
This document is a pre-publication draft of:
Curzon, Bell, Waite and Dorling (2019) Computational Thinking. In S. A. Fincher & A. V. Robins (Eds.) The Cambridge
Handbook of Computing Education Research. Cambridge, UK: Cambridge University Press, [513-546]

The published version has been further edited, please obtain and cite the published version from:
http://www.cambridge.org/9781108721899
https://www.amazon.com/s?k=cambridge+handbook+computing+education

This draft has been made available (in an institutional archive or document repository) with permission, under the Cambridge
University Press Green Open Access policy:
https://www.cambridge.org/core/services/open-access-policies/introduction-to-open-access

http://www.cambridge.org/9781108721899
https://www.amazon.com/s?k=cambr
https://www.cambridge.org/core/services/open-access-policies/introduction-to-open-access

17 Computational Thinking

Paul Curzon, Tim Bell, Jane Waite, Mark Dorling

17.1 Motivational Context
The term ‘computational thinking’ was popularised by Wing (2006) as the form of thinking
computer scientists practice. Computational thinking has since been widely accepted and
promoted both as the skill set that programmers develop, and as the general thinking skills that
should be developed by computer scientists as they learn the discipline. Wing also advocated it
as a generally useful problem-solving skill set that all should learn. Computational thinking also
arguably offers a powerful way of both thinking and doing, across a wide range of subject
disciplines, transforming the way that they are carried out, for example through the use of
computational modelling.

17.1.1 Computation
Computational thinking is not primarily about the development of electronic computer systems. It
is about computation and the development of systems based on computation. Computation
dates back millenia. The first algorithms were developed thousands of years before digital
computers. One of the earliest, and most famous, is Euclid’s algorithm (Euclid, c 300 BC) for
computing the greatest common divisor of two numbers. The word algorithm derives from the
name of the Muslim scholar Muḥammad ibn Mūsā al-Khwārizmī and is most closely associated
with his work On the Calculation with Hindu Numerals (al-Khwārizmī, c 825). It concerns the
algorithms for doing arithmetic with decimal positional numbers. Computation is not just about
numeric calculation, however. It concerns symbol processing more generally. Early algorithms,
predating electronic computers, include encryption-related algorithms which concern the
manipulation of letters and other symbols. Computation does not need to be done by machines,
of course. Humans can follow algorithms, and al-Khwārizmī’s book was about algorithms for
people to follow. Indeed the first actual ‘computers’ were people, not machines. The term was
originally used to describe the people tasked with doing the astronomical calculations needed to
develop maritime tables for navigation at sea (OED, 1993). Indeed, Charles Babbage did this
job and it was a motivation for him to develop machines that could do the calculations
automatically. The developers of these pre-computer age algorithms were certainly engaged

Page 1

in a form of computational thinking, in the sense of solving computational problems through
precise algorithmic solutions.

Turing (1936) famously articulated a formal idea of computation in the thought experiment of a
Turing Machine, and a variety of other models of computation have been devised that have
been proved equivalent. These models define the limits of what computation, and so algorithms,
can do. Since computational thinking concerns the design of computational systems, these
theories give limits on the possible.

Computation is not restricted to the manipulation of abstract symbols. It can and does happen to
physical things in the world that embody information, and not just inside computer chips (which
are an embodiment of computation in the physical world too). Computation in such a
computational system involves information processing through, for example, the movement of,
and transformation of information between, different physical objects. This is a core idea behind
distributed cognition (Hutchins, 1995) where the brain is seen as an information processing
agent, and cognition is seen as extending to incorporate such computational systems in the
world. Hutchins’ core example is analysis of the computational properties of ship navigation,
exploring how information is transformed as it passes between different forms, physical and
mental. This richer view of computation is actually vital in the development of modern computer
systems that play an increasingly physical role in the world, augmenting human processes in
complex ways.

This view of computation as including movement and transformation of physical objects means
that ‘unplugged computing’ where physical objects and role play are used to illustrate computing
concepts (Bell, Alexander, Freeman & Grimley, 2009; Bell, Rosamond & Casey 2012) is not just
the use of analogy, but is actually about computation itself. Computational thinking is being
done in devising unplugged computational systems, whether inventing a self-working magic trick
(an algorithm for a magical effect) or devising an activity of searching for numbered balls under
cups using a binary search algorithm. This mirrors real world, everyday uses of computational
thinking too, such as when a teacher, presented with a pile of 400 paper exam scripts that must
be put in sorted order by 10 digit student number, devises a form of radix sorting as an efficient
way to do so in preference to using some variation of bubble sorting. A more forward thinking
computational thinker might later redesign the system as a whole, allocating desks to students
in the required order, allowing the students to physically sort themselves and so their scripts.
Even without turning to digital solutions, algorithmic thinking is useful.

17.1.2 What is Computational Thinking?
Wing (2006) is clear that computational thinking is about thinking like a computer scientist. It is,
however, also a fundamental analytical skill for everyone, not just for computer scientists. She is
also clear that the concept she is defining is about computing processes, whether they are
executed by a human or by a machine. It is specifically not just the skill of computer
programming but

Page 2

Figure 17.1 Agreement and disagreement around two views of what Computational Thinking
should be.

the much wider way of thinking that computer scientists (not specifically programmers) develop.

There are, unfortunately, now a wide variety of sometimes polarised, views over what
computational thinking should be (Tedre & Denning 2016, Denning 2017, Denning & Tedre,
2019). This has led to problems, not least that research studies use different definitions, often
without being clear what they mean by the term. This diversity of views is largely a result of how
successful the original definition was, resonating around the world. This success has led to it
being incorporated in to education systems globally, and this has made its meaning an issue of
politics, with different groups using it with their own definition to fit their own priorities and
agendas. Views mainly differ on the breadth of applicability and the nature of computational
agents (Figure 17.1). Most literature is closer to the middle of this diagram, but the authors have
regularly encountered professionals who argue strongly for one of the extreme views.

Despite the different views, it is ultimately more useful as an educator to focus on the
agreement which is large as Figure 17.1 shows, and not worry which end of the spectrum
resonates personally. There is general agreement, around a large central core (see Section
17.3 for a deeper summary): that computational thinking is the way of thinking used to develop
solutions in a form that ultimately allows ‘information processing’ or ‘computational’ agents to
execute those solutions. The computational agent should be guaranteed to achieve some
specified result without further thought or problem-solving involved, just by blindly and precisely
following the solution. Ultimately, solutions are not one-off answers like "the cheapest route is
via Hong Kong",

Page 3

but rather are algorithms that solve a general case (e.g. "find the cheapest route").
Computational thinking is thus concerned with the development of systems involving information
processing, and it is the focus on algorithmic solutions that differentiates it from other
problem-solving approaches. There are different views, however, on what can be a
computational agent. It could be a machine or human (or possibly even an animal or other
biological system if it can follow those instructions precisely and blindly). It could also be a
combination of both.

Programming relies directly on this skill set, but computational system design and development
is about far more than just coding itself. The development of higher levels of computational
systems rely on these skills as does innovation in computing more generally. As Wing (2006)
notes:

“Thinking like a computer scientist means more than being able to program a computer.
It requires thinking at multiple levels of abstraction”

Although the idea of ‘computational thinking’ has been around for centuries, the term was first
used by Papert (1980) as part of his call for a new approach to teaching mathematics based on
computational methods (see also: Chapters 1, 19, 20 and 22). This original definition is about
the idea that computational thinking is a way of doing other subjects differently. He suggested it
as part of a teaching methodology for computational environments through the LOGO
programming language. In this context it can be seen more as a novel way of gaining
understanding rather than narrowly about solving problems. It is this idea that is transforming
science and leading to innovation more generally (see Section 17.1.9). However, it was Wing’s
use of the term, not Papert’s that led to the concept being widely adopted.

17.1.3 A ‘Traditional’ View or Not?
Denning (2017) has brought differing views to a head. He identifies what he calls a ‘traditional
view’. Essentially this boils down to the idea that computational thinking should be based on
computational models and algorithms that have definite computational steps. Part of this view is
that computational agents must act like machines (or, at least, well-defined models of machines)
and therefore are most likely to be encountered by beginners when developing software (i.e.,
developing instructions in formally defined languages for electronic computers of the kind that
currently exist). Denning claims that there is no evidence that developing such programming
skills alone extends to more general problem-solving, so this justification of computational
thinking for all should be dropped, at least until evidence is produced that it has broader
benefits. He argues the ultimate goal of computational thinking is computational design. More
widely its goal is computational systems design.

As many of the concepts that have been espoused as fundamental to the term ‘computational
thinking’ are well known in other disciplines, Denning (2017) argues that computational thinking
should not be given the special status it has as a general problem-solving approach.

Page 4

Wing (2006), on the other hand, argues that computational thinking is much more than this. It is
both a skill that leads to programming ability and a generally useful skill. A consequence of this
view is that it can be learnt separately from programming. Even if programming does not lead to
general problem-solving skill, this wider definition of computational thinking that intersects with
other subject views of problem-solving may lead to more general problem-solving skills.

Denning outlines a series of precursors to Wing in discussing the general skill set developed by
programmers, and advises we stick to Aho’s more recent though “historically well-grounded
definition“:

“Mathematical abstractions called models are at the heart of computation and
computational thinking. Computation is a process that is defined in terms of an
underlying model of computation and computational thinking is the thought processes
involved in formulating problems so their solutions can be represented as computational
steps and algorithms.” (Aho, 2012, p. 834-835)

Denning grounds the skill set of computer scientists firmly in working throughout with defined
models of computation and rules out calling anything computation that is not based on such a
model. It appears to rule out both informal demonstrations (such as the classic
sandwich-making exercise where instructions are followed literally), or working at higher levels
of abstraction without a specific model targeted. However, a major point of thinking at higher
levels of abstraction for a problem means the details (and model) at lower levels are explicitly
ignored and this skill of working at all levels needs to be developed. That is part of the power of
computational thinking and certainly important in creating programs.

17.1.4 What is a Computational Agent?
A key question is whether only machines should be classed as computational agents. If so this
leads to the position that computational thinking is only concerned with the creation of
programs. If so, then arguably there is no need for a new term of ‘computational thinking’ at all
as programming itself is the skill set.

