found to be in agreement, validating the mean-field continuous approach taken.

In Chapter 5 we apply a similar approach to an original model of a weighted
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simplicial complex evolving via growth and reinforcement processes. Depending on

the model parameters the simplicial complexes produced can produce a wide variety

of topolgies and scalings of generalised strength with generalised degree. Our model

shows the effects of dimensionality on weight-topology correlations and for particular

choices of parameters in fact reduces to the weighted BA model discussed in this

section.

3.1.3 Network Geometry with Flavor

In this section we discuss a model [57] of a growing simplicial complex which has

particular relevance to the model we present in Chapter 5. This model is called the

Network Geometry with Flavor (NGF), and it can produce pure d-dimensional sim-

plicial complexes with a variety of topologies including chains, higher dimensional

manifolds and scale-free networks with small-world properties and non-trivial com-

munity structure [57].

The model explores the effects of growth mechansims and dimensionality on the

properties of simplicial complexes. In this section we introduce the NGF and dis-

cuss some of the results in [57] that have particular relevance to our original model

presented in Chapter 5. All results shown in this section are the work of [57] unless

stated otherwise.

As in the models discussed in the previous two sections, the NGF progresses in

discrete time steps. At time t = 1 the model starts with a single d-simplex and its

faces. At each time step a new node appears and forms a single d-simplex with a

randomly selected (d−1)-face. The probability with which a face is selected depends

on the generalised degree of the face and the model parameters.

In particular the probability that a (d− 1)-face α is selected is equal to

Πd−1(α) =
1

Zt
e−βεα(1 + snα), (3.17)

where s is a parameter called the flavor, nα = kd,d−1(α) is called the saturation of
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α, εα is an energy associated to the face α governing the propensity of α to attract

new d-simplices, β is the inverse temperature which controls the relative effects of

the energies of the faces in comparison to the effect of the saturation, and Zt is the

partition function which normalises Eq. (3.17) and is given by

Zt =
∑

α∈Sd,d−1(t)

e−βεα(1 + snα). (3.18)

The energies associated to the faces allow for the introduction of a heterogeneity

in the ‘attractiveness’ of simplices of the same dimension, with β regulating the

strength of this effect. The authors explore the NGF for β = 0 and β > 0, how-

ever in this section we outline their results for β = 0 only, as these are the results

relevant to our own model in Chapter 5. For certain parameter choices our model

corresponds to the NGF with β = 0.

Setting β = 0 the Eq.s (3.17) and (3.18) become

Πd−1(α) = 1
Zt (1 + snα), Zt =

∑
α∈Sd,d−1(t)

(1 + snα). (3.19)

The flavor s has an important effect on the topological properties of the simplicial

complexes produced. Selection of s = −1 imposes the constraint that the gen-

eralized degree kd,d−1(α) of a (d − 1)-face α can only take the values 1 and 2, or

equivalently imposes that the saturation nα can only take values 0 (unsaturated) and

1 (saturated), which leads to the simplicial complex produced being a d-dimensional

manifold. Choosing s = 0 or s = 1 removes this constraint, and gives a selection

probability Πd−1(α) that is uniform on the set of all (d − 1)-faces for s = 0 and a

form of preferential attachment with Πd−1(α) ∝ kd,d−1(α) for s = 1.

In [57], asymptotically exact expressions for the generalised degree distributions

are derived for faces of dimension 0 ≤ δ ≤ d−1 (i.e. for all faces). In [57] this is done

using a master equation approach which we do not show here. In our model [34] that

we present in Chapter 5 we instead take a mean-field approach similar to the one

shown in the previous section on the weighted BA model, yielding the same results

as found in [57]. In particular the distributions of the generalised degrees kd,δ(α) of
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Table 3.1: Distribution of generalized degrees of faces of dimension δ in a d-
dimensional NGF of flavor s at β = 0.

flavor s = −1 s = 0 s = 1
δ = d− 1 Bimodal Exponential Power-law
δ = d− 2 Exponential Power-law Power-law
δ ≤ d− 3 Power-law Power-law Power-law

faces of dimension δ can be bimodal, exponential, or power-law. The dependence of

the generalised degree distributions on s, d and δ is shown in table 3.1.

For s = 1 the generalised degree distributions of all faces is power-law, while

for s = 0 the generalised degrees of the (d − 1)-faces have an exponential distri-

bution and all faces of lower dimension are power-law distributed. For s = −1,

the simplicial complex produced is a d-manifold and so the generalised degrees of

the (d − 1)-faces is bimodal, while for faces of dimension d − 2 the distribution is

exponential and then for all lower dimensions the distributions are again power-law.

These distributions are understood in [57] in terms of the effective attachment

mechanism felt by the faces of lower dimension. The probability that the generalised

degree kd,δ(α) of some δ-face α is increased in a given time-step is dependent on the

number of (d − 1)-faces that α is a part of and on the generalised degrees of these

(d− 1)-faces. These can be related to kd,δ(α), which in turn allows for a calculation

of the attachment probability for α in terms of its own generalised degree kd,δ(α).

By effective attachment mechanism we mean the type of dependence this attach-

ment probability has on the generalised degree of the face: a linear dependence on

kd,δ(α) indicates preferential attachment leading to power-law distributions, while

a constant dependence indicates a uniform attachment mechanism leading to an

exponential distribution. A more complete discussion of this phenomena is given in

Chapter 5.

These results show that there is a significant interplay between dimension, at-

tachment mechanism, and generalised degree distributions. The model also presents

a new way to produce scale-free networks. In the simplicial complexes produced by

the model the degree Ki of a node i in the skeleton networks is related to its gener-
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alised degree kd,0(i) by

Ki = d− 1 + kd,0(i). (3.20)

This fact can be seen from the fact that a newly created node has kd,0(i) = 1 and

Ki = d, and for each subsequent d-simplex it gains, both quantities are increased by

exactly 1. The consequence of this fact is that for d−s ≥ 2 the skeleton networks are

always power-law (in fact for d and s in this range the distributions have a diverging

second moment indicating that they are scale-free). The NGF is thus also part of

the family of models discussed in Section 3.1.1 that can produce scale-free networks.

3.2 Null models of networks

In the previous section, the explanatory models of networks that we discussed were

formulated as ‘theories’ about how a real network might be constructed. The aim

was to isolate the effects of the construction methods on structural properties of the

networks produced. In this section we instead seek to develop null models that can

isolate the effects of network structural properties on each other.

These models are ensembles of simplicial complexes, i.e. a set of simplicial com-

plexes {G} with a probability distribution P defined on it. Many of the explanatory

models discussed in the previous section exploited ‘randomness’ to reduce unin-

tended bias in the construction method. Similarly, in the null models we discuss

here, we aim to eliminate unintended bias by finding the ‘maximally random’ as-

signment of probability P such that the networks produced have a given set of

constrained properties.

These null models allow us probe the effects of the constrained properties on

other secondary properties by asking how probable it is to observe these secondary

properties given the constrained properties. If networks with a given set of secondary

properties occur with high probability in a given model then those properties can

be considered to be a ‘natural’ consequence of the constrained properties, while if
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they occur with low probability it suggests that the secondary properties cannot be

considered to have arisen as a consequence of the constrained properties.

As we shall see later in this section, Erdös-Renyi random networks (in which

the links are present independently of each other with equal probability) are a very

simple example of one of these ‘maximally random’ network models in which the

only constrained property is the total number of links. The probability in the Erdös-

Renyi model of observing the scale-free degree distributions or high clustering found

in many real networks is in fact very low, indicating that these properties do not

have simple explanations in terms of the density of links in a network. Other null

models based on different constrained properties that better describe real networks

have been developed [60–63]. The hope is that by looking for the simplest set of

constrained properties that generate the most realistic networks we can identify the

most ‘important’ structure in real networks.

But what do we mean by a ‘maximally random’ assignment of probability? In

the following section we introduce the Shannon entropy of a probability ensemble

which can be thought of as a measure of the ‘uncertainty’ present in the ensem-

ble and which formalises what we mean by ‘maximally random’. An assignment of

probability that maximises this entropy subject to constraints on a set of network

properties is the rigorous best choice for modelling a network based only on knowl-

edge of the constrained properties.

Maximum entropy models defined in this way have a number of uses, including

the identification of non-trivial structure in real network data, the reconstruction of

real networks based on partial information about their structure, the investigation

of the dependence that dynamical processes taking place on a network have on a

narrow set of structural properties and the identification of statistical relations be-

tween distinct sets of structural properties.
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3.2.1 Shannon entropy

The Shannon entropy [64] of a probability distribution P defined on some discrete

set X is defined as

S = −
∑
x∈X

P (x) ln(P (x)), (3.21)

while for a continuous set with accompanying probability density function, the equiv-

alent definition is

S = −
∫
X

dxp(x) ln(p(x)). (3.22)

the entropy is the average amount of ‘information’ acquired by observing an event x

as a function of its probability of occurring. For a discrete probability distribution

P the information content I(x) of an event x is defined as [64]

I(x) = ln

(
1

P (x)

)
. (3.23)

This definition fulfils a number of axiomatic assumptions made by Shannon about

the properties that any definition of the ‘amount’ of information ought to have,

including the assumption that the amount of information imparted by an event

should be larger for less probable events, should be zero when the probability of

an event is equal to 1 and that the amount of information imparted by observing

two independent events should be equal to the sum of the amounts of information

imparted when observing the events separately, i.e.

I(x, y) = − ln (P (x, y)) = − ln (P (x))− ln (P (y)) = I(x) + I(y). (3.24)

The negative logarithm of the probability is the only function that satisfies these

properties, with different choices of base for the logarithm amounting to a change

of units.

An important result which provides further intuition about the usefulness of the

definition of information content given in Eq. (3.23) concerns finding the ‘shortest’
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encoding of the data coming from a random variable taking values x ∈ X. By en-

coding, we mean labelling each event x with a number represented in binary, which

can be thought of as the answers to a set of yes/no questions that specify x. A

possible motivation for doing this would be so that the outcome of observing the

random variable can be transmitted efficiently along a communication channel. The

fewer yes/no questions we need to label each element of X distinctly, the less strain

we put on the communication channel. There are |X| elements in the set X so we

need |X| distinct numbers. The most intuitive labelling scheme would be to give

each element its own number with length log2 (|X|). In this labelling scheme every

element is represented by a number of the same length regardless of its probability of

occurring. However, by allowing events with different probabilities to have different

lengths it is actually possible to achieve shorter expected lengths of the labels than

in the naive labelling. By ‘shortest’ encoding we mean a labelling of the elements

x ∈ X that minimises the expected length of the label. This labelling would need

to take advantage of any heterogeneity in the probability distribution so that more

probable outcomes have shorter labels while longer labels will be given to events

with lower probabilities.

The entropy given in Eq. (3.21) in fact provides the expected length of the labels

that could be achieved by an optimal encoding [64]. This fact allows us to interpret

the information content of an event x defined in Eq. (3.23) as the minimum number

of yes/no questions needed to specify x given that we already know the probability

distribution P . The information content is therefore the remaining information we

need in order to specify x given the information conveyed to us about x by P .

More homogeneous distributions of the probability give a higher entropy because

they are less informative and so observation of the variable provides us with more in-

formation, while heterogeneous distributions that assign high probability to a small

number of outcomes are more informative about what the likely outcome of obser-

vation would be and so the act of observing the variable imparts less information

on average, corresponding to a low entropy.

In the next section we discuss how we can use entropy maximisation to find
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the ‘best’ (least informative) probability distribution to model a variable based on

partial knowledge about the variable.

3.2.2 Maximising the Shannon entropy

By varying P so that the entropy is maximised, we find the probability distribution

that is least informative about the random variable it describes. In the absence of

any constraint on P apart from normalisation, the maximum entropy distribution is

always uniform on the set of possible outcomes. This clearly corresponds with our

common sense idea of what the ‘best’ distribution would be for modelling a variable

about which we know nothing apart from the values that it can take.

In the case that we do know something about the variable, we would like to

incorporate this knowledge into our model, and we would like to do so in a way that

doesn’t accidentally include any unintended biases or assumptions. This knowledge

could be a ‘hard constraint’ on the variable that confines it to some subset Y of

the the larger set of outcomes X (by putting P (x) = 0 for all x ∈ X\Y ). In this

case the problem is equivalent to maximising the entropy with no constraints but

using the restricted set Y instead of X. Alternatively we may wish to incorporate

knowledge in the form of a ‘soft constraint’ on the expected value of the variable or

some statistic drawn from the variable.

The maximum entropy distribution in either of the above cases is the least in-

formative given the constraints used. This guarantees that we haven’t included any

additional assumptions in the model as these assumptions would necessarily result in

more heterogeneity in the probability distribution and hence the distribution would

have a lower entropy than the maximum entropy solution. The entropy maximi-

sation approach thus formalises our common sense intuition that in the absence of

knowledge about a variable we should pick a uniform distribution to model it, and

it allows us to extends this intuition further to apply to variables for which we do

possess some prior knowledge.
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Some examples include the ‘fair die’ distribution on the set X = {1, . . . , 6} or the

uniform distribution on X = [a, b] which are the maximum entropy distributions in

the absence of constraints, given their respective domains X. Meanwhile, the Gaus-

sian distribution is the maximum entropy distribution when X = R is the real line

and there are soft constraints on the first and second moments of the distribution

i.e. 〈x〉 and 〈x2〉 are constrained.

In the next section we discuss how this approach has been used to model net-

works based on constraints on their structural properties.

3.2.3 Maximum entropy models of networks

In network science there are a number of different models of networks which can

be described as maximum entropy [60–63]. In these models the ‘random variables’

are networks G that occur with a probability that maximises the Shannon entropy

subject to constraints on specific structural properties of the networks. These con-

straints incorporate information about network properties such as the total number

of links [1], the degrees of the nodes [60], the prevalence of some motif in the net-

work [61], the degree correlations [63] or a block structure [62].

Models of this type are the best model in the case where the only information

possessed about the networks is contained in the constraints. This allows us to ‘re-

construct’ networks about which we only have partial information or to make well

founded probabilistic statements about other properties these networks may have.

They also allow us to probe the effects of the constrained properties on other sec-

ondary properties of the networks. Maximum entropy models based on constraints

on the degrees of the nodes allow us to isolate the effects of the degrees on proper-

ties such as the clustering, degree correlations or community structure. They can

be used as a benchmark to which real networks may be compared: for example a

real network can be said to have a ‘trivial’ level of clustering if its clustering is no

higher than that found in the maximum entropy model based on the degrees of the
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real network. A real network with clustering much higher than that expected in the

maximum entropy model has instead significant clustering as it is unlikely that a

model in which the connections between the nodes depend only on the degree would

produce such a high number of triangles.

It is worth noting that when maximum entropy models are used for this purpose

that ‘realism’ is not a major concern. These models in a sense isolate the effects of

the constrained properties on the networks produced, and it is finding the similari-

ties and differences between these models and real networks that helps us to identify

the important structure in real networks.

The constraints used for these models may be either hard or soft. As discussed

in the previous section, performing entropy maximisation using hard constraints

is effectively the same as restricting the set upon which the maximisation is done

without constraints. For a network with N nodes and a set of M structural observ-

ables {Cr(G)}r∈{1,...,M} with (hard) constraining values {cr}r∈{1,...,M} the maximum

entropy probability of a network G is

P (G) =

∏M
r=1 δ(Cr(G), cr)

N
, (3.25)

where δ(x, y) is the Kronecker delta, andN is the total number of networks satisfying

the constraints, or

N =
∑
G

M∏
r=1

δ(Cr(G), cr). (3.26)

Evaluation of (3.26) may be difficult for large networks, depending on the choice of

properties that are being constrained. For this reason, working with these models

often involves the construction of algorithms to sample individual networks from the

ensemble [1, 65], or approximate analytical methods that exploit relations with soft

constraints models with similar constraints [60].

In models using soft constraints it is straightforward to find the correct form of
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the probability of a network G in terms of a set of Lagrangian multipliers associated

with the constraints. For a set of M structural observables {Cr(G)}r∈{1,...,M} with

(soft) constraining values {cr}r∈{1,...,M} the Lagrangian is

L = S − µ

(∑
G

P (G)− 1

)
−

M∑
r=1

λr

(∑
G

P (G)Cr(G)− cr

)
, (3.27)

where S is the entropy −
∑

G P (G) ln (P (G)), and µ, and λ1, ..., λM are Lagrangian

multipliers. The equations to solve are:

∂L
∂P (G)

= 0, ∂L
∂µ

= 0, ∂L
∂λr

= 0. (3.28)

Solving the first two equations above allows us to write the probability of a network

G in this ensemble as

P (G) =
1

Z
e−

∑M
r=1 λrCr(G), (3.29)

where Z normalises the distribution and is called the partition function and is given

by

Z =
∑
G

e−
∑M
r=1 λrCr(G). (3.30)

Models of this type are known as Exponential Random Graph Models (ERGMs) [60],

and they have been used widely in the study of social networks [61]. Whether or

not it is simple to obtain P (G) or more specifically Z in terms of the constraining

values {cr}r∈{1,...,M} depends on what choice of observables {Cr(G)}r∈{1,...,M} we are

constraining, but in practice it is very difficult for all but the simplest observables.

For sets of constraints where calculation of Z is analytically intractable, Z may be

approximated numerically through Markov Chain Monte Carlo methods [66].

In the next section we discuss two widely used maximum entropy network mod-

els based on hard or soft constraints on the degrees of the nodes. In Chapter 4 we

generalise these models to maximum entropy models of simplicial complexes where

the constraints are instead on the generalised degrees kd,0(i) of the nodes.
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3.2.4 The configuration model and canonical ensemble of

networks

The configuration model and canonical ensemble [60, 67] of networks are maximum

entropy models of networks where the constraints are on the sequence of degrees of

the nodes in the network. In the configuration model these constraints are hard so

that for every network in the ensemble we must have:

ki = ki =
∑

j aij for i = 1, 2, ..., N, (3.31)

where ki is the degree of node i in a particular instance of the network while ki is its

constrained value. For the canonical ensemble the constraints are instead enforced

only on the expectations:

ki =
∑

G P (G)ki =
∑

G P (G)
∑

j aij for i = 1, 2, ..., N, (3.32)

where the sumations in the above equation are over all networks G on N nodes.

These models have been used for exploring the implications of particular degree

distributions on other properties of networks such as the degree correlations, clus-

tering and community structure [60, 68]. They have also been used for examining

the effects of the degrees on processes that take place on networks such as epidemic

spreading and diffusion [69].

The probability of a network G in the configuration model is uniform on the set

of all networks which satisfy the constraints and zero everywhere else, i.e.

P (G) =

∏N
i=1 δ(ki, ki)

N
, (3.33)

where N is the total number of networks satisfying the constraints. There is no

general formula for N in terms of the degrees, however, for large N and choices

of the degrees below the structural cutoff discussed in Section 2.1.2 the following
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formula is known [67,70]:

N =
[(〈k〉N)!](1/2)∏N

i=1 ki!
exp

−1

4

(
〈k2〉
〈k〉

)2

+O(lnN)

 (3.34)

Furthermore, below the structural cutoff the configuration model lacks degree cor-

relations and so the probability that two nodes i and j with degrees ki and kj are

joined by a link must necessarily be proportional to their degrees, i.e.

pij =
kikj

〈k〉N
. (3.35)

Aside from the above results, the configuration model is difficult to work with an-

alytically and so in most applications algorithms are used that sample networks

uniformly from the model. In one such algorithm [1], the nodes of the network

are assigned a number of ‘stubs’ corresponding to the degree that we wish them

to have. These stubs are then paired randomly until there are no remaining stubs

and we have a network with the desired degree sequence. In Chapter 4 we present

a generalisation of this algorithm for our configuration model of simplicial complexes.

On the other hand the canonical ensemble is easier to work with analytically.

The probability of a network G in the canonical ensemble is

P (G) =
1

Z
e−

∑
i λiki , (3.36)

where the λi’s are Lagrange multipliers associated with the constraints and Z is the

partition function which normalises Eq. (3.36) and is given by

Z =
∑
G

e−
∑
i λiki . (3.37)

The probability of a link between two nodes i and j in this ensemble is

pij =
e−λi−λj

1 + e−λi−λj
, (3.38)
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leading to the following relation between the constrained expected degree of a node

i and the Lagrange multipliers

ki =
∑
j

pij =
∑
j

e−λi−λj

1 + e−λi−λj
. (3.39)

For choices of the expected degrees less than the structural cutoff, the probability

of a link can be expressed directly in terms of the expected degrees of the nodes:

pij =
kikj

〈k〉N
, (3.40)

which is the same probability as in the configuration model below the structural

cutoff. Note however that in this ensemble the link probabilities are independent of

each other so that rather than being fixed the degree of a node varies from sample

to sample and has a Poisson probability distribution across the ensemble. The fact

that the canonical ensemble is easier to work with analytically than the configu-

ration model has made it attractive as a stand in for the configuration model in

analytical calculations. Naturally, in order for canonical ensemble calculations to be

valid for the configuration model, the effects of the correlations between links in the

configuration model must have a minimal effect. For various reasons that we will

now discuss it has in the past been widely assumed that for networks with a large

number of nodes these correlations can be neglected and that the two ensembles are

essentially equivalent. However, recent work [67,71,72] has shown that this is in fact

not the case for ensembles such as the configuration model and canonical ensemble

which impose an extensive (scaling like N) number of constraints.

The assumption of equivalence between the two models lies in their interpreta-

tion in statistical physics terminology as conjugated ensembles. Physical systems

such as gasses composed of molecules will under certain circumstances converge to

thermal equilibrium. When this happens, the system will be in one of many dif-

ferent microstates that describe the microscopic position and momentum of every

molecule in the system. Once equilibrium is reached the probability distribution

over these states is maximum entropy with respect to ‘constraints’ corresponding to
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the macrostates of the system which could include the number of molecules, volume,

temperature, pressure or total energy.

Two common ensembles in statistical physics are the microcanonical and canoni-

cal ensembles. The microcanonical ensemble is a gas with fixed number of molecules,

volume and total energy. The canonical ensemble on the other hand has fixed num-

ber of molecules and volume, but instead of having a fixed total energy it has a fixed

temperature. An analogy can be made between these ensembles and maximum en-

tropy models of networks based on hard or soft constraints on a set of structural

properties. The microcanonical ensemble enforces the total energy for every mi-

crostate and so every microstate with the correct energy has equal probability while

all others have probability zero. The canonical ensemble instead enforces the tem-

perature which is equivalent to enforcing the expected total energy.

When we pick the same total energy and expected total energy for these two

ensembles we say they are conjugated. For the particular example of a gas under

discussion here, the two ensembles are asymptotically equivalent as the number of

molecules tends to infinity. Roughly speaking if conjugated ensembles are equiva-

lent then their probability distributions over the microstates should converge and

their macrostate properties should become the same. In this case the entropies per

node of the two ensembles should converge in the limit N →∞. Most examples of

conjugated ensembles encountered in statistical physics can be shown to be equiva-

lent in this way, and in fact it is often assumed (wrongly) even in statistical physics

textbooks that all such ensembles are equivalent.

In network science the simplest example of conjugated microcanonical and canon-

cial ensembles are the Erdös-Renyi random graphs in which we fix either the total

number of links (the microcanonical ensemble) or the expected number of links (the

canonical ensemble). In [71] it was shown that the difference in the entropy per node

between the hard and soft Erdös-Renyi random graphs was vanishing as N → ∞,

i.e.

1

N
ScanER −

1

N
SmicroER → 0, as N →∞, (3.41)
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where ScanER is the entropy of the canonical Erdös-Renyi random graph with fixed

expected link probability p and SmicroER is the entropy of the microcanonical Erdös-

Renyi random graph with fixed number of links L. This indicates that the two

ensembles are asymptotically equivalent in the thermodynamic limit. For the con-

figuration model and its related canonical ensemble however, the differences between

the entropies per node was shown to be finite as N →∞ [71], with

1

N
SCE −

1

N
SCM ∼ O(1), as N →∞, (3.42)

where SCE is the canonical ensemble entropy and SCM is the configuration model

entropy. The failure of the entropies per node of these two ensembles to converge

is due to to the extensive number of constraints placed on the ensembles [71], and

indicates that the two ensembles are not equivalent [67,71,72].

Eq. (3.42) shows that the entropy of the canonical ensemble is much larger than

the entropy of the configuration model. This indicates that in a sense the number of

networks with ‘significant’ probability in the canonical ensemble is much larger than

in the configuration model [64]. In [67] the difference in entropies between conjugated

network ensembles including the configuration model and canonical ensemble was

characterised in terms of the large deviation properties of the canonical ensembles.

In particular the following formula relating the entropies was derived:

SCE − SCM = Ω, (3.43)

where Ω is called the entropy of large deviation, and is given by

Ω = − log

[∑
G

PCE(G)
N∏
i=1

δ(ki, ki)

]
, (3.44)

i.e. −1 times the logarithm of the probability of observing a network G in the

canonical ensemble that has degrees exactly equal to their expectations (and there-

fore also fulfilling the hard constraints of the configuration model). This entropy

was originally formulated in more general terms in [70] in the context of trying to

‘fit’ a canonical ensemble to a given network or network topology such as a degree
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sequence. Small values of Ω indicate that the canonical ensemble typically produces

networks obeying the hard constraints, while larger values indicate that significant

probability is assigned by the canonical ensemble to networks not obeying the con-

straints. In [67] Ω is calculated via a cavity method approach for a number of

conjugated network ensembles corresponding to different network constraints. For

the case of the configuration model and canonical ensemble with degrees below the

structural cut-off discussed in Chapter 2 they find that the entropy of large deviation

is given by

Ω = −
N∑
i=1

ln
[
πki(ki)

]
(3.45)

where πki(ki) is the Poisson distribution with average ki evaluated at ki, i.e.

πki(ki) =
1

ki!
ki
ki
e−ki . (3.46)

In the canonical ensemble with expected degrees below the structural cut-off, the

degree of a node i with expected value ki has a Poisson distribution across the en-

semble [71]. With this fact in mind Eq. (3.45) can be understood as the logarithm of

the probability of the degrees equalling their expected values under the assumption

that the degrees of the nodes are independent of each other. This quantity clearly

scales with the number of nodes and so this result agrees with the claim given in [71]

that conjugated ensembles with extensive number of constraints are not equivalent.

Similar results have been shown for conjugated ensembles defined on more gen-

eral structures such as multiplex networks [73]. In Chapter 4 our configuration model

and canonical ensemble of d-dimensional simplicial complexes are conjugated micro-

canonial and canonical ensembles of simplicial complexes. Following the methodol-

ogy developed in [67,70,73] we derive an entropy relation analogous to the one shown

in Eq. (3.45) and calculate the Shannon entropies of our ensembles and the entropy

of large deviation. Our ensembles enforce an extensive number of constraints and

our results support the results of [67, 71, 73] in that we find that our ensembles are

not equivalent due to the extensive number of constraints.
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Chapter 4

The configuration model and

canonical ensemble of simplicial

complexes

In this chapter we examine two maximum entropy models of simplicial complexes.

The research presented in this chapter was published in our paper Generalized net-

work structures: The configuration model and the canonical ensemble of simplicial

complexes [33].

As discussed in chapter 3, the entropy of a probability distribution is in a sense a

measure of its ‘unpredictability’, with high entropy corresponding to hard to predict

outcomes and low entropy corresponding to distributions which return small num-

bers of outcomes with higher probability. Optimising probability distributions to

maximise the entropy subject to some kind of constraints is a way of incorporating

the information contained in the constraints without including any other ‘accidental’

assumptions about the distribution.

Taking this kind of approach to modelling simplicial complexes has a number

of different uses, namely the identification of non-trivial or ‘interesting’ structure in

simplicial complex data, the uncovering of correlations between structural proper-

ties of the simplicial complexes, as a way of relating the behaviours of dynamical
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processes taking place on the simplicial complexes to a narrow set of structural prop-

erties, and for the reconstruction of simplicial complexes from incomplete knowledge

of their structure.

The models we proposed in [33] and that we devote this chapter to are ensembles

of pure d-dimensional simplicial complexes. That is, simplicial complexes consisting

only of d-simplices and their faces. These ensembles are maximum entropy models

of simplicial complexes based on hard and soft constraints on the generalized degrees

of the nodes.

