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Abstract

Comparing the predictions from different inflation models to observations of the
Cosmic Microwave Background (CMB) and the Large-Scale Structure (LSS) is a
non-trivial task. One needs to calculate the statistics of the primordial curvature
perturbation, ζ, to be able to compare to observational constraints. There exist
many formalisms for such calculations, each with its own benefits and drawbacks,
depending on the inflation model being considered. One popular method, the δN
formalism, calculates the evolution of the statistics of ζ on superhorizon scales. δN
assumes that the number of e-folds as a function of the scalar fields present in the
model, N , is Taylor-expandable and that the Taylor series converges sufficiently fast.
Unfortunately, this assumption breaks down in some cases. As a solution, in this
thesis, we first extend the standard δN formalism so that it can be applied to any
arbitrary function of N , irrespective of whether the N function is Taylor-expandable
or not. We test the validity of the formalism on a pre-generated N function from a
realistic model and find that the method shows marked improvement over regular
δN . This extension of δN , which we call ‘non-perturbative δN ’, involves integrating
the N function against a probability distribution function for the fields. When the
N function is highly featured, a convenient method to perform the calculations is
Monte Carlo integration. As an example, in the last part of the thesis we study
massless preheating. We run our own lattice simulations and implement the non-
perturbative expressions in a Monte Carlo fashion. Doing so, we calculate accurately
the two- and three-point functions of ζ in this model for the first time.
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1 Introduction

“Il ne faut rien laisser au hasard.”

Leave nothing to chance.

—French proverb

The currently best-fitting picture for describing the universe, known as the standard

model of cosmology or the ΛCDM model, which includes the hot big bang model of

the early universe, presents some serious shortcomings. The problems are namely,

the horizon problem, the flatness problem and the monopole problem. The horizon

problem refers to the question of why the universe is homogeneous and isotropic

despite the fact that distant regions of space could not have been in causal contact

in the past in conventional big bang cosmology. The flatness problem alludes to yet

another fine-tuning problem; our universe seems to have just the right amount of

matter to be flat even though this is in a sense unstable as we will see later. The

monopole problem, on the other hand, is based on the prediction from Grand Uni-

fied Theories that if the early universe were very hot, a large number of very heavy,

stable magnetic monopoles would have been produced. Such particles have never

been observed in nature. However, unlike the horizon and the flatness problem, the

existence of a monopole problem is debated (see for example, [1]). Moreover, the

standard model assumes small initial over- and under-densities needed for structure

formation at later times in the universe but offers no explanation for their origin.

One should note, however, that the two most serious problems, namely the hori-

zon and flatness problems, are not strictly inconsistent with the standard hot big

bang model. One could assume that the very early universe was extremely flat and

that the universe began homogeneously over superhorizon scales, which would mean

that the universe would remain homogeneous, in agreement with observations. Sim-

ilarly, one could also assume initial perturbations in the density that then give rise

to the structures we see in the universe today. So, these problems are just really

severe limitations in the predictive power of the big bang model. The striking flat-

ness of the universe, the unmistakable large-scale homogeneity of the universe and

9



1: Introduction 10

the origin of the over- and under-densities cannot be predicted by the hot big bang;

these have to be simply assumed in the initial conditions. It is obvious then that a

theory that explains these initial conditions dynamically is very attractive.

Inflationary cosmology, an elegant theory that cures all of the above mentioned

problems, was first developed in the 1980’s by a number of independent authors

[2–4] and is the subject of my research. Cosmic inflation is defined as a period of

accelerated expansion before the hot big bang and allows regions separated by more

than a horizon size today to have been in causal contact at very early times. This

can lead to the observed homogeneous universe on large scales today. Inflation also

drives the universe to flatness. We will return to the question of how inflation solves

these problems later in the thesis. Aside from solving these problems, inflation

also explains another striking observational feature: the anisotropies in the Cosmic

Microwave Background. Now routinely measured by experiments like the Planck

mission, the temperature fluctuations of the CMB bear testimony of the very tiny

fluctuations in the primordial density of the universe whose microphysical origin is

thought to come from quantum fluctuations during inflation. These fluctuations

eventually form all the structures observed in the universe. In spite of its elegance,

cosmic inflation is incomplete in the sense that the exact microphysics of the in-

flationary theory is not known. There exists a plethora of competing inflationary

models and each comes with its own observational predictions. With every new

experiment that provides increasingly stronger constraints on models, it becomes

imperative to be able to obtain precise theoretical predictions. Analytical and nu-

merical tools are needed to crunch the numbers for a given inflation model to allow

its predictions to then be compared to observational constraints. In turn this allows

us to consolidate, rule out or put constraints on the model. The aim of this thesis is

to add another tool to the arsenal of tools available to inflationary cosmologists. We

will see that this tool is particularly useful when the complicated dynamics during

the reheating phase after inflation ends, can affect the predictions of inflation.

The thesis is structured as follows. In Chapter 1, we introduce the ΛCDM model,

the problems of the standard big bang model and describe how inflation comes to

the rescue. Chapter 2 provides details on the mathematical formulation of classical

inflationary theory. In Chapter 3, we describe how quantum fluctuations during in-

flation become the seeds for the formation of large-scale structures. We also present

detailed calculations of the power spectrum and bispectrum of the curvature per-

turbation in single field slow-roll inflation. Moving on to multifield inflation, we

introduce the δN formalism in Chapter 4 which is a powerful tool used to calcu-

late the non-linear evolution of the curvature perturbation on large scales. We then

set the scene for our first research chapter by highlighting the limitations of the
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δN formalism. Standard δN relies on the number of e-folds, N , undergone by the

early universe as a function of initial conditions to be expandable as a Taylor series.

In some settings, such as when reheating plays an important role, this assump-

tion breaks down. As a solution, we consider the Non-Perturbative δN formalism

in Chapter 5, valid even where Taylor expansion is not possible. We present our

non-perturbative expressions and test their validity on a realistic example. One

prominent scenario where the N function is highly featured and therefore warrants

the use of the non-perturbative δN formalism is the massless preheating model where

parametric resonance, a highly non-linear and out-of-equilibrium regime, naturally

occurs. It makes sense therefore to take a short digression to review reheating and

preheating in Chapter 6. We also discuss lattice field theory simulations, the only

way to fully treat the nonlinear dynamics of reheating and in doing so, we introduce

HLattice [5], a code written in fortran that simulates scalar fields and gravity in the

early universe. In Chapter 7, we apply our non-perturbative δN expressions in a

Monte Carlo manner to massless preheating by running our own simulations using

HLattice on Queen Mary’s HPC facility [6]. We finally conclude in Chapter 8. The

study of the effects of non-linear dynamics during reheating on observations is com-

plicated. This thesis is, hopefully, a step in the right direction and the method we

present amounts to a unique opportunity to extract for the first time observational

predictions for the curvature perturbation directly from lattice simulations.

1.1 Conventions

Throughout this thesis and unless stated otherwise, we use natural units c = ~ = 1.

The reduced Planck mass Mpl = (8πGN)−
1
2 = 2.4× 1018 GeV. The metric signature

is (−+ + + ) and Greek indices run over the four spacetime coordinates {0, 1, 2, 3}
and the lowercase Latin indices run over the spatial coordinates {1, 2, 3}. Our Fourier

convention is

χk =

∫
d3x e−ik.xχ(x). (1.1)

We reserve η for the slow-roll parameter and denote conformal time by τ where

τ =
∫ t

0
dt
a(t)

. Overdots represent derivatives with respect to coordinate time t and a

prime denotes derivatives with respect to conformal time τ .

1.2 The ΛCDM Model

One of the fundamental assumptions of modern cosmology is the cosmological prin-

ciple which states that the distribution of matter in the universe is homogeneous

and isotropic when viewed on a large-enough scale, i.e., greater than 100 Mpc [7].

Homogeneity and isotropy can be summarized by two principles of spatial invari-

ance. The first invariance is isomorphism under translation, namely homogeneity.
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Isotropy refers to rotational invariance. The observable patch of the universe is

roughly 3000 Mpc (1 Mpc = ≈ 3.26 × 106 light years). Surveys such as the 2dF

galaxy redshift survey and the Sloan Digital Sky Survey suggest that the universe

is homogeneous and isotropic only when coarse grained on 100 Mpc scales. The

cosmological principle obviously does not hold on small distance scales as we see

distinguishing features like planets, galaxies, galaxy clusters and superclusters. Fur-

ther experimental evidence for homogeneity and isotropy comes from the CMB. The

first successful measurement of the Cosmic Microwave Background was made in 1964

by Penzias and Wilson [8]. Their observations revealed that the CMB was character-

istic of a black-body with a corresponding temperature of 2.73K. They also observed

that the CMB is uniform in all directions (isotropic). Observational evidence for

the homogeneity and isotropy of the universe, whether drawn from galaxy counts or

the CMB [7], is invariably cited as justification for the cosmological principle.

Figure 1.1: A 2-d slice through the 3-dimensional map of the distribution of galax-
ies. The black regions represent regions that were not mapped due to galactic fore-
ground. The points represent galaxies and older galaxies are shown in red. Image
courtesy of the Sloan Digital Sky Survey.
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Figure 1.2: The CMB spectrum as measured by the FIRAS instrument on COBE
is the most precisely measured black body spectrum in nature. The observed data
matches the theoretical blackbody curve very well. Image courtesy of NASA.

Figure 1.3: The Hubble diagram of Type 1a supernovae correlating distance modulus
(µ) vs. redshift. The distance to an empty universe model (µempty) is shown in the
lower panel. The blue curve shows the expectation from the best fit ΛCDM model,
i.e., 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy (cosmological
constant) [9].
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Another profound discovery about the universe is the accelerating expansion of the

late universe. The first compelling evidence for the late acceleration came in the

late 1990’s when two independent teams studying type 1a supernovae discovered

that high-redshift SNe 1a were dimmer than expected [10, 11] implying the need for

a cosmological constant (or more generally dark energy). This late acceleration of

the universe has also been verified independently by CMB data from high multipole

measurements using the South Pole Telescope (SPT) [12–14]. In terms of matter

and energy, these observations imply that the universe is composed of 4.9% ordinary

matter, 26.8% dark matter, which is indirectly detected by its gravitational pull on

nearby matter and 68.3% dark energy, thought to be responsible for the accelerated

expansion of the late universe [15]. General Relativity, the leading theory of gravity

combined with the cosmological principle on large scales and the assumption that

the universe is made up of a combination of standard model particles, cold dark

matter and a cosmological constant gives rise to the ΛCDM model of the universe.

The cosmological principle is the starting point for a set of solutions to Einstein’s

theory of General Relativity called Friedmann Cosmologies where the spacetime

metric gµν is of the Friedmann-Lemâıtre-Robertson-Walker (FLRW) form.

1.2.1 The Einstein Field Equations

The ΛCDM model assumes that Einstein’s General Relativity is the correct theory

of gravity. This theory is well-tested on many scales [16]. The gravitational field

equations can be derived by varying the Einstein-Hilbert action,

SEH =

∫ [1

2
M2

pl(R− 2Λ) + LM

]√
−g d4x, (1.2)

where R is the Ricci scalar corresponding to the metric gµν , g = det(gµν), Λ is the

cosmological constant and where LM describes any matter fields that appear in the

theory. Then using the principle of least action, one can find the Einstein field

equations,

Rµν −
1

2
gµνR + Λgµν = M−2

pl Tµν . (1.3)

The spacetime curvature on the left-hand side (LHS) of the equation is coupled

to the matter content of the unvierse via the energy-momentum tensor Tµν on the

right-hand side (RHS). In other words, the curvature of spacetime is directly related

to the energy and momentum of whatever matter and radiation are present.

The predictions of General Relativity have been confirmed in all observations so

far. Although there are many other physical theories of gravity that attempt to de-

scribe gravitation (for a thorough review, see Ref. [17]), GR is the simplest theory

that is consistent with experimental data.
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1.2.2 The FLRW Metric

The observation that the universe is homogeneous and isotropic on large scales

implies that we can model the large scale geometry of the universe with a metric,

gµν , with homogeneous and isotropic spatial slices. This has become known as the

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
, (1.4)

where k labels three possibilities for the spatial curvature; k > 0 for positive, k =

0 for flat and k < 0 for negative spatial curvatures. The scale factor a(t) is a

dimensionless function of coordinate time t and it increases for an expanding universe

and decreases for a contracting one. {r, θ, φ} are comoving spatial coordinates.

1.2.3 The Friedmann Equations

The FLRW metric analytically satisfies the Einstein field equations, Eq. (1.3), giv-

ing the Friedmann equations when the energy-momentum tensor Tµν is similarly

assumed to describe an isotropic and homogeneous perfect fluid. Perfect fluids have

no viscosity and no heat flow and have an energy-momentum tensor:

Tµν = (ρ+ p)uµuν + pgµν , (1.5)

where ρ is the energy density and p the pressure in the fluid rest frame and uµ is

the four-velocity of the fluid.

If we take gµν to be the FLRW metric, we can write down the elements of the

Ricci tensor as well as the Ricci scalar. For example R00 = −3 ä
a

and R11 =

(äa+ 2ȧ2 + 2k) /(1 − kr2). Next, we take Tµν to be that of a perfect fluid and the

fluid to be comoving with the expansion of the universe. Using the Ricci tensor and

scalar on the left hand side of the Einstein field equations and the energy-momentum

tensor on the right hand side in Eq. (1.3), and demanding component by component

equality (because the Einstein field equations are in fact a set of equations governing

each component of the curvature), we have two independent equations: the Fried-

mann equation (Eq. (1.6)) and the acceleration equation (Eq. (1.7)).

From these two independent equations, we can derive a third one, called the fluid

equation or the continuity equation which also follows from the conservation equa-

tion ∇µT
µν = 0 which is a consequence of the Bianchi identity. Each non-interacting

particles species ‘A’ with density ρA and pressure pA obeys the fluid equation

(Eq. (1.8)).
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(
ȧ

a

)2

= H2 =
ρ

3M2
pl

− k

a2
+

Λ

3
(1.6)

ä

a
= − 1

6M2
pl

(ρ+ 3p) +
Λ

3
(1.7)

ρ̇A = −3

(
ȧ

a

)
(ρA + pA) (1.8)

H ≡ ȧ
a

is the Hubble parameter. The acceleration equation tells us that in the ab-

sence of Λ, the ΛCDM universe would be decelerating. As already mentioned earlier,

this is against observational data. The ΛCDM model realises this late acceleration

by making Λ a small positive value.

To solve the equations, one needs to specify the relationship between ρ and p, for

a perfect fluid, i.e., the equation of state. Once the equation of state is specified,

the above equations are all we need to describe the evolution of the universe. The

equation of state parameter ωA is defined as pA = ωAρA. The main fluids present in

the ΛCDM model are baryons (ωb = 0), radiation (ωr = 1
3
) and Cold Dark Matter

(CDM) (ωCDM = 0) and dark energy with ωΛ = −1. The fluid equation gives the

dynamics of these perfect fluids and when integrated, one obtains {ρb, ρCDM} ∝ a−3

and ρr ∝ a−4.

1.2.4 The Cosmological Parameters

Using the Friedmann equation, the critical density of the universe is defined to be

the density of a spatially flat universe and is given by ρcrit = 3M2
plH

2. Dividing the

Friedmann equation (Eq. (1.6)) by the critical density and re-arranging, one has

Ωtot = Ωb + ΩCDM + Ωr + ΩΛ = 1− Ωk, (1.9)

where the density parameters are defined as ΩA = ρA

ρcrit
, except for ΩΛ = Λ

3H2 and

Ωk = −k
H2a2 . The latest Planck 2018 results for these parameters are as follows [18]:

Ωbh
2 = 0.02237± 0.00015 (68%, P lanck TT,TE,EE + lowE + lensing) (1.10)

ΩCDMh
2 = 0.1200± 0.0012 (68%, P lanck TT,TE,EE + lowE + lensing) (1.11)
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ΩΛ = 0.6847± 0.0073 (68%, P lanck TT,TE,EE + lowE + lensing) (1.12)

where h is a dimensionless present value of the Hubble parameter defined as

H0 = 100h km s−1 Mpc−1. (1.13)

Presently, the best constraints on H0 from Planck 2018 [18] are H0 = (67.4 ±
0.5) km s−1 Mpc−1. The present density of relativistic species is negligible com-

pared to the other components (Ωrh
2 ∼ 4 × 10−5) and so, altogether, the various

components add up to give that Ωtot is observationally consistent with unity and in

fact,

Ωk = 0.0007±0.0019 (68%, P lanck TT,TE,EE+lowE+lensing +BAO). (1.14)

Within observational bounds, the universe is therefore flat. Although beyond the

scope of our work, we note in passing that the above Planck constraints are obtained

when one assumes ΛCDM cosmology. When the assumptions on the equation of

state of dark energy are relaxed, it becomes hard to disentangle dark energy and

curvature because degeneracies arise; see, for example, Clarkson et al. [19] and

Witzemann et al. [20].

The cosmological parameters can also be determined from the large-scale structure

of the universe. However, there are indications that there is a discrepancy between

constraints estimated from either the CMB or the LSS. In particular, the LSS con-

straints imply more small scale structure than the constraints from the CMB (see,

for example, Battye et al. [21] and Charnock et al. [22]).

1.2.5 Further Successes of the Hot Big Bang Model

The standard model of cosmology is spectacularly successful. It provides a reliable

and vigorously tested accounting of the history of our universe from its early hot

and dense state until today, about 13.8 billion years later. The discovery of the Cos-

mic Microwave Background radiation by Penzias and Wilson is perhaps, the most

compelling observational evidence for the big bang model as it was the discovery of

a predicted thermal imprint of the big bang. In addition to what we have discussed,

in 1948, Alpher and Gamow1 [26] argued that the big bang could create the ob-

served abundances of the most common elements in the universe. Their calculations

agreed with the observed helium abundance. The paper, still known as the alpha-

1Bethe didn’t really contribute to the work; his name was added for humour.
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Figure 1.4: Confidence level regions in the (ΩM ,ΩΛ) from CMB, BAO, SNe1a data
where ΩM = Ωb + ΩCDM[10, 11, 23–25].

beta-gamma paper, not only explained the origin of the most abundant elements in

the universe, but was also the first support for the big bang model since the discov-

ery of the Hubble’s law (that distant galaxies are redshifted in proportion to their

distance from us). While the original Alpher-Bethe-Gamow theory only worked for

elements up to helium, subsequent improvements in the calculations showed that big

bang nucleosynthesis, the production of elements heavier than the lightest isotope

of hydrogen shortly after big bang, is consistent with observational constraints on

all primordial elements [27].

The standard big bang model also provides a framework for understanding the

formation of galaxies and other large-scale structures [28, 29]: Once the universe

becomes matter dominated, primordial density inhomogeneities ( δρ
ρ
∼ 10−5) be-

come gravitationally amplified and eventually collapse to form the structures we see

today. Jeans was the first to point out that a fluid of self-gravitating particles is

unstable to the growth of small inhomogeneities; this is known as Jeans instabil-

ity [30, 31]. COBE confirmed the existence of these inhomogeneities in the CMB

in spectacular fashion. In fact, COBE’s measurements provided two key pieces of
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evidence that supported the big bang theory of the universe: that the CMB has a

near-perfect black-body spectrum, and that it has very small anisotropies [32].

Figure 1.5: The temperature anisotropies of the CMB as observed by Planck. The
tiny temperature fluctuations correspond to regions of slightly different densities at
very early times, representing the seeds of all structures in the universe today. Image
credit: ESA.

1.2.6 The Need for Inflation

Despite its numerous successes, the hot big bang model does not offer an explanation

for the origin of the density perturbations that give rise to the observed large-scale

structure. We will come back to this question later. Other non-trivial problems

that plague the hot big bang model [7, 33, 34] are the horizon problem, the flatness

problem and the monopole problem which we briefly describe below. Inflation, a

period of accelerated expansion of the early universe, was introduced to solve these

problems. Accelerated expansion of the FLRW universe implies ä > 0 and this

correlates with a shrinking comoving Hubble radius. Using Eq. (1.6) and Eq. (1.7), a

shrinking comoving Hubble radius can be connected to the acceleration and pressure

of the universe by

d

dt

(
1

aH

)
< 0⇒ d2a

dt2
> 0⇒ p < −ρ

3
. (1.15)

The Flatness Problem

Observations indicate that the universe is flat, i.e., it has exactly the required density

of matter to be flat [35]. In other words, the universe is very close to critical density

which corresponds to a density parameter Ωtot = 1 (cf. Eq. (1.9) and Eq. (1.14)).

This is a cosmological fine-tuning problem within the hot big bang model, i.e., the
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matter and energy density of the universe appears to be fine-tuned to a very special

value at early times and tiny deviations from that value would have extreme effects

on observations. For the universe to be flat today, it means at earlier times, Ωtot

must be extremely close to 1. In fact, one finds that [36, 37]

|Ωtot(tpl)− 1| < 10−60 (1.16)

where tpl ∼ 10−43 s is the Planckian time. Rewriting the Friedmann equation,

Eq. (1.6) as:

|Ωtot − 1| = |k|
(aH)2

, (1.17)

we see that a decreasing Hubble radius as realised during inflation drives the universe

to flatness and Ωtot = 1 becomes an attractor.

The Horizon Problem

The particle horizon, DH(t), is the maximum distance from which particles could

have traveled to the observer since the beginning of the universe at time t = ti and

is given by

DH(t) = a(t)dH(t), where dH(t) =

∫ t

ti

dt′

a(t′)
. (1.18)

dH(t) is the comoving particle horizon. The photons in the CMB are last-scattered

at the time of decoupling. The ratio of the comoving particle horizon at CMB de-

coupling, dH(tdec), to the comoving particle horizon today, dH(t0), is around 10−2

[38], implying that the causally connected regions at last scattering are much smaller

than the horizon size today. In fact, the particle horizon size at the time of CMB

last scattering corresponds to ∼ 1 degree on the sky [7, 39] today and hence, ΛCDM

implies that most parts that we observe in the CMB have never been in causal con-

tact and have not communicated with each other before last scattering. The CMB

comprises of ∼ 106 causally disconnected regions [37]. Yet, we still observe an almost

uniform temperature of the CMB, even for widely separated regions. The CMB is

observed to be almost uniform with temperature fluctuations of characteristic size

[40],

δT

T
≈ 10−5. (1.19)

Because no signals can propagate faster than light, no causal physical processes can

be responsible for such an unnaturally fine-tuned matter distribution. Inflationary

theory allows for a solution to the horizon problem by suggesting that prior to in-

flation, a patch of the universe small enough to achieve thermalization can expand

by a huge amount such that it is larger than the size of our presently observable

universe. Inflation then expanded a small causally connected universe rapidly, freez-
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ing in these physical properties. Hence, even if now distant areas in the sky appear

causally disconnected, they were causally connected in the past.

The Monopole Problem

Grand Unified Theories (GUT) in particle physics seek to merge the weak, elec-

tromagnetic and strong forces into one and predict that at high temperatures (like

the early universe), a number of heavy stable particles such as magnetic monopoles

should be copiously produced [41, 42]. Such particles would be non-relativistic for

almost all of the universe’s history, giving them plenty of time to come to dominate

over radiation. However, no such particles have been detected yet, placing strin-

gent limits on the density of relic particles in the universe. It was suggested that

the reason why we cannot find these particles is because inflation dilutes away any

relic particles as their density is reduced by the rapid expansion. Also, given that

we have to make sure that such particles are not produced again after inflation, it

means that inflation has to happen at a temperature lower than the temperature at

which monopoles can be produced.

It turns out that in order to solve the problems we’ve just discussed, the universe

needs to expand about e60 times during inflation [37, 38]. Aside from solving the

problems of the hot big bang, inflation has proved to be the most successful at

predicting the properties of the anisotropies observed in the CMB. Actually, the

interest in inflationary theory has persisted because of its ability to explain the ori-

gin of density perturbations in the early universe which are imprinted on the CMB.

Microscopic quantum fluctuations get stretched by the inflationary expansion to

macroscopic scales, larger than the physical horizon during inflation. As inflation

continues, new quantum fluctuations get created, resulting in additional smaller-

scale fluctuations superimposed on top of the large-scales ones. This goes on until

inflation ends, creating a pattern of fluctuations and random regions of all sizes that

have overdense and underdense energy densities. This spectrum of overdensities

and underdensities result in an ever-so-slightly colder and hotter regions, in terms

of temperature, of the CMB.

Finally, it is remarkable to note that inflation can explain both the (almost) isotropy

of the CMB and the small level of anisotropy as well. Inflation is not just a theory

that happened to restore the big bang or solve the problems known in the past,

inflation made quantitative predictions about the statistics of the CMB anisotropies

(or more striclty, the statistics of the curvature perturbation) and observations have

confirmed it, including WMAP [43, 44], SDSS [45, 46], 2dF [47] and Planck [48].
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Having given a brief overview of ΛCDM and why inflation is needed as well as a

brief outline of its success, in the next chapter we begin to develop the quantitative

theory of inflation.



2 Classical Dynamics of Inflation

In this chapter, we present a first-principles introduction to the classical

dynamics of slow-roll inflation. We describe the necessary conditions for

successful inflation compatible with observations and what those conditions

mean for the potential of the inflaton field.

“Aux grands maux, les grands remèdes.”

Desperate times, desperate measures.

—French proverb

2.1 The Physics of Inflation

During inflation, because of the expansion of space, it is important to keep track

of physical lengths. Density perturbations are normally identified by their comov-

ing wavenumber k. A scale is defined to be equal to the horizon when k = aH.

Note that strictly speaking, we should be referring to the Hubble radius, but it is

common practice to interchange ‘horizon’ and ‘Hubble radius’. During inflation, 1
aH

decreases; therefore a fixed comoving scale k−1 may begin its evolution consider-

ably smaller than 1
aH

, and by the end of inflation be considerably larger. Thus, the

scale crosses the horizon (horizon exit) during inflation, corresponding to k = aH.

Causal physics cannot act on superhorizon scales, hence the perturbations ‘freeze’.

After the end of inflation, the comoving Hubble length starts to increase again and

eventually the perturbations re-enter the horizon (horizon re-entry) [34, 49].

In § 1.2.6, we saw that negative pressure is needed for inflation to occur. Now

we will consider how such a pressure is realised in nature using scalar fields. A

scalar field associates a value to every point in space and has the special property

that they can have negative pressure. The Higgs is the only scalar field that has

been detected so far [50] in nature but scalar fields are ubiquitous in theories of high

energy physics beyond the standard model [51, 52]. In the inflationary context, the

inflaton field is a hypothetical scalar field that is theorised to have driven cosmic

inflation in the very early universe. However, some have argued that it is possible

23



2.1: The Physics of Inflation 24

that no new field is necessary; a modified Higgs field could act as the inflaton (see

for example, [53, 54]). This scenario however, more commonly known as Higgs in-

flation, requires that there is a non-minimal coupling between the Higgs field and

the spacetime curvature. The inflationary action we will define below in Eq. (2.1) is

minimally coupled to gravity in the sense that there is no direct coupling between

the scalar field and the metric. A non-minimal coupling would mean that instead

of the 1
2
R term in the action, we have something like 1

2
ξφ2R (see for example, [55]).

Moreover, there are various possibilities for getting inflationary expansion. Many

phenomenological models have been proposed with different predictions and differ-

ent theoretical motivations, for example, inflation with non-canonical kinetic terms,

multifield inflation, and inflation with modified gravity. In our discussion below,

however, we will work with single field inflation to introduce the key ideas and cal-

culations for the power spectrum and bispectrum. In Chapter 4, we will address

the question of how to do calculations in a multiple field setting. Having discussed

how the theory of inflation offers a very neat explanation for the homogeneity and

flatness of our universe and for the microphysical origin of the density perturbations

in the CMB, we now turn to the physical mechanism of inflation.

In Guth’s seminal paper on inflation [56], now known as Old Inflation, where he

proposed inflation to explain the non-detection of magnetic monopoles, the very

early universe was trapped in a metastable state which it could only decay out of

through the process of bubble nucleation via quantum tunnelling (see Fig. 2.1). The

basic idea is that the infant universe undergoes a phase transition at high energies.

Bubbles of true vacuum spontaneously form in the sea of false vacuum. However,

even then, it was recognised by Guth that his model was problematic because the

model did not reheat properly. Radiation could only be generated in collisions be-

tween bubble walls, but if inflation were to last long enough to solve the problems of

the hot big bang, the bubbles won’t be able to ‘meet’ as the universe is expanding

too fast.

2.1.1 Slow-roll Inflation

The bubble collision problem was solved by A. Linde [58] and also by A. Albrecht

and P. Steinhardt [59] independently. Their model is now known as New Inflation or

Slow-roll Inflation. In this model, instead of quantum tunnelling to the true vacuum,

the value of the field changes slowly and the potential energy gradually decreases in

a process often described as the field ‘slowly rolling down’ a potential hill. We need

to study the dynamics of a scalar field to see how this leads to inflation.



2.1: The Physics of Inflation 25

Figure 2.1: The Old Inflation model. The Inflaton is a scalar field that is re-
sponsible for cosmic inflation in the very early universe and has a self-interacting
potential, V (φ). φ is trapped in a false minimum and is freed from this minimum
when quantum tunelling is allowed to occur. Inflation ends when φ tunnels through
the barrier and rolls down to V (φ) = 0 [57].

