
Towards Automatic

Extraction of Harmony

Information from Music

Signals

Thesis submitted in partial fulfilment

of the requirements of the University of London

for the Degree of Doctor of Philosophy

Christopher Harte

August 2010

Department of Electronic Engineering,

Queen Mary, University of London



I certify that this thesis, and the research to which it refers, are the

product of my own work, and that any ideas or quotations from the work of

other people, published or otherwise, are fully acknowledged in accordance

with the standard referencing practices of the discipline. I acknowledge the

helpful guidance and support of my supervisor, Professor Mark Sandler.

2



Abstract

In this thesis we address the subject of automatic extraction of harmony

information from audio recordings. We focus on chord symbol recognition

and methods for evaluating algorithms designed to perform that task.

We present a novel six-dimensional model for equal tempered pitch

space based on concepts from neo-Riemannian music theory. This model

is employed as the basis of a harmonic change detection function which

we use to improve the performance of a chord recognition algorithm.

We develop a machine readable text syntax for chord symbols and

present a hand labelled chord transcription collection of 180 Beatles songs

annotated using this syntax. This collection has been made publicly avail-

able and is already widely used for evaluation purposes in the research

community. We also introduce methods for comparing chord symbols

which we subsequently use for analysing the statistics of the transcription

collection. To ensure that researchers are able to use our transcriptions

with confidence, we demonstrate a novel alignment algorithm based on

simple audio fingerprints that allows local copies of the Beatles audio files

to be accurately aligned to our transcriptions automatically.

Evaluation methods for chord symbol recall and segmentation mea-

sures are discussed in detail and we use our chord comparison techniques

as the basis for a novel dictionary-based chord symbol recall calculation.

At the end of the thesis, we evaluate the performance of fifteen chord

recognition algorithms (three of our own and twelve entrants to the 2009

MIREX chord detection evaluation) on the Beatles collection. Results

are presented for several different evaluation measures using a range of

evaluation parameters. The algorithms are compared with each other in

terms of performance but we also pay special attention to analysing and

discussing the benefits and drawbacks of the different evaluation methods

that are used.
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Chapter 1

Introduction

In this thesis we address automatic extraction of harmony information,

specifically chord symbols, from audio and the evaluation of algorithms

designed to perform this task. In this chapter, we discuss our motivation

for this work in section 1.1 and present an outline of the thesis structure

in section 1.2. In section 1.3 we summarise the contributions made in this

work and in section 1.4 we list our own papers related to the thesis.

1.1 Motivation

Harmony is one of the fundamental elements of tonal music. In recent

years, automatic extraction of harmony information from audio has be-

come a popular research area in the field of music information retrieval

(MIR). Much work has been carried out on automatic methods for key

recognition [SMW04, MXKS04, G0́6, Pee06, CML07, ZR07, SIY+08, Nol09]

and chord recognition from audio [SJ01, Fuj99, SE03, YKK+04, HS05,

BP05, CPB05, BPKF07, PP08, LS08, RK08, VPM08, WDR09, OGF09c,

KO09c, WEJ09, RUS+09, MND09b]. Mauch provides a detailed review of

the current state of the art of this research area in his recently published

doctoral thesis [Mau10].

In this thesis, we investigate automatic chord recognition and specif-

ically focus on the evaluation of chord recognition algorithms. The pro-

gression of chords through time defines the harmonic structure of a piece

of music so there are many potential uses for reliable audio chord recog-

nition algorithms. Possible applications include automatic transcription

21



CHAPTER 1. INTRODUCTION 22

[WDR09], cover song detection [Bel07] and genre classification [ARD09,

ABMD10, PSRI09].

In order to improve the chord recognition algorithms that we create,

it is necessary to devise rigorous evaluation processes with which they

may be tested. Availability of a large ground truth test set is also an

important requirement if we wish to obtain reliable quantitative results

from the evaluation process. When we originally started the work reported

in this thesis, no such ground truth collection was available so we took it

upon ourselves to create a large set of transcriptions. The corpus chosen

for this transcription project was the 180 songs that make up the twelve

original studio albums by the Beatles [Pol, Lew92].

Manual annotation of a large dataset is a time consuming task and

human error is unavoidable in such an endeavour. To ensure that the

transcription collection was as consistent and reliable as possible, we de-

vised a machine-readable text syntax for chord labels. Using this syntax

for the transcriptions enabled automatic parsing and error checking on the

collection. Using this format also allowed us to generate synthesised audio

of the chords in the transcriptions automatically that were subsequently

used in human listening tests in order to verify the collection.

Details of the evaluation calculations used to produce results are often

neglected in publications; the details of the recognition algorithms being

evaluated are considered more important. Unfortunately, this leads to the

situation where it is difficult to state, with confidence, that one particular

algorithm performs better than another based on the results given in sep-

arate papers. We would argue that knowing how something is evaluated

is equally important as what is being evaluated if the results are to be

truly meaningful. For this reason, we have deliberately focused attention

in this thesis on the development of general chord recognition evaluation

measures. The evaluation methods we present have been designed to be

appropriate for any chord recognition algorithm, given a particular set of

evaluation parameters. Using these evaluation methods, researchers may

confidently compare their results with others, like for like, by choosing the

same set of evaluation parameters.

The Music Information Retrieval Evaluation eXchange (MIREX) [Dow08]
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is an MIR community based initiative organised by the International Mu-

sic Information Retrieval Systems Evaluation Laboratory (IMIRSEL) at

the University of Illinois at Urbana-Champaign. The MIREX community

holds a set of evaluation tasks each year, in connection with the Inter-

national Society for Music Information Retrieval (ISMIR) conference, to

compare the performance of the most recent MIR algorithms developed by

community members. One research track for MIREX is the audio chord

detection track. A primary motivation for the work on evaluation meth-

ods presented in this thesis has been to provide an improved system for

evaluating the entries for future iterations of the MIREX chord detection

task.

1.2 Thesis structure

In this section we outline the structure of the thesis, chapter by chapter.

Chapter 2: Theoretical underpinnings

We start chapter 2 by introducing important background information on

fundamental aspects of music theory and psychoacoustics which are cru-

cial to the understanding of harmony. We then present derivations and

discussion of models for tonal space based on neo-Riemannian harmony

theory. Using the theory behind Chew’s spiral array [Che00] as a starting

point, we then go on to propose a novel six-dimensional model for equal

tempered pitch space. This model is used as the basis of our tonal centroid

calculation which is employed in chord segmentation algorithms later in

the thesis and has also been used by other researchers including Lee and

Slaney [LS07, Lee08, LS08] in chord recognition.

Chapter 3: Chord extraction from audio

We introduce three chord recognition algorithms in chapter 3. All three

are pure signal processing approaches using a tuned chromagram [HS05]

generated from a constant-Q transform [Bro91] as the front end. No ma-

chine learning techniques are used in our recognition approach. The first
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algorithm, outlined in section 3.1, is a simple system that recognises chords

on a frame-by-frame basis. The second and third algorithms, discussed in

sections 3.2, use the same front end as the first but pre-segment the chroma

features before performing the chord recognition step. The segmentation

process uses a harmonic-change detection function calculated from a six-

dimensional tonal centroid, based on our pitch space model introduced in

chapter 2. The second algorithm uses a simple peak-picking algorithm to

find potential chord boundaries in the detection function. The third algo-

rithm improves the segmentation performance by introducing hysteresis

to the peak picking algorithm in order to discard small spurious peaks.

Chapter 4: Representing chords in plain text

In chapter 4, we discuss the issues associated with representing chord

symbols in plain text, in a machine-readable but musically intuitive for-

mat. The challenges associated with this issue are discussed in detail in

section 4.1. We then propose a specification for a chord symbol repre-

sentation in section 4.2.1 and using this specification we go on to develop

a logical model and a corresponding text syntax for chord labels in sec-

tions 4.2.2-4.3. To make the chord symbol syntax convenient for use in

experiments, a toolkit for manipulating the labels has been written in

Matlab. These tools are briefly discussed in section 4.4.

Chapter 5: Chord symbol comparison methods

In chapter 5, we discuss several methods for comparing chord symbols

with each other. Our main motivation for investigating different chord

comparison methods is to provide a formal basis for our frame-based recall

evaluation methods discussed in chapter 8. In this case it is important

that we can clearly define what constitutes a ‘correct match’ between a

machine-estimated symbol generated by a chord recognition algorithm and

a hand-annotated symbol in the ground truth test set. The comparison

methods detailed in chapter 5 are also used to produce the statistics of

the Beatles chord transcription collection discussed in chapter 6.
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Chapter 6: A Reference Transcription Dataset

To enable rigorous testing of the chord recognition algorithms described in

chapter 3 it is necessary to have a large hand-transcribed dataset for use

as a ground truth in the evaluation process. In chapter 6 we describe the

process of creating and verifying such an annotated dataset for the twelve

Beatles studio albums. At the end of chapter 6, we present statistics of

the Beatles transcription collection that were generated using the chord

symbol comparison methods described in chapter 5.

Chapter 7: Local audio file alignment

The Beatles transcription collection was originally released in 2007. Since

then, many researchers have used the collection in their work and some

have found poor time alignment between the transcriptions and their local

audio files to be a problem. Under copyright law, it is not possible for us

to make our original copies of the Beatles audio files available for other

researchers so time alignment will always be a potential issue when others

use our transcriptions. In chapter 7 we propose a solution to this problem.

We demonstrate a method that uses short audio fingerprints taken from

the original annotated audio as guides for altering local audio files, thus

allowing correct alignment. This technique provides a simple, legal way

for researchers to acquire accurately aligned audio data for annotated data

sets: an important factor in obtaining accurate experimental results.

Chapter 8: Chord recognition evaluation methods

In chapter 8, we examine the evaluation techniques for chord recognition

currently in use in the community. We then propose a new approach to

these techniques that will allow more general and fair comparisons to be

drawn between algorithms.

We start by presenting a formal treatment of chord recall using param-

eterised ordered set matching functions introduced in chapter 5. We then

introduce a new dictionary-based recall evaluation technique that provides

a fairer way to judge algorithm performance within the constraints of the
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algorithm’s capability. A new chord sequence likeness measure is devel-

oped, based on the proportion of shared tones in pairs of chords, rather

than a strict chord matching function with a binary output. We also pro-

pose an improved segmentation quality measure that complements chord

symbol recall and provides an alternative perspective on the performance

of a chord recognition system.

Chapter 9: Results

Using the evaluation techniques discussed in chapter 8, we present the

results for the three chord recognition algorithms developed in chapter 3

compared with results for the other twelve entrants for the MIREX09

chord evaluation [mirb]. We compare evaluation results calculated using

our chord symbol recall method with results calculated with the chord

mapping techniques used in the MIREX08 and MIREX09 chord detection

evaluations. The 180 songs from the Beatles chord transcription collection

described in chapter 6 are used as the test set for all the evaluations.

Chapter 10: Conclusions and further work

In chapter 10 we make conclusions on the work presented in the thesis

and suggest directions for future work based on our findings.

Document conventions and presentation

There are some two-word terms used frequently in this thesis which, in

order to disambiguate from their component words, we have decided to

concatenate into single words. Thus, we will refer to the type of a chord as

a chordtype and the name of a pitch which is not attached to an associated

octave register is referred to as a pitchname.

In this thesis we use teletype font for chord symbols and also for chord

symbol variables in equations. To make it clear which is which, chord

symbol strings are always written in quotes in-line, e.g. ‘C:maj7’ and in

teletype double quotes in equations e.g. −→v "C:maj7". Chord variables appear

without quotes e.g. RX.
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We use diagrams in many places because we consider them to be an

immediate and intuitive way of conveying information to the reader. Un-

less explicitly referenced, all diagrams in this thesis have been created by

the author using Inkscape1 or generated in Matlab.

1.3 Contribution

The main contributions we have made in this thesis may be summarised

thus:

Ch. 2 Introduction of a novel six-dimensional model for equal tempered

pitch space.

Ch. 3 Introduction of a harmonic-change detection function using a tonal

centroid based on the six dimensional model from chapter 2. We also

demonstrate the use of the harmonic change detection function as a

pre-segmentation technique for chord recognition.

Ch. 4 Development of a chord symbol model and syntax for chord tran-

scription.

Ch. 5 Development of a system of novel chord symbol matching methods

and a new chord sequence likeness measure.

Ch. 6 Creation of a large chord transcription collection for the Beatles

corpus and use of chord matching methods from chapter 5 to analyse

the statistics of the collection.

Ch. 7 Introduction of a novel algorithm that allows researchers to cor-

rectly align their local copy of audio files to our chord transcriptions.

Ch. 8 Development of improved evaluation methods for chord recognition

based on the techniques from chapter 5.

The Beatles transcription collection and Matlab toolkit we have created

have been used by many researchers in the community including [LB07,

1www.inkscape.org
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Bel07, CB09, PP07, PP08, SVB09, RK08, RRD08, EGL09, MDH+07,

AD08, RSN08, SVB09] since their initial release in 2007 and form a major

part of the test set used for evaluation in the MIREX chord detection task

[mirb].

1.4 Publications

This thesis contains and builds upon work previously published in the

following papers:

[HS05] Automatic chord identification using a quantised chromagram,

Christopher Harte and Mark Sandler. Proceedings of 118th Con-

vention. Audio Engineering Society, 2005.

[HSAG05] Symbolic representation of musical chords: A proposed syntax

for text annotations, Christopher Harte, Mark Sandler, Samer A.

Abdallah, and Emilia Gómez. Proceedings of the 6th International

Conference on Music Information Retrieval, ISMIR 2005.

[HSG06] Detecting harmonic change in audio, Christopher Harte, Mark

Sandler, and Martin Gasser. Proceedings of the 1st ACM Workshop

on Audio and Music Computing Multimedia, 2006.



Chapter 2

Theoretical underpinnings

This chapter provides background information on fundamental aspects of

music theory which are crucial to the understanding of harmony. Impor-

tant concepts are discussed from both music theory and psychoacoustics.

This leads to the derivations and discussion of models for tonal space

based on neo-riemannian harmony theory.

The final section of the chapter covers a six-dimensional model for

pitch space that was developed by the author. This model is employed in

audio chord segmentation algorithms later in the thesis and has also been

used for chord recognition by other researchers including Lee and Slaney

[LS07, Lee08, LS08].

2.1 Musical fundamentals

In this section we will define musical terms of reference used throughout

the rest of the thesis and introduce fundamental concepts required for

discussions in later chapters.

2.1.1 Musical terms of reference

Throughout this thesis, we will refer to various musical objects such as

pitches, notes, chords, scales etc. It is therefore important to briefly state

and explain what we mean, in the context of this work, by these terms.

29
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Chord transcription

The final goal of this work is to produce computer algorithms that can

recognise chords from recorded audio signals in order produce a chord

transcription. To do this we must define precisely what we mean by the

term ‘chord transcription’. In music theory, a chord sequence is generally

analysed as a succession of discrete, non-overlapping chord entities over

time. In recorded audio however, it is effectively possible for chords to

overlap because frequencies from the notes of one chord can still be present

in the next if the sounds are subject to reverberation. In the context of

this work, we will assume that chords cannot overlap so we define a chord

transcription as a sequence of contiguous time segments, each containing

a single chord label.

Notes, pitches and intervals

The note is the fundamental building block of all tonal music. In this

work, we define a note as the combination of a pitch determining the

fundamental frequency of the note and a duration that determines the

length of time that the pitch is sounded for. A sequence of notes in time

may form a melody and a collection of notes played simultaneously may

sonify a chord.

In this thesis we will use standard scientific notation [You39] in which a

pitch is defined by a pitchname and an octave number. A pitchname com-

prises a natural name plus zero or more sharps (♯) or flats (♭). Figure 2.1a

shows the arrangement of pitches as keys on a piano keyboard along with

associated pitch labels and frequencies over ten octaves. The ten octaves

between pitch C0 at 17Hz and C10 at 16768Hz cover the majority of

the range of audible frequencies for the human ear. The standard 88-key

grand piano keyboard has keys between pitch A0 at 27.5Hz and C8 at

4186Hz. Common musical reference key ‘Middle C’ is pitch C4 (261.6Hz)

and ‘Concert A’ is pitch A4 (440Hz). Figure 2.1b shows one octave, on

the piano keyboard, with labels for all the pitchnames in both English

and sol-fa naming systems. The smallest difference between two pitches

on the piano keyboard is a semitone. The white keys on the keyboard are
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C4 C5 C6 C7 C8C3C2C1

A0=27.5Hz

C0 C9 C10

A4=440Hz A5=880Hz A6=1760Hz A7=3520Hz A8=7040HzA3=220HzA2=110HzA1=55Hz A9=14080Hz

Octave 0 Octave 1 Octave 2 Octave 3 Octave 4 Octave 5 Octave 6 Octave 7 Octave 8 Octave 9

88-note range of the grand piano

17Hz
16768Hz

MIDI note numbers
12712

a)

C D E F G A B C

C D F G A

D E G A BR R R R R
QQQQQ

Do Re Mi Fa Sol La Ti Do

BA D

La Ti Re

A

BR
Q C

DR
Q

1 2 3 4 5 6 7 176 2

English system:

Sol - fa system:

Sharps:

Scale degree (C major):

Flats:

Pitchnames

a3== = = = = =
=

C4 D4 E4 F4 G4 A4 B4 C5

b) c)

1 2 3 4 5 6 7 1Scale degree (C major):

Pitch:

Figure 2.1: a) Pitches and associated frequencies shown in relation to the piano keyboard, pitch C4 being ‘Middle C’ and pitch
A4 being ‘Concert A’; b) Pitch names on the keyboard within one octave; c) Pitches in the octave C4 to C5 shown notated on a
musical stave, the equivalent octave of the piano keyboard is highlighted in part a) of the figure.
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Degree Name Relation to Tonic

1 First I Tonic Unison
2 Major second II Supertonic One tone above the tonic
(♭3 Minor third ♭III) Mediant Mid way between tonic and dominant
3 Major third III " " " " " " "

4 Perfect fourth IV Subdominant Fifth below the tonic
5 Perfect fifth V Dominant Fifth above the tonic
(♭6 Minor sixth ♭VI) Submediant Mid way between the subdominant and the tonic
6 Major sixth VI " " " " " " " " "

(♭7 Lowered Seventh ♭VII) Subtonic One tone below the tonic
7 Seventh VII Leading Note Leads into the tonic

Table 2.1: The degrees of the diatonic major scale plus the flattened degrees (shown in parentheses) present in the diatonic minor.
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Figure 2.2: The two-note intervals from unison up to an octave relative to
Middle C. Square braces under pairs of intervals denote enharmonic equivalents.

labelled by the natural names A-G. The black keys are labelled with the

natural name of an adjacent white key and a sharp or flat to show that

they are one semitone higher or lower than that natural respectively. Also

shown, underneath the pitchnames in figure 2.1b and c, are the numeric

degrees of the diatonic major scale based on C [Tay89].

The relative difference between two pitches is called an interval. Fig-

ure 2.2 shows the different two-note intervals between pitch C4 and pitch

C5 the octave above. An interval can be expressed as a number of semi-

tones or as an enharmonic spelling comprising a diatonic major scale de-

gree plus zero or more sharps and flats. Table 2.1 shows a list of diatonic

scale degrees (for both major and minor scales) plus the names that are

commonly used to describe them in music theory. The first note of the

diatonic major or minor scale is known as the Tonic and the fifth degree is

known as the Dominant. The other degrees of the scale have names which

reflect the note’s relationship with the tonic or the dominant. For simplic-

ity, the degrees of the scale are often referred to by the system of roman

numerals. These names and relationships, along with the corresponding

roman numerals, are given in table 2.1.

The perfect fourth and fifth intervals, denoted by a P, are made with

the tones which are closest to the prime (the tonic reference note for the

interval) in the harmonic series (covered in section 2.1.2). The Major (M)

intervals are intervals formed by the tonic and the notes of the major

scale other than the fourth and fifth. The Minor intervals (m) are one

semitone less than their corresponding major interval. Increasing a perfect

or a major interval by a semitone produces an augmented (aug) interval.

Reducing a perfect interval by a semitone produces a diminished (dim)

interval [SF]. The pairs of intervals which have square brackets beneath

them, such as the aug4 and dim5, will sound the same if played on a
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modern keyboard instrument. However, they have different notation (or

spellings) on the musical stave because they may be different to each

other depending on the tuning system which is in use [HA96]. These

related pairs of intervals are known as enharmonics and their importance

in harmony will be discussed further in the following sections.