As we saw in chapter 2, the generalized degree of a simplex is the number of

other simplices of some higher dimension d that the first simplex is a part of, while

specifically for a node r, the generalized degree kd,0(r) is the number of simplices of

dimension d that are incident to r. This could for example represent the number of

size d + 1 research collaborations a scientist is involved in, or in a protein-protein

interaction network (PPIN) it could represent the number of ‘complexes’ made from

d+ 1 proteins that a single protein plays a role in. Our models allow us to explore

the implications of any given sequence of the generalized degrees of the nodes for the

structure and dynamics of simplicial complexes, and provide us with a framework

through which data from real simplicial complexes may be analysed.

It should be noted that for dimension d = 1, the generalized degree kd,0(r) of

a node r reduces to k(r) the traditional concept of degree in networks, and so in

this case our models in fact reduce to the configuration model and canonical en-

semble of networks. The approach we take to investigating our configuration model

and canonical ensemble of simplicial complexes, mirrors the approaches that have

been taken previously to investigate the original network configuration model and

canonical ensemble. All of the results that we present in this chapter are for general

dimension d, and the fact that for d = 1 these results reduce exactly to the known

network results is a validation of our approach. In the remainder of this section we

define our models explicitly and give an overview of the structure of this chapter.

Our models are ensembles of pure d-dimensional simplicial complexes, i.e. the
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set of all possible pure d-dimensional simplicial complexes on N nodes together with

an assignment of probability P (G) for each simplicial complex G. This assignment

of probability is chosen in order to maximise the entropy:

S = −
∑
G

P (G) ln (P (G)) (4.1)

subject to the condition that either the generalized degrees of the nodes (for the con-

figuration model) or the expected generalized degrees of the nodes (for the canonical

ensemble) are constrained to a predefined sequence {k̂r}. The sum in Eq. (4.1) is

over all pure d-dimensional simplicial complexes G on N nodes, or equivalently, over

all adjacency tensors a. The two sets of constraints that we maximise S subject to

can be expressed as

k̂r = kd,0(r) =
∑

α∈Qd(N)|r⊂α aα for r = 1, 2, ..., N (4.2)

for the configuration model of simplicial complexes or

k̂r = kd,0(r) =
∑

G P (G)
∑

α∈Qd(N)|r⊂α aα for r = 1, 2, ..., N (4.3)

for the case of the canonical ensemble of simplicial complexes. These ensembles

are thus the least biased ensembles of simplicial complexes obeying the above con-

straints and so for the reasons already discussed they are useful as null models for

real simplical complexes for which the generalized degrees of the nodes is known.

There are two broad approaches that we can take when using these models. One

is an analytical approach where we try to derive (exact or approximate) equations

relating the constraints {k̂r} to quantities such as S, P (G) or pα (the marginal

probaility of a simplex α) or to the expected values of structural properties such

as the generalized degrees of simplices of dimension δ > 0 (the generalized degrees

of links, triangles, tetrahedra etc). The other approach is to develop algorithms

that sample simplicial complexes from the ensembles, i.e. algorithms that randomly

return simplicial complexes with a probability equal to the probabilities implied by

the models. Probability distributions or expected values can then be estimated from

61



a large number of simplicial complexes sampled from the algorithm.

As we shall see in the next sections, the canonical ensemble is far easier to work

with analytically than the configuration model. Similarly to the canonical ensemble

in networks, the probability of a simplicial complex in our canonical ensemble can

be expressed in terms of a set of variables that have their origin as Lagrangian multi-

pliers enforcing the constraints on the generalized degrees. In 4.2.1 we demonstrate

that calculating S, P (G), pα, or expected generalized degrees of higher dimension

faces as functions of these Lagrangian multipliers is relatively straightforward, while

in 4.2.2 we will show that for choices of the constrained generalized degrees suffi-

ciently below the structural cut-off introduced in chapter 2 that formulae for these

quantities can be derived directly in terms of the expected generalized degrees of

the nodes.

In the configuration model analytical results are harder to come by. As with

the network configuration model the assignment of probability that maximises Eq.

(4.1) subject to our hard constraints {k̂r} is the one that assigns the same non-zero

probability to every simplicial complex obeying the constraints and probability 0 to

all other simplicial complexes. For this distribution to be normalised the non-zero

probability must of course be 1
N , with N being the total number of simplicial com-

plexes that have the exact sequence of the generalized degrees of the nodes specified

by the constraints. The calculations of N or other ensemble quantities in terms of

{k̂r} are non-trivial combinatorial problems, and so for most applications use of our

configuration model must be confined to the second ‘stochastic’ approach. With

this in mind, in 4.3.2 we propose an algorithm for generating simplicial complexes

stochastically from our configuration model.

An alternative approach to exploring the configuration model concerns the re-

lation between the configuration model and the canonical ensemble when the same

constraints {k̂r} are chosen for both. In statistical physics terminology we say these

ensembles are ‘conjugated’, and as discussed in chapter 3 it is a common claim even in

standard statistical physics textbooks that conjugated ensembles are thermodynam-

ically equivalent, although it has been shown that this is not the case for ensembles
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with an extensive number of constraints [67,71–73]. Thermodynamic equivalence in

our case would imply that the probability of a simplicial complex in either ensemble

should be the same in the limit N → ∞, and that macrostates such as the values

of the generalized degrees of simplices of any dimension, or global properties like

average path length or the prevalence of some motif in the ensembles should also

be the same for the two ensembles in the large system limit. In 4.3.4 we derive an

equation relating the entropies of the configuration model and canonical ensemble

when they are ‘conjugated’ and use this relation to prove that the ensembles are

in fact not equivalent due to the fact that we are imposing an extensive number

of constraints. The canonical ensemble can therefore not be used as a stand-in for

the configuration model. However, that does not mean that we cannot exploit re-

sults from the canonical ensemble to understand the configuration model. In 4.3.5

we use the entropy relation derived in 4.3.4 along with canonical ensemble results

described in 4.2.2 to calculate the asymptotic number of simplicial complexes N in

the configuration model in terms of {k̂r}. The formula we propose is for simplicial

complexes of general dimension d and is valid for choices of the generalized degrees

much smaller than the structural cut-off for simplicial complexes. For d = 1 this

result in fact reduces to the known Canfield-Bender [77] result for the number of

networks with a given degree sequence below the network structural cut-off.

The research presented in this chapter gives a full account of the configuration

model and canonical ensemble of simplicial complexes, which we characterize in sta-

tistical physics terms. Simplicial complexes are the ideal objects for representing

many-body interactions between the parts of real complex systems and we argue

that our two ensembles have an important role to play as null models for such sys-

tems. Below we outline the structure of the remainder of this chapter.

In 4.1 we show how the structural cutoff for simplicial complexes that we stated

in Eq. (2.4) of Chapter 2 is derived. This cutoff plays an important role in both

our canonical ensemble and configuration model; in 4.2 we explore the canonical

ensemble of simplicial complexes enforcing a given sequence of expected generalized

degrees of the nodes; in 4.3 we explore using statistical mechanics methods the con-

figuration model of simplicial complexes with given sequence of generalized degrees
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of the nodes; in 4.4 we discuss the natural correlations observed in our numerical

realizations of the the configuration model of simplicial complexes; finally in 4.5 we

give our chapter conclusions.

4.1 Structural cutoff for simplicial complexes

In this section we derive the structural cutoff Kd for a pure d-dimensional simplicial

complex, which we already presented in Eq. (2.4) of Chapter 2. This cutoff plays

an important role in the calculations for the canonical ensemble and configuration

model shown in the rest of this chapter.

To calculate Kd, let us start by considering a pure d-dimensional simplicial com-

plex with given sequence of the generalised degrees of the nodes {kd,0(i)}i=1,...N .

Each node i has a specified number of d-simplices that it takes part in, and we

say that the simplicial complex is uncorrelated if the generalised degrees of the

nodes of a randomly chosen d-simplex are independent of each other. In such a

simplicial complex the conditional probability that d + 1 randomly chosen nodes

i0, . . . , id are connected by a d-simplex α = {i0, . . . , id}, given their generalised de-

grees kd,0(i0) = k0, . . . kd,0(id) = kd is equal to

Prob(aα = 1|kd,0(i0) = k0, . . . , kd,0(id) = kd) = d!
k0 . . . kd

(〈k〉N)d
, (4.4)

where in this case 〈k〉 = 1
N

∑
i kd,0(i) is the average generalised degree of the nodes

in the network. It is probably wise to note here that the probability mass function

Prob(·) shown in Eq. (4.4) does not refer to ensemble probabilities in either our

canonical ensemble or our configuration model but instead refers to the probabil-

ity of observing in a single given simplicial complex a simplex between a randomly

selected set of real nodes given they have the specified generalised degrees. The ‘ran-

domness’ here that we are quantifying with Prob(·) arises in the random selection of

nodes in this fixed simplicial complex, rather than in probability distributions over

an ensemble of different simplicial complexes.
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To understand how Eq. (4.4) is derived, imagine we randomly select a d-simplex

then randomly select one of the nodes of the d-simplex in a (correlated or uncorre-

lated) simplicial complex. The probability that the node has generalised degree k

would be
kPd,0(k)

〈k〉 where Pd,0(k) is the proportion of nodes i with generalised degree

kd,0(i) = k. Thus if the simplicial complex is uncorrelated then the generalised de-

grees of each of the nodes in the randomly chosen d-simplex are independent and so

their joint probability is

Prob(kd,0(i0) = k0, . . . , kd,0(id) = kd|aα = 1) =

∏d
r=0 krPd,0(kr)

〈k〉d+1
. (4.5)

Eq. (4.4) is obtained from Eq. (4.5) by applying Bayes theorem:

Prob(aα = 1|kd,0(i0) = k0, . . . , kd,0(id) = kd)

=
Prob(kd,0(i0)=k0,...,kd,0(id)=kd|aα=1)Prob(aα=1)

Prob(kd,0(i0)=k0,...,kd,0(id)=kd)
.

(4.6)

In the above equation Prob(aα = 1) is the probability that a randomly chosen pos-

sible simplex is actually a simplex and so is equal to the density of simplices in

the simplicial complex, in particular Prob(aα = 1) =
1
d+1

N〈k〉

( N
d+1)

≈ d! 〈k〉
Nd , where the

approximation is valid for large N . Meanwhile in the denominator Prob(kd,0(i0) =

k0, . . . , kd,0(id) = kd) is the probability that d+ 1 independently chosen nodes have

generalised degrees kd,0(i0) = k0, . . . , kd,0(id) = kd. These are clearly independent

so Prob(kd,0(i0) = k0, . . . , kd,0(id) = kd) =
∏d

r=0 P (kr). Combining everything, Eq.

(4.6) becomes Eq. (4.4).

As already mentioned, the structural cutoff Kd is the upper limit on the gen-

eralised degrees above which the simplicial complex must have natural correlations

in its generalised degree distribution. We derive it by assuming that the nodes in

Eq. (4.4) all have Kd as their generalised degree, and by setting (4.4) equal to 1.

For choices of the generalised degree larger than Kd, the probability (4.4) can take

nonsensical values larger than 1, indicating that it is impossible to form an uncorre-

lated simplicial complex without adding more than one simplex between the same

set of nodes. Solving for Kd gives us our expression for the structural cutoff which
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we originally stated in Eq. (2.4):

Kd =

[
(〈k〉N)d

d!

]1/(d+1)

. (4.7)

4.2 Canonical ensemble of simplicial complexes

4.2.1 Canonical ensemble with given sequence of expected

generalized degree of the nodes

In this section we discuss the canonical ensemble of simplicial complexes. This

model is the maximum entropy model for pure d-dimensional simplicial complexes

subject to the expected generalized degrees of the nodes being constrained to a given

sequence {k̂r}. The assignment of probability is the one that maximises Eq. (4.1)

subject to Eq. (4.3), and can be found using Lagrangian maximisation. Following

the approach we took in Section 3.2, we write the Lagrangian as

L = S − µ

(∑
G

P (G)− 1

)
−

N∑
r=1

λr

(∑
G

P (G)kd,0(r)− k̂r

)
, (4.8)

where S is the entropy as given in Eq. (4.1), µ is the Lagrangian multiplier enforcing

normalisation, and λ1, ..., λN are Lagrangian multipliers enforcing the constraints on

the generalised degrees of the nodes. To find P (G) we must solve the equations:

∂L
∂P (G)

= 0, ∂L
∂µ

= 0, ∂L
∂λr

= 0, r = 1, ..., N. (4.9)

Solving the first two equations gives us the following probability in terms of the

remaining Lagrangian parameters,

P (G) =
1

Z
e−

∑
r λrkd,0(r) (4.10)
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where kd,0(r) =
∑

α|r∈α aα is the actual generalized degree of the node r in the

simplicial complex G (as opposed to its expected value k̂r), and

Z =
∑
G

e−
∑
r λrkd,0(r) (4.11)

normalises the distribution and is called the partition function. The sum over sim-

plicial complexes is equivalent to a sum over possible adjacency tensors a and can

be written ∑
G

=
∏

α∈Qd(N)

∑
aα=0,1

, (4.12)

i.e. the sum over all possible d-simplices. We evaluate the sum in Eq. (4.11) by

factorising it over the d-simplices:

Z =
∏

α∈Qd(N)

∑
aα=0,1

e−aα
∑
m⊂α λm

=
∏

α∈Qd(N)

[
1 + e−

∑
m⊂α λm

]
, (4.13)

where in the first line we have used∑
r

λrkd,0(r) =
∑
r

λr
∑

α∈Qd(N)|r⊂α

aα =
∑

α∈Qd(N)

aα
∑
m⊂α

λm. (4.14)

The probability of a simplicial complex G can then be written in the form

P (G) =
∏

α∈Qd(N)

[
e−aα

∑
m⊂α λm

1 + e−
∑
m⊂α λm

]
. (4.15)
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With P (G) in this form, it is easy to calculate the marginal probability pα of a

simplex α in the ensemble:

pα =
∑
G

aα
∏

α′∈Qd(N)

[
e−aα′

∑
m⊂α′ λm

1 + e−
∑
m⊂α′ λm

]

=
e−

∑
m⊂α λm

1 + e−
∑
m⊂α λm

. (4.16)

The d-simplices in the canonical ensemble are thus present independently of each

other with probabilities dependent only on the Lagrangian multipliers associated

with the nodes they contain. The ‘event’ of drawing a given simplicial complex G

from the canonical ensemble is a composition of the independent events given by

each entry aα in the adjacency tensor a. The probability of a simplicial complex G

is then simply the product of the probabilities of observing each event aα = 0 or

aα = 1 as specified by G:

P (G) =
∏

α∈Qd(N)

[
paαα (1− pα)1−aα

]
. (4.17)

The above expression in combination with Eq. (4.16) gives P (G) in terms of the

Lagrangian multipliers {λr} and in a form that factorises over the individual d-

simplices. Inserting P (G) into the formula for the entropy given in Eq. (4.1) gives

S = −
∑

α∈Qd(N)

[
pα ln pα + (1− pα) ln(1− pα)

]
, (4.18)

i.e. the independence of the d-simplices leads to the total entropy of the ensemble

being equal to the sum of the entropies of the probability distributions associated

to each aα.

Starting with P (G) in the form given by Eq. (4.17) it is possible to calculate

other ensemble properties such as the expected values of the generalized degrees

of faces as a function of the Lagrangian multipliers. But how can we get these

properties directly in terms of our constraints on the expected generalized degrees

of the nodes? From any choice of the Lagrangian multipliers we get the maximum
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entropy distribution subject to the constraints that the expected generalized degree

of each node is equal to some value determined by the multipliers, but given a desired

sequence of the expected generalized degrees of the nodes {k̂r}, can we obtain the

correct set of multipliers {λr} that gives kd,0(r) = k̂r for every node r? To this end,

let us calculate the expected generalized degree of a node r for given {k̂r}. This is

given by

kd,0(r) =
∑

α∈Qd(N)|r⊂α

e−
∑
m⊂α λm

1 + e−
∑
m⊂α λm

. (4.19)

With the above expression we have the expected generalized degree of any node r

in terms of the multipliers {λr}. The correct set of multipliers to enforce a given

sequence of the expected generalised degrees can be found numerically from this

expression. A different approach that we take in 4.2.2 is to simplify Eq. (4.16) by

restricting e−λr � 1 for all nodes r. As we shall see in 4.2.2 this restriction allows

us to obtain pα in terms of {k̂r} and is equivalent to requiring that the generalized

degrees of the nodes are much smaller than the structural cut-off for simplicial com-

plexes.

4.2.2 The canonical ensemble of simplicial complexes with

structural cutoff

In this section we make the restriction that e−λr � 1 for each node r. This re-

striction will allow us to eliminate the Lagrangian multipliers {λr} and write the

probability of a simplex pα as the normalised product of the expected generalised

degrees of its nodes. We also show that this restriction is equivalent to the maximum

generalized degree being smaller than the structural cut-off for simplicial complexes

given by Eq. (2.4).

With this assumption, the probability pα given by Eq. (4.16) can be approxi-
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mated by

pα '
∏

r⊂α,α∈Qd(N)

e−λr , (4.20)

while Eq. (4.19) simplifies to

k̂r = e−λr
∑

α∈Qd(N)|r⊂α

∏
m⊂α|m 6=r

e−λm . (4.21)

For N � 1 (and e−λr � 1) the following approximation can be made

∑
α∈Qd(N)|r⊂α

∏
m⊂α|m6=r

e−λm =
∑

m1<m2<...<md

d∏
j=1

e−λmj ' 1

d!

(∑
m

e−λm

)d

. (4.22)

Rearranging Eq. (4.21) and using the above approximation we obtain an expression

for e−λr in terms of k̂r and the other Lagrangian multipliers:

e−λr = k̂r
d!

(
∑

m e
−λm)d

. (4.23)

Summing over all the nodes of the simplicial complex gives

∑
r

e−λr =
(
〈k̂〉Nd!

)1/(d+1)

. (4.24)

Finally, by combining Eq.(5.16) and Eq.(4.24) we get an expression for the La-

grangian multiplier λr directly in terms of the expected generalized degrees of the

nodes:

e−λr = k̂r

[
d!

(〈k̂〉N)d

]1/(d+1)

. (4.25)

Using this result in Eq. (4.20) we see that in the current regime the probability pα

of a simplex α ∈ Qd(N) may be expressed as a normalized product of the expected
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generalized degrees of its nodes:

pα = d!

∏
r⊂α k̂r

(〈k̂〉N)d
. (4.26)

This expression is valid for N � 1 and e−λr � 1. It should be noted that in this

regime, Eq. (4.25) implies

k̂r = e−λrKd � Kd, (4.27)

where Kd is the structural cutoff for a d-dimensional simplicial complex given by

Eq. (2.4), and which in Section 4.1 we showed was equal to

Kd =


(
〈k̂〉N

)d
d!


1/(d+1)

. (4.28)

This regime is the regime in which there are no correlations between the general-

ized degrees of the nodes. Moreover in this regime only a small number of simplices

of dimension δ < d can be incident to more than one d-dimensional simplex. In fact,

given the expression for pα provided by Eq. (4.26), it is possible to evaluate in this

ensemble the expected generalized degree of these simplices kd,δ(α′) for δ < d. This

is given by

kd,δ(α′) =
∑
α|α′⊂α

pα = d!

∏
r⊂α′ k̂r

(〈k̂〉N)d

∑
α|α′⊂α

∏
m⊂α|m 6⊂α′

k̂m

=
d!

(d− δ)!

∏
r⊂α′ k̂r

(〈k̂〉N)δ
, (4.29)

where in the second line we have used

∑
α|α′⊂α

∏
m⊂α|m6⊂α′

k̂m =
∑

m1<m2<...<md−δ

d−δ∏
j=1

ˆkmj =
1

(d− δ)!
(〈k̂〉N)d−δ. (4.30)

Therefore only δ-dimensional groups of nodes (m1, ...,mδ+1) with generalized degrees
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of the nodes ˆkm1 , ...,
ˆkmδ+1

scaling like N
δ
δ+1 or faster are likely to share more than

one d-dimensional simplex. This implies that at least for nodes r with generalized

degrees k̂r � N
δ
δ+1 , it is very unlikely for the distinct simplices incident to r to

share any nodes apart from the node r itself. Without these overlaps, the number

of δ-simplices incident to r for δ < d is determined by the number of r’s d-simplices:

kδ,0(r) ≈
(
d

δ

)
kd,0(r). (4.31)

All of the above calculations are for simplicial complexes of general dimension d.

In order to have some concrete examples, in the following two sections we discuss

simplicial complexes with d = 1 and d = 2 respectively, corresponding to the case of

a network (d = 1) and a simplicial complex constructed exclusively from triangles

and their sub-faces (d = 2).

4.2.3 Example: The canonical ensemble of simplicial com-

plexes of dimension d = 1

For d = 1 our canonical ensemble of simplicial complexes reduces to the canonical

ensemble of networks (exponential random graph) [74] with given expected degree

sequence. The probability P (G) of a given 1-dimensional simplicial complex (i.e.

network) specified by the adjacency tensor {arm} is given by Eq. (4.10) and in this

case reduces to

P (G) =
1

Z
e−

∑
r λrk1,0(r) (4.32)

where k1,0(r) =
∑

m arm is simply the degree of node r in the network G and the

partition function Z is given by

Z =
∏
r<m

(
1 + e−λr−λm

)
. (4.33)

The Lagrangian multipliers λr are fixed by the condition

k̂r = k1,0(r) =
∑
m

prm (4.34)
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with prm indicating the probability that the link between the nodes r,m is present

in the network. The probability prm are given by

prm =
e−(λr+λm)

1 + e−(λr+λm)
. (4.35)

The probability P (G) of a simplicial complex G in this canonical ensemble can be

expressed as a product of the marginal probabilities for the individual links:

P (G) =
∏
r<m

[
parmrm (1− prm)1−arm

]
. (4.36)

Therefore the entropy S of the ensemble is given by

S = −
∑
r<m

[prm ln prm + (1− prm) ln(1− prm)] . (4.37)

Finally in presence of the structural cutoff on the generalized degree of the nodes,

i.e. if the maximal generalized degree of the nodes Kmax satisfies

Kmax � K1 =
(
〈k̂〉N

)1/2
, (4.38)

the probabilities prm take a simple factorized expression given by

prm =
k̂r k̂m

〈k̂〉N
. (4.39)

We note here that the structural cutoff of simplicial complexes of dimension d = 1

given by Eq. (4.28) reduces to the structural cutoff of simple networks [75] as

expected.

4.2.4 Example: The canonical ensemble of simplicial com-

plexes of dimension d = 2

In this section we summarize the results for the case of a canonical ensemble of two

dimensional simplicial complexes where we constrain the expected generalized degree

of the nodes to be k̂r = k2,0(r). The simplicial complexes in this case are constructed
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exclusively from triangles and their faces (nodes and links). The generalized degrees

being constrained in this case are the number of triangles incident to each node.

The probability P (G) of a simplicial complex G, given by Eq. (4.10) in this case

becomes

P (G) =
1

Z
e−

∑
r λrk2,0(r) (4.40)

where k2,0(r) =
∑

m<n armn and the partition function Z is given by

Z =
∏

r<m<n

(
1 + e−λr−λm−λn

)
. (4.41)

The Lagrangian multipliers λr are fixed by the condition

k̂r = k2,0(r) =
∑
m<n

prmn (4.42)

where prmn is the probability that the triangle between the nodes r,m, n is present

in the simplicial complex, and is given by

prmn =
e−(λr+λm+λn)

1 + e−(λr+λm+λn)
. (4.43)

The probability P (G) of a simplicial complex G in this canonical ensemble can be

expressed as a product of the marginal probabilities for the individual triangles:

P (G) =
∏

r<m<n

[
parmnrmn (1− prmn)1−armn

]
. (4.44)

And so the entropy S of the ensemble in this case may be written

S = −
∑

r<m<n

[prmn ln prmn + (1− prmn) ln(1− prmn)] . (4.45)
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Finally in presence of the structural cutoff on the generalized degree of the nodes,

i.e. if the maximal generalized degree of the nodes Kmax satisfies

Kmax � K2 =

(
〈k̂〉N√

2

)2/3

(4.46)

the probabilities prmn take a simple factorized expression given by

prmn = 2
k̂r k̂m k̂n

(〈k̂〉N)2
. (4.47)

Here the structural cutoff K2 scales like N2/3. It is therefore much larger than the

structural cutoff for simple networks.

We note that this model is similar to the model of tagged social networks repre-

sented by hypergraphs presented in Ref. [32,76]. Nevertheless it differs with respect

to the cited work because in this work the three nodes linked in a given 2-dimensional

simplex represent the same type of nodes. This difference is responsible for the fac-

tor two present in the right hand side of Eq. (4.47).

4.2.5 Generation of simplicial complexes by the canonical

ensemble

As we have seen in Sections 4.2.1 and 4.2.2, the d-simplices in the canonical ensemble

are present with independent probabilities that are determined by the expected

generalized degrees of the nodes. Generating a simplicial complex from the ensemble

is thus simply a matter of sampling every possible d-simplex with the appropriate

probability. We propose the following algorithm for sampling from the canonical

ensemble:

(a) Calculate the probabilities pα of any d-dimensional simplex α ∈ Qd(N) given

by Eq. (4.16) in absence of the structural cutoff Kd or by Eq. (4.26) in

presence of the structural cutoff Kd.
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(b) Draw every possible d-dimensional simplex α ∈ Qd(N) with probability pα.

4.3 The configuration model of simplicial com-

plexes

4.3.1 The configuration model of simplicial complexes with

given generalized degree of the nodes

In this section we discuss the configuration model of simplicial complexes. This is

the maximum entropy ensemble of simplicial complexes satisfying hard constraints

on the generalized degrees of the nodes, i.e. the set of all pure d-dimensional sim-

plicial complexes together with the assignment of probability that maximises Eq.

(4.1) subject to the constraint that for any simplicial complex G not satisfying the

constraints, P (G) is equal to zero. This assignment of probability is constant on the

set of simplicial complexes obeying the constraints and zero everywhere else. The

probability of a simplicial complex G is thus

P (G) =
1

N
∏
r

δ
(
k̂r, kd,0(r)

)
, (4.48)

where

N =
∑
G

∏
r

δ
(
k̂r, kd,0(r)

)
(4.49)

is the total number of simplicial complexes obeying the constraints. Calculation of

N is non-trivial. In the network configuration model (or equivalently our model

with d = 1) an asymptotic expression for N is known only when the maximum

degree is less than the structural cut-off [67,77]. In 4.3.5 we calculate an asymptotic

expression for the total number of simplicial complexes in the configuration model

N , for sequences of the generalized degrees of the nodes below the structural cut-off

for simplicial complexes Kd. This result is for general dimension d, and for d = 1

reduces to the result for the network configuration model found in [67].
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Below the structural cut-off Kd the generalized degrees of the nodes are uncor-

related in the configuration model. This means that the probability of a set of

d + 1 nodes being connected by a d-simplex is proportional to the product of the

generalized degrees of the nodes, i.e.

pα = d!

∏
r⊂α k̂r

(〈k̂〉N)d
. (4.50)

This marginal probability of a simplex is the same as the marginal probability of

a simplex in the canonical ensemble below the structural cut-off. Unlike in the

canonical ensemble these simplex probabilities are not independent as there must

be exactly k̂r simplices incident to a node r. Whether or not this dependence in-

troduced by the hard constraints results in the two ensembles having significant

differences between them for large N is the topic of the Section 4.3.4. In this section

we derive an equation relating the entropies of the two ensembles and show that

their difference scales like N below the structural cut-off indicating that even in

the uncorrelated regime, the configuration model and canonical ensemble are not

equivalent.

In order to explore the configuration model numerically we developed an algo-

rithm to sample simplicial complexes from the ensemble. This algorithm generalizes

the ‘stub matching’ algorithm commonly used to sample from the network config-

uration model. We present this algorithm in 4.3.2, as well as a modified version

that is faster than the primary algorithm but that introduces small biases into the

sampling process that we argue are likely to be negligible. In 4.4 we use this algo-

rithm to explore the natural correlations arising in the configuration model above

the structural cut-off.