Inflation with a single scalar field

The general action for a scalar field in curved spacetime is [49, 60]

S =

∫
d4x
√
−g
(

1

2
R− 1

2
gµν∂µφ ∂νφ− V (φ)

)
= S EH + Sφ, (2.1)

where SEH is the Einstein-Hilbert action and Sφ =
∫

d4x
√
−g
(
−1

2
gµν∂µφ ∂νφ− V (φ)

)
is the action of a scalar field with canonical1 kinetic term. Varying this action with

respect to the metric, we get the energy-momentum tensor and we find

T φµν = ∂µφ ∂νφ− gµν
(

1

2
∂σφ ∂σφ+ V (φ)

)
. (2.2)

The field equation of motion is given by varying the action with respect to the scalar

field,
δSφ
δφ

=
1√
−g

∂µ
(√
−g∂µφ

)
+ V,φ = 0, (2.3)

where V,φ = ∂V
∂φ

.

Now, if we take gµν to be the FLRW metric and take φ to be homogeneous, i.e.,

φ(t,x) = φ(t), the energy-momentum tensor takes the form of a perfect fluid, giving

ρφ =
1

2
φ̇2 + V (φ) (2.4)

1The action has a canonical kinetic term if: Lφ = X − V (φ) where X = 1
2g
µν∂µφ∂νφ. We have

also set Mpl = 1. The action has a non-canonical kinetic term if: Lφ = F (φ,X)− V (φ) where
F (φ,X) is some function of the inflaton field and its derivatives. L is the Lagrangian.
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and

pφ =
1

2
φ̇2 − V (φ). (2.5)

Eq. (1.6) becomes:

H2 =
1

3M2
pl

(
1

2
φ̇2 + V (φ)

)
. (2.6)

The equation of state is given by

ωφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.7)

From Eq. (2.7), we can see that if V (φ) dominates over the kinetic energy or equiv-

alently if φ̇2 � V (φ), then ωφ < 0, implying negative pressure. As we know from

Eq. (1.15), ωφ < −1
3

means accelerating expansion. Therefore, a scalar field can lead

to inflation provided the potential is flat enough, as the scalar field would then be

expected to ‘roll slowly’ and have negligible kinetic energy. During inflation, a grows

exponentially and the potential V (φ) evolves slowly (flat potential) which means H

is approximately constant.

A subtle point here is that we have set k = 0 since inflation drives the universe

to flatness anyway. Also, Λ = 0. The dynamics of the homogeneous scalar field is

determined by the Klein-Gordon equation (Eq. (2.3)),

φ̈+ 3Hφ̇+ V,φ = 0, (2.8)

and Eq. (2.6). The term 3Hφ̇ acts as a damping term, slowing the evolution of the

field.

As we will see quantitatively in § 2.1.2, to achieve slow-roll inflation this damping

term must balance the driving term from the potential. The way we usually picture

slow-roll inflation is shown in Fig. 2.2 where the red ball indicates the value φ the

field takes. The inflaton ‘rolls down its potential’. The kinetic energy of the field

is given by 1
2
φ̇2 and its potential energy is V (φ). Inflation occurs when φ̇2 � V (φ),

i.e., when V (φ) dominates. The CMB anisotropies are generated by quantum fluc-

tuations in the φ field about 60 e-folds before the end of inflation, shown by φCMB

in the diagram. Inflation ends at φend when 1
2
φ̇2 becomes comparable to V (φ). φ

then oscillates when it reaches the potential minimum.

If there is some coupling between the inflaton and other fields, then these oscil-

lations will be damped and the energy will be dumped into these other fields. This



2.1: The Physics of Inflation 27

Figure 2.2: A toy scenario for the dynamics of the scalar field during inflation.
During the flat part of the potential, the universe expands exponentially [49].

is the reheating epoch where the scalar field decays into particles which are either

the ones that we see today or some intermediate particles which will decay later on.

We will review reheating in Chapter 6.

During inflation, the quantum fluctuations in the inflaton field were stretched to

macroscopic sizes. Upon leaving the horizon, no causal physics can affect the per-

turbations and they then re-enter the horizon at the later stages of radiation and

matter domination, and thus set the initial conditions for structure formation via

gravitational instability. The fluctuations seen in the CMB were generated by quan-

tum fluctuations about 60 e-folds before the end of inflation. The number 60 comes

from the fact that one needs ∼ 50 - 60 e-folds of inflation in order to solve the

horizon problem.

2.1.2 Slow-roll Conditions

The standard approximation technique for analysing inflation is the slow-roll ap-

proximation [49, 60]. As the scalar field is slow-rolling, 1
2
φ̇2 is small compared to

V (φ) and Eq. (2.6) becomes:

H2 ≈ 1

3M2
pl

V (φ). (2.9)
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For accelerated expansion to occur for a sufficient amount of time, the second time

derivative of φ has to be small and Eq. (2.8) becomes:

|φ̈| � |3Hφ̇|, |V,φ|. (2.10)

In the limit of zero kinetic energy, the energy-momentum tensor would be that of a

cosmological constant and the expansion would be exponential (de Sitter expansion)

and everlasting. For a long, finite stage of acceleration, we must require that the first

slow-roll condition, 1
2
φ̇2 � V (φ), holds over an extended period of time. Since the

evolution of the scalar field is given by a second-order equation, the above condition

could apply instantaneously but not for an extended period. If we want the first

slow-roll condition to hold over an extended period, we must impose that the time-

derivative of this condition also holds (see Eq. (2.10)). These two conditions can be

expressed as

ε < 1 & |η|< 1 (2.11)

where

ε = − Ḣ

H2
= − d

dN
(lnH) (2.12)

and

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN
. (2.13)

ε and η are called the Hubble Slow-roll parameters. N is the number of e-folds of

inflationary expansion, dN = d ln a. The slow-roll conditions may also be expressed

as conditions on the shape of the inflationary potential and hence, we have the

potential slow-roll parameters, εv and ηv,

εv =
M2

pl

2

(
V,φ
V

)2

(2.14)

ηv = M2
pl

V,φφ
V

. (2.15)

In the slow-roll approximation, the Hubble and potential slow-roll parameters are

related as

ε ≈ εv, η ≈ ηv − εv. (2.16)

And in the slow-roll regime,

εv � 1 & |ηv| � 1. (2.17)

Violation of the slow-roll conditions results in the end of inflation. End of inflation

⇐⇒ ε(φend) = 1 ⇐⇒ εv(φend) ≈ 1.
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The slow-roll formulation is useful because it allows us to calculate quantities such

as the number of e-folds of accelerated expansion undergone by the universe analyt-

ically,

N (φ) =

∫ φ

φend

dφ√
2ε
≈
∫ φ

φend

dφ√
2εv

. (2.18)

Moreover, we will see that the expressions for observational signatures of inflation

can often be written in terms of the slow-roll parameters. The observational signa-

tures are the statistics of perturbations produced by inflation to which we now turn

our attention.



3 Quantum Fluctuations During

Inflation

In this chapter, we provide the calculations for the scalar and tensor power

spectra in the single field case. We then follow Maldacena’s work and com-

pute the three-point statistics in the single field case. We end the chapter

by looking at some observational constraints on inflation.

“The career of a young theoretical physicist consists of treating the

harmonic oscillator in ever-increasing levels of abstraction.”

—Sidney Coleman

3.1 The Cosmological Perturbation Theory

In Chapter 2, we considered the classical dynamics of inflation which solves the

problems of the hot big bang. The quantum theory of inflation, on the other hand,

provides an explanation for the primordial temperature anisotropies observed in the

CMB and the origin of the large-scale structure (LSS). Quantum fluctuations of the

inflaton field (other fields can also contribute) seed the perturbations in the local

density after inflation which then give rise to the inhomogeneities in the CMB and

eventually lead to the LSS. It is interesting to note that inflation was not engineered

to generate these primordial perturbations, rather it was found only after the initial

theory that as a result of considering inflation quantum mechanically, one also finds

a way to explain the origin of the perturbations.

Since during inflation, the universe is close to homogeneous, one can use cosmo-

logical perturbation theory [61–63]. We can think of this as superimposing small

fluctuations on a homogeneous background [33, 49, 64]. Therefore, we can decom-

pose all quantities X(t,x) into a homogeneous background, X̄(t) that depends only

on cosmic time and a spatially dependent perturbation. For example,

φ(t,x) = φ̄(t) + δφ(t,x), (3.1)

30
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and

gµν(t,x) = ḡµν(t) + δgµν(t,x) (3.2)

where the background metric is the FLRW metric. The inhomogeneous universe

contains perturbations both of the matter content and of the spacetime metric. In

principle, the symmetric 4 × 4 tensor δgµν(t,x) has ten degrees of freedom which

can be classified according to their behaviour under (three dimensional) spatial ro-

tations as Scalars (S), Vectors (V) and Tensors (T) [34]. The vector modes will be

neglected as they have decaying solutions. Scalar fluctuations give rise to density

perturbations and tensor fluctuations lead to gravitational waves, an important pre-

diction of inflation. What makes the SVT-decomposition so powerful is the fact that

the Einstein equations for scalars, vectors and tensors do not mix at linear order

and can therefore be treated separately [33, 49]. The symmetries possessed by the

spatially flat homogeneous and isotropic background spacetime allow us to decom-

pose the metric and matter perturbations into independent scalar, vector and tensor

components. This simplifies the study of cosmological perturbations considerably.

Before we proceed any further, we have to address an important subtlety. One

of the difficulties of cosmological perturbation theory is that there is no preferred

coordinate system at the perturbed level and therefore no unique way of describing

the perturbations. A coordinate system is described by the slicing and threading of

spacetime [65], i.e., by foliating 4-d spacetime into spatial hypersurfaces, each with

a constant time t. The metric perturbations depend on our choice of coordinates

known as the ‘gauge choice’. In particular, when we write down the perturbed met-

ric, we implicitly chose a specific time slicing of the spacetime and defined specific

spatial coordinates on these time slices. Making a different choice of coordinates

can change the values of the perturbation variables. This leads to spurious degrees

of freedom if all ten are treated independently [66]! To avoid this problem, we need

to consider the complete set of perturbations, i.e., both the matter Tµν perturba-

tions and the metric gµν perturbations. The metric perturbations enter the Einstein

tensor Gµν and thus the Einstein Field Equations link the metric and matter per-

turbations. Also, we have to study gauge-invariant combinations of perturbations

as these are independent of one another [49, 64]. Furthermore, our choice of gauge

invariant variables is not unique. In fact, one is free to choose between numerous

possible gauges; the choice is made for practical reasons.

Metric and Matter Perturbations

We study perturbations to the homogeneous background spacetime and the stress-

energy of the universe. Note that inflation drives the universe to flatness which is

why we take the flat FLRW metric to be the background metric.
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Metric (gµν) Perturbations [49]: The most general first-order perturbation to

a spatially flat FLRW metric is [49, 67]:

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidx
idt+ a2(t)[(1− 2Ψ)δij + Eij]dx

idxj (3.3)

In real space, the SVT decomposition of the metric perturbations in Eq. (3.3) is

Bi ≡ ∂iB − Si, where ∂iSi = 0, (3.4)

and

Eij = 2∂ijE + ∂iFj + ∂jFi + hij where ∂iFi = 0, hii = ∂ihij = 0. (3.5)

The vector perturbations Si and Fi are not produced during inflation and we there-

fore ignore vector perturbations.

Matter (T µν ) Perturbations [49]: The perturbed energy-momentum tensor1 has

the following entries:

T 0
0 = −(ρ̄+ δρ) (3.6)

T 0
i = (ρ̄+ p̄)avi (3.7)

T i0 = −(ρ̄+ p̄)(vi −Bi)/a (3.8)

T ij = δij(p̄+ δp) + Σi
j (3.9)

3.1.1 Scalars and Tensors

As previously stated, we will only work with the scalar and tensor modes as vector

perturbations are not created by inflation. The scalar fluctuations are what give rise

to the density fluctuations and the tensor fluctuations produce gravitational waves

[33, 49]. Therefore, we can now work with the scalar perturbations and the tensor

perturbations separately.

Scalar Perturbations

Scalar fluctuations change under a coordinate transformation. Therefore, in this

case, we have to work with gauge-invariant variables only. Two such important

gauge-invariant scalar quantities formed from combinations of matter and metric

perturbations are:

1The energy-momentum tensor Tµν consists of density ρ with perturbation δρ(t,x) = ρ(t,x)−ρ̄(t),
pressure p with perturbation δp(t,x) = p(t,x)− p̄(t), four-velocity uµ with gµνu

µuν = −1 and
anisotropic stress Σµν with Σµνuν = Σµµ = 0.
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1) The curvature perturbation on uniform density hypersurfaces,

− ζ = Ψ +
H
¯̇ρ
δρ ≈ Ψ +

H
˙̄φ
δφ in slow − roll inflation. (3.10)

Geometrically, ζ measures the spatial curvature of constant density hypersurfaces.

For adiabatic initial conditions, i.e., when the entropy perturbation vanishes2,

δpen ≡ δp−
˙̄p
˙̄ρ
δρ = 0, (3.11)

ζ remains constant outside the horizon. In this chapter, we only study single field

inflation where the condition in Eq. (3.11) is always satisfied. Therefore, in single

field inflation, the perturbation ζk does not evolve outside the horizon where k � aH

and k = 2π
λ

.

2) The comoving curvature perturbation,

R = Ψ− H

ρ̄+ p̄
δq = Ψ +

H
˙̄φ
δφ in slow − roll inflation (3.12)

where δq is the scalar part of the 3-momentum density (see Eq. (3.7)) T 0
i = ∂iδq and

in slow-roll inflation, T 0
i = − ¯̇φ∂iδφ. Geometrically, Rmeasures the spatial curvature

of comoving (or constant φ) hypersurfaces. The linearised Einstein equations relate

ζ and R by

− ζ = R+
k2

(aH)2

2ρ̄

3(p̄+ ρ̄)
ΨB (3.13)

where ΨB is one of the Bardeen potentials [68]. Hence, ζ and R are equal on super-

horizon scales, i.e, when k � aH and during slow-roll inflation. Their amplitude is

not affected by the unknown physical properties of the universe shortly after the end

of inflation. Actually, we know very little about the reheating phase of the universe

and it is because ζ (or R) remains constant that we are able to obtain predictions

for single field inflation. After inflation ends, the comoving horizon grows and even-

tually all fluctuations will re-enter the horizon. After re-entering the horizon, R
or ζ determines the perturbations in the density, resulting in the observed CMB

anisotropies and the LSS. We can choose to study the correlation function of either

R or ζ because their correlation functions are the same at horizon crossing, i.e, at

k = aH and are conserved on superhorizon scales. The idea here is that by com-

puting the power spectrum of R (or ζ) at horizon crossing, we will have a measure

of the primordial scalar fluctuations. Note that in this review, we will follow the

definitions and conventions as used in Ref. [49].

We define the power spectrum as follows:

2The definition of δpen is gauge-invariant.



3.1: The Cosmological Perturbation Theory 34

〈RkRk′〉 = (2π)3δ3(k + k′)PR(k), PR(k) =
k3

2π2
PR(k) (3.14)

where 〈RkRk′〉 is the ensemble average of the fluctuations. According to the ergodic

theorem [34], the ensemble average is equal to the volume average if the volume is

large enough. PR(k) is the dimensionless power spectrum. The normalisation of

the dimensionless power spectrum is chosen such that the variance of R is 〈RR〉 =∫∞
0
PR(k) d ln k. Next, we define the scalar spectral index ns, which measures the

scale dependence of the power spectrum, as:

ns − 1 =
d lnPR
d ln k

. (3.15)

If ns = 1, it means the power spectrum does not depend on scale. We can also

define the running of the spectral index by:

αs ≡
dns

d ln k
. (3.16)

Sometimes, it is useful to express the power spectrum in terms of a power law in

the form of:

PR = As(k∗)

(
k

k∗

)ns(k∗)−1+ 1
2
αs(k∗) ln( k

k∗ )
(3.17)

where As is the amplitude of the spectrum and k∗ is an arbitrary reference scale.

In single-field inflation with a canonical kinetic term, the spectrum is predicted to

be close to Gaussian [69, 70] and if R is Gaussian, then the power spectrum con-

tains all the statistical information. Non-gaussianity can be significant in multifield

inflation or in single field models with non-trivial kinetic terms and/or violation of

the slow-roll conditions (see, for example [71–74]).

Tensor Perturbations

Tensor perturbations are gauge-invariant and hence we do not need to find a gauge-

invariant variable in this case. We can compute the power spectrum of the amplitude

of the gravitational waves, i.e., h. The gravitational waves are usually defined as the

two independent components (or degrees of polarization) of the traceless transverse

3x3 tensor hij, such that the tensor metric perturbations are

ds2 = −dt2 + a2(t)[δij + hij]dx
idxj (3.18)

where hij,i = hii = 0 (transverse) and δijhij = 0 (traceless). We have two possible

polarisation states, i.e., h ≡ h+, h× and hence the power spectrum is defined as:

〈hkhk′〉 = (2π)3δ3(k + k′)Ph(k), Ph(k) = 2∆2
h =

k3

π2
Ph(k) (3.19)
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The tensor power spectrum is the sum of the power spectra of the two polarisation

states. Similar to what we did for the scalar perturbations, we can define a tensor

spectral index:

nt =
d lnPh
d ln k

. (3.20)

This means we can express the power spectrum as a power law:

Ph = At(k∗)

(
k

k∗

)nt(k∗)
(3.21)

where At is the amplitude and k∗ is an arbitrary reference scale.

3.2 Computing PR(k) and Ph(k)

Having defined the relationship between PR & PR(k) and Ph & Ph(k), it is now a

question of actually computing PR(k) and Ph(k) [33, 49]. Computing PR(k) and

Ph(k) from first principles is non-trivial. A summary of the computational strategy

is given below, for scalar and tensor perturbations separately:

Computing PR(k)

The metric scalar perturbations (cf. Eq. (3.3)) are,

ds2 = −(1 + 2Φ)dt2 + 2a(t)B,idx
idt+ a2(t)[(1− 2Ψ)δij + 2E,ij]dx

idxj, (3.22)

where B,i = ∂iB and E,ij = ∂ijE. We choose the following gauge for the dynamical

fields gij and φ:

δφ = 0, gij = a2[(1− 2R)δij + hij], ∂ihij = hii = 0. (3.23)

1) We expand the action given in Eq. (2.1) for single-field slow-roll models of inflation

to second order in R. We substitute Eq. (3.22) into Eq. (2.1) and using constraint

equations, write the action in terms of R:

S(2) =
1

2

∫
d4x a3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (3.24)

2) We then define the Mukhanov-Sasaki variable, υ ≡ zR where z2 = a2 φ̇2

H2 = 2a2ε

and change to conformal time, τ . Eq. (3.24) then becomes:

S(2) =
1

2

∫
dτd3x

[
(υ′)2 + (∂iυ)2 +

z′′

z
υ2

]
. (3.25)

3) Variation of Eq. (3.25) with respect to v yields the Mukhanov-Sasaki equation

for the mode functions υk where υ(τ,x) =
∫

d3k
(2π)3υke

ikx :
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υ′′k +

(
k2 − z′′

z

)
υk = 0. (3.26)

Note that Eq. (3.26) is the equation of a simple harmonic oscillator with a time-

dependent angular frequency of k2 − z′′

z
.

4) We then quantize the mode functions υk and the canonical commutation relation

implies that the mode functions are normalised as follows:

〈υk, υk〉 =
i

~
(υ∗kυ

′
k − υ∗′k υk) = 1 (3.27)

where υ∗k is the complex mode function.

5) We choose the vacuum state to be the Minkowski vacuum state for an observer

in the far past, i.e, τ → −∞. In this limit, Eq. (3.26) becomes:

υ′′k + k2υk = 0 (3.28)

Eq. (3.28) has oscillating solutions. Next, by requiring that the vacuum state is the

state with minimum energy, we can impose the following initial condition:

lim
τ→−∞

υk =
e−ikτ√

2k
. (3.29)

6) In the de Sitter limit, i.e, ε→ 0, Eq. (3.26) reads:

υ′′k +

(
k2 − 2

τ 2

)
υk = 0. (3.30)

7) To solve Eq. (3.30) above, we use our two boundary conditions, Eq. (3.27) and

Eq. (3.29) which leads to the unique Bunch-Davies mode functions :

υk =
e−ikτ√

2k

(
1− i

kτ

)
(3.31)

with superhorizon limit:

lim
kτ→0

υk =
1

i
√

2

1

k
3
2 τ
. (3.32)

8) From there, we compute the power spectrum Pυ(k) using the superhorizon limit,

Eq. (3.32). Using τ = 1
aH

, we get

Pυ(k) =
1

2k3
(aH)2 (3.33)

and using

PR =
1

z2
Pυ, (3.34)
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9) we finally obtain:

PR(k) =
1

2k3

H4
∗

φ̇2
∗

(3.35)

where (...)∗ means that the quantity is to be evaluated at horizon crossing, i.e.,

k = aH. Using Eq. (3.14) and the definition of ε in Eq. (2.12), we finally get

PR(k) =
H2
∗

(2π)2

H2
∗

φ̇2
∗

=
1

8π2

H2
∗

M2
pl

1

ε∗
. (3.36)

Computing Ph(k)

To compute Ph(k), we first substitute Eq. (3.18), the tensor metric perturbations,

into the Einstein-Hilbert action and then expand to second order:

S(2) =
M2

pl

8

∫
dτ d3x a2[(h′ij)

2 − (∂lhij)
2] (3.37)

Quantum production of tensor fluctuations during inflation follow the same logic

as in the case of scalar fluctuations and the resulting form of the action turns out

to be two copies of the action in Eq. (3.25), one for each polarisation mode of the

gravitational waves, h+, h×. We therefore do not need to go much into details here

as the power spectrum of tensor modes can be directly inferred from our previous

result,

∆2
h(k) =

4

M2
pl

(
H∗
2π

)2

. (3.38)

Using Eq. (3.19), we finally get

Ph(k) = 2∆2
h(k) =

2

π2

H2
∗

M2
pl

. (3.39)

3.2.1 The Observable Parameters

The tensor-to-scalar ratio, r, is defined as

r ≡ Ph
PR

. (3.40)

Using Eq. (3.36) and Eq. (3.39), we obtain

r ≡ Ph
PR

= 16ε∗. (3.41)

Next, from the definition of the scalar spectral index ns in Eq. (3.15), we have

ns − 1 = 2η∗ − 4ε∗. (3.42)
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We defined the tensor spectral index in Eq. (3.20)

nt = −2ε∗. (3.43)

It is more convenient to express ns, nt and r in terms of the potential slow-roll

parameters (εv, ηv) instead of the Hubble slow-roll parameters (ε, η). In the slow-

roll approximation the Hubble and potential slow-roll parameters are related as in

Eq. (2.16). It then follows that:

ns − 1 = 2η∗v − 6ε∗v , (3.44)

nt = −2ε∗v , (3.45)

r = 16ε∗v . (3.46)

We also note that single-field slow-roll models satisfy a consistency relation between

r and nt:

r = −8nt (3.47)

Hence, if we have the potential V (φ) for a single-field model, we can easily compute

ns, nt and r.

3.2.2 Energy Scale of Inflation

In addition to the anisotropies in the CMB temperature, the CMB is also polar-

ized via Thomson scattering [75] which is the elastic scattering of electromagnetic

waves by a free charged particle and in the case of the CMB, mainly by electrons.

CMB polarization was first detected in 2002 by DASI [76] from the South pole. The

dominant contribution to CMB polarization anisotropies is from density (scalar)

perturbations and these scalar perturbations only create polarization patterns of a

particular type, called the E-modes. The second contribution comes from primordial

gravitational wave (tensor) fluctuations from inflation which create B-mode polar-

ization. The amplitude of the tensor fluctuations (unlike scalars) depends only on

the value of the Hubble constant during inflation. Therefore, from Eq. (3.40), it

follows that the amplitude of the tensor fluctuations depends on the potential of

the inflaton field during inflation. We can determine the energy scale of inflation by

measuring the amplitude of the primordial tensor fluctuations [49]:

V
1
4 ∼

( r

0.01

) 1
4

1016 GeV. (3.48)
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r > 0.01 corresponds to inflation occuring at GUT scale energies [49].

3.2.3 The Lyth Bound

Using Eq. (3.36) and Eq. (3.39), we can find another interesting result by noting

that the tensor-to-scalar ratio relates directly to the evolution of the inflaton as a

function of the number of e-foldings, N [49]:

r =
8

M2
pl

(
dφ

dN

)2

(3.49)

Re-arranging, we find that we can determine the width of the potential or the total

field evolution between the time when CMB fluctuations exited the horizon (corre-

sponding to N = Ncmb) and the end of inflation (N = Nend):

∆φ

Mpl

=

∫ Ncmb
Nend

dN
√
r

8
⇐⇒ ∆φ

Mpl

= O(1)×
( r

0.01

) 1
2
. (3.50)

Large values of r, r > 0.01 imply ∆φ > Mpl, i.e, large-field inflation (super-

Planckian).

3.3 Non-Gaussianity

The 50 million pixels all-sky image from Planck is compressed to reduce all the

information to ∼ 103 multipole moments. This enormous compression can only be

justified if the primordial perturbations were drawn from a Gaussian distribution

with random phases. If the perturbations are truly Gaussian, then the power spec-

trum contains all the statistical information and the three-point function and all odd

higher order correlation functions of ζ vanish and all even higher order correlation

functions can be expressed in terms of the two-point function itself.

The primordial fluctuations are observed to be very close to Gaussian but even

a small non-Gaussianity would encode a significant amount of information about

the underlying theory of inflation, i.e., about the inflationary action. In fact, non-

Gaussianity is an important probe of the early universe because non-Gaussianity is

a direct measure of the inflaton interactions (the fields, symmetries, and couplings).

Many models give predictions on the power spectrum that are consistent with obser-

vations; to truly distinguish between them, one needs to look at non-Gaussianities.

Constraints on non-Gaussianity will also put constraints on alternatives to inflation

[77–83].
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3.3.1 Sources of Non-Gaussianity

There are several sources for a non-zero bispectrum observed in the CMB today:

• Primordial non-Gaussianity: Non-Gaussianity in the primordial curvature per-

turbation ζ generated by inflation. In this thesis, this is what we are interested

in.

• Second-order non-Gaussianity: This arises from the non-linearities in the

transfer function that relates ζ to the observed CMB temperature fluctua-

tions at recombination.

• Secondary non-Gaussianity: This is non-Gaussianity coming from ‘late’ time

effects after recombination. For example, gravitational lensing produced by

the large-scale structure in the universe can mimic the effects of primordial

non-Gaussianity [84–86].

• Foreground non-Gaussianity: The signal from the CMB is also contaminated

by galactic and extra-galactic sources [87, 88].

For a complete understanding, one needs to take into consideration each of the

sources of non-Gaussianity above as all of them contribute to the observed signal.

Hovewer, this is beyond the scope of our work and for the rest of this thesis, we

focus on only primordial non-Gaussianity.

3.4 Three and Four-Point Functions of ζ

3.4.1 The Bispectrum

The three-point function of ζ in Fourier space defines the bispectrum

〈ζk1ζk2ζk3〉 = (2π)3δ3(k1 + k2 + k3)Bζ(k1, k2, k3). (3.51)

The delta function above that enforces momentum conservation is a consequence

of the translational invariance of the background. This constrains the wavevectors

k1,k2,k3 to form a triangle. Another thing that we notice is that Bζ contains

only the amplitudes of k’s because of statistical isotropy. Physically, this means

that all triangle configurations in the CMB are assumed to be drawn from the

same distribution, regardless of their orientation. The size of the triangle is one

degree of freedom in the sense that the bispectrum has an overall scale dependence

much like the power spectrum Pζ(k). The bispectrum, however, contains a lot more

information because we can also vary the shape of the triangle. If we take rotational
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invariance into account, for a fixed total scale kt = k1 + k2 + k3, the number of

independent variables is further reduced to just two, e.g. the two ratios k2/k1

and k3/k1. The shape of the triangle is commonly referred to three limiting cases:

equilateral (k1 = k2 = k3), squeezed (k3 � k2 = k1) and folded (k1 = 2k2 = 2k3).

We show the different configurations in Fig. 3.1.

Figure 3.1: The coordinates x2 and x3 are the rescaled momenta k2/k1 and k3/k1,
respectively.The momenta are ordered such that x3 6 x2 6 1. Figure taken from
[49].

3.4.2 Shape Functions of Non-Gaussianity

It is clear that, even if we assume statistical isotropy, there is still infinite freedom

in the functional form of Bζ(k1, k2, k3) and therefore an infinite number of ways

to parameterize non-Gaussianity. In this section, we will look at some common

parametrizations in cosmology. Let us write the bispectrum in the following way

[49, 71, 89]:

Bζ(k1, k2, k3) =
18

5
fNL
S(k1, k2, k3)

(k1k2k3)2
∆2
ζ (3.52)

where fNL is a constant, S is the shape function and ∆ζ = Pζ(k)k3 is the dimen-

sionless power spectrum.

Local Shape

One of the first ways to parameterize the three-point correlation function was intro-

duced by Komatsu and Spergel [90] and was done via a non-linear correction to a

Gaussian perturbation ζg:



3.4: Three and Four-Point Functions of ζ 42

ζ(x) = ζg(x) +
3

5
f local

NL [ζg(x)2 − 〈ζg(x)2〉] (3.53)

This definition of ζ is local in real space, i.e., the non-Gaussian part of ζ is a

function of only the local position x and has therefore been called the local model of

non-Gaussianity. The factor 3/5 that appears in Eq. (3.53) is by convention since

non-Gaussianity was first defined using the Newtonian potential, Φ(x) = Φg(x) +

f local
NL [Φg(x)2 − 〈Φg(x)2〉] which is related to ζ by a factor of 3/5 in the matter-

dominated era. Using Eq. (3.53) the bispectrum of local non-Gaussianity can be

derived as:

Bζ(k1, k2, k3) =
6

5
f local

NL × [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]. (3.54)

Comparing this to our definition in Eq. (3.52), we can read off the local shape

function as

Slocal(k1, k2, k3) =
1

3

( k2
3

k1k2

+ 2 perms.
)
. (3.55)

The signal for local non-Gaussianity is dominated by squeezed states, i.e., x3 ≈
0, x2 ≈ 1. We show the relative signal for varying triangle configurations for the

local shape in Fig. 3.2.