2.1.2 Pitch perception and the harmonic series

When a string is plucked, the resulting pitch that we hear is not just the

fundamental frequency, but a number of different frequency components.

The string will vibrate at frequencies that are integer multiples of the fun-

damental frequency which are known as harmonics or harmonic overtones

or partials. The first six harmonic modes of a vibrating string are shown

in figure 2.3. The amplitudes of these harmonics relative to each other

dictate the timbre of a single percieved pitch[Ols67, Ben90].

The different degrees of the diatonic major and minor scales are found

in the harmonic series created by these overtones. The frequencies of

degrees in the diatonic scales are related by simple integer ratios to the

fundamental frequency of the tonic note of the scale (as shown in blue in

figure 2.3).

We may model our perception of musical pitch using the log2 frequency

scale [Coo99]. Figure 2.4 shows this by projecting a piano keyboard on

to linear and logarithmic frequency scales with the harmonic series for

the same pitch with fundamental frequency f on both. Harmonics on

the linear frequency scale have a periodicity of n.f where n is the index

of the overtone. Therefore, as f decreases or increases, the harmonics

of the pitch will get closer together or move further apart on the linear

scale respectively. On the log2 scale however, the harmonics are periodic

on 2n.f . The harmonic structure stays constant for pitches on the log2

frequency scale, invariant under changes in fundamental frequency.

2.1.3 Pitch height and chroma

The log scale preserves musical intervals under transformations which is

why we hear a doubling in frequency as a jump up an octave regardless
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Figure 2.3: Harmonic modes of a vibrating string. Closely related intervals
(shown in blue) within the same octave are formed from simple integer ratios
of the fundamental.

f 2f 3f 4f 5f

f 2f 3f 4f 5f

a)

b)

freq

log freq

Figure 2.4: Perception of pitch: Five partials in the harmonic series of a musical
tone shown on a) the linear frequency scale and b) the log2 frequency scale
(amplitudes of the partials are arbitrary in the diagram).

of the starting frequency. However, the log scale does not capture the

fact that certain intervals with particular properties such as octaves and
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Figure 2.6: The Chroma Circle showing the 12 pitch classes around the circum-
ference

perfect fifths are special (how they are special will be covered in more

detail later in the chapter).

In 1855, the physicist Moritz Drobisch proposed tones be represented

on a helix with octaves directly above each other in order to represent the

importance of the octave interval in a model of pitch perception [Coo99].

A representation of this helix is shown in figure 2.5. Krumhansl and Shep-

ard [KS79] found this same helical representation of pitch to be recoverable

by applying multidimensional scaling to human responses in psychological

experiments.

A note’s position in the octave is referred to as its Chroma or Pitch-

class. The chroma circle shown in figure 2.6, with the twelve pitch classes

around the circumference, is the base of the pitch helix from figure 2.5.

Chroma is independent of pitch height. This can be demonstrated with

the Shepard Tones, a group of twelve tones which are ambiguous in height
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but unambiguous in pitch. These tones were developed by Shepard [She64]

at Bell labs and produce an audio illusion of ever ascending pitches as the

tones progress round the circle.

2.2 Harmony in western tonal music

Harmony is the movement between musical chords through time. The

Oxford Dictionary of Music [Ken94] gives this definition for a chord:

Chord: Any simultaneous combination of notes, but not usu-

ally fewer than three. The use of chords is the basic foundation

of harmony.

In this thesis we will extend this definition to allow a chord to comprise

zero or more notes. In doing so, we make it possible to consider single

notes and non-tonal material (such as silence or purely percussive sounds)

as ‘chords’. Although this stretches the original definition somewhat, it

enables us to design a chord labelling syntax in chapter 4 and build a

system of chord comparison methods in chapter 5 which are subsequently

used throughout the rest of the thesis.

2.2.1 Consonance and Dissonance

The degree to which a simultaneous combination of notes is perceived to

be acceptable or pleasing in a given musical context is called consonance

and its converse i.e. how unpleasant it is, is dissonanace.

In psychoacoustic experiments during the 1960s, Plomp and Levelt

[PL65] linked the perceived consonance of two simultaneously sounding

sine waves to the critical bandwidth in human hearing [HA96]. In the

human ear, tones are defined to be within the same critical band if they

are close enough in frequency such that their responses on the basilar

membrane overlap. Tones which were equal in frequency were judged

‘perfectly consonant’ and tones with a frequency difference greater than

one critical bandwidth were judged to be consonant. However, tones which

differed in frequency by between 5% and 50% of a critical bandwidth were
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Figure 2.7: The first 8 harmonics of note C2 with the prime harmonics high-
lighted.

judged as dissonant with maximum dissonance occurring at a quarter of

a critical bandwidth.

Musical instruments generally produce complex tones made up of many

harmonically related frequency components (see section 2.1.2). For a com-

bination of notes, all of the audible harmonics (up to the sixth or seventh)

of each note contribute to the perceived consonance or dissonance of the

chord and each pair of harmonic components must adhere to the rules

determined above. Tones whose fundamental frequencies are related by

small integer ratios, will have many overlapping harmonics and will there-

fore sound consonant together. For intervals which are not closely related,

many pairs of harmonics may fall within the 5-50% of a critical band-

width distance of each other and will therefore sound dissonant to our

ears. Much harmonic theory is based on the ratios of the numbers 1 to

7 [Bal97] which links to the way the human auditory system perceives the

first seven partials of a tone. Figure 2.7 shows the first eight harmonics

of a tone (C2 - two octaves beneath middle C on the piano keyboard).

It is the prime harmonics which are perceptually most important because

the other harmonics are multiples (and hence harmonics) of these primes

themselves. These prime harmonics give rise to what Balsach calls the

Convergent Chord [Bal97] - for a C, considering the first 7 harmonics, the

convergent chord is CGEB♭. This is a ‘chord’ which is present in a single

note and it has certain properties which help to explain the existence of

some of the rules of harmonic progression discussed later in this chapter.

In the convergent chord for the note C (CEGB♭) there is a perfect fifth

interval C:G but there are also two intervals which are near fifths E:C
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(an augmented fifth1) and E:B♭ (diminished fifth). These intervals tend

to seek resolution towards a perfect fifth which causes a degree of internal

tension in the note. This internal tension can be resolved by dropping to

the note a fifth below (in the case of C this will be an F) which resolves

the augmented fifth E:C to the perfect fifth F:C. It can also be resolved

by dropping to the note a minor second below (from the C to a B) which

resolves the diminished fifth E:B♭ to the perfect fifth E:B2.

2.2.2 Chords

The two most common types of chord are the major and the minor triads.

The major triad is made up of the tonic note plus the fifth and third

degrees of the major scale; in the key of C the tonic major triad is CEG.

This triad can be viewed as a major third interval (I-III) underneath a

minor third (III-V). The minor triad is made up of the tonic note plus the

fifth and the third of the minor scale which, with root note C is CE♭G.

This triad is the complement of the major triad in that it is built from a

minor third underneath a major third [Tay89].

Other common triad chords include augmented, diminished and sus-

pended types. An augmented chord is built up of major thirds; the C

augmented chord would thus contain the notes CEG♯. By contrast, the

diminished chord is built up of minor thirds, hence the C diminished triad

would be CE♭G♭. Suspended chords are not built of major and minor

thirds but instead comprise a major second and a perfect fourth. The sus-

pended second chord is a major second under a perfect fourth e.g. CDG; a

suspended fourth is a perfect fourth underneath a major second e.g. CFG.

In classical western harmony, suspended chords generally resolve the sus-

pended note onto a major or minor third to form a more perceptually

‘stable’ triad chord.

The basic building blocks of harmony in western tonal music are the

triads which are built upon the degrees of the scale that defines the key.

Figure 2.8 shows the triads which are built on the C major scale. There

1For a definition of the two-note intervals, see figure 2.2.
2It is interesting to try this for yourself on a piano.
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Figure 2.8: Triads built on the degrees of the C major scale

are three major triads, I, IV and V (C, F and G), three minor triads,

ii, iii and vi (Dm, Em and Am) and a diminished triad vii◦ (B◦). The

diminished chord is given a lower case letter like a minor chord because

its first interval is a minor third. Three-note chords other than the natural

ones described above may occur in a major key but only with the addition

of tones from outside the key which are known as accidentals. More triads

can be formed in a minor key as there are several different minor scales

[Tay89].

Name, root, type and family

In this thesis, we will use the compound term chordname to mean the

full name given to a particular chord. For example, the chord formed

by sounding the tones C, E and G simultaneously would generally be

given the chordname ‘C major’. A chordname is a concatenation of a root

pitchname (in this case C) and a chordtype (major). The root pitchname

of the chord is an absolute value. The chordtype defines which tones

should be sounded relative to the root to complete the chord. For the

‘major’ chordtype, this will mean that the chord comprises the root plus

tones a major third and a perfect fifth above the root. Chordtypes that

share common characteristics may be grouped into a chord family. For

example, we might say that major triad, major seventh and major sixth

chords are all members of the ‘major’ chord family because they all share

the three tones of the major triad as a foundation.
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Inversions and Extensions

The bass note played at the bottom of the chord does not necessarily have

to be the root of the chord. Any one of the chord tones may be used as the

bass note and which one is chosen has an important effect on the chord’s

sound and the way in which it functions in relation to other chords in the

harmonic progression. Which degree of the chord becomes the bass note

defines the chord’s position or Inversion. Figure 2.9 shows the different

inversions of the C major chord: the C major triad in root position (I), the

first inversion (Ib) with the third as the bass note and the second inversion

(Ic) with the fifth as the bass note. The inversion of a chord may often be

written by giving the chord name and the bass note to use. For example

the first inversion (Ib) of a C major chord would be written C/E and is

referred to as ‘C over E’.

The chords introduced so far have been triads which, by definition, are

made up of three notes. Other, more complex combinations can be pro-

duced by adding more notes and extending the chords. The first common

type of extended chord is produced by adding a 7th interval to the chord.

Adding a major 7th to a major triad produces the Major 7th (maj7) chord.

Adding the minor 7th to the major triad produces a 7th (7) often referred

to as a ‘dominant 7th’ chord, so called because this type of extension is

often used in dominant root chords. Adding the minor 7th degree to a

minor triad produces the minor 7th chord (min7).

Further extensions, beyond the confines of the original octave, may

also be added. By adding another interval of a third on to a 7 chord a 9th

chord is created (the major 9th is the interval of an octave plus a major

second, see figure 2.10(a)). The intervals 11 and 13 may also be used as

extensions but the intervals 10, 12 and 14 have no function as extension
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Figure 2.11: Standard Jazz chord types and their extensions (compiled from
Coker [Cok64]). The circle symbol ◦ denotes a diminished chord, ∅ half dimin-
ished and +5 augmented.

notes because they are octave repetitions of the notes in the basic triad and

7th; extensions greater than 13 are not used as they would also be octave

repetitions of lower degrees of the chord. Figure 2.11 shows the common

chord types used in Jazz and their extensions with major type chords on

the first stave, minor types on the second stave, diminished type chords on

the third stave and 7th and augmented chords on the bottom stave; in the

figure, extended major chords are denoted with capital ‘M’ and extended

minor chords a lower case ‘m’. The 9th interval is an octave above the
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2nd interval. It should be noted that this distance of at least an octave

between the root and the extension is very important to the consonance

of the chord. Figure 2.10(b) shows two C chords containing the notes

CEGB♭DF. Although both chords are made up of the same pitches, the

C9(11) chord sounds more consonant than the clustered chord (which

could be considered to be a C7(2,4)). This is because when the pitches

are sounded close together they have many dissonant pairs of harmonics.

However, when separated by over an octave, they do not have so many

close pairs of harmonics [Bal97].

2.2.3 Tuning Systems

The most important interval in western music, the octave, has a frequency

ratio of 2:1. All the common western scales are based around an octave

containing twelve semitones. Early tuning systems were based on the

intervals found between the overtones in the harmonic series. Figure 2.7,

earlier in the chapter, shows the first 8 harmonics of a tone. The important

intervals can be found between these harmonics: The octave is found

between the fundamental and the 2nd harmonic, the perfect fifth between

the 2nd and 3rd and the perfect fourth between the 3rd and 4th. Most of

the other intervals can be found between higher pairs of harmonics but

these become difficult to isolate practically.

The Pythagorean scale is a tuning system built from perfect fifths.

From a starting note, C for example, go up a perfect fifth (ratio 3:2) and

you reach a G, go up another perfect fifth and you reach D and so on.

By ascending by a perfect fifth twelve times you pass through each of the

twelve different pitches in the chromatic scale (albeit in different octaves)

and effectively return to a C again; we will call this new note Ĉ. This

cycle of perfect fifth intervals can be shown as the spiral in figure 2.12.

The frequency of Ĉ is given by multiplying the frequency of C by the

perfect fifth ratio to the power of twelve [HA96]:

Ĉ =

(

3

2

)12

· C = 129.7463 · C (2.1)

This is not, however, quite the same frequency as the note C’, 7 octaves
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Figure 2.12: The sequence of pitchnames from double flats to double sharps
shown on a spiral.

above C, given by multiplying the frequency of C by 27.

C’ = 27 · C = 128 · C (2.2)

Therefore, seven octaves is actually slightly flatter than twelve perfect

fifths by an amount known as the Pythagorean Comma. Thus, although

in theory we should have arrived at the same pitch, the note Ĉ should

actually be considered as the enharmonic B♯, as shown on the spiral in

figure 2.12, rather than a C. The frequencies of notes for the Pythagorean

scale are thus calculated by ascending the required number of perfect fifths

and dividing by the relevant power of two to bring the note back into the

current octave. For example, the ratio used to produce the major third of

the scale (E in the example of C major) will be given by ascending four

perfect fifths (CGDAE) and descending two octaves i.e.

E

C
=

(

3

2

)4

·
(

1

2

)2

=
81

64

Another tuning system, widely used in the past but not so popular

today, is Just intonation. The Just diatonic scale is built by keeping

the intervals that make up the major triads pure. That is to say that

the tonic, subdominant and dominant triads each include interval ratios

of a perfect fifth (3:2) and a major third (5:4) plus the dominant and

subdominant keynotes are a perfect fifth and a perfect fourth above the

tonic respectively. The major third of this scale is given by the ratio 5:4
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so differs from that of Pythagorean scale for which it is calculated above

as 81:64. Using Just intonation, a keyboard instrument must be tuned for

playing in a particular key. The instrument will sound pleasing when used

to perform pieces written in that key due to the consonance of the pure

intervals. Pieces in closely related keys will also sound acceptable to the

ear. However, for works written in keys distant from the intended tuning,

the instrument may sound so out of tune as to render them unplayable.

It is time consuming and impractical to retune a keyboard instrument

every time you want to play a piece in a different key. It is also costly to

have twelve separate keyboards, so, for practical purposes, an alternative

tuning solution is required. The solution is the Equal Tempered tuning

where all the intervals between semitones are equal. This tuning system

splits the octave equally using a ratio re between semitones which is equal

to the twelfth root of two:

re =
12
√

2 ≈ 1.0595 (2.3)

This gives a tuning which makes modulation to all keys possible although

no key will be perfectly in tune with the pure intervals of the Just scale.

For practical considerations of consonance, the tuning works because the

harmonics of the intervals are within the 5% critical bandwidth limit.

However, with equal tempered tuning, chords will include beat frequencies

between harmonics which would not be present with pure intervals. With

equal tempered tuning, enharmonics can be considered as being equivalent

to each other, thus the spiral from figure 2.12 closes to become the circle

of fifths as shown in figure 2.13.

2.3 The Tonnetz

A number of music theorists have worked on representations of tonal

space based on the relationships of pitches, intervals and triads. Rie-

mann developed a planar representation of tonal space known as the Ton-

netz [Rie15, WMR92]. Figure 2.14 shows his original diagram of the space

(the symbols are in German musical notation). The Tonnetz is also re-

ferred to as the harmonic network. It is important to note that this model



CHAPTER 2. THEORETICAL UNDERPINNINGS 46

C
G

D

A

E

B
F

C

F

B

E

A

Q

R

R

R
Q

Circle of
Fifths

(D )R
(G )R (C )R

I
V

ii

vi

iii

IV

vii°

 (G )Q

(D )Q

(A )Q

Figure 2.13: The circle of fifths; the roman numerals inside the circle denote
chords built on degrees of the major scale in the key of C major.

Figure 2.14: Riemann’s Tonnetz [Rie15] reproduced from [Lon01]. N.B. In
German musical notation the letter h denotes B.

is concerned with relationships between tones as opposed to the model de-

scribed in the previous section which was based on relationships between

keys. On the horizontal is the line of fifths, so moving to the right the

interval is a fifth and moving to the left the interval is a fourth. Moving

up and to the right is the interval of a major third and down to the right

a minor third. Moving up to the left is a major sixth and down to the left

is a minor sixth.
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Figure 2.16: Diagram of part of Longuet-Higgins’ pitch space.

2.3.1 Longuet-Higgins’ pitch space

Longuet-Higgins arrived at a similar result through an alternative deriva-

tion [Ste02, LH62a, LH62b] by examining which integer frequency ratios
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Figure 2.17: Pitches of a one octave major scale on C0 in Longuet-Higgins’
pitch space. D0 and D′

0 are separated in pitch by a tuning comma.

created musical intervals. These ratios from 1 to 16 and their correspond-

ing musical intervals in roman numerals plus their relation to the tonic

note C are shown in table 2.2.

Longuet-Higgins showed that the harmonic intervals are those that

have a ratio that can be expressed as 3
2

x · 5
4

y · 2z where x, y and z are

integers representing perfect fifth, major third and octave translations

respectively. Therefore, the harmonic relation between two notes may be

represented as a vector in a three dimensional discrete space with C0 at

the centre, as shown in figure 2.16, with the z-axis going into the page.

The distances between pitches in Longuet-Higgins’ pitch space is pro-

portional to how closely related they are harmonically. Figure 2.17 shows

the positions of pitches of a major scale starting on C0 in the space. The

tones of the major 7 chord (tonic, major third, perfect fifth and major

seventh) in the same octave are close together, in the same plane on the

z-axis. The second, fourth and sixth in the same octave are further away

Multiple 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Pitchname C C G C E G - C D E - G - - B♭ C
Interval I I V I III V - I II III - V - - ♭VII I

Table 2.2: Longuet Higgins’ table of integer frequency multiples that create
close harmonic intervals.
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Figure 2.18: The plane of pitchnames formed when octave equivalence is as-
sumed in Longuet-Higgins’ pitch space model. The red solid line shows the rep-
etition in the space when pitchname equivalence is assumed. The blue dashed
line shows repetiton in the plane where enharmonic equivalence is assumed and
the green dotted line shows the final repetition where both are assumed.

in the space to the left and +1 unit in the z axis. It is also possible to

move to the right on the x axis and down in the z-axis to reach what

appear to be the same pitches. It is interesting to note that the major

ninth D1 is closer to the tonic C0 than either of the instances of the major

second D0. This supports points from the earlier discussion on consonance

in section 2.2.2. The diagram shows two pitches labelled D0 and D’0 but

these are not in fact the same frequency relation to the tonic; they are

separated by a comma. The pitch labelled D0 in the diagram is at coordi-

nate {-2, +1, +1} relative to C0 which translates to (2
3
)2× 5

4
×2×f = 10

9
f

whereas the pitch labelled D′
0 in the diagram is at coordinate {+2, 0, -1}

relative to C0 which translates to (3
2
)2 × 1

2
× f = 9

8
f .

Simplifying the model

Longuet-Higgins simplified the model by assuming octave equivalence, re-

ducing the three dimensional space to a plane by discarding the z-axis.

Figure 2.18 shows the plane that is formed which is equivalent to Rie-

mann’s tonnetz; because of the tuning commas, the plane is infinite.
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Figure 2.19: Triad (three-note) chord shapes on the tonnetz: a) major b) minor
c) augmented d) diminished e) suspended fourth f) suspended second.
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Figure 2.20: Tetrad (four-note) chord shapes on the tonnetz: a) major seventh
b) minor seventh c) seventh d) minor (major seventh) e) minor sixth f) major
sixth.