4.3.2 Generation of the simplicial complexes by the config-

uration model

In this section we generalize the algorithm for the configuration model of networks

with given degree sequence to the configuration model of d-dimensional simplicial
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complexes with given sequence {k̂r}r≤N of the generalized degrees of the nodes.

It should be noted that for some sequences of the generalized degrees it is not

possible to construct even a single simplicial complex. These sequences are called

ungraphical. A graphical sequence is one for which at least one simplicial complex

can be produced. For simple networks, i.e. for simplicial complexes of dimension d =

1, the conditions that a degree sequence must satisfy in order to be graphical have

been fully identified [65,78]. For simplicial complexes we know that the generalized

degree of the nodes must satisfy

N∑
r=1

kd,0(r) = (d+ 1)M, (4.51)

where M is the total number of d-simplices. In practice, it will often be useful to

start from sequences of generalized degree of the nodes occurring in real datasets

which are by definition graphical. In Figure 4.1 we show how from a given graphical

sequence of generalized degree of the nodes it is possible in general to construct

different simplicial complexes.

The algorithm we propose to sample from the configuration model of simplicial

complexes generalizes the ‘stub matching’ process used to construct networks in the

network configuration model. As discussed in Chapter 3, in the network process,

each node is initially assigned a number of stubs equal to its degree. These stubs

are then randomly matched together until a fully matched network is obtained. Of

course, not all matchings produce networks with no loops, and no multi-edges, so

for this reason these ‘illegal’ matchings are disallowed. In a naive construction of

the algorithm, we might instruct the algorithm to randomly draw another pair of

stubs when it encounters an illegal move, so that all of the pairs matched up to that

point in the matching process are left unchanged. However, this kind of approach

may lead to a bias in the algorithm so that not all networks are selected with equal

probability. Roughly speaking, this is because legal configurations that are in some

sense ‘close’ in structure to many different illegal configurations are more likely to be

produced than those which are close in structure to fewer illegal configurations. In

order to ensure that the construction algorithm samples with equal probability all

networks with the given degree sequence, when an illegal matching is encountered

78



1

2

3

4

5

6A

B C
1

2

3

4

5

6

1

2
3

4

5
6

D E
1

2

3

4

5

6

1

2
3

4

5
6

Figure 4.1: The figure shows the construction of two different d = 2 dimensional
simplicial complexes belonging to the same configuration model of simplicial com-
plexes. In panel A the N = 6 nodes are shown together with stubs indicating
their generalized degree. In panel B triples of stubs are matched together to form
2-dimensional simplices. In panel C the corresponding simplicial complex is visu-
alized. In panels D-E a different matching of the stubs is shown together with its
corresponding simplicial complex. As is evident from the figure, a given generalized
degree sequence of the nodes can give rise to different simplicial complexes. The
logarithm of the total number N of simplicial complexes that can be constructed
from a given generalized degree sequence of the nodes, is the Gibbs entropy Σ of the
configuration model.
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the algorithm must instead restart from the beginning with all stubs unmatched.

Our algorithm for sampling from the configuration model of simplicial complexes

generalizes the approach described above. Nodes are assigned stubs according to

their generalized degree, and these stubs are randomly grouped into d-simplices

formed from d + 1 stubs. To conceptualize this we use a set of M auxiliary factor

nodes µ = 1, 2 . . . ,M corresponding to the d-simplices where M is the total number

of d-simplices and is found from the generalized degree sequence using

N∑
r=1

k̂r = (d+ 1)M. (4.52)

Every d-simplex is incident to exactly d+ 1 nodes, thus each factor node has d+ 1

stubs. The simplicial complex is then constructed by randomly pairing the stubs of

nodes with the stubs of the factor nodes. The algorithm proceeds as follows:

(i) Initially, k̂r stubs are assigned to each node r = 1, 2, . . . , N , and d + 1 stubs

are assigned to each auxiliary factor node µ = 1, 2, . . .M . Initially these stubs

are all unmatched.

(ii) A set of d + 1 unmatched random stubs of the nodes is chosen with uni-

form probability. The nodes that these stubs belong to we label here as

(r1, r2, . . . , rd+1).

(iii) If the nodes (r1, r2, . . . , rd+1) are all distinct and no factor node µ is already

matched with the set of nodes (r1, r2, . . . , rd+1), we match the d + 1 stubs of

an unmatched random factor node to the nodes (r1, r2, . . . , rd+1). Otherwise

we start again from Step (i).

(iv) If all the stubs are matched we construct the simplicial complex by placing a

d-simplex between the nodes connected to each auxiliary factor node.

In Figure 4.2 we show an example of a possible matching of the stubs of nodes and

factor nodes and the consequent construction of a simplicial complex.

The step (iii) rejects moves that are forbidden. These moves are described in

Figure 4.3. As we have discussed already, this rejection procedure is necessary to
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Figure 4.2: A scheme representing the algorithm for the construction of the config-
uration model is shown for the case d = 2. Panel A represents the Steps (i)-(ii)-(iii).
To each node r with r = 1, 2 . . . , N = 6 we assign k̂r stubs. The nodes are rep-
resented with black circles. A set of M auxiliary factor nodes (cyan triangles) is
considered. Each factor node has d+ 1 stubs. Subsequently an allowed matching of
the stubs is found. Panel B shows how from the matching of the stubs we can con-
struct a simplicial complex by adding a simplex between all of the nodes connected
to a common factor node in panel A.

ensure that there are no spurious correlations in the structure of the simplicial com-

plex, however for broad distribution of the generalized degrees of the nodes it might

significantly slow down the algorithm.

In the context of the configuration model, more sophisticated algorithms have

been proposed in Ref. [65, 79] and we believe that along these lines it could also be

possible to optimize the code for the case of simplicial complexes in the future.

Here, when numerically implementing the algorithm, we have chosen to allow a

rejection of a small number nF of forbidden moves. Therefore we have modified the
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above algorithm by substituting step (iii) with :

(iii)-a If the nodes (r1, r2, . . . , rd+1) are all distinct and no factor node µ is already

matched with the set of nodes (r1, r2, . . . , rd+1), we match the d + 1 stubs of

an unmatched random factor node to the nodes (r1, r2, . . . , rd+1).

(iii)-b If the nodes (r1, r2, . . . , rd+1) are not all distinct or a factor node µ is already

matched with the set of nodes (r1, r2, . . . , rd+1) we update a variable nx that

counts how many similar events have occurred so far. If nx ≤ nF we do not

accept the move and we go back to Step (ii), if nx > nF we go back to the

initial Step (i).

This algorithm reduces to the one described before when nF = 1, and when nF � N

it speeds up the code significantly, without significantly altering the properties of

the simplicial complexes.

4.3.3 Relation with bipartite network models

In this section we discuss how simplicial complexes may be related to bipartite net-

works by identifying the set of simplices with one of the two sets of nodes which we

here call the ‘factor nodes’.

In fact, the algorithm for sampling from the configuration model of simplicial

complexes outlined in the previous Section 4.3.2 is equivalent to a bipartite network

configuration model, with the added restriction that no two factor nodes can be

connected to the exact same set of nodes.

Bipartite networks are formed by a set of nodes r = 1, 2, . . . , N and a set of

factor nodes (or groups) µ = 1, 2, . . . , P where a link may only exist between a node

and a factor node and there are no links between two nodes or between two factor

nodes. The adjacency matrix A of a bipartite network has elements Ar,µ = 1 if the

node r belongs to group µ, and Ar,µ = 0 otherwise.
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Figure 4.3: Two examples of forbidden moves are shown. In panel A the same set
of nodes (r1, r2, . . . , rd+1) is selected more than once to form a simplex. In panel B
the set of nodes (r1, r2, . . . , rd+1) selected to form a simplex is not formed by d + 1
distinct nodes. Here the forbidden moves are shown for the configuration model of
simplicial complexes of dimension d = 2.
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As an example a bipartite network could be used to describe a network formed

by scientists (the nodes) and by scientific papers (the groups) where links between

scientists and papers indicate the author of a paper. Similar models have been pro-

posed for social networks [15] and for immune networks [80].

We can map bipartite networks to simplicial complexes by mapping each factor

node to a simplex between the nodes that the factor node is connected to. A factor

node with degree d+ 1 then corresponds to a d dimensional simplex.

A bipartite configuration model where all of the factor nodes have degree d + 1

and the degrees of the nodes are specified by some degree sequence {k̂r}, is similar

to our configuration model of simplicial complexes where the generalized degrees are

given by {k̂r}, but with the following differences:

(1) In the bipartite network more than one factor node can connect the same set

of nodes.

(2) In the bipartite network the factor nodes are labelled.

An example illustrating these differences is that of a bipartite network between

authors and papers co-authored by three authors and the corresponding simplicial

complex describing the collaboration network between the authors. The difference

between these two datasets is that bipartite networks distinguish between situations

where three authors write only one or several papers together, and they also dis-

tinguish between papers with the same three authors (i.e. the papers are labelled).

In contrast simplicial complexes indicate only whether a given set of three authors

have co-authored at least one paper together, independently on the paper title and

content.

4.3.4 Canonical ensemble conjugated to the configuration

model of simplicial complexes

When we choose the same set of constraints {k̂r} for both the configuration model

and the canonical ensemble then we say that they are conjugated ensembles. This
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is terminology that we have borrowed from statistical mechanics that is used to

describe ensembles of dynamical systems either with a given energy (the micro-

canonical ensemble corresponding to our configuration model) or with a given ex-

pected energy (the canonical ensemble).

As we discussed in Chapter 3, in many such systems the two ensembles are ther-

modynamically equivalent, i.e. their statistical properties are the same when one

considers systems formed by a large number of particles, like for example a gas of

molecules.

For network ensembles, the most fundamental example of conjugated micro-

canonical and canonical ensembles are the Erdös-Renyi random graphs in which we

fix either the total number of links (the micro-canonical ensemble) or the expected

number of links (the canonical ensemble). Analogously to the example of a gas with

fixed energy or fixed average energy, these network ensembles are equivalent in the

thermodynamic limit, i.e. the limit as the number of nodes N tends to infinity.

However, as we saw in Chapter 3 for examples of conjugated network ensembles

with an extensive number of constraints (such as on the degree sequence) it has

been shown that this equivalence does not hold [67,71–73].

In this section we show that the configuration model of simplicial complexes and

its conjugated canonical ensemble of simplicial complexes are not asymptotically

equivalent. To do this we derive a relation between the entropies of the two ensem-

bles and show that the difference between these entropies scales like the number of

nodes. This implies that the two ensembles must have significantly different statis-

tical properties in the thermodynamic limit and so they are not thermodynamically

equivalent.

The calculation of the entropy relation is also useful because it allows us to use

results obtained for the canonical ensemble to calculate the entropy of the config-

uration model explicitly in terms of its constraints {k̂r}, as long as we are in the

presence of the structural cutoff.
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The methodology we use to calculate the entropy relation mirrors that used

in [67] to calculate similar relations for ensembles of simple networks. Our calcula-

tion of the entropy of large deviation is based on the calculations for networks given

in [70] and later for multiplex networks in [73]. For d = 1 our models reduce to the

network configuration model and canonical ensemble, and in this case our results

reduce exactly to the results given in [67,70].

In what follows we indicate the entropy of the configuration model with SCM in

order to distinguish it from the entropy of the canonical ensemble which we indicate

with SCE. Similarly we indicate the probabilities of a simplicial complex G in the

configuration model and canonical ensemble with PCM(G) and PCE(G) respectively.

The expression that we derive relating these these two entropies is

SCM = SCE − Ω. (4.53)

In the above equation, Ω is the difference between the entropies of the two models,

and below we shall show that it is in fact something known as the entropy of large

deviation [70]. This quantity is the logarithm of the probability that in the canoni-

cal network model with expected generalized degree sequence {k̂r}, the generalized

degrees of the nodes take exactly the values kd,0(r) = k̂r. This is expressed as

Ω = − ln

[∑
G

PCE(G)
∏
r

δ (kr, kd,0(r))

]
. (4.54)

Large values of Ω indicate a high probability of simplicial complexes which have

generalized degrees different to the constraints, while lower values indicate that the

simplicial complexes are more likely to obey the constraints, and that the two en-

sembles are therefore more similar.

Following similar reasoning to [67] we now show that Eq. (4.53) holds with

Ω given by Eq. (4.54). Firstly, we observe that in the canonical ensemble the
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probability of a simplicial complex (given in Eq. (4.10) of Section 4.2.1) is

P (G) =
1

Z
e−

∑
r λrkd,0(r), (4.55)

and that this probability is constant on sets of simplicial complexes which have

identical sequences of the generalized degrees of the nodes. The sum in (4.54)

is actually the sum of the probabilities of all simplicial complexes for which the

generalised degrees are exactly equal to {k̂r} and so is simply equal to NPCE(G∗),

where G∗ is any simplicial complex with generalised degrees equal to {k̂r} and N
is the total number of such simplicial complexes, defined earlier in Eq. (4.49). Eq.

(4.54) thus becomes

Ω = − ln [NPCE(G∗)] . (4.56)

To validate Eq. (4.53) we need to show that

SCE − SCM = − ln [NPCE(G∗)] . (4.57)

In particular we shall show that SCE = − lnPCE(G∗) and SCM = lnN . For the

configuration model, the entropy is

SCM = −
∑
G

PCM(G) ln (PCM(G)) (4.58)

= −
∑
G

1

N
∏
r

δ
(
k̂r, kd,0(r)

)
ln

[
1

N
∏
r

δ
(
k̂r, kd,0(r)

)]
. (4.59)

Note that in general, events with probability 0 are taken to contribute 0 to the

Shannon entropy, i.e we use the convention 0 ln 0 = 0. This convention is justified by

the fact that limx→0 x lnx = 0, and because events which occur with probability 0 are

impossible and so should contribute 0 to the entropy which as discussed in Chapter 3

is the ‘average information’ gained from sampling from the ensemble. Therefore, in

the sum in Eq. (4.59) simplicial complexes with generalized degrees different to {k̂r}
contribute 0 to the entropy while simplicial complexes with generalized degrees equal

to {k̂r} each contribute − 1
N ln

(
1
N

)
. The total number of such simplicial complexes
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is of course N so the entropy of the configuration model is simply equal to

SCM = lnN . (4.60)

The entropy of the canonical ensemble SCE is given by

SCE = −
∑
G

PCE(G) ln (PCE(G)) . (4.61)

Replacing the second instance of the probability PCE(G) with its form given in Eq.

(4.55) we get

SCE = −
∑
G

PCE(G)
[
ln
(
e−

∑
r λrkd,0(r)

)
− lnZ

]
(4.62)

=
∑
r

λr〈kd,0(r)〉CE + lnZ, (4.63)

where 〈kd,0(r)〉CE indicates the expected value of the generalized degree of a node r

in the canonical ensemble. This is of course just equal to k̂r, so that we have

SCE =
∑
r

λrk̂r + lnZ (4.64)

= − ln

[
e−

∑
r λr k̂r

Z

]
. (4.65)

The probability in the canonical ensemble of some simplicial complex G∗ with se-

quence of the generalized degrees of the nodes equal to {k̂r} is

PCE(G∗) =
e−

∑
r λr k̂r

Z
, (4.66)

so we have shown that SCE = − ln [PCE(G∗)] and thus our entropy relation given in

Eq. (4.56) holds because

SCE − SCM = − lnPCE(G∗)− lnN = − ln [NPCE(G∗)] = Ω. (4.67)

The entropy of large deviation is equal to the difference between the Shannon
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entropies of our two conjugated ensembles. These entropies have an interpretation

as the typical number of simplicial complexes in the ensembles, and so a large Ω

would indicate that the canonical ensemble assigns significant probability to sim-

plicial complexes not consistent with the configuration model, and so the canonical

ensemble in a sense would have ‘more’ simplicial complexes than the configuration

model. If Ω remains significant in the thermodynamic limit, i.e. as the number of

nodes N tends to infinity, then our ensembles cannot be thermodynamically equiv-

alent.

Naturally, the entropies of our ensembles will depend on our choice of constraints

{k̂r}, and so we would like to obtain explicit expressions for them in terms of {k̂r}.
For the canonical ensemble we have already achieved this in Section 4.2.2 for choices

of {k̂r} below the structural cutoff. For the entropy of large deviation Ω we follow

the methodology developed in [70] and use the saddle point approximation to derive

an expression in terms of {k̂r} below the structural cutoff. The details of this

calculation are given in Appendix A. We find that Ω may be written as

Ω = −
N∑
r=1

ln
[
πk̂r(k̂r)

]
(4.68)

where πk̂r(k̂r) is the Poisson distribution with average k̂r evaluated at k̂r, i.e.

πk̂r(k̂r) =
1

k̂r!
k̂r
k̂r
e−k̂r . (4.69)

This expression is easily interpreted. In fact in the canonical ensemble the gen-

eralized degree of each node follows a Poisson distribution with average k̂r (see

Appendix B for details). The probability that the generalized degree of a node r

takes exactly the value kd,0(r) = k̂r is given by πk̂r(k̂r). From Eq. (4.68) we can infer

that below the structural cutoff, the generalized degrees of the nodes are approx-

imately independent from each other (in fact to show this properly requires only

a trivial modification of the calculation in Appendix A so that we are calculating

the probability of an arbitrary sequence of the generalized degrees rather than the

sequence corresponding to expected generalized degrees). Our results in Eq.s (4.68)

and (4.69) are validated by the fact that for d = 1 they reduce to the results for
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networks given in [67,70].

Finally, in order to assess whether or not the two ensembles are equivalent in the

thermodynamic limit we look at how Ω scales with the number of nodes. Eq. (4.68)

is valid for choices of the constraints {k̂r} much smaller than the structural cutoff

which scales like (〈k̂〉N)
d
d+1 . For choices of the generalized degree in this range that

are at least constant (i.e. they don’t vanish in the limit N → ∞) the entropy of

large deviation Ω must be at least O(N). This difference between the entropies of

the configuration model and canonical ensemble therefore grows at least as fast as

the number of nodes and so the two ensembles are not equivalent. This result is

thus in agreement with the findings of [67,71–73], namely that extensive numbers of

constraints cause conjugated ensembles not to be equivalent in the thermodynamic

limit.

4.3.5 The asymptotic formula for the number of simplicial

complexes in the configuration model with structural

cutoff

The configuration model entropy SCM can be evaluated below the structural cutoff

using the entropy relation given by Eq. (4.53) together with Ω and the canonical

ensemble entropy SCE given by Eq.s (4.68) and (4.18) respectively, giving us

SCM = −
∑

α∈Qd(N)

[pα ln pα + (1− pα) ln(1− pα)]

+
N∑
r=1

ln
k̂r
k̂r
e−k̂r

k̂r!
, (4.70)

where in presence of the structural cutoff the probabilities pα are given by Eq. (4.26).

Substituting the expression for pα into Eq. (4.70) we get the asymptotic expression
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for the configuration model entropy,

SCM =
d

d+ 1
ln(〈k̂〉N)!−

N∑
r=1

ln k̂r!−
〈k̂〉N
d+ 1

ln d!

− d!

2(d+ 1)(〈k̂〉N)d−1

(
〈k̂2〉
〈k̂〉

)d+1

. (4.71)

As we saw in the previous section, the entropy of the configuration model is just the

logarithm of N , the total number of simplicial complexes in the model. Therefore,

we get the asymptotic expression

N =
[(〈k̂〉N)!]d/(d+1)∏N

r=1 k̂r!

1

(d!)〈k̂〉N/(d+1)

× exp

− d!

2(d+ 1)(〈k̂〉N)d−1

(
〈k̂2〉
〈k̂〉

)d+1

+O(lnN)

 . (4.72)

This expression in fact generalises the Canfield-Bender formula [77] for the ensem-

ble of networks with given degree sequence, and for d = 1 it reduces exactly to the

Canfield-Bender formula.

An interesting observation is that the asymptotic number N of simplicial com-

plexes in the configuration model depends on the distribution of the generalized

degrees of the nodes and that this dependency remains important even for general-

ized degree sequences with the same average 〈k̂〉. This shows that the complexity of

the ensemble depends strongly on the statistical properties of the generalized degree

sequence. As observed in Ref. [81] in the context of simple networks, it can also be

shown for simplicial complexes of dimension d > 1 that scale-free distributions of

generalized degrees with the same average 〈k̂〉 but with decreasing power-law expo-

nent γ correspond to more complex ensembles of simplicial complexes. In fact they

are characterized by a smaller entropy SCM and a smaller asymptotic number N of

simplicial complexes.
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4.3.6 Combinatorial arguments for Eq. (4.72)

The asymptotic combinatorial expression (Eq. (4.72)) can be explained using combi-

natorial arguments, similar to the ones used to explain the Canfield-Bender formula

in Ref. [82]. In fact the factor

[(〈k̂〉N)!]d/(d+1)∏N
r=1 k̂r!

1

(d!)〈k̂〉N/(d+1)
(4.73)

counts all the possible combinations of the stubs of the nodes in groups of d + 1

stubs when we disregard forbidden moves. In other words Eq. (4.73) counts all the

possible structures that can be produced from the algorithm described in Section

4.3.2, if forbidden moves were allowed. Allowing forbidden moves means that not

all of the structures produced are true simplicial complexes, as the stubs of a single

node can appear more than once in a simplex, and multiple simplices can have the

same set of stubs. The quantity in Eq. (4.73) is therefore larger than the total

number of simplicial complexes that can be produced, and the exponential term in

Eq. (4.72) can be interpreted as the term that corrects for the forbidden matchings.

We now justify the above claims by considering our algorithm when forbidden

moves are allowed. In this version of the algorithm, we randomly draw stubs from

the set of all of the stubs belonging to the nodes, and match them together into

simplices of dimension d. As forbidden moves are allowed, this is equivalent to ran-

domly drawing an ordered sequence of all of the stubs, and partitioning the sequence

into ‘blocks’ of d+ 1 stubs, which become the d-simplices (see Fig. 4.4(A-C) for an

illustration of this concept).

The total number of permutations of the stubs is

(〈k̂〉N)!, (4.74)

and from each of these permutations we obtain a simplicial complex using the above

approach. However, multiple permutations can produce the same simplicial complex,

so to obtain the factor given in Eq. (4.73) we will need to calculate the multiplicity
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of a single simplicial complex in the set of all stub permutations.

To explain how we do this, we start by making a few observations. First we

note the quantity in Eq. (4.74) assumes that the stubs are ‘distinuishable’ from

each other whereas in fact, the stubs belonging to a node should be indistinguish-

able from each other, so that permutations that leave nodes connected to the same

simplices through different stubs should be counted as the same simplicial complex

(an illustration of this concept is in Fig. 4.4(D)). Secondly the order in which stubs

appear in a single block does not affect the simplex produced by the block (see Fig.

4.4(E)), so permutations with different orderings of the stubs but that nonetheless

have the same set of stubs in each block produce the same simplicial complex (this is

equivalent to saying that the stubs belonging to each factor node are indistinguish-

able). Lastly, we note that the simplices are unlabelled, and so are distinguished

only by the nodes they connect to. This means that permuting the order of the

blocks has no effect on the simplicial complex produced (see Fig. 4.4(F)).

From these observations it follows that the total number of simplicial complexes

produced with given sequence of the generalized degrees and when forbidden moves

are allowed is

(〈k̂〉N)!

mImIImIII

, (4.75)

where

mI =
∏
r

k̂r! (4.76)

accounts for the indistinguishability of the stubs of each node,

mII = [(d+ 1)!]
1
d+1
〈k̂〉N (4.77)

accounts for the fact that stub order within blocks has no effect on the simplicial

complex produced (recall that the total number of simplices or blocks is 1
d+1
〈k̂〉N),
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and

mIII =

(
1

d+ 1
〈k̂〉N

)
! (4.78)

is the number of permutations of the blocks and accounts for the simplices being

unlabelled. The quantity given in Eq. (4.78) can also be written in terms of a

multifactorial:

mIII = 1

(d+1)
1
d+1
〈k̂〉N 〈k̂〉N

[
〈k̂〉N − (d+ 1)

][
〈k̂〉N − 2(d+ 1)

]
. . .
[
d+ 1

]
= 1

(d+1)
1
d+1
〈k̂〉N

(
〈k̂〉N

)
!(d+1),

where the notation x!(n) indicates the multifactorial

x!(n) =

{
x if 0 < x ≤ n

x
[
(x− n)!(n)

]
if x > n

.

We note that the multifactorial in Eq. (4.79) may be related to the single factorial

by

(
〈k̂〉N

)
! =

d∏
s=0

(
〈k̂〉N − s

)
!(d+1), (4.79)

and that for N � d + 1 we can make the approximation
(
〈k̂〉N

)
!(d+1) ≈

(
〈k̂〉N −

s
)
!(d+1) for all s = 1, 2, . . . d, so that we can write Eq. (4.79) as

mIII =
1

(d+ 1)
1
d+1
〈k̂〉N

[(
〈k̂〉N

)
!
]1/(d+1)

. (4.80)

Using this expression for mIII along with the expressions for mI and mII given by

Eq.s (4.76) and (4.77) in (4.75) gives (4.73). We see that Eq. (4.73) is indeed the

total number of simplicial complexes that can be produced by a given sequence of

the generalized degrees when we disregard the possibility of forbidden matchings.

94



1

2

3

4

56

1(i) 2(ii) 2(i) 3(i) 4(i) 5(ii) 3(ii) 5(i) 6(iii)6(i) 3(iii) 6(ii)

{ { { {a b c d

1(i) 2(i) 3(i) 3(ii) 4(i) 5(i) 3(iii) 5(ii) 6(iii)6(i) 6(ii) 2(ii)
{ { { {a b c d

1(i) 2(i) 2(ii) 3(ii) 4(i) 5(i) 3(iii) 5(ii) 6(iii)6(i) 3(i) 6(ii)

{ { { {a c b d

1(i) 2(i) 2(ii) 3(ii) 4(i) 5(i) 3(iii) 5(ii) 6(iii)6(i) 3(i) 6(ii)
{ { { {a b c d

1

(i)

2

(ii)(i)

4

(i)

5

(ii)(i)

3

(iii)(ii)(i)

6

(iii)(ii)(i)

A B

C D

E F

Figure 4.4: Panel A shows 6 nodes with labelled stubs that are initially unmatched.
Panel B shows one possible random ordering of the stubs and their partitioning
into blocks corresponding to 2-dimensional simplices. The triangles with letters a-d
indicate the blocks while the labelled lines indicate the stubs (for example 2(i) is
stub (i) of node 2). Panel C shows the simplicial complex implied by the partitioning
in panel B. Panel D shows a different ordering of the stubs which leaves the same
nodes connected to the same simplices, but through different stubs. This ordering
produces the same simplicial complex as the original ordering shown in panel B. The
stubs that have been permuted are shown in red. Panel E illustrates the fact that the
order which stubs appear in a block does not affect the simplicial complex produced.
In this case the stubs of block b have been permuted relative to the ordering in panel
B. The simplicial complex produced by these orderings is the same. Panel F shows
that permuting block labels does not affect the simplicial complex produced. In this
case the blocks b and c have been permuted.
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4.4 Natural correlations of the configuration model

of simplicial complexes

In the preceding sections of this chapter we have introduced two maximum entropy

models of simplicial complexes: the configuration model and canonical ensemble and

have shown how we can use analytical and numerical techniques to explore these

models.

In the chapter introduction we outlined the possible uses for our models, namely

the reconstruction of simplicial complexes based on knowledge of their generalized

degrees, the identification of non-trivial or ‘interesting’ structure in simplicial com-

plex data, the uncovering of correlations between structural properties of the sim-

plicial complexes and as a way of relating the behaviours of dynamical processes

taking place on the simplicial complexes to a narrow set of structural properties.

In this section we focus on the third reason listed above: the uncovering of cor-

relations between structural properties of the simplicial complexes. In particular we

show how using our configuration model, it is possible to explore the correlations

that arise between the degrees of the nodes as a consequence of the sequence of the

generalized degrees of the nodes.

Note that here we are distinguishing between the degree of a node r (the number

of links r is a part of) and its generalized degree kd,0(r) (the number of d-simplices

it is a part of).