Figure 3.2: 3-D plots of the local and equilateral bispectra. Figure taken from [49].
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Equilateral Shape

The equilateral shape is given by the following shape function:

Sequil(k1, k2, k3) =
(k1

k2

+ 5 perms.
)
−
( k2

1

k2k3

+ 2 perms.
)
− 2. (3.56)

As shown in Fig. 3.2, the signal for this particular shape template peaks at the

equilateral configurations, i.e., when all three modes have the same wavelengths

(k1 = k2 = k3).

Orthogonal Shape

The orthogonal shape is phenomenologically orthogonal to both the local shape and

the equilateral shape and its shape function is given by [89]:

Sortho(k1, k2, k3) = −3.84
( k2

1

k2k3

+ 2 perms.
)

+ 3.94
(k1

k2

+ 5 perms.
)
− 11.10. (3.57)

The orthogonal shape peaks in the folded triangle configuration.

Physically motivated inflationary models for producing non-Gaussianity often pro-

duce signals that peak at special triangle configurations.

• Squeezed triangle: Models with multiple light fields during inflation, the cur-

vaton scenario [91, 92], inhomogeneous reheating [93, 94] and New Ekpyrotic

models [77–83].

• Equilateral triangle: Signals that peak at equilateral triangle configuration

arise in models with higher-derivative interactions and non-trivial speeds of

sound [95, 96].

• Folded triangle: Signals that peak in folded triangles arise in models with

non-standard initial states [97].

3.4.3 The Trispectrum

Ignoring disconnected terms that arise when any two of the k’s sum to zero, the

four-point function or equivalently Tζ is defined as

〈ζk1ζk2ζk3ζk4〉 = (2π)3δ3(k1 + k2 + k3 + k4)Tζ(k1, k2, k3, k4) (3.58)

Considering only local non-Gaussianity3,

3This parametrization is known as the local model of non-Gaussianity with fNL and gNL

parametrizing the first and second order deviations from Gaussianity, cf Eq. (3.53).
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ζ(x) = ζg(x) +
3

5
f local

NL [ζg(x)2 − 〈ζg(x)2〉] +
9

25
gNLζ

3
g (x), (3.59)

then, Tζ can be written as:

Tζ = TNL[Pζ(k3)Pζ(k4)Pζ(k13) + 11 perms] +
54

25
gNL[Pζ(k2)Pζ(k3)Pζ(k4) + 3 perms]

(3.60)

with kij = |ki + kj|.
We will give observational constraints on TNL and gNL in § 3.6.

3.5 The in-in Formalism

In § 3.2, we expanded the action to second order to compute the two-point statistics.

In this section, we briefly outline the calculation of the three-point function by use

of the in-in formalism4. This involves expanding the action up to cubic order in

perturbations to obtain the third-order interacting Hamiltonian.

In standard scattering calculations, one computes transition amplitudes between

an ‘input’ state |in〉 and an ‘output’ state 〈out| as 〈out|S |in〉 where S is the scat-

tering matrix. The scattering matrix describes the transition probability for a state

|in〉 in the far past to become some state 〈out| in the far future,

〈out(+∞)| |in(−∞)〉 . (3.61)

It makes sense to impose asymptotic conditions at very early times and very late

times because in Minkowski space, states are assumed to be non-interacting in the

far past and the far future when the scattering particles are far from the interaction

region. The aymptotic states relevant for particle physics are therefore taken to be

vacuum states of the free Hamiltonian H0. For inflationary correlations however, we

are interested in the expectation values of products of operators at equal fixed times,

i.e., at two “in” states. One needs to be careful when defining the time-dependence

of the operators in the interacting theory. In the limit when the wavelengths are

much smaller and deep inside the horizon, the interaction picture fields should have

the same form as in Minkowski space. This state is the Bunch-Davies vacuum state.

The in - in formalism amounts to using standard techniques of Quantum field the-

ory (QFT) to calculate the expectation value of operators with two “in” states (see

the classic papers by Maldacena [70] and Weinberg [99] and reviews by Chen [100]

and Koyama [101]).

4The three-point function calculation can also be done using the path integral formalism, de-
scribed pedagogically in [98] for the single field case.
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Our task is to calculate n-point functions of the primordial curvature perturbation

ζ. Let us consider expectation values of operators like Q = ζk1ζk2 ...ζkn ,

〈Q〉 = 〈in|Q(t) |in〉 (3.62)

In QFT, the expression for this quantity is

〈Q(t)〉 = 〈0| T̄ ei
∫ t
−∞(1−iε)Hint(t

′)dt′ Q(t) Te−i
∫ t
−∞(1+iε) Hint(t

′′)dt′′ |0〉 , (3.63)

where |0〉 is the free vacuum and Hint is the interacting (third-order) part of the

Hamiltonian. T (T̄ ) is the (anti-)time ordering symbol meaning that products of

Hint in the power series expansion of the exponential are to be written from left to

right in the increasing order of time arguments. To leading order, Eq. (3.63) is

〈Q(t)〉 = −i
∫ t

−∞
dt′ 〈0| [Q(t), Hint(t

′)] |0〉 (3.64)

where the standard iε prescription has been used to turn off the interaction in the

infinite past. This equation allows us to calculate the bispectra at tree-level.

A very important theoretical calculation was derived by Maldacena [70] where he

found that for single field, slow-roll models, the three-point function is given by

〈ζk1ζk2ζk3〉 = (2π)3δ3(k1 + k2 + k3)
H4
∗

φ̇4
∗

H4
∗

M4
pl

1∏
i(2k

3
i )
A∗ (3.65)

where the label ‘*’ indicates evaluation at horizon crossing time and,

A∗ = 2
φ̈∗

H∗φ̇∗

∑
k3
i +

φ̇2
∗

H2
∗

[1

2

∑
k3
i +

1

2

∑
i 6=j

kik
2
j + 4

∑
i>j k

2
i k

2
j

k1 + k2 + k3

]
. (3.66)

This expression highlights an important result, later shown in more generality by

Creminelli & Zaldarriaga [102] (see also Ref. [103]); there is a consistency relation

involving the three-point function which is valid in any inflationary model, indepen-

dent of the inflaton Lagrangian under the assumption that the inflaton is the only

dynamical field [102]:

lim
k3→0
〈ζk1ζk2ζk3〉 = (2π)3δ3(k1 + k2 + k3)(1− ns)Pζ(k1)Pζ(k3) (3.67)

Cheung et al. [104] later formalized this result. This theorem states that for single-

field inflation, the squeezed limit of the three-point function is suppressed by (1−ns)
and goes to zero for perfectly scale-invariant perturbations. Therefore, single-field

inflation can be ruled out if there is a detection of non-Gaussianity in the squeezed

limit. The relation in Eq. (3.67) is independent of the form of the potential, the
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form of the kinetic term and the initial vacuum state5. This reduced bispectrum of

O(ε, η) is below current observational limits. Hence, a detection of non-Gaussianity

in the squeezed limit will rule out all models of single field inflation.

3.6 Observational Constraints on Inflation

Now that we have reviewed the theoretical calculations of the correlation functions

of ζ, in this section we will relate the predictions from single field inflation to the

observational data. The ΛCDM model has six free parameters in total: Ωbh
2,

ΩCDMh
2, ΩΛ, the optical depth τ , the scalar amplitude As and the scalar spectral

index ns with the power law ansatz

Pζ(k) = As

( k
k∗

)ns−1

(3.68)

where k∗ = 0.05 Mpc−1 is a pivot scale. The best-fit constraints on inflation are

given by Planck 2018 [48].

ns = 0.9649± 0.0042 (68%, P lanck TT,TE,EE + lowE + lensing) (3.69)

As = (2.099± 0.101)× 10−9 (68%, P lanck TT,TE,EE + lowE + lensing) (3.70)

The tensor-to-scalar ratio at k∗ = 0.002 Mpc−1 is r0.002 < 0.064

(68%, P lanck TT,TE,EE + lowE + lensing + BK14).

Future experiments searching for primordial tensor modes include EBEX [105], BI-

CEP3 [106], the Atacama B-Mode Search (ABS) [107], SPIDER [108], CLASS [109],

SPTpol [110], the POLARBEAR Experiment [111] and ACTPol [112].

The most accurate constraints on primordial non-Gaussianity are obtained from

the Planck mission:

f local
NL = 0.8± 5.0 (3.71)

f equil
NL = −4± 43 (3.72)

f ortho
NL = −26± 21 (3.73)

5If one wants to be pedantic, this is true assuming Bunch-Davies vacuum and that the classical
solution is a dynamical attractor [104].
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at 68% CL using the combination of temperature and polarisation data [113]. Planck’s

2013 analysis [114] gives TNL < 2800 (95 % CL). Using WMAP-5 data, Fergusson

et al (2010) [115] obtain −5.4× 105 < gNL < 8.6× 105 (68 % CL). The Planck 2015

analysis [113] gives gNL = (−9.0± 7.7)× 104 (68 % CL).

Summary

In this chapter, we have calculated the two-point and the three-point statistics of

the primoridal curvature perturbations for the single field case. For the bispectrum,

we considered non-Gaussianity from quantum mechanical effects before and dur-

ing horizon exit. For a single field model, ζ is conserved shortly after horizon exit

and remains constant until the time of horizon re-entry. Therefore, the calculations

around horizon crossing that we presented are enough to give us theoretical predic-

tions from single field inflation. Observational data is consistent with single field

inflation.

There is no reason, however, for why there cannot be more than one light field

during inflation. If there are additional fields, ζ is not necessarily conserved and

evolution of all isocurvature modes needs to be accounted for. Moreover, in addi-

tion to the non-Gaussianity around horizon exit, the classical non-linear evolution

of ζ can generate non-Gaussianity after horizon exit. In the next chapter, we will

review the δN formalism which can be used to calculate correlation functions of ζ,

including non-Gaussian contributions after horizon exit.

Other techniques which we will not discuss here include numerical implementations

such as PyTransport [116] and CppTransport [117] and moment transport equations

[118, 119].



4 The δN Formalism

In Chapter 3, we calculated the quantum perturbations which become clas-

sical around the time of horizon crossing. In this chapter, we will develop

the mathematical formalism needed to allow for the tracking of these per-

turbations in the following superhorizon epoch which can then be related to

observationally relevant quantities: the δN formalism. The δN formalism is

a powerful and widely used technique to compute the non-linear evolution

of cosmological perturbations on large scales. With a review of δN, we will

see how this formally allows ζ to be calculated in terms of the field pertur-

bations at horizon exit. We will see later though (in Chaper 5) that the

standard δN formalism fails in some cases and this limitation is the starting

point of our research work.

“Our treatment of this science will be adequate, if it achieves the

amount of precision which belongs to its subject matter. ”

—Aristotle

4.1 The δN Formalism

To calculate the primordial power spectrum and primordial non-Gaussianity pro-

duced during multifield inflation, as measured by the two- and three-point function

of the curvature perturbation, we need two things: firstly, an expression for the

curvature perturbation ζ, here given by the Sasaki-Stewart δN formalism [120] (for

a concise review of the δN formalism, see Ref. [121]) and secondly, an estimate for

the scalar two- and three-point functions just after horizon exit. We will first discuss

the two- and three-point functions of the scalar field perturbations in the following

section. In § 4.1.2, we review the δN formalism.

4.1.1 The Flat Gauge

In § 3.1, we followed Maldacena [70] and used the comoving gauge (δφ = 0) to cal-

culate the scalar power spectrum for single field slow-roll inflation. The advantage

48
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of using the comoving gauge is that for single field inflation, ζ is time-independent

classically after horizon crossing [122–128]. This can also be seen in the tree-level

quantum calculation of the correlations of ζ [129]: if ζ evolves after horizon crossing,

this would appear in the form of divergent vertex integrals in the correlation func-

tions [130–132]. These divergent integrals indicate that the calculations are sensitive

to infrared dynamics (interactions continue arbitrarily into the future). Fortunately,

correlation functions of ζ in single field inflationary models, calculated in the co-

moving gauge, do not evolve on superhorizon scales. However, in the presence of

more than one field, ζ is now able to evolve in the superhorizon epoch (for example,

see [118, 120, 133–142]) and the correlation functions are dependent on infrared dy-

namics which means that the advantage of the comoving gauge no longer applies.

This motivates us to pick a different gauge for calculating correlation functions of ζ

in multi-field inflationary scenarios: the spatially flat gauge.

The flat gauge is defined by Ψ = 0 (cf. Eq. (3.12)) which foliates spacetime such

that the spatial hypersurfaces have a flat metric and leaves perturbations in the

scalar field values,

χI(x) = χ̄I + δχI(x) (4.1)

where χ̄I is the background value and δχI(x) is the perturbation in the field. Next,

the linear order scalar field perturbation field equation, in the spatially flat gauge,

in a linear order perturbed FLRW spacetime for each fourier mode of comoving

wavenumber k, for canonical scalar fields is

δχ̈I + 3Hδχ̇I +

[
V,IJ +

(k
a

)2

δIJ −
1

M2
pla

3

d

dt

(
a3 ˙̄χI ˙̄χJ

H

)]
δχJ = 0. (4.2)

δIJ is the Kronecker-delta. We ignore the interaction terms at leading order in the

slow-roll approximation, switch to conformal time τ and re-write the above equation

as

δχI′′ + 2HδχI′ +
[
a2V,II + k2

]
δχI = 0 (4.3)

where a prime ′ denotes d/dτ . To choose the vacuum, we note that for very high

frequency modes deep inside the horizon, the field can be quantized as if it were in

a Minkowski spacetime. Hence, we pick the solution that corresponds to the usual

Minkowski vacuum, keeping only the positive frequencies and we have

δχI → e−ikτ

a
√

2k
, when τ → −∞. (4.4)
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The comoving Hubble radius, 1/aH, decreases during inflation and modes which be-

gin inside the horizon start to exit the horizon when k = aH and eventually become

superhorizon, k � aH. The perturbations in canonical light fields, with potential

V,II � H2, become over-damped on superhorizon scales and solving Eq. (4.3), ac-

quire an amplitude of H/
√

2k3 evaluated at the time when they freeze in at horizon

exit, i.e., at k = aH. Therefore, the two point correlation function for the scalar

field perturbations at horizon crossing is defined by

〈δχIk1
δχJk2
〉 = (2π)3δ3(k1 + k2)ΣIJ(k1), (4.5)

where [143, 144]:

ΣIJ(k) =
H2
∗

2k3
δIJ (4.6)

and the label ‘*’ denotes evaluation at horizon crossing time. The three-point cor-

relation function of the field perturbations at horizon crossing is given by

〈δχIk1
δχJk2

δχKk3
〉 = (2π)3δ3(k1 + k2 + k3)αIJK(k1, k2, k3). (4.7)

The three-point function measures the intrinsic non-Gaussianity in the fields pro-

duced at horizon crossing. The calculation of αIJK(k1, k2, k3) mirrors that performed

by Maldacena [70] and requires one to perturb the action up to third order in δχI

and identify the interacting Hamiltonian. Here, we quote the results by Seery &

Lidsey [72] who used the in-in formalism to calculate αIJK(k1, k2, k3) for the case of

canonical scalar fields, in the equilateral limit at time t∗ and found

αIJK(k1, k2, k3) =
4π4

k3
1k

3
2k

3
3

(
H∗
2π

)4 ∑
perms

˙̄χI∗δJK
4H∗

(
−3

k2
2k

2
3

kt
−k

2
2k

2
3

k2
t

(k1+2k3)+
1

2
k3

1−k1k
2
2

)
(4.8)

where kt = k1 + k2 + k3 and the sum is over six (IJK) permutations while simul-

taneously permuting the momenta (k1, k2, k3) (I is associated with k1, J with k2

and K with k3). In other words, when exchanging indices I and J , for example, one

should also exchange k1 and k2 and so on. In making this estimate, the authors have

assumed that the three k-modes have roughly the same wavenumbers, so that they

cross the horizon at similar times. This means that this analytical result cannot be

trusted when the crossing times are too different. We also refer the reader to the

work of Kenton & Mulryne [145] who calculated the intrinsic field-space three-point

function in the squeezed limit.

4.1.2 The Separate Universe Picture

The seeds of structure in the universe are supposed to originate from the quantum

fluctuations of the inflaton field. As each scale leaves the horizon (horizon crossing)
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during inflation, these fluctuations are promoted to classical perturbations around

the time of horizon exit. The resulting inhomogeneity on cosmological scales is

commonly defined by the intrinsic curvature of spatial hypersurfaces defined with

respect to the matter. In multifield models, one needs to know the evolution of the

curvature perturbation outside the horizon, through the end of inflation until it re-

enters the horizon on each cosmologically relevant scale. One could use cosmological

perturbation theory to track the superhorizon evolution of linear perturbations in the

metric and matter fields in whatever gauge one chooses. Then, one can calculate the

corresponding perturbation in the density and pressure and see whether ζ changes

significantly. The resulting perturbation equations contain gradient terms that are

a measure of the deviation from homogeneity. In Fourier space, the gradient terms

are in powers of k
aH

. k
aH

is small after horizon crossing since during inflation a is

growing quasi-exponentially while H is approximately constant. This leads to a

simplifying assumption where one can neglect the gradient terms and leads to a

simpler alternative technique to studying the evolution of perturbations on large

scales which has been employed in multifield models of inflation. This alternative

approach considers the superhorizon universe as a collection of independent FLRW

universes on account of the negligible gradient terms [120, 124, 125, 146–148]. In the

separate universe picture, one considers the superhorizon universe to be made up of

separate FLRW universes where density and pressure may take different values but

are locally homogeneous. These separate universes evolve independently according

to the same equations as the unperturbed background equations of motion but

they have different initial conditions sourced by quantum fluctuations. By patching

together these universes, one can follow the evolution of the perturbations with time.

In reality this procedure only works down to a cut-off smoothing scale somewhat

larger than the comoving horizon size. Fig 4.1 shows a schematic illustration of the

separate universe picture.

Consider an unperturbed reference universe which is homogeneous and isotropic.

Its line element may be written as:

ds2 = −dt2 + a2(t)δijdx
idxj (4.9)

where a(t) is the unperturbed scale factor. As mentioned earlier, the curvature

perturbation is only of interest after the universe has been smoothed on some scale
k
a

bigger than the horizon H−1. To define the curvature perturbation, consider fixed-

t slices of spacetime to have uniform energy density and the fixed-x worldlines to

be comoving. The curvature perturbation can be defined as a scalar perturbation

to the spatial metric and be written as a local perturbation of the scale factor:
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Figure 4.1: A schematic illustration of the δN formalism: Two locally homogeneous
regions (a and b) at fixed spatial coordinates, separated by a coordinate distance λ on
an initial hypersurface at t = t1 and subsequently on a final hypersurface at t = t2.
Each superhorizon sized (cH−1) region is viewed as having its own FLRW region
around it and that assumption is true up to some scale λs. The largest scale λ0

represents the ‘background’ and is much bigger than even our present horizon size.
Figure taken from [148].

a(t)eζ(t,x) = ã(t,x). (4.10)

According to this definition, ζ is the perturbation in ln ã. One can then consider a

slicing whose metric has the same form as Eq. (4.10) but without the ζ factor which

we call the flat slicing. Starting from any initial flat slice at time t = t∗, we can

then define the amount of expansion, i.e. the number of e-folds, to a final slice of

uniform energy density at time t:

N(t,x) ≡ ln

[
ã(t,x)

a(t∗)

]
(4.11)

The unperturbed number of e-folds is given by:

N̄(t) = ln

[
a(t)

a(t∗)

]
. (4.12)

Using the definition of ζ , we then have the celebrated δN formula:
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ζ(t,x) = N(t,x)− N̄(t) = δN(t,x). (4.13)

We note that δN does not depend on the initial time t∗. It is typical to take t∗ to be

some time after all the relevant modes in a given correlation function have exited

the horizon.

4.1.3 Standard δN: The Inflationary Prediction

The evolution of the observable universe on cosmological scales is determined by

the values of one or more light scalar fields when that scale first emerges from the

quantum regime a few Hubble times after horizon exit. For an inflationary model

with n scalar fields, χI , where I runs from 1 to n we can split the field values on

any initial flat slice into background and perturbed parts χI(x) = χ̄I + δχI(x).

Invoking the separate universe picture and choosing the homogeneous quantities χ̄I

to correspond to the unperturbed universe, Eq. (4.13) for ζ becomes:

ζ(t,x) = N(ρ(t), χ1(x), χ2(x), χ3(x), ...)− N̄(ρ(t), χ̄1, χ̄2, χ̄3, ...). (4.14)

In this expression, the expansion N is evaluated in an unperturbed universe from

an epoch when the fields have assigned values to an epoch when the energy density,

ρ(t), has some specified value. Using this expression, we can propagate forward

the stochastic properties of ζ to a later observable time, given the properties of the

initial field perturbations.

Since the observed curvature perturbation is close to Gaussian, the standard ap-

proach to applying the δN formalism is to make a Taylor expansion in the initial

flat slicing field perturbations [72, 125, 149] and assuming ρ to be fixed,

ζ(x) '
∑
I

N,Iδχ
I(x) +

∑
IJ

1

2
N,IJ(δχI(x)δχJ(x)− δχIδχJ) (4.15)

where we use the notation N,I ≡ ∂N
∂χ̄I

and N,IJ ≡ ∂2N
∂χ̄I∂χ̄J

and where δχIδχJ =

〈δχI(x)δχJ(x)〉. δχI express the deviations of the fields from their unperturbed

values in some given region of space. From this point onward, it is quite straight-

forward to compute the statistics of ζ. To form the desired correlations of ζ(k), one

takes the Fourier transform of Eq. (4.15) and keeps only the leading terms. One also

has to specify the statistical distribution of field space perturbations on the initial

flat hypersurface. The correlation functions of the field perturbations δχI = χI− χ̄I

are given by Eq. (4.5) and Eq. (4.7).
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The power spectrum and bispectrum of ζ is then

Pζ(k) = N,IN,J ΣIJ(k), (4.16)

Bζ(k1, k2, k3) = N,IN,JN,K αIJK(k1, k2, k3) +N,IN,JN,KL (ΣIK(k1)ΣJL(k2) + cyclic).

(4.17)

Taking the field perturbations to be Gaussian with an almost flat spectrum and

using Eq. (4.6) such that1

Pχ =

(
H∗
2π

)2

(4.18)

and that

〈ζk1ζk2〉 ≡ (2π)3δ3(k1 + k2)Pζ(k1), (4.19)

we have [149]

Pζ =
∑
I

N2
,I

(
H∗
2π

)2

. (4.20)

For the bispectrum, if we assume that the intrinsic non-Gaussianity of the fields is

negligible and so we ignore the first term in Eq. (4.17) which from Eq. (4.8) we see

is the case for canonical fields and taking the normalization of the bispectrum as

defined in Eq. (3.54), we have

6

5
fNL =

∑
IJ N,IN,JN,IJ
[
∑

I N
2
,I ]

2
(4.21)

at leading order.

The standard δN gives extremely accurate results in many cases but we will see

in the next chapter that there exists cases where the method breaks down. As a

solution, we propose the Non-Perturbative δN which we will introduce in Chapter 5.

1Recall that the dimensionless power spectrum is defined as Pχ = k3

2π2Pχ.



5 Non-Perturbative δN Formalism

In Chapter 4, we reviewed the standard δN formalism. In most models

of inflation, the series expansion in Eq. (4.15) converges so rapidly that

truncation at second order is accurate enough to calculate the three-point

function of ζ. However, there are several cases where the convergence is

so slow that truncating the series at first order to compute the two-point

function of ζ or at second order to calculate the three-point function of ζ is

not justified. This problem arises when one uses lattice simulations to probe

the effects of isocurvature modes on models of reheating. For example, in the

massless preheating case (see Chapter 6 and Chapter 7), the obtained N(χ)

function by numerical simulations shows that ζ is quite sensitive to the value

of χ. The key goal of this thesis is to calculate observational predictions

for inflationary models for which standard δN formalism does not work.

In this chapter, we revisit the question of how to calculate correlations of

the curvature perturbation, ζ, using the δN formalism when one cannot

employ a truncated Taylor expansion of N . Working in real space, we use

an expansion in the cross-correlation between fields at different positions,

and present simple expressions for observables such as the power spectrum

and the reduced bispectrum, fNL. These take the same form as those of

the usual δN expressions, but with the derivatives of N replaced by non-

perturbative δN coefficients. We test the validity of this expression and,

when compared to others in the literature, argue that our expressions are

particularly well suited for use with simulations. Please note that we have

repeated a few expressions from § 4.1.3 for the convenience of the reader.

“Clouds are not spheres, mountains are not cones, coastlines are not

circles, and bark is not smooth, nor does lightning travel in a straight

line.”

—Benôıt Mandelbrot

55
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5.1 Introduction

Inflation has been extremely successful in explaining the generation of the primordial

perturbations seeding the structures of our universe, but the microphysics of inflation

remains unknown. The simplest model consistent with existing observational data is

to assume that inflaton fluctuations are solely responsible for the observed curvature

perturbations. Although such a scenario is the simplest, it is quite possible that more

complicated scenarios involving additional fields, as exemplified by the curvaton

model [91, 150] and the modulated reheating model [93, 94], are actually realized.

To test different inflationary theories against observations, one must calculate the

precise form of the correlation functions of the primordial curvature perturbation,

ζ. One technique used to do this is the separate universe approximation combined

with the δN formalism [120, 123, 125, 148, 149]. As we have seen in Chapter 4, in

this approach, ζ is given by the perturbation in the local e-folding number

ζ(x) = δN(x) = N(~χ(x))− N̄ , (5.1)

where N is the number of e-folds between an initial flat hypersurface at some early

time (such as horizon crossing) and a final uniform density hypersurface at some

later time (such as the end of inflation or after reheating), and N̄ = 〈N〉. Through-

out, angle brackets indicate an ensemble average. We consider n fields labeled, χI ,

where I runs from 1 to n, and for convenience we introduce the vector, ~χ, where

each element represents one of the n fields.

N is calculated by assuming that locally the universe can be approximated as a

Friedmann-Robertson-Walker spacetime, and hence is a function of the local field

values on the initial flat hypersurface. Standard practice is to approximate δN by

making a Taylor expansion in the initial field values and keeping only a small num-

ber of terms. In some cases, however, N depends very sensitively on the initial

field values, and a truncated Taylor expansion is not a good approximation. Such

cases include those in which a light field in addition to the inflaton influences the

dynamics of non-perturbative reheating [151–154]. In this chapter we return to the

issue of how to deal with such cases. As we will see, an alternative expansion is

sometimes possible.

Although the primary motivation for our work is the interpretation of the results

of lattice simulations, here we study the question generally. Our approach employs

many of the key ideas contained in the work of Suyama and Yokoyama [155], and

our results are broadly equivalent to theirs. We will now briefly review their method

and highlight how our approach is different from theirs. In their work, a key step

was to make a Fourier transform of the N function (treated as a function of a single
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field value). They introduce the Fourier transformation of N(χ) as:

N(χ) =

∫
dσ

2π
Nσe

iχσ, =⇒ Nσ =

∫
dχN(χ)e−iχσ. (5.2)

〈N(χ)〉 is then given by

〈N(χ)〉 =

∫
dσ

2π
Nσe

− 〈χ
2〉
2
σ2

, (5.3)

where 〈χ2〉 ≡ 〈χ2(x)〉. This means that once Nσ is known, one can compute 〈N(χ)〉
by performing the one-dimensional integral above. Similarly, higher-order m-point

functions of N are given by

〈N(χ(x1))...N(χ(xm))〉 =

∫ ( m∏
i=1

dσi
2π

Nσie
− 〈χ

2〉
2
σ2
i

)
exp
(
− 〈χ2〉

∑
i<j

σiσjξχ(rij)
)

(5.4)

where ξ(rij) = 〈χ(xi)χ(xj)〉/〈χ2〉 and rij = |xi − xj|. For their method, it is re-

quired that Nσ is known to be able to calculate the m-point function by performing

m-dimensional integrals.

For example, consider the analytic sine mapping, N(χ) = B sin
(
χ
λ

)
where B and λ

are constants. Nσ in this case is given by

Nσ = B

∫ ∞
−∞

dχ sin
(χ
λ

)
e−iχσ. (5.5)

Noting that sinx = eix−e−ix
2i

, Eq. (5.5) becomes

Nσ = B

∫ ∞
−∞

dχ
(e iχλ − e− iχλ

2i

)
e−iχσ

= −iB
2

[ ∫ ∞
−∞

dχ eiχ(λ−1−σ) −
∫ ∞
−∞

dχ e−iχ(λ−1+σ)
]
.