One interesting property of this planar harmonic network is that chords

are constant patterns formed from adjacent pitchnames. For example,

the major triad is an upwards pointing triangle whereas the minor triad

is a downwards pointing triangle. This property is put to use later by

Chew [Che01] in the Spiral array model. Figures 2.19 and 2.20 show the

shapes of the common triad and tetrad chords on the plane. It should be

noted that certain chord shapes are equivalent to each other depending on

which element of the chord is assumed to be the root note. In the case of
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Figure 2.21: The diatonic chords of the major key arranged on the pitchname
tonnetz (shown in red) for the key context of C major. Close chromatically
related chords are also shown.
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Figure 2.22: Bass buttons on an accordion are arranged in cycles of fifths
horizonally with a line of major third basses above and related chords below.

the triad chords, the suspended second and suspended fourth are the same

shape on the network. However, the root note of the suspended fourth

is the middle element whereas the root note of the suspended second is

the leftmost element. Thus, a C suspended fourth is equivalent to an F

suspended second chord, both comprising pitchnames C, F and G. The

same can be seen in the four-note tetrad chords in figure 2.20 where the

major and minor sixth chords are the same shape as the minor and major

seventh chords respectively.

Chord relationships and key regions on the tonnetz

Looking at the arrangement on the tonnetz of the naturally occuring

chords from a major key, shows that the distance relationships between
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chords in a progression are also closely linked to this network. Figure 2.21

shows the arrangement of chords in a major key. The harmonically related

chords are close to the tonic chord in the plane. We can see that the dom-

inant major chord (V) and the subdominant major (IV) are either side

of the tonic major (I) on the x-axis. The tonic major chord is closest to

its relative, parallel and mediant minors (vi, i and iii respectively). These

minor chords all share two pitchnames with the tonic chord.

In many ways the arrangement of pitches on the tonnetz is more in-

tuitive, in terms of harmony, than the arrangement based on pitch height

and chroma that we see in notated music. Pitch height and chroma also

form the basis for the layout of keys on many musical instruments includ-

ing the piano. Some instruments, however, have developed using the line

of fifths and in some cases even the thirds. For example, the accompani-

ment strings on a guitar zither of the kind made famous by Anton Karas3

are tuned in cycles of fifths over two octaves. The bass buttons of accor-

dions are also arranged in cycles of fifths. On larger models the basses

also include thirds, as shown in figure 2.22.

Key regions on the tonnetz

The relationships between pitches, chords and keys on the tonnetz dis-

cussed thus far are also described by Lerdahl in his theory of tonal pitch

space [Ler01]. Lerdahl considers three levels: the pitchclass level, chord

level and regional level. The pitchclass level corresponds to the pitchname

tonnetz, but assumes enharmonic equivalence which will be covered later

in this section. The chordal level deals with the relationships between

chords in the same region of the system and the regional level looks at

the relationships between chords in different key regions. The relative ar-

rangement of pitches and the chords they form, in any particular region,

is invariant to absolute pitch of the tonic.

These relationships between keys and chords were also noted by Arnold

Schoenberg [Sch54]. Schoenberg suggested that the idea of temporary

modulation to other keys should be discarded in favour of the concept of

3Karas played the theme to the film ‘The Third Man’ on a guitar zither.
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Figure 2.23: Schoenberg’s Chart of the Regions [Sch54] for a major key. N.B.
All symbols in capitals refer to major keys; those in lower case to minor keys.
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Figure 2.25: a) The spiral array as proposed by Chew b) major and minor
triads become triangles inside the cylinder.

monotonality. When the harmony of the piece moves away from the tonic

it is still considered as being in the same tonality, but in a different region

of that tonality. With this in mind, Schoenberg developed the ‘Chart of

the regions’ shown in Figure 2.23. This shows how the different regions

relate to the central tonic. Regions which are closely related to the tonic,

such as the dominant, subdominant and its parallel and relative minors4,

are close to it on the chart. Likewise, regions which are not closely related

to the tonic are distant from it on the chart. Figure 2.24 shows the chart of

regions for the key centre of C major and its relationship to the pitchnames

on the Tonnetz.

2.3.2 Assuming pitchname equivalence: Chew’s Spiral array

All points on the pitchname tonnetz are unique in terms of their enhar-

monic spelling and the number of commas they are from any given refer-

ence point, therefore the plane is infinite. However, if we assume pitch-

name equivalence, i.e. we choose to ignore the tuning commas, then the

4The parallel minor of a major key is the minor with the same tonic note e.g. the parallel
for C major is C minor. The relative minor of a major key is the minor key which shares the
same key signature and can be found by dropping three semitones from the major’s key note
e.g. For C major the relative minor is A minor.



CHAPTER 2. THEORETICAL UNDERPINNINGS 55

i

V

a) b)

iv

I

V

IV

Tonic P(k)
Tonic P(k)

Major Key
T (k)M

Minor Key
T (k)m

IV

v

CM(k)

Cm(k)

Figure 2.26: Geometric representations of the ‘centre of effect’ for a) a major
key and b) a minor key on the spiral array

plane wraps on to the surface of a cylinder with the line of fifths forming

a helix of enharmonic pitchnames. The resulting three-dimensional model

is Chew’s Spiral Array [Che01].

Figure 2.25(a) shows a graphical representation of the spiral array.

The line of fifths wraps round itself forming a spiral that makes one full

turn every four pitchnames. This means there is a major third interval

separating any pitch on the spiral and the one directly above it.

In the spiral array model the surface of the cylinder that the spiral

wraps around lies on the unit circle in the x, y plane. Chew defines P(k)

as a point on the spiral at position [x, y, z]T representing a pitch of index

k where pitch C is arbitrarily chosen to be P(0), fixed at location [0, 1, 0]T

in the 3D space5. Each pitch on the spiral can be defined in terms of

transformations from one of its neighbours using rotation and vertical

translation.

P(k + 1) = R · P(k) + h (2.4)

Where

R =







0 1 0

−1 0 0

0 0 1






and h =







0

0

h







5The position of the reference pitch in the 3D space is arbitrary. In her thesis, Chew points
out that “It is the relation between the pitch representations that is of utmost importance,
and where the spiral begins is of little consequence”.
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Where Chew’s use of this model differs from the other tonal representa-

tions, discussed earlier in the chapter, is that in modelling chords and key

centres in this three dimensional representation she allows musical entities

to be defined inside the spiral. A chord is modelled as the composite re-

sult or centre of effect of its component pitches (see figure 2.25(b) showing

the major and minor triads forming triangles on the spiral). This effect

is a point in the space floating somewhere inbetween the chord pitches.

Likewise, a key can be modelled as an effect of its defining chords (I, IV

and V), as shown in figure 2.26. The effect is represented spatially by a

convex combination of its components.

Mathematically, Chew represents a chord by a convex combination of

its component pitches. The chord is represented by a weighted average of

the positions of the component pitches. For example, the major triad is

given as the root, P(k), the fifth, P(k + 1) and the major third P(k + 4)

therefore the representation is:

CM(k) = υ1 · P(k) + υ2 · P(k + 1) + υ3 · P(k + 4) (2.5)

Where Chew includes weights υi that represent the importance of the pitch

on the generated chord and

υ1 ≥ υ2 ≥ υ3 > 0 and
3

∑

i=1

υi = 1.

In the same way, a key’s effect is given as the weighted sums of its

constituent chord effects. The centre of effect moves around in the space

inside the spiral depending on the chords that are being played. Chew em-

ploys this movement in a key boundary finding algorithm [Che02]. When

in one key area, the centre of effect will not move around very much.

When there is a key change, the centre of effect will change its position

to reside in the new key area. The boundary finding algorithm looks at

the Euclidean distance between the centre of effect’s positions in adjacent

time frames. When the distance is large, the centre of effect must have

moved a long way during that frame, suggesting a change in key.
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Figure 2.27: When enharmonic equivalence is assumed, the spiral array can be
represented in four dimensions as a spiral on the surface of a hypertorus.

2.3.3 Toroidal models of tonal space

Chew’s original work was based on symbolic music analysis from musical

scores rather than audio so Just intonation may be assumed as the enhar-

monics are known. If enharmonic equivalence is assumed, the pitchnames

of the spiral array map on to the twelve pitch classes causing the line of

fifths helix to fold round on itself, forming a four dimensional torus. Fig-

ure 2.27 shows a graphical representation of this pitchclass torus; it should

be noted that the diagram is only for visualisation and although the image

presents the torus as a three dimensional object, the true distances in the

space are such that the inner and outer diameters are in fact equal.

This toroidal model has been discussed by many other theorists includ-

ing Cohn [Coh98] and Hyer [Hye95]. Hyer re-imagines Riemann’s Tonnetz

assuming enharmonic and octave equivalence to produce the representa-

tion shown in figure 2.28. The numbers shown at the nodes denote the

number of semitone intervals between that node and the central node 0.

The pitchclass level in Lerdahl’s tonal pitch space theory [Ler01] is also

equivalent to this toroidal model.

The ToMIR

Shoenberg’s regions were presented in figure 2.23 showing the relation

between different regions in the context of one key. From the circle of
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Figure 2.28: Diagram of equal tempered tonnetz relations reproduced from
Hyer [Hye95].

Figure 2.29: Inter-key distances - Krumhansl and Kessler’s experiments in mu-
sic perception and cognition map tonal space on to a torus (reproduced from
London [Lon01])

fifths, introduced in section 2.2.3, it is possible to see that a cyclic pat-

tern exists in the chart. This pattern is used by Blankertz, Purwins and

Obermayer [BPO99, Pur05] to derive their Toroidal Model of Inter-key

Relations or ToMIR which is equivalent to the key region level of the

pitchclass toroid discussed in the previous section. The model is devel-

oped from the chart of the regions by taking the centre three columns

and extending them along the line of fifths (discarding the Neapolitan

Region). This ‘strip of key’ is shown in in figure 2.30a. It is possible to

see that the top line of minor keys (the relative minors of the major keys
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in the middle line) can be lined up with the bottom line of minor keys

(the parallel minors of the major keys) if the strip is twisted round on

itself to form a spiral (as shown in figure 2.30b. As the minor keys in the

top and bottom lines of the strip are equivalent to each other when lined

up, the doublings may be merged forming a tube with two spirals on its

surface, one for the major keys and one for the minors (figure 2.30c). If

enharmonic equivalence is assumed, the tube may be folded round and the

enharmonic keys joined together to form a torus; the two spirals of major

and minor keys wrapping round its surface three times. This is shown in

figure 2.30d.

Krumhansl and Kessler’s psychoacoustic experiments with probe tone

ratings [Kru90] empirically measured how well human subjects thought

that certain notes and chords fit within a given tonal context. Tones and

chords closely related to the tonal context scored highly and notes and

chords which were distant did not score highly. These experiments pro-

duced the map of inter-key distances shown in figure 2.29 which maps

directly on to ToMIR. Krumhansl also takes pains to point out that this

torus is a three dimensional representation of a four dimensional space.

The distance between two keys is the Euclidean distance in four dimen-

sions, not the distance in two or three dimensions shown in the graphical

representations.

2.4 Extension of the toroidal pitch space model

Chew’s ‘centre of effect’ in the spiral array models each chord or key

as a point in the space surrounded by the spiral of fifths. Each centre

of effect point may be described by a single vector in that space. The

distance between vectors for successive chords or key regions can be used

to segment the music under analysis.

We wish to apply the same technique to the toroidal pitchclass model

by describing chords as points in the four dimensional space. To visualise

the space we can plot the four dimensions as two circles, one being the

circle of fifths and the other the circle of minor thirds, as shown in fig-

ure 2.31. Four triad chords are shown in the figure, all with C as their
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Figure 2.31: Chords shown as points in the four dimensional pitchclass space.
C major triad (red), C minor triad (green), C augmented triad (magenta) and
C diminished triad (yellow).
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Figure 2.32: Three diminished seventh chords shown as points in the four di-
mensional pitch class space; green based on C, red based on C♯ and magenta
based on D. All three occupy the same point at the centre of both circles despite
none of them sharing any common tones.

root. The C major and minor triads are complements of each other in the

space, the diminished triad is close to the centre in both circles and the

augmented triad is at the centre of the circle of fifths but on the edge of

the circle of minor thirds.

Unfortunately, with only these four dimensions, the model cannot dis-

criminate between certain important chord types. For example, the three

diminished seventh chords shown in figure 2.32 do not share any common

tones, yet they all occupy the point at the centre of both circles. This is

also the point occupied by the chord produced when all pitchclasses are

present simultaneously. What we must remember is that this four dimen-

sional space is really an alternative projection of the twelve dimensional
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Figure 2.33: When projected as points in the circle of major thirds, the three
diminished seventh chords from figure 2.32 are easily distinguished from each
other.

space described by the twelve pitch classes. Projecting in four dimen-

sions reduces the dimensionality but also throws away information. The

diminished seventh chords are different from each other but our current

projection hides this from us. To recapture this information we will intro-

duce a new pair of dimensions which describe the circle of major thirds

as shown in figure 2.33. By including these two new dimensions in our

model, we may now distinguish between the different diminished seventh

chords easily.

The six dimensional model gives us an interesting way to visualise the

relationships between different chords. Figure 2.34 shows the diatonic

chords for the key of C major plotted in the six dimensional space. The

chords of the major key are close to each other in the circle of fifths,

occupying several overlapping points. However, the positions of the chord

centres in the other two circles are more spread out. Taking just the tonic

C major chord and the supertonic D minor as an example (in figure 2.35)

we can see that although they are both at the same point in the circle of

fifths, they occupy complementary positions in the other two circles.

2.4.1 Distances in the six dimensional tonal model

The ratio of height to radius in Chew’s spiral array is determined by

ensuring that a set of inequalities, derived from the perceptual distances

between musical intervals in equation 2.6, are satisfied [Che00]. Let d(i,i’)
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Figure 2.34: The diatonic chords in the key of C major. Major triads C, F and
G are shown in red, minor triads D, E and A are shown in green and diminished
triad B is shown in magenta.
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Figure 2.35: The C major triad (red) and D minor triad (magenta) in the six
dimensional space. They occupy the same point in the circle of fifths but they
occupy complementary positions in the other two circles.

be the tonal distance between two pitches separated by interval i, relative

to the lower pitch, and i’ is the complementary interval relative to the

upper pitch. Therefore we see that the smallest distance is between the

tonic and the perfect fourth and fifth intervals. This is followed by the

major third then the minor third, the major second, the minor second and

finally the diminished fifth.

d(P5,P4) < d(M3,m6) < d(m3,M6) < d(M2,m7) < d(m2,M7) < d(d5,a4)

(2.6)

Using the same method that Chew employs in [Che00], we have formu-

lated these relationships in terms of distances within the six dimensional

space and simplified them to the following inequalities (derivations for

which can be found in appendix A). The circle of fifths has radius r1
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Figure 2.36: Plot of the inequalities that must be satisified for the interval
distances in the six dimensional pitch space model when assuming circle of
fifths radius r1 = 1. The blue line corresponds to inequality 2.7 and red to
inequality 2.8. The hatched area satifies all the constraints.

which we will set to 1, the circle of minor thirds has radius r2 and the

circle of major thirds radius r3.

1√
2

< r2 <

√

(1 −
√

3)

2
(2.7)

r3 <

√

2r2
2 − 1

3
(2.8)

Figure 2.36 shows the inequalities plotted for different values of r2 and

r3. The area where both are satisified determines the range of acceptable

values we may use for r2 and r3 in our model when r1 = 1. For the

experiments in later chapters, where we use this model, we choose the

values r2 = 1 and r3 = 0.5 in accordance with the inequalities.



Chapter 3

Chord recognition from audio

In this chapter we will introduce three chord recognition algorithms that

we have developed. All three algorithms are purely signal processing ap-

proaches with no machine learning techniques involved. The first algo-

rithm, outlined in section 3.1, is a simple system that recognises chords

on a frame by frame basis using a tuned chromagram generated from a

constant-Q transform. This algorithm was originally presented by the

authors in the paper ‘Automatic Chord Identification Using a Quantised

Chromagram’ [HS05] for the 2005 AES 118th convention.

The second and third algorithms, discussed in sections 3.2, use the

same DSP front end as the first but employ a chord segmentation algo-

rithm based on the harmonic change detection function first presented by

the authors in the paper ‘Detecting Harmonic Change In Musical Audio’

[HSG06] for the 2006 ACM Multimedia conference.

Chapter contribution

Most of the work presented in this chapter is based on research carried

out between 2005 and 2006. While it is acknowledged that the chord

recognition systems we describe here are no longer the state of the art, we

include them here to provide the reader with a more detailed explanation

of the algorithms than is given in our papers covering the same work

[HS05, HSG06]. The work described in those papers has been used in

subsequent research by others including [LS07, Lee08, LS08] and cited by

many more. Within this context, the main contributions in this chapter

are:

65
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Constant Q transform

HPCP and peak picking

Tuning and pitchclass allocation

Chord recogniser

Audio in

36 bins per octave log freq spectra

36 bin HPCP peaks

12 semitone quantised chromagram

Chord label frames

Figure 3.1: Block diagram of basic frame-based chord recognition system.

• Use of a tuning algorithm to generate a quantised chromagram.

• Generating the tonal centroid based on the 6D pitch class hypertorus.

• Development of the harmonic change detection function (HCDF)

from the tonal centroid.

• Use of peak picked HCDF for chord recognition segmentation.

• Improved peak picking of HCDF for better chord segmentation.

3.1 Basic chord recognition system

In this section we will present the details of a simple frame-based chord

recognition algorithm based on that described in our 2005 AES paper

[HS05].

3.1.1 Audio front end

Our basic chord recognition system is a simple frame-based algorithm

using a 12-bin semitone quantised chromagram derived from a constant-Q

transform. A diagram of the main signal processing blocks in the system

is shown in figure 3.1.
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Figure 3.2: Two spectrograms of an ascending chromatic scale starting on mid-
dle C. On the left is a linear frequency spectrogram calculated with an FFT; on
the right is a log spectrogram produced by the constant-Q transform. Higher
energy is shown as lighter greyscales. The constant-Q spectrogram clearly shows
the harmonic structure of each note in the scale.

Constant Q transform

The first stage of the system is a Constant-Q spectral analysis [Bro91].

This is a logarithmic frequency analysis, so named because it can be viewed

as a filter bank in which each filter has a constant-Q value. The ratio of

a filter’s bandwidth δf to its centre frequency f is called its quality or Q

factor.

Q =
f

δf
(3.1)

Bandwidth δf is fixed in linear frequency analysis, therefore the value of

Q varies in proportion to centre frequency f . In contrast, with logarithmic

frequency analysis the filter bandwidths δf vary in proportion with centre

frequency f , hence the quality factor Q remains constant.

For musical analysis using a constant-Q transform, we need to find a

suitable value for the number of bins per octave β. The kth bin centre

frequency is given as:

fk =
(

β
√

2
)k

fmin (3.2)

Where frequency f varies between fmin, the lowest frequency for which

analysis is required, and a maximum frequency which is set to be below

the Nyquist frequency. In equal tempered tuning β = 12, therefore the
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frequencies of semitones are separated by the ratio of 12
√

2 which is equiv-

alent to 1.0595. For frequency analysis in recorded music audio where

tuning may vary, quarter-tone (half a semitone) resolution at least is re-

quired to distinguish between adjacent semitones. In order to deal with

audio signals where the reference tuning frequency is unknown, we opt

for a resolution of β = 36 therefore δf = ( 36
√

2 − 1) = 0.0194 and the

required Q value is f/0.0194f = 51.4. Resolution of 36 bins per octave is

equivalent to three bins per semitone. This ensures that it is possible to

distinguish between adjacent semitone frequencies regardless of the tun-

ing of the recording [GH04, PBO00]. The constant-Q spectrum Qk of the

time sequence xn is given by the transform

Qk =
1

Nk

Nk−1
∑

n=0

wk,nxne
−j

2πQn
Nk (3.3)

where Nk is the analysis frame length for frequency bin k, w is a suit-

able window function (in our case a hamming window) and the digital

frequency is 2πQn

Nk
.

Figure 3.2 shows two spectrograms of an ascending chromatic scale

starting on middle C (approximately 262Hz at concert pitch); the linear

frequency spectrogram on the left, produced by the FFT, can be compared

to the log frequency spectrogram on the right produced after converting

to the constant-Q transform. It is clear to see from the figure that, for

each note in the scale, the pattern of the harmonics is frequency invariant

in the constant-Q spectrogram which makes it well suited to analysis of

musical signals.