Our configuration model is the maximum entropy model for a simplicial complex

based on the sequence of the generalized degrees of the nodes, and so any correlations

of the degrees that we observe in this model can be seen as the natural correlations

arising from the generalized degrees. For simplicial complexes with d = 1 the degree

and generalized degree of a node are the same and our model reduces to the network

configuration model. In this case the question that we are asking is “how does the

propensity of each individual node to form links affect the local structure of the

network around the node”? By extending our model to d > 1 we are extending this
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question to “how does the propensity of a node to participate in groups of size d+ 1

(d-simplices) affect the local (network) structure around the node”.

We have chosen to use simplicial complexes constructed by the configuration

model with scale-free distribution Pd,0(k) of the generalized degree of the nodes

kd,0 = k. The distribution Pd,0(k) of the generalized degree of the nodes is given by

Pd,0(k) = Ck−γ, (4.81)

with minimal generalized degree m = 1.

From these simplicial complexes we extract their 1-dimensional ‘skeleton net-

works’ which consist of just their nodes and links. We indicate with â the adjacency

matrix of such a network and note that it can be obtained from the adjacency tensor

a by putting ârl = 1 if there is at least one d-simplex α with aα = 1 and ârl = 0

otherwise. We indicate the degree of a node r in the network with κr.

These networks can be analysed by means of well established tools used in net-

work theory. In particular we characterise the correlations existing in this network

by means of the average degree knn(κ) of the neighbours of the nodes of degree κ,

and the average clustering coefficient C(κ) of the nodes of degree κ. The average

degree of nodes of degree κ is given by

knn(κ) =

∑
r δ(κr, κ)

∑
l ârlκl

κNκ

, (4.82)

where Nκ =
∑

r δ(κr, κ) is the number of nodes with degree κ. The clustering coef-

ficient of a single node r is the proportion of potential links between the neighbours

of that node that are actually present in the network i.e.

Cr =

∑
lj ârlârj âlj

κr (κr − 1)
, (4.83)
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Figure 4.5: The average degree knn(κ) of the neighbours of the nodes of degree κ
and the average clustering coefficient C(κ) of the nodes of degree κ, for simplicial
complexes of dimension d = 1, 2, 3 constructed according to the configuration model
with distribution of the generalized degrees of the nodes Pd,0(k) given by Eq. (4.81)
and γ = 2.3, 2.8. The simplicial complexes have N = 104 nodes, and nF = 70. The
data points have been averaged over 100 realizations.

and so the average clustering coefficient C(κ) of the nodes of degree κ is

C(κ) =

∑
r Crδ(κr, κ)

nκ
. (4.84)

These functions are plotted in Figure 4.5 for simplicial complexes with general-

ized degree distribution Pd,0(k) given by Eq. (4.81) and γ = 2.3, 2.8. These results

show that natural degree correlations occur in these models. The average cluster-

ing coefficient C(κ) increases with the increasing dimensionality d of the simplicial

complex, and the shape of the function C(κ) is also strongly dependent on the di-

mensionality d. On the contrary, knn(κ) does not appear to change so dramatically

with the dimensionality d of the simplicial complex.

98



4.5 Conclusions

The research presented in this chapter, originally published in [33], constitutes a sig-

nificant first step into the modelling of simplicial complexes. Seen as generalisations

of networks, simplicial complexes encode many-body interactions between the parts

of a complex system. They allow for a characterisation of the structure of such sys-

tems that is not limited to node properties, but also provides a language to describe

the higher order properties of simplices with dimension d > 1. Additionally they are

also ideal mathematical objects to which tools from Topological Data Analysis may

be applied, or as discretisations of geometry from which the underlying geometries

of real-world data could be inferred.

Our models are maximum entropy models of d-dimensional simplicial complexes,

based on the generalised degrees of the nodes. As such, our models have a clear use

as null models for simplicial complexes. They are the most appropriate models for

simplicial complexes given knowledge of these generalized degrees, and allow for a

statistically rigorous understanding of the implications of particular choices of the

generalized degrees for the structure of simplicial complexes and dynamics taking

place upon them.

In this chapter we have explored these models within a statistical physics frame-

work. We have discovered the existence of a structural cutoff for simplicial complexes

above which correlations occur between the generalized degrees of the nodes. This

structural cutoff scales like N
d
d+1 and reduces to the network structural cutoff for

d = 1.

The structural cutoff plays an important role in our understanding of our models.

In the canonical ensemble, for choices of the generalized degrees of the nodes below

the structural cutoff we derived simplex probabilities and expected generalized de-

grees of higher dimensional faces in terms of the generalized degrees of their nodes.

Making an analogy with conjugated ensembles in statistical physics we derived a

relation between the entropies of our two models, and showed that in statistical

physics terms these models are not equivalent in the large system limit. Below the
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structural cutoff we also calculated the entropies of our two models explicitly in

terms of the generalized degrees of the nodes. These entropies have a number of

uses in network analysis and network inference [83,84].

The entropy of the configuration model is simply the logarithm of the total

number of simplicial complexes that can be constructed with the given sequence of

generalized degrees of the nodes. From the entropy we therefore obtained the total

number of simplicial complexes with given sequence of the generalized degrees of the

node, provided these generalized degrees were below the structural cutoff. Crucially,

for d = 1 this result reduces to the known result for networks given in [77].

In addition to the analytical approach to investigating our models described

above, we also developed algorithms to sample from our ensembles stochastically.

For the configuration model we used this algorithm to investigate the statistical

implications of the generalized degrees of the nodes on the structure of the skeleton

network implied by the simplicial complex. We found that for generalized degree dis-

tributions without the structural cutoff can cause significant correlations to emerge

in the skeleton network.

In conclusion we believe that the research presented in this chapter provides a full

account of two of the most fundamental equilibrium models of simplicial complexes

which can be used as null models for investigating the structure of simplicial com-

plexes, or for studying dynamical processes. We believe that these models constitute

only the first step in modelling simplicial complexes with equilibrium statistical me-

chanics tools and that our work will open up new perspectives for investigating a

new generation of maximum entropy models of simplicial complexes.
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Chapter 5

Weighted Growing Simplicial

Complex (WGSC)

In this chapter we present a model of a simplicial complex that is weighted and grow-

ing. The research presented in this chapter was published in our paper Weighted

Growing Simplicial Complexes [34].

A number of important examples of ‘real’ simplicial complexes are in fact weighted,

in the sense that each of their simplices has a weight associated to it. One example

is simplicial complexes constructed from data about academic collaboration between

scientists where the number of papers shared by a set of scientists is the weight of

the simplex between them [10–12]. Another example is simplicial complexes ob-

tained from fMRI data which measures correlations in activity between regions of

the brain [16, 17]. In this example the regions of the brain are the nodes of the

simplicial complex and correlations between them are assumed to imply some kind

of functional relation between the regions. A weighted simplicial complex can be

constructed by placing simplices between functionally related regions with weights

determined by the strength of the correlations.

In the above two examples as well as in other applications, weighted simplicial

complexes are rather natural representations of data. Understanding how the weight

is distributed across the simplices of a simplicial complex could reveal important in-
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formation about the system being represented, especially when such distributions

are inhomogeneous. In particular, characterizing the relation between the topology

of a simplicial complex and its weights could be important for understanding the

evolution of the simplcial complex or the functions of its components.

In the research presented in this chapter we characterize the structure of weighted

simplicial complexes in terms of their generalised degrees and generalised strengths,

and present a growing model of a weighted simplicial complex.

This model follows in the tradition of non-equilibrium network models that seek

to characterize the relations between growth mechanisms of networks and their

structural properties. As such this model falls into the category of models called

explanatory models. As discussed in Chapter 3, explanatory models of networks

seek to identify mechanisms for constructing networks that can explain a given set

of structural properties observed in a real network.

In contrast to the null models presented in the previous chapter, an explanatory

model does not necessarily attempt to give a ‘realistic’ representation of a network

or simplicial complex based on the observed properties but instead tries to provide a

plausible hypothesis about how a network or simplicial complex with such properties

might have grown or been constructed.

For certain choices of the parameters our model reduces to the weighted BA

model of [43] or the NGF of [57] both of which were discussed in Chapter 3. The

model is designed to explore how simple growth mechanisms can affect the distribu-

tion of weight across a simplicial complex. In particular, we investigate the scaling

of the generalised strength of the simplices scales with their generalised degree. We

find that depending on a small number of parameters, our model can generate linear,

super-linear or exponential scalings of generalised strength with generalised degree.

In the next section we will explain how these different scalings correspond to var-

ious homogeneous and inhomogeneous distributions of weight across the simplices.

Our model reveals that relatively simple growth mechanisms for generating simpli-

cial complexes can give rise to a rich variety of weight distributions, and provides
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a plausible explanation for the origins of such distributions in real simplicial com-

plexes.

Our approach extends similar approaches to explaining the emergence of linear

and super-linear scalings of strength and degree in simple networks [43]. In simple

networks [41–44] it has been shown through the analysis of a vast set of real datasets

that weights are not always distributed uniformly over the links of the network.

Specifically in some networks, high degree ‘hub’ nodes can have connections with

on average stronger weights than the typical connections of low degree nodes. The

way to characterize these weight-topology correlations is by studying the scaling of

the average strength of nodes as a function of their degree.

In particular, if the strength grows linearly with the degree the weights are uni-

formly distributed among the nodes of the network. If, instead the observed scaling

is superlinear then hubs typically have links with stronger weights than low degree

nodes.

Both linear and superlinear scaling have been observed in real-world networks

[41]. While early models of growing weighted networks exclusively captured the

linear scaling [42] it was later shown that the emergence of the weight-topology

correlations can be described within the framework of growing network models, in-

cluding growth of the network through the addition of new links while at the same

time increasing the weights of the links driven by a reinforcement dynamics [43].

Our research extends this idea for growing simplicial complexes, showing that

weight-topology correlations emerge not just at the network level, but also for δ-faces

of higher dimension. In order to identify these correlations, we develop a mean-field

approach for calculating the generalised degrees and generalised strengths of sim-

plices as a function of their birth time and use this to approximate the generalised

strength-degree scalings. We also compare the results obtained in this mean-field

approximation with extensive numerical simulations.
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This chapter is organized as follows. In Section 5.1 we recall the basic defini-

tions for weighted simplicial complexes and their main structural properties, and

introduce notation specific to this chapter. In Section 5.2 we define our model of a

growing weighted simplicial complex. In Section 5.3 we present our the mean-field

solution of the model. In Section 5.4 we compare our theoretical prediction with the

results of the numerical simulations. Finally in Section 5.5 we give our conclusions.

The code we used for numerical simulations in this chapter have been published

online at the URL address [85].

5.1 Definitions and notation

As in the previous chapter, in this chapter the simplicial complexes we consider

are pure d-dimensional, i.e. simplicial complexes constructed exclusively from d-

dimensional simplices and their sub-faces.

The structure of these d-dimensional simplicial complexes of N nodes is deter-

mined by the adjacency tensor a with elements aα = 1, 0 indicating whether the

simplex α ∈ Qd(N) is present (aα = 1) or absent (aα = 0) from the simplicial com-

plex. Occasionally it will be useful to refer to the set Sδ(N) which is the set of all

δ-simplices actually present in a given simplicial complex, i.e. Sδ(N) is the set of all

δ-simplices α ∈ Qd(N) for which aα = 1.

Unlike in the previous chapter, the simplicial complexes considered here are

weighted. This means that each d-dimensional simplex α has an a weight wα asso-

ciated with it. Similar to the adjacency tensor, we define the weight tensor w as

having elements wα for each d-simplex α.

In a simplicial complex representing co-authorship, for example, a simplex could

represent a set of co-authors that have collaborated on at least one paper together,

while the weight of that simplex corresponds to the total number of papers that

have been co-authored by the team.
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We characterize the properties of the simplicial complex using the generalized

degrees and generalized strengths of the δ-faces, which we defined in Chapter 2. In

contrast to the last chapter, in this chapter the generalized degrees evolve in time.

For this reason we choose slightly different notation for the generalised degrees than

in the previous chapter. The change of notation is shown below:

kd,δ(α)→ kαd,δ(t) =
∑

α′∈Qd(N,t)|α′⊇α

aα′ . (5.1)

The generalized strength sd,δ(α)(t) of a δ-face α ∈ Sδ is the sum of the weights of the

d-dimensional simplices incident to it, and we use similar notation to the generalised

degree

sαd,δ(t) =
∑

α′∈Qd(N,t)|α′⊇α

aα′wα′ . (5.2)

In weighted networks, it has been shown that it is possible to characterize the

interplay between the network topology and the weights of the links by classifying

networks depending on the scaling of the strength as a function of the degree of the

nodes.

Specifically it has been shown that for some networks the weights of the links

are distributed rather uniformly, resulting in a linear dependence of the strength of

the nodes with its degree,

Si ∝ Ki (5.3)

while in other networks hub nodes tend to have links with higher weights than low

degree nodes. This latter scenario results in a superlinear scaling of the strength

versus the degree, i.e.

Si ∝ (Ki)
θ, (5.4)
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with θ > 1.

An example of networks with linear dependence of the strength versus degree

are collaboration networks, while an example of non-linear dependence of strength

on degree are for instance airport networks where the weights measure the number

of passengers for each flight connection.

In Ref. [43] it has been shown that a simple growing network model with rein-

forcement of the links is actually able to generate networks with linear and superlin-

ear scaling of the strength versus degree depending on the rate at which new links

are added with respect to the rate at which links are reinforced.

In this chapter we propose a model for growing simplicial complexes which shows

a very rich phenomenology, and we show evidence that in simplicial complexes it

is possible to characterize the correlations between weights and topology by explor-

ing the dependence of the generalized strength sαd,δ versus the generalized degree kαd,δ.

Specifically we are able to predict three alternative possible scalings: linear,

superlinear and exponential, i.e.

sαd,δ ∝


kαd,δ,(
kαd,δ
)θ
,

exp
[
βkαd,δ

]
,

(5.5)

with θ > 1 and β indicating a constant greater than zero. In this case the superlinear

scaling indicates weight-topology correlations, and these correlations are even more

pronounced for the exponential scaling.

5.2 The Model

In this section we present our model of a growing weighted simplicial complex. The

model combines a growth process by which a new node and a set of new simplices
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Figure 5.1: Graphical representation of process A (panel (a)) and process B (panel
(b)) for a 2-dimensional simplicial complex with m = 3 and m′ = 4 starting from a
given initial condition.

are introduced into the simplicial complex at every time step of the model, and a

reinforcement process where the weights of some simplices are reinforced (increased)

at each time step. Both processes are stochastic, and the probabilities by which they

operate are governed by a small number of parameters. Depending on the choice of

these parameters the simplicial complex is capable of displaying a variety of inter-

esting weight-topology correlations.

The evolution of the topology of these simplicial complexes, governed by the

growth process, is based on the previously proposed framework of Network Geom-

etry with Flavor (NGF) [57]. The NGF is a model of growing simplicial complex

able to generate networks with different complex topologies, including hyperbolic

manifolds, scale-free networks, and networks with relevant modularity. However,

the model presented in this chapter includes two important new elements with re-

spect to the NGF model: i) the simplicial complexes generated by this model are

weighted, ii) the simplicial complexes generated by this model can have non-trivial

homology.

The weighted simplicial complexes are generated as follows. We start at time

t = 1 from an initial finite simplicial complex that comprises m0 > m d-dimensional
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simplices of total weight ω0. At each time-step t > 1 two processes take place:

A) Add m simplices (growth process):

A new node arrives and m new d-simplices with initial weight w0 are created

between the node and pre-existing (d−1)-faces. The probability Πd−1(α) that

a given (d− 1)-face α is selected by one of the new d-simplices is given by

Πd−1(α) =
1

Zt
(1 + snα), (5.6)

where nα = kαd,d−1−1 is called the saturation and where s is a parameter called

flavor which takes the values s = −1, 0, 1 and controls the simplicial complex

topology. Note that in Eq. (5.6), Zt is a normalization constant given by

Zt =
∑

α∈Sd−1(t)
(1 + snα).

B) Reinforce m′ simplices (reinforcement process):

At this step m′ existing d-simplices are selected and their weights are increased

by w0. A d-simplex α with weight wα is selected for reinforcement with prob-

ability Π̃d(α) proportional to its weight, i.e.

Π̃d(α) =
wα

Z̃t
, (5.7)

where Z̃t =
∑

α∈Sd(t)wα.

Figure 5.1 shows an illustration of the two processes (process A and process

B) for a 2-dimensional simplicial complex starting from a given initial simplicial

complex. The flavor s has an important effect on the topological properties of the

simplicial complexes produced. Selection of s = −1 imposes the constraint that the

generalized degree kd,d−1(α) of a (d− 1)-face α can only take the values 1 and 2, or

equivalently imposes that the saturation nα can only take values 0 (unsaturated) and

1 (saturated), which leads to the simplicial complex produced being a d-dimensional

manifold. Choosing s = 0 or s = 1 removes this constraint, and gives a selection

probability Πd−1(α) that is uniform on the set of all (d − 1)-faces for s = 0 and a

form of preferential attachment with Πd−1(α) ∝ kαd,d−1 for s = 1.
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Figure 5.2: Skeleton networks of simplicial complexes generated by the model for
d = 3, N = 100 and s = −1. Node sizes indicate their degrees while link widths
indicate their generalized strength. Node and edge colorings indicate community
structure calculated according to the Louvain algorithm [86]. Panel (a) shows the
skeleton of a simplicial complex with m = 1 and m′ = 2 while panel (b) shows the
skeleton of a simplicial complex with m = 2 and m′ = 1.

In Figure 5.2 we plot the weighted skeleton networks of two simplicial complexes

generated by the model in the case d = 3 and s = −1 for (m,m′) = (1, 2) and

(m,m′) = (2, 1). The weights of the links in these networks indicate the general-

ized strengths of the links in their corresponding simplicial complexes. While in

the case (m,m′) = (1, 2) nodes with high degree have typically links with stronger

weights than the weights of low-degree nodes, the weights are more homogeneously

distributed in the case (m,m′) = (2, 1).

5.3 Mean-field solution of the model

In this section we derive mean-field approximations for the generalised degrees and

generalised strengths of δ-faces as a function of their birth times and use these

approximations to calculate the generalised degree distributions of the faces as well
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as the scaling of the generalised strengths of the faces with their generalised degrees.

To do this we make use of a very well established framework for simple net-

works [1–3], where the generalised degrees, generalised strengths, simplex weights

and the time t are approximated as continuous variables. Mean-field approximations

for these quantities are then obtained by solving differential equations.

In Section 5.3.1 we use this approach to calculate the generalised degree of a

face, and subsequently derive the distributions of the generalised degrees for faces

of all dimensions 0 ≤ δ ≤ d − 1. The distributions can be power-law, exponential,

or bimodal (for δ = d − 1 in the d-dimensional manifold case). Remarkably, even

within a single simplicial complex we find that for certain choices of parameters it is

possible to have all three of the distributions within the simplicial complex for faces

of different dimension. We show how this phenomenon can be understood in terms

of the ‘effective’ attachment mechanisms experienced by the faces of lower dimen-

sion, where one type of attachment mechanism at dimension δ = d − 1 is felt as a

different type of attachment mechanism at lower dimensions (for example, we show

that attaching simplices with uniform attachment to (d−1)-faces is felt as a kind of

preferential attachment for faces of dimension d− 2). A further implication of this

effect is that for all three attachment mechanisms (manifold, uniform, preferential),

if the dimension of the simplicial complex is d ≥ 3, then the skeleton network is

always scale-free. This fact demonstrates that scale-free networks can be created

through attachment mechanisms that focus not on node properties but properties

belonging to higher order groups of nodes (the simplices and faces).

The calculation of the mean-field approximations for the generalised strengths

is more convoluted than for the generalised degrees. The generalised strength of a

face is the sum of the independently evolving weights of the simplices to which it

is incident. In order to calculate the generalised strength we first derive in Section

5.3.2 the probability that a given simplex exists in the simplicial complex at time t,

and then in Section 5.3.3 derive the mean-field weight of the simplex at t. In Section

5.3.4 we combine these quantities to calculate the generalised strength of a face at

time t, and subsequently find the scaling relation between the generalised strength
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and generalised degree.

5.3.1 Mean-field solutions for the generalized degrees

In this section we use a mean-field approximation to derive the time evolution of

the generalized degrees of the faces of any dimension δ. In fact, we will approximate

the generalized degree kαd,δ of a δ-face α with its expected value, and also make the

further approximation that this expected generalized degree evolves continuously

rather than in discrete time steps. As we shall see, this allows us to obtain the time

evolution of the generalized degrees by solving differential equations of the form

∂

∂t
kαd,δ = f(m, s, t, kαd,δ), (5.8)

where f(m, s, kαd,δ) is some function of the model parameters, the time t and kαd,δ.

The appropriate choice of function f is the expected increase in kαd,δ in the interval

[t, t+ 1] conditioned on its expected generalised degree at time t.

In order to obtain this expected increase as a function of kαd,δ, we first need to

calculate the probability that at time t, one of the new d-simplices attaches itself

to a (d − 1)-face incident to α. If δ = d − 1 then α is itself a (d − 1)-face, and the

probability is simply Πd−1(α) as given in Eq. (5.6). For δ < d − 1, we write the

probability as Πδ(α), and is simply the sum of the probabilities that any (d−1) face

α′ ⊇ α is chosen for attaching the new simplex, i.e.

Πδ(α) =
∑

α′∈Sd−1|α′⊇α

Πd−1(α
′)

=
1

Zt

∑
α′∈Sd−1|α′⊇α

(
1− s+ skα

′

d,d−1

)
. (5.9)

Note that Πδ(α) is the probability that a particular d-simplex out of the m d-

simplices created at time t attaches to α (via one of the (d − 1)-faces that α is

incident to). The expected increase in kαd,δ will instead be equal to the sum of these
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probabilities for each of the m simplices, leading to

∂

∂t
kαd,δ = mΠδ(α). (5.10)

We thus need an expression for Πδ(α) as a function only of kαd,δ, the time t and the

model parameters. Let us start by turning our attention first to Zt, which normalises

Eq. (5.6). We have

Zt =
∑

α′∈Sd−1

(
1− s+ skα

′

d,d−1

)
(5.11)

= (1− s)

 ∑
α′∈Sd−1

1

+ s

 ∑
α′∈Sd−1

kα
′

d,d−1

 . (5.12)

The first sum in the above equation is simply the total number of (d − 1)-faces in

the simplicial complex at time t. At each time step we add m new d-dimensional

simplices each one contributing d new (d − 1)-faces (neglecting the unlikely event

that there is any overlap between the new simplices). For t � 1, the number of

(d− 1)-faces is thus well approximated by
∑

α′∈Sd−1
1 ' mdt. Additionally we have

that
∑

α′∈Sd−1
kα
′

d,d−1 ' m(d + 1)t for t � 1 because any new simplex increases by

one the generalized degree of each of its d+ 1 faces of dimension d− 1. We can thus

make the approximation

Zt ' m(d+ s)t, (5.13)

i.e. an expression only dependent on the time and the model parameters. We now

consider the sum in the second line of Eq. (5.9):

∑
α′∈Sd−1|α′⊇α

(
1− s+ skα

′

d,d−1
)

= (1− s)
(∑

α′∈Sd−1|α′⊇α 1
)

+s
(∑

α′∈Sd−1|α′⊇α k
α′

d,d−1

)
.

(5.14)

Using the combinatorial expression first derived in [33] and given in Eq. (2.2) we
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can write the second sum as∑
α′∈Sd−1|α′⊇α

kα
′

d,d−1 =
(
d− δ

)
kαd,δ. (5.15)

The first sum in Eq. (5.14) is the number of (d − 1)-faces incident to α, i.e. the

generalized degree kαd−1,δ where the d−1 in the subscript indicates that the simplices

being counted have dimension d− 1. There is no combinatorial expression for kαd−1,δ
in terms of kαd,δ that holds for all simplicial complexes, however for the simplicial

complexes produced by the particular dynamics of our model it is possible to show

that

∑
α′∈Sd−1|α′⊇α

1 = kαd−1,δ =

{
1 +

(
d− δ − 1

)
kαd,δ for δ > 0,

m+
(
d− 1

)
kαd,δ for δ = 0.

(5.16)

In order to understand Eq. (5.16), first consider the generalised degrees kαd−1,δ and

kαd,δ of α when it is initially created at time tα. If α is a node (i.e. if δ = 0), then when

it is initially created it has exactly m d-simplices so that kαd,δ = m. For tα � 1, the

probability that any of these new d-simplices have any overlapping (d−1)-faces (due

to the simplices attaching to adjacent faces) is vanishingly small so that kαd−1,δ ' md.

If, as the model progresses, the node α subsequently gains any additional simplices,

then for each additional d-simplex obtained α also gains d − 1 new (d − 1)-faces.

These faces are the (d−1)-faces formed by α, the new node created at that time step

and each combination of exactly d− 2 of the other d− 1 nodes in the (d− 1)-face of

which α is a part of, and to which the new simplex is attaching. For the case δ = 0

we thus have kαd−1,0 = md+(d−1)
(
kαd,δ −m

)
= m+

(
d−1

)
kαd,δ. A similar argument

may be made for δ > 0. In this case every δ-face is initially created incident to a

single d-simplex and so must initially be incident to d (d−1)-faces. As with the case

of a node, each subsequent d-simplex it gains contributes d − 1 new (d − 1)-faces,

leading to kαd−1,δ = d+ (d− 1)
(
kαd,δ − 1

)
= 1 +

(
d− δ − 1

)
kαd,δ.

Using Eq.s (5.15) and (5.16) in (5.14) gives∑
α′∈Sd−1|α′⊇α

(
1− s+ skα

′

d,d−1

)
= (1− s)cδ +

(
d+ s− δ − 1

)
kαd,δ, (5.17)
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where

cδ =

{
1 for δ > 0,

m for δ = 0.
(5.18)

With Eq. (5.17) and Zt as given in Eq. (5.13) we can now write the probability

Πδ(α) in terms of kαd,δ and thus we obtain the following differential equation for the

evolution of kαd,δ in time:

∂kd,δ(t, tα)

dt
= mΠδ(α) =

(1− s)cδ +
(
d+ s− δ − 1

)
kd,δ(t, tα)(

d+ s
)
t

, (5.19)

where we have applied the change of notation kαd,δ → kd,δ(t, tα) to emphasise the fact

that in our mean-field approximation the generalised degree of α depends only on t

and α’s birth time tα. The differential equation in (5.19) has initial condition

kd,δ(tα, tα) = cδ =

{
1 for δ > 0,

m for δ = 0.
(5.20)

The solution of this equation is

kd,δ(t, tα) =


cδ

d−δ
d+s−δ−1

(
t
tα

)λδ
+ cδ

s−1
d+s−δ−1 for δ − s 6= d− 1,

cδ
1−s
d+s

log

(
t
tα

)
+ cδ for δ − s = d− 1,

(5.21)

where

λδ =
d+ s− δ − 1

d+ s
. (5.22)

For the case δ = d−1 with s = −1 (i.e. the (d−1)-faces in the random d-manifold

version of the model) the generalized degree distribution Pd,δ(k) is bimodal, because

only the generalized degrees kαd,d−1 = 1, 2 are allowed for faces of dimension d − 1.

For all other cases it is possible to derive the generalized degree distribution using

the mean-field solution given by Eq. (5.21). We show that the generalized degree

distribution is exponential for d− 1 + s− δ = 0 and power-law for d− 1 + s− δ > 0.
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In order to derive these results we first note that for fixed time t the generalised

degree as given in Eq. (5.21) is monotone decreasing as a function of the birth

time of the δ-face tα. Within our mean-field approximation, all δ-faces born before

some time τ have a generalised degree greater than kd,δ(t, tα = τ), therefore the

proportion of δ-faces with a generalised degree greater than some value k is equal to

the proportion of δ-faces born before τ(k), where τ(k) is such that kd,δ(t, τ(k)) = k,

thus

P (kd,δ(t, tα) ≥ k) = P̂δ(tα < τ(k)). (5.23)

The number of δ-faces added at each time step neglecting overlaps is constant, so

for t� 1 the proportion of δ-faces born before τ is just equal to P̂δ(tα < τ) = τ
t
.