Wing and many others since have argued for a wide definition. At the outset, Wing (2006), for
example, stated that computational agents can be humans not just machines. This wider view
puts the emphasis not on machines or programming but on information processing and the
design and understanding of systems that do such information processing. Humans can and do
do such information processing, though are clearly less capable of following instructions
precisely. This is embodied in computing curricula in England and other countries, and it is
because of this wide definition that the idea of computational thinking has become so
widespread. It is also the foundation for the arguments for computing for all and the basis of the
resultant push around the world that it, and not just programming, should be taught in school not
just in

Page 5

higher education. A significant reason for this push is because it makes clear that computational
thinking is a useful tool for all to learn not just programmers. If it is just useful for programmers
as a skill then there is far less justification for teaching it to all from primary upwards.

Denning (2017) argues for a narrower definition: that a computational agent should not involve
human judgment. This frames it as a skill for students who are learning to program, since this is
the environment in which a beginner might encounter such computational agents. He argues
that there is no evidence that this narrow version has any transferable benefits beyond
computing itself and therefore such claims should be dropped. Lee (2016) takes an intermediate
view, arguing that computational thinking is definitely not about creating algorithms for humans
to follow but that it is more than just programming. She puts the emphasis on it being about
taking real world problems and creating abstractions of them and algorithms that solve them,
which are then implemented on computers.

17.1.5 An Evolving Definition
Denning, in part, is reacting to the way a range of authors have adapted the meaning of the
term. According to Dagienė et al. (2017), authors that have further developed the meaning include
Grover & Pea (2013), Kalelioglu et al. (2016), Lu & Fletcher (2009), Selby & Woollard (2013)
and Wolz et al. (2011). These authors have argued that there is a place in the progression of
learning to think computationally in activities that do not necessarily result in implementing a
programmed solution.

For example, Lu & Fletcher (2009), though taking computational thinking to be about solving
problems with computers, explicitly argued that it should be split from programming in the early
years. They argued that the focus should be on:

“establishing vocabularies and symbols that can be used to annotate and describe
computation and abstraction, suggest information and execution, and provide notation
around which mental models of processes can be built.” (Lu & Fletcher, 2009, p.260)

They posited that doing so would lead to students being in a better position, with such a
foundation, to learn both programming and more advanced computing. Their argument is that a
computational thinking language (CTL) must permeate the pedagogy. They give wide-ranging
examples of how such language and unplugged CT might be developed in an interdisciplinary
way from US curricula, all concerning the students doing computation, not writing programs. The
focus is on computation and information processing tasks generally, not how they are
specifically implemented in computers. Curzon’s practical approach to teaching programming
itself as well as data structure and algorithms concepts (Curzon, 2002) takes a similar
explanatory approach, teaching programming ideas divorced from writing programs, using

Page 6

wide ranging analogies with real world processes to explain general computing concepts but
getting completely away from syntax and detailed semantics of a specific language. He
advocates the same approach for introducing computational thinking as embodied by the
Teaching London Computing website (teachinglondoncomputing.org).

Selby & Woollard (2013), in searching for an appropriate definition to use in school education
looked for consensus. They surveyed the literature concerned with computational thinking and
came up with a definition based on the most commonly agreed components of computational
thinking. Computing at School (CAS) adopted this basic definition to promote in England
(Csizmadia et al, 2015). This is based on five top level categories that were most commonly
encountered and so that there was most consensus about from the research community:
algorithmic thinking; abstraction; decomposition; generalization and evaluation.

Further evolution of the term may also be needed if ‘computational thinking’ is taken to be the
skill set needed to develop computational systems in the future. For example, Chapter 20
argues for the need to include more explicitly the underlying skills needed for new areas such as
machine learning, distributed computing and quantum computing paradigms.This implies that,
not just logical thinking, but statistical and probabilistic thinking skills will be needed for the
development of computational systems in future.

17.1.6 Problem-Solving, Expression, Creativity and Communication
Computational thinking is currently mainly associated with problem-solving, but this may limit the
opportunities for getting the most from it, as well as limiting those who might be attracted to
using it. Bers (2017) links back to Papert’s call for technological fluency as well as
computational thinking (Papert, 1980), describing technological fluency as when one can
express oneself ‘creatively, in a fluent way, effortlessly and smoothly as one does with
language’ (Bers, 2008). She sees computational thinking as too associated with problems, and
draws out the potential for using it for communication, creativity and expression beyond STEM.
This resonates with classroom practice, where students probably do not see their programs as
algorithms that solve a problem, but as instructions that make something happen. Brennan &
Resnick’s (2012) computational thinking concepts, practices and perspectives meet Denning’s
point about the link between computational thinking and programming, but they highlight the
importance of expression, connecting and questioning as a means to ‘code to learn’ rather than
just learning to code (Resnick 2013). Kafai (2016) advocates for "Computational Participation"
rather than just Computational Thinking. Calling it "participation" allows for more emphasis on
community, where code is written to be shared rather than a disposable exercise, where
developing software occurs in the context of a community, and where others' work can be
remixed.

Page 7

17.1.7 Pedagogy and Pragmatism
There are two distinct issues in this debate that need to be separated: 1) what is the skill--set
involved in computational thinking, and 2) how does one take children on the journey to gain
those skills. Teaching is a pragmatic endeavour. Many subjects are taught using a spiral
learning model where ‘lies to children’ (misconceptions) are used to simplify concepts to make
them accessible at a younger age. Denning & Tedre (2019) highlight that what computational
thinking really is varies by necessity as students progress from beginner to professional, and
that failing to make this distinction leads to conflict. Whether or not one wishes to take a narrow
or wide definition of computational thinking, there is still a great deal of benefit to be gained by
looking for a simplified progression, and taking a constructivist approach, building on everyday
ideas that are already understood. There are good pedagogic reasons for doing this. It involves
presenting more accessible versions of computational thinking to younger age groups - ones
that fudge the details. A perfectly sensible first step is to work on writing clear instructions with
young primary school students (such as telling a friend how to walk the outline of a square,
writing recipes, or writing out a dance routine). Later the limitations of human instructions such
as recipes can be explored and this can motivate the need for more rigorous, formal treatment
as found in programs. Foundational concepts can be introduced in this way, then built on and
refined as one progresses through the education system.

Even if analogical approaches are rejected, the issue is not whether there is a formal model per
se, but could a computational agent, in principle, blindly follow the resulting algorithm and if it
does so accurately, will it guarantee the same outcome, over and over again. Attempts at
creating algorithms by younger learners are likely to be incomplete, inaccurate and clumsy but
as they make progress, precision, completeness, cohesion and elegance will improve, thereby
showing that progression. This will apply whether starting to write programs, recipes or other
instructions for humans. Just because the young, novice developer has not provided, or worked
with, a precise model of computation, a mathematical semantic model or implemented a fully
working, complete computational stack all the way down doesn’t mean they are not thinking
computationally or about computation. Human-centred software development also does not
start with algorithms and models but with understanding human and socio-technical needs. It is
only later, in good development processes, that underlying models, precision and completeness
enter the scene.

Despite issues with definitions, pragmatically the idea of computational thinking has proved
immensely useful, and especially in putting a focus on the importance of the general skill set of
computer scientists, as well as promoting computing for all in education systems worldwide. It
has helped improve the standing of computing in schools as a rigorous subject, that is more
than office IT skills, in a variety of countries.

Page 8

Whichever definition we adopt, it is clear that programming is a key step in teaching CT, but
also that learners build upon existing knowledge and skills starting with relevant and familiar
contexts. Similarly, we also need to be aware that becoming a programmer is not the goal for all
students, in the same way that becoming a professional novelist is not the goal for all those
learning to write.

17.1.8 Changes to School Curricula
A consequence of the push arising from Wing’s seminal article (Wing, 2006) has been that
computational thinking has become a foundation stone of new syllabuses of computing. It has
also provided a useful term to articulate changes that were already planned for curricula, and
enabled curriculum designers to articulate the broader principles intended in revised curricula.
This has especially avoided the perception that the changes were only about esoteric topics of
interest to programmers, or just developing skills to groom students for work purely in the
software development industry. For example, the purpose of study of the English National
Curriculum for Computing (Department for Education, 2013), which applies from primary school
upwards, starts:

‘A high-quality computing education equips pupils to use computational thinking and
creativity to understand and change the world.’

A key aim, in line with the Royal Society report (Royal Society, 2012) was that Computing
should be more than just programming. Computational thinking was placed at its heart in part to
emphasise this, following Wing’s definition. Explicit aims include:

● ‘can understand and apply the fundamental principles and concepts of computer
science, including abstraction, logic, algorithms and data representation’

● ‘can analyse problems in computational terms …’

An outline of skill and knowledge progression is set out. For example: At ages 5-7 pupils should
be able to “understand what algorithms are; how they are implemented as programs on digital
devices; and that programs execute by following precise and unambiguous instructions.” At
ages 7-11, pupils should be able to (amongst other things): “solve problems by decomposing
them into smaller parts” and also “use logical reasoning to explain how some simple algorithms
work and to detect and correct errors in algorithms and programs.” At ages 11-14, pupils should
be able to: “design, use and evaluate computational abstractions …” and “use logical reasoning
to compare the utility of alternative algorithms for the same problem.” For more on this, see also
reference to the US curriculum in Chapter 20, and in other countries in Chapter 18.

Computational thinking is increasingly being made a central framework, as countries update
their school curricula. A review of computing education in K-12 schools across 12 countries
(Hubwieser et al., 2015) revealed that computational thinking or algorithmic concepts were now
addressed by curricula in Germany/Bavaria, France, New Zealand, Finland, USA, Israel,
Russia,

Page 9

United Kingdom, Korea, Sweden and India. New Zealand has even called the core computing
part of their proposed curriculum, computational thinking (NZ Ministry of Education, 2017).
As these ideas are embedded in national curricula from primary school upwards, making sure
such interventions now deliver practical benefits to the students involved is a vital and pressing
issue.

17.1.9 Practical Benefits
One purported benefit of computational thinking skills are that they are the basis of being able to
program. With such thought processes in place, programming becomes easier and better
programs are written. However, it is more than just about low-level programming. Many of the
same skills apply in designing hardware systems too, and of developing systems at higher
levels. Developing maintainable, usable and used software systems needs more than just
coding skills. Modern computer systems are socio-technical systems and design of real world
systems requires an understanding of the wider systems, so development of the skills to design
such complex computational systems through experience is more than just programming.