(5.6)

We then note that

∫ ∞
−∞

dχ eiχ(λ−1−σ) = 2πδ(σ − λ−1),

∫ ∞
−∞

dχ e−iχ(λ−1+σ) = 2πδ(σ + λ−1) (5.7)

and Eq. (5.6) becomes

Nσ = −iπB
(
δ(σ − λ−1)− δ(σ + λ−1)

)
. (5.8)
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Using Eq. (5.3),

〈N(χ)〉 =

∫
dσ

2π

[
− iπB

(
δ(σ − λ−1)− δ(σ + λ−1)

)]
e−
〈χ2〉

2
σ2

= −iπB
2π

[
e−
〈χ2〉

2
λ−2 − e−

〈χ2〉
2
λ−2
]
.

= 0. (5.9)

For this particular example, 〈N(χ)〉 = 0. This can be directly seen from the fact

that the sine mapping is an odd function. Next, moving to the two-point function

using Eq. (5.4), one can write

〈ζ(x1)ζ(x2)〉 = 〈N(χ(x1)N(χ(x2)〉 − 〈N(χ)〉2 = 〈N(χ(x1)N(χ(x2)〉. (5.10)

〈ζ(x1)ζ(x2)〉 =

∫
dσ1

2π

dσ2

2π
Nσ1Nσ2 e

− 〈χ
2〉
2
σ2

1 e−
〈χ2〉

2
σ2

2

×e−〈χ2〉σ1σ2ξ(r12). (5.11)

where Nσ1 = −iπB
(
δ(σ1 − λ−1) − δ(σ1 + λ−1)

)
and Nσ2 = −iπB

(
δ(σ2 − λ−1) −

δ(σ2 + λ−1)
)
.

Evaluating the δ functions, we then have

〈ζ(x1)ζ(x2)〉 = −π
2B2

4π2

[
e−〈χ

2〉
(
λ−2+λ−2ξ(r12)

)
− e−〈χ

2〉
(
λ−2−λ−2ξ(r12)

)
−e−〈χ

2〉
(
λ−2−λ−2ξ(r12)

)
+ e−〈χ

2〉
(
λ−2+λ−2ξ(r12)

)]
, (5.12)

and therefore,

〈ζ(x1)ζ(x2)〉 = −B
2

4
2
[
e−〈χ

2〉
(
λ−2+λ−2ξ(r12)

)
− e−〈χ

2〉
(
λ−2−λ−2ξ(r12)

)]
= B2e−

〈χ2〉
λ2

[e 〈χ2〉
λ2 ξ(r12) − e−

〈χ2〉
λ2 ξ(r12)

2

]
.

(5.13)

Making use of the definition of sinh(x), we can finally write

〈ζ(x1)ζ(x2)〉 = B2e−
〈χ2〉
λ2 sinh

(
〈χ2〉
λ2

ξ(r12)

)
. (5.14)
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We note that although this particular method is useful for analytic manipulations, it

leads to expressions for the correlation functions that are less useful if an exact form

for N is unknown, or, as can be the case for lattice simulations, it is not efficient

even to calculate the form of the N function explicitly. The expressions we arrive at,

using our ‘non-perturbative’ approach, are more applicable in this setting, lending

themselves to a Monte Carlo approach, a point we return to later. Our methods

are more closely related to the work of Bethke, Figueroa and Rajantie [156, 157]

who considered the power spectrum of gravitational waves from massless preheat-

ing, though depart from both these earlier studies by considering n fields whose

initial probability distribution need not be precisely Gaussian. We perform explicit

calculations only for the two and three-point functions of ζ, but the method extends

trivially to higher point functions. For other related work with a different approach

to ours, see [158] and [159] where the authors develop and apply a non-perturbative

formulation of δN by incorporating the stochastic corrections to N .

The remainder of this chapter is structured as follows: In § 5.2, we develop and

describe the non-perturbative δN formalism. Our main results are presented in

§ 5.2.3. We then apply this formalism in § 5.3 to both analytic and non-analytic ex-

amples and make useful comparisons to regular δN formalism. Finally, we conclude

in § 5.4.

5.2 Non-perturbative δN Formalism

5.2.1 Regular δN

In the standard δN approach, the field perturbations, δχI = χI − χ̄I , are taken

to be close to Gaussian with the power spectrum defined in Eq. (4.5). Higher

order cumulants are either taken to be completely negligible, or are included in the

formalism, order by order, first the three-point function on the initial hypersurface

given by Eq. (4.7) and then successive higher order cumulants. To utilise Eq. (5.1),

one first makes a Taylor expansion of the N function in terms of δχI(x), such that

to second order ζ(x) is given by

δN(x) =N,Iδχ
I(x) +

1

2
N,IJ

(
δχI(x)δχJ(x)−δχIδχJ

)
. (5.15)

One then considers the Fourier transform of Eq. (5.15), and forms the desired cor-

relation of ζ(k), typically keeping only the leading terms. Finally, applying a Wick

expansion, and using Eq. (4.5) and any non-zero higher order cumulants, one pro-

duces an expression for the Fourier space correlations of ζ at the final time in terms

of the correlations of the fields at the early time. For example, the two and three-

point functions of ζ, defined in terms of the power spectrum Pζ and bispectrum Bζ
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are given by

〈ζk1ζk2〉 ≡ (2π)3Pζ(k1)δ3(k1 + k2)

= (2π)3N,IN,JΣIJ(k1)δ3(k1 + k2) (5.16)

〈ζk1ζk2ζk3〉 ≡ (2π)3Bζ(k1, k2, k3)δ3(k1 + k2 + k3)

= (2π)3
[
N,IN,JN,Kα

IJK(k1, k2, k3)

+N,IN,JN,KL

(
ΣIK(k1)ΣJL(k2)

+ cyclic
)]
δ3(k1 + k2 + k3) . (5.17)

We note that here and throughout this chapter when we discuss correlations of fields

we always mean those at the initial time, and when we discuss correlations of ζ we

always mean those at the final time. Finally we also note that taking α(k1, k2, k3) to

be zero (along with higher order cumulants) is a good approximation for canonical

theories with the field statistics evaluated at horizon crossing, but not otherwise.

5.2.2 δN Without a Taylor Expansion

Preliminaries and notation

We will now consider how to proceed if N is not well approximated by a Taylor

expansion. In this case, it proves convenient to stay in real space and calculate

the correlations of ζ there, including information from all scales, and only then to

Fourier transform the correlation (for each of the spatial coordinates which appear)

to calculate the Fourier space correlations over observational scales or equivalently

to coarse-grain the correlations over these scales. This procedure is most convenient

because N is a function of the fields which are in turn a function of spatial position.

One could attempt to treat N(~χ(x)) as a function of x and Fourier transform it

directly, but given that it is a non-linear function of the fields, the result would not

be a simple function of the Fourier coefficients of the fields, ~χ(k), which are the

objects we have information about.

For later convenience, therefore, let us introduce some notation for the statistics

of the field space perturbations in real space as

〈δχI(x1)δχJ(x2)〉 = ΣIJ(r12) , (5.18)

where r12 = |x1 − x2|, and

〈δχI(x1)δχJ(x2)δχK(x3)〉 = αIJK(r12, r23, r31) . (5.19)
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In an abuse of notation we use the same symbol for the correlations as for the related

objects in Fourier space (defined in Eq. (4.5) and Eq. (4.7)), but it will always be

clear from the context which we mean. We further define the shorthand notation

〈δχI(x1)δχJ(x1)〉 = ΣIJ (5.20)

〈δχI(x1)δχJ(x1)δχK(x1)〉 = αIJK , (5.21)

since when evaluated at the same spatial position the correlations are no longer

functions of space.

Finally, we introduce more short hand notation such that the evaluation of a func-

tion at a given spatial position is denoted using a subscript, for example ζ1 = ζ(x1),

χI1 = χI(x1) and N1 = N(~χ(x1)). This is helpful to keep our expressions to a

manageable size when we are considering many spatial positions in one expression.

A non-perturbative expression

When ζ cannot be written in terms of an expansion in δχI(x), one cannot write the

correlations of ζ in terms of a finite number of correlations of the field perturbations.

Instead one must fall back on the definition of the ensemble average, and write

the m-point function, 〈ζ(x1)...ζ(xm)〉, in terms of the full n × m joint probability

distribution for the n fields evaluated at the m spatial positions. This is given as

〈ζ1...ζm〉 = 〈(N1 − N̄)...(Nm − N̄)〉

=

∫
d~χ1 ...

∫
d~χm(N1 − N̄)...(Nm − N̄)

× P(~χ1, ..., ~χm) , (5.22)

where P is the joint probability distribution for the m × n variables χIi , and we

have used the subscript notation defined at the end of the previous subsection. The

integral is over all the fields evaluated at the m distinct spatial positions. If N is a

simple function, and if P can be taken to be Gaussian, which is often a very good

approximation, then it is possible to evaluate Eq. (5.22) analytically. More generally

it is possible to evaluate it numerically. We will see examples of both for the single

field case in § (5.3).

Although not presented explicitly there, Eq. (5.22) in the single field case is the

starting point for the work of Suyama and Yokoyama [155]. In that work the focus

is on extracting analytic results for the moments of ζ when an analytic form for

N is known. As we saw in § 5.1, they proceed by assuming that the probability

distribution is exactly Gaussian, and by considering the Fourier transform of the
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N(χ) function (when N is treated as function of χ). In this case general expressions

for the correlations of N are known in terms of the Fourier coefficients of N and

the variance of χ (these are given in Eq. (9) of Ref [155]), and they proceed to work

directly with these expressions in their paper. In our work we work directly with

Eq. (5.22). This more direct route still allows Eq. (5.22) to be evaluated analytically

for specific forms of the N(χ) function, but also allows us to introduce additional

fields, to expand the distribution, and to consider non-Gaussian initial conditions in

a straightforward manner.

5.2.3 Expansions of the Probability Distribution

While it is possible to work directly with Eq. (5.22), it is rather cumbersome in

practice, especially if it needs to be integrated numerically or if the probability

distribution, P , cannot be taken to be Gaussian. Moreover, if a numerical eval-

uation is needed the process becomes particularly involved when the correlations

are converted to Fourier space, to calculate observable quantities such as the power

spectrum and bispectrum on observable scales. In this case one must Fourier trans-

form the real space correlations in each of the m spatial coordinates that appear,

which requires that the integral, Eq. (5.22), is evaluated first at a sufficient number

of points in real space and then transformed to Fourier space.

Two expansions

Thankfully, for many applications there is still an approximate method available

even when N cannot be Taylor expanded. Rather than expanding the N function,

the idea is to employ, instead, expansions of the distribution P .

First P is expanded around a Gaussian distribution employing a Gauss-Hermite

expansion. In the inflationary context a Gauss-Hermite expansion for the distri-

bution of field perturbations was used by Mulryne et al. [140] for example, and is

justified since the field perturbations produced by inflation are very close to Gaus-

sian [70, 72, 95, 98, 160–163] (even for levels of non-Gaussianity far in excess of

observational bounds).

Next, this distribution is expanded in the cross correlation between fields evalu-

ated at different spatial positions, ΣIJ(rij) with i 6= j, around the distribution for

the field perturbations evaluated at the same spatial position, i.e, we assume that

ΣIJ(rij) < ΣIJ (recall ΣIJ ≡ ΣIJ(0)). This expansion has been utilised previously

by Suyama and Yokoyama [155] and by Bethke et al. [156, 157]. It is at least

partially justified if the power spectrum for the field fluctuations δχI(k1) is close to

scale invariant, since then for two positions, x1 and x2, separated by a distance close

to the size of the observable universe we find that ΣIJ(r12) is roughly two orders
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of magnitude smaller than ΣIJ . We will always be interested either in real space

correlations of ζ coarse-grained on these large observationally relevant scales, or

equivalently in the Fourier space correlations for small wavenumbers. See, however,

§ 5.2.3 for caveats and a more detailed discussion.

An interlude on our expansions

Let us begin in the abstract, before moving to the inflationary context, and consider

the distribution for a set of close to Gaussian coupled variables yα denoted by the

vector y. This is given by the Gauss-Hermite expansion,

P(y)=P
G

(y)

(
1+

A−1
αεA

−1
βηA

−1
γµαεηµHαβγ(z)

6
+ ...

)
, (5.23)

where the subscript G indicates a multivariate Gaussian distribution with covariance

matrix Σαβ ≡ 〈δyαδyβ〉 = AαεAβε, and where ααβγ ≡ 〈δyαδyβδyγ〉. δyα = yα − ȳα
and z is the vector with elements A−1

αβδyβ. The functions in the expansion are

products of Hermite polynomials defined by a generalised version of Rodrigues’ for-

mula, such that Hαβγ = −∂n/∂zα∂zβ∂zγ exp(−z2). We will only need the result

that Hαβγ(z) = δyαδyβδyγ if α 6= β 6= γ. A multivariate Gauss-Hermite expansion

around a Gaussian distribution has been employed elsewhere in the cosmological

literature for various purposes (see, for example, [118, 140, 164–170]).

Now let us consider the second expansion we will need to make. We note that

if any of the elements of the covariance matrix Σαβ are small in the sense that we

can neglect terms involving their square, it is possible to make a Taylor expansion

of the distribution, Eq. (5.23), in this element. For our purposes to make use of such

an expansion, we will only need the following results

∂P
G

∂Σαβ

=
1

2
P

G
δyγδyδΣ

−1
γαΣ−1

δβ , (5.24)

∂2P
G

∂Σαβ∂Σγδ

⊃ 1

4
δyεδyηδyµδyνPGΣ−1

αε Σ−1
βηΣ−1

γµΣ−1
δν . (5.25)

In this context A ⊃ B denotes that A contains B as well as some other terms.

Calculating correlations of ζ using the expansions

Finally, we can use these expansions in the context at hand. Here, we give the

expressions we arrive at without going into details. We will explicitly show how

these expressions arise in the single field case later. We assume that the distribution

which appears in Eq. (5.22) for the m × n independent variables, χIi , is both close

to Gaussian, so that the Gauss-Hermite expansion can be employed, and moreover
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that the n × m variate Gaussian which appears in this expansion can be further

expanded in the cross-correlations ΣIJ(rij) where rij 6= 0. Specialising to the two-

point function and employing Eq. (5.22) with both expansions, one finds that at

leading order∫
d~χ1d~χ2P(~χ1, ~χ2)(N1 − N̄)(N2 − N̄)

≈ ΣIJ(r12)Σ−1
IKΣ−1

JM

∫
d~χ1PG

(~χ1)δχK1 (N1 − N̄)×
∫

d~χ2PG
(~χ2)δχM2 (N2 − N̄)

(5.26)

where Σ−1
IJ is the inverse of ΣIJ , which for clarity we recall is the covariance matrix

of field perturbations evaluated at the same point in real space. This leading term

comes from the first order term in the cross-correlation Taylor expansion, which is

calculated from Eq. (5.24). There is no contribution from the zeroth order term

because one needs at least one δχi to accompany each Ni function so that the ex-

pectation of a given term isn’t zero. Note that the Gaussian probability distribution

which appears twice on the right hand side of this expression is the n dimensional

distribution for fields evaluated at only a single position, and we have retained both

the subscripts 1 and 2 only for clarity as to how the expression arises.

We can write Eq. (5.26) as

〈ζ1ζ2〉 ≈ ÑIÑJΣIJ(r12), (5.27)

where we have defined

ÑI = Σ−1
IJ

∫
d~χ1PG

(~χ1)N1δχ
J
1 , (5.28)

which is analogous to the first derivative of N used in Eq. (5.15). The spatial posi-

tion indicated by the subscript 1 is of course arbitrary.

Following the same procedure for the three-point function one finds that we must

keep two terms at leading order, one involves the α term from the Gauss-Hermite

expansion, and the second is second order in the cross-correlation expansion and

arises from the term given in Eq. (5.25). These are the first terms to contribute

since again we need at least one δχi to accompany each of the three Ni functions in

the three-point function so that the expectation value of a given term is not zero.

One finds

〈ζ1ζ2ζ3〉 ≈ ÑIÑJÑKα
IJK(r12, r23, r31)

+
(
ÑIÑJÑKLΣIK(r12)ΣJL(r23)

+ cyclic
)

(5.29)
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where we have defined

ÑIJ =Σ−1
IKΣ−1

JL

∫
d~χ1PG

(~χ1)(N1 − N̄)δχK1 δχ
L
1 (5.30)

analogous to the second derivative of N used in Eq. (5.15).

Later for clarity, we show in more detail how these expressions arise for the single

field case; we choose to do that in the single field case so we can drop the super-

scripts for the fields and keep our expressions tidy.

Using these expressions, and accounting for only the second term of Eq. (5.29),

the local contribution to the reduced bispectrum fNL, takes the famous form

6

5
fNL =

ÑIÑIJÑJ

(ÑKÑK)2
. (5.31)

It is important to note that Eqs. (5.27) and (5.29) combined with the definition

of ÑI and ÑIJ represent a significant simplification, since the spatial dependence of

the two-point function of ζ is defined entirely through that of the field fluctuations.

This is an important advantage, particularly if the correlation of ζ is to be evaluated

numerically, since otherwise the numerics would need to be repeated for many values

of r12, while in this case ÑI and ÑIJ need only be evaluated once. This allows us to

pass immediately to Fourier space, and to write the power spectrum and bispectrum

of ζ as

Pζ(k) ≈ ÑIÑJΣIJ(k) (5.32)

Bζ(k1, k2, k3) ≈ ÑIÑJÑKα
IJK(k1, k2, k3)

+
(
ÑIÑJÑKLΣIK(k1)ΣJL(k2)

+ cyclic
)
. (5.33)

Further simplifications for typical applications

A further simplification occurs if we assume that the field fluctuations are uncor-

related such that ΣIJ is diagonal. The simplest case is if all fields have the same

variance, such that

ΣIJ = δIJPχ (5.34)

which is a good approximation at horizon crossing during inflation. More generally

the covariance matrix might be diagonal but with different entries, such that

ΣIJ = δIJPχI (5.35)
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where no summation is implied. This would be the case in a model with one inflaton

field and a set of fields that were purely isocurvature modes during inflation. In this

case one finds ÑI simplifies to

ÑI =
1

PχI

∫
d~χ1PG

(~χ1)N1δχ
I
1 (5.36)

≡ 1

PχI
〈δχI1N1〉G (5.37)

and ÑIJ simplifies to

ÑIJ =
1

PχIPχJ

∫
d~χ1PG

(~χ1)(N1 − N̄)δχI1δχ
J
1 (5.38)

≡ 1

PχIPχJ
〈δχJ1 δχI1(N1 − N̄)〉

G
(5.39)

because in this case, the covariance matrix is diagonal, P
G

(~χ1) =
∏

I PUG
(χI1), where

subscript UG now stands for a univariate Gaussian.

Single field case: two-point and three-point functions

The expressions presented above are valid for n fields. However, we passed rather

quickly over the details of the derivation. For clarity therefore, let us specialise

to the single field case and calculate in more detail 〈ζ1ζ2〉 and 〈ζ1ζ2ζ3〉 where we

can drop the superscripts for the fields to keep things neat. The relevant m-variate

Gaussian distribution function in this case is given by

P
G

(χ1, χ2, ...χm) =
1

(2π)
m
2

|Σ|−1/2e−
1
2
δχiΣ

−1
ij δχj (5.40)

where |Σ| is the determinant of the covariance matrix Σij and the lower case Roman

indices run over values 1, 2, ...m. We want to expand in off-diagonal parts, i.e., we

assume that
Σij

Σij |i=j is small. Moreover, Σij|i=j = Σ = 〈δχ2〉 for all i and j. In order

to form the Taylor expansion of P
G

about the Σij|i 6=j = 0 case, let us differentiate

P
G

. We find

∂P
G

∂Σlm

⊃ 1

(2π)
m
2

|Σ|−1/2e−
1
2
δχiΣ

−1
ij δχj

(
− 1

2
δχpδχq

∂Σ−1
pq

∂Σlm

)
, (5.41)

where we have ignored the term containing the derivative of the determinant because

that term does not contribute. Then using

∂Σ−1
pq

∂Σlm

= −Σ−1
pl Σ−1

mq, (5.42)

we have
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∂P
G

∂Σlm

⊃ 1

2
P

G
δχpδχqΣ

−1
pl Σ−1

mq. (5.43)

Similarly, the second derivative gives

∂2P
G

∂ΣlmΣno

⊃ 1

4
P

G

(
δχpδχqΣ

−1
pl Σ−1

mq

)(
δχkδχfΣ

−1
knΣ−1

of

)
+ ... (5.44)

Therefore, the Taylor expansion of P
G

about Σij|i 6=j = 0 gives

P
G
≈ P

G
|† +

∑
l 6=m

1

2

1

〈δχ2〉2
P

G
|†δχlδχmΣlm

+
∑
l 6=m

∑
n6=o

1

8

1

〈δχ2〉4
P

G
|†δχlδχmδχnδχoΣlmΣno, (5.45)

where we have used Σ−1
pl = 1

〈δχ2〉δpl and where ‘†’ means that the off-diagonal parts

are taken to be zero. Now that we have an expression for the Taylor-expanded P
G

,

we can substitute Eq. (5.45) into Eq. (5.22) and form correlation functions of ζ.

Let us now explicitly calculate 〈ζ1ζ2〉 using the expanded probability distribution

function

〈ζ1ζ2〉 =

∫ ∞
−∞

dχ1

∫ ∞
−∞

dχ2

[
P

G
(χ1, χ2)|† +

1

〈δχ2〉2
P

G
(χ1, χ2)|† δχ1δχ2 Σ12 +

1

2

1

〈δχ2〉4
P

G
(χ1, χ2)|† δχ2

1δχ
2
2 Σ2

12

]
×(N1 − N̄)(N2 − N̄). (5.46)

The first term that multiplies with (N1 − N̄)(N2 − N̄) vanishes while the second

term and the third terms give the leading and sub-leading contributions to 〈ζ1ζ2〉
respectively. Because in this case the covariance matrix is diagonal, P

G
(χ1, χ2) =

PUG1PUG2 where ‘UG’ stands for a univariate Gaussian. We can then write

〈ζ1ζ2〉leading =
〈δχN(χ)〉2

〈δχ2〉2
Σ(r12). (5.47)

The angle brackets here denote an ensemble average with χ drawn from a univari-

ate Gaussian. Note that the N̄ term vanishes because 〈δχ N̄〉 = 〈χ N̄ − χ̄ N̄〉 =

χ̄ N̄ − χ̄ N̄ = 0 and that we have now dropped the subscripts 1 and 2. Also, to

make the dependence on the distance r12 clear, we replace Σ12 by Σ(r12).

For the sub-leading term, we have
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〈ζ1ζ2〉subleading =
〈δχ2(N(χ)− N̄)〉2

2〈δχ2〉4
Σ(r12)2 (5.48)

Finally, we can write

〈ζ1ζ2〉 =
〈δχN(χ)〉2

〈δχ2〉2
Σ(r12)

+
〈δχ2(N(χ)− N̄)〉2

2〈δχ2〉4
Σ(r12)2 + ... (5.49)

where N̄ = 〈N〉.

Now we will derive the three-point function, 〈ζ1ζ2ζ3〉, at leading order for the single

field case. There is an additional term that contributes to the three-point function

at leading order; it comes from allowing the field to be non-Gaussian by keeping the

α term in Eq. (5.23). In this case, P
G

is given by

P
G
≈ P

G
|† +

∑
l 6=m

1

2

1

〈δχ2〉2
P

G
|†δχlδχm Σlm

+
∑
l 6=m

∑
n6=o

1

8

1

〈δχ2〉4
P

G
|†δχlδχmδχnδχo ΣlmΣno

+
∑
p 6=q 6=r

1

6

1

〈δχ2〉3
P

G
|†δχpδχqδχr αpqr. (5.50)

Plugging Eq. (5.50) into Eq. (5.22), for the three-point function of ζ, we see that the

first two terms in Eq. (5.50) evaluate to zero because of N̄ . The two contributions

at leading order are therefore

〈ζ1ζ2ζ3〉 =

∫ ∞
−∞

dχ1

∫ ∞
−∞

dχ2

∫ ∞
−∞

dχ3

[ 1

〈δχ2〉3
P

G
(χ1, χ2, χ3)|†δχ1δχ2δχ3 α(r12, r23, r31) +

1

〈δχ2〉4
P

G
(χ1, χ2, χ3)|† δχ1δχ2δχ2δχ3 Σ(r12)Σ(r23) + perms

]
×(N1 − N̄)(N2 − N̄)(N3 − N̄). (5.51)

Again, because the covariance matrix is diagonal, P
G

(χ1, χ2, χ3) = PUG1PUG2PUG3 ,

and finally we can write:

〈ζ1ζ2ζ3〉 =
〈δχN〉3

〈δχ2〉3
α(r12, r23, r31) +

(〈δχN(χ)〉2

〈δχ2〉2
〈δχ2(N(χ)− N̄)〉

〈δχ2〉2
Σ(r12)Σ(r23) + perms

)
,

(5.52)

where we have dropped the subscripts 1, 2 and 3.
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A Monte Carlo approach

In this chapter, the examples we consider will be of cases where there is a known N

function, either an analytic one, or one that has been calculated numerically. When

we utilise the simplified expressions given above, we will therefore use the known N

function and integrate Eqs. (5.37) and (5.39), either analytically or using numerical

methods.

However, a major motivation of our work is to allow the future study of cases

in which it may not be desirable to first calculate N as a function of the initial field

values. We defer doing this to future work, but it is worth laying out a case for

the suitability of our expressions for this purpose. It may be that the N function is

highly featured, such as in the case of massless preheating [151, 152, 154, 171–173],

and that first calculating the function accurately may not be the most efficient path

to accurately evaluating Eq. (5.37) and Eq. (5.39). Instead one might choose to

adopt a Monte Carlo approach, in which values of the initial field(s) χI are drawn

from a Gaussian distribution, and for each draw N is evaluated numerically. ÑI ,

for example, is then calculated by evaluating δχIN for each draw, and the values

summed and divided by the number of draws. The convergence of the result can be

monitored. This was the approach adopted in the gravitational wave case by Bethke

et al. [156, 157]. In contrast to previous work [155], our expressions are ideal for this

purpose. We will use our non-perturbative expressions in a Monte Carlo setting, for

massless preheating, in Chapter 7.

Limitations

§ 5.2.3 represents the main results of this chapter. In § 5.3 we will see them in

practice, and test their validity. First, however, let us consider what we expect to

be their limitations in terms of the approximations we have employed.

The first limitation stems from the fact that we expand the probability distribu-

tion in the cross correlations between distinct spatial positions, and then integrate

to calculate the correlations of ζ. This means that the resulting expansion is not

guaranteed to be a good one (in the sense that it will converge), even if the expan-

sion of the probability distribution does converge. So while Σ(rij)� Σ is sufficient

for the probability expansion to be valid, this is not sufficient for the correlations

calculated from it to converge. This effectively means that we have to test the va-

lidity of our expressions on a case by case basis.

The second related issue comes from the fact that even if the series does converge,

there is no guarantee that the leading term in the cross correlations is sufficient. An

extreme example follows from the fact that it is possible for the “leading” term we
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quote above to be zero. For the two-point function this occurs when the N function

is symmetric in one of fields (about χ̄) – an even function in the single field case.

In this case, considering Eq. (5.37) for a single field, we see that 〈δχN(χ)〉
G

= 0.

Although realistic functions of N will never be fully even or fully odd, this issue

should be borne in mind.

In both cases one thing that can be done is to check that the sub-leading term

is subdominant to the leading term. Although not proof of convergence this is

a simple way to check that the method is working as intended. For example, in

the single field case where the sourcing scalar field is Gaussian, one can compare

the magnitudes of the leading and sub-leading terms in Eq. (5.49) for a given model.

An alternative approach would be to evaluate the full expression, Eq. (5.22) (spe-

cialising, for example, to the two-point function) which always remains valid, and

compare with the results of the expansion method. To do so for a full range of r12

would of course negate the advantage of using the expansion in the first place, but

one could do so for a single representative value of r12. In the next section when we

study simple examples numerically we will evaluate the full expression over a range

of r12, but we note that in more complex cases this may not be feasible.

5.3 Examples

Let us now see our expressions in practice. In this chapter we restrict ourselves to

cases in which we already have an N(~χ) function calculated, deferring the Monte

Carlo type applications discussed in § 5.2.3 to Chapter 7.

In addition to a specific N function, for concrete applications, we must also specify

the statistics of the field fluctuations δχI(x). In order to do so, at this point we spe-

cialise to uncoupled Gaussian perturbations, with scale invariant power spectrum,

such that

ΣIJ(k) = δIJPχ(k) = δIJ
P0

k3
, (5.53)

where P0 is a constant. Moreover, in the examples we present we will mainly assume

that only the perturbations from one field contribute significantly to ζ, and therefore

we can further specialise to N being a function of just a single field.

With our convention for the Fourier Transform

δχ(x) =
1

(2π)3

∫
d3keik.xδχk , (5.54)

〈δχ(x)δχ(x)〉 is then given by
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〈δχ(x)δχ(x)〉 =
1

(2π)6

∫
d3k

∫
d3k′eik.x+ik′.x〈δχkδχk′〉 . (5.55)

The equation above becomes:

〈δχ(x)δχ(x)〉 =
1

(2π)6

∫
d3k

∫
d3k′eik.x+ik′.x(2π)3Pχ(k)δ3(k + k′) , (5.56)

where we have substituted for 〈δχkδχk′〉 using Eq. (4.5). Then, integrating the

exponential term and the 3-dimensional Dirac delta function, we find:

Σ = 〈δχ(x)δχ(x)〉 =
1

(2π)3

∫
d3kPχ(k). (5.57)

Now, for the scale-invariant power spectrum Pχ(k) = P0

k3 and therefore we can write:

Σ = 〈δχ(x)δχ(x)〉 =
1

(2π)3

∫
d3k

P0

k3
. (5.58)

Changing from cartesian to spherical polar coordinates gives
∫

d3k →
∫

dk 4πk2

and we have

Σ = 〈δχ2(x)〉 =
P0

2π2

∫
dk

k
. (5.59)

Next, introducing both the UV and IR cutoffs,

Σ = 〈δχ2(x)〉 =
P0

2π2

∫ qmax

L−1

dk

k
, (5.60)

where ∼ L−1 is an IR and qmax a UV cutoff. In this case, the IR cutoff is just the

size of the observable universe, in other words, the scale over which χ̄ is defined.