Using this result and Eq. (5.21), it is not hard to show that the probability that

the generalized degree kd,δ(t, tα) is greater than k is given by

P (kd,δ(t, tα) ≥ k) =


(

cδ(d−δ)
k(d+s−δ−1)

) 1
λδ for δ − s < d− 1,

exp
[
− d+s

(1−s)cδ
k
]

for δ − s = d− 1.
(5.24)

The generalized degree distribution Pd,δ(k) is found by differentiating Eq. (5.24)

with respect to k leading to

Pd,δ(k) = −dP (kd,δ(t,tα)≥k)
dk

=

 d+s
d+s−δ−1

(
cδ

d−δ
d+s−δ−1

) 1
λδ k
− 1
λδ
−1

for δ − s < d− 1,

d+s
(1−s)cδ

exp
[
− d+s

(1−s)cδ
k
]

for δ − s = d− 1,

(5.25)

valid as long as δ − s < d. Therefore the generalized degree distribution of δ-

dimensional simplices in growing simplicial networks with flavor s follows Table 5.1.

In particular, Table 5.1 shows that in the simplicial complexes produced when

s = −1, the generalized degree distribution for the (d − 1)-faces is bimodal, while

for the (d− 2)-faces and (d− 3)-faces (assuming d ≥ 3 so that such faces exist) the
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distributions are exponential and power-law respectively. For s = 0 on the other

hand the distribution for the (d− 1)-faces is exponential and all other distribution

for the lower dimensional faces is power-law, while for s = 1 all the distributions are

power-law. For m = 1 (and ignoring weights) our model reduces to the NGF of [57],

and indeed we find that in this case our mean-field results coincide with the exact

results for the generalised degree distribution given in [57].

In general, for the right set of parameters it is possible to observe all three

distributions within a single simplicial complex. The reason this occurs can be

understood in terms of the effective attachment mechanisms felt by the δ-faces of

dimension δ < d − 1. To be precise, in the manifold case s = −1, the probability

that a δ-face gains a new d-simplex is proportional to the number of unsaturated

(d − 1)-faces it has. Every time a new d-simplex is formed incident to this δ-face,

one of these unsaturated (d − 1)-faces becomes saturated but at the same time it

gains d− δ − 1 newly created unsaturated (d− 1)-faces. For δ = d− 2 the number

of unsaturated (d− 1)-faces a δ-face has is therefore constant in the manifold case,

and so these faces experience an effective uniform attachment equivalent to that

experienced by (d− 1)-faces in the s = 0 case. For δ < d− 2 in the manifold case,

a δ-face gains d− δ− 2 new unsaturated faces each time its generalized degree goes

up by 1. For these faces the effective attachment mechanism is therefore a form of

linear preferential attachment.

A similar argument can be made for s = 0. In this case it is the total number

of (d− 1)-faces incident to a δ-face that determines the probability that the δ-face

will attract a new simplex. Each time the δ-face gains a new simplex, the number

of (d − 1)-faces it is incident to goes up by d − δ − 1 and so for all δ < d − 1 the

effective attachment mechanism is linear preferential.

For the case s = 1, the argument is slightly different as the effective attach-

ment felt by a δ-face is proportional to the sum of the generalised degrees of the

(d − 1)-faces it is incident to. Fortunately, in Eq. (5.15) we saw that this quantity

is proportional to the generalised degree of the δ-face, so for this reason all δ-faces

experience linear preferential attachment when s = 1.
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These distinct attachment mechanisms can be observed in the attachment prob-

ability Πδ(α) for a δ-face α given in Eq. (5.19). Across the entire model the δ-faces

experiencing the manifold attachment mechanism have a bimodal distribution of

the generalised degrees, those experiencing uniform attachment have an exponen-

tial distribution while those experiencing preferential attachment have a power-law

distribution.

In this last case, the generalized degree distribution Pd,δ(k) given by Eq. (5.25)

decays as a power-law Pd,δ(k) ∝ k−γd,δ with the power-law exponent

γd,δ = 1 +
1

λδ
= 1 +

d+ s

d+ s− δ − 1
(5.26)

as long as δ−s < d−1. These distributions are scale-free if γd,δ ≤ 3, or equivalently

they are scale-free if

d ≥ d[δ,s]c = 2(δ + 1)− s. (5.27)

In the above discussion, we have focused entirely on the generalized degrees of the

faces. In particular the distributions discussed above all consider only the number

of d-simplices incident to a face, and do not consider the network structure that the

model creates. We now turn our attention to the skeleton network consisting of the

nodes and links of the simplicial complex. The degree of any node Ki that does not

belong to the small initial condition is given by

Ki = kid,0 + (d− 1)m. (5.28)

In fact each node initially has degree dm, and subsequently the degree increases by

one for each d-simplex glued to one of the (d− 1)-faces of the node. It follows then

that if the generalized degree distribution of the nodes is scale-free then the degree

distribution of the skeleton network is also scale-free. As a result, growing simplicial

complexes of flavor s = 1 are scale-free for any d ≥ 1, the ones of flavor s = 0 are

scale-free for d ≥ 2 and the ones of flavor s = −1 are scale-free for d ≥ 3.

117



Table 5.1: Distribution of the generalized degrees of faces of dimension δ in a
d-dimensional simplicial produced by the model with flavor s. For d ≥ d

[δ,s]
c =

2(δ + 1) − s the power-law distributions are scale-free, i.e. the second moment of
the distribution diverges.

flavor s = −1 s = 0 s = 1
δ = d− 1 Bimodal Exponential Power-law
δ = d− 2 Exponential Power-law Power-law
δ ≤ d− 3 Power-law Power-law Power-law

We have thus seen how a variety of attachment mechanisms at the level of the

d-simplex can induce different attachment mechanisms at the level of the δ-face and

in particular the node. Our model produces bimodal, exponential and power-law

distributions of both the generalised degree and network degree. Our model also

illustrates more generally that scale-free networks may be produced by models of

growth that focus not only on node properties but also on properties belonging to

higher-order structures such as (in our case) simplices or perhaps other network

motifs.

In the following section we consider the probability that a given simplex exists

in the simplicial complex, which we use later in Section 5.3.4 to help us calculate

the strength of a simplex.

5.3.2 Probability of a simplex

Unlike for nodes, the existence of specific simplices or faces of dimension greater

than 0 in a simplicial complex is not guaranteed. For these faces we are therefore

interested in calculating their probabilities.

Towards this end, let us represent each possible δ-face αδ by the sequence of its

nodes αδ = [j0, j1, ..., jδ] where the nodes are ordered according to the time of their

arrival in the simplicial complex, i.e. tj0 < tj1 < ... < tjδ .

We want to calculate the probability that at time t, αδ exists in the simplicial

complex, given the arrival times of its nodes tj0 < tj1 < ... < tjδ , i.e. we want to
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Figure 5.3: Generalized degree distributions Pd,δ(kd,δ) are shown for simplicial com-
plexes of dimension d = 3, and flavor s = −1 (panels a, d, g), s = 0 (panels b, e, h)
and s = 1 (panels c, f, i), and for faces of dimension δ = 2 (panels a, b, c), δ = 1
(panels d, e, f) and δ = 0 (panels g, h, i). The results of simulations are shown
for m = 1, 2 and 3 (blue circles, red squares and yellow triangles respectively). The
simulated simplicial complexes have N = 105 nodes and the results are averaged
over 10 simplicial complex realizations.
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calculate P (αδ ∈ Sδ(t)|tj0 , tj1 , ..., tjδ). As we described in Section 5.2, in our model

each new d-simplex is created from a single new node and an existing (d− 1)-face.

Similarly, for δ ≤ d− 1, each new δ-face is created from a new node and one of the

(δ − 1)-dimensional sub-faces of a (d− 1)-face to which the new node has attached.

Furthermore once a simplex or face has arrived in the simplicial complex, it never

‘dies’ or ‘leaves’ the simplicial complex.

With these facts in mind, we make the following observations about the process

by which new faces arrive in the simplicial complex:

(i) Let αδ = [j0, j1, ..., jδ] be a possible δ-face with node arrival times tj0 < tj1 <

... < tjδ . Then αδ is only a face if the (δ−1)-face αδ−1 = [j0, j1, ..., jδ−1] already

exists at time tjδ and at this time the ‘new’ node jδ forms a d-simplex incident

to some (d− 1)-face α with αδ−1 ⊂ α.

(ii) Simplices and faces only arrive in the simplicial complex at the arrival time of

their youngest node tjδ , and cannot ‘die’, so for any time t > tjδ , the probability

that αδ is a face at time t is equal to the probability that it was a face at time

tjδ + 1, i.e.

P (αδ ∈ Sδ(t)|tj0 , tj1 , ..., tjδ) = P (αδ ∈ Sδ(tjδ + 1)|tj0 , tj1 , ..., tjδ). In the rest of

this chapter we write this probability with the short hand pαδ .

The probability pαδ can thus be calculated using the recurrence relation

pαδ = pαδ−1
πδ−1(tjδ , tjδ−1

)

=
δ−1∏
n=0

πn(tjn+1 , tjn) (5.29)

where π0(tj1 , tj0) = pα1 is the probability of the link α1 = [j0, j1], while for δ > 1,

πδ−1(tjδ , tjδ−1
) = P

(
αδ ∈ Sδ(tjδ)|αδ−1 ∈ Sδ−1(tjδ−1

)
)

is the conditional probability

that the node jδ forms a δ-face with the (δ− 1)-face αδ−1 given αδ−1 exists. Within
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our mean-field approximation we can write these probabilities as

πδ(tjδ+1
, tjδ) = mΠ

tjδ+1

δ (αδ) =
(1− s)cδ +

(
d+ s− δ − 1

)
kd,δ(tjδ+1

, tjδ)(
d+ s

)
tjδ+1

= cδ
d− δ
d+ s

tjδ
1+δ
d+s
−1t
− 1+δ
d+s

jδ+1
, (5.30)

where to get from the first line to the the second line we have inserted the mean-field

expressions for kd,δ(tjδ+1
, tjδ) given in Eq. (5.21). Finally, using Eq. (5.29) and Eq.

(5.30) we get a closed expression for the probability pαδ of a δ-face as a function of

the times {tj1 , tj2 , . . . , tjδ} of arrival of its nodes in the simplicial complex, given by

pαδ = m
d!

(d− δ)!(d+ s)δ
(
tj0tj1 ...tjδ−1

) 1
d+s
−1
t
− δ
d+s

jδ
. (5.31)

This probability will prove useful in Section 5.3.4 for calculating the generalized

strengths of faces conditioned on the arrival times of their nodes.

5.3.3 Mean-field solution for the weight of a simplex

In this section we derive a mean-field expression for the weight w(t, tα) that the d-

dimensional simplex α added to the simplicial complex at time tα has at time t. In

combination with the expression for the probability of a simplex given Eq. (5.31) of

the previous section, we will use the results of this section to help us calculate the

generalised strengths of faces in Section 5.3.4.

At each time step of our model we reinforce m′ random simplices increasing

their weight by w0. The expected change in weight during [t, t+1] of a simplex with

weight w(t, tα) at time t is m′Π̃d(α), with Π̃d(α) as given in equation (5.7). Similar

to our approach to calculating the generalised degrees in the Section 5.3.1, we make

a continuous time approximation, resulting in the following differential equation

∂w(t, tα)

∂t
= w0m

′Π̃d(α), (5.32)
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with initial condition

w(tα, tα) = w0 (5.33)

since each new simplex initially has weight w0.

At each time step m new simplices, each of weight w0, are added to the simpli-

cial complex, and m′ existing simplices increase their weight by w0. Therefore the

normalization constant Z̃t can be approximated for t� 1 as

Z̃t =
∑

α∈Sd(t)

wα(t) = (m′ +m)w0t+WI ' (m′ +m)w0t, (5.34)

where WI is the total weight of the initial simplicial complex and is negligible com-

pared to Z̃t for t� 1. Eq. (5.32) can then be written as

∂w(t, tα)

∂t
= λ

w(t, tα)

t
, (5.35)

with

λ =
m′

m+m′
. (5.36)

This equation, together with the initial condition expressed in Eq. (5.33) is easily

solved:

w(t, tα) = w0

(
t

tα

)λ
. (5.37)

This mean-field expression can be interpreted as the expected weight of a simplex

α conditioned on its arrival time tα and also conditioned on its existence. Together

with the probability of existence of a simplex calculated in the previous section, this

will be used in the following section to calculate the average contribution to the

generalised strength of a face coming from simplices with given arrival times of their

nodes.

122



5.3.4 Mean-field approach for the generalized strengths

In this section we evaluate the generalized strength of a δ-face within our mean-

field approximation. Recall that the generalized strength of a face of dimension δ

is the sum of the weights of the simplices of dimension d of which that face is a subset.

In the spirit of the mean-field approximation, i.e. neglecting fluctuations, we

approximate the generalized strength sαd,δ of a δ-face α by its expected value sd,δ(t, tα)

over different simplicial complex realizations and conditioned on the existence of the

face α with arrival time tα. This is given by

sd,δ(t, tα) =

∑
α′∈Qd(N)|α′⊃α pα′w(t, tα′)

pα
. (5.38)

The sum in the numerator is over all possible d-simplices that could exist at time t

and which would be incident to α. The numerator is thus the expected sum of the

weights of each of these possible d-simplices. We divide by pα in the denominator

to get the expected generalized strength of α conditional on its existence. As we

have shown in the previous two sections, within our mean-field continuous time ap-

proximation the probabilities pα and pα′ and the weights w(t, tα′) are functions of

the birth times of the nodes contained within α and α′. In this section we seek to

approximate the sum in Eq. (5.38) with a set of integrals over the birth times of

the nodes of α′.

To this end we indicate each δ-simplex α by the set of its nodes [i0, i1, . . . , iδ]

ordered according to the arrival times in the simplicial complex ti0 < ti1 < . . . <

tiδ = tα. Similarly we will indicate each d-simplex α′ by the ordered set of its

nodes [j0, j1, . . . , jd] ordered according to the arrival times in the simplicial complex

tj0 < tj1 < . . . < tjd = tα′ .

The transition from the sum in Eq. (5.38) to an integral over the birth times

tj0 , tj1 , . . . , tjd is complicated slightly by the fact that α is a face of each α′ (i.e.

[i0, i1, . . . iδ] ⊂ [j0, j1, . . . jn]) and so α fixes the birth times of exactly δ + 1 of the

nodes in each α′. As we will see, the structure of our integrals will in fact depend on
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the ‘position’ that each of the birth times belonging to α takes in the the set of birth

times belonging to α′. We indicate this position with the following notation. For

the node ir ⊂ α (i.e. the rth node in α) we indicate its index in the list [j0, j1, . . . jd]

with q(r). We therefore have

ir = jq(r). (5.39)

In order to be concrete, consider the following example. In a simplicial complex of

dimension d = 4 consider the 4-simplex α′

α′ = [j0, j1, j2, j3, j4] = [5, 7, 11, 19, 25] (5.40)

and the 1-face α

α = [i0, i1] = [7, 19]. (5.41)

Since i0 = j1 and i1 = j3 we have

q(0) = 1, q(1) = 3. (5.42)

Additionally, for a face α, the positions set by {q(r)}r=0,1,...δ fix not only the birth

times of the nodes tjq(0) = ti0 , . . . , tjq(δ) = tiδ , but also tell us precisely how many

nodes of α′ are born in between each consecutive pair of nodes ir, ir+1 ∈ α. This

will prove useful for constructing the integrals over the birth times, because for fixed

{q(r)}r=0,1,...δ we know that there are q(r + 1) − q(r) − 1 birth times to integrate

over between tjq(r) and tjq(r+1)
and that the integration limits of these integrals will

be tir and tir+1 . In particular, for a fixed {q(r)}r=0,1,...δ we will integrate over the

birth times of the nodes in α′ using integrals of the form∫ tir+1

tir

dtjq(r+1)−1

∫ tjq(r+1)−1

tir

dtjq(r+1)−2
. . .

∫ tjq(r)+3

tir

dtjq(r)+2

∫ tjq(r)+2

tir

dtjq(r)+1

(
·
)

(5.43)

The above form integrates over all possible combinations of the (non-fixed) birth

times tjq(r)+1
< . . . < tjq(r+1)−1

between the (fixed) birth times tjq(r) = tir and

tjq(r+1)
= tir+1 .
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Having introduced all of the above concepts and notation we are now in a position

to approximate Eq. (5.38) with a set of integrals over birth times. We sum over

all possible positions {q(r)}r=0,1,...δ that the nodes of α can take in α′, and get the

following expression for the expected generalized strength of α

sd,δ(t, tα) =
1

p[i0,...,iδ ]

∑
{q(r)}r=0,1,...δ

∫
tj0<...<tjd

[∏d
n=0 dtjn

]∏δ
r=0 δ̂

(
tjq(r) , tir

)
p[j0,...,jd]w(t, tjd),

(5.44)

where δ̂(x, y) indicates the Kronecker delta. Using Eq. (5.31) for the probability

p[j0,...,jd] and Eq. (5.37) for the weight w(t, td) we get

sd,δ(t, tα) = 1
pα
w0m

d!
(d+s)d

tλ
(
ti0ti1 ...tiδ

) 1
d+s
−1

×
∑
{q}Aq(δ)

(∏δ−1
r=0Xq(r),q(r+1)

)
Bq(0),

(5.45)

where Aq(δ), Xq(r),q(r+1) and Bq(0) are nested integrals taking similar forms to that in

Eq. (5.43) and integrate over birth times greater than tjq(δ), between tjq(r) and tjq(r+1)
,

and less than tjq(0) respectively. To be clearer, Aq(δ) integrates over the non-fixed

birth times tjq(δ)+1
< . . . < tjd between the final fixed birth time tjq(δ) = tiδ and time

t, while Xq(r),q(r+1) integrates over the non-fixed birth times tjq(r)+1
< . . . < tjq(r+1)−1

between the fixed birth times tjq(r) = tir and tjq(r+1)
= tir+1 , and Bq(0) integrates over

the non-fixed birth times tj0 < . . . < tjq(0)−1
between time 0 and the first fixed birth

time tjq(0) = ti0 .

It will be convenient to express all of these quantities in terms of the function

I(τL, τU) defined to be

InτL,τU =

∫ τU

τL

dtnt
1
d+s
−1

n

∫ tn

τL

dtn−1t
1
d+s
−1

n−1 ...

∫ t2

τL

dt1t
1
d+s
−1

1 .

In particular, by distinguishing between the cases in which there is at least one

node whose arrival time is being integrated over, and the case where the allocation

of positions specified by {q} implies that there are no arrival times to integrate over

we obtain
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Aq(δ) =


∫ t
tiδ
dtjdt

−λ− d
d+s

jd
I
d−q(δ)−1
tiδ ,tjd

if 0 ≤ q(δ) ≤ d− 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(5.46)

Xq(r),q(r+1) =

{
I
q(r+1)−q(r)−1
tir ,tir+1

if q(r + 1)− q(r) > 1,

1 if q(r + 1)− q(r) = 1,
(5.47)

Bq(0) =

 I
q(0)
0,ti0

if q(0) > 0,

1 if q(0) = 0.
(5.48)

We also note that Eq. (5.45) may be simplified further, by substituting the

expression for pα given in Eq. (5.31):

sd,δ(t, tα) = w0
(d− δ)!

(d+ s)d−δ
tλt
− d+s−δ−1

d+s

iδ

∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0). (5.49)

Calculation of the strength thus requires the evaluation of the integrals in Eq.s (41-

5.48) followed by the evaluation of the sum over the positions {q(r)}r=0,1,...δ. In

Appendix C we calculate these quantities exactly, finding that sd,δ(t, tα) is given by

sd,δ(t, tα) =


w0

d−δ
(d+s)(λδ−λ)

(
t
tα

)λδ
+ w0

[
1− d−δ

(d+s)(λδ−λ)

](
t
tα

)λ
if λ 6= λδ,

w0

(
t
tα

)λ[
1 + d−δ

d+s
log
(
t
tα

)]
if λ = λδ,

(5.50)

where λδ is given by Eq. (5.22) and λ is given by Eq. (5.36). We have therefore

achieved our objective of calculating the generalized strength at time t of a δ-face α

as a function of its birth times and the model parameters. Remarkably, Eq. (5.50)

depends only on the ratio between the time t and the birth time of α tα = tiδ , and
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Figure 5.4: The average generalized strengths sd,δ(t, tα) of the δ-faces arrived in the
network at time tα are shown for simplicial complexes of dimension d = 3, and flavor
s = −1 (panels a, d, g), s = 0 (panels b, e, h) and s = 1 (panels c, f, i) and for
faces of dimension δ = 2 (panels a, b, c), δ = 1 (panels d, e, f) and δ = 0 (panels g,
h, i). The results of simulations are shown for (m = 1, m′ = 5), (m = 2, m′ = 5),
(m = 2, m′ = 3) and (m = 3, m′ = 1) (blue circles, red squares, yellow x’s and
purple triangles respectively). The simulated simplicial complexes have N = 105

nodes and the results are averaged over 10 simplicial complex realizations.
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not on the birth times of other nodes in α.

As discussed in the introduction to this chapter, we are particularly interested in

how the growth and reinforcement dynamics of our model (controlled by the model

parameters) affect the distribution of weight across the simplicial complex. This

distribution can be characterized by the scaling of the generalized strengths of the

simplices with their generalized degrees: a linear scaling indicates a homogeneous

distribution of weight, while a super-linear scaling would indicate an inhomogeneous

distribution where faces with high generalized degrees are incident to d-simplices

with high weight. We can use our expression for the generalized strength given in

Eq. (5.50) in combination with the results we obtained about the generalized degree

in Section 5.3.1 to find the generalized strength-degree scaling that emerges in our

model.

To this end we keep only the leading terms for t/tα � 1 both in Eq. (5.50) for

the average generalized strength sd,δ(t, tα) and in Eq. (5.21) for the average gener-

alized degree kd,δ(t, tα) and we neglect the fluctuations of the generalized strengths

(sd,δ(t, tα) ' sαd,δ) and generalized degrees (kd,δ(t, tα) ' kαd,δ).

The respective scalings with respect to t/tα are

sd,δ(t, tα) ∝



(
t
tα

)λδ
if λ < λδ,(

t
tα

)λ
log
(
t
tα

)
if λ = λδ,(

t
tα

)λ
if λ > λδ,

(5.51)

for the generalized strengths and

kd,δ(t, tα) ∝


(
t
tα

)λδ
if λδ 6= 0,

log
(
t
tα

)
if λδ = 0,

(5.52)

for the generalized degrees. Recall that λ = m′

m+m′
is the proportion of the weight

added at each time step that is added via the reinforcement mechanism, while
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Figure 5.5: The exponents λfitted obtained by fitting Eq. (5.55) to the data in
figure 5.4 are shown versus the predicted exponents λpredicted given by Eq. 5.56 for
different δ-faces. The panels (a), (b) and (c) refer respectively to triangles (δ = 2),
links (δ = 1) and nodes (δ = 0). The blue stars, red squares, and yellow circles
indicate the data obtained respectively for the the flavors s = −1, s = 0 and s = 1.

λδ = d+s−δ−1
d+s

governs the behaviour of the generalized degree of a face with given

dimension δ. Using Eq.s (5.51) and (5.52) above we can find a scaling relation for

the generalized strength of some face given its generalized degree. In fact, as long

as λδ > 0, we obtain

sd,δ(kd,δ) ∝


kd,δ for λ < λδ,

kd,δ ln kd,δ for λ = λδ,

(kd,δ)
λ/λδ for λ > λδ.

(5.53)

For λδ = 0, instead we derive an exponential scaling of the average of the generalized

strength versus the average of the generalized degree of the δ-faces, i.e.

sd,δ(kd,δ) ∝ eβkd,δ , (5.54)

with β = λ d+s
(1−s)cδ

.

These results predict that by tuning the parameter values (d,s,m,m′) it is possible

to observe either linear, superlinear or even exponential scalings of the generalized

strengths versus the generalized degrees. Remarkably, for some choices of the pa-

rameter values (e.g. d = 4, s = 0, and m = m′) our predictions suggest it is possible

to observe all three types of scaling for faces of different dimension δ within the same
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simplicial complex. We stress here that the scaling relations Eqs. (5.53) and (5.54)

are obtained in the limit t/tα � 1, and neglecting the fluctuations of the generalized

degrees and the generalized strengths over different network realizations. Therefore

these expressions need to be compared to numerical simulations for assessing the

limits of the considered approximations. In the next section we do exactly this, and

find that for λδ > 0 Eq. (5.53) gives a good prediction of the numerically obtained

scaling while for λδ = 0 the prediction given by Eq. (5.54) differs markedly from

the numerical scaling, suggesting that in this case the fluctuations of the generalized

strengths and generalized degrees around their mean-field values cannot be neglected

entirely.

5.4 Numerical simulations

In order to check the validity of our mean-field calculations we ran extensive simu-

lations of our model. The code for these simulations is available online [85].

We use the code to generate simplicial complexes from our model and compare

the generalised degree and generalised strength statistics to the predictions given

in Section 5.3.4. In particular, for our simulations we use simplices of dimension

d = 3 (tetrahedra) and all possible values of the flavor s = −1, 0, 1 as well as a

variety of choices of m and m′. For each combination of the parameters we generate

10 realisations of the model and then average the statistics over these realisations.

Our main goal is to characterize the limit of validity of the mean-field calculations

performed in the Section 5.3.4.

In Figure 5.3 we show the simulation results for the generalized degree distribu-

tion Pd,δ(kd,δ) and N = 105 averaged over 10 realizations of the model. We observe

that the mean-field calculation accurately predicts for which dimension δ and for

which flavor s we observe bimodal, exponential or power-law degree distributions.

In Figure 5.4 we show the average generalized strengths sd,δ(t, tα) of δ-faces α

as a function of their arrival time tα. Here we observe a clear power-law scaling of
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Figure 5.6: The average generalized strengths of δ-faces as a function of their corre-
sponding generalized degree sd,δ(kd,δ) are shown for simplicial complexes of dimen-
sion d = 3, and flavor s = −1 (panels a, d, g), s = 0 (panels b, e, h) and s = 1
(panels c, f, i) and for faces of dimension δ = 2 (panels a, b, c), δ = 1 (panels d,
e, f) and δ = 0 (panels g, h, i). The results of simulations are shown for (m = 1,
m′ = 5), (m = 2, m′ = 5), (m = 2, m′ = 3) and (m = 3, m′ = 1) (blue circles, red
squares, yellow x’s and purple triangles respectively). The simulated simplicial com-
plexes have N = 105 nodes and the results are averaged over 10 simplicial complex
realizations.
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sd,δ(t, tα) as a function of t/tα for t/tα � 1 as predicted by the mean field approxi-

mation (Eq. 5.51).

In order to evaluate in closer detail the validity of our mean-field approach we

have also checked whether the exponents of the power-law scalings observed in Figure

5.4 are well predicted by our mean-field equations. To this end we performed the

following power-law fits

sd,δ(t, tα) = a

(
t

tα

)λfitted
, (5.55)

valid for t/tα � 1. We have then compared the fitted exponent λfitted with the

predicted exponent obtained from Eq. (5.51)

λpredicted ' max(λ, λδ). (5.56)

The above prediction for the exponent λpredicted comes from Eq. (5.51) which itself

gives the leading order terms from Eq. (5.50). This is valid with the assumption

t/tα � 1, as the term with the larger exponent will dominate the term with the

smaller exponent.

The comparison between the exponents λfitted and λpredicted is shown in Figure

5.5 for simplicial complexes of dimension d = 3 and different values of m and m′

determining λ. We observe that while the overall trend of λfitted is captured by

the mean-field result, some deviations are observed. These deviations become more

significant for λ ' λδ where it is expected to be more difficult to observe the leading

term in Eq. (5.50) starting for finite time simulations results.

Finally, as discussed in Section 5.3.4, for simplicial complexes with a large num-

ber of nodes the mean-field approximation predicts that the generalized strengths of

the faces are related to their generalized degrees by the scaling relation given in Eqs.