The explosion of interest in computational thinking has come about, not because of its basis in
programming per se, but because of the argument that it is a general problem-solving skill set
and mode of thought desirable for more than just programmers or even computer scientists to
possess. The world is now digital as well as physical and it is argued that everyone can benefit
from being able to think algorithmically and understand deeply how the digital world works and
in particular how it is is driven by algorithms. This is important in that a deeper understanding of
how things are constructed, whether physical or digital, gives a stronger basis for understanding
its uses and is essential contributions to its effects on society (Royal Society, 2012, 2017a,
2017b). For example, a policy- maker who understood how GPS algorithms work would be in a
better position to see how it would transform the way we do so many things and to see new
possibilities for it, including new cyber- threats, such as it potentially being spoofed. A
hiker would also better understand the risk of losing that signal when entering a deep,
narrow canyon. To take a different real case, the lives of several innocent nurses were
blighted due to such a lack of understanding (Thimbleby, 2018). In 2018, a UK court case was
brought against these nurses, accusing them of negligence and, in particular, of fabricating
paper patient records that differed from automated computer logs of tests administered. At the
last minute, the prosecution offered no evidence when expert witnesses showed that hospital
administrators, police, and prosecutors had not understood enough about the way the system
worked or was used to realize that those computer logs could be inaccurate. Had the hospital
administrators understood the algorithms more deeply, they might also have procured a more
reliable system.

It also matters in the sense of being able to contribute to the development of appropriate
algorithmic socio-technical

Page 10

solutions to problems. Participatory design is a powerful way to develop systems that truly work
for people involved.

Thinking about socio-technical systems as computational systems is a new way of thinking
about them that is important to anyone already operating in, could be operating in, or interacting
with, the digital world. Note that this is not a point just about using technology or the introduction
of the term ‘computational thinking’ per se (introduction of the term wasn’t the point in time when
the way of thinking started to exist), but about the way of thinking it embodies that long predates
the term as discussed in Section 17.1.4. It matters not just in terms of designing interactive
systems or in understanding how digital devices work, but also in making informed decisions as
citizens about ethical issues where we may choose (or not) to place limits on how we use
computation (such as Artificial Intelligence in decision making or self-driving vehicles).

A more general argument still is that even aside from understanding and making the best use of
digital technology, thinking of systems explicitly as computational systems and of algorithmic
ways of doing things, can make us all more effective in everyday life, whether working in a
coffee shop, running a factory, or sorting exam scripts. If we think computationally about the
things we do then we can develop more effective ways of working or achieving tasks more
generally. Whether we call this ‘computational thinking’ or not is merely a matter of definition of
terms.

Thinking computationally is about more than just problem-solving: it provides a whole new way
of thinking. Millican & Clark (1996) and Millican (n.d.), for example, argue that new modes of
explanation based on the ideas stemming from Turing have had a revolutionary impact on
philosophy and the intellectual world more generally, providing a new algorithmic mode of
explanation. This is one basis for the idea that computational thinking is of use for all. There is
“clear potential for algorithmic explanation in such fields as psychology, politics, sociology, and
economics” (Millican, n.d.) as well as the traditional sciences. This is as big a revolution as that
of Newton or Einstein on our modes of thought.

These reasons apply whether for scientist, or lawyer, artist or politician. It provides a new lens
through which to look at (and understand) the world and so craft new ways of doing things, new
ways of working. Taking law as an example, Susskind (2017) makes the case that lawyers must
“start to innovate, to practice law in ways that we could not have done in the past” in part due to
computing innovation. Lawyers who can drive this themselves and even directly contribute
rather than rely on computer scientists will have a big advantage. “We require a new cadre of
self-sufficient legal technologists whose impact on modern society will be profound”. He outlines
a range of future careers for lawyers with computing science skills including systems
engineering and programming, and suggests a computer science degree will be one future
route to becoming a lawyer. Such lawyers of the future will need computational thinking skills as
well as legal skills, to both see and

Page 11

grab opportunities. Similar arguments to Susskind’s apply across the spectrum of professions.

The way science is conducted has already changed profoundly. In the past, science was moved
forward by theory - rigorous thinking about the possibilities - and empirical experiment in the real
world. There is now a third way. Phenomena of interest can be modelled algorithmically: theory
is encoded with algorithmic rules. The phenomena can then be explored through simulation or
proof. Virtual experiments can be performed on the models created, exploring the
consequences of the rules, including emergent properties. This can be compared with the
results of experiments. If the results differ then it suggests the rules, and therefore the
underlying understanding, need further refinement. It also leads to prediction for real
experiments. It can thus drive both theory and empirical research, and applies even to
massively complex systems such as the climate.

Computational modelling dates back to some of the earliest use of computers where complex
calculations were needed to understand phenomena. The early EDSAC (Electronic Delay
Storage Automatic Calculator) family of computers contributed in this way to the work of three
Nobel prize winners, in Chemistry, Medicine and Physics. John Kendrew and Max Perutz credited
it for the discovery of the structure of myoglobin, Andrew Huxley for work understanding the way
nerves work and Martin Ryle for work in radio astronomy. All acknowledged EDSAC in their Nobel
Prize speeches. Astronomer, Joyce Wheeler also used EDSAC to investigate the nuclear
reactions that keep stars burning. Computational modelling of the weather by Edward Lorenz
led to the observations that small changes to inputs led to widely differing results. This ultimately
led to the development of Chaos Theory, showing how computational modelling can contribute
to whole new theory. Now computational modelling is a standard approach across science.

This idea is closely tied to the idea of Papert (1980) that computational methods could be used
as the basis for learning mathematics and other subjects (see Chapter 19). Simulation can be
used to explore and understand subjects that are new to the learner. Application of
computational thinking by learners in non-computing subjects, such as in mathematics,
economics or physics to turn mathematical solutions to problems at different levels of
abstraction, that is, algorithms and then computer code, is a demonstration of how
computational thinking skills can lead to deeper, more meaningful learning. A similar approach
can be used in biology, for example by coding the behaviour of ants laying and following trails,
which can lead to a deeper understanding of that behaviour as a learner.

17.2 The Elements of Computational Thinking
While there are differing views as to the details, there is a lot of agreement at least as to the
core elements that make up computational thinking: algorithmic thinking, logical thinking,
abstraction, generalisation and decomposition, for example, are generally agreed to be a part
(Selby & Woollard 2013). A range

Page 12

of other aspects have also been suggested including: recursive thinking; pattern matching;
representation; heuristic thinking; scientific thinking; probabilistic & statistical reasoning;
understanding people; concurrency and parallelism, and attention to detail. We discuss the
core, uncontroversial, elements in depth here. Many other aspects are arguably sub-skills of, or
closely linked to, these core elements. For example, recursive thinking can be thought of as an
advanced form of decomposition. In the examples given below, the skills described draw upon a
combination of the core elements - particularly generalisation, decomposition and abstraction.
Other definitions (e.g., Google (n.d), ISTE/CSTA (2014)), are in part different because they
group the separate aspects differently, for example pulling out pattern matching as a separate
skill from generalisation, or linking abstraction and decomposition together as a single core
element.

17.2.1 Algorithmic Thinking
Algorithmic thinking is the idea that solutions to problems are not limited to one-off answers like
"the vending machine will give a $5 and $10 note as the change", but algorithms that can give
answers whenever needed for general cases: instructions that if followed blindly and precisely
are guaranteed to lead to an answer, such as "here's how to work out the notes and coins to
give if you buy an item worth x dollars and give the vending machine y dollars". If a person can
express the solution to a problem as a general algorithm that will solve it for all cases, then they
have shown a deeper understanding of the problem than otherwise. It is possible to be able to
do related tasks without that deeper understanding of the algorithm. For example, most people
can give correct change, but articulating the process exactly (see if the largest note is too much,
if not, give one out, then...) is quite difficult to do. This is akin to the fact that people can catch a
ball without being able to explain the laws of gravity. If a student writes an algorithm that
another person can follow, or implements an algorithm as a program that works correctly for
any input (such as giving change for any amount of money) then they have demonstrated that
they do deeply understand the process.

An important issue in creating algorithms, and therefore algorithmic thinking, is in trying to get
the most efficient algorithm for the job, where this could, for example, mean the fastest or
alternatively the least memory hungry algorithm. Often the best answer involves trade-offs in
choosing between algorithms, rather than there being a single right answer.

A key part of algorithmic thinking, given Turing’s result on the essence of computation and
Turing Completeness (Böhm & Jacopini,1966; Aho, 2012) is that a computational thinker can
give instructions making use of all three of: sequence, selection and iteration. Without this basic
minimum one cannot claim to have a true grasp of computation. Because these ‘big three’
define everything that computational devices can do in terms of flow of control, having an
understanding of them opens the full power of computation. It also defines the limits of
computation, and underpins our understanding of what computers can't do (Harel, 2003).

Page 13

Algorithmic thinking is the core part of the computational thinking skill set that makes it different
to thinking skills of other disciplines such as scientific thinking, mathematical thinking, design
thinking, and so on, where the other building blocks of computational thinking arise. Computing
overlaps and draws on many other subjects. The core of computing is centred around
algorithms, however. Similarly, computational thinking draws on, and overlaps, other
problem-solving approaches from those disciplines. In this sense algorithmic thinking is the
defining part that makes it different. However, on its own algorithmic thinking is not enough to be
generally useful as a way of problem-solving (unless one subsumes all the other aspects into
the term ‘algorithmic thinking’).

17.2.2 Logical Thinking
Being able to think logically is a core skill that underpins all versions of computational thinking.
Logic underpins the semantics of programming languages, and thinking in a logical way is
needed to develop algorithms, to implement these as programs and to verify whether or not they
work correctly, either informally or formally. Computer scientists developing algorithms need to
be able to think through a problem, being sure that their solutions cover all possibilities that
might arise, and that they guarantee to always give the correct solution. Of course with the
advent of machine learning approaches this becomes a question of probabilistic reasoning,
rather than pure logical reasoning (see Chapter 20). At one end of the logical thinking spectrum
lies simply thinking clearly and precisely, including avoiding errors, and with attention to detail.
At the other lies an ability to do reasoning about algorithmic solutions using formal logic. In
between lies being able to put together rigorous arguments based on deductive or inductive
reasoning. While formal reasoning in logic is a core aspect of computing, few computer
scientists learn to do it well, so what usually seems to be meant by commentators in the context
of computational thinking are the less rigorous versions. Formal logical reasoning is, however, a
sophisticated aspect of computational thinking that is certainly desirable for programmers, and
can be considered a part of the highest levels of progression in computational thinking skill.