For the front end of our chord recognition system, we downsample1 au-

dio input data to 11025Hz then calculate a constant-Q transform across

four octaves between fmin=110Hz (A2) and fmax=1760Hz (A6) with β =

36. We have implemented the constant-Q transform in code using the ef-

ficient algorithm described by Brown and Puckette in [BP92]. The Brown

and Puckette algorithm employs a fast Fourier transform (FFT), the out-

put of which is matrix multiplied by a set of complex frequency kernels

1We chose to downsample the original audio to 11025Hz in order to reduce the processing
time required for our experiments. In doing so we make an assumption that frequencies above
5512.5Hz do not contain chordal information.
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to convert to a log frequency scale. Using this algorithm, to obtain a

constant-Q analysis with these parameters an FFT window length of 8192

samples is required. This frame size is necessary because Q complete cy-

cles at frequency fk must be evaluated in order to distinguish between fk

and fk+1. In our 36 bins per octave system, at least 52 complete cycles of

fmin (110Hz) are therefore necessary which is approximately 5211 samples

at 11025Hz. The next power of 2 above 5211 is 8192 therefore we choose

this value for the FFT window size. This is approximately 740ms which

is a relatively long analysis window in terms of musical harmony. Thus,

to improve time resolution, we use a hop size of 1
8
th of a window length

between frames giving a resolution of 93ms per frame.

Harmonic Pitch Class Profile

The next stage in our system is decomposing the constant-Q spectra into

a Harmonic Pitch Class Profile (HPCP) [G0́6]. The HPCP discards the

pitch height information from the log frequency spectrum to produce a

one octave feature vector representing pitch chroma (as discussed earlier

in section 2.1.3). A HPCP vector H may be calculated from a constant-Q

spectrum in the following way:

Hb =
G−1
∑

g=0

|Q(b+β.g)| for 0 ≤ b < β (3.4)

where g is the octave index, G is the total number of octaves in the

constant-Q spectrum at β bins per octave and b is the HPCP bin index.

The magnitude of the constant-Q bins sharing the same pitch chroma are

summed forming a HPCP vector with β bins. In our case, β = 36 and G

= 4.

The justification for using this decomposition technique in a chord

recognition system is that it removes the problem of having to deal with

different voicings of the same chord. Figure 3.4 shows three alternative

voicings of a C major triad chord2. These are: root position I, comprising

2These three voicings are shown as examples and are by no means an exhaustive list, there
are in fact 1540 possible three-note voicings for a C major chord on a standard 88-key piano
keyboard.
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Figure 3.3: Constant-Q spectrogram (left) of three different inversions of a C
Major chord compared to the HPCP (right) for the same audio signal. Higher
energy is shown as lighter greyscales.
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Figure 3.4: Three inversions of a C Major chord shown in the constant-Q and
HPCP of figure 3.3.

pitches C4, E4 and G4; a first inversion Ib, comprising pitches E4, G4 and

C5 and a second inversion Ic, comprising pitches and G4, C5 and E5. The

left pane of figure 3.3 shows the four-octave constant-Q spectrogram for a

piano recording of the chords in figure 3.4 where the changing voicing and

the resultant pattern of harmonic overtones can be seen clearly. The right

hand pane of figure 3.3 shows the HPCP vectors for the same three chords.

Pitch height information discarded, the HPCP shows the three chords have

very similar chromatic features. Bins corresponding to chord tones show

up strongly for each one with root note C being bin 11, major third E

bin 23 and perfect fifth G bin 32. Harmonic overtones of the three notes

which do not add to the energy in the bins of the chord tones themselves

can also be seen in the HPCP as lower energy components in other bins.

The strongest of these are bins 8 and 17 which correspond to the chroma
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of tones B and D respectively. B is the 3rd harmonic of chord tone E and

the 5th harmonic of chord tone G; D is the 3rd harmonic of G. In this

example, the energy we see in bin 8 is all contributed by the 3rd harmonic

of pitch E4 which is only present in the first two voicings of the chord.

This is because the top frequency fmax of the constant-Q spectrogram is

1760Hz (pitch A6) which is lower than the 5th harmonic of G3 which would

correspond to approximately 1960Hz (pitch B6). The energy in bin 17 is

contributed by the 3rd harmonic of G3 which is approximately 1176Hz

(pitch D6) and is therefore present in the HPCP for all three voicings.

Use of the HPCP enables us to reduce the dimensionality of the chord

recognition problem. However, the trade off is that we cannot distinguish

between pitches in different octaves so an extended chord, for example

one containing a major ninth interval, will appear the same as a more

dissonant clustered chord containing a major second (chords discussed

previously in section 2.2.2).

Tuned chromagram

For musical audio that is guaranteed to be at concert pitch (i.e. reference

pitch A4 = 440Hz), a 12 bin per octave HPCP would be ideal for musical

analysis. In general however, we cannot guarantee that audio we analyse

from real recordings will be at concert pitch which is why we calculate

the HPCP with β = 36. This is certainly true for the Beatles albums

which we use as our test set in this work (discussed in chapter 6), as these

contain a wide variety of tuning frequencies for different songs. To make

chord recognition simpler, we wish to obtain a 12 bins per octave feature

vector. The next stage of our system is therefore a tuning algorithm that

will allow us to convert the 36 bin HPCP to a tuned 12 bin chromagram.

Our tuning process first requires peak picking of the 36-bin HPCP. The

peak picker is a simple algorithm in which a HPCP bin Hb is considered

to be a peak bin if

Hb > H(b+1 mod 36) and Hb > H(b−1 mod 36). (3.5)

Peak picking is followed by application of a quadratic interpolation [Mol04]

to obtain peak positions and values (see figure 3.5).
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b b+1 b+2b-1b-2

Figure 3.5: Diagram to show HPCP peak bin b and a curve fitted to the peaks
used to interpolate the peak position and value.

Once the peaks have been located, we calculate the modulo 3 position

values, these being equivalent to the position of each peak within one

semitone. The upper plot in figure 3.6 shows the HPCP for the first 30

seconds of Another Crossroads by Michael Chapman. The first half of the

excerpt is an instrumental introduction and the second half has the vocals

from the first verse. The lower plot of figure 3.6 shows the modulo-3 HPCP

peak positions for each frame. In this plot we can see that most peaks are

close to zero, suggesting that the song is tuned at, or near, concert pitch.

There are more ‘untuned’ peaks in the second half of the excerpt due to

the entry of the vocals and a change in the drum pattern, however the

majority still lie around zero. To identify the tuning frequency for an

audio file, we calculate a histogram of the modulo 3 peak position values

and find the index of the maximum peak frequency. Figure 3.7 shows the

tuning histogram for the audio example from figure 3.6 where the index

of the maximum peak frequency is zero. After identifying the tuning,

we then discard all peaks that fall outside ±0.2 semitones of the tuning

reference in each pitch class. The remaining peaks are then allocated to

12 pitch class bins, bin centres being aligned with the tuning reference to

form a 12-bin quantised chromagram as originally described in our paper

[HS05]. Figure 3.8 shows the quantised chromagram for the excerpt from

Another Crossroads by Michael Chapman.
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Figure 3.7: Histogram of the semitone tuning values for Another Crossroads by
Michael Chapman. The histogram has a clear peak at just above zero showing
that the tuning of the audio is close to concert pitch.

Chord recognition using pitch class templates

The next step of the process is to try to identify chord symbols from the

quantised chromagram features. To do this, we use a simple system of

binary chord templates which are compared with each chroma vector and

the best match is recorded as the estimated chord symbol.

The chord symbols that our system is designed to recognise are ma-

jor, minor, augmented and diminished triads. These four triads can be

described with the binary pitchclass patterns shown in table 3.1. We form
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Figure 3.8: 12-bin quantised chromagram for excerpt of Another Crossroads by
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Table 3.1: Binary templates for the four triad types recognised by our system.

Triad Pitchclass template

Major 1 0 0 0 1 0 0 1 0 0 0 0
Minor 1 0 0 1 0 0 0 1 0 0 0 0
Augmented 1 0 0 0 1 0 0 0 1 0 0 0
Diminished 1 0 0 1 0 0 1 0 0 0 0 0

a normalised template matrix T by concatenating the twelve different ro-

tations of each of these bit patterns as shown in figure 3.9. The twelve

rotations of four patterns make up a 12 by 48 matrix to which we add a

final 49th column in which all elements are equal to identify non-chordal

material, which we label ‘N’. To identify which chord is present in a par-

ticular quantised chroma vector c, we multiply the chroma vector by the

template matrix T

W = c.T (3.6)

producing a vector W containing weights for each of the 49 possible chord

symbol candidates. We then find the index of the maximum value in W

to provide us with a numeric chord estimate.

Using the first 30 seconds of Another Crossroads again as an example,

we will use a hand-transcribed chord annotation for the excerpt to com-

pare with the output of the chord recogniser. We visualise the chord se-

quence as a line graph showing time against chord type which corresponds

to the numeric estimates produced by our chord recogniser as shown in

figure 3.10.

For our basic system, we perform chord recognition on a frame by frame
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Figure 3.9: Bit patterns in the chord templates matrix.
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Figure 3.10: Line graph showing the hand annotated chords for the first 30
seconds of Another Crossroads by Michael Chapman. Gradations on the x-axis
are half bars (two crotchet beats).

basis. Estimating the chord sequence directly from the quantised chroma

frames produces a lot of incorrectly estimated frames due to transients

and noise. Output of the system compared to the hand annotation can

be seen in figure 3.11a. To reduce the problems caused by transients, we

apply a low pass filter to the chromagram to pre-smooth the pitchclass

information over time. This produces a cleaner output function as shown

in figure 3.11b. After calculating the chord estimate values for each frame,

we then use a median filter [Tuk71, Pra01] to reduce short spurious changes

in the estimated sequence. Figure 3.11c shows the median filtered output

of the sequence from the raw chromagram in figure 3.11a and figure 3.11d
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Figure 3.11: Line plots of chord recogniser output (red solid) compared with
hand annotation (green dashed) for a) basic frame by frame analysis, b) chroma
frames pre-filtered with a low pass function, c) median filtered frame by frame
chord estimates and d) chroma frames pre-filtered with low pass function then
estimates median filtered. The cleanest output is achieved by using low pass
filtering and median filtering together.
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shows the median filtered output of the sequence from the low pass filtered

chromagram in figure 3.11b. As the figure shows, using both filtering

techniques produces the cleanest estimated sequence. After calculating

the numeric chord estimate values, we may use a lookup table to allocate

text chord labels to the chords in order to produce a final estimated output

sequence.

3.2 Improved system using segmentation algorithms

The output of the basic chord recognition system is not as good as we

would like because, even after filtering, the results are still very unstable

compared to the ground truth annotations. This instability is due to

the frame-by-frame nature of the algorithm in which noise or transient

signals in single frames can lead to many spurious outputs from the chord

recogniser. To tackle this problem we have developed a chord segmentation

algorithm that identifies possible chord boundaries and pre-segments the

chromagram before the chord recognition stage (see figure 3.12). The

chord segmentation system uses the harmonic change detection function

(HCDF) originally presented in our paper [HSG06] which is based on the

tonal centroid function derived from the six dimensional model for pitch

space described in section 2.4.

3.2.1 Tonal centroid

In section 2.4, we introduced a six dimensional model for equal tempered

pitch space in which the twelve pitch classes enclose a hypertorus with

the circle of fifths wrapping around its surface three times. By using the

6-dimensional interior space contained by the surface of the hypertorus,

we may apply the same technique that Chew uses to develop the ‘centre of

effect’ in the Spiral Array to this equal tempered model for pitch space. In

this case we derive a six dimensional tonal centroid point in the space by

applying a transform function to a quantised chroma vector. As discussed

in section 2.4, the six dimensional space can be visualised as the three

circles in figure 3.13 where the tonal centroid for chord A major is shown.
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Figure 3.12: Improved chord recognition system using HCDF to segment the
quantised chroma features before the chord recogniser stage.

Figure 3.13: Visualising the the six-dimensional tonal space as three circles.
Circles left to right: Fifths, Minor thirds and Major thirds. The Tonal Centroid
for chord A Major (pitch classes 9,1 and 4) is shown at point A
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The six dimensional tonal centroid vector, ζn, for time frame n is given

by the multiplication of the 12-bin chroma vector, c, and a transformation

matrix Φ. To prevent numerical instability and ensure that the tonal

centroid always lies within the 6D polytope we divide the result by the L1

norm of c:

ζn(̺) =
1

||cn||1

11
∑

l=0

Φ(̺, l)cn(l)
0 ≤ ̺ ≤ 5

0 ≤ l ≤ 11
(3.7)

where l is the chroma vector pitch class index and ̺ denotes which of

the six dimensions of ζn is being evaluated. The transformation matrix Φ

represents the basis of the 6D space described in section 2.4 and is given

as:

Φ = [φ0, φ1 . . . φ11] (3.8)

where

φl =
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0 ≤ l ≤ 11 (3.9)

The values r1, r2 and r3 are the radii of the three circles in figure 3.13. To

ensure that the distances between pitch classes in the 6-D space correspond

to our perception of harmonic relations between pitches (i.e. that the fifth

is the closest relation followed by the major third then the minor third

and so on) we set the r1, r2 and r3 to 1, 1 and 0.5 respectively as derived

in section 2.4.1.

3.2.2 Harmonic change detection function

To reduce the effects of transient frames, the sequence of tonal centroid

vectors is convolved with a 19-point Gaussian with σ value of 8 in a row-

by-row fashion (i.e. the individual dimensions are smoothed over time with

a cutoff frequency of approximately 1Hz). We define the HCDF, ξ, as the

overall rate of change of the smoothed tonal centroid signal. ξn is the
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Figure 3.14: Harmonic change detection function (HCDF). Time frames are
depicted by light vertical lines.

Euclidean distance between the smoothed tonal centroid vectors ζ̂n−1 and

ζ̂n+1 (equation 3.10) whereˆdenotes vectors from the Gaussian-smoothed

signal. Peaks in this signal indicate transitions between regions that are

harmonically stable (see figure 3.14); an approach inspired by Chew’s key

modulation finding algorithm described in [Che02].

ξn =

√

√

√

√

5
∑

d=0

[

ζ̂n+1(̺) − ζ̂n−1(̺)
]2

(3.10)

The HCDF has been implemented in Matlab as part of our chord recog-

nition system and has also been implemented in C++ by Martin Gasser

as a visualisation plug-in for Sonic Visualiser [CLSB06].

3.2.3 Chord segmentation with the HCDF

In order to use the HCDF for chord segmentation, we apply a peak pick-

ing algorithm to it to identify potential chord boundaries in the audio.

Figure 3.15 shows the HCDF generated in Sonic Visualiser for a 13 second

excerpt of Being For The Benefit Of Mr Kite!, by the Beatles, with peaks

identified. The figure shows larger peaks that coincide with chord changes

but smaller peaks are also present that may be caused by other harmonic

changes such as movement in the bass line. Some other small spurious

peaks appear on the sides of larger maxima. Using the peaks from the

HCDF as estimated boundary positions that define chord segments, we are

able to calculate average chroma vectors for each segment. These average

chroma vectors may then be processed using the chord recognition algo-

rithm, which produces an estimated chord sequence that is more stable

than the frame based approach.
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Figure 3.15: HCDF for extract of the Beatles’ Being For The Benefit Of Mr

Kite! (time 35.5 to 48.5 seconds). Arrows show peaks corresponding to chord
changes, circles show peaks caused by movement in the bass line and boxes
show false positives.

Threshold

A

B

Figure 3.16: Two peaks close together. With the enhanced peak picker, peak
A will be recorded as a boundary but peak B will be discarded because it is
within the hysteresis threshold and is thus judged to be a spurious peak.

Improved chord segmentation

The HCDF is a nice visualisation for harmonic change in musical sig-

nals but spurious peaks in the signal mean that simple peak picking pro-

duces over-segmented results when compared with hand annotated chord

changes. To reduce the number of false positives we can apply a slightly

more complex peak picking algorithm to the HCDF which discards small

peaks. Our enhanced peak picking algorithm uses a threshold to introduce

hysteresis into the peak detection process so that small peaks and double

peaks are likely to be ignored (see figure 3.16). Using this enhanced peak

picker we obtain improved results, although they are still over-segmented
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Figure 3.17: Plot showing precision, recall and f-measure results for the
Hainsworth MacLeod, HCDF and HCDFa harmonic segmentation algorithms
for the twelve Beatles albums.

compared to our ground truth chord annotations.

3.2.4 Analysis of HCDF performance

To quantitatively test how the HCDF performs as a chord segmentation

algorithm we analysed the Beatles album collection for which we have

chord transcription files (as discussed in chapter 6). HCDF peak times

are compared against the times of chord changes in the transcriptions.

We present results for the standard peak picking algorithm (which we

will simply label HCDF) and the enhanced peak picking algorithm (which

we will label HCDFa). We also show results for a harmonic onset detection

algorithm by Hainsworth and Macleod [HM03] for comparison (which we

will label HM). The HM algorithm is a two-stage process in which peaks

are detected in a spectral distance measure; the resulting segments are

analysed for their harmonic content so that similar contiguous segments

can be joined back together. The HCDF algorithm does not use such a

second analysis step to obtain its results.



CHAPTER 3. CHORD RECOGNITION FROM AUDIO 83

0 5 10 15 20 25 30
0

12

24

36

48

C
ho

rd
 e

st
im

at
e

Time (s)

Figure 3.18: Line plot showing estimated chord sequences generated by the
HCDF (blue dash and dotted line) and HCDFa (red solid line) compared with
the annotated sequence (green dashed line) for the first 30 seconds of Another

Crossroads by Michael Chapman.

The results for the experiment are shown in table 3.2 and shown graphi-

cally in figure 3.17. We defined a hit as a match within ±3 analysis frames.

The three performance measures used here are Precision P , the ratio of

hits to detected changes; Recall R, the ratio of hits to transcribed changes

and the f-measure F which combines the two [Dix06] using the harmonic

mean:

F =
2RP

R + P
(3.11)

The HM algorithm detects any changes in the harmonic content of the

signal and is not specifically designed to find chord boundaries. The results

show that it achieves high recall scores around 84% but low precision scores

around 22%. This gives an overall f-measure of 36% because it over detects

when evaluated against annotated chord boundaries. The basic HCDF

algorithm scores lower on recall with 69% but does better on precision

with 33% so its f-measure is higher than HM at 45% because it is better at

discriminating chord boundaries. The HCDFa algorithm improves further

on the standard HCDF with 64% recall and 38% precision giving a final

f-measure of 48%.

Using the HCDF and HCDFa algorithms for chord segmentation before

the chord recognition stage, we get a cleaner estimated chord sequence

with fewer short length spurious chords. However, this does mean that

when the algorithm picks an incorrect chord, the erroneous chord symbol
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will last for the whole duration of the segment. Figure 3.18 shows the

output sequences generated by HCDF and HCDFa for the first 30 seconds

of Another Crossroads by Michael Chapman. Both HCDF algorithms

produce the same sequence for the first half of the excerpt but the HCDFa

produces better results for the second half. The output sequences for both

are more stable than those for the basic chord recognition algorithm but,

as the figure shows, in some cases the chord recogniser has chosen an

incorrect chord based on the average chromagram for each segment.

Full results and analysis for the three chord recognition algorithms

described in this chapter are given in chapter 9 after consideration of the

test set and evaluation mechanisms in chapters 6 to 8.
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Table 3.2: Harmonic onset detection results: Recall (R), precision (P) and f-measure (F) for Hainsworth Macleod harmonic
change algorithm (HM) compared with our peak picked HCDF and enhanced peak picking HCDFa algorithms. HM has higher
precision scores than the HCDF algorithms but its recall score is low because of over detection. The HCDFa algorithm has the
best recall and also best score for the combined f-measure.