(5.53) and (5.54). As we have mentioned previously, this approximation neglects the

role of fluctuations for the generalized degree and for the generalized strengths. It

is therefore important to check to what extend the mean-field calculations capture
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the simulation results. Figure 5.6 shows the average generalized strength versus the

generalized degree sd,δ(kd,δ).

We observe that the role of fluctuations is particularly pronounced for δ-faces

with exponential generalized degree distributions (i.e. δ = d − 2 for s = −1 and

δ = d − 1 for s = 0). These fluctuations are more significant for values of the pa-

rameters m and m′ corresponding to low-values of λ.

For the other combinations of the parameters and face dimension δ which do

not correspond to exponential generalized degree distributions, we instead find the

mean-field predictions provides a rather good prediction of the scaling of the average

generalized strength sd,δ(kd,δ).

5.5 Conclusions

The research presented in this chapter, originally published in [34], follows in the

tradition of non-equilibrium network models that seek to characterize the relations

between growth mechanisms of networks and their structural properties. Our model

is a non-equilibrium model of a weighted simplicial complex. In this model the sim-

plicial complex evolves at each time by A) the addition of a new node belonging

to m new d-dimensional simplices and B) the reinforcement of the weights of m′

d-dimensional simplices. For certain choices of the parameters our model reduces to

the weighted BA model of [43] or the NGF of [57] both of which were discussed in

Chapter 3.

The ‘growth’ and ‘reinforcement’ dynamics of our model differ in a significant

way from those in network models. They act on simplices of dimension d − 1 and

d respectively, with probabilities that depend on properties belonging to those sim-

plices. Thus the model dynamics is not limited to depending only on ‘node proper-

ties’ but instead considers the properties of groups of nodes represented by simplices.

In particular, we saw in Section 5.3.1 how a ‘manifold’ attachment mechanism at
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dimension d− 1 is felt as a uniform attachment mechanism at dimension d− 2 and

as a preferential attachment mechanism at dimension d − 3, and similarly uniform

attachment mechanisms at dimension d − 1 are felt as preferential attachment at

dimension d − 2. These ‘effective’ attachment mechanisms are responsible for the

distributions of the generalised degrees that we find for the lower dimensional faces,

and so our model has uncovered new mechanisms for generating scale-free and expo-

nential distributions of the generalised degree (and degree) via higher dimensional

attachment.

Our model allows us to investigate the competing effects of growth and reinforce-

ment on the generalized strengths of the simplices and on the distribution of weight

throughout the simplicial complex. We found that depending on the choice of the

model parameters that the evolution of the generalised strength of a simplex is ei-

ther dominated by the accumulation of new simplices via the growth process or the

accumulation of new weight via the reinforcement process. We also characterized

the distribution of weight across the simplicial complex by finding scaling relations

between the generalized strengths of the simplices and their strengths, finding that

the model is capable of producing linear, super-linear or exponential scalings of gen-

eralised strength with generalised degree.

We believe that this model could be rather fruitful for modelling real-world sim-

plicial complexes that are typically weighted such as collaboration networks. Addi-

tionally the model could be used a benchmark to test the wide range of topological

and geometrical measures and computational techniques that have been proposed

in recent years for the study of real datasets. These include different definitions of

curvature, and the persistent homology conducted using a filtration based on the

weights of the links or on the simplices.
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Chapter 6

Dense networks and Simplicial

Complexes

In this chapter we present a modelling framework for producing dense networks and

simplicial complexes with power-law distributions of the degrees or generalised de-

grees. The original research presented in this chapter was published in our paper

Dense Power-law Networks and Simplicial Complexes [35].

Power-law degree distributions P (k) ∝ k−γ have been identified as a universal

property of complex networks [1,45] and have been found in areas as diverse as the

world wide web [87], cell biology [88] and scientific co-authorship [89]. In the vast

majority of these networks the power-law exponent γ is in the range (2, 3), resulting

in a finite average degree

〈k〉 ≈ C−1
∫ N

1

dkk1−γ =
C

2− γ
(
N2−γ − 1

)
∼ O(1), (6.1)

where C =
∫ N
1
dkk−γ normalises the distribution, and where in the above the degrees

are approximated as continuous variables. We say that these networks are sparse,

as their average degree remains constant as the system size increases. In contrast,

for γ < 2 the average degree grows with the system size like 〈k〉 ∼ O(N2−γ), and so

the networks in this case are dense. We say that a power-law network is scale-free if

γ ≤ 3 as the second moment diverges with the system size like 〈k2〉 ∼ O(N3−γ) and
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so the degree distribution has no ‘typical’ or ‘characteristic’ scale. Networks with

γ ∈ (2, 3) are thus sparse and scale-free while networks with γ ≤ 2 are dense and

scale-free.

The ubiquitousness of power-law degree distributions and in particular sparse

power-law degree distributions with γ ∈ (2, 3) has motivated the development of

numerous explanatory models. These models seek to explain the emergence of

power-law distributions in complex networks through simple stochastic processes

that may mirror the processes that occur in real networks.

The pivotal Barabási and Albert model [45] was developed to explain the emer-

gence of power-law degree distributions by including two simple yet fundamental

elements: a growth element in which new nodes are continuously added to the net-

work, and a preferential attachment element where the new nodes form links with

exisiting nodes with probabilities proportional to the degrees of the exisiting nodes.

This work triggered the formulation of several other models for producing power-law

networks, including the Bianconi-Barabási model [46, 47], the non-linear preferen-

tial attachment model [48] and the model with initial attractiveness of the nodes [58].

These models all produce sparse power-law networks with exponent γ ∈ (2,∞),

and so are suited as explanatory models for the majority of complex networks. How-

ever, not all networks are sparse. There is increasing evidence that dense networks

often occur in on-line social networks [38,39], recommendation networks [38] and in

the brain [40].

Furthermore the vast majority of these networks appear to be both dense and

scale-free, and specifically have been found to have a power-law exponent γ ∈ (1, 2].

For this reason the development of new theoretical frameworks for modelling these

networks is highly relevant.

However, producing networks that are both dense and scale-free is far from sim-

ple. In [36] it was shown that dense scale-free simple networks are not graphical

unless some cutoff on the maximum degree is imposed. This means that for these
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degree distributions no ‘simple’ network can be produced where there are no mul-

tiedges or self-loops (also called tadpoles). Casting the problem in terms of the

configuration model discussed in Chapters 2 and 4, the essential problem is that it

is not possible to find ‘wirings’ for all of the stubs of the high degree nodes without

creating multiple links between two nodes, or without wiring some nodes to them-

selves.

This result reflects the fact that realizing dense power-law networks is rather

challenging compared to realizing sparse networks. However it does not imply that

dense power-law networks do not exist. The fact that dense scale-free networks do

exist is demonstrated by the existence of a few modelling frameworks that extend

the configuration model to dense scale-free networks [39] by imposing a suitable

structural cutoff, or that generate dense power-law networks with specific values of

the power-law exponents (i.e. γ = 1 [90] or γ = 1.5 [39]).

In the research presented in this chapter we propose a theoretical framework

that is designed to generate dense growing power-law networks and simplicial com-

plexes using preferential attachment and without imposing any ad hoc cutoff. Our

approach is based on the Pitman-Yor process [91–93], also known as the Chinese

Restaurant Process. This process was originally defined for generating exchangeable

partitions or, in more physical terms it is defined as a ball-in-the-box process. Our

primary aim was to generate growing dense power-law networks using a variation of

the Pitman-Yor algorithm.

We have developed three distinct models of weighted networks and simplicial

complexes. In each model, the total number of nodes and their strengths evolve

analogously to the Pitman-Yor process, yielding dense power-law strength distri-

butions with tunable exponent γ ∈ (1, 2]. A link (or simplex) is considered to be

present in the network (or simplicial complex) as soon as its weight is greater than

0, and so the degree of a node is closely related to, but not the same as its strength.

The central question we address in this work is what is the degree distribution of

these networks and how does it relate to the strength distribution?
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In the first of our models the networks produced are undirected. While the dis-

tribution of the strengths in this model is dense with tunable γ ∈ (1, 2], the degree

distribution is only marginally dense with γ = 2, regardless of the choice of the

parameter of the model. Out of our three models, this is the only one producing

the kind of networks under discussion in Ref. [36], and we believe that the inability

of our model to produce dense networks with exponent γ < 2 supports the results

found in [36].

In the second model we instead consider directed networks. Unlike in the undi-

rected model, in this model both the out-strengths and out-degrees of the nodes

(see Section 6.1 for a definition) have a tunable dense exponent γ ∈ (1, 2], while the

in-strengths and in-degrees follow homogeneous distributions. These networks are

thus truly dense and scale-free in their out-degree distributions, and so this version

has a use as a basic explanatory model for the dense scale-free directed networks

observed in recommendation networks [38] and the brain [40].

Finally we further extend this directed model to include directed simplicial com-

plexes formed not only by nodes and links but also by triangles. Similar to in the

directed network model, the simplicial complexes produced have dense distributions

of the generalised out-strengths and generalised out-degrees and homogeneous dis-

tributions of the generalised in-strengths and generalised in-degrees.

This chapter is structured as follows: in Section 6.1 we recall some basic concepts

for networks that are weighted and possibly directed, and show how these concepts

can be extended to simplicial complexes. In Section 6.2 we give an overview of the

Yule-Simon and Pitman-Yor processes for generating power-law distributions with

exponents γ ∈ (2,∞) and γ ∈ (1, 2] respectively. In Section 6.3 we present a mod-

elling framework which exploits the Pitman-Yor process in order to produce dense

scale-free networks and simplicial complexes. In Section 6.4 we derive mean-field

expressions for the total number of nodes and their strengths. We use these results

in Section 6.5 to find the probability that a link or triangle is reinforced in any

given time-step. In Section 6.6 we derive mean-field equations for the degrees, and

show that the degree distributions are scale-free with dense exponent γ ∈ (1, 2]. In
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Section 6.7 we explore the relation between the strengths and degrees of the nodes.

In Section 6.8 we examine the clustering and degree correlations produced by the

model. Finally, in Section 6.9 we give the chapter conclusions.

6.1 Definitions and notation

The networks and simplicial complexes that we discuss in this chapter are weighted

and either undirected or directed.

In the case of a network, we write the weight of a link between two nodes i and j

as wij, with wij = wji if the network is undirected but not necessarily if the network

is directed. In our models the weights take non-negative integer values and the

presence of the links (or later the simplices) are in fact determined by the weights,

with

aij =

{
1 if wij > 0

0 if wij = 0,

for any pair of nodes i and j. As discussed in previous chapters, the strength of a

node in a weighted network is the sum of the weights of its links. For an undirected

network we write the strength of a node i as

si =
N∑
j=1

wij, (6.2)

while for a directed network, we count the weight directed in to a node and the weight

directed out from the node separately using the in-strength sini and out-strength souti

respectively:

sini =
∑N

j=1wji souti =
∑N

j=1wij. (6.3)

Similarly, for a directed network we distinguish between the in-degree kini and out-
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degree kouti :

kini =
∑N

j=1 aji kouti =
∑N

j=1 aij. (6.4)

In the simplicial complex version of our model, the simplicial complexes are pure

2-dimensional, meaning that they are constructed exclusively from triangles and

their sub-faces (nodes and links). The simplicial complexes we consider are also

weighted and directed.

Similar to in the networks versions of our model, in this version we associate

weights wijl to each triangle (i, j, l). The triangles are directed in the sense that we

map a differently ‘directed’ or ‘oriented’ triangle to each permutation of its three

nodes, i.e. for three nodes labelled i, j and l we can create 6 distinct directed trian-

gles: ijl, ilj, jil, jli, lij and lji. The first node in the triangle we call the ‘source’

node, the second we call the ‘first target node’ and the third we call the ‘second

target node’. As with an undirected simplicial complex, the triangles contain their

faces of dimension 1 (links) and 0 (nodes). In the simplicial complexes we present in

this chapter, these links are also directed, and their directions are determined by the

direction of their parent triangle. The two links coming from the source node are

directed outwards from the source node towards the two target nodes. The third

link between the two target nodes is directed from the first target node towards

the second target node. Figure 6.1 is a diagram showing the relation between the

direction of a triangle and the direction of its links.

Directed triangles allow us to distinguish between the triangles a node has gained

from distinct attachment mechanisms in our model through the node’s ‘generalized

out-degree’ and ‘generalized in-degree’. Of course the specific relation between the

direction of a triangle and the directions of its links that we use in this chapter is just

a convention that we have chosen, and there are indeed other conventions that could

be chosen instead. We have chosen ours as it produces simplices that have what

could be called a ‘temporal direction’, where the links of the simplices produced are

acyclic. Interestingly directed simplices of this type have recently been used [94] to

analyse brain networks and coupling for topological information with the neuronal
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network dynamics.

Similar to in the directed version of the model we define the generalised in-

strength and generalised out-strength of a node i as

s̃ini =
∑N

j,l=1 (wjil + wjli) s̃outi =
∑N

j,l=1wijl, (6.5)

i.e. s̃outi is the total weight of the triangles for which node i is the source node, and

s̃ini is the total weight of the triangles for which it is one of the target nodes. The

in-degree and out-degree are defined similarly;

k̃ini =
∑N

j,l=1 (ajil + ajli) k̃outi =
∑N

j,l=1 aijl. (6.6)

6.2 Dense scale-free distributions and the Pitman-

Yor Process

In this section we discuss the relation between preferential attachment mechanisms

in network models and so called ‘ball-in-the-box’ models. In Section 6.2.1 we show

how the evolution of the degree distribution in the Barabási-Albert model [45] can

be mapped to the Yule-Simon model [95], which is a discrete time stochastic process

that produces power-law distributions with exponent γ ∈ (2,∞). As discussed ear-

lier in this chapter, degree distributions with exponents in this range are necessarily

sparse. In Section 6.2.2 we discuss the Pitman-Yor process [91] which similar to the

Yule-Simon process is a discrete time stochastic process that utilises preferential at-

tachment to produce power-law distributions. However, the distributions produced

by Pitman-Yor are in the dense range with tunable exponent γ ∈ (1, 2]. Pitman-Yor

thus provides us with the inspiration for the models of dense networks and simplicial

complexes that we present in Section 6.3.

141



Figure 6.1: Diagram showing the relation between the direction of a triangle and
the direction of its links. In panel (a) the triangle ijl has node i as its source node,
node j as its first target node and node l as its second target node. There are three
directed links present here: (i, j), (i, l) directed away from i towards the two target
nodes and (j, l) directed from j to l. The generalized out-strength and generalized
out-degree are equal to 1 for node i and 0 for nodes j and l. In panel (b) the triangle
jli has node j as its source node, node l as its first target node and node i as its
second target node. The three directed links here are instead (j, i), (j, l) and (l, i),
while the generalized out-strength and generalized out-degree are now equal to 1 for
node j and 0 for nodes i and l.
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6.2.1 Mapping the Barabási-Albert model to the Yule-Simon

model

The Barabási-Albert model [45] provides a fundamental mechanism for the emer-

gence of scale-free networks with degree distribution P (k) ∼ k−γ and diverging

second moment 〈k2〉. In the Barabási-Albert model we start at time t = 1 from a

finite network and at each time t > 1 we add one new node and m links connected

to the new node and to a node i with degree ki chosen with probability

ΠBA
i =

ki∑
j kj

. (6.7)

This probability implements the preferential attachment mechanism according to

which nodes which already have high degree ki are more likely increase their degree

further by acquiring new links. The number of nodes N(t) and the number of

links L(t) at time t are deterministic variables growing linearly with time as we

have N(t) = t and L(t) = mt. Therefore the average degree of this network is

independent on the network size and given by

〈k〉 =
2L(t)

N(t)
= 2m. (6.8)

The degree distribution P (k) of the Barabási-Albert model can be evaluated exactly

in the large network limit N(t)� 1 and is given by [48,58]

P (k) =
2Γ(m+ 2)

Γ(m)

Γ(k)

Γ(k + 3)
' 2m(m+ 1)k−3, (6.9)

where the latter approximated expression describes the tail of the distribution where

k � 1.

The mathematical origin of the power-law in the Barabási-Albert model can be

rooted back to a ball-in-the-box model called the Yule-Simon model [95]. This is a

discrete time stochastic process analogous to placing balls in a growing number of

boxes with probabilities dependent on the number of balls already in the boxes.
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The process starts at time t = 1 with a single box with one ball in it. At each

subsequent time step t > 1 a new ball is introduced and is either placed in an exist-

ing box (with probability ε ∈ (0, 1)) or a new box is created (with probability 1− ε)
and the ball is placed in it. The process may be thought of as producing a random

partition of the set of balls introduced up to time t. For any given time t we indicate

the total number of boxes by N , and the total number of balls by M . Additionally

we indicate by si the number of balls in the ith box.

The reinforcement dynamics called preferential attachment in network models is

implemented by assuming that the probability of placing a new ball in box i grows

linearly with the number of balls si already in box i. Therefore in the Yule-Simon

model the probability that a new ball is placed in box i is

ΠY S
i =

{
εsi/t for 1 < i ≤ N,

(1− ε) for i = N + 1.
(6.10)

Clearly in this model the average number of boxes 〈N(t)〉 increases linearly with

time, i.e. 〈N(t)〉 = (1 − ε)t. Moreover, since a new ball is added at each time-step

the number of balls at time t is a deterministic variable given by M(t) = t. It follows

that the average number of balls per box is constant in time, i.e.〈
M

N

〉
' 1

1− ε
= O(1). (6.11)

This implies that if the distribution P (s) of balls in the boxes decays as a power-

law P (s) ' s−γ it must necessarily have the power-law exponent γ in the range

γ ∈ (2,∞). In fact, as we have already seen, for γ ∈ (1, 2] power-law distributions

have a diverging average value. An exact expression for the distribution produced

by the Yule-Simon process can be calculated exactly in the limit t→∞ finding

P (s) =
1

ε
Γ

(
1 +

1

ε

)
Γ(s)

Γ(s+ 1 + 1/ε)

' 1

ε
Γ

(
1 +

1

ε

)
s−γ (6.12)

where the last expression is derived in the limit s � 1 and where the power-law
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exponent γ is given by

γ = 1 +
1

ε
∈ (2,∞). (6.13)

Therefore we see that using both growth and preferential attachment the Yule-Simon

model generates power-law distributions P (s) ' Cs−γ with γ > 2 and with a finite

average number of balls in the boxes.

The Barabási-Albert model can be mapped to a ball-in-the-box model by as-

suming that each node corresponds to a box and each half-edge attached to a given

node corresponds to a ball in the box. Note that for the Barabási-Albert model the

number of nodes is a deterministic variable N(t) = t as is the number of half edges,

which is given by twice the number of links M(t) = 2L(t) ' 2mt. However the

Barabási-Albert model can be considered as being in the same universality class as

the Yule-Simon process with ε = 1/2.

Other variations of the Barabási-Albert model have been shown to yield scale-

free networks with tunable exponent γ. However, network models in which the

number of nodes and the number of links both increase linearly with time can only

produce networks with power-law exponent γ ∈ (2,∞).

In order to produce dense scale-free networks with γ ∈ (1, 2] we need a model in

which the density of links increases in time. In the following section we introduce

another ball-in-the-box process known as the Pitman-Yor process. Similar to the

Yule-Simon process, this process uses growth and preferential attachment to produce

power-law distributions of the number of balls in the boxes, however the density of

balls in the boxes is not constant but instead increases in time, leading to power-law

exponent γ ∈ (1, 2].
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6.2.2 The Pitman-Yor process

The Pitman-Yor process [91–93] is a discrete stochastic process similar to Yule-

Simon that is known to yield dense power-law distributions.

The model starts at time t = 1 with one ball in a single box, and at each time

t > 1 a new ball is added and either placed in an existing box i or placed in a new

box i = N(t) + 1. Specifically the probability ΠPY
i that the new ball goes in the box

i is parametrized by the parameter α ∈ (0, 1) and given by

ΠPY
i =

{
si(t)−α

t
for 1 < i ≤ N,

αN
t

for i = N + 1.
(6.14)

As in the Yule-Simon process there is a growth in both the number of balls, and the

number of boxes, with a preferential attachment mechanism for placing the balls.

Unlike with Yule-Simon however, the probability of adding a new box is not con-

stant, but depends on the number of boxes already added while decaying with the

total number of balls already added [91,93].

The marginal distribution of a single box in the large t limit is [91]

P (s) =
α

Γ(1− α)

Γ(s− α)

Γ(s+ 1)
' α

Γ(1− α)
s−γ, (6.15)

where the latter expression is an approximation for the tail of the distribution (i.e.

for s� 1). Here the power-law exponent γ is given by

γ = 1 + α ∈ (1, 2), (6.16)

which implies that the distribution has a diverging first moment. This is consistent

with the fact that the number of balls increases superlinearly with the expected

number of boxes 〈N(t)〉 [91] as we have

〈N(t)〉 ' tα

M(t) = t, (6.17)
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and therefore 〈
M

N

〉
= O(t1−α). (6.18)

In this chapter we explore whether the Pitman-Yor process can be exploited in or-

der to formulate dense power-law network models, and we emphasize the challenges

posed by the density of the resulting networks. In this endeavour our objective

is to construct not only dense power-law networks formed by pairwise interactions

but also dense simplicial complexes which allow one to go beyond the framework of

pairwise interactions.

6.3 Evolution of dense scale-free networks and sim-

plicial complexes

In this section we introduce our modelling framework in which the Pitman-Yor

process is exploited in order to generate dense weighted power-law networks and

2-dimensional simplicial complexes.

These networks and simplicial complexes evolve by the subsequent addition of

nodes and the establishment of new links (or 2-simplices) or reinforcement of already

existing links (or 2-simplices). For the network case we consider both a version of

the model where the links are directed and a version with undirected links. In the

simplicial complex case the simplices are ‘directed’ in the sense given in Section 6.1.

Unlike in many other models of growing networks, the number of nodes in the

network at a given time is not a deterministic function of time but instead depends

on the stochastic growth dynamics of the network. The relative probabilities of

nodes being created or selected for reinforcement are analogous to a Pitman-Yor

process, with an equivalent parameter α ∈ (0, 1). Below we give the dynamics for

each of the three versions of the model.

147



6.3.1 Undirected network growth dynamics

In the undirected network version of the model, we write the total number of nodes

in the network at time t as N(t). Every pair of nodes i, j ∈ {1, 2, ..., N(t)} has an

associated weight wij(t) taking non-negative integer values. A link exists between

two nodes i and j if their weight is non-zero, i.e. if wi,j(t) > 0.

In this version of the model we start at t = 1 with an undirected link between

node 1 and node 2. At each time step t ≥ 1 we select a node i with probability

ΠU
i =

{
si(t)−α

2t
for 1 ≤ i ≤ N

αN
2t

for i = N + 1.
(6.19)

We then update the value of N and select a second node j using the same algorithm.

If the two selected nodes are not already linked we add a link between them, if they

are already linked we reinforce the weight of the links. In other words the adjacency

matrix element aij and the weight wij of the link (i, j) are updated according to

aij(t+ 1) = 1,

wij(t+ 1) = wij(t) + 1. (6.20)

Moreover, since the network is undirected we have

aji(t) = aij(t),

wji(t) = wij(t). (6.21)

Therefore in this model we treat half-edges as the balls of the Pitman-Yor process

and we treat the nodes as the boxes of the Pitman-Yor process.

Therefore it is to be expected that the strength distribution will follow a power-

law exponent with exponent γ = 1+α. However, given that the network is weighted,

the degree distribution could potentially be significantly different because if a new

link is placed between nodes that are already connected the strengths of these nodes

will increase but their degrees will remain unchanged.
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6.3.2 Directed network growth dynamics

The directed network growth dynamics assumes that links are directed and that

only the source node of the links is chosen according to the Pitman-Yor reinforce-

ment dynamics, while the target node is chosen uniformly at random among all the

existing nodes of the network. In this way we expect that the density of links in the

network will grow more rapidly than in the undirected case. In fact by choosing the

target node with uniform probability we are more likely to add new links because

we are not biasing the target node to be a node of high degree.

In the directed version, we start at t = 1 with a directed link from node 2 to

node 1.

At each time step t ≥ 1 a pair of nodes is selected and its weight is incremented by

one. The source node is either an existing node or a new node, while the target node

is chosen uniformly at random from the remaining existing nodes. The probability

at time t of selecting node i as the source node is given by:

ΠD
i =

{
souti (t)−α

t
for 1 < i ≤ N

α(N−1)
t

for i = N + 1.
(6.22)

The probability at time t of selecting node j as the target node is given by:

Π̂N
j =

1

N(t)
. (6.23)

When both source node i and target node j have been selected we update the

adjacency matrix element and weight of the link, i.e.

aij(t+ 1) = 1,

wij(t+ 1) = wij(t) + 1. (6.24)

Note that here we have chosen to select the source node of the link according to

the Pitman-Yor dynamics while the target node is chosen with uniform probability.

However it is also possible to consider a directed network model in which the target

node is chosen according to the Pitman-Yor dynamics and the source node is chosen
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uniformly at random. Since the two versions of the model are simply related by

the inversion of the direction of the links here we omit the explicit treatment of the

latter possible definition.

6.3.3 Directed simplicial complex growth dynamics

Here we consider a directed 2-dimensional simplicial complex formed only by ‘di-

rected triangles’.

The triangles are directed in the sense that each permutation of three nodes is

associated with a different triangle. We say that the first node in the triangle is the

“source node”, the second node is the “first target node” and the third node is the

“second target node”. For the triangles in this version of the model the links are

also directed, and we have chosen the convention that the two links coming from

the source node are directed away from the source node towards the target nodes

and the third link is directed from the first target node to the second.

In this version of the model the triangles ijl also have an associated weight

wijl(t) taking non-negative integer values. These weights are associated specifically

to the directed triangles and thus are also directed in the same sense. We define the

generalized out-strength s̃outi of a node i to be the total weight of triangles for which

i is the source node, i.e. s̃outi =
∑N

j,l=1wijl.

In this version of the model we start at t = 1 with three nodes labelled 1, 2, 3 and

the single directed triangle 123. At each time step t ≥ 1 we select a triangle to be

created or reinforced. The source node i of this triangle is selected with probability

Π̃SC
i =

{
s̃outi (t)−α

t
for 1 ≤ i ≤ N,

α(N−2)
t

for i = N + 1.
(6.25)

Once this source node i has been selected, a link (j, l) is selected uniformly at random
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Figure 6.2: Diagram showing one possible way the simplicial complex could grow
in the first three time-steps. At t = 1 all simplicial complexes in the model start
as the single triangle 123. In this example, at t = 2 a new node (4) is created and
randomly selects the link (1, 2) to form the triangle 412. At t = 3 no new node is
created. Instead, node 4 is selected for reinforcement and randomly selects the link
(1, 3) to form the triangle 413.

from the set of existing links with probability

Π̂L
jl =

1

L(t)
, (6.26)

where L(t) is the number of links in the simplicial complex at time t. If this triangle

already exists then its weight is reinforced according to

wijl(t+ 1) = wijl(t) + 1, (6.27)

while if it doesn’t exist yet then it is created with initial weight one:

aijl(t+ 1) = 1,

wijl(t+ 1) = 1. (6.28)

Figure 6.2 is a diagram illustrating one possible way the simplicial complex could

grow in its first three time-steps. In this example we start with a single triangle at

t = 1. At t = 2 a new node labelled 4 is added and forms a triangle with the link

(1, 2). At time t = 3 no new nodes are added, but instead node 4 gains an additional

triangle formed with the link (1, 3).
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Figure 6.3: Total number of links over the total number of nodes, as a function
of the total number of nodes, taken from simulation data. Panels (a), (b) and (c)
show the results for the undirected network, directed network and simplicial complex
respectively. For each model version and each choice of parameter α, 50 realizations
of the network were generated and averaged over. The results were obtained for
t = 106 and for α = 0.6, (purple solid line), α = 0.7 (green dashed line), α = 0.8
(red dotted line), and α = 0.9 (blue dot-dashed line).

6.3.4 Number of links as a function of the number of nodes

In all three versions of the model, the distributions of the strengths (or out-strengths)

of the nodes are generated by a Pitman-Yor process and so therefore have ‘dense’

power-law exponents δ ∈ (1, 2). However, as mentioned before, this does not guar-

antee that the networks themselves are dense as the links can be weighted multiple

times.