17.2.3 Abstraction
Abstraction is the process of simplifying and hiding detail to get at the essence of something of
interest. As part of computational thinking it provides a way to manage complexity to make
problem-solving easier, and allow truly massive computational systems to be designed. By
building in levels of abstraction, the fine details of lower levels can be ignored when working on
higher levels. Once you have logic gates, you can ignore the details of transistors. Once you
have a computer architecture you can ignore the details of logic gates,

Page 14

and so on. Once you have a programming language you can ignore assembly language, which
itself allowed you to ignore machine code. This is a core skill underpinning the way the subject
of computing has developed. It is also a core skill of computer scientists because without it,
building the immensely large and complex systems that we now rely on is intractable. It is only
by building in layers with clean interfaces between them that complex systems can be built, so
that the complexity of each new layer is simple once the complexity of the lower layers has been
hidden by the interface. A course has even been given where students build all the layers of
abstraction one at a time, starting with logic gates, and ending up with a working program
running on an operating system (Schocken & Nisan, 2004). Such an endeavour is made
possible by breaking it into 12 levels of abstraction.

Computer Scientists make use of a wide variety of forms of abstractions both in programming
and in system design more generally. This includes control abstraction, which is the core of
developing programs based on procedures and functions, and data abstraction which is the
core idea behind building complex data types from simpler ones.

Being able to think at multiple levels of abstraction and move between levels is a key ability.
This is needed as one develops solutions, moving back and forth, for example, between the
level of the problem, design levels and programming levels. Linked to this is being able to view
systems through different abstractions: the bus map intended for passengers may not, for
example, include locations and times where drivers swap as their shift starts and ends, whereas
the abstract version for drivers would have much different information.

Abstraction is not just important for building systems, but also for the development of theory. For
example, O-notation focuses on critical operations rather than all operations or processor
cycles. Hiding that detail allows us to reason effectively about the efficiency of algorithms.
Abstract models of computation (such as Turing machines, Finite State machines and Random
Access Models) allow us to understand computation itself, including its limits.

17.2.4 Generalisation
Generalisation involves taking the solution to a problem and creating a more general version
that is applicable to a wider set of problems. In a computational thinking context, this is first and
foremost applied to algorithms. Having come up with a way to solve a specific problem, can the
details be abstracted away to give a more general algorithm that is not just specific to that
problem?

At a simple level, a sequence of instructions that are applied repetitively can be generalised to a
loop. A more sophisticated generalisation is to develop general purpose functions. For example,
if there are several situations where the user enters a date, a function could be developed once
and for all that allows the user to do this, verifying that it is valid. A more general version of the
function might have parameters that restrict the range of dates (for example, a booking website
would not allow a user to enter a date in the past). Generalisation can be applied

Page 15

to both problems and solutions. For example, the problem of listing the top 10 scores in a game
could be generalised to creating a list of any number of scores. A possible solution, sorting the
scores into order, could be generalised to a procedure that will sort any list of values into
ascending or descending order.

Generalisation is closely related to pattern finding (another idea that is often given as an
element of computational thinking). When a pattern is noticed either in a program or in data,
there is an opportunity to express it more generally by capturing the pattern rather than the
specific case. For example, students might use a programming language to draw a square by
giving the sequence of instructions "turn right, forward 10 steps, turn right, forward 10 steps,
turn right, forward 10 steps, turn right, forward 10 steps". This could be generalised by a loop
that repeats the two instruction pattern four times; and that in turn could be generalised to draw
polygons by changing the number of repetitions and the angle of the turn.

Generalisation skills do not just apply to programming but to problem-solving more generally.
Whether or not the ultimate intention is a program, generalising a problem or situation in the
same way can for example lead to a deeper understanding of that problem or situation, which
may be important in its own right.

17.2.5 Decomposition
Decomposition is the idea that to solve a complex problem, including writing a complex
program, it can often be broken into smaller parts that can each be solved separately and much
more easily. This is closely connected to control abstraction. The simplest forms are task-based,
or procedural, decomposition. For example, if creating a robot face that shows ‘emotions’
through expressions, one could break the problem into that of solving each whole task: i.e., how
to present each emotion. Program a happy face first, then separately program a sad face, and
so on.

A different take on decomposition is to focus on the real-world problem or context, focussing on
the real-world objects making up the system to be modelled and split the problem into one of
modelling each of those aspects separately. This leads to an object-based decomposition.
Taking the same example of programming a robot face, one could instead decompose the
problem into that of programming a mouth for all emotions, then separately programming an
eye, and so on. Object-based decomposition potentially provides a higher level of structuring
than a procedural decomposition.

Another focus of decomposition can be on the processing of data structures. Rather than
process the whole of a data structure, it can be split into parts and either the same or different
algorithms then developed for processing those parts.

Decomposition links to generalisation in that if we can decompose a problem into subproblems
that generalise to ones that we have solved before then we can just take those subsolutions and
reuse them. Abstraction means we do Page 16

not have to worry how those subsolutions work, just that they solve the given subproblem. This
leads to more sophisticated forms of decomposition, and in particular, recursive and
divide-and-conquer problem-solving.

17.2.6 Evaluation
Evaluation is a potential element of computational thinking. However, there is no complete
consensus on its inclusion. Practically, it is clearly an important part of any problem-solving
approach. It is also very clearly a vital part of the skill of programming: where more time is
typically spent testing solutions than writing code itself. The contentious issue is just whether it
should be considered as part of ‘computational thinking’. For example, Berry (2014), who takes
computational thinking to be “looking at problems or systems in a way that considers how
computers could be used to help solve or model these” omits evaluation from his description of
computational thinking for primary schools. Selby & Woollard (2013), however, identified it as
one of the more widely claimed terms used related to computational thinking in a survey of
educators and other experts. That in itself does not mean it should be part of a definition, just
that it is widely accepted as being so. It was, consequently, included in the UK Computing at
School definition (Csizmadia et al., 2015). This is just one example of the different ways of
defining computational thinking.

One argument for its inclusion is that unlike in school mathematics problem-solving where an
answer is right or wrong, in computing there are lots of ways to achieve the same result, some
better than others. Importantly, coming up with a solution requires trade-offs to be made, for
example, with respect to speed and memory usage. Evaluation of whether requirements are
met (beyond just producing correct answers) matters. Programmed solutions may technically
meet a functional specification, but be unfit for purpose because they are too slow or don't
scale. This might also be due to usability or user experience issues. Evaluation of whether
solutions are fit for purpose therefore has to be a core part of any successful computing-related
problem-solving approach. If computational thinking does not include elements of evaluation, it
would be only a partial approach for computer scientists.

17.2.7 Computational Modelling
Some of the apparent differences between authors over the definition of computational thinking
are really just to do with what one considers the top level skills. For example, we have argued
that computational modelling is a key computing approach which has changed research and
development in other subjects. As such, modelling is an important aspect of computational
thinking. Denning (2017) proposes it is an absolutely central component. Computational
modelling can be thought of as a separate topic, or as one aspect of algorithmic thinking where
it is applied to problems that can be simulated.

Page 17

On the other hand, computational modelling applies not just to simulation approaches (so
programming solutions). At higher levels of abstraction it can be used with models that are not
executable. One can do proof and model checking of appropriately designed computational
models too. This leads to similar ends as with programmed simulation models, but allows
exhaustive experiments to be conducted. This is an example where computational thinking is
potentially about much more than the skill of coding. It leads to the application of verification
tools and techniques, rather than programming ones, and applying them to the understanding of
the world too. These tools require models to be written in formal logical languages with an
axiomatic basis (eg Peano’s Axioms) rather than programming languages with a model of
computation as basis, but otherwise the issues are similar. We are just working at a higher level
of abstraction. The more sophisticated logical thinking skills mentioned above, working with
formal logic, are needed here. The use of such tools and thinking is a part of formal program
development for safety critical systems, so any definition of computational thinking as being
about the wider development of programs rather than narrowly as coding, should include it.

17.2.8 Expressing Algorithms in Formal Languages
None of the computational thinking concepts above explicitly addresses the step of writing
actual code, i.e., expressing the algorithm in a precise syntax that has a detailed, formally
defined semantics. A student may have developed a design including algorithms in a loose
pseudocode or in a flow chart language, but it is another step, and another skill, to be able to
implement this as code in a specific language correctly. This often seems to be implicitly
assumed by commentators, rather than explicitly stated. If computational thinking is the skill of
developing programs then expressing an algorithm as code must be part of the computational
thinking skill set. This transition from a logical design to a physical implementation is part of the
ability to work at multiple levels of abstraction. This is more than just about programming
though, expressing an algorithm precisely needs a level of rigour, and more formal pseudocode-
or logic-based specification languages require similar skills in using formal language precisely.
Guzdial (2008) explicitly discusses issues around this skill. For example, there are higher level
issues to be explored, such as the way people naturally omit certain steps, like else cases, from
formal descriptions. A separate issue again, beyond having mastery of the language constructs
is having mastery over their pragmatic use to best develop readable and maintainable code.
Machines must be able to follow code, but humans must be able to understand it.

17.2.9 A Holistic View
In practice, computer scientists use mixtures of these separate skills at different times, and
when combined they are much more powerful than alone. For example, thinking in terms of
layers of abstraction to decompose a problem

Page 18

and drawing on previous generalised solutions makes it much easier to create algorithmic
solutions to problems. Understanding the separate elements is important. However, it is also
important that this holistic aspect is understood too, not just the individual skills. Educators need
to consider how best to help students develop both the elements, and how to develop the skill of
combining the separate parts into computational thinking as a whole. In practice, most lessons
and activities will be using a range of the skills at the same time.

17.2.10 Links to the Skill Sets of Other Disciplines
Is computational thinking something new and totally different to thinking and problem-solving in
other subjects? Computing itself emerged from a range of subjects including mathematics,
engineering, design and the social sciences. Likewise, computational thinking builds on
problem-solving and modes of thinking from other subjects. Generalisation, decomposition,
abstraction, logical thinking and other components all play an important part in other disciplines.
It draws on design (“the ultimate goal is computational design” (Denning, 2017) and interaction
design is also a key part of making usable systems), mathematics, scientific methods (e.g., in
evaluation A/B testing, virtual experiments, ...), engineering methods and general
problem-solving methods.

There is no reason why computational thinking has to be totally unique to be an important
concept and skill. If it were to be no different to other problem-solving skill sets, then that is an
argument for the importance of teaching it to all. However, as argued, from a philosophical point
of view it has led to a seismic change in modes of thought. The difference is ultimately in the
importance placed on algorithms in the skill set, and how the separate skills used in other
disciplines apply to algorithmic thinking, not the elements themselves. Algorithmic solutions in
turn lead to the possibility of programmed solutions.