This gives

〈δχ2(x)〉 =
P0

2π2
ln(qmaxL) , (5.61)

for the two-point function of field fluctuations evaluated at the same spatial position.

Physically, the IR cutoff must be close to the size of the observable universe so that

the average of δχ(x) within the observable universe is zero – to be consistent with

our initial definition of δχ(x) = χ(x)− χ̄.

Next, consider the correlation of the field fluctuations at two separated positions,

〈δχ(x1)δχ(x2)〉 =
1

(2π)6

∫
d3k

∫
d3k′eik.x1+ik′.x2〈δχkδχk′〉. (5.62)

Substituting for 〈δχkδχk′〉, we obtain:
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〈δχ(x1)δχ(x2)〉 =
1

(2π)6

∫
d3k

∫
d3k′eik.x1+ik′.x2(2π)3Pχ(k)δ3(k + k′). (5.63)

The equation above becomes

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
d3keik.x1−ik.x2Pχ(k). (5.64)

Again, assuming that the power spectrum is scale-invariant:

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
d3keik.(x1−x2)P0

k3
. (5.65)

Making use of r12 = x1 − x2, we get

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
d3keik.r12

P0

k3
. (5.66)

In spherical polar coordinates,

d3k = k2 dk sin θ dθ dφ, k.r12 = kr12 cos θ (5.67)

and we have

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
dk k2

∫ 2π

0

dφ

∫ π

0

dθ sin θ eikr12 cos θ P0

k3
. (5.68)

Noting that d(cos θ) = sin θ dθ, we can rewrite the previous equation as

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
dk k2

∫ 2π

0

dφ

∫ −1

+1

d(cos θ) eikr12 cos θ P0

k3
. (5.69)

Now, let cos θ = y. We then have:

〈δχ(x1)δχ(x2)〉 =
1

(2π)3

∫
dk k2

∫ 2π

0

dφ

∫ −1

+1

dy eikr12y
P0

k3
. (5.70)

Evaluating
[
eikr12y

ikr12

]y=−1

y=+1
gives −2 sin(kr12)

kr12
and we have

〈δχ(x1)δχ(x2)〉 =
P0

2π2

∫ qmax

L−1

dk

k

− sin(kr12)

kr12

. (5.71)

Evaluating the above integral, one finds
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〈δχ(x1)δχ(x2)〉 =
P0

2π2

(
− Ci

(r12

L

)
+ Ci(qmaxr12)

+
sin( r12

L
)

r12

L

− sin(qmaxr12)

qmaxr12

)
, (5.72)

where Ci(x) is the cosine integral function

Ci(x) = −
∫ ∞
x

cos(t)

t
dt . (5.73)

It is in this cross correlation that the expansion of § 5.2.3 was made. We also define

the cross-correlation normalised to the variance as

Σ(r12)

Σ
= ξ(r12) =

〈δχ(x1)δχ(x2)〉
〈δχ2(x)〉

, (5.74)

which we require to be small for the expansion of the probability distribution to be

valid.

For a purely scale invariant spectrum and for distances much longer than the UV

cutoff (i.e., r12 � q−1
max), the UV cutoff drops out and we have ξ(r12) ≈ 1

N∗
ln
(
L
r12

)
[157], where N∗ ≈ 60 is the number of e-folds before the end of inflation that

perturbations corresponding to the largest observable scales left the horizon. For

observable scales, therefore, ξ(r12) ≈ 1
60

= 0.017. This ratio is not sufficiently small

that we can have complete confidence in the expansion method, especially recalling

also the limitations mentioned in § 5.2.3. We expect, however, that it will likely be

sufficiently accurate in many cases.

5.3.1 Analytic Examples

The next step is to specify the N(χ) function. To begin with, for simplicity and in

order to highlight some issues, we follow Ref. [155] and choose the simple analytic

functions studied there.

Sine function

First we consider a sine function

N(χ) = B sin
(χ
λ

)
(5.75)

We compute the two-point function of the curvature perturbation, 〈ζ1ζ2〉, for this

example in several ways.
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First, we directly integrate the fully non-perturbative expression for 〈ζ1ζ2〉 which

arises from Eq. (5.22); this makes use of the joint probability distribution for χ1 and

χ2 (Eq. (5.40)). Because of the simple form of the analytical function we have taken

for N , the resulting integration is easily tractable analytically, and we denote the

result by 〈ζ1ζ2〉Full.

In § 5.2.3, we presented Eq. (5.27) as the result of our expansion method, and later

presented a simplified expression for ÑI in Eq. (5.37). The second way in which we

compute (an approximation to) 〈ζ1ζ2〉 is therefore to employ these formulae, leading

to

〈ζ1ζ2〉Exp = 〈δχN〉2 Σ(r12)

〈δχ2〉2
. (5.76)

Taking χ̄ = 0 one finds

〈ζ1ζ2〉Full = B2e−
〈χ2〉
λ2 sinh

(
〈χ2〉
λ2

ξ(r12)

)
(5.77)

and to leading order

〈ζ1ζ2〉Exp = B2e−
〈χ2〉
λ2
〈χ2〉
λ2

ξ(r12) (5.78)

which also follows from expanding Eq. (5.77).

This example is useful, because it highlights, as was also noted in Ref. [155], the

possible limitations of our expansion methods discussed in § 5.2.3. In this case, for

〈ζ1ζ2〉Exp to be a good approximation to 〈ζ1ζ2〉Full, it is insufficient for only ξ(r12)�
1. We have to impose a more stringent condition, namely ξ(r12)〈χ2〉 = Σ(r12)� λ2.

One should note that this is still a significant improvement over the standard δN

method of making a Taylor expansion of the N function reviewed in § 5.2.1. λ is

a measure of the width of a feature in the N function, and the requirement for

standard δN to work is that Σ � λ2, while for our expansion method only that

Σ(r12) � λ2 is required, which as we have seen is two orders of magnitude less

stringent.

Gaussian function

For our second analytic example, we consider the N(χ) function to be an un-

normalised Gaussian

N(χ) = A
e
−(χ−m1)2

2σ2
1

√
2πσ1

(5.79)

where A, m1 and σ1 are constants defining the amplitude, position of the peak and

width of the function. In Ref. [155] the authors used a sum of normal distributions

with different amplitudes and widths to represent the spiky N(χ) function that
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arises in massless preheating [151, 152, 154].

Without loss of generality we can take χ̄ = 0. Here we denote the variance of

the probability distribution of the field perturbations, Σ, using Σ = σ2, and doing

so we find

〈ζ1ζ2〉Full =A2 e
− m2

1
σ2+σ2

1+Σ(r12)

2π
√

(σ2 + σ2
1)2 − Σ(r12)2

− A2 e
− m2

1
σ2+σ2

1

2π(σ2 + σ2
1)
,

(5.80)

and to leading and sub-leading order, from Eq. (5.49), we have

〈ζ1ζ2〉Exp =A2 e
− m2

1
σ2+σ2

1m2
1Σ(r12)

2π(σ2 + σ2
1)3

+A2 e
− m2

1
σ2+σ2

1 (−m2
1 + σ2 + σ2

1)2(Σ(r12))2

4π(σ2 + σ2
1)5

,

(5.81)

which also follows from expanding Eq. (5.80).

The ratio of the sub-leading term to the leading term is

ratio =
Σ(r12)(−m2

1 + σ2 + σ2
1)2

2m2
1(σ2 + σ2

1)2
.

We wish to understand when this is small, and hence when our expansion method

can be trusted. Assuming σ1 6 σ (the N function is of a similar width or narrower

than the distribution of field perturbations), the condition required for the ratio to

be small becomes Σ(r12) � m2
1σ

4/(−m2
1 + σ2)2. For fixed σ, there is then both a

lower and an upper limit on m1 in order for this condition to be satisfied. This

makes sense since if m1 is too small, which in this case means m1 � σ the N func-

tion becomes close to even. While if m1 � σ the N function is sampled only by the

tail of the probability distribution, and one would not expect the expansion to be

be accurate. A representative case is m1 ∼ O(σ), leading to Σ(r12) � σ2, which is

the condition we assumed to make our original expansion.

The other case is where σ1 > σ. In this case the distribution is now narrower than

the N function, and the ratio implies we must have Σ(r12) � m2
1σ

4
1/(−m2

1 + σ2
1)2.

In this case the ratio can also be satisfied as long as m1 is not too small or too large,

which in this case means neither m1 � σ nor m1 � σ. In the representative case

of m1 ∼ O(σ1), the condition reduces to Σ(r12) � σ2
1, which is weak given that
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σ1 > σ. We would expect standard δN to work in the case (σ � σ1), but here, as

for the sinusoidal case, we have relaxed that criteria.

Lessons

It is also important to note that in all the cases above, the expansion fails because

the leading contribution to the two-point function of ζ itself becomes very small. In

the second example, if the N function was made up of a series of spikes (as is the

case where the result of massless pre-heating is parametrised), even if the expansion

failed for some members of the series, the overall value for the leading term would

be dominated by members of the series for which m1 does not fall outside the al-

lowed range, leading to an accurate overall result. This also gives us hope that for a

realistic N function, calculated, for example, from lattice simulations the expansion

method we advocate will be accurate.

It seems therefore that there are two regimes in which the method has a good

chance of working. One either requires that Σ(r12)1/2 is smaller than the scale on

which the N function is structured, or that Σ1/2, is much larger than the scale on

which the N function is structured (and so the structure is averaged over, assuming

the average is not close to zero). In intermediate cases the method seems to fail.

Overall, however, the message of these two analytic examples is that it is crucial to

check for the validity of the approximation on a case by case basis.

5.3.2 A Non-analytic Example

Next we turn to a more realistic example. Although almost all the analysis of the

curvaton scenario is based on the assumption of a perturbative curvaton decay, it is

possible for the curvaton to decay through a non-perturbative process analogous to

inflationary preheating [174, 175]. For our example, we consider the N(χ) function

presented in Fig. 3 of Ref. [153], which was generated from a resonant curvaton

decay scenario using classical lattice field theory simulations [172, 176]. The system

consists of three fields: an inflaton, curvaton and a third light field, χ. The curvaton

field decays into particles of χ via parametric resonance [177–179]. The authors

considered only the contribution of perturbations from the χ field to ζ, and so N is

a function only of this field. In order to perform the integrations necessary to study

this model, we construct an interpolating function to approximate N(χ) given the

data points presented in Ref. [153]. We present the data points and the interpolating

function in Fig. 5.1.

In this section we will again compute the two-point function of the curvature pertur-

bation in real space, 〈ζ1ζ2〉Full, from Eq. (5.22) as described above, and then using
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Figure 5.1: An example of a realistic N(χ) obtained from lattice field theory sim-
ulations and centered around χ̄ = 0.001 [153]. Red dots are the data points, the
black dashed line shows the interpolating function and the solid red line represents
a quadratic fit to the data points. We will use the interpolating function for our
regular δN analysis.
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our expansion method (retaining only the leading term) we will calculate 〈ζ1ζ2〉Exp.

This time both must be computed numerically, and this means we have to fix the

various parameters which enter the expression presented at the start of § 5.3, in

particular, the IR cutoff L−1 and the UV cutoff qmax. We do so by assuming that

perturbations which exited the horizon 60 e-folds before the end of inflation corre-

spond to the largest observable scales today. We associate the largest observable

scale today with L, and include in the calculation all shorter modes which exit the

horizon until the end of inflation. Taking the scale of the shortest modes to be rmin,

it then follows that L = e60×rmin ≈ 1026rmin. The UV cutoff, defined as qmax = 2π
rmin

.

We will also compute the power spectrum in Fourier space, and the methods we

use for this are discussed in the next subsection. Since the scales constrained by

CMB anisotropy data correspond to the modes which exited during roughly 4 e-folds

of inflation, when presenting our results the range of k values we will be interested

in range from 2π
L

to e4× 2π
L

, i.e., from the horizon size today down to about e4 times

smaller than the horizon size.

In addition to the full and expanded expressions, we will also plot the results for

the power spectrum that one attains from the regular δN method, calculating the

derivatives of N locally at our choice of the value of χ̄. Finally using our expansion

method, we will also calculate the reduced bispectrum fNL for this model, comparing

with the results which would be obtained from regular δN .

The Power Spectrum: Two Methods

We want to calculate 〈ζ1ζ2〉Full to be able to determine whether our expanded method

is working. Our first approach in calculating 〈ζ1ζ2〉Full was using ‘Method 1’ be-

cause performing a one-dimensional integral is much simpler than using a three-

dimensional fast Fourier transform. However, we found that the integral was sensi-

tive to the integrand of the fitting function used, making this method unreliable for

our purposes. For this reason, we were forced to go down the path of a fast Fourier

transform (‘Method 2’). We show how both methods work below.

1. Method 1

Our expansion method, Eq. (5.27) allows us to pass directly to Fourier space and

to write the power spectrum as Pζ(k)Exp ≈ ÑIÑJΣIJ(k) where ΣIJ(k) = δIJ P0

k3 .

However, if one wishes to work with the fully non-perturbative 〈ζ1ζ2〉Full, one needs

to Fourier transform the real space two-point function of ζ. The route we take to
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achieving this is as follows. First we define

F [ 〈ζ1ζ2〉Full ] = 〈ζk1ζk2〉Full

= (2π)3δ3(k1 + k2)Pζ(k1)Full .
(5.82)

Then given that the two-point function is always some function of r12 = |r1 − r2|,
we define 〈ζ1ζ2〉Full = A(r12) and note

F [A(r12)] =

∫ ∞
−∞

d3r1

∫ ∞
−∞

d3r2A(r12)e−ik1.r1e−ik2.r2 . (5.83)

By making a change of variables from r1 to r12, i.e.,

r12 = r1 − r2 =⇒ r1 = r12 + r2, (5.84)

Eq. (5.83) can be written as

F [A(r12)] =

∫ ∞
−∞

d3r1

∫ ∞
−∞

d3r2A(r12)e−ik1.(r12+r2)e−ik2.r2 . (5.85)

Then, collecting terms, we have

F [A(r12)] =

∫ ∞
−∞

d3r2e
−ir2.(k1+k2)

∫ ∞
−∞

d3r1A(r12)e−ik1.r12 . (5.86)

To pull out a delta function, we then write

F [A(r12)] = (2π)3 1

(2π)3

∫ ∞
−∞

d3r2e
−ir2.(k1+k2)

∫ ∞
−∞

d3r1A(r12)e−ik1.r12 , (5.87)

followed by

F [A(r12)] = (2π)3δ3(k1 + k2)

∫ ∞
−∞

d3r1A(r12)e−ik1.r12 , (5.88)

where we have used the Fourier transform of the Dirac delta function. Next, for the

second integral, a simple shift of variables gives

F [A(r12)] = (2π)3δ3(k1 + k2)

∫ ∞
−∞

d3r12A(r12)e−ik1.r12 . (5.89)

Comparing the expression above with Eq. (5.82), we see that

Pζ(k1)Full =

∫ ∞
−∞

d3r12A(r12)e−ik1.r12 . (5.90)

Let us now move to spherical polar coordinates such that

d3r12 = r2
12 dr12 sin θ dθ dφ and k1.r12 = k1r12 cos θ. (5.91)



5.3: Examples 80

Then,

Pζ(k1)Full =

∫ ∞
0

dr12 r
2
12 A(r12)

∫ 2π

0

dφ

∫ π

0

dθ sin θ e−ik1r12 cos θ. (5.92)

Integrating w.r.t φ, we have

Pζ(k1)Full =

∫ ∞
0

dr12 2π r2
12 A(r12)

∫ π

0

dθ sin θ e−ik1r12 cos θ. (5.93)

Then, noting that d
dθ

(e−ik1r12 cos θ) = ik1r12 sin θ e−ik1r12 cos θ and using 2 sin(k1r12)
k1r12

=
1

ik1r12
(eik1r12 − e−ik1r12), we end up with

Pζ(k1)Full = 4π

∫ ∞
0

dr12 r
2
12 A(r12)

sin(k1r12)

k1r12

. (5.94)

To evaluate the power spectrum, therefore, one possibility is to first use the N(χ)

function to calculate A(r12) for a range of values of r12, and then to perform this

one dimensional integration. Rather than sampling A(r12) at all positions needed

by an integration algorithm, one could fit A(r12) with an interpolating function. A

problem that arises, however, is that the integral is sensitive to the value of the in-

tegrand even for r12 � L. A second issue is that the integrand is highly oscillatory.

These issues meant we couldn’t get accurate results using this strategy.

2. Method 2 (FFT)

An alternative is to evaluate instead Eq. (5.90), using a fast (discrete) Fourier trans-

form. Although this is effectively a three dimensional integral, the speed of the

algorithm involved means it is more tractable than integrating Eq. (5.94). The di-

rect implementation of the Discrete Fourier Transform requires O(N 2) operations

where N is the total number of data points transformed. Using the Fast Fourier

Transform, this is reduced to O(N logN ).

To avoid aliasing, we make use of the Nyquist sampling theorem which means that

we must sample A(r12) with a small enough uniform intervals such that the sampling

frequency is at least twice the highest frequency contained in the signal. In this case,

the highest frequency that we’re interested in is e4 × 2π
L

and we always ensure this

criteria is easily met. We must also ensure that the lowest frequency sampled is at

least an order of magnitude smaller than 2π
L

.

Even when these constraints are met, the results of the Fourier transform will have

a number of spurious points. In order to present a clean plot, therefore, we fit the

data in log space to a polynomial. Finally we plot this fitted function. As a test that
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Figure 5.2: The data points show the output of F [Σ(r12)]. We know that the
analytic answer of F [Σ(r12)] is P0

k3 (cf. Eq. (5.72) and Eq. (5.53)). In this plot, we
show the known analytic answer in black. Here, we do not show all the points from
the FFT to keep the plot clean. The spurious points on large k are due to aliasing
and those on small k due to edge effects. The number of points on top of the black
line far outweighs the number of spurious points.

we are sampling the correct range and the method is working, we first applied it to

a sampled version of Eq. (5.72), to ensure we recovered Eq. (5.53) with precision.

We plot the results in Fig. 5.2.

Three cases

We perform our analysis for three cases and present our analysis of the two-point

function and the power spectrum in Figs. 5.3-5.8. The cases we consider are

1. χ̄ = 0.001 and 〈δχ2〉 ≈ 7×10−15

2. χ̄ = 0.0009998 and 〈δχ2〉 ≈ 7×10−15

3. χ̄ = 0.001 and 〈δχ2〉 ≈ 6×10−14

For the power spectrum, we plot Pζ(k)/Pζpivot
against k/kpivot. We arbitrarily choose

kpivot = 2π
L

. We also fix Pζpivot
to be PζFull

|k=kpivot
for all three (‘Full’, ‘Expanded’,

‘Regular δN’) methods for easy comparison; otherwise all three lines will lie on top
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of each other initially as dividing by each of their corresponding pivot value of Pζ

will force them to start at the same point.

In all cases we see that the expansion method is a much better approximation

to the fully non-perturbative method than regular δN , and in two of the cases does

a good job at recovering the amplitude and initial scale dependence of the power

spectrum. In the third case however, we can see the method is breaking down even

for the largest scales.

In all three cases, we see that the ‘Expanded’ power spectrum either matches or

is smaller that the ‘Full’ power spectrum on all scales while the ‘Regular’ power

spectrum can be smaller or larger than the ‘Full’ answer, depending on the value of

χ̄ and 〈δχ2〉. For interest only, we also show the raw FFT output for the third case

in Fig. 5.9.
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Figure 5.3: Case 1: Correlation function of ζ(χ) for one realization with χ̄ = 0.001
and 〈δχ2〉 ≈ 7×10−15 on a Log-Log plot. The exact correlation function (‘Full’)
is calculated from Eq.(5.22). The approximated correlation function (‘Expanded’)
is given by Eq.(5.27). As expected, the approximated correlation function becomes
progressively worse on shorter scales.

Figure 5.4: Case 1: Log-Log plots of the power spectrum of ζ, calculated using the
full, expansion and regular δN methods respectively.
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Figure 5.5: Case 2: Here, we plot the correlation function of ζ(χ) for one realization
with χ̄ = 0.0009998 and 〈δχ2〉 ≈ 7×10−15 on a Log-Log plot.

Figure 5.6: Case 2: Log-Log plots of the power spectrum of ζ, calculated using the
full, expansion and regular δN methods respectively.
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Figure 5.7: Case 3: Here, we plot the correlation function of ζ(χ) for one realization
with χ̄ = 0.001 and 〈δχ2〉 ≈ 6×10−14. The approximated correlation function is
worse in this case because the shorter tail distribution ‘sees’ less of the mapping.

Figure 5.8: Case 3: Log-Log plots of the power spectrum of ζ, calculated using
the full, expansion and regular δN methods respectively. The effect of the shorter
tail distribution is also reflected in the difference between the ‘Full’ and ‘Expanded’
power spectra.
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Figure 5.9: In this figure, we show the raw FFT data points for case 3 and the same
fitting polynomial to the points that was used to obtain the ‘Full’ answer in Fig. 5.8.
Here, we choose to omit most of the spurious points from the Fourier transform for
clarity.
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The Reduced Bispectrum

First, we calculate the reduced bispectrum using regular δN . For case 1, fNL is

O(1010), fNL is negative and O(107) for case 2 and finally, fNL is O(1010) for case 3.

Using Eq. (5.31), i.e., using the expansion method we can also calculate the reduced

bispectrum in each case. We find that fNL is enormous for all three cases: fNL is

O(109), O(108) and O(1010) for case 1, 2 and 3 respectively. This is to be expected

since in all cases the higher order terms in the non-perturbative δN expansion are

relatively large (since by eye one can see the full line deviate from the expanded line

plotted using only the leading term).

However, we also find that the amplitude of the curvature perturbation for these spe-

cific examples is too small to explain the observed amplitude: O(10−20) , O(10−19)

and O(10−20) for case 1, 2 and 3 respectively. It is likely this can be altered by

changing 〈δχδχ〉. But given the N(χ) function we began with, we are limited to as-

suming 〈δχδχ〉1/2 is much smaller than the range of χ over which the N function has

been calculated. Ultimately 〈δχδχ〉1/2 is fixed by the energy scale of inflation, but

unlike in the usual approach we can’t account for the effect of changing this energy

scale after calculating the derivatives of N , because the non-perturbative nature of

the calculation means the non-perturbation δN coefficients are affected by 〈δχδχ〉1/2.

In terms of the parameters we are working with, therefore, in order to agree with

observation we would require that the total curvature perturbation is a mixture of

the subdominant component that we have and another dominant component.

Taking the observed amplitude to be 10−9 [180] and taking the dominant com-

ponent to be the standard adiabatic Gaussian perturbations from the inflaton φ,

this mixture dilutes the non-Gaussianity of the total curvature perturbation. Below

we give a back-of-the-envelope calculation of fNL,obs for each of three cases where we

will assume both fields (χ and φ) have the same variance at horizon crossing.

fNL,obs is given by (see Eq. (5.31)):

fNL,obs =
2ÑφχÑφÑχ + ÑχχÑχÑχ + ÑφφÑφÑφ

(ÑφÑφ + ÑχÑχ)2
× 5

6
. (5.95)

However, because the inflaton perturbations are adiabatic and close to Gaussian,

fNL,obs will be dominated by:

fNL,obs ≈
ÑχχÑχÑχ

(ÑφÑφ + ÑχÑχ)2
. (5.96)

For case 1, 〈δφ2〉 = 〈δχ2〉 ≈ 10−15 and we have computed
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ÑχχÑχÑχ

(ÑχÑχ)2
∼ 109. (5.97)

Since the dominant contribution to the observed amplitude of the power spectrum

comes from the inflaton field, we can write

ÑφÑφ〈δφδφ〉 ∼ 10−9 =⇒ ÑφÑφ 10−15 ∼ 10−9 =⇒ ÑφÑφ ∼ 106. (5.98)

We have also calculated the following:

ÑχÑχ〈δχδχ〉 ∼ 10−20. (5.99)

Therefore, ÑχÑχ is

ÑχÑχ 10−15 ∼ 10−20 =⇒ ÑχÑχ ∼ 10−5 (5.100)

Using Eq. (5.97), Eq. (5.98) and Eq. (5.100), fNL,obs given by Eq. (5.96) is calcu-

lated to be O(10−13).

Performing similar calculations for case 2 and case 3, we have fNL,obs ∼ O(10−12)

for both case 2 and 3. For all three cases, the level of non-Gaussianity is far below

the observational sensitivity [113].
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5.4 Conclusion

In the regular δN formalism, the mapping between the curvature perturbation ζ

and the scalar field(s) fluctuations is approximated by a Taylor expansion in the

fields. This standard technique fails in some cases. Examples include the massless

preheating model and the non-perturbative curvaton decay model we revisited in

the examples section of this work. In this work, we discuss how to calculate correla-

tion functions of ζ when the mapping is an arbitrary function of the scalar field(s)

without making a Taylor expansion. This entails integrating the full probability

distribution of the field fluctuations against copies of the N function relating e-folds

to initial field values (‘Non-perturbative δN formalism’). We discuss how to calcu-

late results using a ‘Full’ (not approximated) implementation of this formalism, but

show that this can be convoluted in practice. For observationally relevant scales

the task can be made simpler using an expansion method. This leads to a set of

expressions for observable quantities in terms of non-perturbative δN coefficients

analogous to the usual δN coefficients (‘Expanded’). We argue that the validity of

the expansion method must be tested on a case by case basis and suggest ways to do

this, but show that at least in the realistic example we consider it leads to a marked

improvement over regular δN , and can approximate well the full result.

Our results are closely related to the work of Suyama and Yokoyama [155] and

Bethke et al. ([156], [157]), but we diverge from their work in a number of ways.

First we show how to incorporate the perturbations from n fields whose initial prob-

ability distribution need not be precisely Gaussian, and we present our expressions

in an alternative way to those authors, which is more suitable for numerical analy-

sis. The expressions are, as we discuss in § 5.2.3, particularly well suited to settings

in which a Monte Carlo approach can be advantageous. We intend to employ our

results in this setting in forthcoming work, directly utilising lattice simulations. It

might seem odd at first that we can use the separate universe approach and in-

formation from lattice simulations, which simulate only very short scales, to infer

information about perturbations on observable scales. This works, however, because

the non-pertubative method works in real space initially, and at first calculates quan-

tities such as 〈ζ(x)ζ(y)〉 without coarse-graining. As long as the simulations are of

regions larger than the horizon during reheating, therefore, there is then no barrier

to using this method together with δN to calculate 〈ζ(x)ζ(y)〉. This is not directly

observable, since it includes information about all scales which aren’t observable.

After calculating it, however, we can take its Fourier transform and consider the

Fourier modes over the range of observable scales (or equivalently coarse-grain the

real space result on these scales) to compare with observations. The method we

present, therefore, represents a unique opportunity to extract for the first time ob-

servable predictions for the curvature perturbation directly from lattice simulations.



6 Reheating

In the previous chapter, we touched on the fact that examples where stan-

dard δN fails include models of reheating and preheating and that the form

of our non-perturbative expressions are suited to work with numerical lat-

tice simulations which we will do in Chapter 7. This chapter aims to provide

more context to the dynamics of reheating and to the understanding of how

a highly featured N function arises from preheating. Chapter 6 starts with

a discussion of the perturbative reheating process. Next, we turn our fo-

cus on the preheating stage which is characterised by exponential particle

production via parametric resonance. One entire section is dedicated to a

simple variant of chaotic inflation known as ‘massless preheating’ because

it is the subject of study for our numerical simulations later on. Finally,

we give an overview of lattice field theory simulations which are extremely

useful for numerical analysis of preheating and which we use in Chapter 7.

“You may have to fight a battle more than once to win it.”

—Margaret Thatcher

6.1 Reheating, ‘The Great Thaw’

At the end of inflation, the homogeneous inflaton begins to oscillate about the min-

imum of its potential and the oscillations can be interpreted as a collection of scalar

particles, independent from each other, oscillating coherently at the same frequency.

The inflaton condensate must decay into other forms of matter and radiation since

inflation leaves the universe cold and empty1 as all the energy is in the inflaton field.

Reheating is the process through which the inflaton field transfers its energy to other

particles and eventually to standard model particles, thus ‘reheating’ the universe

after inflation. These more familiar forms of matter and radiation must eventually

reach thermal equilibrium at temperatures greater than 1 MeV in order to recover

the working big bang nucleosynthesis scenario [38]. Reheating occurs through cou-

pling of the inflaton field φ to other fields. Such couplings must at least be present

1One exception is warm inflation where there is particle production during inflation [181, 182].