Therefore we have run extensive simulations of the three versions of the model to

investigate whether the total number of links grows super-linearly with the number

of nodes. Figure 6.3 shows how the number of links grows with the total number

of nodes for a range of values of parameter α and for the three different versions of

the model. We see that for all three versions the total number of links grows faster

than the total number of nodes, indicating that the model produces dense networks

and simplicial complexes. Moreover, as expected, the directed version of the model

allows for the exploration of cases in which the ratio between the number of links

and the number of nodes increases more rapidly than for the undirected version of

the model.
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6.4 Strengths of the nodes

The mean-field approximation is known to give very reliable results in the context

of sparse growing network models. Therefore it is natural to approach the study of

dense growing networks and simplicial complexes with the same techniques. Specif-

ically here our goal is to derive the distribution of the strength s in the undirected

network model, the distribution of the out-strength sout in the directed network

model and the distribution of the generalized out-strength s̃out for the simplicial

complex model using the mean-field approximation.

6.4.1 Evolution of the number of nodes and of the strengths

The mean-field differential equations for the three cases differ only trivially, and

therefore we will treat them using a unified set of equations that apply to all three

cases. To this end we use the symbol ŝi that indicates si, s
out
i , s̃outi for the undirected

network, directed network and directed simplicial complex versions of the model

respectively.

Similarly the Pitman-Yor probabilities ΠU
i ,Π

D
i and ΠSC

i can be unified in a single

expression

Πi =

{
ŝi(t)−α
(2−a)t for 1 ≤ i ≤ N
α(N−a−b)
(2−a)t for i = N + 1.

(6.29)

where we have introduced the parameters a and b taking values: a = b = 0 for the

undirected network case; a = 1, b = 0 for the directed network case and a = 1, b = 1

for the directed simplicial complex case. Eq. (6.29) thus subsumes Eq.s (6.19), (6.22)

and (6.25) for the probabilities of a node i being selected (or created) at time t+ 1

in the undirected, directed and simplicial complex versions of the model respectively.

As usual in the mean-field approximation, we will treat our stochastic variables

N(t), ŝi(t) as deterministic continuous variables equal to their expected value over

different realizations of the network or simplicial complex evolution. Since at each
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time the number of nodes to be chosen according to the Pitman-Yor probability is

(2 − a) the mean-field equation determining the growth of the number of nodes in

the network is given by

dN

dt
= (2− a)ΠN+1 =

α(N − a− b)
t

, (6.30)

with the initial condition

N(t = 1) = 2 + b. (6.31)

The solution is then

N(t) = (2− a)tα + a+ b. (6.32)

The differential equations for ŝi of a node i born at time ti > 1 is given by

dŝi
dt

= (2− a)Πi =
ŝi − α
t

, (6.33)

with initial condition

ŝi(ti) = 1. (6.34)

Therefore ŝi increases linearly with time, and is given by

ŝi = (1− α)

(
t

ti

)
+ α. (6.35)

6.4.2 Strength distribution

The strength distribution can easily be derived within the mean-field approximation

by using the mean-field expressions for the number of nodes N(t) (Eq. 6.32) and

the strength ŝ(t) (Eq. (6.35)) as a function of time t.

To this end by using Eq. (6.35) we first note that the cumulative strength

distribution P (ŝi > ŝ) indicating the probability that a random node i has a strength
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ŝi(t) > ŝ can be written as

P (ŝi ≥ ŝ) = P (ti ≤ t?(ŝ)) , (6.36)

where P (ti ≤ t?(ŝ)) is the probability that a random node i arrives in the network

at time ti ≤ t?(ŝ) and where t?(ŝ) satisfies

ŝ = (1− α)

(
t

t?

)
+ α. (6.37)

Moreover we observe that the probability P (ti ≤ t?(ŝ)) is simply given by the frac-

tion of nodes that arrived in the network before time t?(ŝ), i.e.

P (ti ≤ t?(ŝ)) =
N(t?(ŝ))

N(t)
=

(2− a) [t?(ŝ)]α + a+ b

(2− a)tα + a+ b
. (6.38)

For ŝ� 1 and t?(ŝ)� 1 we can write Eq. (6.38) as

P (ti ≤ t?(ŝ)) =

(
t?(ŝ)

t

)α
=

(
1− α
s

)α
. (6.39)

The strength distribution P̃ (ŝ) is thus given by

P̃ (ŝ) =
d

dŝ
[1− P (ŝi ≥ ŝ)]

' α

1− α

(
1− α
ŝ

)α+1

. (6.40)

Therefore the strength distribution is power-law distributed with exponent 1 + α ∈
(1, 2]. Figure 6.4 shows the strength distributions arising from simulations of the

three models. We see that in all three versions of the model, and for all values of

α used, that the strength distributions follow a power-law. In the insets of each

panel we see that the exponents fitted to the distributions are very close to 1 +α as

predicted by Eq. (6.40).
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Figure 6.4: Cumulative strength, out-strength and generalized out-strength distri-
butions for the three versions of the model. For each version of the model and for
each choice of parameter α, 50 realizations of the network were generated and av-
eraged over. The simulated results were obtained for t = 106 and are represented
by purple circles (α = 0.6), green stars (α = 0.7), red squares (α = 0.8) and blue
diamonds (α = 0.9). The insets show the fitted exponents of the distributions for
the four values of α.

6.5 Reinforcement probabilities

By reinforcement probability we mean the probability that at time t we either add

a new link (or a new triangle) or in the case where the link (or triangle) already

exists that we increase its weight. In this section we show how this probability can

be directly calculated within the mean-field approximation using Eqs. (6.32) and

(6.35).

In the undirected case we indicate with πij(t, ti, tj) the probability that at time

t we reinforce or add a link between node i and node j given that node i and node

j have been added to the network at time ti and tj respectively. The reinforcement

probability is therefore given by

πUij(t, ti, tj) = 2ΠU
i ΠU

j (6.41)

where ΠU
i ,Π

U
j are calculated at time t. Therefore we have

πUij(t, ti, tj) =
(si(t)− α) (sj(t)− α)

2t2
, (6.42)
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which by inserting the mean-field expression for si(t) gives

πUij(t, ti, tj) =
(1− α)2

2titj
. (6.43)

Similarly it can be shown that in the directed case the probability πDij (t, ti, tj) that

a link from node i to node j is reinforced at time t given that nodes i iand j are

arrived in the network at time ti and tj respectively can be expressed as

πDij (t, ti, tj) =
1

N(t)

souti (t)− α
t

, (6.44)

which using the mean-field solution of souti and N(t) gives

πDij (t, ti, tj) =
1− α

(tα − 1)ti
. (6.45)

For the simplicial complex we indicate with π̃i,`(t, ti, τ`) the probability that a trian-

gle with source node i and target link ` is reinforced, conditioned on their respective

birth times ti and τ`. We write this as

π̃i,`(t, ti, τ`) =
s̃outi − α

t

1

L(t)
, (6.46)

where L(t) is the total number of (directed) links at time t. Using Eq. (6.35) we

obtain

π̃i,`(t, ti, τ`) =
1− α
ti

1

L(t)
. (6.47)

Ideally, we would like to have obtained a mean-field prediction for L(t), but this

proved too difficult. However, the above equation still proves useful when investi-

gating the distribution of the generalised out-degrees later in Section 6.6.
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6.6 Degree distribution

In this section we use the mean-field results of Sections 6.4 and 6.5 to derive equa-

tions for the degrees of the nodes conditioned on their birth times. We evaluate these

equations numerically for a range of values of the parameter α and find power-law

scalings with γ = 2 for ki in the undirected case, and γ < 2 for kouti and k̃outi in the

directed and simplicial complex cases. We also compare our numerically obtained

predictions with simulation results, validating our mean-field approach.

6.6.1 Undirected network case

We write the degree of a node i born at time ti in terms of the link probabilities

pij(t, ti, tj):

ki(t, ti) =

∫ t

1

dtjṄ(tj)pij(t, ti, tj), (6.48)

where Ṅ(tj) indicates the derivative of N(t) with respect to t, evaluated at tj, and

also corresponds to the probability that a new node is born at time tj. The link

probability pij(t, ti, tj) is the probability that a link exists between nodes i and j

conditioned on their birth times ti and tj (and also conditional on the event that a

new node j is born at tj). We can write this probability as

pij(t, ti, tj) = 1−
t∏

t′=τ

[1− πij(t′, ti, tj)] , (6.49)

where πij(t
′, ti, tj) is the reinforcement probability given in (6.43) and τ = max{ti, tj}

is the first time that both i and j are present in the network, i.e. (6.49) is 1 minus

the probability that the pair (i, j) is not reinforced in the time interval [τ, t]. The

πij reinforcement probabilities are very small for almost all pairs of nodes, so we

make the approximation

t∏
t′=τ

[1− πij(t′, ti, tj)] ' exp

(
−

t∑
t′=τ

πij(t
′, ti, tj)

)
. (6.50)
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Taking t to be very large, we approximate the sum in the above equation with an

integral, and write (6.49) as

pij(t, ti, tj) ' 1− exp

(
−
∫ t

τ

dt′ πij(t
′, ti, tj)

)
. (6.51)

It is then straight-forward to obtain the following expression for the degree from

Eq.s (6.51) and (6.43):

ki(t, ti) ' 2α

∫ ti

1

dtjt
α−1
j

[
1− e−

(1−α)2
2titj

(t−ti)
]

+2α

∫ t

ti

dtjt
α−1
j

[
1− e−

(1−α)2
2titj

(t−tj)
]
. (6.52)

The first integral in the above is the contribution to the generalised degree from

nodes born before ti, i.e. the contribution when τ = max{ti, tj} = ti. The second

integral is instead the contribution when τ = max{ti, tj} = tj. We perform changes

of variables on each of the integrals in Eq. (6.52), obtaining

ki(t, ti) ' 2αAα
(
t

ti
− 1

)α ∫ A( t
ti
−1)

A( t
ti
−1)t−1

i

dxx−(1+α)
[
1− e−x

]
+2αAα

(
t

ti

)α ∫ A( t
ti
−1)t−1

i

0

dx(At−1i + x)−(1+α)
[
1− e−x

]
, (6.53)

where A = (1−α)2
2

and in the first integral we have used the change in variable

x = A(t− ti)t−1i t−1j while in the second integral we have used x = At−1j ( t
tj
− 1). We

wish to extract a scaling between the degree ki(t, ti) and the birth time ti so that we

can eventually calculate the degree distribution similarly to how we calculated the

strength distribution in Section 6.4. In order to do this we take the limit t, ti →∞
while at the same time fixing the ratio t/ti = y. In the second integral (At−1i +

x)−(1+α) becomes simply x−(1+α) and we may write Eq. (6.53) as

ki(t, ti) ' 2αAα (y − 1)α
∫ A(y−1)

A(y−1)yt−1

dxx−(1+α)
[
1− e−x

]
+2αAαyα

∫ A(y−1)yt−1

0

dxx−(1+α)
[
1− e−x

]
. (6.54)
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Now, by considering y = t
ti
� 1 we can make the approximation y − 1 ' y and

write Eq. (6.54) as a single integral:

ki(t, ti) ' 2αAαyα
∫ Ay

0

dxx−(1+α)
[
1− e−x

]
. (6.55)

Evaluating the integral then gives

ki(t, ti) ' 2αAαyα
[
−α−1A−αy−α − Γ(−α)− Γ(−α,Ay)

]
, (6.56)

where Γ(·) indicates the gamma function and Γ(·, ·) indicates the upper incomplete

gamma function defined by

Γ(s, z) =

∫ ∞
z

dtts−1e−t. (6.57)

For −1 < s < 0 and z → ∞ the incomplete gamma function converges to 0.

Considering this fact, and also considering our earlier assumption that y � 1 we

find that we can approximate Eq. (6.56) further as

ki(t, ti) ' −2αAαyαΓ(−α), (6.58)

and so obtain the following scaling relation between ki(t, ti) and ti

ki(t, ti) ∝
(
t

ti

)α
. (6.59)

We are now finally in a position where we can calculate the cumulative degree

distribution P (ki > k) within the mean-field approximation using

P (ki > k) =
N (t?(k))

2tα
=

(
t?(k)

t

)α
, (6.60)

where t?(k) is the birth time such that

ki
(
t, t?(k)

)
= k. (6.61)
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From Eq.s (6.59) and (6.61) we obtain the scaling

P (ki > k) ∝ k−1, (6.62)

indicating that for large t, the degree distribution P (k) has a power-law tail with

exponent γ = 2. We confirm these results by comparing them to simulations of the

process for a range of values of α. Figure 6.5 shows the average cumulative degree

distributions given by the simulations. Also included are theoretical predictions ob-

tained by evaluating Eq. (6.52) numerically. The inset plot shows the values of γ

obtained from fitting power-laws to the tails of the simulation data. We see that

for all choices of the parameter α the degrees of the nodes follow power-laws with

values of γ close to the theoretical prediction of 2.

Additionally we have studied the scaling of the maximum degree (cutoff) kmax

as a function of the network size N . This study reveals that the cutoff scales with

the network size N with a proportionality constant depending on the value of α (see

Figure 6.6).

6.6.2 Directed network case

We can derive the distribution of the out-degrees in the directed network case using

a similar approach to in the previous section. The out-degree kouti (t, ti) at time t of

node i born at time ti is

kouti (t, ti) '
∫ t

1

dtjṄ(tj)pij(t, ti, tj), (6.63)

where pij(t, ti, tj) is the probability that at time t there is a link between i and j

conditioned on their birth times ti and tj. As in the undirected case we write this

probability in terms of the reinforcement probabilities:

pij(t, ti, tj) = 1−
t∏

t′=τ

[1− πij(t′, ti, tj)] , (6.64)
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Figure 6.5: Cumulative degree distributions in the undirected case. For each choice
of parameter α, 50 realizations of the network were generated and averaged over.
The simulated results were obtained for t = 106 and are represented by purple
circles (α = 0.6), green stars (α = 0.7), red squares (α = 0.8) and blue diamonds
(α = 0.9). The numerical results are represented by the purple solid line (α = 0.6),
green dashed line (α = 0.7), red dotted line (α = 0.8) and blue dot-dashed line
(α = 0.9). The solid black line shows an exact power-law with exponent γ = 2 for
comparison. The inset shows the fitted exponents of the simulated distributions for
the four values of α.
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Figure 6.6: Evolution of the average normalized degree cut-off for the undirected
case as a function of average total number of nodes in the network. For each choice
of parameter α, 50 realizations of the network were generated and averaged over.
The simulated results were obtained for t = 106 and are represented by purple circles
(α = 0.6), green stars (α = 0.7), red squares (α = 0.8) and blue diamonds (α = 0.9).
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where τ is again the maximum of ti and tj, and where πij(t
′, ti, tj) is now given by

Eq. (6.45). The reinforcement probabilites are small, allowing us to again make the

approximation 1− πij(t′, ti, tj) ' e−πij(t
′,ti,tj), leading to

pij(t, ti, tj) ' 1− exp

(
−
∫ t

τ

dt′πij(t
′, ti, tj)

)
, (6.65)

where in the above equation we have again used a continuous time approximation

allowing us to replace the sum over t′ with an integral. For t, τ � 1 the reinforcement

probability becomes πij(t
′, ti, tj) = 1−α

(t′α−1)ti '
1−α
t′αti

, and so we evaluate the integral

in Eq. (6.66) to get

pij(t, ti, tj) ' 1− exp

(
−t−αy

[
1−

(τ
t

)1−α])
, (6.66)

where y = t
ti

. Unlike in the undirected network case, the link probability is constant

with respect to tj when tj ≤ ti (i.e. when τ = ti). Specifically, in this range we have

pij(t, ti, tj) = pij(t, ti, tj = ti) = 1− exp
(
−t−αy

[
1− yα−1

])
. (6.67)

The mean-field out-degree given in Eq. (6.63) can now be written as

kouti (t, ti) ' tαi

[
1− e−t−αy[1−yα−1]

]
+α

∫ t

ti

dtjt
α−1
j

[
1− e

−t−αy
[
1−
(
tj
t

)1−α]]
. (6.68)

We perform integration by parts on the remaining integral in Eq. (6.68), using

u = 1− e
−t−αy

[
1−
(
tj
t

)1−α]
and dv

dtj
= αtα−1j with the standard formula for integration

by parts: ∫ b

a

dt

[
u
dv

dt

]
= uv|t=bt=a −

∫ b

a

dt

[
du

dt
v

]
, (6.69)

164



which leads to

kouti (t, ti) = (1− α)t−1y

∫ t

ti

dtje
−t−αy

[
1−
(
tj
t

)1−α]

= (1− α)y

∫ 1

y−1

dxe−t
−αy[1−x1−α], (6.70)

where in the second line we have used the change of variable x =
tj
t
. We now

let t, ti → ∞ with y = t
ti

fixed. In this regime, the exponent of the exponential

function is very small, −t−αy [1− x1−α]� 1, and so we can make the approximation

e−t
−αy[1−x1−α] ' 1− t−αy [1− x1−α]. This leads to

kouti (t, ti) = (1− α)y

∫ 1

y−1

dx
(
1− t−αy

[
1− x1−α

])
= (1− α)y

[
1− y−1 + t−α

(
−y + 1 +

1

2− α
y − 1

2− α
yα−1

)]
,(6.71)

which for large t tends to

kouti (t, ti) = (1− α) [y − 1] = (1− α)

[
t

ti
− 1

]
. (6.72)

Therefore the cumulative degree distribution may be found from

P (ki(t) > k) = P (ti < t?(k))) (6.73)

with

t?(k) = t

(
1− α
k + 1

)
(6.74)

and

P (ti < t?(k))) =
N(t?(k))

N(t)
. (6.75)
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Using the mean-field expression for the number of nodes given by Eq. (6.32) we find

the cumulative out-degree distribution to be

P (ki > k) =

(
1− α
k + 1

)α
, (6.76)

which implies the out-degree distribution is

P (k) = α
(1− α)α

(k + 1)α+1
∝ k−α−1. (6.77)

Therefore, we see that within our mean-field approximation the distribution of out-

degrees has a power-law tail with exponent γ = 1 + α. Figure 6.7 shows theoretical

predictions for the full cumulative out-degree distribution, obtained from numerical

evaluation of Eq. (6.63) for a selection of values of α. Also included in the figure

are the results of simulations for the same values of α. The inset plot shows the

values of γ obtained from fitting power-laws to the tails of the simulation data. We

see that the out-degrees of the nodes follow power-laws with increasing values of γ

for larger α, and with all values of γ between γ = 1 and γ = 2. From the inset

plot it is clear that the exponents of tails of the distributions closely agree with the

theoretical prediction of γ = 1 + α.

6.6.3 Directed simplicial complex case

In the case of the simplicial complex, the generalized out-degree k̃outi (t, ti) of a node

i is the number of triangles for which i is the source node. In the mean-field approx-

imation we may write this as

k̃outi (t, ti) '
∫ t

1

dτ`L̇(τ`)p̂(t, ti, τ`) (6.78)

where

p̂(t, ti, τ`) = 1− e−(1−α)/ti
∫ t
max(ti,τ`)

dt′[L(t′)]−1

(6.79)
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Figure 6.7: Cumulative distributions of the out-degrees. For each choice of pa-
rameter α, 50 realizations of the network were generated and averaged over. The
simulated results were obtained for t = 106 and are represented by purple circles
(α = 0.6), green stars (α = 0.7), red squares (α = 0.8) and blue diamonds (α = 0.9).
The numerical results are represented by the purple solid line (α = 0.6), green dashed
line (α = 0.7), red dotted line (α = 0.8) and blue dot-dashed line (α = 0.9). The
inset shows the fitted exponents of the simulated distributions for the four values of
α.
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is the probability of a triangle with source node i and target link l, and was derived

using the reinforcement probability given in Eq. (6.47) in the same way as in the

network versions of the model. Figure 6.3 provides strong evidence that for large t,

L(t) grows like a power of t. We therefore assume

L(t) = ctb. (6.80)

The values c and b could be obtained for each choice of α by fitting Eq. (6.80) to the

data shown in figure 6.3(c), however we will see that in fact this isn’t necessary for

obtaining the scaling of the generalised degree. Substituting Eq. (6.80) in to (6.79)

we obtain the following for the generalized out-degree of a node i born at time ti,

k̃outi (t, ti) = cb

∫ t

ti

dτ`τ
b−1
`

[
1− e−

1−α
c(1−b)ti (t

1−b−max(ti,τ`)
1−b)
]
. (6.81)

The above integral has a similar form to the integral in Eq. (6.68), and we take

a very similar approach. In particular we note that for τl ≤ ti the probability of a

link given in Eq. (6.79) is constant with respect to τl. We write Eq. (6.81) as

k̃outi (t, ti) = ctbi

[
1− e−t

−b (1−α)
c(1−b)y[1−yb−1]

]
+cb

∫ t

ti

dτlτ
b−1
l

[
1− e−t

−b (1−α)
c(1−b)y

[
1−( τlt )

1−b]]
, (6.82)

where y = t
ti

. Applying integration by parts to the integral in the second line we

find

k̃outi (t, ti) = (1− α)yt−1
∫ t

ti

dτle
−t−b (1−α)

c(1−b)y
[
1−( τlt )

1−b]

= (1− α)y

∫ 1

y−1

dxe−t
−b (1−α)

c(1−b)y[1−x1−b], (6.83)

where in the second line we have applied the change of variable x = τl
t
. We now

let t, ti → ∞ while keeping y = t
ti

fixed, giving us −t−b (1−α)
c(1−b)y

[
1− x1−b

]
� 1

for all x within the the range being integrated over. This allows us to make the

approximation e−t
−b (1−α)

c(1−b)y[1−x1−b] ' 1 − t−b (1−α)
c(1−b)y

[
1− x1−b

]
and so we can write
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Eq. (6.83) as

k̃outi (t, ti) = (1− α)y

∫ 1

y−1

dx

(
1− t−b (1− α)

c(1− b)
y
[
1− x1−b

])

= (1− α)y

[(
1− t−b (1− α)

c(1− b)
y

)
x+ t−b

(1− α)

c(1− b)(2− b)
yx2−b

] ∣∣∣∣∣
x=1

x=y−1

→ (1− α) [y − 1] = (1− α)

[
t

ti
− 1

]
, (6.84)

where in the last line we use the fact that t−b → 0 as t → ∞ since we must have

b > 0 the total number of links cannot decrease in time. Remarkably, the mean-field

expression for the generalised out-degree that we give in Eq. (6.84) has no direct

dependence on c or b, so assuming that L(t) is indeed a power-law, there is no need

to find fitted values for c and b in order to predict the k̃outi (t, ti).

The approach to calculating the distribution of the generalised out-degrees mir-

rors the approach to calculating the distribution of the out-degrees in the directed

network version of the model. We find the distribution to be given by

P (k) = α
(1− α)α

(k + 1)α+1
∝ k−α−1. (6.85)

Therefore, we see that within our mean-field approximation the distribution of gen-

eralized out-degrees has a power-law tail with exponent γ = 1 + α.

Figure 6.8 shows theoretical predictions for the full cumulative generalized out-

degree distribution, obtained from numerical evaluation of Eq. (6.81) for a selection

of values of α. Also included in the figure are the results of simulations for the same

values of α. The inset plot shows the values of γ obtained from fitting power-laws

to the tails of the simulation data.

We see that the generalized out-degrees of the nodes follow power-laws with in-

creasing values of γ for larger α, and with all values of γ between γ = 1 and γ = 2.

From the inset plot we see that the exponents of the tails of the distributions are
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Figure 6.8: Cumulative distributions of the generalized out-degrees. For each choice
of parameter α, 50 realizations of the simplicial complex were generated and averaged
over. The simulated results were obtained for t = 105 and are represented by purple
circles (α = 0.6), green stars (α = 0.7), red squares (α = 0.8) and blue diamonds
(α = 0.9). The numerical results are represented by the purple solid line (α = 0.6),
green dashed line (α = 0.7), red dotted line (α = 0.8) and blue dot-dashed line
(α = 0.9). The inset shows the fitted exponents of the simulated distributions for
the four values of α.

quite close to the exponents of the generalized out-strengths δ = 1 + α.

6.7 Strength versus degree

The models we have introduced all produce networks or simplicial complexes where

the strengths of the nodes and total number of nodes follow the statistics of the

Pitman-Yor model of balls in boxes. In contrast, the degree statistics do not fol-

low the Pitman-Yor model, as links (or triangles) between nodes may be weighted

multiple times without altering the degrees (or generalized degrees) of the nodes.

In Section 6.6 we saw that in the directed network and directed simplicial complex

versions, the exponents of the degree and generalized degree distributions closely

match the exponents of the strength distributions, while in the undirected version
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the exponent of the degree distribution is always equal to 2. An interesting question

therefore is what is the relation between the degrees and generalized degrees of the

nodes and their strengths and generalized strengths? In particular, in the directed

network and directed simplicial complex versions we would like to know to what

extent the strengths and generalized strengths can act as proxies for the degrees

and generalized degrees or whether the stregth increases super-linearly with the de-

gree of the nodes [34, 96]. To this end we have run simulations of the models for

various values of α with the aim of extracting the average relations over all of the

realizations. The total number of nodes in a realization is non-deterministic and in

fact can vary widely over a set of realizations. This is important as the probability

that a source node either gains a new link (or triangle) or has one of its existing

ones reinforced depends on the ratio of the relative size of the degree of the node

with respect to N . Therefore, to see the effect of this ‘crowding’ of the links of high

degree nodes we have normalized the strength and degree data by dividing by N for

each realization before averaging over all realizations. Figure 6.9 shows the relation

between the normalized strengths and degrees of the nodes for the three versions of

the model. We see from panel a) that the strengths of the nodes in the undirected

version are significantly higher than their degrees, with the effect being greater for

nodes with higher degree. This is expected, as the probability of a link being rein-

forced more than once is larger when the strengths of its two nodes are larger. In

contrast, we see from panels b) and c) that the average out-strengths and average

generalized out-strengths are very close to equal to the out-degrees and generalized

out-degrees of the nodes in the directed network and simplicial complex versions

respectively, suggesting the strengths may indeed act as proxies for the degrees.

6.8 Clustering and Degree Correlations

In this section we explore using simulations the clustering and degree correlations

of the undirected (and unweighted) networks produced by the three versions of our

model. In order to compare the results for the undirected network model with the

results of the directed network and directed simplicial complex versions, we decided

to discard the information about the direction of the links in the directed network

and directed simplicial complex versions.
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Figure 6.9: Plot of the normalized strengths versus the normalized degrees. Panels
(a), (b) and (c) show the results for the undirected, directed and simplicial complex
versions respectively. For each choice of parameter α, 50 realizations of the simplicial
complex were generated and averaged over. The results were obtained for t = 105

and are represented by purple circles (α = 0.6), green stars (α = 0.7), red squares
(α = 0.8) and blue diamonds (α = 0.9). The solid black line is the function f( k

N
) =

k
N

, and is there as a guide to see how closely the strengths match the degrees.

Figure 6.10 shows the average degree knn(k) of the neighbours of nodes with

given degree k for the three versions. We see that for all three versions of the model,

the networks produced are strongly disassortative. Interestingly in the undirected

version, despite the fact that in Section 6.6 we found that the degree distribution has

the same power-law exponent for different values of α, the strength of the disassor-

tativity appears to be greater for increasing values of α. A likely explanation for this

trend is that for larger α there is bias away from adding links between existing high

degree nodes and towards creating links between a new node and a high degree node.

Figure 6.11 shows the average clustering of all nodes in the networks against the

model parameter α for the three versions of the model. We see that the average

clustering decreases with increasing values of α for all three versions.