Disc Album title PHM RHM FHM PHCDF RHCDF FHCDF PHCDFa RHCDFa FHCDFa

1 Please Please Me 0.23 0.91 0.36 0.33 0.67 0.44 0.38 0.62 0.47
2 With the Beatles 0.2 0.86 0.32 0.3 0.66 0.41 0.35 0.62 0.45
3 A Hard Day’s Night 0.25 0.89 0.39 0.36 0.65 0.46 0.41 0.61 0.49
4 Beatles for Sale 0.24 0.87 0.37 0.38 0.7 0.49 0.44 0.65 0.53
5 Help! 0.22 0.84 0.35 0.37 0.7 0.49 0.43 0.64 0.52
6 Rubber Soul 0.22 0.86 0.35 0.36 0.71 0.47 0.42 0.68 0.51
7 Revolver 0.2 0.77 0.31 0.27 0.66 0.39 0.32 0.61 0.42
8 Sgt. Pepper’s Lonely Hearts Club Band 0.2 0.73 0.32 0.31 0.7 0.43 0.36 0.65 0.46
9 Magical Mystery Tour 0.25 0.82 0.38 0.31 0.7 0.43 0.38 0.66 0.48
10CD1 The Beatles 0.22 0.83 0.35 0.38 0.75 0.51 0.46 0.71 0.56
10CD2 The Beatles 0.22 0.83 0.35 0.27 0.71 0.39 0.31 0.65 0.42
11 Abbey Road 0.28 0.89 0.42 0.34 0.68 0.45 0.38 0.62 0.47
12 Let It Be 0.22 0.82 0.35 0.3 0.68 0.42 0.35 0.63 0.45
Total All albums 0.23 0.84 0.36 0.33 0.69 0.45 0.38 0.64 0.48



Chapter 4

Representing chords in plain text

In this chapter we will discuss the issues associated with representing chord

symbols in plain text. Our motivation for the work in this chapter was the

lack of a standard formal way to represent chord labels in plain text anno-

tations. The challenges associated with this issue are discussed in detail

in section 4.1. We then propose a specification for such a representation

in section 4.2.1 and using this specification we go on to develop a logical

model and a corresponding text syntax for chord labels in sections 4.2.2-

4.3. The syntax has been specifically designed to be intuitive for human

users but also machine readable so that annotations may be made easily

by hand but also used in computer analysis.

To make the chord symbol syntax convenient for use in experiments,

a toolkit for manipulating the labels has been written in Matlab. These

tools are briefly discussed in section 4.4.

Chapter Contribution

The chord symbol syntax described in this chapter provides a well defined,

flexible system for labelling any chromatic chord1 that may be encountered

in music. Developing this syntax has allowed the hand annotation of the

Beatles collection to be possible in an unambiguous format and thus pro-

vided a large machine-readable data set for evaluating chord recognition

algorithms. The transcription process and the resulting collection of an-

notated data are discussed in chapter 6. The syntax is now used by many

1That is to say, we assume that the chord can be defined in terms of western tonal harmony
and thus does not include microtonal elements.

86
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Figure 4.1: Some example chords which we may wish to label with plain text:
a) ‘A minor’, b) ‘A seven’, c) ‘A♭ seven’, d) a quartal chord on C.

researchers involved with the MIREX chord detection track [mirb] and

other transcription collections have also been made using it as part of the

OMRAS II Metadata Project [MCD+09].

The logical model for chords that underpins the chord syntax (dis-

cussed in section 4.2.2) has also been used as the basis for the RDF chord

ontology2 [SRMH07] as part of the OMRAS II project.

4.1 Problems for plain text chord symbols

In this section we will look at some issues encountered when trying to

express chord symbols in plain text. To start with, we will present some

examples that illustrate the potential problems with ad hoc chord labelling

methods.

4.1.1 Annotation style ambiguity

There are many different styles that can be used for hand writing chord

notation [Cok64, Gre71]. Depending what type of musical background

someone has (e.g. classical, jazz, pop etc.) they may have very different

ways of notating the same chords. Indeed, even musicians from within the

same genre will sometimes use different styles of chord notation depending

on which school’s methodology they have studied.

Consider a simple A minor triad chord comprising notes A, C and E

as shown in figure 4.1a. In classical harmony analysis, minor chords are

usually denoted using lower case characters so the A minor chord might

2URL http://motools.sourceforge.net/chord draft 1/chord.html
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simply be labelled ‘a’. In jazz, a superscript dash is quite a common

notation for minor chords (e.g. A−) so in plain text one might write ‘A-’.

In the case of pop music, many guitar tabs and song books e.g. [Roo00]

use a lower case ‘m’ to denote minor so the chord might be written ‘Am’. In

some cases people also use the abbreviation ‘min’ for minor family chords

so we could alternatively have ‘Amin’. With such wide variation in styles

it is sometimes difficult to know what someone else’s chord symbols mean

if they do not explicitly specify their labelling conventions.

4.1.2 Undefined syntax ambiguity

We may be presented with the following chord symbol in plain text:

Ab7

What is this chord? If we assume that the character ‘b’ denotes the flat

symbol ♭, we can parse it two ways which give us very different results. Is

it: ‘A∼b7’ or ‘Ab∼7’? In the first instance we will assume that the root is

A and that the chord is a major triad plus a flattened seventh comprising

notes A, C♯, E and G as shown in figure 4.1b. However, in the second

instance we could read it as an A♭ seventh chord which, if there is no key

context ambiguity to also take into account (see section 4.1.4), we may

assume to be notes A♭, C, E♭ and G♭ as shown in figure 4.1c giving us a

chord of the same shape but all the notes shifted down one semitone.

We can see from this example that without a clear definition of the

syntax for a chord symbol, we are unable to know its precise meaning.

4.1.3 Capitalisation and character choice ambiguity

When people wish to write sharp ♯ or flat ♭ signs in plain text, the charac-

ters ‘#’ and ‘b’ are often used. This choice is intuitive for musicians because

of those characters’ close resemblance to these musical symbols. In some

notations lower case letters may be used to signify minor chords [Pol] and

this introduces another possible ambiguity where a B minor chord may

be written ‘b’ but the flat sign is also ‘b’. In this case, detecting errors

in a transcription becomes difficult. For example, a transcription might
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Figure 4.2: Two example chord sequences in different keys containing a diatonic
seventh chord built on C: a) is in F major so the C chord is a dominant seventh,
b) is in C major so the C chord is a major seventh.

contain the symbol ‘b7’. It is not possible to tell if this was truly intended

to be a B minor ‘seven’ chord or if, for example, it might have been meant

to be part of a ‘X♭’ seven chord symbol from which some root note ‘X’

has accidentally been omitted by the transcriber.

Another example of where capitalisation can lead to a difficulty in error

detection is where capital ‘M’ is used to signify major family chords and

lower case ‘m’ is used to signify minor family chords. In this case, a slip of

the shift key can alter the family of the chord and because the result will

also be a valid chord, there is no way to know that this has happened. In

terms of making chord labels machine readable, it is important to try to

avoid such potential sources of confusion.

4.1.4 Key context ambiguity

In a text file we may be presented with the following chord symbol:

C7

What chord might this symbol represent? Given this symbol alone, most

musicians would probably assume that this is a ‘C seven’ chord (C, E,

G, B♭). However, if this symbol is written as part of a classical harmony

analysis [Tay89, Tay91, Tag03] then it may well be key context dependent.

In this case we have a potential ambiguity in the meaning of the chord

label. To illustrate, consider the two chord sequences shown in figure 4.2.

The sequence in figure 4.2a might be written this way in plain text:

F major: F Bb C7 F



CHAPTER 4. REPRESENTING CHORDS IN PLAIN TEXT 90

In terms of functional harmony [Tay91, Tag03, Sch54] this sequence is I

IV V7 I in the key of F major. Here, ‘C7’ represents a diatonic seventh

chord built on C, the dominant note of the key, so the chord is a ‘dominant

seventh’ chord comprising notes C, E, G and B♭.

Now consider the sequence in figure 4.2b. This time we are in the key

of C major but the harmonic analysis written in plain text will contain

the same chord symbol:

C major: C F7 C7 G7

In the new key, the functional harmony of the sequence is I IV7 I7 V7.

This means that the ‘C7’ symbol now represents a diatonic seventh chord

built on the tonic (or root) note of the key so it will be a ‘major seventh’

chord comprising the notes C, E, G and B.

We can see in this example that one chord symbol may mean two

different things depending on the key context in which it has been used.

This is potentially a very big problem if there is any possibility of the

vital key context information being separated from the chord symbols

themselves. If this should occur, the meaning of the chord symbols can

become ambiguous.

4.1.5 Chord label semantics

Some choices for chord labels can imply more information than is actually

intended. A good example of this is the way that the ‘dominant seventh’

chord label is often inappropriately applied to chords which do not function

as dominants.

In classical harmony, a dominant seventh chord is a diatonic chord

built on the dominant scale degree in a given key context. In a major key,

this equates to a chord comprising the 5th, 7th, 9th and 11th degrees of the

major scale. These form a major triad plus a flattened seventh i.e. the

chord intervals relative to the dominant chord root note are 1, 3, 5, ♭7.

Consider the chord sequence in figure 4.3a. We may see the chords in

this sequence written in plain text the following way:

D major: G Adom7 D
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Figure 4.3: Two example chord sequences in different keys containing an A
seven chord: a) is in D major so the A chord is a ‘dominant seventh’, b) is in E
major so the A chord is a subdominant major chord with a flattened seventh.

In D major, the functional harmony of this sequence is IV V7 I. Because A

is the dominant of D, a seventh chord built on A will be a dominant seventh

chord comprising notes A, C♯, E and G. In this instance, labelling the

chord ‘Adom7’ may be considered appropriate because it is the dominant

seventh chord in the given key context.

Now consider the chord sequence in figure 4.3b. The plain text repre-

sentation of this sequence may also contain the same chord label because

the second chord is made up of the same notes as the A chord in figure 4.3a:

E major: B Adom7 E

In this example however, we are now in the key of E major so the functional

harmony of this sequence is V IV(♭7) I. In E major, A is the subdominant

so the chord we wish to describe is not made entirely of diatonic notes

from the current key context (G♮ is not diatonic in E major) and is not a

dominant chord. It is correct to say that the chord has the same shape as

a dominant seventh chord (i.e. 1, 3, 5, ♭7) but to label it as a dominant

chord is incorrect in terms of harmony theory. Thus the label ‘dominant

seventh’ is not technically correct here and a more appropriate term in

this tonal context would probably be a ‘chromatic seventh’.

This particular example is very common in the literature [MD08, OGF09c,

Gre71], with many papers and books using the term ‘dominant seventh’

as a convenient generic name to describe this chord shape. In terms of

the semantics of the chord label however, using this name can add an un-

intentional element to the meaning of the chord by implying a particular

harmonic function that the chord may not actually possess. We assert
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that this kind of ‘semantically loaded’ chord label is therefore unsuitable

for the purposes of chord annotation.

In Jazz, chord labels are not key context dependent and the dominant

seventh chord shape is simply known as the ‘seven chord’. In this case,

the chord in the two example sequences would be labelled A7. In contrast

to context dependent classical harmony analyses, the different types of

seventh chord in jazz have separate chord symbols, for example the major

seventh might be labelled AM7 or A△7 and the minor seventh might be la-

belled Am7 or A▽7. In plain text therefore, these three chords, the ‘seven’,

‘major seven’ and ‘minor seven’, might be written ‘A7’, ‘AM7’ and ‘Am7’

respectively to distinguish clearly between them. In Jazz, it is understood

that these symbols do not imply any specific harmonic function. Thus, in

the case of the two example chord sequences, a label such as ‘A7’ would

be more appropriate than ‘Adom7’. This labelling would however rely on

the understanding that chord symbols must therefore be specified to be

context independent.

4.1.6 Inflexible labelling models

If a chord labelling scheme defines a list of chord labels that are ‘allowed’,

what happens when you find a chord that does not fit in the list?

As an example, let us imagine a chord labelling scheme that allows

triadic chords to be labelled so it assumes that all chords are based on

either a major, minor, diminished, augmented or a suspended triad. For

the majority of western tonal music, this system is an adequate model.

Now suppose that we have a piece of music that contains the chord

shown in figure 4.1d. This chord is built entirely of perfect fourth intervals

so it is not triadic and does not fit within the normal rules of western

harmony. Such chords are quite common in modern jazz and are often

referred to as quartal chords.

How can we represent this non-triadic chord within this triad-based

scheme? The chord is not triadic so it does not fit the underlying model for

the labelling scheme. One solution might be to define a way of modifying

the chord label so we could say that this chord is based on a suspended



CHAPTER 4. REPRESENTING CHORDS IN PLAIN TEXT 93

fourth triad type (diatonic intervals 1, 4, 5) but that it omits the 5th and

adds a ♭7 and a ♭10. In doing this it appears that we have solved the

problem, however we now run into the issue of semantics once again.

By specifying the chord as one of the triad types, we instantly load

the chord with the label ‘suspended’ whether we want to or not. Because

the scheme prescribes the use of a triad type as the basis for all chord

labels we have no choice but to select the ‘best of a bad bunch’ out of

the labelling options and then try to alter it to fit the new chord. This

becomes a particular problem when using computers to automate analysis

of annotated data sets. An algorithm running through a transcription

using this scheme might only look for the triad type and ignore all other

information in which case it would analyse this chord incorrectly.

4.2 Development of a chord symbol syntax

In this section we will describe the process we used to develop a flexible,

machine readable yet musically intuitive chord symbol syntax. First, we

outline the specification for such a syntax in section 4.2.1. In section 4.2.2

we define a logical model for describing chords. In section 4.2.3 we then

develop a plain text representation for that model to which we add a

system of ‘shorthand’ labels in section 4.2.4. We then define a formal

syntax for our chord symbols in Backus Naur Form in section 4.3.

4.2.1 Specification

As we saw in the examples from section 4.1, there are many issues that

need to be addressed in the specification of a flexible chord syntax for

plain text. The syntax must be:

• Unambiguous: chord symbols must always be explicit in their

meaning and it should only be possible to interpret them in one

way.

• Context independent: chord symbols must not depend on other

information such as a key context or their relative position in a pro-

gression for their precise meaning to be known. Each chord symbol
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Figure 4.4: Model for chord definition

should be self contained so that it can be read and fully understod

on its own.

• Machine readable: chord symbols should be easy to parse using

computers so that they will be convenient for use in automatic data

processing.

• Human readable: the symbols should be easy to read for human

users as well as machines. The symbols should be intuitive for mu-

sicians so that they are easy to use when doing transcriptions by

hand.

• Flexible: the syntax should allow for any chord that might be en-

countered. It is important that the system should not restrict the

user, for example by forcing a triadic representation as seen in sec-

tion 4.1.6.

4.2.2 Logical model

We will represent a chord by its three main attributes: the root, the list of

component intervals and its bass note. The root is defined as a pitchname

element which has an absolute value. The list of component intervals and
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the bass note are defined as intervals, relative to the root. A diagram

illustrating this model is shown in Figure 4.4.

Seven natural pitch names are defined (letters A to G as shown in

eqn. 4.1), which correspond to the white keys on a piano keyboard. We

define a set of degrees3 in eqn. 4.2 which correspond to the degrees of the

diatonic major scale (i.e. they represent either major or perfect intervals).

Degrees can technically be any positive integer value greater than or equal

to 1 (the tonic). In practice it is rare that a chord would ever need to

contain a degree higher than a 13th (one octave plus a sixth above the

tonic). To allow correct spelling of enharmonics, two modifier operators,

sharp and flat, are included. Thus:

natural = {A|B|C|D|E|F|G} (4.1)

degree = n where {n ∈ N : n > 0} (4.2)

modifier = sharp | flat (4.3)

To obtain the full range of possible pitchnames and intervals, naturals and

degrees may be operated on by the sharp and flat modifiers. In this way,

pitchnames and intervals may be defined as:

pitchname = natural | modifier (pitchname) (4.4)

interval = degree | modifier (interval) (4.5)

The definitions of pitchname and interval are recursive allowing for dif-

ferent enharmonic spellings. For example, the pitchname ‘C♭♭’ may be

modelled as the natural ‘C’ flattened then flattened again:

C♭♭ = flat(flat(C)) (4.6)

An example model of a chord is shown in Figure 4.5. The chord in

the example is a C minor-seventh chord in first inversion. The root of

this chord is pitchname C. The component intervals are the root, a minor

third, a perfect fifth and a minor-seventh (1, ♭3, 5, ♭7). In the case of this

3Please note that the definitions of degree and interval given here have been reversed com-
pared to those defined in the ISMIR05 paper [HSAG05] to fit better with the usual meanings
of these words in music theory. The term ‘note’ has been replaced by ‘pitchname’ for the same
reason. This work supersedes the proposals in that paper.
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Figure 4.5: Example model of a first inversion C minor-seventh chord

example chord, these component intervals correspond to the pitchnames

C, E♭, G and B♭ (see table 4.1). The bass note of a minor seventh chord

in first inversion is the minor 3rd, which in this example is pitchname E♭.

Because the model is designed such that all components are relative to

the root, it is easy to change this chord to any other minor-seventh chord

simply by changing the value of the root pitchname. For example, if we

were to change the root to a D♭, we can work out what the correct spellings

of the pitchnames should be in the D♭ minor-seventh chord as shown in

the middle section of table 4.1. We can see that a D♭ minor-seventh chord

should contain the pitchnames D♭, F♭, A♭ and C♭. Likewise, if we were to

take C♯ (the enharmonic equivalent of D♭) we can use the same process

to derive the correct spellings of the pitchnames in the C♯ minor-seventh

chord (see the bottom of table 4.1). In this example we can see that the

pitchnames of the C♯ minor-seventh chord are C♯, E, G♯ and B. It is also

worth noting that flattening a pitchname which is operated on by a sharp

modifier (as in the case of the E♯ and B♯ in our C♯ minor-seventh chord)

will cancel that sharp modifier:

C♯♭ = flat(sharp(C)) = C (4.7)
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Table 4.1: Pitchnames for the C, D♭ and C♯ minor-seventh chords

Root Interval (Degree, Modifier) Pitchname

C 1 1 = C none C
♭3 3 = E flat E♭

5 5 = G none G
♭7 7 = B flat B♭

Root Interval (Degree, Modifier) Pitchname

D♭ 1 1 = D♭ none D♭

♭3 3 = F flat F♭

5 5 = A♭ none A♭

♭7 7 = C flat C♭

Root Interval (Degree, Modifier) Pitchname

C♯ 1 1 = C♯ none C♯

♭3 3 = E♯ flat E
5 5 = G♯ none G♯

♭7 7 = B♯ flat B

and likewise:

C♭♯ = sharp(flat(C)) = C (4.8)

As the preceding examples demonstrate, the sharp and flat modifiers

allow proper enharmonic spelling of pitchnames and intervals. This is par-

ticularly important in cases such as the diminished seventh chord (com-

prising the musical intervals 1, ♭3, ♭5, ♭♭7) which contains a diminished

seventh interval (a major seventh interval flattened twice). Although this

interval is tonally equivalent to a major sixth in equal tempered tuning

(i.e. they would be the same note when played on a piano keyboard), it has

a different function and meaning in music theory and as such the model

has to be able to represent them both individually:

6 6= ♭♭7 (4.9)

likewise absolute pitchnames which are enharmonic equivalents can be

distinguished from each other:

C 6= D♭♭ (4.10)
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Figure 4.6: A short musical example where both bars are likely to be annotated
as a C major chord although the second bar does not contain the root note C

In our ISMIR paper from 2005 [HSAG05], the chord model that we

proposed assumed that the root pitchname would always be present in any

chord that would be annotated and it was thus omitted from the interval

list. It was subsequently found that there are in fact instances where one

might wish to annotate a certain section of music as being a particular

chord where its root is strongly implied by the music even though it is not

actually present. A simple example of this is shown in Figure 4.6. In the

absence of any other tonal context, both bars in the example are likely to

be annotated as being the chord C major (which contains notes C, E and

G) even though the second bar only contains the 3rd and 5th intervals

from that chord. As the aim of this part of the work is to provide as

flexible a chord model as possible for annotation, the assumption that the

root will always be present is therefore invalid so if the root of the chord

is present we now explicitly include it in the interval list.

4.2.3 Developing a syntax for plain text

With the model described in section 4.2.2, we can now represent any type

of chord. We now need to define a plain text representation of that model.

Thus we define the following syntax for a chord symbol:

root : (interval1, interval2...) / bass

The root pitchname is written first followed by a colon ‘:’ separator. A

comma delimited list of intervals contained in parentheses is then written.