90
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via gravitational interactions. There are, however, many models of inflation where

couplings are to the matter sector of the theory directly. Reheating was initially

studied using first-order perturbation theory in Refs. [183–185] where the inflaton

oscillates around its minimum, resulting in the production of particles. This so-

called ‘old’ theory of reheating, developed soon after the first inflationary theories,

was built on the concept of single body decays. Such decays can be formulated by

coupling the inflaton φ to other scalar (χ) or fermion (ψ) fields through terms in the

Lagrangian such as g2σφχ2 and hφψ̄ψ (here, σ has dimensions of mass and g and

h are dimensionless couplings.). For example, in [186] where reheating was dubbed

‘The Great Thaw’, the oscillating inflaton field produces fermion-antifermion pairs

through Yukawa couplings. The elementary theory of reheating is successful in de-

scribing reheating after inflation in many models of inflation; this is why we go into

details about perturbative reheating in § 6.2. However, in some cases, the first stage

of reheating involves very non-linear dynamics and results in an explosive produc-

tion of particles. This first stage is called preheating [177, 178, 187–193].

In § 6.2, we briefly discuss perturbative reheating, followed by its limitations in

§ 6.3.1. We then show the importance of non-perturbative effects arising from the

coherent nature of the inflaton condensate. These effects include parametric reso-

nances and tachyonic instabilities, all of which result in an exponential growth in the

occupation numbers of the fields the inflaton decays to. This kind of rapid particle

production is called preheating. The extremely rapid decay yields a distribution

of products that is far from equilibrium, and only much later settles down to an

equilibrium distribution. We will pay special attention to a particular model of pre-

heating, the massless preheating model which is the subject of our main work. The

review presented in § 6.2 to § 6.6 closely follows the classic paper by Kofman, Linde

and Starobinsky [179] and includes material from Kofman [194], Kofman [178] and

Baumann [195]. Because the authors in Ref. [179] used a slightly different definition

for the reduced Planck mass, we have changed some of the expressions which follow

to keep our definition of Mpl in § 1.1 consistent throughout.

6.2 The Standard Lore: Perturbative Reheating

Let us consider the archetypal chaotic inflation with potential

V (φ) =
1

2
m2φ2, (6.1)

and ignore all interactions for the moment. The dynamics of the inflaton field is

described by the Klein-Gordon equation (cf. Eq. (2.8)) coupled to the Friedmann

equation:
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φ̈+ 3Hφ̇+m2φ = 0 (6.2)

H2 =
1

3M2
pl

(
1

2
φ̇2 +

1

2
m2φ2). (6.3)

The solution to Eq. (6.2) and Eq. (6.3) during the oscillatory stage is

φ(t) ≈ Φ(t) sin(mt) (6.4)

where

Φ(t) ∼ Mpl

mt
∼ Mpl

4N
. (6.5)

Φ(t) is the amplitude of oscillations and N is the number of oscillations since the

end of inflation. During the oscillatory phase, the universe behaves in the same way

as if it were dominated by non-relativistic particles of mass m since averaged over

many oscillations, the scale factor grows as a ∼ t2/3 and the energy density is

ρφ =
1

2
φ̇2 +

1

2
m2φ2 =

1

2
m2Φ2 ∝ a−3. (6.6)

This highlights the well-known result that the coherent oscillations of the homo-

geneous scalar field oscillating in a quadratic potential correspond to the matter-

dominated effective equation of state of pressureless dust. We will later see in § 6.7

that for a quartic potential, the energy of the field φ decreases in the same way as

the density of relativistic particles, i.e., ρφ ∼ a−4 and the effective equation of state

corresponds to the radiation dominated equation of state with w ≈ 1
3
.

Now, let us assume that the inflaton field is coupled to another scalar field χ through

the term g2σφχ2 in the Lagrangian where σ has dimensions of mass and g is a

dimensionless coupling. Historically, reheating was first treated perturbatively where

the theory was based on the concept of single-body decays. In the perturbative

picture, the inflaton field is treated as a collection of scalar particles each having

a finite probability of decaying. The effects generated by particle production can

be included into the equation of motion for the inflaton field by adding one extra

friction term Γφ̇ to the classical equation of motion of the scalar field φ:

φ̈+ 3Hφ̇+ Γφ̇+m2φ = 0. (6.7)

The solution that then generalizes Eq. (6.4) and describes damped oscillations of the

inflaton field due to particle decay as well as due to the expansion of the universe is

φ(t) ≈ Mpl

mt
exp
(
− 1

2
Γt
)

sin(mt). (6.8)
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Figure 6.1: Oscillations in the inflaton field after the end of inflation in the chaotic
theory with V (φ) = 1

2
m2φ2. The value of the scalar field is given in units of

√
8πMpl

and time is measured in units of m−1. The amplitude of the oscillations decreases
over time due to the “friction term” 3Hφ̇ in Eq. (6.2). Figure taken from [179].

Using standard field theory methods, we can estimate the decay rate as follows:

Γφ→χχ =
g4σ2

8πm
. (6.9)

For small coupling constants, as required for radiative corrections to not spoil the

flatness of the potential during inflation, typically Γ is much smaller than the Hubble

parameter at the end of inflation. At the beginning of the oscillatory phase, the

inflaton field mainly loses energy due to the expansion of the universe. It is only

once the Hubble expansion rate decreases to a value comparable to Γ that particle

production becomes effective. The energy density of the universe at the time tr

when the rate of expansion given by the the Hubble parameter t−1
r is equal to Γ is

ρ(tr) = 3Γ2M2
pl. (6.10)

Assuming that the decay particles interact with each other strongly enough, then

thermal equilibrium quickly sets in after the decay of the inflaton condensate. By

equating the energy density above to that of a thermal bath

ρrad =
π2

30
g?T

4
r (6.11)

containing g? relativistic degrees of freedom (g? ≈ 100 at the time), we obtain the
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reheating temperature [194]

Tr ∼ 0.1
√

ΓMpl. (6.12)

It is worth noting that Tr does not depend on the initial value of φ but only on

the underlying elementary particle theory parameters. To get a numerical estimate

on the duration of reheating tr, for the decay rate of the inflaton field and for the

reheating temperature Tr, one should know the mass of the inflaton field and the

coupling constants. As previously mentioned, the coupling constants cannot be too

large, otherwise radiative corrections change the shape of the inflaton potential.

Together with the constraints we have on the parameters of the inflaton potential

(from normalisation of the CMB on large scales, m ∼ 10−6Mpl), the largest possible

decay rate in perturbation theory is Γ < 10−20Mpl. This means that perturbative

reheating is slow and produces a reheating temperature which can be very low

compared to the energy scale of inflation. For example, for the quadratic inflaton

potential, it takes a minimum of ∼ 1014 oscillations to transfer the inflaton energy to

the decay particles. Using Eq. (6.12) we can get a general estimate of the reheating

temperature in perturbative reheating,

Tr < 109GeV. (6.13)

Such small reheating temperatures imply that GUT (Grand Unified Theory, TGUT ∼
1016GeV) baryogenesis cannot work in such scenarios: such scenarios would neces-

sitate a theory of low-temperature baryogenesis. The reheating temperature can

be much higher if there is a preheating stage which we discuss next after a short

discussion of the drawbacks of the elementary theory.

6.3 Parametric Resonance and Preheating

6.3.1 Limitations of Perturbative Reheating

The perturbative reheating analysis outlined in the previous section has many is-

sues. While the heuristic equation of motion in Eq. (6.7) captures the qualitative

behaviour, it does not provide a consistent description of the perturbative decay

since it violates the fluctuation dissipation theorem [196]; there are always fluctua-

tions in systems with dissipation and these fluctuations are missing from Eq. (6.7).

The effects of these fluctuations on the effective mass of the inflaton condensate can

significantly affect the dynamics of the system [179]. This insight, together with the

insight that effective masses can be space and time dependent is at the very heart

of preheating [178, 191, 197, 198]. Another problem is that for large couplings (but

still small enough not to upset the flatness of the inflaton potential), perturbative

methods fail.
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The principal problem with perturbative reheating is that it does not take into

account the coherent nature of the inflaton field. The inflaton field at the beginning

of the oscillatory stage is not simply a superposition of free single inflaton states,

but rather a coherently oscillating homogeneous field. This means that particle

production has to be treated as a collective process in which many inflatons decay

simultaneously, not independently of each other. It is justified to treat the inflaton

condensate classically because of the large amplitude of the oscillation but the decay

products have to be treated quantum mechanically. This is because the decay parti-

cles have vanishing occupation numbers at the end of inflation and can be assumed

to start off in their vacuum because of the enormous red-shifting during the accel-

erated expansion. Thus it is valid to use their vacuum state as an initial condition

for the resulting quantum mechanical particle production in the classical inflaton

background and the improved approach lead to treating reheating as a quantum

production of particles in a φ background [177, 199].

The perturbative analysis also ignores the significant fact that if many χ parti-

cles have been produced, the decay probability is enhanced by Bose statistics. This

non-perturbative production of particles typically happens before the perturbative

reheating and therefore it has been dubbed preheating. In the next section, we will

account for this effect. In particular, we will show how the phenomenon of para-

metric resonance may result in explosive particle production. Despite all of these

drawbacks, the perturbative elementary theory of reheating can still be applied to

the late stages of reheating such as the decay of remnant inflaton particles after

most of the energy has been transferred to relativistic particles. It might also still

be applicable if the inflaton field decays into fermions only, with a small coupling

constant h2 � m/Mpl.

6.4 Quantum Field Theory in a Time-Dependent

Background

We are still considering the chaotic inflaton potential given by Eq. (6.1). Under the

influence of this potential, the homogeneous part of the inflaton executes oscillations

around φ = 0 which gradually decay. The majority of the inflaton energy at the

end of inflation is stored in the k = 0 mode and since the occupation number of the

inflaton k = 0 mode (the homogeneous part) is very large at the end of inflation

it behaves essentially as a classical field. One can therefore, to first approximation,

treat the inflaton field as a classical external force acting on the quantum field χ. As

is well-known from classical mechanics a concerted choice of parameters may cause

parametric oscillators to resonantly excite themselves, a feature which is known as
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parametric resonance. The effective mass of χ changes very rapidly because the

inflaton field is time-dependent. This then leads to the non-adiabatic excitation of

the field fluctuations by parametric resonance.

Consider the quantum field χ̂ in the classical background φ(t),

χ̂(t,x) =

∫
d3k

(2π)3/2

(
âkχk(t)e

−ik.x +
ˆ
a†kχ

∗
k(t)e

ik.x
)

(6.14)

where âk and
ˆ
a†k are annihilation and creation Bose operators, respectively. If we

assume there are no non-linearities in the χ sector of the theory, then the equation

of motion for χ is linear and can be studied simply by mode by mode in Fourier

space. The mode functions satisfy

χ̈k + 3Hχ̇k +
(k2

a2
+m2

χ + g2φ2(t)
)
χk = 0. (6.15)

Ignoring the expansion of space Eq. (6.15) becomes

χ̈k +
(
k2 +m2

χ + g2Φ2 sin2(mt)
)
χk = 0. (6.16)

Eq. (6.16) can be written in the form:

χ̈k + ω2
k(t)χk = 0, ω2

k(t) = k2 +m2
χ + g2Φ2 sin2(mt). (6.17)

Defining a new dimensionless time variable z ≡ mt and using sin2(z) = 1
2
(1 −

cos(2z)), this becomes the Mathieu equation

χ′′k + (Ak − 2q cos(2z))χk = 0, (6.18)

where

Ak ≡
k2 +m2

χ

m2
+ 2q and q ≡ g2Φ2

4m2
. (6.19)

and a prime here denotes the derivative with respect to z. The occupation number

nk counts by how many quanta the respective modes χk are populated. We define

the comoving occupation number of particles as follows:

nk =
ωk
2

( |χ̇k|2
ω2
k

+ |χk|2
)
− 1

2
. (6.20)

The growth of the mode function corresponds to particle production, like in the case

of particle creation in a varying strong external gravitational field as developed by

Zeldovich and Starobinsky [200]. Exponential growth of the mode functions will

result in an exponential growth of the number of χ particles, with the exponent

of this growth being twice the corresponding exponent of the mode functions. It

is known that the Mathieu equation has instabilities for certain ranges of k; the
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properties of the solutions have been classified in so-called stability/instability re-

gions. The strength of the resonance depends on Ak and q which is described by

a stability/instability chart of the Mathieu equation. Strictly speaking, Ak and q

should be constant to use the Mathieu equation but as long as they are not varying

too rapidly the analogy is reasonable. The solutions have exponential instabilities

within certain resonance bands of widths ∆k,

χk ∝ exp(µkz) (6.21)

where µk are called Floquet exponents. According to Floquet theory, when Ak, q

fall in an instability band, the perturbation χk grows exponentially with a Floquet

index µk > 0.

• µk = 0 |χk| is stable.

• µk > 0 |χk| grows exponentially.

Exponential instabilities correspond to exponential growth of occupation numbers

(particle production)

nk ∝ |χk|2 ∝ exp(2µkz). (6.22)

For small q (. 1) the width of the instability band is small and the expansion of

the universe washes out the resonance. On the other hand, for large q (� 1), broad

resonance can occur for a wide range of the parameter space and momentum modes.

Here, we will look at these two important regimes:

• q � 1 Narrow resonance at k = m

• q > 1 Broad resonance for k 6 k?.
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Figure 6.2: Instability bands for the Mathieu equation [201]. The parameter q from
Eq. (6.18) is plotted on the horizontal axis and A on the vertical axis. The shaded
regions represent regions in parameter space where there is a parametric resonance
instability.
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Figure 6.3: Instability chart of the Mathieu equation taken from [202] for A, q
ranging from 1 − 5. Just like for Fig. 6.2, in this sketch, the instability regions
(µk > 0) are the shaded regions and the white regions are stable. The line A = 2q
shows the values of Ak and q for k = 0. For k 6= 0, the corresponding graphs Ak(q)
are found by parallelly shifting the line A0 upwards by k2/m2.

6.4.1 Narrow Resonance (q � 1)

Floquet Analysis

From the Mathieu stability/instability chart, for q � 1, resonances occur near

A
(n)
k ≈ n2 and n is an integer (n ∈ Z). The widths of the resonance bands is

∆k(n) ∼ mqn.

The structure of the instability bands is dictated by the theory of Mathieu’s equa-

tion:

k2 ≈ m2(n2 − 2q ± qn). (6.23)

For q < 1, the first band is the widest and the most important one:

k2 ≈ m2(1− 2q ± q). (6.24)
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Figure 6.4: Schematic diagram showing the resonance band in the narrow resonance
case for n = 1. Figure taken from [195].

It is centred around k ≈ m, has a width mq and the instability parameter of this

band is:

µk =

√(
q

2

)2

−
(
k

m
− 1

)2

. (6.25)

The instability parameter vanishes at the edges of the resonance band and is maximal

at its centre, giving:

µmax
k = µk=m =

q

2
=

g2Φ2

8m2
. (6.26)

The corresponding modes χk grow at a maximal rate of exp( qz
2

). The growth of the

modes leads to the growth of the occupation numbers of the created particles nk.

nk grows as exp(qz).
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Numerical Simulations

Figure 6.5: Narrow parametric resonance for the scalar field χ in the theory 1
2
m2φ2

in Minkowski space for q ∼ 0.1. Time is shown in units of m/2π which is equal to
the number of oscillations of the inflaton field φ. For each oscillation of the inflaton
field the growing modes of the χ field oscillate once. The upper figure shows the
growth of the mode χk for the momentum k corresponding to the maximal speed of
growth, k ≈ m. The lower figure shows the logarithm of the occupation of particles
nk in this mode. The number of particles grows exponentially and lnnk in the narrow
resonance regime looks like a straight line with a constant slope. This slope divided
by 4π gives the value of the parameter µk. In this particular case, we have µk ∼ 0.05
which matches exactly with the relation µk ∼ q

2
for this model. Figure taken from

[179].

Narrow Resonance in an Expanding Universe

So far, our analysis has ignored the expansion of the universe and the rescattering

of the χ particles. This adds another layer of complexity to the analysis but es-

sentially both these effects render narrow parametric resonance less effective. For

instance, the expansion of the universe narrows the width of the resonance band,

∆k ∝ Φ(t) ∝ 1/t. The expansion of space also increases the inflaton decay rate

with the friction term 3H and within a time ∆t ∼ qH−1, redshifts the χ modes
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out of the resonance bands. The χ boson particles may also be removed from the

resonance bands as they change their momenta or decay into other particles due

to secondary interactions (rescatterings). All of this means that narrow parametric

resonance is quite a delicate process and to find out if it really occurs, one requires

detailed numerical simulations that include all the relevant effects.

Dolgov and Kirilova [199] mention narrow parametric instability regions for the

new inflationary scenario. The importance of this narrow regime for the new infla-

tionary scenario was first recognized by Traschen and Brandenberger [177] but for

many reasons, their final calculations were not quite correct. Kofman, Linde and

Starobinsky [178, 179] developed a detailed theory of particle creation in the narrow

resonance regime in an expanding universe for the chaotic scenario (but see also

Shtanov, Traschen and Brandenberger [191] and Kaiser [203]).

Several authors have studied the narrow resonance regime without taking into ac-

count the expansion of the universe because the calculations are simpler (Yoshimura

[198], Boyanovsky et al. [197], Boyanovsky et al. [204]). However, while doing so,

for many parameters important features in the theory might disappear. One such

example is that the effects studied by Son [205] disappear in an expanding universe.
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6.4.2 Broad Resonance (q > 1)

The term Broad Resonance is used to describe parametric resonance in broad in-

stability bands in parameter space. For q > 1 it can be seen from Fig. 6.2 that

instabilities now occur for much broader ranges of k. In chaotic inflation the initial

amplitude of the inflaton oscillations can be very large, Φ0 & Mpl, resulting in a

broad (q > 1) and very efficient parametric resonance. Fig. 6.6 shows the numerical

solutions for χk(t) and nk(t) in the broad resonance regime in Minkowski space.

Figure 6.6: Broad parametric resonance for the field χ for k h m in the theory
1
2
m2φ2 for q ≈ 200. For each oscillation of the φ field, the mode of the χ field

oscillates many times. The peaks in the χk oscillations correspond to the time when
φ0(t) = 0. Figure taken from [179].

Each peak in the χk oscillation corresponds to a place where φ(t) = 0, i.e., particle

production only occurs for very small values of φ(t). At this time the occupation

number nk is not well-defined but soon after, the occupation number stabilizes to

a new, higher level and remains constant until the next jump. The structure in
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Fig. 6.6 for lnnk requires an analytic treatment. The standard condition necessary

for particle production is that the adiabatic condition is violated2, i.e., when:

|ω̇| > ω2, where ω(t) =
√
k2 +m2

χ + g2Φ2 sin2(mt). (6.27)

Away from φ(t) = 0, the frequency of χ changes adiabatically (|ω̇| � ω2) and nk is

conserved. Particle production occurs when the adiabatic condition is violated and

this happens for momenta satisfying:

k2 6 k2
? ≡

2

3
√

3
gmΦ(t)−m2

χ. (6.28)

For modes with these values of k, the adiabacity condition breaks down in each

oscillation period when φ is close to zero. This implies that the particle number

does not increase smoothly but rather in ‘bursts’ as was first studied in [179].

Figure 6.7: Schematic diagram showing the range of k that are excited in broad
parametric resonance. Figure taken from [195].

2One should note that this condition is not necessary for the case of narrow resonance because
even a small variation of ω(t) may be exponentially accumulated in the course of time. However,
for broad resonance one should expect a considerable effect during each oscillation.
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Broad Resonance in an Expanding Universe

In an expanding universe, the adiabacity condition is now violated for momenta

satisfying [179, 195]:

k2

a2(t)
6 k2

?(t) ≡
2

3
√

3
gmΦ(t)−m2

χ. (6.29)

Note that the expansion of space makes broad resonance more effective since more

k modes are redshifted into the instability band as time goes by.

Bringing back into play the expansion of the universe, the complexity of describ-

ing preheating in the broad resonance regime increases. To make things simpler, it

is convenient to remove the Hubble friction term from the equation of motion by

defining Xk(t) ≡ a3/2(t)χk(t). We can then write the mode equation as:

Ẍk + ω2
kXk = 0, (6.30)

where

ω2
k ≡

k2

a2
+ g2Φ2 sin2(mt) + ∆, ∆ ≡ m2

χ −
9

4
H2 − 3

2
Ḣ. (6.31)

Note that in the matter-dominated background that we are considering here, the

last two terms on the right-hand side cancel. We will also consider here the case of

light χ particles such that mχ can be ignored. Hence, the term ∆ can be neglected

altogether. The equation of motion (Eq. (6.30)) represents a harmonic oscillator

equation with a time-dependent frequency. Fig. 6.8 shows a simulation of broad

parametric resonance in an expanding universe where Xk(t) is plotted rather than

χk(t) to illustrate the relative growth of χ to the amplitude of the oscillating field φ

(Φ ∝ 1/t).
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Figure 6.8: Early stages of preheating in the theory 1
2
m2φ2 in an expanding Universe

with a ∼ t2/3 for g = 5×10−4, m ≈Mpl and initial q ∼ 3×103. From the behaviour
of nk, we see stochastic resonance. Figure is from [179].

In the beginning we have parametric resonance very similar to the one studied in

§ 6.4.2. Just like before, the intervals when the field φ becomes small are the peri-

ods when χ particle production is most efficient. One important difference is that

because of the gradual decrease in amplitude of the φ field, the frequency of the χ

oscillations decrease in time. As a result, in the beginning within each half of a pe-

riod of oscillation of the field φ the field χk oscillates many times, but then it starts

oscillating more and more slowly as can be seen in Fig. 6.8. We also note that the

number of particles nk in this process typically increases but it may occasionally de-

crease as well. Stochastic resonance is a distinctive feature in an expanding universe.

To gain an understanding of this stochastic resonance effect, we analyse the be-

haviour of the phases of the functions χk(t) near φ(t) = 0; here, broad resonance in

Minkowski space and in an expanding universe is characteristically different. Indeed,

Fig. 6.6 shows that for Minkowski, near all points where φ = 0, the phases of χk are

all equal. However, in an expanding universe such a regime is impossible, not just

because of the redshift of the momentum k/a but mainly because the frequency of

oscillations of the field χk decreases in time as it is proportional to Φ. The frequency

of the oscillations changes significantly with each oscillation of the φ field. Because
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for large q the phases of the field χk at successive moments when φ(t) = 0 are

practically uncorrelated with each other, at some instants the amplitude of the field

χk decreases. Surprisingly, this stochastic effect does not destroy broad parametric

resonance completely. Even though the phases of the field χk at the moment when

φ(t) = 0 in an expanding universe with q � 1 are uncorrelated and unpredictable,

in 75% of all events the amplitude grows after each pass through φ(t) = 0 [179].

This is confirmed by numerical simulations. Even if this was not the case and the

amplitude only grew in 50% of cases, the total number of χ particles would still grow

exponentially. The theory of this effect is very similar to the inflationary scenario

where in most points the inflaton field rolls down but the parts of the universe where

the field jumps continue to grow exponentially.

Eventually, due to the decrease in the inflaton amplitude the broad resonance be-

comes narrow since the parameter q = g2Φ2

4m2 ∝ t−2. Ultimately, the resonance ceases

to exist and nk stabilizes at a constant value.

6.5 Backreaction and Rescattering

So far we have considered the parametric resonance in an expanding universe ne-

glecting the backreaction of the amplified fluctuations of the fields φ and χ. The

effect of the resonant amplification of χk(t) corresponds to the exponentially fast

creation of nχ particles. The backreaction of the exponential unstable χ field on the

background dynamics slowly accumulates until it affects the process of resonance it-

self. Therefore preheating can be divided into two distinct stages. In the first stage

the backreaction of created particles is not important. This first stage is actually

quite long and for a small emough (. 103) initial value of q, preheating might end

before backreaction becomes significant. In the second stage backreaction increases

the frequency of oscillations of the inflaton field, which makes the process even more

efficient than before. Backreaction of the χ field can have several different effects

on the dynamics. In the model that we have considered, backreaction may change

the value of m in the mode equation which may make the resonance narrow and

eventually terminate it. Another effect is the production of φ particles coming from

the interaction of χ particles with the oscillating field φ(t). This process is known as

the scattering of χ particles on the the oscillating φ(t) field; each χ particle takes one

φ particle away from the homogeneous oscillating field φ(t) during each interaction.

Eventually when many such φ particles are created, this changes the effective mass

of the χ field, making χ particles so heavy that they are no longer created. Given a

sufficient amount of time, the scattering process can dismantle the oscillating field

by decomposing it into separate φ particles. For a proper investigation of backre-

action and rescattering, one would need to start with the general set of equations
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which describe the self-consistent dynamics of the classical homogeneous inflaton

field as well as the fluctuations of the fields χ and φ. We do not go into the details

of backreaction and rescattering here; instead the reader is referred to the classic

paper by Kofman, Linde and Starobinsky [179] for a proper analysis. Instead we

quote the main findings of that paper. The simplest way to take into account the

backreaction of the amplified quantum fluctuations χ is to use:

φ̈+ 3Hφ̇+m2φ+ g2〈χ2〉φ = 0. (6.32)

where the vacuum expectation value for χ2 is:

〈χ2〉 =
1

2π2a3

∫ ∞
0

dk k2|Xk(t)|2. (6.33)

Quantum effects contribute to the effective mass mφ of the inflaton field such that:

m2
φ = m2 + g2〈χ2〉. It is found that the frequency of oscillations of the inflaton field

does not change until the number of χ particles grows to:

nk ≈
2m3

g2
q1/2. (6.34)

Rescattering, on the other hand, increases the effective mass of χ particles making

them heavy and hard to produce [179]. Despite all this analytical progress, it remains

a challenge to develop a complete analytical theory of reheating. Many authors like

ourselves turn to numerical simulations instead (see Chapter 7).

6.6 Remarks

Early discussions of reheating of the universe after inflation were based on the idea

that the homogeneous inflaton field can be represented as a collection of the particles

of the field φ. Each of these particles decayed independently of each other. This

process can be studied by the usual perturbative approach to particle decay. Typi-

cally, it takes thousands of oscillations of the inflaton field until it decays into other

particles. Later, however, it was discovered that coherent field effects such as para-

metric resonance can lead to the decay of the homogeneous field much faster than

what would have been predicted from perturbative methods (within a few dozen

oscillations). In the simplest versions of chaotic inflation, the stage of preheating

is generally dominated by parametric resonance, although, as we have shown in

this chapter, there are parameter ranges where this does not occur. These coherent

effects produce high energy, non-thermal fluctuations that could have significant ef-

fects on the early universe. This early stage of rapid non-perturbative decay was

called ‘preheating’.
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While not our subject of research, for completeness, we also mention in passing that

other forms of preheating have been studied in the literature. In Refs. [206, 207], it

was found that another effect known as tachyonic preheating can lead to even faster

decay than parametric resonance. This effect occurs whenever the homogeneous

field rolls down a tachyonic (V,φφ < 0) region of its potential. When that occurs, a

tachyonic or spinodal instability leads to exponentially rapid growth of of all long

wavelengths modes with k2 < |V,φφ|). In this case, the field decays before reach-

ing the minimum of the potential and the reheating phase is quasi-instantaneous

[206, 207]. In Refs. [206, 207], it was shown that tachyonic preheating dominates

the preheating phase in hybrid models of inflation. Yet another type of preheating

is geometric preheating (see for example, [208]) in which scalar fields are coupled

to the scalar curvature R which oscillates during reheating. Fermionic preheating

[209, 210], the resonant production of fermions, is an important issue since many

problematic particles such as gravitinos are fermions and resonant production of

them could have a big effect on dangerous relic abundances [209, 211].

6.7 Massless Preheating

The calculations, conclusions and figures presented in this massless preheating re-

view section are from the paper by Greene et al. [173]. We will make use of some of

the important findings in the next section for our latttice simulations in Chapter 7.

Note that the authors of Ref. [173] used a different definition for the reduced Planck

mass and therefore, the expressions that follow have been changed to keep things

consistent throughout this thesis such that Mpl is still as defined in § 1.1.

6.7.1 The Conformally Invariant Case

There exists an interesting model in which the expansion of the universe can be

transformed away and to which one can apply exact Floquet theory, called massless

preheating [173]. By a conformal transformation, one can facilitate the investigation

of preheating in this theory in an expanding universe to a much simpler theory of

preheating in Minkoswki spacetime. As a result, the parametric resonance in this

model does not exhibit the stochasticity we found in § 6.4.2. In this model, the

universe rapidly becomes radiation dominated (a ∝ t1/2). The conformally invariant

potential of this model is

V (φ) =
1

4
λφ4 +

1

2
g2φ2χ2. (6.35)

We will see that the occurrence of resonance in the various conformally invariant

models can be very different, depending on the particular values of parameters and

the structure of the theory. For instance, the model 1
4
λφ4 + 1

2
g2φ2χ2 with g2 = λ
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or g2 = 3λ has only one instability band each but the structure of the bands and

the characteristic exponents µk are completely different from each other. Only a

slight change in the ratio g2/λ is enough for the number of the instability bands to

immediately become infinitely large. For this reason, it is erroneous to extrapolate

the results obtained for a theory with one choice of parameters to a theory with

different parameters.

6.7.2 Evolution of the Inflaton Field

Consider chaotic inflation with the potential V (φ) = 1
4
λφ4. During inflation, the

leading contibution to the energy-momentum tensor is given by the inflaton scalar

field φ. The evolution of the (flat) FLRW universe is given by the Friedmann

equation:

H2 =
1

3M2
pl

(1

2
φ̇2 +

λφ4

4

)
(6.36)

where as usual, H = ȧ/a. We also note a useful relation between H(t) and φ(t)

which follows from the Einstein equations:

Ḣ = − φ̇2

2M2
pl

. (6.37)

We can write the equation of motion for the classical field φ(t) as

φ̈+ 3Hφ̇+ λφ3 = 0. (6.38)

For large initial values of φ (> Mpl), the friction term 3Hφ̇ in Eq. (6.38) dominates

over φ̈ and the potential term in Eq. (6.36) dominates over the kinetic term, giving

rise to the inflationary stage. As the field φ decreases below ∼ Mpl, the ‘friction’

term 3Hφ̇ gradually becomes less important and inflation eventually comes to an

end when Φ0 ∼ 2.5Mpl. The inflaton then rapidly oscillates around the minimum of

V (φ) with a large initial amplitude of Φ0 ∼ 0.5Mpl [173].