17.3 Research: What is Known
There has been increasing research in how to teach, and assess computational thinking
explicitly, especially since the 2006 revolution. This has built on earlier work on teaching
computer science and programming, given that even without the name, the component skills
were still being taught, if implicitly. There has been an explosion of interest on the back of
Wing’s work, culminating in 2017 with a new international conference series being launched
with a sole focus on computational thinking education (CSE, 2017). This bodes well for the
future as researchers investigate the best ways to teach different aspects, its actual effects on
student learning and skills, and whether there is general benefit to be had or not, divorced from
programming skills. However, care has to be taken in that different authors often use their own
interpretation of what computational thinking is across the full range of possibilities discussed
and more, so results are not necessarily about the same thing. We overview some major
themes in the existing research below.

Page 19

17.3.1 Unplugged Computational Thinking
Unplugged activities (Bell, Rosamond and Casey, 2012) have long been successfully used at all
levels from primary to masters levels, as well as when teaching adult teachers, as a way to
teach programming and computing concepts more generally in constructivist ways. This covers
a variety of techniques including role playing, puzzles, games and magic to illustrate concepts.
These activities often help develop computational thinking in its widest sense too. Activities can
also be used to explicitly illustrate the high level elements of computational thinking, like
decomposition, generalisation and abstraction. Teaching London Computing
(teachinglondoncomputing.org), the Digital Schoolhouse (digitalschoolhouse.org.uk) and the
lesson plans on csunplugged.org, for example, make these opportunities explicit across a wide
range of cross-curricula activities.

Curzon (2014) argues that the core ideas of computational thinking can be explained in
powerfully memorable ways using a combination of contextually rich stories and unplugged
activities. He gives example activities embedded in such stories that have successfully been
used. Examples given include stories concerned with helping people with locked-in syndrome,
using games and role play; and the design of medical devices using magic trick based activities.
This approach has successfully been used as part of continuous professional development for
teachers. A series of workshops given following this approach had strongly positive evaluation
results (Meagher, 2017, Curzon, 2014).

However, much of the work on unplugged approaches is anecdotal and much more research is
needed, including the important issue of how they are linked to programming itself.

17.3.2 Computational System Design and Programming
Computational system design involves a wider set of activities than programming and those

activities include computational thinking elements. When analysing the requirements and
designing the solution the task is broken into manageable parts to attend to and so
decomposition is used; at each stage of increasing exploration of the task, abstraction is needed
to work at an appropriate level of detail, and so on. Research on effective teaching of overall
design processes is therefore relevant. Here we focus on research where there are links
between computational thinking ideas and programming.

McCracken et al. (2001) describe a five step process for problem-solving that learners should
use to aid computational design. These fives step map to the computational thinking core
concepts of Selby & Woollard (2013):

1. Abstract the problem from its description (Abstraction)
2. Generate subproblems (Decomposition)
3. Transform subproblems into subsolutions (Generalisation and Algorithmic Thinking)

Page 20

4. Recompose, (Algorithmic Thinking) and
5. Evaluate and iterate (Evaluation)

However, McCracken et al (2001) highlighted that few students were able to use this process
and noted that students appeared “clueless”. Lister et al. (2004, 2011) and Lopez et al (2008)
highlight the importance of being able to read and trace code as a precursor to the
problem-solving skills needed to write code, so may be a precursor to any form of
programming-based computational thinking. For example, before one can do functional
abstraction, this suggests one needs to be able to read and trace existing code that uses such
abstraction. A precursor to that is in understanding the basic concepts and their semantics.

Fuller et al. (2007) identified 11 programming skills needed by students, and mapped it to
Bloom’s taxonomy, presented in a matrix format. For example, the ability to debug requires
‘application’ and ‘analysis’ thinking skills. Each of the 11 skills is underpinned by the
computational thinking core elements discussed above. For example, tracing and adapting code
develops evaluation and generalization skill. Designing and modelling solutions (as algorithms
and/or programs) develops algorithmic thinking, abstraction and evaluation skills (Sentance &
Csizmadia, 2016). Developing the computational thinking skill appears to provide a foundation
for the corresponding programming skill.

Computational thinking skill is not the only thing needed by programmers, of course. They also
need to understand the syntax of the language they are using as well as the programming
constructs available to them to implement the design. This leads back to some of the earlier
extensions discussed as it implies issues to do with language concepts and terminology are a
precursor to computational thinking.

17.3.3 Abstraction
Abstraction is a particularly important pillar of computational thinking and has attracted specific
attention. An important question now computational thinking is part of school syllabuses is: how
young can you start to learn about abstraction? It is sometimes suggested that Piaget’s work
implies that children cannot learn about abstraction until they reach a particular age and stage
of development, formal operational, around the age of twelve. The NRC report on computational
thinking (NRC, 2011) asked for a review of this. However, Piaget himself suggested that
children use abstraction from before the age of 2 and that abstraction is used continuously when
learning, “without end and especially without an absolute beginning" (Piaget, 2001, p136).

Armoni (2013) pointed out that abstraction, as part of the process of developing programs from
solutions, is hard to teach. She suggested a ‘level of abstraction’ framework, and gave
guidelines for teaching abstraction. Several authors have argued that programming ability can
be developed by explicitly focusing students on abstraction, particularly different levels of
abstraction, as

Page 21

part of the process of writing programs. This has been considered both with respect to tertiary
institution students (Aharoni, 2000; Cutts et al., 2012; Hazzan, 2003) and school students
(Armoni, 2013; Statter & Armoni, 2016; Waite et al., 2016). Cutts et al. (2012), for example,
argued that focussing on a model of three levels of abstraction helps students develop their
programming ability. Their levels were: English descriptions, CS speak (i.e., a halfway house
such as pseudocode, where some of the terminology of code, like variable and procedure
names is embedded in English phrasing) and code. Statter & Armoni’s (2016) model is similar
but with four levels: the statement of the problem, its description as an algorithm or design level,
the program itself and finally the concrete execution of that program. Grade 7 students who
were explicitly taught these different levels did focus more on the algorithm level in their
descriptions. Thus, explicitly teaching about abstraction even with a simple set of levels can
help the development of programming skill.

17.3.4 Assessment
A critical research area is how to assess computational thinking (See also Chapters 10 and 14).
Denning (2017) suggests that it should be assessed as a skill, with others focusing on
knowledge frameworks such as those of CAS (Csizmadia et al, 2015) and K12CS
(https://k12cs.org). However, skills and knowledge coexist and in particular, conceptual
computer science knowledge, computational thinking skills and programming skills can and
should coexist. As with programming itself, assessing it as a skill does not preclude the
pedagogical importance of assessing understanding of knowledge too. Having a strong
conceptual knowledge of a discipline can also support the development of related skills - if you
understand how a gearbox works, learning the skill of changing gears in a car can be easier.
Similarly, if you have a deep understanding of the concept of abstract data types, then using
that form of abstraction in programs is easier. Knowledge helps refine skills as you know more
of what you are trying to do and why.

A variety of researchers have explored ways to assess computational thinking as a skill. This
could be done by assessing the individual component skills or by assessing computational
thinking as a holistic single skill. One approach is to directly assess the skills based on evidence
in programs. If programming is seen as the whole point then the idea is that computational
thinking can be assessed by the quality of the programs that a student produces. Another
approach is to assess the skills using more general problems at a higher level of abstraction
than that of writing programs. We overview some of the research on these topics below.

17.3.4.1 Assessing Computational Thinking Through Programming
Several automated approaches have been suggested to assess computational thinking based
on evaluating programs. For example, both Dr. Scratch

Page 22

https://k12cs.org/

(Moreno-León, Robles, & Román-González, 2015) and Seiter & Foreman’s (2013)
‘Progression of Early Computational Thinking’ (PECT) model are applied to Scratch programs to
assess primary aged students’ development of computational thinking skills. These approaches
are based on the idea that computational thinking skills should ultimately be evident in programs
written. As such they may therefore not assess more general application of the skills, and are
dependent on sub-skills concerned with actually embodying an algorithm in a formal language.

PECT (Seiter & Foreman, 2013) aims to combine direct measures of programs with broad
design patterns that are linked to computational thinking concepts. Seiter & Foreman applied
PECT to 150 Scratch projects of primary students of differing ages, concluding that it showed
that progression in students’ skills improved as they got older.

Seiter (2015) has also used the SOLO taxonomy (Biggs & Collis, 1982) to give insight in to
computational thinking ability as embodied in Scratch programming. This was based on how
well students could understand the structure of the problem. It focussed on such things as their
ability to synchronize the costumes and motions of single and multiple sprites. Low numeracy
and literacy of some students, meant, however, those students could not understand the tasks
at all. They conclude that students above this level can understand multiple concerns and
incorporate them in a single script. They can also synchronize a single concern between more
than one script. However, synchronizing many concerns across many scripts was a challenge.

17.3.4.2 Assessing Computational Thinking Through Problem-Solving
An alternative to basing assessment of computational thinking skill on programs is to assess
proficiency at more general problem-solving tasks. Several authors have aimed to do this based
on Bebras (Dagiene & Futschek, 2008). Bebras is an international competition with questions on
both computing concepts and computational thinking skill. Hubwieser & Mühling (2014)
suggested that Bebras tasks were suitable as an international benchmark test for computing
ability in the style of the PISA tests. They give a methodology for finding and validating groups
of questions that measure specific competencies. Such an approach could be used to identify
problems that test specific computational thinking competencies. Dagienė & Sentance (2016)
give recommendations of how Bebras tasks can be used to develop and assess children’s
computational thinking skills specifically. They created an explicit 2-dimensional classification
scheme for questions (Dagienė et al, 2017). Computational thinking aspects act as one
dimension and content knowledge as the other.

Project Quantum (Oates et al., 2016) is a crowd-sourced multiple choice computer science
question bank being pioneered in the UK to provide formative assessment. Quality assurance is
integral via a feedback loop based on big data

Page 23

which will be generated from its expected widespread use. Questions are machine-markable
and algorithms will generate data about the quality of questions. Bebras questions are one of
the sources and so this could be a way of determining and/or improving the quality of the
computational thinking questions, ultimately generating a large, quality-assured set of questions.