This interval list notation is quite similar in appearance to the ‘chord

formulas’ in Ted Green’s guitar chord text book ‘Chord Chemistry’ [Gre71]

and also to John Wade Ulrich’s syntax for jazz chord analysis [Ulr77].

Finally, an optional interval may be added at the end after an oblique

stroke (the forward slash character ‘/’) to denote the bass note if it is
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Figure 4.7: Six example chords: a) C major, b) C minor, c) C♯ minor-seventh in
first inversion, d) C major with omitted root, e) Unison on G and f) a quartal
chord on C

different to the root. The naturals, intervals and modifiers are defined in

Table 4.3 following equations 4.1 to 4.3. The sharp and flat are signified

by the hash symbol ‘#’ and the lowercase ‘b’ respectively.

To keep the notation musically intuitive, pitchname modifiers are placed

after naturals so A♭ becomes ‘Ab’. For the same reason, interval modifiers

are placed before degrees so a flattened seventh interval (♭7) is repre-

sented as ‘b7’. An extra chord state denoted by a single uppercase ‘N’

is also added to signify ‘no chord’ marking silence or untuned, possibly

percussive musical material. To resolve the possible ambiguity between

the natural ‘B’ and the flat modifier ‘b’ the notation is necessarily case

sensitive.

Following this syntax, all chords may now be described in plain text in

an unambiguous manner. Figure 4.7 shows six chords which we will now

describe with the new syntax. The C major chord (Figure 4.7a) can be

represented as:

C:(1,3,5)

Likewise, the C minor chord (Figure 4.7b) can be written as:

C:(1,b3,5)

The C♯ minor-seventh chord in first inversion discussed in the earlier ex-

ample in section 4.2.2 (see Figure 4.7b) may be represented as:

C#:(1,b3,5,b7)/b3

It is worth noting that the C♯ minor-seventh chord in first inversion could

alternatively be labelled as an E major-sixth chord instead because both

comprise the same four pitchnames (E, G♯, B, C♯). The only difference
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between the two is which pitchname is assumed to be the root of the chord.

Taking E as the root we may write the chord in this way:

E:(1,3,5,6)

Which chord spelling to use is a decision to be made by the annotator (be

it a human or machine). The important point is that the syntax allows

for both spellings.

This syntax also allows for the case where we have a chord with an

implied root note (such as the C major chord in the example from the

second bar in Figure 4.6). In the example of the C major chord where the

root is not voiced (Figure 4.7d) we can represent it in this way:

C:(3,5)

This syntax is flexible and allows for many unusual cases that may need

to be labelled. For example, if an ensemble all play one note in unison

where there is no other tonal context with which to label the chord4 (for

example all voices play the note G as shown in Figure 4.7e), we may label

it simply:

G:(1)

We may also freely label chords which do not fall into the usual triadic

harmony categories common in western classical and popular music. Such

chords include quartal harmonies quite often found in modern jazz. For

example, a quartal chord built upon C (made up of the notes C, F, B♭,

E♭ as shown in Figure 4.7f) can be represented in the following way:

C:(1,4,b7,b10)

4.2.4 Shorthand

In the previous section we described a plain text syntax for representing

the chord model of section 4.2.2. This syntax, although fully capable of de-

scribing any chord we might wish to label, is still not as readily readable to

4It is acknowledged that a single musical note should not really be considered to be a
‘chord’ as such. However, it is a case which we wish to be able to annotate clearly in order to
distinguish it from muliple-note chords or non-tonal events.
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the human user as we would like. We must remember that the motivation

for developing this chord labelling syntax is to provide a system with which

large musical collections may be easily (and efficiently) labelled by hand

in a machine readable format. To this end, it is necessary to introduce a

further element to the syntax: we will define a list of memorable short-

hand labels for the most commonly occurring chords. These shorthand

labels are effectively a set of chord-type ‘mnemonics’ which map directly

to pre-defined interval lists for the most common chordtypes. This makes

the syntax easy for musicians to read and to write quickly by hand. Thus

the syntax for a chord may also take the form:

root : shorthand (extra-intervals) / bass

where shorthand is the chord mnemonic for a given chordtype and (extra

-intervals) is an optional further list of intervals. Provision for extra

intervals in parentheses is left so that additional intervals may be added

to common chords. To make the shorthand system more flexible a special

‘omit interval’ symbol, an asterisk *, is also added to denote a missing

interval from a shorthand notated chord.

To illustrate, the chord C minor may be represented ‘C:(1,b3,5)’ as

it is built of the tonic note C, the minor third E♭ and the perfect fifth G.

This chord has root C and is of type ‘minor’ which is always made up of

the intervals 1, ♭3 and 5. Therefore we may define a shorthand mnemonic

(in the case of minor we choose the shorthand ‘min’) that maps to the

interval list ‘(1,b3,5)’. In doing so we can now use the new shorthand

to label our chord:

C:min → C:(1,b3,5)

Likewise, we will choose the label ‘min7’ to denote a minor-seventh chord

which implies the interval list ‘(1,b3,5,b7)’. Therefore a D♭ minor-

seventh chord could be written:

Db:min7 → Db:(1,b3,5,b7)

If we wish to alter the D♭ minor-seventh chord such that the 5th is no

longer present but a minor 9th interval is added (i.e. the interval list be-

comes ‘(1,b3,b7,b9)’ we could write this using the omit interval symbol
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to remove the 5th and adding the ♭9 interval to the extended interval list:

Db:min7(*5,b9) → Db:(1,b3,b7,b9)

where:

min7 → (1,b3,5,b7)

and

(*5,b9) → omit 5, add b9

Choice of shorthand labels

As discussed in section 4.1.1, there are many different ways in which the

same chord-type may be written and it is often quite difficult to find

two musicians who agree on exactly the same conventions for all labels.

It is therefore an almost impossible challenge to find a list of shorthand

mnemonics that will keep all of the users happy all of the time. For this

reason we try to follow a practical, pragmatic approach and give some

level of justification here for the choices that have been made.

In many classical music analyses available in the form of plain text

from the internet and elsewhere, authors often use the convention of up-

percase letters for the root to denote major chords and lower case letters

to denote minor chords (for example ‘C’ for C major and ‘c’ for C minor).

We cannot use this convention because we have already specified that the

model differentiates between the root note of the chord and other infor-

mation about that chord. The system must also differentiate between the

natural name ‘B’ and the flat modifier ‘b’ so using upper and lowercase

letters for root notes would lead to problems in terms of ambiguity (see

discussion in section 4.1.3) and also increase the complexity of software

required to decode the syntax.

In plain text, it is quite common to see the chord family labelled with

single letters for example: major ‘M’, minor ‘m’, augmented ‘+’ and di-

minished ‘o’ as an approximation of what would be written by hand if

using pen and paper. Although we could use short labels such as these,

we have chosen to use more verbose shorthands here because longer labels
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Table 4.2: Definition of shorthand notations for common chords and their im-
plied interval lists

Chordtype Shorthand Interval List

Triad Chords: Major maj (1,3,5)

Minor min (1,b3,5)

Diminished dim (1,b3,b5)

Augmented aug (1,3,#5)

Seventh Chords: Major Seventh maj7 (1,3,5,7)

Minor Seventh min7 (1,b3,5,b7)

Seventh 7 (1,3,5,b7)

Diminished Seventh dim7 (1,b3,b5,bb7)

Half Diminished Seventh hdim7 (1,b3,b5,b7)

Minor (Major Seventh) minmaj7 (1,b3,5,7)

Sixth Chords: Major Sixth maj6 (1,3,5,6)

Minor Sixth min6 (1,b3,5,6)

Extended Chords: Ninth 9 (1,3,5,b7,9)

Major Ninth maj9 (1,3,5,7,9)

Minor Ninth min9 (1,b3,5,b7,9)

Suspended Chords: Suspended 2nd sus2 (1,2,5)

Suspended 4th sus4 (1,4,5)

are clearer in their meaning and it also makes typographic errors in an-

notations easier to detect. For example, the difference (and typographic

distance) between ‘C:M’ and ‘C:m’ is not as large as that between ‘C:maj’

and ‘C:min’.

The naming scheme that we have adopted for the shorthands is close

to the names commonly used in Jazz music (see section 2.2.2). Table 4.2

gives the list of shorthand label definitions that are currently defined for

the system. Obviously, this list could be expanded in the future if it is felt

that it is necessary to include another chordtype. The syntax itself does

not need to be altered to accept other shorthand labels.
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Consideration of shorthand semantics

Before moving on from this section, it is important to consider what the

shorthand labels we have defined actually mean. As discussed in sec-

tion 4.1.5, we should be careful to take into account the semantic meaning

conveyed by our chord symbol shorthands and not just the set of inter-

vals they represent. It is dangerous to assume that because a shorthand

label implies a given interval list, then that interval list must therefore

imply that label. For example, the label ‘min7’ implies the interval list

‘(1,b3,5,b7)’. However, we cannot use this implication to assume that

the interval list ‘(1,b3,5,b7)’ must also imply the label ‘min7’. We know

that a minor-seventh chord is made up of the intervals 1, ♭3, 5 and ♭7

therefore it is correct to say:

min7 → (1,b3,5,b7)

however, when given a list of intervals is it not necessarily safe to say the

opposite:

(1,b3,5,b7) 9 min7

It is important to avoid getting into the situation where a chord is

labelled with an inappropriate shorthand which is then subsequently al-

tered to make the chord reflect the transcribed music properly. As an

example, it would be possible, but wholly inappropriate, to use a major-

seventh shorthand ‘maj7’ to label a chord built upon the root note C with

following interval list: 1, ♭3, 5, ♭7. This, as we have seen in previous ex-

amples, is clearly the same intervals as a C minor-seventh chord yet we

could represent it using this chord label:

C:maj7(*3,b3,*7,b7) → C:(1,b3,5,b7)

Here, we deliberately omit the major third and major seventh intervals

implied by the shorthand and add in the missing minor third and minor

seventh intervals. This chord label evaluates to exactly the same root and

interval list as the more appropriate chord label:

C:min7 → C:(1,b3,5,b7)
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Table 4.3: Syntax of Chord Notation in Backus-Naur Form

<chord> ::= <pitchname> ":" <shorthand> ["("<ilist>")"]["/"<interval>]

| <pitchname> ":" "("<ilist>")" ["/"<interval>]

| <pitchname> ["/"<interval>]

| "N"

<pitchname> ::= <natural> | <pitchname> <modifier>

<natural> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G"

<modifier> ::= "b" | "#"

<ilist> ::= ["*"] <interval> ["," <ilist>]

<interval> ::= <degree> | <modifier> <interval>

<degree> ::= <digit> | <digit> <degree> | <degree> "0"

<digit> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

<shorthand> ::= "maj" | "min" | "dim" | "aug" | "maj7" | "min7" | "7"

| "dim7" | "hdim7" | "minmaj7" | "maj6" | "min6" | "9"

| "maj9" | "min9" | "sus2" | "sus4"

The semantic meaning of these two labels are very different however. To

the computer, the two labels evaluate to be the same chord when following

the logical model described in section 4.2.2; to the human reader, the

major-seventh shorthand label distorts the meaning of the implied interval

list because the label implies that the chord is major even though the

actual interval list describes a minor chord.

4.3 Formal definition of chord label syntax

At this point, we now have a well defined model for representing any chord.

We have also defined a way of representing this model in plain text and

introduced a convenient shorthand notation for common chord labels to

make the representation easier to read and write for musicians.

Before formally defining the syntax, there is one final point to include

in the text representation: in the majority of hand written chord notation

systems, a root pitchname written on its own (i.e. one with no other
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markings attached to it to denote a chordtype) is assumed to be a major

chord. To keep the system as intuitive as possible for musicians, we will

follow this convention here so we may state:

C ≡ C:maj → C:(1,3,5)

This convention still naturally allows for alternative bass intervals to be

used with major chords labelled in this way. For example, a second inver-

sion C major chord can be written as:

C/5 ≡ C:maj/5 → C:(1,3,5)/5

We can now strictly define the syntax for the chord labels using Backus-

Naur Form (BNF) [LM81]. Table 4.3 shows the full BNF definition for the

syntax. The main symbol <chord> is defined as one of four alternatives:

1. A root pitchname followed by a shorthand, optional interval list

(<ilist>), and optional bass interval.

2. A root pitchname followed by an interval list and optional bass in-

terval.

3. A root pitchname followed by an optional bass interval.

4. An uppercase ‘N’ to denote a no-chord state.

The interval list symbol <ilist> is a recursive definition for a comma-

delimited list of intervals that can be any arbitrary length. The <shorthand>

symbol is a member of the list of all shorthand symbols defined in table 4.2.

The other symbols are BNF expressions for the definitions of pitchnames,

naturals, modifiers, intervals and degrees5 given in section 4.2.2, equa-

tions 4.1 to 4.5.

With this formal BNF definition of the syntax it is now a relatively

simple task to write computer programs that deal with such chord symbols.

It is also possible to transcribe the chords for large audio data sets in a

consistent way using this system.

5It should be noted that although the BNF definition allows a degree to have an arbitrary
number of digits, in reality there is no need for a degree to ever have more than two.
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4.4 A reference software toolkit

We have specified a logical model for representing chords and defined a

clear syntax for expressing that model in plain text. It is necessary to write

software that can interpret and manipulate these chord symbols in order

for the system to be useful in practical applications. In this section we will

briefly describe a reference software toolkit for manipulating chords that

conform to the syntax described in sections 4.2 and 4.3. The programming

language chosen for the reference implementation is Matlab because that

is the language used for most of the experimental work reported in this

thesis. It would not be difficult, however, to transfer the algorithms used

in the toolkit into other languages. Comprehensive help and comments

on how to use the toolkit are provided in the Matlab code.

The chord toolkit has been released as open source software under

the GPL and the source code can be downloaded from the Isophonics

webpage6.

Data types

The toolkit uses a few basic data types. There are several string-types

which follow the BNF syntax definition closely including chord, interval,

pitchname and natural. There are also several integer types that allow

for the chord symbols to be translated from text strings into other musi-

cally useful forms. These include scale degrees, accidentals, semitones and

pitchclasses. More detailed information on these data types can be found

in the help files available with the toolkit code.

Basic chord symbol parsing functions

The basic functions included in the toolkit enable the user to extract

various types of musical information from chord symbols or convert other

musical information into text chord symbols easily. All the functions in the

toolkit perform error checking on their input arguments and can warn the

user if the data is incorrect. Five main functions allow basic information to

6http://www.isophonics.net/content/reference-annotations-beatles
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be extracted from a chord symbol. These are: parsechord, parsenote,

parseinterval, shorthand2intervals and parseintervals. Full de-

scriptions of these and the other functions in the toolkit can be found in

the help files available with the toolkit code.

Basic conversion functions

The toolkit provides a set of functions for converting between different

types of musical information that can be extracted from chord symbols.

This allows for users to convert the chord symbols in a transcription into

local formats which may be more appropriate for their work. A good ex-

ample of this is where the user may require pitch-class information (which

assumes enharmonic equivalence) instead of the correctly spelled interval

information contained in a chord symbol.

Transcription file utilities

The toolkit also includes a set of functions that allow easy reading and

writing of data in transcription files (in the format described in sec-

tion 6.2).

Higher level functions

The toolkit also provides higher level functions including implementations

of the chord symbol comparison methods described in chapter 5 and the

evaluation methods described in chapter 8. The inputs to the evaluation

functions are plain text files in the same format as the transcriptions. Be-

cause of this, it should be possible for any researcher to use the toolkit

to evaluate their own chord recognition algorithms regardless of what lan-

guage the algorithm itself was implemented in.



Chapter 5

Chord symbol comparison methods

In this chapter we will discuss several methods for comparing chord sym-

bols with each other. Our main motivation for investigating different chord

comparison methods is to provide a formal basis for our chord symbol re-

call evaluation method discussed in chapter 8. In this case it is important

that we can clearly define what constitutes a ‘correct match’ between a

machine estimated symbol generated by a chord recognition algorithm and

a hand annotated symbol in the ground truth test set.

The comparison methods detailed here will also be used to analyse

the statistics of the Beatles chord transcription collection discussed in

chapter 6.

Chapter contribution

The chord comparison methodology described in this chapter provides

a foundation for evaluation metrics we present later in chapter 8. This

approach to evaluation using clearly defined parametrised chord matching

methods allows proper like-for-like comparison between different chord

recognition algorithms. As such, it is potentially very useful for other

researchers in their work and also for the MIREX [mirb] chord detection

track. All of the comparison methods described in this chapter have been

implemented in the C4DM chord tools described in section 4.4.

109
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5.1 Manipulating chords and other musical objects

In this chapter we will discuss a number of different chord matching func-

tions. To explain these functions clearly we will now introduce some math-

ematical notation and conventions which we will use for manipulating our

chords and other related musical objects.

Let X be a character string representing a chord symbol that complies

with the syntax defined in table 4.3 on page 105. We may restate the

syntax algebraically such that X takes the form

X =

{

"N" if non-chord

RX ⊕ QX ⊕ TX otherwise
(5.1)

where ⊕ is the tensor addition operator1, RX is a string representing the

chord root pitchname, QX is a string containing the chordtype information

(i.e. shorthand, intervals, extensions etc) and TX is a string containing the

bass interval information if one is specified. Therefore QX will be of the

form

QX =











":"⊕ SX ⊕ "("⊕ LX ⊕ ")" if |LX| > 0

":"⊕ SX if |SX| > 0 and |LX| = 0

empty otherwise

(5.2)

where SX is a shorthand string2 and LX is a list of ML interval strings im

of the form

LX =















I0 ⊕
ML−1
⊕

m=1
(","⊕ Im) for ML > 1

empty otherwise.

(5.3)

and

Im = (om ⊗ "*") ⊕ im (5.4)

where ⊗ is the tensor multiplication operator3, o is an ML-length binary

vector such that om determines whether the interval im is omitted from

1e.g. "a"⊕ "b" = "ab"
2These are listed in table 4.2 on page 103
3e.g. "a"⊗ 4 = "aaaa".
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the chord or not. String TX takes the form

TX =

{

"/"⊕ ibass if |ibass| > 0

empty otherwise
(5.5)

where interval string ibass is the bass interval that defines the bass note

of the chord relative to the root pitchname RX.

5.1.1 Pitchnames and intervals

From the syntax definition in table 4.3, we recall that a pitchname string

is defined recursively as

<pitchname> ::= <natural> | <pitchname> <modifier>

<natural> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G"

<modifier> ::= "b" | "#"

and an interval string is defined similarly as

<interval> ::= <degree> | <modifier> <interval>

<degree> ::= <digit> | <digit> <degree> | <degree> "0"

<digit> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

We will now restate these definitions algebraically. The BNF definitions

allow pitchname and interval strings to contain a variable length string

of modifier characters. Therefore let m be a string of 0 or more modifiers

where a modifier character may be a sharp (♯) denoted by the hash char-

acter ‘#’ or a flat (♭) denoted by lowercase character ‘b’. We may therefore

say that

m =

{

a ⊗ "#" if a ≥ 0

|a| ⊗ "b" if a < 0
(5.6)

where a is the accidental value representing the integer number of modifier

characters. If a is positive, it represents a number of sharp ‘#’ characters;

if it is negative, its absolute value |a| denotes the number of flat ‘b’ char-

acters. If a is zero, m is an empty string.

String m may be viewed as a multiset [Sta97] of modifier characters

described by pair (S, ν) where set S ∋ {"#", "b"} and operator ν denotes

multiplicity i.e. the number of repetitions of a member of S in the multiset

m. Therefore we may calculate a for a given string m in the following way:

a = νm("#") − νm("b") (5.7)
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That is, a is the difference between the number of sharp characters ‘#’ and

flat characters ‘b’ in string m.

We will now define N to be an ordered set of the seven natural pitch-

names4 A-G such that

N = {"F", "C", "G", "D", "A", "E", "B"} (5.8)

Therefore the general form of a pitchname string, v, will be

v = Nlv ⊕ mv (5.9)

where lv is the index of the natural pitchname in set N and mv represents

a string of modifier characters as described in equation 5.6. An interval

string i may similarly be restated algebraically as

i = mi ⊕ di (5.10)

where mi is a string of modifier characters as described in equation 5.6

and di is the character string representation of a positive integer di which

denotes a degree of the diatonic major scale.