The shape of the potential V (φ) determines the characteristics of the classical os-

cillations of the homogeneous scalar field φ. Previously in § 6.2, we considered the

quadratic potential V (φ) = 1
2
m2φ2. In that model, the fluctuations are harmonic,

given by φ(t) = Φ(t) sin(mt) with the amplitude decreasing as Φ(t) ≈ Mpl

mt
∝ a−3/2

and the energy density of the inflaton field decreases in the same way as the energy

density of non-relativistic matter, i.e., ∝ a−3.

In the model with the potential V (φ) = 1
4
λφ4 however, the inflaton oscillations

are not sinusoidal. In the limit t → ∞, the amplitude Φ of the oscillations of the
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field φ approaches the asymtotic regime

Φ(t) ≈ 1√
t

(
3M2

pl

λ

)1/4

∼ Mpl

2N
(6.39)

where N is the number of oscillations after the end of inflation. The energy density

is ρφ = 1
2
φ̇2 + λ

4
φ4 ≈ λ

4
Φ4 and using Eq. (6.39), we have ρφ ∝ a−4. The energy

density of the field φ decreases in the same way as the energy density of radiation.

Figure 6.9: Oscillations of the inflaton field φ after the end of inflation in the
theory λ

4
φ4. The value of the scalar is in units of

√
8πMpl and time is measured in

units of (
√
λ8πMpl)

−1. Figure taken from [173].

To make calculations simple and in particular to find the form that the oscillations

take, it is convenient to make a conformal transformation of the spacetime metric

and the fields. For this we need the conformal time τ and the conformal field,

ϕ = aφ. (6.40)

Then, for the coordinates (τ,x) the Klein-Gordon equation becomes

ϕ′′ + λϕ3 − a′′

a
ϕ = 0, (6.41)

where ′ denotes the derivative with respect to the conformal time, d
dτ

. Writing the

Friedmann equation in these new variables, we have

a′
2

=
1

3M2
pl

(
1

2

(
ϕ′ − ϕa

′

a

)2

+
λϕ4

4

)
. (6.42)

From Eq. (6.41), we can see that the equation of motion for the field ϕ in the new

time variable τ does not look exactly as the equation for the theory λ
4
ϕ4 in Minkowski
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space. For it to be exactly the same, we would need to add the term φ2

12
R in the

Lagrangian. However, we can ignore this subtlety for the following reasons. Firstly,

soon after the end of inflation we have λ
4
φ4 � φ2

12
R and λϕ3 � a′′

a
ϕ. Furthermore,

it is known that, when averaged over several oscillations of the inflaton field, the

energy-momentum tensor of the field φ in the theory λ
4
φ4 is traceless (p = ρ/3)

[212]. Therefore in this case, R = 0, a(τ) ∼ τ and a′′ = 0 so that the last term in

Eq. (6.41) disappears and then,

ϕ′′ + λϕ3 = 0. (6.43)

Note that this equation is that of a harmonic oscillator in flat space; the expansion

of the universe has been absorbed into the field and time redefinitions. Averaged

over several oscillations, the Friedmann equation (Eq. (6.42)) in the regime φ�Mpl

is simply

a′
2

=
1

3M2
pl

(
1

2
ϕ′

2

+
λϕ4

4

)
≡ ρϕ

3M2
pl

, (6.44)

where the conformal energy density ρϕ is given by

ρϕ =
1

2
ϕ′

2

+
λ

4
ϕ4. (6.45)

We can express ρϕ in terms of the amplitude of the oscillations ϕ̃ of the inflaton

field φ: ρϕ = λ
4
ϕ̃4. Then using Eq. (6.44) we can write:

a(τ) =

√
λ

12

ϕ̃2

Mpl

τ, t =

√
λ

48

ϕ̃2

Mpl

τ 2. (6.46)

As expected, in this regime the last term in Eq. (6.41), a′′

a
ϕ vanishes. Eq. (6.43)

has an oscillatory solution with a constant amplitude and can be reduced to the

equation for an elliptic function. Let us define a dimensionless conformal time

variable as follows:

x ≡
√
λϕ̃τ =

(
48λM2

pl

)1/4√
t. (6.47)

Then, let us rescale the function ϕ ≡ aφ = ϕ̃f(x). The amplitude of the function

f(x) is equal to unity and f(x) obeys the canonical equation for the elliptic function.

The integral of Eq. 6.43, f ′
2

= 1
2
(1 − f 4), has the solution in terms of an elliptic

cosine function

f(x) = cn
(
x− x0,

1√
2

)
. (6.48)

As mentioned earlier, oscillations in this theory are not sinusoidal but are given by



6.7: Massless Preheating 113

an elliptic function. The elliptic cosine can be written as a series,

f(x) =
8π
√

2

P

∞∑
n=1

e−π(n−1/2)

1 + e−π(n−1/2)
cos

(
2π(2n− 1)x

P

)
, (6.49)

where P ≈ 7.416 is the period of the oscillations in units of x [173]. The amplitude

of the first term in this sum is 0.9550, the amplitude of the second term is 0.04305

(much smaller) [173].

Figure 6.10: The exact solution Eq. (6.48) for the oscillations of the inflaton field
after the end of inflation in the conformally invariant theory 1

4
λφ4. The field is

shown in rescaled conformal field and time variables. The full solution is plotted as
the solid curve and the dotted curve is for the leading harmonic term (cos 0.8472x)
in the series in Eq. (6.49). Figure taken from [173].

6.7.3 Equations for Quantum Fluctuations of the Fields φ

and χ

In the same vein as in § 6.4, we consider the interaction between the classical field

φ and the massless quantum scalar field χ̂.

χ̂(t,x) =

∫
d3k

(2π)3/2

(
âkχk(t)e

−ik.x +
ˆ
a†kχ

∗
k(t)e

ik.x
)
, (6.50)

where âk and
ˆ
a†k are annihilation and creation operators. For a flat Friedmann

background with scale factor a(t), we have:

χ̈k + 3
ȧ

a
χ̇k +

(
k2

a2
+ g2φ2

)
χk = 0. (6.51)
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The self-interaction 1
4
λφ4 also generates fluctuations in the field φ and the equation

for the modes φk(t) is

φ̈k + 3
ȧ

a
φ̇k +

(
k2

a2
+ 3λφ2

)
φk = 0. (6.52)

This equation is identical to Eq. (6.51) with g2 = 3λ. Therefore the study of the

fluctuations φk in the 1
4
λφ4 model is a particular case of the general equation for fluc-

tuations (Eq. (6.51)). The physical momentum p = k
a(t)

in Eq. (6.51) redshifts away

in the same way as the background field amplitude, φ(t) = ϕ
a(t)

and therefore, we can

remove the redshifting of momenta from the evolution of χk. We do that by making

use of the conformal transformation of the mode function Xk(t) = a(t)χk(t) and

rewriting the mode equation for χk with the dimensionless conformal time variable

x (see Eq. (6.47)),

X ′′k +

(
κ2 +

g2

λ
cn2
(
x,

1√
2

))
Xk = 0. (6.53)

We have dropped x0 = 2.44 for simplicity. Also, κ2 = k2

λϕ̃2 . We see that the equa-

tion for fluctuations does not depend on the expansion of space and is completely

reduced to the similar problem in Minkowski spacetime. This feature is special to

the conformally invariant theory 1
4
λφ4 + 1

2
g2φ2χ2. The mode equation for ϕk is

ϕ′′k +

(
κ2 + 3cn2

(
x,

1√
2

))
ϕk = 0. (6.54)

We will use Eq. (6.53) as a master equation to investigate resonance in the confor-

mally invariant theory. From the definition of κ, the natural unit of momenta is√
λϕ̃. Eq. (6.53) describes oscillators, Xk, with a varying frequency given by

ω2
k = κ2 +

g2

λ
cn2
(
x,

1√
2

)
. (6.55)

This frequency varies periodically with time, x. For this particular case, the solu-

tions Xk are exponentially unstable, i.e., Xk(x) ∝ eµkx. This leads to exponentially

fast creation of χ particles as the inflaton oscillates (nk ∝ e2µkx). The strength of

the resonance is given by the dimensionless coupling parameter g2/λ. This in turn

means that for broad resonance to occur it is not necessary that the initial ampli-

tude of the inflaton is large as was the case for the quadratic potential we studied

in § 6.4.2. As it turns out, the strength of the resonance depends non-trivially

(non-monotonically) on g2/λ.

Mathematically speaking, the mode equations Eq. (6.53) belong to a class of Lamé

equations. Historically, this was first discovered in [178]. In Fig. 6.11 we show

the two-dimensional chart of the stability/instability bands for the Lamé equation
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(Eq. (6.53)) in terms of κ2 and g2/λ.

Figure 6.11: Density plot of the Floquet chart for the Lamé equation for fluctuations
Xk(x) in the variables {κ2, g2/λ}. This was obtained from the numerical solution of
Eq. (6.53). Shaded regions represent areas of instability. White regions represent the
stable regions. For instability bands, a darker shade means a larger characteristic
exponent µk. There are 10 colour steps altogether with one colour step representing
an increment of ∆µk = 0.0237. The darkest shade represents the characteristic
exponent µk = 0.237 and the least dark shade represents µk = 0.009. The Floquet
index µk reaches its maxima for g2/λ = 2n2 at κ2 = 0. Figure taken from [173].

Fig. 6.12 and Fig. 6.13 show a typical resonant solution of Eq. (6.53). Here even

though the plots are for k = 1.6 and g2/λ = 3, the form of the solution is generic.

Fig. 6.12 shows the amplification of the real part of the eigenmode Xk(x) (solid

curve) in an oscillating φ background (dotted curve). The comoving number density

nk is defined as:

nk =
ωk
2

( |Ẋk|2

ω2
k

+ |Xk|2
)
− 1

2
. (6.56)

Fig. 6.13 shows the evolution of the logarithm of the comoving number density nk

(solid curve) and the evolution of the inflaton field (dotted curve). In Ref. [173],

the authors attempt to find the values of the parameter g2/λ for which there are

analytic solutions to the Lamé equation in closed form. In doing so, they find that

the resonance with respect to the χ particle production depends non-trivially on

g2/λ. For instance, for g2

λ
= 1 and g2

λ
= 3, the equation for the perturbations of the

field χ has only one instability band. For g2

λ
= n(n+1)

2
there is only a finite number of
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instability bands while there is an infinite number of instability bands for all other

values of g2/λ. Another interesting property they report is that χ particle produc-

tion is least efficient for g2/λ � 1 and for g2/λ = 3. The characteristic exponent

µmax for g2/λ = 2 and g2/λ = 8 is almost 7 times greater than the characteristic

exponent µmax for g2/λ = 3. It is for this reason that we pick g2/λ = 2 for our

lattice simulations in Chapter 7.

In such theories, the expansion of the universe does not hinder the resonance, so

only backreaction of the produced particles terminates it. There are several different

backreaction mechanisms which may terminate parametric resonance. For example,

there is a decrease in the oscillations amplitude of the field ϕ = aφ due to the pro-

duction of particles. This results in a proportional decrease in the frequency of the

oscillations. The interaction of the homogeneous inflaton field with the produced

particles, on the other hand, increases the frequency of the oscillations. Moreover,

quantum fluctuations of the fields χ and φ acquire contributions to their masses.

Altogether, these different effects effectively lead to a reconfiguration of the instabil-

ity bands. In addition to this analytical study, computer simulations of reheating in

the theory 1
4
λφ4 were performed in Ref. [176] where rescattering was also included.
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Figure 6.12: Xk(x) for k = 1.6 and g2/λ = 3. Figure taken from [173].

Figure 6.13: Logarithm of comoving number density of χ particles for k = 1.6 and
g2/λ = 3. Figure taken from [173].
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6.8 Bird’s-Eye View

It should be emphasized that preheating is but the first stage of reheating, which

does not lead to a complete decay of the inflaton field in any of the models studied

in this chapter. Reheating never completes at the stage of parametric resonance;

eventually the resonance becomes narrow and inefficient and the final stages of the

decay of the inflaton field and thermalization of its decay products can be described

by the standard perturbative theory of reheating.

In § 6.3, we discussed the theory of preheating for the simple model of a massive

inflaton field φ interacting with another scalar field χ with the quadratic potential

V (φ) = 1
2
m2φ2 (with interaction term g2φ2χ2). The theory of preheating is very

complicated even in such a simple model. In the beginning particle production oc-

curs in the regime of broad parametric resonance which gradually becomes narrow

and then comes to an end. If the resonance is narrow from the very beginning or

even if it is not broad enough, it remains inefficient. If we include the effects of an

expanding universe we find that broad resonance is actually a stochastic process.

Stochastic resonance is dramatically different from the theory of parametric reso-

nance in Minkowski space.

In the conformally invariant theories such as the theory 1
4
λφ4 + 1

2
g2φ2χ2 (see § 6.7)

with g2 � λ the resonance is broad but not stochastic because expansion of the uni-

verse does not interfere with its development. In [173], a more detailed investigation

on stochastic resonance reveals that in models with g2 � λ the resonance becomes

stochastic at Φ . g√
λ

π2m2

3λ
√

8πMpl
.

As we have seen, it is possible to go quite far in the investigation of preheating

dynamics by developing analytical methods (for example, see [173, 179]). How-

ever, for a more complete understanding of non-perturbative effects during re-

heating, numerical simulations are a reliable tool. The simplest preheating model

to implement for lattice simulations is massless preheating and we follow others

[5, 152, 154, 156, 157, 213–215] and choose this model to study in detail in Chap-

ter 7. In the next section, we give an overview of lattice simulations and the HLattice

code that we use to run our simulations.
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6.9 Lattice Field Theory Simulations

Computer simulations are a powerful and important tool for understanding the uni-

verse and for subjecting theories to rigorous testing. Numerical simulations have

become in the last years one of the most effective tools to study and solve cosmo-

logical problems. The famous Millenium simulation, for example, traced more than

10 billion ‘particles’ to track the evolution of 20 million galaxies over the history of

the Universe. Likewise, numerical simulations play a big part in the investigation

of preheating and in our topic of research.

To study the early universe, one needs to describe the evolution of interacting fields

in a dense and high-energy environment. The study of reheating typically involves

non-perturbative interactions of fields with exponentially large occupation numbers

in states far from equilibrium. In the large occupation number limit, it is possible to

study preheating classically by lattice numerical simulations of the interacting clas-

sical scalar fields [172, 176, 216, 217]. In general, a lattice is defined as a discrete and

regular arrangement of points. Lattice simulations are simulations on a spacetime

that has been discretized onto a lattice as opposed to the continuum of spacetime.

The lattice is a three-dimensional lattice where each point in the lattice corresponds

to a position in space. Although it is impossible to completely remove the discrep-

ancy between real (continuous) physics and the numerical (discrete) model, lattice

simulations provide the most accurate means of studying the dynamics of preheat-

ing. The problem then becomes the discretization of the scalar field equations and

solving the evolution of the system in a lattice once the initial values have been set.

There are multiple codes that have been written (some publicly available, some

unreleased) to calculate the evolution of interacting scalar fields in an expanding

universe. LATTICEEASY [218], for example, is a publicly availabe code which was

written in C++ where the user creates a model file for the particular potential they

are looking at. The only other file the user needs to modify is the parameters.h file

which contains all the parameters needed for a given run of the program. LAT-

TICEEASY has its own website and the website has documentation and a set of

Mathematica notebooks for plotting all the output of the program although this can

be easily done using any other standard plotting software. The parallel-programming

version of LATTICEEASY is called CLUSTEREASY [219], also written in C++.

CLUSTEREASY can simulate arbitrary scalar field models on distributed-memory

clusters. LATTICEEASY and CLUSTEREASY can run simulations in one, two

and three dimensions, with or without the expansion of the universe with customiz-

able parameters and output. LATTICEEASY has been used to study paramet-

ric resonance [176, 179, 217, 220–224], the formation of gravitational waves, phase

transitions and formation of topological defects and thermalization after reheating.
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Another code for simulation preheating is DEFROST [225]. DEFROST makes use

of more advanced algorithms and more careful optimization than LATTICEEASY

and therefore significantly improves on the accuracy and performance achievable

in simulations of preheating. Yet another publicly available code is CUDAEASY

[226] which is a GPU (Graphics Processing Unit) accelerated cosmological lattice

program. With CUDAEASY, simulations that used to take one day to compute can

be done in hours.

For our simulations in Chapter 7 though, we will use the code HLattice, written

by Zhiqi Huang in fortran 90. HLattice differs from the previous codes in three

ways:

• A much higher accuracy obtained by using a modified sixth-order symplectic

integrator. Other lattice codes [218, 225, 226] use the equivalent of a second-

order symplectic integrator.

• Scalar, vector and tensor metric perturbations in the synchronous gauge and

their feedback to the dynamics of scalar fields are all included (These are

ignored in LATTICEEASY and CUDAEASY).

For our purposes, the metric feedback is negligible and therefore, our primary reason

for choosing HLattice is its accuracy and the fact that it is freely available, easy to

use and was used by Bond et al. [154] to compute N(χ) in the massless preheating

case whose results we use as a check for our simulations in Chapter 7. In the rest

of this section, we will briefly review HLattice to have an understanding of the

essentials in lattice simulations.

6.9.1 HLattice

HLattice is a free code that simulates scalar fields in the early universe. The latest

version is HLattice V2.0 which can be downloaded at http://www.cita.utoronto.

ca/~zqhuang/hlat/. Ref. [5] provides all the relevant details on HLattice and

also presents the calculation of gravity waves from preheating after inflation for

V = 1
4
λφ4 + 1

2
g2φ2χ2 using HLattice. The reader is referred to the above mentioned

paper for more details.

Lattice Theory and the Discrete Fourier Transform (DFT)

Let us take a look at which equations are being integrated on the lattice and what

discretization scheme HLattice uses.

A grid point in the lattice is labelled with three integer numbers (i1, i2, i3) and

since the simulation is implemented in a cubical fundamental box, we need to apply

periodic boundary condtions as follows:

http://www.cita.utoronto.ca/~zqhuang/hlat/
http://www.cita.utoronto.ca/~zqhuang/hlat/
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fi1+n,i2,i3 = fi1,i2+n,i3 = fi1,i2,i3+n = fi1,i2,i3 . (6.57)

Here, f represents all physical quantities we are interested in (the scalar fields,

the metric and their temporal/spatial derivatives). The scalar fields are evolved in

configuration space and the lattice version of the equation of motion is given by:

( d2

dt2
− ∇

2

a2
+ 3H

d

dt

)
φl|i1,i2,i3 +

∂V

∂φl
|i1,i2,i3 = 0, (6.58)

where ∇2 is the discrete Laplacian operator. Eq. (6.58) is the equation being inte-

grated on the lattice. The expansion rate H = ȧ/a and acceleration ä are determined

by the averaged Einstein equations:

H2 =
1

3M2
pl

〈ρ〉, (6.59)

ä

a
= − 1

6M2
pl

〈ρ+ 3p〉, (6.60)

where 〈.〉 represents the lattice average 1
n3

∑
lattice and n3 is the number of grid

points. To solve Eq. (6.58) numerically, we need to know what H is but rather than

solving the constraint equation Eq. (6.59), it is useful to use the following evolution

equation

Ḣ = −H2 − 1

6M2
pl

〈ρ+ 3p〉. (6.61)

One can then use Eq. (6.59) as a measure of accuracy, defining the fractional energy

noise as

|3H2M2
pl/〈ρ〉 − 1|, (6.62)

where 〈ρ〉 is the energy density averaged over the lattice and H is evaluated us-

ing Eq. (6.61). With the sixth-order symplectic integrator that HLattice uses, the

fractional energy noise of the system is suppressed to . 10−12. Such noises are

10−5 − 10−3 in other lattice codes [202, 218]. This is very important for calculating

N accurately as discussed in Ref. [154].

Picking a discretization scheme amounts to defining the Laplacian operator ∇2 in

Eq. (6.58). Before HLattice, all calculations of gravitational waves from preheating

ignored the metric feedback on the scalar fields. In retrospect, reasons of the com-

mon practice to ignore metric perturbations in lattice simulations of preheating are

clear. Including them adds an unwelcome complexicity to the code; in this case, in-

cluding the metric perturbations means the equation of motion involved first-order

spatial derivatives as well and therefore meant that ∇ also needed to be defined

properly and be consistent with the lattice ∇2. The discretization scheme ‘HLAT-

TICE1’ and later the improved version, ‘HLATTICE2’, were implemented for the
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calculation of gravitational waves including the metric perturbations. We refer the

reader to the HLattice paper [5] for more details on the implementation of these

two discretization schemes. The third discretization option in HLattice is ‘LAT-

TICEEASY’ which ignores the metric perturbations. The author [5] found that

the metric feedback is indeed negligible, as previously conjectured, for the models

studied in the paper which also includes the massless preheating model that we will

study in Chapter 7. Since including metric perturbations is about ten times more

computationally expensive and they are negligible for massless preheating anyway,

for our simulations in Chapter (7), we pick the LATTICEEASY discretization option

where the metric perturbations are turned off and combined with the sixth-order

symplectic integrator, it is accurate enough to capture small effects as we will see in

that chapter.

Other Features and Important Findings

HLattice was written in the synchronous gauge for sheer practical convenience: In

the synchronous gauge, the gauge condition g00 = g0i = 0 is local. In other gauges,

the ten metric variables gµν are constrained by four global constraint equations and

these equations have to be solved at every time step in order to eliminate the four

gauge degrees of freedom. This is computationally expensive and hence why the

author chooses to write the code in synchronous gauge.

To improve on accuracy, HLattice uses an accurate sixth-order symplectic integrator

to integrate the equations of motion. A symplectic integrator is a very stable numer-

ical integration system for Hamiltonian systems. Symplectic integrators have been

used to study long-term evolution of many-body systems in astronomy and parti-

cle physics [227, 228]. HLattice is the first code to use the Hamiltonian constraint

equation to accurately check the numerical accuracy in calculations of gravitational

waves from preheating.

HLattice is the first code released that consistently evolves all components of metric

perturbations together with scalar fields.
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Outputs from HLattice

Figure 6.14: Lattice simulation for the preheating model V = 1
4
λφ4 + 1

2
g2φ2χ2 using

HLattice. λ = 10−13, g2/λ = 200, n=64, the box size L = 20H−1, Etot = 〈ρ〉 is the
mean total energy, Egrad is the mean gradient energy, Ekin is the mean kinetic energy
and Epot is the mean potential energy. The solid red line is log10(Egrad/Etot). The
dot-dashed black line is log10(Epot/Etot). The dashed cyan line is log10(Ekin/Etot).
The dotted blue line is log10 |3H2M2

pl/Etot − 1|. Figure is from [5].

Fig. 6.14 shows a simulation done on an eight-core desktop PC in about half an

hour using HLattice. In Chapter 7, we will show how we also use the HLattice code

to implement the ‘Non-Perturbative δN Formalism’ in a Monte-Carlo fashion.



7 Calculating ζ from Lattice

Simulations

In Chapter 5, we presented the non-perturbative δN formalism, an ex-

tension of the standard δN formalism when a truncated Taylor expansion

of the N function is not valid. In that chapter, we applied our expres-

sions to a realistic example by constructing a fitting function N(χ) and

integrating copies of this function against the probability distribution to

calculate Ñχ and Ñχχ and gave estimates for the power spectrum and re-

duced bispectrum. We also briefly touched on a Monte Carlo approach to

non-perturbative δN formalism. One notable example where the N(χ) is

not smooth and that warrants a Monte Carlo approach is preheating and

in Chapter 6, we reviewed preheating and massless preheating in detail. In

this chapter, we apply the non-perturbative δN formalism to massless pre-

heating. By running our own simulations on the QMUL Apocrita cluster

[6], we will see that in the case of massless preheating, the chaotic dynam-

ics imprint regular log-spaced narrow spikes in the number of preheating

e-folds N(χ). Chapter 7 is structured as follows. We begin by reviewing

the work of Suyama and Yokoyama in § 7.1 where they provide a method

for calculating correlators of arbitrary functions of a Gaussian field and

as an application, they calculate the two-, three- and four-point functions

of the primordial curvature perturbation generated in massless preheating.

Their approach is to approximate each spike as a normal distribution so

that N(χ) is a sum of normal distribution functions. We call their method

the Nσ method because a key step in their formula was to make a fourier

transform of the N function. We then present our method in § 7.2 where we

make no such approximations and instead use the raw data from the lattice

simulations in a Monte Carlo fashion to calculate the power spectrum and

the reduced bispectrum.

“Although we often hear that data speak for themselves, their voices can

be soft and sly.”

—Frederick Mosteller

124
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7.1 The Nσ Method

As we have seen in Chapter 6, during reheating particles may be produced rapidly

due to non-perturbative reheating processes, often called preheatng. If particles are

produced in a field that is light during inflation, this process can alter the statistics of

the primordial curvature perturbation ζ over observable scales. This is because the

rate of particle production is sensitive to the initial conditions of the reheating field,

which are modulated over such scales. The simplest example is massless preheating

[151, 152, 154, 171–173], which serves as a simple example and testing ground of

methods to calculate the statistics of ζ after inflation. The chaotic nature of the

motions of the inflaton field and the χ field which is coupled to the inflaton field

during preheating and the termination of the growth of field perturbations by the

highly non-linear dynamics make it impossible to accurately analytically derive the

mapping N(χ) needed in the non-perturbative δN method presented in Chapter 5.

In Fig. 7.1, the numerical results from lattice simulations for massless preheating

from Ref. [154] are presented. Before moving to our work, let us first review the

work of Suyama and Yokoyama [155] who also considered the problem of calculating

observables in massless preheating.

The authors generate a mock N(χ) that mimics the highly featured and spiky one in

Fig. 7.1 because they did not have the raw numerical data of Ref. [154] but only the

numbers from Fig. 7.1. They use a public software to extract the coordinates out

of the graph. In order to extract the position, height and width of each spike, they

smoothed out the obtained N(χ) using a Gaussian window function with a width

that is smaller than
√
〈χ2〉 but large enough to eliminate the fine spikes in Fig. 7.1.

The resultant smoothed graph of Fig. 7.1 in shown in Fig. 7.2. The authors then

propose that although the actual form of the original N(χ) is quite complicated

and disorderly, one can describe the basic behaviour of the function by the analytic

approximation that N(χ) is given by the sum of normal distribution functions:

N(χ) =
∑
p

Apexp
(
− (χ− χp)2

2κ2
p

)
, (7.1)

where χp and κp are the position and width of the p-th spike, respectively. Ap is the

amplitude of the p-th spike. Next, because the numerous spikes in Fig. 7.1 appar-

ently appear to be random, the authors then decide to generate 200 realizations of

the mock N(χ) where the positions χp, amplitudes Ap and widths κp are generated

randomly, subject to some interval to closely match the original one. The number

of spikes within a given range is fixed to be 75 for all 200 realizations. Because the

procedure is probabilistic in nature, they obtain different but similar N(χ) realiza-

tions and that way, they are able to see how the results vary by each realization and
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how they depend on the different choices for χ0 and 〈χ2〉. One such realization is

shown in Fig. 7.3.

Moving on, now that we have an analytic expression for the mock N(χ), employing

Eq. (5.2)1, one can trivially derive the analytic form of Nσ:

Nσ =
√

2π
∑
p

Apκpexp
(
−
κ2
pσ

2

2
− iχpσ

)
. (7.2)

Then, using Eq. (5.3), we can also derive

〈N〉 =
∑
p

Ap
εp√

1 + ε2p
exp
(
−

η2
p

2(1 + ε2p)

)
, (7.3)

where εp and ηp are the peak width and the peak position respectively, normalized

by
√
〈χ2〉 and are given by

εp ≡
κp√
〈χ2〉

, ηp ≡
χp√
〈χ2〉

. (7.4)

〈ζ1ζ2〉 = 〈N1N2〉 − 〈N〉2 and

〈N1N2〉 =
∑
p1,p2

Ap1Ap2εp1εp2√
(1 + ε2p1

)(1 + ε2p2
)− ξ(r12)2

× exp
(
− 1

2

(1 + ε2p1
)η2
p1

+ (1 + ε2p2
)η2
p2
− 2ξ(r12)ηp1ηp2

(1 + ε2p1
)(1 + ε2p2

)− ξ(r12)2

)
. (7.5)

We can obtain the same expression in Eq. (7.5) by integrating two copies of N(χ)

against the joint probability function as we found in § 5.3.1 using Eq. (5.22). The au-

thors then use the same expansion in the cross-correlation as we do, i.e., ξ(r12)� 1

and calculate the amplitude of the power spectrum, fNL and so on.

They report that typically, fNL ∼ O(106) and that the amplitude of the power

spectrum from massless preheating is about four orders of magnitude smaller than

the observed amplitude. They then assume that the dominant contribution to the

total curvature perturbations comes from the standard adiabatic perturbation from

inflation and that this mixture dilutes the observed fNL to O(10−3)−O(0.1). The

authors were able to analytically perform the integrals for the two-point, three-point

1Refer to § 5.1 for a review of their method.
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Figure 7.1: The structure of δN(χi) on uniform Hubble hypersurfaces probed with
∼ 104 lattice simulations from the end of inflation through the end of preheating for
varying homogeneous χi initial conditions for g2/λ = 2. Note that Mp ≡ Mpl =
1/
√

8πGN. Figure taken from [154].