Several other specific ‘computational thinking’ tests have been developed. The ‘Computational
Thinking Test’ (CTt) (Román-Gonzáles, 2015) is a multi-choice questionnaire involving 28
questions: such as whether a particular program will lead a character along a given maze path.
It tests understanding of programming concepts such as loops and conditionals. Korkmaz,
Çakirb & Özdenc (2017) similarly developed a set of 29 5-point Likert scale questions to assess
computational thinking. Tested on over a thousand students they concluded that it is a valid and
reliable tool for measuring computational thinking skills. Brennan & Resnick (2012), however,
suggest assessment requires a combination of approaches. They used an analysis of projects,
artifact based interviews and pupils completing design scenario challenges. They concluded
that this triangulation leads to an understanding of computational thinking concepts and
practices, but these approaches do not effectively reveal changes in expressing, connecting and
questioning perspectives.

17.3.4.3 Determining Progression and Age-appropriate Curricula
Designing assessment requires both an understanding of what is to be assessed, and a
methodology for capturing that specific knowledge, skills and understanding at a point in time. In
school, teachers develop lesson activities to teach objectives for learners to make progress.
What those objectives are, and how one might move from one objective to another to provide
progression, matters as computational thinking is brought into the school curriculum.

Dorling & Walker (2014) interpreted the English curriculum in the form of an easily digestible
table. This table presented the learning statements by either topic area taken from the
Computing At School Curriculum for Schools document (Computing at School, 2012) or by
subject strands: Computer Science, Information Technology and Digital Literacy. Dorling, Selby
& Woollard (2015) suggested that this interpretation of the curriculum had aligned computational
thinking core elements to all the statements in the table. A later version of the grid was
cross-referenced to computational thinking concepts outlined in (Csizmadia et al, 2015). Rich et
al (2017) also consider progression of conceptual ideas and links to computational thinking,
based on a detailed review of over a hundred computing education research articles. They use
concept maps to show progress, and also propose an alternative model to the spiral curriculum.

Barefoot (2014a, 2014b) which provides material for primary school teaching of computing,
suggests ideas for progression in computational thinking for children aged 3 to 11 years old.
However, this is not a complete progression, as it only provides suggestions for a limited set of
lessons, some set in programming contexts, others in a cross-curricula scenarios.

Page 24

Bebras (Dagiene & Futschek, 2008) is also structured by age, using six groupings of questions
from age 5-19 with the complexity of the problems increasing. This is a loose organisation and
individual countries can choose the questions they think appropriate. However, the groups of
questions are linked to age, therefore a progression is implied.

Denning (2017) suggests existing progression frameworks are focused on progression of
knowledge, and that this is misguided. This is not entirely true, as noted above, several groups
have considered skills-based progression. He makes the important point though, that they are
two separate issues: knowledge based progression and skills based progression. Both should
be addressed. Frameworks for progression of both skills and of conceptual knowledge within
subjects are needed, and arguably integrated versions are needed too. Research about the
appropriateness and effectiveness of progression frameworks is needed.

17.3.4.4 Validity
In all approaches to assessment, validation of the underlying models and/or tools and
techniques based on them is needed. Methods might concern computational thinking as a
whole, some specific subset of it, or individual foundational skills. Much research is needed in
this area. For example, according to Armoni (2013) there were, in 2013, no validated methods
to assess the ability to do abstraction.

An important issue is whether different approaches produce the same answers: their convergent
validity. Román-Gonzáles et al (2017) explores this for three approaches: Dr. Scratch
(Moreno-León & Robles, 2015), Bebras (Dagiene & Futschek, 2008) and CTt Román-Gonzáles
(2015). Their results suggest that CTt partially converges with the other two. They suggest that
the three approaches are complementary and use a revised version of Bloom’s Taxonomy
(Krathwohl, 2002) as a way to classify this. They conclude that Dr. Scratch assesses the very
top ‘create’ and ‘evaluate’ levels of Bloom’s taxonomy, Bebras assesses the ‘analyze and apply’
levels and CTt assesses the ‘understand’ and ‘remember’ levels as it focuses on the concepts
related to computational thinking rather than the practice of it. In essence this is saying that Dr
Scratch assesses the programming part of computational thinking, Bebras tasks target more
general thinking skills and CTt conceptual knowledge of computational thinking.

17.4 Implications for Practice

17.4.1 Implications depending on the view taken

If one takes the view that computational thinking is primarily associated with learning to program
and it doesn't directly support learning in other subjects,

Page 25

then the important focus becomes how to teach programming itself well. Studying the
component skills can still enhance insight into how to teach programming. One such insight is
that making students explicitly focus on levels of abstraction when programming helps develop
programming ability (Cutts et al. 2012, Statter & Armoni 2016).

If the intermediate view expounded by Lee (2016) that computational thinking is about more
than coding itself, but the person concerned must have an aim that the resulting algorithm be
carried out on a computer, not a human, then the focus is different. The key practical point Lee
recommends is that repeated practice is needed of working with real world problems and how
they are solved using information processing devices. Practice is needed abstracting those
real-world problems, and writing algorithms for them that could be programmed or hardware
created to execute.

If one takes the wide view that computational thinking is a transferable skill for all, and that
algorithms go beyond computers and may be usefully followed by humans too (as in the original
definition of the words ‘algorithm’ and ‘computer’) the implications are different again. This
implies that computational thinking can, and should, be developed both through programming
and through other means. The focus then turns to how to develop the individual skills across a
wide range of information processing situations, physical and otherwise, in computing and other
subject contexts. Exploring how best to use them together is also critical, so developing the
holistic skill matters. Any skill is developed with practice: the more the better. Therefore,
students need to be encouraged to practice as much as possible, in as many contexts as
possible, not just programming contexts. In this view, starting to develop general computational
thinking skills, not just programming skills, should start early in primary school, as some
countries are now doing. Making links from activities such as writing clear instructions to early
programming tasks is also important.

Whichever view is taken, intrinsic motivation to practice the skills needs to be developed (see
also Chapter 11). Ensuring it is fun and engaging is one important element, as is providing
realistic context. The Educational Community also need to develop appropriate progression
pathways for their pupils from primary school upwards that develop and refine the skills over
time.

Developing the component skills separately provides a foundation for learning computational
thinking as a whole. Knowledge supports the development of skill and teachers need to
understand the barrier concepts and points, so they can help students overcome them.

As with any skill, having an understanding of the underlying concepts and having the vocabulary
to express them, themselves can help develop the skills in a reflective way. Therefore, the skills
and concepts need to be developed in

Page 26

parallel. Unplugged methods provide a powerful, constructivist way to do this at all levels if used
well. The theory of semantic waves (Maton, K., 2013; Macnaught et al., 2013) provide guidance
for how to do this as suggested by Curzon et al. (2018), travelling up and down the semantic
wave from abstract concepts to concrete examples of them (whether unplugged, real world or
programming) and back to the abstract ones, making clear the links between the levels.

Whichever view one takes of the definition of computational thinking, it is important to be
pragmatic over developing the best ways to teach it. Whether one considers computational
thinking something that can be developed separately from programming or not, and whether or
not it includes physical computation in the world, analogy with real world ideas are powerful
ways of teaching concepts and of developing skills. According to the theory of semantic waves
(Maton, 2013; Macnaught et al., 2013), good explanation involves moving from technical,
abstract concepts to concrete illustration, and then back to technical concept. This is what good
use of analogy and unplugged teaching does. Analogy and simplified explanations are used
widely across other subjects as effective ways to teach. This should not be lost to computing
because of ideology. Ideas such as unplugged teaching should not be dropped just because
one thinks of them as only analogy. Instead the fact that they are analogy should be made clear.
For example, whether or not one believes writing a recipe involves any aspect of computational
thinking, a recipe book is still a useful initial way to help students understand concepts including
breaking a problem down into parts (procedural abstraction), and the order of the parts (how the
flow of control involved in procedure call works). Having such understanding about concepts is a
critical foundation for learning to program.

It certainly does help to keep the focus on the general value of skills and conceptual
understanding, even if very specific examples are being taught; for example, students might be
learning the syntax of a Python "for" loop, but the point is to understand iteration in programs;
they might be learning a version of binary search, but the wider picture is that it is an example of
the power of using divide and conquer to decompose a problem.

Also, whatever view is taken, to develop computational thinking skills fully, does of course
ultimately involve programming too. This is also another kind of example that can be used to
travel a semantic wave of good explanation (Maton, 2013; Macnaught et al., 2013). Ideally
programming skills should be developed in conjunction with more general computational
thinking skills and understanding. The Computing at School Working Group suggests for
example:

“Computer Science is more than programming, but programming is an absolutely central
process for Computer Science. In an educational context, programming encourages
creativity, logical thought, precision and problem-solving, and helps foster the personal,
learning and thinking skills required in the modern school curriculum. Programming gives
concrete, tangible form to the idea of “abstraction”, and repeatedly shows how useful it
is.” (Computing at School, 2012)

Page 27

17.4.2 Practical resources for teaching

A wide variety of practical resources and tools do exist to support the teaching of computational
thinking. These include:

- CS Unplugged (csunplugged.org)
- Teaching London Computing (teachinglondoncomputing.org)
- Barefoot (barefootcas.org.uk)
- ISTE's Computational Thinking Toolkit (Sykora, 2014)
- Google’s Exploring Computational Thinking (Google, n.d.)
- Bebras (Bebras, n.d.)
- Dr Scratch (www.drscratch.org)
- Digital Schoolhouse (www.digitalschoolhouse.org.uk)
- Computational thinking rubric (Dorling & Stephens, 2016)

There are many more such resources and resource collections with more being developed all
the time.

17.5 Open Questions
Computational thinking is still a relatively new idea and designing curricula that use it is even
newer. There are many open questions, making it a very fertile area for future research. The
most fundamental open question is just what definition of computational thinking should be
adopted and how wide should it stretch. In the absence of agreement about definitions of the
term, those doing such research need to be precise about the definition that they are working
with.

What definition is appropriate depends to a large extent on the answer to more specific open
questions. For example, we need to determine the true extent of the transferability of the skills
(see also Chapter 9 which explores transfer of learning). How useful are, or can be, the skills in
practice to learning in other areas, if either a narrow or a wide view is taken? Is there a
difference in general usefulness if you learn them only as programming versus taking a wider
approach to teaching them? Are they useful at all? Is knowledge of computational thinking
useful in understanding the digital world and how? Can computational thinking skills be
developed effectively outside of programming? How effective are the various unplugged
methods to teaching computational thinking? For example, does early practice using logic
puzzles to refine logical thinking skills actually lead to better computational thinking skills, and
so make programming easier to learn? Similar issues apply to the other components of
computational thinking. What makes an effective unplugged computational thinking activity in
general and what makes them ineffective? How does one best link unplugged and programming
techniques? Rigorous evidence is needed of what actually does work and why.