Vector representation of pitchnames and intervals

We know from equations 5.9 and 5.6 that a pitchname v may be repre-

sented as a natural character Nlv followed by a number av of modifier

characters (‘#’ or ‘b’). Therefore an alternative representation for a pitch-

name is the vector double

v = {lv, av} (5.11)

Thus pitchname ‘Eb’, for example, can be expressed as {5,−1} because

‘E’ is element 5 of set N and it has one flat. Some other examples of

4To make the arithmetic simple when converting between intervals and pitchnames later,
we order the elements of set N according to their positions on the line of fifths and index from
0 so N0 = "F", N1 = "C", ... N6 = "B". To avoid confusion, it should also be noted that we
use the symbol N to denote the set of the natural numbers in this thesis.
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pitchnames expressed in this way are:

"C" = {1, 0}
"F#" = {0, 1}

"G##" = {2, 2}
"Abb" = {4,−2}. (5.12)

In the same way, we may represent an interval i as a double

i = {di, ai} (5.13)

where di is a degree of the diatonic major scale and ai is the number

of accidentals that modify it to complete the interval. Some examples of

intervals expressed this way are:

"1" = {1, 0}
"b3" = {3,−1}
"#4" = {4, 1}. (5.14)

Converting between pitchnames and intervals

When using the various comparison methods detailed later in this chapter,

we often wish to calculate the correct enharmonic spelling of a pitchname

which corresponds to an interval relative to another pitchname. This is

not as straight forward as it might first appear and to find a calculation

that gives a correct enharmonic spelling for any interval and pitchname

combination we look to works on pitch spelling and intonation theory such

as [Mer06, LH92, Reg73, Reg75, Tem01].

Figures 5.1 and 5.2 show two projections of the line of fifths with an

absolute numeric index that Regener [Reg73, Reg75] calls the quint posi-

tion5. The quint number line has its origin at F=0. Counting upwards one

quint position ascends a perfect fifth interval and counting down descends

a perfect fifth (which, assuming octave equivalence, is the same as ascend-

ing a perfect fourth). The more positive the quint number, the higher the

5This is similar in concept to Temperley’s TPC ‘tonal pitch class’ [Tem01] and Longuet-
Higgins’ ‘sharpness’ [LH92] values which are alternative indices for the line of fifths [Mer06]
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Figure 5.1: The helix of pitchnames formed when the line of fifths is wrapped
around a cylinder where the seven natural names Nl (where 0 ≤ l ≤ 6) form the
circular base in the horizontal plane and the number of accidentals a form the
vertical axis. The number to the left of each pitchname on the helix represents
the quint position q.

Figure 5.2: The unwrapped line of fifths shown with the quint number line, the
natural name index l and the number of accidentals a for each pitchname.

number of sharps; the more negative the quint number, the higher the

number of flats. Figure 5.1 shows clearly the cyclic nature of pitchname

spellings due to there being only seven natural names in set N. Given the

quint number qv for a given pitchname v the index of its natural name lv

in set N is

lv = qv mod 7 (5.15)

and the number of accidentals av is

av =
⌊qv

7

⌋

(5.16)
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where ⌊·⌋ denotes the floor function6.

A pitchname has an absolute value on the quint number line and an

interval is a displacement on the line. We may calculate the absolute quint

position qR of root pitchname R with the following equation:

qR = lR + 7aR (5.17)

Similarly, the quint displacement qi of interval i is given by

qi =
(

(2di − 1) mod 7
)

− 1 + 7ai (5.18)

so to find the quint position qv for a pitchname v corresponding to an

interval i relative to a given root pitchname R, all that is necessary is to

add the quint displacement of i to the quint position of R:

qv = qR + qi (5.19)

Thus, using equations 5.15 and 5.16 we can then determine the vector

double {lv, av} for pitchname v and then transform this to its character

representation using equation 5.9.

To reverse the process and convert a pitchname v to an interval i

relative to another pitchname R, we convert both pitchnames to their

quint positions and take the difference to find the quint displacement qi

of the interval

qi = qv − qR, (5.20)

then we may calculate the relative diatonic scale degree di of the interval

with

di =

⌊

qi mod 7

2

⌋

+ 1 + 4
(

(qi mod 7) mod 2
)

(5.21)

and the accidentals with

ai =

⌊

qi + 1

7

⌋

(5.22)

to obtain the vector representation of interval i as described in equa-

tion 5.13.

6i.e. round down to the closest integer below the given value.
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Converting pitchnames to pitchclasses

We frequently wish to deal with enharmonic equivalents of pitchnames and

intervals in our manipulation of chord symbol information. To convert a

pitchname v into its equivalent pitchclass pv we use the elements of its

vector double representation {lv, av}. Pitchclass pv may take values in

the range 0 to 11 and we use pitchname "C" as our absolute pitchclass

reference 0. Thus pitchclass pv may be calculated as

pv =

{

(

(lv − 1) + av mod 12
)

if (lv mod 2) = 1
(

(lv + 5) + av mod 12
)

otherwise
(5.23)

and the relative pitchclass displacement (i.e. the number of semitones mod-

ulo 12) equivalent to interval i is given by

pi = 2
(

(di − 1) mod 7
)

−
⌊

(

(di − 1) mod 7
)

+ 1

4

⌋

+ ai (5.24)

5.2 Formalising the chord matching problem

We define a chord matching function MT for two chords X and Y such that

MT (X, Y) =

{

1 if X matches Y

0 otherwise
(5.25)

where T denotes the type of matching method applied to X and Y. We

will now look at several alternative methods for calculating the value of

matching function MT .

Unordered matching function

Let
∼

X denote an unordered set of objects where membership is restricted

so that duplicate objects are not allowed:

Xn 6= Xm ∀ {Xn, Xm ∈
∼

X: n 6= m} (5.26)

We now define an unordered matching function MU that compares un-

ordered sets
∼

X and
∼

Y:

MU(
∼

X,
∼

Y) =

{

1 if |
∼

X | = |
∼

Y | = |
∼

X ∩
∼

Y |
0 otherwise

(5.27)
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Ordered matching function

Now let X denote a finite size ordered multiset7 on
∼

X [Sta97] of the form

X = {X0, X1, ...}. (5.28)

where ν(X) ≥ 1 i.e. duplicate objects are allowed so the multiplicity ν

for any object X ∈ X may be one or more. Duplicate objects in X are

distinguishable from each other by their order in the set.

Now let MO be a matching function that compares two such ordered

sets, X and Y, element by element so

MO(X,Y) =

{

1 if |X| = |Y| and Xn = Yn ∀ {n ∈ Z : 0 ≤ n < |X| − 1}
0 otherwise

(5.29)

Using ordered and unordered matching functions MO and MU, we may

now define several different chord matching methods that can be used for

chord comparison in the evaluation of recognition algorithms and analyses

of chord annotation collections.

5.2.1 String matching

The chord symbols X and Y are represented by character strings which

comply with the syntax defined in chapter 4. Thus, the simplest way to

compare these two chord symbols is to use a simple character by character

comparison. If both strings are the same length and if each character Xn

is the same as the corresponding character Yn then the strings are the

same and we may say that the two chords match. Since X and Y may

be viewed as two ordered sets of character elements, we may thus apply

function MO (equation 5.29) directly to the chord symbol strings to define

a string-based matching function Ms(X, Y)

Ms(X, Y) = MO(X, Y) (5.30)

This is a simple result and would be perfectly adequate for matching the

chord symbols if it were not for the fact that the chord syntax we are using

7As mentioned earlier in section 5.1.1 on page 111.
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allows for alternative spellings of the same chord. For example, the chord

C major may be represented in at least three different ways: ‘C:maj’,

‘C:(1,3,5)’ or simply ‘C’. However, the string-based matching function

will not evaluate these different spellings as correct matches because while

Ms

(

"C:maj", "C:maj"
)

= 1

as we would expect, from the definition of Ms we see that

Ms

(

"C", "C:maj"
)

= 0

Ms

(

"C:(1,3,5)", "C:maj"
)

= 0

Ms

(

"C", "C:(1,3,5)"
)

= 0.

This is potentially unhelpful when working with a test set that might

contain a mixture of these different spellings or worse, trying to evaluate a

recognition algorithm that outputs one spelling when the test set contains

an alternative spelling for the same chord.

5.2.2 Pitchname set comparison

From the definition of the chord syntax in chapter 4, we know that every

chord symbol is equivalent to a root pitchname plus a number of intervals

relative to that root. These intervals define the constituent pitchnames of

the chord and possibly the bass note if it differs from the root.

Comparing ordered pitchname sets

Let −→v X be an ordered set of pitchnames (hereafter referred to as an ordered

pnset) for chord X such that the pitchnames are ordered starting from the

bass note in ascending cyclic order. Thus we see that the pnset for chord

‘C:maj’ is

−→v "C:maj" = −→v "C" = −→v "C:(1,3,5)" = {"C", "E", "G"} (5.31)

whereas the enharmonic equivalent D♭♭ major triad ‘Dbb:maj’ will have

pnset
−→v "Dbb:maj" = {"Dbb", "Fb", "Abb"}. (5.32)
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We may now define a new version of the chord matching function, M−→v ,

that compares the pnsets for chords X and Y:

M−→
v (X, Y) = MO(−→v X,

−→v Y) (5.33)

Now we have a function that will correctly match alternative spellings

of a particular chord. Returning to our earlier example, triad ‘C:maj’, we

observe that

M−→
v

(

"C", "C:maj"
)

= M−→
v

(

"C:(1,3,5)", "C:maj"
)

= M−→
v

(

"C", "C:(1,3,5)"
)

= M−→v
(

"C:maj", "C:maj"
)

= 1. (5.34)

However, the enharmonic equivalent ‘Dbb:maj’ will not evaluate as a cor-

rect match:

M−→
v

(

"C:maj", "Dbb:maj"
)

= 0. (5.35)

Specifying an alternative bass interval in the chord symbol will affect

the ordering of the pnset. For example, the pnset for a first inversion C

major triad ‘C:maj/3’ will be

−→v "C:maj/3" = {"E", "G", "C"}. (5.36)

If the bass interval is not a member of the chord’s interval list, for example

‘D:min/b7’, the new bass pitchname is added to the pnset as the first

element
−→v "D:min/b7" = {"C", "D", "F", "A"}. (5.37)

It should be noted that pitchnames do not contain octave information

so an extended interval such as a 9th will map to the same pitchname as

its lower octave equivalent (which in the case of a 9th is a 2nd). However,

by using ordered pnsets it is still possible to distinguish between chords

such as ‘C:maj9’ and ‘C:maj7(2)’ because the order of pitchnames will be

different:

−→v "C:maj9" = {"C", "E", "G", "B", "D"}
−→v "C:maj7(2)" = {"C", "D", "E", "G", "B"}
∴
−→v "C:maj9" 6= −→v "C:maj7(2)" (5.38)
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Comparing unordered pnsets

In some instances we may wish to know if chords X and Y contain the same

pitchnames regardless of the order of chord intervals.

Let
∼

vX be the unordered pnset for chord X. Since it is not ordered, we

specify that set
∼

vX may contain only one instance of any particular pitch-

name so whereas the chord symbol ‘C:maj9(2)’ would have the ordered

pnset
−→v "C:maj9(2)" = {"C", "D", "E", "G", "B", "D"} (5.39)

the unordered pnset8 would be

∼

v"C:maj9(2)"= {"C", "D", "E", "G", "B"}. (5.40)

Thus, applying the matching function MU (equation 5.27) to the un-

ordered pnsets for chords X and Y produces

M∼
v
(X, Y) = MU(

∼

vX,
∼

vY) (5.41)

This gives us a function that will match any pair of chords that contain

the same set of pitchnames regardless of root or interval order. Therefore

chords ‘C:maj9’ and ‘C:maj7(2)’ will be evaluated as a correct match by

this function:

M∼
v

(

"C:maj9", "C:maj7(2)"
)

= 1 (5.42)

5.2.3 Pitchclass set comparison

In some cases, particularly evaluation of audio chord recognition algo-

rithms, we may wish to consider chords which are enharmonic equivalents

as being a correct match. For this we compare the constituent pitch-

classes9 of two chords rather than comparing the constituent pitchnames

as we did in section 5.2.2.

Let −→p X be an ordered set of absolute pitchclasses (hereafter referred

to as an ordered absolute pcset) for chord X such that the pitchclasses are

8In this case the pitchnames in the unordered pnset have been notated in ascending interval
order from the root but it would be equally valid to write them in any other order.

9Where a pitchclass pv is an integer between 0 and 11 that relates to pitchname v as
described in equation 5.23, section 5.1.1 on page 116 and we reference absolute pitchclass 0
to pitchname C.
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arranged in the same order as their equivalent pitchnames in pnset −→v X.

Hence, the pcset for chord ‘C:maj’ is

−→p "C:maj" = −→p "C" = −→p "C:(1,3,5)" = {0, 4, 7} (5.43)

and the enharmonic equivalent D♭♭ major triad ‘Dbb:maj’ will also have

the same pcset
−→p "Dbb:maj" = −→p "C:maj" = {0, 4, 7}. (5.44)

As with the matching functions for pnsets in equations 5.33 and 5.41,

we may now apply functions MO and MU to pcsets to perform ordered and

unordered matches respectively so we define an ordered pcset matching

function M−→
p as

M−→
p (X, Y) = MO(−→p X,

−→p Y) (5.45)

and unordered pcset matching function M∼
p

as

M∼
p
(X, Y) = MU(

∼

pX,
∼

pY). (5.46)

Using ordered matching function M−→
p , chords of the same type that

have enharmonic equivalent roots will be considered correct matches

M−→
p

(

"C:maj", "Dbb:maj"
)

= 1. (5.47)

Chords with the same root but enharmonic equivalent interval lists will

also be considered correct matches. For example, a diminished seventh

chord (shorthand notation ‘dim7’) which corresponds to the interval list

"(1,b3,b5,bb7)" will match a chord with the different, but enharmonic

equivalent, interval list "C:(1,#2,#4,6)":

M−→
p

(

"C:dim7", "C:(1,#2,#4,6)"
)

= 1. (5.48)

Likewise, if using the unordered matching function M∼
p
, two chords

made up of the same set of absolute pitchclasses will be considered a cor-

rect match regardless of pitchclass order. For example, chords ‘Db:maj6’

and ‘A#:min7’ have different note sets:

−→v "Db:maj6" = {"Db", "F", "Ab", "Bb"}
−→v "A#:min7" = {"A#", "C#", "E#", "G#"} (5.49)
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However, their unordered pcsets comprise the same four absolute pitch-

classes:
∼

p"Db:maj6" =
∼

p"A#:min7" = {1, 5, 8, 10} (5.50)

thus

M∼
p

(

"Db:maj6", "A#:min7"
)

= 1. (5.51)

5.3 Chordtype comparison

In some cases we may wish to compare two chord symbols in terms of

their chordtype only, disregarding the root pitchname. This can be useful

for evaluating how accurately a chord recognition algorithm detects the

correct chordtype or family. It is also useful for calculating chordtype

distribution statistics such as those in chapter 6 where we analyse the

Beatles chord transcription collection.

5.3.1 String matching chordtypes

As discussed in section 5.2, chord symbols X and Y are character strings of

the form shown in equation 5.1. We may discard the chord root pitchnames

RX and RY and just compare the strings QX⊕ TX and QY⊕ TY which describe

the chordtype and inversion of the two chords. In this way we may define

a string-based chordtype matching function Mq which employs the earlier

string based chord matching function Ms:

Mq(X, Y) = Ms(QX ⊕ TX, QY ⊕ TY) (5.52)

Function Mq is a simple method of comparing chordtypes but, as with

function Ms, it will evaluate different spellings of the same chordtype as

being incorrect matches so

Mq

(

"C:maj", "F:maj"
)

= 1 (5.53)

but

Mq

(

"C:maj", "F"
)

= 0. (5.54)

While this my be useful for finding the number of unique chordtype strings

in an annotated collection (see chapter 6), is it not helpful when trying
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to evaluate chord recognition algorithms which may output chords spelled

differently to those in the ground truth annotation.

5.3.2 Interval set matching

An alternative to string-based chordtype matching is to compare the inter-

val sets of the two chords. Let
−→
i X be the ordered set of intervals (hereafter

referred to as an ordered rlset) for chord X that describes the structure of

the chord relative to its root. For example any spelling of a major triad

with a given root R the rlset is

−→
i R =

−→
i R⊕":maj" =

−→
i R⊕":(1,3,5)" = {"1", "3", "5"} (5.55)

We may therefore define a chordtype matching function M−→
i

that compares

the rlsets of two chords

M−→
i
(X, Y) = MO(

−→
i X,

−→
i Y). (5.56)

Now let
∼

iX be the unordered rlset for chord X so we may also define a

matching function M∼

i
for unordered rlsets

M∼

i
(X, Y) = MU(

∼

iX,
∼

iY). (5.57)

We also note that we can calculate M−→
i

and M∼

i
using M−→

v and M∼
v

re-

spectively10 because

M−→
i
(X, Y) = M−→

v

(

{R⊕ QX ⊕ TX}, {R⊕ QY ⊕ TY}
)

(5.58)

and

M∼

i
(X, Y) = M∼

v

(

{R⊕ QX ⊕ TX}, {R⊕ QY ⊕ TY}
)

. (5.59)

where R is a dummy pitchname value that is used to replace the real root

pitchnames of both chords. This means that intervals in both chords are

translated to pitchnames relative to the dummy root R for the comparison.

10This is a potentially useful result if you want to code an implementation of these functions
on a computer in a short space of time.
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5.3.3 Relative pitchclass set matching

Comparing rlsets will match chordtypes of the same enharmonic spelling

but will not match enharmonic equivalents. We can perform an enhar-

monic equivalent chordtype comparison by using relative pitchclass sets

(hereafter referred to as rcsets) which are sets of pitchclasses relative to

the chord root instead of absolute pitchclasses which we number relative

to pitchname C. Let −→r X be the ordered rcset for chord X thus the rcset

for any major triad will be

−→r R = −→r R⊕":maj" = −→r R⊕":(1,3,5)" = {0, 4, 7} (5.60)

and we may define a new chordtype matching function M−→
r based on rcset

comparison

M−→
r (X, Y) = MO(−→r X,

−→r Y) (5.61)

Using M−→
r to compare chordtypes, enharmonic equivalent spellings will be

considered correct matches so a diminished seventh chord with interval list

"(1,b3,b5,bb7)" will match any chord with the alternative, enharmonic

equivalent interval list "(1,#2,#4,6)".

We may also define an unordered rcset matching function

M∼
r
(X, Y) = MU(

∼

rX,
∼

rY) (5.62)

and we note that because the relationship between rcsets and rlsets is

analogous to that between pcsets and pnsets, M−→
r and M∼

r
are equivalent

to

M−→
r (X, Y) = M−→

p

(

{R⊕ QX ⊕ TX}, {R⊕ QY ⊕ TY}
)

(5.63)

and

M∼
r
(X, Y) = M∼

p

(

{R⊕ QX ⊕ TX}, {R⊕ QY ⊕ TY}
)

(5.64)

where R again is a dummy root that may take any pitchname value.

5.4 Cardinality-limited comparison

Matching functions MO and MU both require the two sets being compared

to be of the same cardinality in order to match. When evaluating chord
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recognition algorithms, it may be desirable to allow chord symbols with

different cardinalities to be considered correct matches. Consider, for

example, a chord recognition algorithm that has been designed to recognise

triad chords. Such an algorithm will never be able to produce a tetrad

chord as an estimate yet the annotated collection used as a ground truth

may well contain tetrad chord symbols. If the annotated chord at a certain

moment is ‘D:maj7’, the recognition algorithm might output ‘D:maj’. We

would generally consider this to be a correct match within the limits of

the algorithm’s design because the two chords share the same root and

first three intervals.

With the comparison methods discussed thus far, a ‘D:maj7’ and ‘D:maj’

cannot be considered a correct match. We will therefore introduce a new

parameter M to our general matching function from equation 5.25 to giv-

ing us MT,M where M defines the number of elements that are required

to be the same in order to consider the comparison a correct match.

Ordered cardinality-M matching

Let {X}M denote a cardinality-M set that contains the first M elements

of set X. Thus if X contains three elements {X0, X1, X2}, we may write

{X}1 = {X0}
{X}2 = {X0, X1}
{X}3 = {X0, X1, X2} (5.65)

and if M exceeds |X|, we insert M − |X| null elements (denoted by ‘-’) at

the end of X.