Figure 7.2: Smoothed N(χ) of Fig. 7.1. The unit of the horizontal axis is 10−7Mpl.
Due to the smoothing process, the height of each spike is smaller than the original
one in Fig. 7.1. The width is then broadened by a bit to compensate for the loss of
height. Note that, in this work, the authors choose to set 〈χ〉 = 0 and therefore their
χ is different to the one used in [154] by a constant value which they denote by χ0.
Figure taken from [155].
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Figure 7.3: Massless preheating: a mock N(χ) randomly generated by authors in
Ref. [155]. χ0 = 10 and 〈χ2〉 = 10 in units of 10−7Mpl. Figure taken from [155].

and four-point functions of ζ due to the analytic fitting formula used for the spikes.

We argue, however, that in cases where the N function is highly featured, approxi-

mating the features might not give accurate answers. Regarding our own expressions

in Eq. (5.37) and Eq. (5.39), first calculating the function accurately may not even

be the most efficient path to accurately evaluating Ñχ and Ñχχ. Instead one might

choose to adopt a Monte Carlo approach, in which values of the initial field(s) χI are

drawn from a Gaussian distribution, and for each draw N is evaluated numerically.

ÑI , for example, is then calculated by evaluating δχIN for each draw, and the values

summed and divided by the number of draws. This is the approach that we adopt

in our work in the next sections.

7.2 Introduction

If more than one field is light at the end of inflation, perturbations produced by

inflation evolve during the reheating phase which follows. This is both a problem

and potentially an opportunity, since it makes model predictions sensitive to this

complicated and poorly constrained phase of evolution. In order to compare models

with observations and potentially learn about reheating, therefore, we must be able
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to calculate the statistics of the curvature perturbation at the end of reheating. In

this chapter we do this directly from lattice simulations for the first time.

In massless preheating, if g2/λ is tuned to be ∼ O(1), the non-inflaton field χ

is light during inflation and accumulates quantum fluctuations substantially varying

on scales much greater than the Hubble scale at the end of inflation. For g2/λ = 2,

the χ field fluctuations grow exponentially on super-horizon scales and this partic-

ular parameter choice has led to a lot of studies of whether the χ field perturbation

can generate the curvature perturbation on super-horizon scales during preheating

[229–235] (see [236–238] for other models of preheating). We will also set g2/λ = 2

for our simulations.

There are two main problems for calculating ζ after massless preheating. First,

as a non-perturbative process involving the excitation of the inhomogeneous modes

of the fields, as we discussed in Chapter 6, it must be studied using lattice simu-

lations. Second, since these simulations typically only capture the dynamics of a

patch of the universe exponentially smaller than observable universe, and because

the average evolution of such a patch can be very sensitive to initial conditions,

widely used methods such as the standard δN formalism cannot be used without

modification. These issues have been discussed at length in a number of publications

[153, 171] and in our own earlier work on the issue [239] presented in Chapter 5, we

discussed the use of a non-perturbative approach to δN . This approach allows the

evolution of a given patch of the universe to be highly sensitive to initial conditions.

Moreover, by working in real space there is no implicit assumption about coarse-

graining at the outset. It can therefore utilise simulations of only small regions of the

universe as long as they do not interact with one another (i.e. they must obey the

separate universe assumption). In Chapter 5 [239] we argued that our approach to

non-perturbative δN is ideally suited to use with lattice simulations, and in the cur-

rent chapter we implement it to calculate the statistics of ζ after massles preheating

directly from simulations.

7.3 Non-Perturbative δN Formalism

As previously seen in Chapter 4, the δN formalism [120, 125, 240–242] is a pow-

erful technique which employs the separate universe assumption to calculate the

observable statistical properties of ζ produced by scalar field models of the early

universe. It assumes the number of e-folds undergone by a patch of the universe,

coarse-grained on observable scales, is a function of the field’s initial conditions that

can be well described by the leading terms in a Taylor expansion. In Chapter 5

[239], we discussed a non-perturbative approach to calculating the statistics of ζ
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that can be employed when a Taylor expansion is not a good approximation, as

it is not for massless preheating. This begins with the definition of the ensemble

average of any n-point correlation function in real space (Eq. (5.22)). In principle

this can be evaluated directly, but as we have discussed, this is often challenging

to do and we proceeded to employ an expansion which does not assume a Taylor

expansion of the e-fold function, but instead a Taylor expansion in the correlation

between the field’s value at separated spatial positions. This leads to expressions

for the correlation functions of ζ which take the same form as those of the usual δN

formalism but with non-perturbative δN coefficients instead of the usual derivatives

of N . We observed that in many cases our method showed noticeable improvement

over standard δN , but also that the expansion can break down, and that whether

this happens needs to be examined on a case by case basis.

In this chapter, we are primarily interested in the contribution to ζ from the reheat-

ing field. We will assume this field is uncorrelated to the inflaton before the start

of the lattice simulations, and will therefore employ the non-perturbative expansion

formalism including only one field (we will comment on the validity of this approach

below). In this case the contribution to the two point function of ζ from this field,

denoted χ, at leading and sub-leading order in the correlation expansion is given

explicitly by (also, see Eq. (5.49):

〈ζ(x1)ζ(x2)〉 = Ñ2
χΣ(r12) +

1

2
Ñ2
χχΣ(r12)2 , (7.6)

where Ñχ and Ñχχ are our non-perturbative δN coefficients

Ñχ =
〈δχN(χ)〉
〈δχ2〉

, Ñχχ =
〈δχ2(N(χ)− N̄)〉

〈δχ2〉2
. (7.7)

In these expressions for the coefficients, the angle brackets denote an ensemble aver-

age with χ drawn from a single variate Gaussian distribution with mean value χ̄ and

variance Σ = 〈δχ(x)δχ(x)〉. Σ(r12) is the two-point function of field perturbations

at separated spatial positions, Σ(r12) = 〈δχ(x1)δχ(x2)〉. This is evaluated at the

initial time before reheating, while the two point-function of ζ is evaluated at the

final time after reheating.

As discussed in § 5.2.3 where we addressed the limitations of our method, we saw

that the expansion method leading to Eq. (7.6) may break down and so we use the

sub-leading term above as a test of the validity of the expansion, and assume that

only in cases where the sub-leading term is sub-dominant by at least an order of

magnitude can we trust our expansion method to calculate Ppre with reasonable

accuracy.
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We also calculate the local non-Gaussianity which the model produces by assuming

that the three-point function of field space perturbations is negligible and using the

leading order expression for the three-point function of ζ in the correlation expansion

〈ζ(x1)ζ(x2)ζ(x3)〉 = Ñ2
χÑχχΣ(r12)Σ(r23) + cyclic . (7.8)

7.4 Massless Preheating

The potential for the massless preheating model is given by Eq. (6.35) where φ is

the inflaton field and χ the reheating field, with dimensionless coupling constants,

g and λ. For small coupling ratios (g2/λ) required to excite the first resonance

band of the system, the masses of the two fields, mφ =
√

3λφ and mχ = gφ, are

comparable during inflation, and hence the χ field is light. This model is unlikely

to be compatible with current observations, but still serves as a convenient testing

ground for our methods. It is conformally invariant and this allows the expansion of

the universe to be re-scaled away in lattice field theory simulations. During inflation,

χ is approximately zero and the behaviour of the model is the same as the standard

single field λ
4
φ4 chaotic inflation model. We can therefore estimate the value of the

φ field when inflation ends by assuming only φ drives inflation and setting the first

slow-roll parameter εv to 1 (εv is defined in Eq. (2.14)). We obtain φend ≈ 2.83Mpl.

7.4.1 Expressions for Pinf and Ppre

We now begin the process of calculating the the impact of reheating on ζ using the

formalism outlined above.

First let us note that we can immediately estimate the contribution to ζ from the

inflaton, φ, under the assumption that it is uncorrelated to the reheating field. Using

the formula in Eq. (2.18), we find φ∗ ≈ 21.17Mpl where ‘*’ denotes horizon crossing

time of the pivot scale of observations which we take to be 55 e-folds before the end

of inflation. We can then employ the standard expression for the power spectrum

of ζ (see Eq. (3.36))

Pinf =
1

8π2

H2
∗

M2
plε∗

, (7.9)

and use the approximation ε∗ ≈ εv∗ , valid during slow-roll (see Eq. (2.16). On the

other hand, to calculate the contribution of χ we must employ the non-perturbative

δN formalism. The effective mass of the χ field is gφ, and we must begin the δN

formalism before this field becomes heavy. We therefore set initial conditions for χ

and its statistics at the time just before χ becomes massive, i.e., when
g2φ2

ini

H2
ini
∼ 1.

This is shortly before the end of inflation. At this point we assume again that χ

can be taken to be a spectator field uncoupled to the inflaton, and therefore has a
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variance (using Eq. (4.6), Eq. (5.53) and Eq. (5.61)) within our observable universe

about some background value, χ̄, of

〈δχδχ〉|ini =
H2

ini

4π2
N (7.10)

where N ≈ 55 and Hini is the Hubble rate at this time. Assuming scale invariance

of δχ at the initial time, one then finds the contribution to the power spectrum of

ζ from preheating is

Ppre = Ñ2
χ

H2
ini

4π2
. (7.11)

The value of χ̄ is determined by the behaviour of the system prior to the observ-

able number of e-folds, and for the purpose of our study we take it to be a free

parameter, with the restriction that it must be much greater than the variance of χ

for consistency. Evaluating Ñχ and Ñχχ using Eq. (7.7) requires the use of lattice

simulations which we now discuss.

7.4.2 Simulations

The δN formalism requires that we record the number of e-folds that occurs between

given initial conditions and some final value for the density of the universe ρend after

reheating has occurred and the system has become adiabatic. This must be repeated

for many initial conditions and the results compared with one another. In this study

we will use the HLattice code [5]2, described in Chapter 6, to simulate a small patch

of the universe. We therefore wish to run the code by setting initial conditions for

the initial average value of the φ̄ and χ̄ fields in the patch at the initial time before

the χ field becomes massive, and subsequently run the code and record the number

of e-folds, Nend, at the desired value of ρ, ρend. To do so we first modify Hlattice to

stop once a given value of ρ has been passed, and output values of a and ρ around

this time. We then use a python script to fit log a as a function of log ρ, and use

this function to calculate an accurate value for Nend. One issue we find, as was

also reported in [154], is that since reheating is not fully complete after preheating,

the equation of state ω = p
ρ

oscillates around the radiation dominated value of 1/3

after preheating, indicating that the system is not yet fully radiation dominated

and adiabatic (see Fig. 7.4). If the system were to be adiabatic, the difference in

N between two different patches with different initial conditions and measured at

the same successive values of ρ would become a constant (i.e., ζ would become

conserved). Instead we find that this quantity is oscillating. In order to remedy

this problem we follow Ref. [154] and average the result over many oscillations. In

Eq. (7.7), because the averages commute, this corresponds to averaging the N that

appears there over a fixed range of ρ which encompasses many oscillations once

2HLattice can be downloaded from http://www.cita.utoronto.ca/ zqhuang/hlat/.
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preheating has ended. This is then taken to be our Nend.

Figure 7.4: The equation of state ω oscillates around 1/3 after preheating. The
sharp transition from large amplitude oscillations to small amplitude oscillations
indicates that preheating has occured. As we saw in § 6.7.2, the energy density of
the inflaton field decreases in the same way as the energy density of radiation, i.e.,
ω ≈ 1/3.
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7.4.3 Simulations on the cluster

Checks

First to verify our code is working as intended we compare our results with the

results of Ref. [154], where Nend is averaged in the manner described above and the

difference between the answer and a fiducial for many initial conditions is plotted.

Our results are given in Fig. 7.5 for λ = 10−14 and g2/λ = 2. Please note that in

Fig. 7.5, χi is the value of the χ field at the beginning of the lattice simulation, which

corresponds to the end of inflation (not at a time just before χ becomes massive like

we will consider for our purposes.). Fig. 7.5 should be compared to Fig. 7.1.

Moreover, we check that our results are insensitive to the period over which we

average. Another accuracy test that we perform is to check that δN is effectively

zero (� 10−6) and not modulated by χi for coupling ratio g2

λ
outside of the resonant

band, at g2

λ
= 1 and 3. See Fig. 7.6 for g2/λ = 1.

Figure 7.5: The structure of δN(χi) on uniform density Hubble hypersurfaces eval-
uated with around ∼ 104 lattice simulations for varying homogeneous χi initial con-
ditions for λ = 10−14 and g2/λ = 2.
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Figure 7.6: The structure of δN(χi) on uniform density Hubble hypersurfaces eval-
uated with around ∼ 104 lattice simulations for varying homogeneous χi initial con-
ditions for λ = 10−14 and g2/λ = 1. As expected, δN � 10−6. Similar results are
obtained for g2/λ = 3.

Method

In contrast with previous works, to evaluate Ñχ and Ñχχ and calculate the power

spectrum and bispectrum after reheating we work directly with lattice simulations

rather than some pre-generated or approximated function N(χ). To do so we em-

ploy a Monte Carlo approach as follows. After fixing the parameters of the massless

preheating potential, we calculate the energy scale and the value of φ at the time

at which χ becomes massive. At this time the value of the χ field is drawn from a

Gaussian distribution with mean value χ̄, and variance given by Eq. (7.10). As dis-

cussed above the mean value can be treated as a free parameter provided it is much

bigger than the variance. We fix initial conditions for our use of non-perturbative

δN at this time and begin our HLattice simulations. Hlattice then evolves the back-

ground scalar field equations until the end of inflation before beginning a lattice

simulation. For the lattice simulation Hlattice takes the average value of the fields

in the lattice patch to be given by the background scalar field values at the end of

inflation, and the fields are also given an inhomogeneous (over the lattice) compo-

nent which averages to zero. These inhomogeneous components represent random

‘vacuum fluctuations’ which are drawn from a Gaussian distribution. The initial

field value is the sum of the homogeneous value and the fluctuations at that point.

Finally we measure N as described above, and use this to evaluate the quantity
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Figure 7.7: The value of δN for λ = 10−14, and for different initial field values
χini. The three coloured lines (red, blue and magenta) spans the range of values that
χini takes, i.e., χ̄i ± 3σ for each χ̄i where i = 1, 2, 3. Note that here, our χini is the
value the field takes just before it becomes massive.

inside the angle brackets on the right hand side of Eq. (7.7). By then repeatedly

drawing a new value of χ and repeating the procedure we can calculate the averages

in Eq. (7.7). The answer should converge as the number of draws increases. We

find this does indeed occur with O(104) draws needed, and we use this number to

generate our results. When we come to present our results we further use resampling

to estimate their error. Due to the large number of runs required, we run our simu-

lations on Queen Mary’s Apocrita HPC facility [6]. For our simulations, we choose

a resolution of 323 with comoving box size 20/H, and choose the LATTICEEASY

discretization scheme within HLattice, which is suitable because we are ignoring

metric perturbations (for more details, see [5]).

7.4.4 Results

We now present some results for a number of different parameter choices, presenting

both the inflationary contribution and the contribution from preheating under the

assumptions made above.

Case 1 : λ = 1.8× 10−13

We begin by taking λ = 1.8 × 10−13, with g2/λ = 2. This value of λ leads to a

contribution to the power spectrum of Pinf = 2.10× 10−9 from the inflaton field, in

agreement with observations. The model is still not a realistic theory of inflation

because the predicted tensor-to-scalar ratio is too high to be compatible with obser-

vations [48]. There may be ways of curing this, for example by having a non-minimal

coupling between the inflaton and spacetime curvature, but we will not attempt to
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do that.

Recalling the discussion below Eq. (7.9) and using H2
ini ≈ λ φ4

ini/(12M2
pl) implies

that Hini = 3.22× 10−6Mpl. From Eq. (7.10), we then find 〈δχ2〉 = 1.44× 10−11M2
pl,

which provides the square of the standard deviation of the Gaussian distribution

from which we draw the initial values of χ. For the mean of the distribution, χ̄, we

choose χ̄i = (i) × 10−5Mpl where i runs from 2 to 9, and run 104 simulations for

each. Since the data drawn for these values overlap, we are also able to reweight

the data to calculate results for mean values in between the initial choices. Finally,

by resampling the data using the so-called bootstrap approach, we can determine

the approximate one sigma error on our results. The results together with uncer-

tainties are shown in Fig. 7.8. The horizontal line shows the amplitude Pinf of the

perturbations generated by the inflaton field. In Fig. 7.7 for illustrative purposes

we also show how the N(χ) function looks for λ = 10−14. The three coloured lines

superimposed on the plot are centred on three of our choices for χ̄, and indicate

the 3σ range around this value. Fig. 7.8 indicates the results are highly sensitive to

the initial χ̄, and this can be understood by considering Fig. 7.7 which shows that

the form of the N functions sampled when drawing χ from a Gaussian distribution

changes dramatically depending on the value of χ̄.

As we have described, the method we have outlined relies on an expansion in the

probability distribution for field values at separated positions in real space. The

criterion we use for the validity of the expansion requires that the leading term in

Eq. (7.6) is at least an order of magnitude larger than the sub-leading one. This cri-

terion is scale dependent and gets worse for shorter scales. Here, we consider scales

which exit the horizon in the range of 55 to 51 e-folds before the end of inflation.

This roughly corresponds to the range of scales observable on the CMB. We find that

the expansion is valid for most of the parameter range we study, but breaks down

in the regions on the plot where the magnitude of the power spectrum as calculated

using the leading term drops towards zero. These regions are also accompanied

by large looking error bars on our logarithmic plots. In these regions, to produce

more accurate results would require the fully non-perturbative formulae for Pζ , as

described (and performed) in Ref. [239]. The contribution to the curvature pertur-

bation ζ from preheating is subdominant compared with the inflaton contribution

Pinf , and therefore not observable in the spectrum. This is similar to the results of

[155], though we find that the preheating field’s contribution is at least an order of

magnitude larger than that calculated there – reinforcing the importance of work-

ing directly with lattice simulations. However, because the inflaton contribution is

highly Gaussian, it is interesting to see whether the preheating contribution could

be observed through its non-Gaussianity. To do this, we calculate the conventional
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Figure 7.8: The power spectrum of curvature perturbations produced by preheating,
Ppre as a function of χ̄ in Planck units for the case of λ = 1.8× 10−13. The red line
represents the inflationary contribution.
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Figure 7.9: The non-Gaussianity parameter fNL as a function of χ̄ in Planck units
for the case of λ = 1.8× 10−13.

non-Gaussianity parameter fNL from the expression

fNL ≈
ÑχχÑχÑχH

4
ini

( 1
2ε∗

H2
∗

M2
pl

+ ÑχÑχH2
ini)

2
× 5

6
, (7.12)

where we have assumed that field fluctuations before reheating are Gaussian, and the

inflationary contribution to ζ is Gaussian. The results are presented in Fig. 7.9. We

can see that although fNL is generally small, it becomes of order unity for certain

values of χ̄, making it observable. This suggests that it may also be possible to

achieve an observable contribution to fNL in more realistic models.
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Figure 7.10: The power spectrum of curvature perturbations produced by preheating,
Ppre as a function of χ̄ in Planck units for the case of λ = 10−14. The red line
represents the inflationary contribution.
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Figure 7.11: The non-Gaussianity parameter fNL as a function of χ̄ in Planck
units for the case of λ = 10−14.

Case 2 : λ = 10−14

As an alternative to Case 1, we also consider cases in which the inflaton contribution

is below the observational value amplitude. We calculate the contribution from

the preheating field to see whether it can be larger than the inflaton contribution,

and whether it could account for the observed perturbation spectrum. We choose

λ = 10−14, again with g2/λ = 2. This value of λ leads to an inflaton contribution to

the power spectrum of Pinf = 1.19× 10−10, and Hubble rate Hini = 7.59× 10−7Mpl.

The χ field variance is 〈δχ2〉 = 8.028× 10−13M2
pl. For the mean value χ̄, we choose

χ̄i = (i)× 10−6Mpl where i runs from 5 to 12, and proceed as in Case 1. As shown

in Fig. 7.10, the preheating contribution to ζ is subdominant to that produced

by the inflaton field, and therefore this case does not produce sufficient curvature

perturbations to be compatible with observations. The non-Gaussianity parameter

fNL is larger than in Case 1, as shown in Fig. 7.11.
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Figure 7.12: The power spectrum of curvature perturbations produced by preheating,
Ppre as a function of χ̄ in Planck units for the case of λ = 10−16. The red line
represents the inflationary contribution.
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Figure 7.13: The non-Gaussianity parameter fNL as a function of χ̄ in Planck
units for the case of λ = 10−16.

Case 3 : λ = 10−16

For smaller values of λ, Pinf is of course even smaller, and it is expected that Ppre

will be too. It is however interesting to explore such cases for the following reason.

If the regular δN formalism was applicable one would expect both contributions

to ζ to scale in proportion to the energy scale at horizon crossing, but there is no

guarantee this will happen in the non-perturbative case. For λ = 10−16 one finds

Pinf = 1.19 × 10−12, Hini = 7.59 × 10−8Mpl and 〈δχ2〉 = 8.028 × 10−15M2
pl. For

this case we choose representative examples χ̄i = (i) × 10−7Mpl where i runs from

5 to 12, and our results are also presented in Fig. 7.12. Once again Ppre is smaller

than Pinf , but we see that in this case it is suppressed by a smaller factor. Again

for interest we can calculate fNL, and present the results in Fig. 7.13. Once again

we find that the expansion method fails in the regions where the power spectrum is

most suppressed and the error bars appear largest.
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Figure 7.14: The power spectrum of curvature perturbations produced by preheating,
Ppre as a function of χ̄ in Planck units for the case of λ = 10−18. The red line
represents the inflationary contribution.
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Figure 7.15: The non-Gaussianity parameter fNL as a function of χ̄ in Planck
units for the case of λ = 10−18.

Case 4 : λ = 10−18

Finally we consider g2/λ = 2 and λ = 10−18. In this case we have Pinf = 1.19 ×
10−14, Hini = 7.59 × 10−9Mpl and 〈δχ2〉 = 8.028 × 10−17M2

pl . We pick χ̄i = (i) ×
10−8Mpl where i runs from 5 to 12. Results are shown in Fig. 7.14 and 7.15 for the

amplitude of the power spectrum and interestingly we now find that the preheating

contribution, Ppre, is greater than the inflationary contribution.
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7.5 Discussion

It is interesting to note that in all cases the typical value of Ppre is very similar.

This can be understood by noting that here we have taken a range of χ̄ that is

scaled in proportion to 1/
√
λ in each case, as is the square root of the variance of

χ at the initial time. Moreover for this particular system, we find that the effect

of reducing λ is to shift the pattern of spikes seen in Fig. 7.7 to lower values of χ

roughly in proportion to
√
λ, but are otherwise very similar. This is a consequence

of the conformal invariance of the system. Since all elements of the calculation that

go into evaluating Eq. (7.6) scale in the same way, the answer is largely unchanged.

This is in stark contrast with the contribution to ζ from the inflation. Neverthe-

less, the resulting amplitude Ppre is smaller than the observed value, and therefore

this mechanism cannot account for the observed curvature perturbations. In cases

where the expansion method can be trusted, the spectral index of the preheating

contribution is inherited directly from the spectrum of the isocurvature fluctuations

at the initial time, but given the lack of compatibility with observations we don’t

pursue its calculation further.

The main purpose of this work was to show that through lattice simulations it

is possible to calculate the power spectrum and bispectrum of the primordial cur-

vature on observational scales when a preheating field plays a significant role. We

have demonstrated this explicitly by considering the massless preheating model. We

found in all the cases we looked at, that even when the homogeneous mode is within

the strong resonance regime (when g2/λ ≈ 2), the contribution from the preheating

field to the power spectrum is much lower than the observed value. We did find

however that it could dominate over the inflaton contribution because it remains

roughly constant as the energy scale is lowered, in contrast to the contribution from

the inflation. This is in stark contrast to the expected behaviour for a contribution

produced during inflation. We also found that it is highly sensitive to the mean

value of the reheating field, and that it is roughly an order of magnitude larger than

that found in earlier analytical studies. These findings indicate the importance of

calculating this contribution on a case by case and model by model basis. Finally, we

also experimented with reducing the ratio g2/λ, which gradually moves the homoge-

neous mode out of the preheating resonance band, and as expected the contribution

of the reheating field to the curvature perturbation decreased further in these cases.

For the value of λ for which the inflaton contribution to the curvature perturba-

tion provides the observed amplitude, we found that the preheating field leads to

a subdominant contribution to the power spectrum, but can provide the dominant

contribution to the bispectrum for some range of initial conditions. It is worth con-

trasting our study with earlier ones. In contrast to early work [151–154], which we
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otherwise follow closely, we do not rely on a Taylor expansion in δN , but instead

compute the statistics of the curvature perturbations on large scales using an ex-

pansion in powers of the field correlator. Our methods and aims are very similar to

those of [155], but that work did not work directly with simulation data, but rather

the previously generated function in the work of Ref. [154]. Our study relied on an

expansion of the full non-perturbative δN formalism described in Ref. [239], and we

found that this was valid except in cases where the leading contribution dropped

off significantly. It would be possible to do better using the fully non-perturbative

method as described in that work, but this would require us to run many more

simulations. Moreover we assumed that the inflaton contribution and the preheat-

ing field’s contribution to ζ were uncorrelated, and we could treat the preheating

field as a light Gaussian spectator right up to the point it becomes massive. In

general, one can do better than these approximations either analytically or by using

codes such as that described in Ref. [243]. In the present case to go beyond what

we have done is not warranted, given that it would be very unlikely to change the

incompatibility of the scenario with observations. Nevertheless for more realistic

models, for example that of Ref. [153], one might need to turn to these methods to

confront models that need to be studied with lattice simulations with observations.

The present work, however, establishes the feasibility of doing this.



8 Conclusion and Summary

8.1 Context

Soon after cosmic inflation was introduced as a resolution to the problems that af-

flicted the hot big bang model of the universe, it was recognised that inflation can

also account for the origin of the large-scale structures. The same expansion that

precipitates the universe to flatness, makes our observable universe smooth and sig-

nificantly alleviates the exotic-relic problem, also stretches the microscopic quantum

fluctuations during inflation to macroscopic sizes, subsequently generating the small

perturbations in the density at the origin of the CMB temperature fluctuations.

CMB and LSS observations, therefore, creates an opportunity to put the theory

of inflation to the test via the scientific method. Aside from motivational reasons,

an inflationary model must be consistent with observational data to survive in the

increasingly smaller parameter space owing to better experiments over time. Com-

puting observables of an inflationary model is non-trivial and cosmologists pick the

most pragmatic tool from the set of tools that is at their disposal. As we have seen

in Chapter 3, the in - in formalism is a technique used to evaluate the statistics of

the primordial curvature perturbation (the quantity that can be related to the CMB

fluctuations) around the time of horizon exit. In models where ζ is not necessarily

conserved, one has to also compute its non-linear evolution until the time of horizon

re-entry. One such procedure is the δN formalism and we gave a short review in

Chapter 4.

8.2 Research

In this thesis, we then highlighted the need for new methods by underlining the

drawbacks of this technique, namely, that the assumption that we have to make for

it to work might not hold in some models of inflation. Standard δN assumes that

the N function is smooth and that only the first few Taylor coefficients are enough

to give an accurate answer. In Chapter 5, we go around this problem by falling

back to the definition of the ensemble average and instead of making an expansion

in N , we make an expansion in the joint probability distribution that appears in

the definition of the ensemble average. We choose to call this formalism the ‘non-

perturbative δN formalism’. Our main results are in § 5.2.3. The next natural step,

144
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of course, was to juxtapose this method to the standard one. We tested it with

a pre-generated N(χ) from Ref. [153] where resonant curvaton decay was studied,

using a fitting function and found that the method is a noticeable improvement on

the standard one. We also explored the conditions under which the method might

fail. The form of our expressions makes it such that they are particularly adapted

to settings where it is much more preferable to work with the raw data itself and

perform calculations via repeated random sampling, i.e., using the Monte Carlo

method. The massless preheating model is the ideal testing ground for our purposes

since the N(χ) function obtained from lattice simulations is detailed, spiky and far

from smooth. After a detailed review of reheating and preheating in Chapter 6, we

ran our own lattice simulations on a cluster and used that data in combination with

the non-perturbative δN in Chapter 7. By choosing to work with massless preheat-

ing, we were able to compare our results to the work of Suyama and Yokoyama who

described the peaks as a sum of normal distributions and ignored the small peaks.

Our results show that preheating can be the dominant contribution to the observed

scalar power spectrum in the case where λ = 10−18 but this contribution is not

enough to explain the observed amplitude of the scalar power spectrum.

The dynamics during the reheating phase and their effects on observables are not

well-understood. That lattice simulations will remain the primary tool to study these

non-linear effects for at least the near future and probably even the far future is a

good guess. This gives us confidence that our approach of adapting well-established

techniques to the features of numerical simulations is a step in the right direction.

The post-Planck mission era necessitates new ways to distinguish between compet-

ing models of inflation keeping in mind the next-generation experiments. Short of

probing energy scales far exceeding the TeV scale with particle accelerators, the

primordial statistics of ζ is the only way to probe physics at energy scales during or

after inflation. Methods such as those developed in this thesis are therefore essential

to understand the consequences of different models of inflation and reheating and

to learn aboout physics at these high energy scales.
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