If computational thinking is primarily useful for programmers and can only usefully be taught
through programming, then the question becomes how to Page 28

enhance those skills more effectively through programming. Even if they can be developed in
other ways that is still an important question. EIther way, we need to better understand the
importance of the conceptual knowledge, programming skills and computational thinking skills
for developing independence and resilience in learners. In particular, we need further
consideration of the relationships between programming skills and the core computational
thinking concepts. Does a better grasp of computational thinking concepts and sub-skills lead to
better holistic computational thinking and programming skills, and if so how best do knowledge
and skills combine? It is often suggested that maths is an important precursor to being able to
cope on a tertiary institution computing course. However, it is also often suggested that it is not
the maths content that matters. What exactly are those mathematical precursor skills? Perhaps
it is because maths does develop some of the precursor skills such as attention to detail, logical
thinking or abstraction skills (e.g., in algebra). This might suggest teaching the subskills of
computational thinking in other contexts does help.

Validated progression frameworks are needed for both skills and knowledge. What do you teach
at different levels from primary upwards to achieve the best learning? And how best do you then
teach at each level of progression, and each topic? The questions are not just about how to
teach. We need to know what the effective means of both formative and summative assessment
are too. There are very big unanswered questions as to how to assess both programming and
computational thinking skill. How are each of the progression levels best assessed both
formatively and summatively? This applies both to computational thinking overall and to the
separate sub-skills such as abstraction and generalisation.

At the moment arguments are being made, and policy implemented, based on opinion and early
results, as there is a lack of evidence. Experiments need to be founded in rigorous theories of
the mechanisms involved. For many of the research areas outlined some work has been done,
though often on small scales and in uncontrolled ways. What is needed is really rigorous
evidence around all these issues, that is more than just action research suggesting an
intervention was a positive experience in a single context. Research needs to be replicated
including situating the studies in real classrooms, with real teachers, over longer periods of time
and on larger scales. We need large scale, longitudinal comparison of teaching, learning and
assessment of computational thinking across schools, cultures and age groups. We then need
continuous professional development for teachers and resources developed based on the
research. This material needs to be organised in a validated progression, affording educators
the means to plan lessons and evaluate students’ progress, allowing students to show what
they know and can do.

References

Aharoni, D. (2000). Cogito, Ergo sum! Cognitive processes of students dealing with data structures. ACM SIGCSE Bulletin 32(1),
26–30. doi: 10.1145/331795.331804

Page 29

https://doi.org/10.1145/331795.331804

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-
835. doi: 10.1093/comjnl/bxs074

al-Khwārizmī, M (c 825). On the Calculation with Hindu Numerals.

Armoni, M. (2013). On Teaching Abstraction in Computer Science to Novices.
Journal of Computers in Mathematics and Science Teaching 32(3) 265–284.

Barefoot (2014a). Barefoot Computing. Last accessed 30 April 2018 from http://barefootcas.org.uk/

Barefoot (2014b). Computational Thinking, What does computational thinking look like in the primary curriculum? Last accessed 30
April 2018 from https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/

Bebras (n.d.). Bebras International Challenge on Informatics and Computational Thinking. Last accessed 30 April 2018 from
http://www.bebras.org.

Bell, T., Alexander, J., Freeman, I. & Grimley, M. (2009). Computer science unplugged: school students doing real Computing
without computers. New Zealand Journal of Applied Computing and Information Technology, 13(1), 20-29.

Bell, T., Rosamond, F. & Casey, N. (2012). Computer Science Unplugged and related projects in math and computer science
popularization. In H. L. Bodlaender, R. Downey, F. V Fomin, & D. Marx (Eds.), The Multivariate Algorithmic Revolution and Beyond:
Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, 7370 (pp.
398–456). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-30891-8_18

Berry, M. (2014).Computational Thinking in Primary Schools. Last accessed 30 April 2018 from
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/

Bers, M. U. (2017). Coding as a Playground: Programming and Computational Thinking in the Early Childhood Classroom, New
York: Routledge.

Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York: Teachers College Press.

Biggs, J. B. & Collis, K. F. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy (Structure of the Observed Learning
Outcome). New York: Academic Press.

Böhm, C. & Jacopini, G. (1966). Flow diagrams, Turing machines and languages with only two formation rules. Communications of
the ACM, 9(5), 366–371. doi: 10.1145/355592.365646

Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Vancouver, Canada: Educational Research Association. Downloaded 30 April 2018 from
https://scholar.harvard.edu/kbrennan/publications/new-frameworks-studying-and-assessing-development-computational-thinking

Computing at School (2012). Computer Science: A curriculum for schools. Computing at School Working Group. Downloaded 30
April 2018 from https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf

CSE (2017). Proceedings of the 1st International Conference on Computational Thinking Education, July, Hong Kong. Downloaded
30 April 2018 from https://www.eduhk.hk/cte2017/

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., Woollard, J. (2015). Computational thinking: a guide for
teachers. Last accessed 30 April 2018 from http://computingatschool.org.uk/computationalthinking.
Curzon, P. (2002). Computing Without Computers: A Gentle Introduction to Computer Programming, Data Structures and
Algorithms. Downloaded 30 April 2018 from
https://teachinglondoncomputing.org/resources/inspiring-computing-stories/computingwithoutcomputers/

Curzon, P. (2014). Unplugged computational thinking for fun. In Brinda, T., Reynolds, N. & Romeike, R., eds, KEYCIT- Key
Competencies in Informatics and ICT, Commentarii informaticae didacticae 7. Page 30

https://doi.org/10.1093/comjnl/bxs074
http://barefootcas.org.uk/
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://www.bebras.org/
https://doi.org/10.1007/978-3-642-30891-8_18
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
https://doi.org/10.1145/355592.365646
https://scholar.harvard.edu/kbrennan/publications/new-frameworks-studying-and-assessing-development-computational-thinking
https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
https://www.eduhk.hk/cte2017/
http://computingatschool.org.uk/computationalthinking
https://teachinglondoncomputing.org/resources/inspiring-computing-stories/computingwithoutcomputers/

Potsdam, Germany: Universitätsverlag Potsdam, pp. 15-28

Curzon, P. & McOwan, P. W. (2017). The power of computational thinking: games, magic and puzzles to help you become a
computational thinker, New Jersey: World Scientific.

Curzon, P., McOwan, P. W., Donohue, J., Wright, S. & Marsh DWR (2018). Teaching of Concepts. In S. Sentance, E. Barendsen. &
C. Schulte, eds., Computer Science Education: Perspectives on Learning and Teaching in School. London: Bloomsbury, Chapter 8.

Cutts, Q., Esper, S., Fecho, M., Foster, S. & Simon, B. (2012). The abstraction transition taxonomy: developing desired learning
outcomes through the lens of situated cognition. In Proceedings of the ninth annual international conference on International
computing education research. (pp 63–70). New York: ACM.

Dagienė V. & Sentance S. (2016). It’s Computational Thinking! Bebras Tasks in the Curriculum. In Brodnik A., Tort F., eds,
Informatics in Schools: Improvement of Informatics Knowledge and Perception. (ISSEP 2016). Lecture Notes in Computer Science,
9973. Berlin: Springer, pp 28-39. doi: 10.1007/978-3-319-46747-4_3

Dagienė V., Sentance S. & Stupienė, G. (2017). Developing a Two-Dimensional Categorization System for Educational Tasks in
Informatics, Informatica 28(1), 23–44. doi: 10.15388/Informatica.2017.119

Dagiene, V. & Futschek, G. (2008). Bebras international contest on informatics and computer literacy: Criteria for good tasks. In
Mittermeir R.T. & Sysło M.M., eds, Informatics Education - Supporting Computational Thinking. ISSEP 2008. Lecture Notes in
Computer Science, 5090. Berlin: Springer, pp. 19-30. doi: 10.1007/978-3-540-69924-8_2

Denning, P. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39. doi:
10.1145/2998438

Denning, P., & Tedre, M. (2019). Computational Thinking. Cambridge, MA: MIT Press (Essential Knowledge series)

Department for Education (2013). National Curriculum in England: computing programmes of study. Downloaded 30 April 2018
from
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

Dorling, M., Selby, C. & Woollard, J. (2015). Evidence of Assessing Computational Thinking. In Brodnik, A. & Lewin C, eds., IFIP
2015: A New Culture of Learning: Computing and Next Generations. Laxenburg, Austria: IFIP, pp. 1-11.

Dorling, M. & Walker, M. (2015). Computing Progression Pathways. Downloaded 30 April 2018 from
http://community.computingatschool.org.uk/files/5098/original.xlsx

Dorling, M. & Stephens, T. (2016). Computational Thinking Rubric: Dispositions, Attitudes and Perspectives, Downloaded 30 April
2018 from https://community.computingatschool.org.uk/resources/4793/

Euclid (1997). [c. 300 BC]. D. E. Joyce, ed., Elements. Last accessed 30 April 2018 from
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L.,

Thompson, D. M., Riedesel, C. & Thompson, E. (2007). Developing a computer science-specific learning taxonomy. In
Proceedings of the ITiCSE-WGR '07 Working group reports on Innovation and technology in computer science education
(pp. 152-170). New York, ACM. doi: 10.1145/1345375.1345438

Google (n.d.). Exploring Computational Thinking, Google for Education. Last accessed 30 April 2018 from
https://edu.google.com/resources/programs/exploring-computational-thinking/

Page 31

https://doi.org/10.1007/978-3-319-46747-4_3
http://dx.doi.org/10.15388/Informatica.2017.119
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1145/2998438
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://community.computingatschool.org.uk/files/5098/original.xlsx
https://community.computingatschool.org.uk/resources/4793/
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html
http://dl.acm.org/citation.cfm?id=1345438
https://doi.org/10.1145/1345375.1345438
https://edu.google.com/resources/programs/exploring-computational-thinking/

Grover, S., Pea, R. (2013). Using a discourse-intensive pedagogy and Android’s App inventor for introducing computational
concepts to middle school students. In Proceedings of the 44th SIGCSE Technical Symposium on Computer Science Education (pp
723-728). New York: ACM. doi: 10.1145/2445196.2445404

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of the ACM, 51(8), 25-27. doi:
10.1145/1378704.1378713

Harel, D. (2003). Computers Ltd : What They REALLY Can't Do, Oxford: Oxford Paperbacks.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of mathematics and in the learning of computer
science. Computer Science Education, 13(2), 95–122. doi: 10.1076/csed.13.2.95.14202

Hubwieser, P. & Mühling, A. (2014). Playing PISA with Bebras. In Proceedings of the 9th Workshop in Primary and Secondary
Computing Education, pp. 128–129. New York: ACM. doi: 10.1145/2670757.2670759

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., Pal, J., Jackova, J. & Jasute, E.(2015) A
global snapshot of computer science education in K-12 schools. In Proceedings of the 2015 ITiCSE on Working Group Reports. (pp.
65–83). New York: ACM. doi: 10.1145/2858796.2858799

Hutchins, E. (1995). Cognition in the Wild, Cambridge, MA: MIT Press.