6.9 Conclusions

In the research presented in this chapter, originally published in [35], we have pre-

sented three similar models for producing dense networks and simplicial complexes
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Figure 6.10: Average degree of the neighbours of nodes of degree k, taken from sim-
ulation data. Panels (a), (b) and (c) show the results for the undirected network,
directed network and simplicial complex respectively. For each model version and
each choice of parameter α, 50 realizations of the network were generated and av-
eraged over. The results were obtained for t = 105 and for α = 0.6, (purple circles),
α = 0.7 (green stars), α = 0.8 (red squares), and α = 0.9 (blue diamonds).
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Figure 6.11: Average clustering of the nodes at different values of α, taken from
simulation data with t = 105. For each model version and each choice of parameter
α, 50 realizations of the network were generated and averaged over. Results from
the three model versions are represented by the purple solid line (undirected), green
dashed line (directed) and red dotted line (simplicial complex).
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with power-law distributions of the strengths and degrees. The growth mechanisms

of these models are analogous to the Pitman-Yor process, a stochastic process well-

known among probability theorists for generating random partitions with power-law

distributions of block sizes. Our undirected model can in one sense be thought of as

a network with multiedges and a power-law degree distribution with tunable dense

exponent γ = 1 + α ∈ (1, 2) or in a different sense as a weighted network with

a power-law degree distribution with the border-line dense exponent γ = 2. Our

directed network model produces dense directed networks with out-degree distribu-

tions that follow a power-law with tunable exponent γ = 1 + α, and homogeneous

distributions of the in-degrees. Our simplicial complex version extends the concept

of a scale-free network to a scale-free simplicial complex with power-law distribution

of the generalized out-degrees. These models demonstrate the difficulty in produc-

ing networks that are both dense and scale-free. However, they give insight into

the possible mechanisms by which real-world networks densify, and may have a use

as null-models for the growth of on-line social networks, recommendation networks

or the brain. We show that the models are amenable to analytical calculations

through our mean-field approach, and through simulation we verify the accuracy of

our mean-field calculations.
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Chapter 7

Conclusions

Simplicial complexes are a generalisation of networks that can encode the many-

body interactions between the parts of a complex system. They allow for a more

sophisticated characterisation of the structure of such systems that is not limited to

node properties, but also provides a language to describe the higher order properties

of simplices with dimension d ≥ 1.

New measures of structure such as our generalised degrees and generalised strengths,

or those based on algebraic topology provide a language that can describe a far richer

variety of structures than what has previously been possible within traditional net-

work science. On the one hand this opens up new possibilities: the discovery of

new ‘universal’ properties, the development of more realistic models based on group-

properties belonging to higher dimensional simplices rather than just nodes, or more

subtle classifications of networks in terms of their homology. On the other hand this

big increase in the types of structure that might be possible and the myriad mea-

sures that could potentially be introduced to characterise this structure should also

be daunting. How do different measures relate to each other? What kind of struc-

ture would be interesting when we observe a real simplicial complex? What can we

learn from this structure about the evolution or function of the simplicial complex?

Models help us answer these kinds of questions. They allow us to understand the

dependences and relations between the structure of simplicial complexes, their evo-

lution and processes occurring upon them. They help us to form hypotheses about
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the origins of simplicial complexes, to make informed guesses at their structure in

the absence of complete data, and to make generalisations and predictions about

simplicial complexes sampled from the same source.

The models in this thesis fall into two categories: explanatory models in which

the motivation is to find plausible hypotheses about the rules governing the evolu-

tion of simplicial complexes and to understand how these rules effect their structure,

and null models which allow us to probe the relations between structural properties

and help us answer questions such as, how can we ‘best’ model a simplicial complex

given it has a given set of properties? In both types of model the aim is not neces-

sarily to construct the most realistic model, but to isolate the effects of structural

properties and growth mechanisms on the simplicial complexes produced.

The models presented in Chapter 4 are maximum entropy ensembles of d-dimensional

simplicial complexes, based on the generalised degrees of the nodes. As such, our

models have a clear use as null models for simplicial complexes. They are the least

biased models for simplicial complexes given knowledge of these generalized degrees.

Importantly, they allow for a statistically rigorous understanding of the implications

of particular choices of the generalized degrees for the structure of simplicial com-

plexes and dynamics taking place upon them. We believe that these models con-

stitute an important first step in modelling simplicial complexes using the tools of

equilibrium statistical physics and that this work will open up new perspectives for

investigating a new generation of maximum entropy models of simplicial complexes.

This belief is already being vindicated, as since the publication of our work, a

direct adaptation of our configuration model was used in [97] to quantify the signif-

icance of homological structure in simplicial complexes constructed from real data

representing relations between pollinating insects and plants, human diseases and

genes, and criminals, victims and witnesses in crimes. In the paper, a version of the

configuration model was used to quantify the typical Betti numbers expected given

only the generalised degrees in the real data. It was found that the Betti numbers

found for the insect-plant data set appeared to be very similar to in the configu-

ration model suggesting an absence of significant structure beyond that described
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by the generalised degrees. For the disease and crime datasets it was instead found

that the Betti numbers differed significantly from the configuration model indicating

the presence of a significant structure not well explained in terms of the generalised

degrees. This demonstrates the use of models designed along similar lines to ours

for identifying interesting or non-trivial structure in complex data sets.

In Chapter 5 we presented a model of a d-dimensional simplicial complex that is

both weighted and growing. This model follows in the tradition of growing network

models that seek to characterize the relations between simple growth mechanisms

of networks and their structural properties. The model allowed us to investigate

the competing effects of growth, reinforcement and dimension on the generalized

strengths of the simplices and on the distribution of weight across the simplicial

complex. We found that the model could exhibit a rich variety of topologies and

weight distributions, namely power-law, exponential and bimodal distributions of

the generalised degrees and linear, super-linear or exponential scalings of generalised

strength with generalised degree. Remarkably each of these distributions and scal-

ings could be exhibited simultaneously within a single simplicial complex for faces

of different dimension. This was due to the effective attachment and reinforcement

mechanisms ‘felt’ by the lower dimension simplices, and highlights the importance

that growth mechanisms which function based on clique or simplex properties may

have in the evolution of networks and simplicial complexes.

In Chapter 6 we presented a modelling framework for producing networks and

simplicial complexes which were both dense and scale-free. The growth mechanisms

of the models contained within our framework are analogous to the Pitman-Yor

process, a ‘ball-in-the-box’ process well-known among probability theorists for pro-

ducing power-laws with exponent γ ∈ (1, 2]. Our undirected model demonstrated

the difficulty of producing a simple network which is both dense and scale-free. In

this model the network clearly densified over time and was also scale-free with a

borderline dense exponent γ = 2. By relaxing the requirement for the network to

be simple, either by considering only the out-degree or by reinterpreting the weight

of a link as the number of multilinks between two nodes, we found that it was easy

to create scale-free networks and simplicial complexes with tunable dense exponent
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γ ∈ (1, 2].

The models presented in this thesis are simple models of simplicial complexes

that seek to isolate the effects either of structural constraints or of growth processes

on the properties of the simplicial complexes produced. Our results contribute to

a young but expanding literature on models of random simplicial complexes, and

together with this literature our work will hopefully inform the development of more

sophisticated models that successfully replicate the properties of real simplicial com-

plexes while remaining as simple and transparent as possible.

The use of simplicial complexes to represent real, complex systems is still in its

infancy and we do not know what novel measures of structure will be developed in

the coming years, nor what properties will be observed that we will need to repli-

cate. Developments in these areas will inform the creation of new models, while

the insight gained from study of the models will in turn inform the analysis of real

simplicial complexes.

178



Appendix A: Derivation of Eq.

(4.68) for Ω

In this appendix we derive Eq. (4.68) for Ω in the presence of the structural cutoff.

The quantity Ω indicates the logarithm of the probability that in the canonical

ensemble of simplicial complexes enforcing the sequence of expected degree of the

nodes {kr} we observe a simplicial complex realization in which the sequence of the

generalized degree of the nodes is exactly {kr}. This is written as

Ω = − ln
∑
G

PCE(G)
∏
r

δ (kr, kd,0(r))

= − ln
∑
G

∏
α

paαα (1− pα)1−aα
∏
r

δ
(
kr, k2,0(r)

)
(1)

where, in presence of the structural cutoff, the probabilities pα are given by Eq.

(4.26). In order to evaluate Ω, we use the integral representation of the Kroenecker

delta

δ(x, y) =

∫ π

−π

dω

2π
eiωx−iωy, (2)
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getting

Ω = − ln
∑
G

∏
α

paαα (1− pα)1−aα
∏
r

∫ π

−π

dωr
2π

eiωrkr−iωr
∑
α′|r⊂α′ aα′

= − ln

∫ π

−π

∏
r

dωr
2π

eG[{ωr}] (3)

where

G[{ωr}] = i
∑
i

ωrkr +
∑
α

ln
[
1 + pα

(
e−i

∑
r⊂α ωr − 1

)]
.

For an uncorrelated simplicial complex ensemble with structural cutoff and with pα

given by Eq. (4.26) and pα � 1 we can approximate G[{ωr}] as

G[{ωr}] = i
∑
r

ωrkr +
∑
α

pα
(
e−i

∑
r⊂α ωr − 1

)
. (4)

Using the explicit factorized expression for pα in the presence of the structural cutoff

we observe that we can write

∑
α

pα
(
e−i

∑
r⊂α ωr − 1

)
=

d!

(d+ 1)!
〈k〉N

(
νd+1 − 1

)
(5)

where

ν =
∑
r

kr

〈k〉N
e−iωr . (6)

We now introduce the density

c(ω|k) =
1

Nk

∑
r

δ(ω − ωr)δ
(
k, kr

)
(7)
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where

Nk = NPd,0(k) (8)

indicates the number of nodes with generalized degree of the nodes kr = k and

Pd,0(k) indicates the distribution of the generalized degree of the nodes. We can

therefore express ν given by Eq. (6) in terms of c(ω|k) obtaining

ν =
∑
k

k

〈k〉
Pd,0(k)

∫
dωe−iωc(ω|k). (9)

Using the delta functions

δ (cω,k, c(ω|k)) =

∫ π

−π

dĉω,k
2πNk

eiĉω,k[Nkcω,k−
∑
r δ(ω−ωr)δ(k,kr)] (10)

we can now express Ω as

Ω = − ln

∫
Dcω,kDĉω,keNF [cω,k,ĉω,k],

where F [cω,k, ĉω,k] is given by

F [cω,k, ĉω,k] = i
∑
k

Pd,0(k)

∫
dωĉω,kcω,k +

d!

(d+ 1)!
〈k〉
(
νd+1 − 1

)
+
∑
k

Pd,0(k) ln

∫
dω

2π
eiωk−iĉω,k . (11)

We evaluate the integral (11) with the saddle point method. The saddle point

equations read,

∂F [cω,k, ĉω,k]

∂cω,k
= 0,

∂F [cω,k, ĉω,k]

∂ĉω,k
= 0.
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Which gives us

−iĉω,k = kνde−iω, (12)

cω,k =
1
2π
eiωk−iĉω,k∫

dω
2π
eiωk−iĉω,k

. (13)

Using Eq. (12) we observe that the integral appearing in Eq. (13) can be expressed

in terms of ν, obtaining

∫
dω

2π
eiωk−iĉω,k =

∫
dω

2π
eiωk+kν

de−iω =

∫
dω

2π
eiωk

∑
h

(νdk)he−iωh
1

h!
=

(νdk)k

k!
. (14)

Substituting this result in to Eq. (13), we get

cω,k =
k!

2π(νdk)k
eiωk−iĉω,k

=
k!

2π(νdk)k
eiωk+kν

de−iω . (15)

Finally, we can substitute this expression into the definition of ν given by Eq. (9)

obtaining

ν =
∑
k

k

〈k〉
Pd,0(k)

∫
dωe−iωcω,k

=
∑
k

k

〈k〉
Pd,0(k)

k!

(νdk)k

∫
dω

2π
eiω(k−1)+kν

de−iω

=
∑
k

k

〈k〉
Pd,0(k)

k!

(νdk)k

∫
dω

2π
eiω(k−1)

∑
h

(νdk)he−iωh
1

h!

=
∑
k

k

〈k〉
Pd,0(k)

k!

(νdk)k
(νdk)k−1

(k − 1)!
= ν−d. (16)

Therefore, ν is the solution of the equation ν = ν−d, and so we have

ν = 1. (17)
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Using this result, and Eq. (14) it is immediate to show that the value of the func-

tional F [cω,k, ĉω,k] (Eq. (11)) at the saddle point is given by

F [cω,k, ĉω,k] = i
∑
k

Pd,0(k)

∫
dωĉω,kcω,k +

∑
k

Pd,0(k) ln

[
kk

k!

]
. (18)

Proceeding as in Eq. (16) it can be easily shown that

i
∑
k

Pd,0(k)

∫
dωĉω,kcω,k = −

∑
k

Pd,0(k)k
k!

kk

∫
dω2πeiω(k−1)+ke

−iω

= −〈k〉 = −
∑
k

Pd,0(k)k. (19)

Finally, evaluating the integral (11) at the saddle point we obtain the simple expres-

sion for Ω given by

Ω = − ln
(
eNF [cω,k,ĉω,k]

)
= −N

∑
k

Pd,0(k) ln

(
kk

k!
e−k

)
= −

∑
r

ln
(
πkr(kr)

)
, (20)

where πkr(kr) indicated the Poisson distribution with average kr calculated at kr,

i.e.

πkr(kr) =
kr
kr

kr!
e−kr . (21)
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Appendix B: Derivation of the

probability distributions for the

generalized degrees of the nodes in

the canonical ensemble with

structural cutoff

In this appendix we show that in the canonical ensemble with structural cut-off, the

probability ρr(k) that a node r has generalized degree kd,0(r) = k follows a Poisson

distribution with expected value kr. In keeping with the notation in Section 4.3.4,

we show that ρr(k) = πkr(k), where

πkr(k) = e−kr
kr
k

k!
. (22)

To prove this, we first observe that the probability that kd,0(r) = k in the canonical

ensemble is

ρr(k) =
∑
G

P (G)δ (kd,0(r), k) , (23)
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i.e. the sum of the probabilities of all simplicial complexes in the ensemble for

which the node r has generalized degree k. We use the representation of P (G) as

a product of simplex probabilities pα given in Eq. (4.17) together with the integral

representation of the Kronecker delta:

δ(x, y) =

∫ π

−π

dω

2π
eiωx−iωy, (24)

to get

ρr(k) =
∑
G

∏
α

paαα (1− pα)1−aα
∫ π

−π

dω

2π
eiωk−iω

∑
α|r⊂α aα . (25)

Evaluating the sum over all simplicial complexes gives

ρr(k) =

∫ π

−π

dω

2π
eiωk

∏
α|r⊂α

[
pαe

−iω + 1− pα
]

=

∫ π

−π

dω

2π
eiωk+

∑
α|r⊂α log(pαe−iω+1−pα). (26)

Below the structural cut-off, we have pα � 1, so we may make the approximation

log
(
pαe

−iω + 1− pα
)
≈ pα

(
e−iω − 1

)
. (27)

Eq. (26) becomes

ρr(k) =

∫ π

−π

dω

2π
eiωk+e

−iωkr−kr , (28)

where we have used kr =
∑

α|r⊂α pα. We make the expansion:

ee
−iωkr =

∞∑
κ=0

e−iωκkr
κ

κ!
. (29)
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Using this expansion in Eq (28) gives

ρr(k) =
∞∑
κ=0

e−kr
kr
κ

κ!

∫ π

−π

dω

2π
eiωk−iωκ, (30)

which is nothing more than

ρr(k) =
∞∑
κ=0

e−kr
kr
κ

κ!
(κ)δ(k, κ) = e−kr

kr
k

k!
, (31)

where we have identified the integral in Eq (30) as being the integral represen-

tation of δ(k, κ).
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Appendix C: Main steps of the

derivation of the Eq.(55)

In Section 5.3.4 of the main body of the thesis we derived the following equation

(Eq. (5.50)) for the average generalized strength sd,δ(t, tα) of the δ-face α with

arrival time tα

sd,δ(t, tα) = w0
(d− δ)!

(d+ s)d−δ
tλt
− d+s−δ−1

d+s

iδ

∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0), (32)

where Aq(δ), Bq(δ) and Xq(r),q(r+1) are defined respectively by Eqs. (41), (5.48)

and (5.47) of the main text. These integrals are expressed in terms of I(τL, τU)

defined in Eq. (5.46), so evaluation of I(τL, τU) is required for the evaluation of

Aq(δ), Bq(δ) and Xq(r),q(r+1). To do this we note that in the integral I(τL, τU), the

factors corresponding to each of the birth times takes the same form: t
1
d+s
−1

r . We
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exploit this symmetry in the following way:

InτL,τU =

∫ τU

τL

dtnt
1
d+s
−1

n

∫ tn

τL

dtn−1t
1
d+s
−1

n−1 ...

∫ t2

τL

dt1t
1
d+s
−1

1 (33)

=
1

n!

∫ τU

τL

dtnt
1
d+s
−1

n

∫ τU

τL

dtn−1t
1
d+s
−1

n−1 ...

∫ τU

τL

dt1t
1
d+s
−1

1 (34)

=
1

n!

(∫ τU

τL

dττ
1
d+s
−1
)n

(35)

=
(d+ s)n

n!

(
t

1
d+s − τ

1
d+s

)n
(36)

=
(d+ s)n

n!

n∑
r=0

(
n

r

)
(−1)rt

n−r
d+s τ

r
d+s . (37)

This result allows us to express Xq(r),q(r+1) as

Xq(r),q(r+1) =

{
I
q(r+1)−q(r)−1
tir ,tir+1

if q(r + 1)− q(r) > 1,

1 if q(r + 1)− q(r) = 1,

=

 (d+s)q(r+1)−q(r)−1

(q(r+1)−q(r)−1)!

(
t

1
d+s

ir+1
− t

1
d+s

ir

)q(r+1)−q(r)−1
if q(r + 1)− q(r) > 1,

1 if q(r + 1)− q(r) = 1.

(38)

Similarly Bq(0) can be expressed as

Bq(0) =

 I
q(0)
0,ti0

if q(0) > 0,

1 if q(0) = 0,

=


(d+s)q(0)

q(0)!
t
q(0)
d+s

i0
if q(0) > 0,

1 if q(0) = 0.

(39)

Finally using Eq. (37) and the definition of Aq(δ) that we rewrite here for conve-
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nience,

Aq(δ) =


∫ t
tiδ
dtjdt

−λ− d
d+s

jd
I
d−q(δ)−1
tiδ ,tjd

if 0 ≤ q(δ) ≤ d− 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(40)

we obtain

Aq(δ) =



(d+s)d−q(δ)−1

(d−q(δ)−1)!
∑d−q(δ)−1

r=0

[(
d−q(δ)−1

r

)
(−1)rt

r
d+s

iδ

×
∫ t
tiδ
dtjdt

−λ+ d+s−q(δ)−r−1
d+s

−1
jd

] if 0 ≤ q(δ) ≤ d− 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d.

(41)

In the case q(δ) ≤ d − 1 the integral present in Eq. (41) has two separate ex-

pressions for λ = d+s−q(δ)−1−r
d+s

and λ 6= d+s−q(δ)−1−r
d+s

.

By performing the integral we find the following expression for Aq(δ)

Aq(δ) =


(d+ s)d−q(δ)−1

∑d−q(δ)−1
r=0

×Dq(δ)+rt
r
d+s

iδ

(−1)r
r!

if 0 ≤ q(δ) ≤ d− 1,

t
−λ+ s−1

d+s

iδ
if q(δ) = d,

(42)

where in the quantity Dq(δ)+r we have gathered together all of the factors in Eq. (42)

that depend on q(δ) and r only through their sum (the reason why this is useful will

become apparent later) and is given by
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Dq(δ)+r =


1

(d−q(δ)−r−1)!

(
d+s−q(δ)−1−r

d+s
− λ
)−1

×
(
t
d+s−q(δ)−1−r

d+s
−λ − t

d+s−q(δ)−1−r
d+s

−λ
iδ

) if λ 6= d+s−q(δ)−1−r
d+s

,

1
(d−q(δ)−r−1)! log

(
t
tiδ

)
if λ = d+s−q(δ)−1−r

d+s
.

(43)

Having calculated Aq(δ), Bq(δ) and Xq(r),q(r+1), we now wish to evaluate the sum

over the positions {q(r)}r=0,1,...δ that the birth times of the nodes of α can take in

the sequence of birth times [tj0 , . . . , tjd ]. This sum has the form

∑
{q}

=
d∑

q(δ)=δ

q(δ)−1∑
q(δ−1)=δ−1

. . .

q(2)−1∑
q(1)=1

q(1)−1∑
q(0)=0

(44)

Similar to the nested integrals we encountered earlier, we have here a set of

nested sums. We now write the sum over {q(r)}r=0,1,...δ in Eq. (32) using the form

given above

∑
{q}Aq(δ)

(∏δ−1
r=0Xq(r),q(r+1)

)
Bq(0) =∑d

q(δ)=δ Aq(δ)
∑q(δ)−1

q(δ−1)=δ−1Xq(δ−1),q(δ) . . .
∑q(2)−1

q(1)=1Xq(1),q(2)

∑q(1)−1
q(0)=0Xq(0),q(1)Bq(0).

(45)

In order to evaluate these sums, we rewrite the above in terms of a set of recur-

sively defined functions as follows

∑
{q}

Aq(δ)

(
δ−1∏
r=0

Xq(r),q(r+1)

)
Bq(0) =

d∑
q(δ)=δ

Aq(δ)Rq(δ),δ, (46)
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where Rq(r),r are functions defined recursively by the following pair of equations,

Rq(1),1 =

q(1)−1∑
q(0)=0

Xq(0),q(1)Bq(0), (47)

Rq(β),β =

q(β)−1∑
q(β−1)=β−1

Xq(β−1),q(β)Rq(β−1),β−1. (48)

The solution of these equations is calculated in Appendix D and reads

Rq(β),β = (d+ s)q(β)−β
t
q(β)−β
d+s

iβ

(q(β)− β)!
. (49)

We will shortly use the above in our generalised strength equation

sd,δ(t, tα) = w0
(d− δ)!

(d+ s)d−δ
tλt
− d+s−δ−1

d+s

iδ

d∑
q(δ)=δ

Aq(δ)Rq(δ),δ. (50)

First we note that that the solution we found for Aq(δ) differs when q(δ) = d from

when q(δ) ≤ d− 1. When q(δ) = d, the contribution to the sum in Eq. (50) is

AdRd,δ =
(d+ s)d−δ

(d− δ)!
t
−λ+ d+s−δ−1

d+s

iδ
, (51)

where we have used Eq.s (42) and (49) for Ad and Rd,δ respectively. Using Eq.s (42)

and (49) for q(δ) ≤ d− 1, the contribution to the sum is

∑d−1
q(δ)=δ Aq(δ)Rq(δ),δ =

(d+ s)d−δ−1
∑d−1

q(δ)=δ

∑d−q(δ)−1
r=0 Dq(δ)+rt

q(δ)+r−δ
d+s

iδ

(−1)r
r!(q(δ)−δ)!

= (d+ s)d−δ−1Dq(δ)+rt
q(δ)+r−δ
d+s

iδ

∣∣∣∣∣
q(δ)+r=δ

= (d+ s)d−δ−1Dδ. (52)
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Note that in deriving the Eq.(52) we have used the following mathematical identity

b∑
x=a

b−x∑
y=0

f(x+ y)
(−1)y

y!(x− a)!
= f(a), (53)

valid for integers a, b > 0 with a < b (in Eq. (52) the substitution is f(q(δ) + r) =

Dq(δ)+rt
q(δ)+r−δ
d+s

iδ
). Therefore the average generalized strength given by Eq. (50) can

be written as

sd,δ(t, tα) = w0
(d−δ)!

(d+s)d−δ
tλt
− d+s−δ−1

d+s

iδ

[
AdRd,δ +

∑d−1
q(δ)=δ Aq(δ)Rq(δ)

]
= w0

(d−δ)!
(d+s)d−δ

tλt
− d+s−δ−1

d+s

iδ

[
(d+s)d−δ

(d−δ)! t
−λ+ d+s−δ−1

d+s

iδ
+ (d+ s)d−δ−1Dδ

]
,

(54)

which simplifies to

sd,δ(t, tα) = w0

( t

tiδ

)λ
+ w0

(d− δ)!
d+ s

tλt
− d+s−δ−1

d+s

iδ
Dδ. (55)

As noted earlier, Dδ takes different forms in the cases λ 6= λδ = d+s−δ−1
d+s

and

λ = λδ = d+s−δ−1
d+s

. Inserting Eq. (43) into Eq. (55) leads to our final expression for

the generalized strength:

sαd,δ(t) =


w0

d−δ
(d+s)(λδ−λ)

(
t
tiδ

)λδ
+ w0

[
1− d−δ

(d+s)(λδ−λ)

](
t
tiδ

)λ
if λ 6= λδ,

w0

(
t
tiδ

)λ[
1 + d−δ

d+s
log
(

t
tiδ

)]
if λ = λδ.

(56)

Since this equation is the same as Eq. (5.50) of the main text, this concludes

here our discussion.
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Appendix D: Derivation of Eq.

(49)

In this appendix our goal is to show that Eq. (49) holds. This equation is given by

Rq(β),β = (d+ s)q(β)−β
t
q(β)−β
d+s

iβ

(q(β)− β)!
, (57)

where Rq(r),r are functions defined recursively by the following pair of equations

Rq(1),1 =

q(1)−1∑
q(0)=0

Xq(0),q(1)Bq(0), (58)

Rq(β),β =

q(β)−1∑
q(β−1)=β−1

Xq(β−1),q(β)Rq(β−1),β−1. (59)

To this end we first check that (57) holds for β = 1. Inserting Eq. (38) for

Xq(0),q(1) and Eq. (39) for Bq(0) into Eq. (58) gives

Rq(1),1 =

q(1)−1∑
q(0)=0

q(1)−q(0)−1∑
l0=0

(d+ s)q(1)−1(−1)l0

(q(1)− q(0)− 1− l0)!(l0)!q(0)!

× t
q(0)+l0
d+s

i0
t
q(1)−q(0)−1−l0

d+s

i1
. (60)
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We note that the expression being summed over factorises into a term depending

on q(0) and l0 only through their sum and a term depending on q(0) and l0 otherwise:

Rq(1),1 =

q(1)−1∑
q(0)=0

q(1)−q(0)−1∑
l0=0

f(q(0) + l0)
(−1)l0

l0!q(0)!
, (61)

where

f(q(0) + l0) = (d+ s)q(1)−1
t
q(0)+l0
d+s

i0
t
q(1)−q(0)−1−l0

d+s

i1

(q(1)− q(0)− 1− l0)!
. (62)

Using the mathematical identity Eq.(53), Eq. (61) simplifies to

Rq(1),1 = f(0) = (d+ s)q(1)−1
t
q(1)−1
d+s

i1

(q(1)− 1)!
. (63)

So (57) holds in the case β = 1.

We now show that in general if Eq. (57) holds for some β then it must also hold

for β + 1. Substituting in Eq. (38) and Eq. (57) into Eq. (59) gives

Rq(β+1),β+1 =

q(β+1)−1∑
q(β)=β

q(β+1)−q(β)−1∑
lβ=0

[
(d+ s)q(β+1)−β−1(−1)lβ

(q(β + 1)− q(β)− 1− lβ)!(lβ)!(q(β)− β)!

×t
q(β)+lβ−β

d+s

iβ
t
q(β+1)−q(β)−1−lβ

d+s

iβ+1

]
. (64)

Similar to the β = 1 case we may write (64) in the form

Rq(β+1),β+1 =

q(β+1)−1∑
q(β)=β

q(β+1)−q(β)−1∑
lβ=0

f(q(β) + lβ)
(−1)lβ

lβ!q(β)!
, (65)
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where in this case the term depending only on q(β) and lβ through the sum of the

two is

f(q(β) + lβ) = (d+ s)q(β+1)−β−1 t
q(β)+lβ−β

d+s

iβ
t
q(β+1)−q(β)−1−lβ

d+s

iβ+1

(q(β + 1)− q(β)− 1− lβ)!
. (66)

Using the identity (53) allows us to make the simplification

Rq(β+1),β+1 = f(β) = (d+ s)q(β+1)−β−1 t
q(β+1)−β−1

d+s

iβ+1

(q(β + 1)− β − 1)!
, (67)

which confirms Eq.(57) or equivalently, Eq.(49).
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