ISTE/CSTA (2014). Operational Definition of Computational Thinking for K–12 Education, Downloaded 30 April 2018 from
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

Kafai Y. B. (2016). From Computational Thinking to Computational Participation in K-12 Education, Communications of the ACM 59
(8), 26-27.

Kalelioglu, K., Gülbahar, Y. & Kukul, V. (2016). A framework for computational thinking based on a systematic research review.
Baltic Journal of Modern Computing, 4(3), 583–596.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the Computational Thinking Scales (CTS).
Computers in Human Behavior, 72, 558-569. doi: 10.1016/j.chb.2017.01.005

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218. doi:
10.1207/s15430421tip4104_2

Lee, I. (2016). Reclaiming the roots of CT. CSTA Voice: The Voice of K–12 Computer Science Education and Its Educators, 12(1),
3–4.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E., Sanders, K., Seppälä, O.
& Simon, B. (2004). A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4),
119-150. doi: 10.1145/1044550.1041673

Lister, R., (2011). Concrete and other neo-Piagetian forms of reasoning in the novice programmer. In Proceedings of the Thirteenth
Australasian Computing Education Conference, 114 (pp. 9-18). Darlinghurst, Australia: Australian Computer Society, Inc.

Lopez, M., Whalley, J., Robbins, P. & Lister, R., (2008). Relationships between reading, tracing and writing skills in introductory
programming. In Proceedings of the fourth international workshop on computing education research (pp. 101-112). New York: ACM.
doi: 10.1145/1404520.1404531

Lu, J. J. & Fletcher, G. H. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin, 41(1), 260–264. doi:
10.1145/1539024.1508959

Maton, K. (2013). Making semantic waves: A key to cumulative knowledge-building. Linguistics and Education, 24(1), 8–22. doi:
10.1016/j.linged.2012.11.005

Page 32

https://doi.org/10.1145/2445196.2445404
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1076/csed.13.2.95.14202
http://doi.org/10.1145/2670757.2670759
https://doi.org/10.1145/2858796.2858799
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1539024.1508959
http://doi.org/10.1016/j.linged.2012.11.005

Macnaught, L., Maton, K., Martin, J. R., Matruglio, E., (2013). Jointly constructing semantic waves: implications for teacher training.
Linguistics and Education, 24, 50– 63. doi: 10.1016/j.linged.2012.11.008

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagen, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I., &
Wilusz, T. (2001). A Multi- National, Multi- Institutional Study of Assessment of Programming Skills of First- year CS Students. In
Proceedings of the 6th Annual Conference on Innovation and Technology in Computer Science Education, Working Group Reports
(ITiCSE-WGR ’01) (pp. 125– 180). New York: ACM.

Meagher, L. (2017). Teaching London Computing Follow-up Evaluation through Interviews with Teachers, Technology Development
Group, Summer. Downloaded 30 April 2018 from https://teachinglondoncomputing.org/evaluation/

Millican, P. & Clark, A., eds. (1996). The Legacy of Alan Turing, volume 1: Machines and Thought, Oxford: Oxford University Press.

Millican, P. (n.d.). A New Paradigm of Explanation? Last accessed 30 April 2018 from
http://www.philocomp.net/home/paradigm.htm

Moreno-León, J. & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects. In Proceedings of the
Workshop in Primary and Secondary Computing Education (pp. 132–133). New York: ACM. doi:10.1145/2818314.2818338

Moreno-León, J., Robles, G. & Román-González, M. (2015). Dr. Scratch: automatic analysis of scratch projects to assess and
foster computational thinking. RED. Revista de Educación a Distancia, 46(10), 23 Pages. doi:10.6018/red/46/10

National Research Council (2011). Committee for the workshops on computational
thinking: Report of a workshop of pedagogical aspects of computational thinking,
Washington, DC: The National Academies Press. doi:10.17226/13170.

NZ Ministry of Education (2017). The New Zealand Curriculum Online: Technology: Learning area structure. Last accessed 30 April
2018 from http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology/Learning-area-structure

Oates,T., Coe, R., Peyton-Jones, S., Scratcherd, T. & Woodhead S. (2016). Quantum: tests worth teaching. White Paper, March,
Computing at School. Downloaded 30 April 2018 from http://community.computingatschool.org.uk/files/7256/original.pdf

OED (1993). The New Shorter Oxford English Dictionary, Oxford: Oxford University Press.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful ideas, New York: Basic Books.

Piaget, J. (2001). Studies in reflecting abstraction. Edited and translated by R. L. Campbell, Hove: Psychology Press.

Resnick, M. (2013). Learn to Code, Code to Learn. Edsurge, May 8.
Last accessed 30 April 2018 from https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn

Rich, K. M., Strickland, C., Binkowski, T. A,, Moran C. & Franklin, D. (2017). K-8 Learning Trajectories Derived from Research
Literature: Sequence, Repetition, Conditionals, In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER’17) (pp. 182-190). New York: ACM. doi: 10.1145/3105726.3106166

Román-González, M. (2015). Computational Thinking Test: Design Guidelines and Content Validation. In Proceedings of the 7th
Annual International Conference on Education and New Learning Technologies (EDULEARN 2015) (pp. 2436–2444). Valencia:
IATED Academy. doi: 10.13140/RG.2.1.4203.4329

Román-Gonzáles, M., Moreno-León, J. & Robles, G. (2017). Complementary Tools for Computational Thinking Assessment. In
Proceedings of the International Conference on Computational Thinking Education (CTE2017) (154-159). Hong Kong: The
Education University of Hong Kong.

Page 33

http://doi.org/10.1016/j.linged.2012.11.005
https://doi.org/10.1016/j.linged.2012.11.008
https://teachinglondoncomputing.org/evaluation/
http://www.philocomp.net/home/paradigm.htm
https://doi.org/10.1145/2818314.2818338
https://doi.org/10.6018/red/46/10
https://doi.org/10.17226/13170
http://nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum/Technology/Learning-area-structure
http://community.computingatschool.org.uk/files/7256/original.pdf
https://www.edsurge.com/news/2013-05-08-learn-to-code-code-to-learn
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.13140/RG.2.1.4203.4329

Royal Society (2012). Shut down or restart? The way forward for computing in UK schools, London: The Royal Society.

Royal Society (2017a). After the reboot: computing education in UK schools, London: The Royal Society.

Royal Society (2017b). Machine learning: the power and promise of computers that learn by example, London: The Royal Society.

Schocken, S. & Nisan, N. (2004). From NAND to tetris in 12 easy steps. In Proceedings of the 34th Annual Conference on Frontiers
in Education (pp. 1461). New York, NY: IEEE. doi: 10.1109/FIE.2004.1408798

Seiter, L. & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade students. In
Proceedings of the 9th annual international ACM conference on International computing education research (ICER’13) (pp. 59-66).
New York: ACM. doi: 10.1145/2493394.2493403

Seiter, L. (2015). Using SOLO to classify the programming responses of primary grade students. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (pp. 540-545). New York: ACM. doi: 10.1145/2676723.2677244

Selby, C. & Woollard, J. (2013). Computational thinking: the developing definition. Downloaded 30 April 2018 from
http://eprints.soton.ac.uk/356481.

Sentance, S. & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective.
Education and Information Technologies, 22(2), 469-495. doi: 10.1007/s10639-016-9482-0

Statter, D. & Armoni, M. (2016). Teaching Abstract Thinking in Introduction to Computer Science for 7th Graders. In Proceedings of
the 11th Workshop in Primary and Secondary Computing Education, (pp. 80–83). New York: ACM. doi: 10.1145/2978249.2978261

Susskind, R. (2017). Tomorrow’s Lawyers: An introduction to your future, 2nd edn., Oxford: Oxford University Press.

Sykora, C. (2014). Computational thinking for all. Arlington: ISTE. Downloaded 30 April 2018 from
https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computational-thinking-for-all

Tedre, M. & Denning, P. J. (2016). The Long Quest for Computational Thinking. In Proceedings of the 16th Koli Calling Conference
on Computing Education Research (pp. 120–129). New York, NY: ACM. doi: 10.1145/2999541.2999542

Thimbleby, H. (2018). Misunderstanding IT: Hospital cybersecurity and IT problems reach the courts. Digital Evidence and
Electronic Signature Law Review, 15, 11– 32.

Turing, A. M. (1936) (published 1937). On Computable Numbers, with an Application to the Entscheidungs problem. Proceedings of
the London Mathematical Society 2 (42), 230–265. doi: 10.1112/plms/s2-42.1.230

Waite, J., Curzon, P., Marsh, D. W. & Sentance, S. (2016). Abstraction and common classroom activities. In Proceedings of the 11th
Workshop in Primary and Secondary Computing Education (pp 112–113). New York: ACM. doi: 10.1145/2978249.2978272

Waite, J., Curzon, P., Marsh, W. & Sentance, S. (2017). Teachers’ Uses of Levels of Abstraction Focusing on Design, In
Proceedings of the 12th Workshop in Primary and Secondary Computing Education (pp. 115-116). New York: ACM. doi:
10.1145/3137065.3137068

Wing, J. (2006). Computational Think
ing, Communications of the ACM, 49(3), 33-35. doi: 10.1145/1118178.1118215

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M. & Switzer, M. (2011). Computational thinking and expository writing in the middle
school. ACM Transactions on Computing Education, 11(2), 9 (22 pages). doi: 10.1145/1993069.1993073

Page 34

https://doi.org/10.1109/FIE.2004.1408798
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/2676723.2677244
http://eprints.soton.ac.uk/356481
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1145/2978249.2978261
https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computational-thinking-for-all
https://doi.org/10.1145/2999541.2999542
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1145/2978249.2978272
https://doi.org/10.1145/3137065.3137068
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1993069.1993073