{X}4 = {X0, X1, X2, -}
{X}5 = {X0, X1, X2, -, -}. (5.66)

Now we may define a cardinality-M ordered matching function MO,M such

that

MO,M(X,Y) =

{

1 if {X}M,n = {Y}M,n ∀ {n ∈ Z : 0 ≤ n < M}
0 otherwise

(5.67)
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so sets X and Y are considered a correct match if the first M elements of

each are the same.

We may now use this cardinality-M ordered matching function on or-

dered pnsets, pcsets, rlsets and rcsets to compare chords of different car-

dinalities. In our earlier example, we wanted to allow chords ‘D:maj7’ and

‘D:maj’ to be considered a correct match given that the ‘D:maj’ was pro-

duced by an algorithm that could only produce triads. Using a cardinality-

3 ordered pnset matching function M−→
v ,3 this is possible because the pnset

for ‘D:maj’ is a subset of that for ‘D:maj7’

−→v "D:maj" ⊂ −→v "D:maj7" (5.68)

with the first three elements in both being the same

{−→v "D:maj7"}3 = {−→v "D:maj"}3 = {"D", "F#", "A"} (5.69)

therefore

M−→
v ,3

(

"D:maj7", "D:maj"
)

= 1. (5.70)

In fact,

M−→
v ,M

(

"D:maj7", "D:maj"
)

= 1 for 0 ≤ M ≤ 3 (5.71)

because |−→v "D:maj"| = 3. However, for cardinality-4

{−→v "D:maj"}4 = {"D", "F#", "A", -}
{−→v "D:maj7"}4 = {"D", "F#", "A", "C#"}

∴ {−→v "D:maj"}4 6= {−→v "D:maj7"}4 (5.72)

hence

M−→
v ,4

(

"D:maj7", "D:maj"
)

= 0 (5.73)

Using this matching function, chord ‘D:maj’ will not match anything other

than itself11 for any value of M greater than |−→v "D:maj"|.

11with the exception of alternative spellings such as ‘D’ and ‘D:(1,3,5)’.
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Unordered cardinality-M matching

We may also define a cardinality-M unordered matching function MU,M

such that

MU,M(
∼

X,
∼

Y) =

{

1 if |
∼

X ∩
∼

Y | ≥ M

MU(
∼

X,
∼

Y) otherwise.
(5.74)

That is, the matching function will evaluate to 1 if at least M elements in
∼

X have matching elements in
∼

Y. Otherwise, in the event that |
∼

X | and

|
∼

Y | are both less than M then we can use the original (non-cardinality-

limited) unordered matching function MU(
∼

X,
∼

Y) (see equation 5.27) to

evaluate the match.

In this way, the chords ‘D#:maj7’ and ‘Eb:sus4’, which have two pitch-

classes in common, could be considered a match by using a cardinality-2

unordered pcset comparison because

∼

p"D#:maj7" = {3, 7, 10, 2}
∼

p"Eb:sus4" = {3, 5, 10} (5.75)

so
∣

∣

∣

∼

p"D#:maj7" ∩
∼

p"Eb:sus4"

∣

∣

∣
=

∣

∣

∣
{3, 10}

∣

∣

∣
= 2 (5.76)

therefore

M∼
p,2

(

"D#:maj", "Eb:sus4"
)

= 1 (5.77)

5.5 Treatment of bass intervals

The matching functions proposed so far have assumed that the first ele-

ment of ordered sets is the bass note of the chord. For most chord symbols

this will be the first interval in the chord’s equivalent interval list12, which

is usually ‘1’ signifying the root pitchname. However, in some cases an

alternative bass interval may be specified at the end of the chord symbol

string. If this interval is already a member of the equivalent interval list

for the chord then it signifies an inversion, causing the elements of the list

12Equivalent, that is, to the list of intervals defined by a shorthand string or other form of
the syntax that may specify an interval list indirectly, see sections 4.2.4 to 4.3.
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to change order. If the bass interval is not a member of the interval list

then it adds an extra element to the chord.

In some cases, we may wish to ignore the bass interval of chords when

we make comparisons with others. For example, if a chord recognition

algorithm cannot recognise inversions then it could be unfair to use an

ordered matching function to evaluate it when the annotated ground truth

contains inverted chords. If such an algorithm outputs a ‘C:maj’ symbol

where the annotation contains ‘C:maj/5’ then we may reasonably wish to

consider this a correct match.

Because of this, we will define a ‘bass-blind’ version of general matching

function MT,M denoted with a prime M
′
T,M such that

M
′
T,M(X, Y) = MT,M

(

{RX ⊕ QX}, {RY ⊕ QY}
)

(5.78)

That is, if present, the bass interval of each chord is discarded from the

chord symbol string before applying the desired matching function to the

root and chordtype.

5.6 Chord likeness measure

The chord comparison methods discussed thus far in this chapter have

given a binary output; either evaluating chords as a correct match or not

a match at all. In some cases, it might be useful to know how alike a pair

of chords are with some kind of measure that gives a range of values for

chord ‘likeness’ rather than just 1 or 0.

A simple way to measure chord-likeness is to look at the number of

shared tones between two chords. For example, figure 5.3 shows chords

‘A:min’, ‘A:dim’, ‘C:maj’, ‘E:min’, ‘C:maj7’, ‘C:min’, ‘C:min7’ and ‘G:maj’

on the pitchname tonnetz and the numbers of shared tones between each

pair of these chords is shown in table 5.1. The highest number of shared

tones is obviously given when comparing a chord to itself when it will

equal the cardinality of the chord in question. However, when comparing

chords of different cardinalities, for example ‘C:maj7’ and ‘E:min’, it is

possible for the number of shared tones to equal the size of the smaller

chord if it is a subset of the larger one.
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Figure 5.3: Chords ‘A:min’, ‘A:dim’, ‘C:maj’, ‘E:min’, ‘C:maj7’ ,‘C:min’,
‘C:min7’, and ‘G:maj’ on the pitchname tonnetz.

Table 5.1: Number of shared tones for chords ‘A:min’, ‘A:dim’, ‘C:maj’, ‘E:min’,
‘C:maj7’ ,‘C:min’, ‘C:min7’, and ‘G:maj’.

Chord A:min A:dim C:maj E:min C:maj7 C:min C:min7 G:maj

A:min 3 2 2 1 2 1 1 0
A:dim 2 3 1 0 1 2 2 0
C:maj 2 1 3 2 3 2 2 1
E:min 1 0 2 3 3 1 1 2
C:maj7 2 1 3 3 4 2 2 2
C:min 1 2 2 1 2 3 3 1
C:min7 1 2 2 0 2 3 4 1
G:maj 0 0 1 2 2 1 1 3

Let us propose a likeness function LU for two unordered sets
∼

X and
∼

Y

where the result is the number of shared elements between the two sets

divided by the total number of unique elements in the two sets

LU(
∼

X,
∼

Y) =







1 if
∼

X=
∼

Y= ∅
|
∼

X∩
∼

Y|
|
∼

X∪
∼

Y|
otherwise.

(5.79)

An exception is made for the case where both sets are empty, in which

case they are obviously the same but by definition cannot have any shared

tones.

We may now use this function to calculate chord likeness values for

pnsets, pcsets, rlsets and rcsets. For example, we may define a pnset
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Table 5.2: Chord pnset likeness values for chords ‘A:min’, ‘A:dim’, ‘C:maj’,
‘E:min’, ‘C:maj7’ ,‘C:min’, ‘C:min7’, and ‘G:maj’.

Chord A:min A:dim C:maj E:min C:maj7 C:min C:min7 G:maj

A:min 1 1/2 1/2 1/5 2/5 1/5 1/6 0
A:dim 1/2 1 1/5 0 1/6 2/5 1/3 0
C:maj 1/2 1/5 1 1/2 3/4 1/2 2/5 1/5
E:min 1/5 0 1/2 1 3/4 1/5 1/6 1/2
C:maj7 2/5 1/5 3/4 3/4 1 2/5 1/3 2/5
C:min 1/5 2/5 1/2 1/5 2/5 1 3/4 1/5
C:min7 1/6 1/3 2/5 0 1/3 3/4 1 1/6
G:maj 0 0 1/5 1/2 2/5 1/5 1/6 1

likeness function

L∼
v
(X, Y) = LU(

∼

vX,
∼

vY) (5.80)

Table 5.2 shows the values for the pnset likeness function L∼
v

for the eight

chords13 in figure 5.3. The function gives a range of results between 0 and

1 as we require and the results also give us more information than simply

looking at the number of shared tones alone. By dividing the number

of shared tones by the total number of unique tones present in the two

sets, we have some idea of how different the two chords are as well as

how alike. For example, consider chords ‘C:maj’, ‘C:min’ and ‘C:1,5’. All

three possible pairings of these three chords have the two shared tones C

and G but it is arguable that dyad ‘C:1,5’ is closer to ‘C:maj’ and ‘C:min’

than they are to each other because it does not contain a major or minor

third and is thus a subset of both triads. The pnset likeness function

reflects this

L∼
v

(

"C:maj", "C:(1,5)"
)

= 2
3

L∼
v

(

"C:min", "C:(1,5)"
)

= 2
3

L∼
v

(

"C:maj", "C:min"
)

= 1
2

(5.81)

13The values for pnset likeness function L∼

v
are the same for a pcset likeness function L∼

p
for

the eight chords in the example because they are all closely spaced on the tonnetz. Replacing
‘C:maj’ with its enharmonic equivalent ‘B#:maj’ would alter the pnset likeness values but
would not alter the pcset likeness values.
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Figure 5.4: Bar charts showing results for dTPSD (dark blue) and dL × 13 (light
yellow) for the seventeen chord sequences shown in table 5.4. Upper chart shows
results for sequence i compared to sequence 1. Lower chart shows results for
sequence i compared to sequence i − 1 (apart from i = 1 where sequence 1 is
compared with itself).

5.6.1 Comparison of chord likeness function with TPSD

In their paper from ISMIR08 [DHVW08], de Haas et al. propose a chord

sequence distance measure called the Tonal Pitch Step Distance (TPSD)

based on Lehrdal’s Tonal Pitch Space (TPS) chord distance [Ler01]. In the

paper, to show how the TPSD behaves in practice, they present distance

results for seventeen 12-bar blues variations (the chord sequences for which

are shown in table 5.4). We will use the same set of chord sequences here

to briefly compare the results of pcset chord-likeness function L∼
p

with

their results for the TPSD.

The TPS chord distance rule is a measure of ‘chord un-likeness’ which

gets larger as the chords become less related. It depends on the number
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Figure 5.5: Bar charts showing normalised results for dTPSD (dark blue) and dL

(light yellow) for the seventeen chord sequences shown in table 5.4. Upper chart
shows results for sequence i compared to sequence 1. Lower chart shows results
for sequence i compared to sequence i − 1 (apart from i = 1 where sequence 1
is compared with itself).

of uncommon pitchclasses between a pair chords (divided by two) and the

distance between the chord roots on the circle of fifths [Ler01]. We will

therefore use 1 − L∼
p
, to make a comparison.

The seventeen chord sequences in table 5.4 are each 12 bars long. Half

bars may have separate chords so each sequence contains a total of 24 sym-

bols. For two chord sequences A and B we calculate a distance measure

dL thus

dL(A,B) =

∑Nseq

n=1

(

1 − L∼
p
(An, Bn)

)

Nseq

(5.82)

where Nseq is the length of the sequences, which in this case is 24. Ta-

ble 5.3 shows the TPSD scores dTPSD for the seventeen chord sequences

in table 5.4 taken from [DHVW08] compared with measures for dL. The
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Table 5.3: Results of dTPSD and dL functions for the seventeen chord sequences
in table 5.4. Results for dL are multiplied by 13 for direct comparison with
dTPSD.

Sequence i dTPSD(i, 1) dL(i, 1) × 13 dTPSD(i, i − 1) dL(i, i − 1) × 13
1 0 0 0 0
2 0.42 1.86 0.42 1.86
3 1 2.79 0.67 2.79
4 1.58 3.51 0.58 0.72
5 1.62 3.3 0.12 0.79
6 2.31 4.59 0.69 2.32
7 2.75 5.31 1.1 2.84
8 3.31 6.04 0.56 1.08
9 3.17 6.32 0.56 2.91
10 4.29 7.26 2.12 6.25
11 5.12 7.99 2.08 5.81
12 4.88 8.46 1.5 3.31
13 5.23 8.67 1.48 4.21
14 4.4 7.62 1.79 5.21
15 4.98 8.69 0.75 2.45
16 5.42 8.58 1.94 5.08
17 5.71 9.44 2.88 9.93

distances between sequence 1 and each other sequence dTPSD(i, 1) and also

between each pair of consecutive sequences dTPSD(i, i− 1) were presented

in [DHVW08] so we compare these values with dL(i, 1) and dL(i, i − 1).

The range of dL is between 0 and 1 whereas the range of dTPSD is 0 to 13

so we show the dL results multiplied by 13 to compare the values directly.

Using this scaling we find that the dL gives relatively large distance values

compared to dTPSD as can be seen in in the bar charts in figure 5.4. How-

ever, this is not particularly surprising since 1−L∼
p

effectively depends on

the number of uncommon tones between two chords but the TPS chord

distance depends upon the number of uncommon tones divided by two.

If we normalise the results by the largest value in each column and plot

the two functions again (see bar charts from figure 5.5) we find that their

results actually look quite similar in terms of relative distances between

chord sequences.

By making this comparison with the TPSD, we aim to show empiri-

cally that function dL measures chord distance with results comparable to
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another existing method of measurement. We note however that the blues

progressions presented are fairly simple and the two distance functions will

behave differently when comparing more unlikely chord combinations. For

example, comparing a pair of chords with dTPSD can produce a maximum

score (i.e. 13) when a C major chord is compared with a chord contain-

ing every note in the chromatic scale based on E (the major third of C).

This combination of chords has three shared tones so dL will be 3
4

(which

scales to 9.75 when multiplied by 13 if we wish to compare it directly

with dTPSD ). In contrast, the maximum value for dL will be produced by

any pair of chords that share no common tones. It should also be noted

that the TPSD is key context specific whereas L∼
p

compares pairs of chord

symbols independent of key. We can compare the two functions in the

way presented here because all of the blues progressions in table 5.4 are

notated in the same key. To compare chord sequences in different keys

with dL would require that our chord representation be made relative to

a key centre. Although this is possible, it is not the primary motivation

for development of the chord likeness function LT and is therefore not

something that we will pursue further here.
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Table 5.4: Seventeen 12-bar blues chord sequence variations. Bars with no notated chord symbol repeat the chord from the
previous bar.

Sequence i Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6 ...

1 F:7 Bb:7

2 F:7 Bb:7

3 F:7 Bb:7 F:7 Bb:7

4 F:7 Bb:7 F:7 Bb:7

5 F:7 Bb:7 F:7 Bb:7

6 F:7 Bb:7 F:7 Bb:7 Eb:7

7 F:7 Bb:7 F:7 C:min7 F:7 Bb:7 Eb:7

8 F:7 Bb:7 F:7 C:min7 F:7 Bb:7 Eb:7

9 F:7 Bb:7 F:7 C:min7 F:7 Bb:7 B:min7 E:7

10 F:maj7 E:min7 A:7 D:min7 G:7 C:min7 F:7 Bb:7 B:dim

11 F:maj7 E:min7 Eb:min7 D:min7 Db:min7 C:min7 Cb:7 Bb:maj7 Bb:min7

12 F:maj7 Bb:maj7 A:min7 G:min7 Gb:min7 Cb:7 Bb:maj7 Bb:min7

13 F:maj7 Bb:maj7 A:min7 G:min7 Gb:min7 Cb:7 Bb:maj7 Bb:min7 Eb:7

14 F:maj7 E:min7 A:7 D:min7 G:7 C:min7 F:7 Bb:maj7 Bb:min7 Eb:7

15 F:maj7 E:min7 A:7 D:min7 G:7 Gb:min7 Cb:7 Bb:maj7 B:min7 E:7

16 F#:min7 B:7 E:min7 A:7 D:min7 G:7 C:min7 F:7 Bb:maj7 Bb:min7 Eb:7

17 F:maj7 F#:min7 B:7 E:maj7 Eb:maj7 Db:maj7 B:maj7 Bb:maj7 B:min7 E:7

... Sequence i Bar 7 Bar 8 Bar 9 Bar 10 Bar 11 Bar 12

1 F:7 C:7 F:7

2 F:7 C:7 Bb:7 F:7 C:7

3 F:7 G:7 C:7 F:7 C:7

4 F:7 D:7 G:7 C:7 F:7 C:7

5 F:7 D:7 G:min7 C:7 F:7 G:min7 C:7

6 F:7 D:7 Db:7 C:7 F:7 Db:7 C:7

7 F:7 A:min7 D:7 G:min7 C:7 A:min7 D:7 G:min7 C:7

8 A:min7 D:7 G:min7 C:7 A:min7 D:7 G:min7 C:7

9 F:7 E:7 Eb:7 D:7 G:min7 C:7 Bb:7 A:min7 D:7 G:min7 C:7

10 A:min7 D:7 Ab:min7 Db:7 G:min7 C:7 Db:min7 Gb:7 F:7 D:7 G:min7 C:7

11 A:min7 Ab:min7 G:min7 C:7 A:min7 Ab:min7 G:min7 Gb

12 A:min7 Ab:min7 G:min7 Gb:7 F:maj7 Ab:min7 G:min7 Gb

13 Ab:maj7 Ab:min7 Db:7 Gb:maj7 G:min7 C:7 A:min7 D:7 Db:min7 Gb

14 A:min7 Ab:min7 Db:7 G:min7 C:7 A:min7 D:7 G:min7 C:7

15 A:min7 Ab:min7 Db:7 G:min7 C:7 Bb:7 A:min7 D:7 G:min7 C:7

16 Ab:maj7 Ab:min7 Db:7 Gb:maj7 G:min7 C:7 A:min7 D:7 G:min7 C:7

17 A:maj7 A:min7 D:7 G:maj7 Gb:maj7 F:maj7 Ab:maj7 G:maj7 Gb



Chapter 6

A reference transcription dataset

To enable rigorous testing of chord and harmony recognition algorithms

it is necessary to have a large hand-transcribed dataset which can be

used as ground truth information for comparison with computer algorithm

outputs. In this chapter we will describe the process of creating such a

dataset and discuss the resulting collection of transcriptions.

6.1 The Beatles studio albums

The corpus chosen for the transcription project was the twelve studio

albums by The Beatles. To be precise, the audio that was used was taken

from the original CD releases of each album first issued in 1987, catalogue

numbers for which are given in table 6.1. This collection comprises 180

songs over 13 CDs (the ‘White album’ is a double disc) totalling 8 hours,

8 minutes and 53 seconds of audio (or 29333 seconds). The total running

time for each of the discs is shown in table 6.2.

Why use the Beatles?

We needed to select a collection of music to use as the test corpus for our

chord recognition work. There are many factors to consider when making

such a decision. One important one is the fact that the author has to

listen to each song many, many times during the transcription process so

it is a good idea to choose material that you like. The author liked the

Beatles1 and the research group owned a copy of the twelve studio albums

1In fact, after completing the transcriptions and also using them extensively in this research,
the author still likes the Beatles despite the very high level of exposure to them over the course

136
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Table 6.1: Titles and catalogue numbers for the Beatles CDs used in the tran-
scription process (albums shown in original order of release)

Album title CD Catalogue number

Please Please Me CDP 7 46435 2
With the Beatles CDP 7 46436 2
A Hard Day’s Night CDP 7 46437 2
Beatles For Sale CDP 7 46438 2
Help! CDP 7 46439 2
Rubber Soul CDP 7 46440 2
Revolver CDP 7 46441 2
Sgt. Pepper’s Lonely Hearts Club Band CDP 7 46442 2
Magical Mystery Tour CDP 7 48062 2
The Beatles (the white album) CDS 7 46443 8
Abbey Road CDP 7 46446 2
Let It Be CDP 7 46447 2

Table 6.2: Total run time for each Beatles CD used in the transcription process.

Disc Album time (s) time (mins:secs)

01 Please Please Me 1965.84s 32:45
02 With the Beatles 2004.32s 33:24
03 A Hard Day’s Night 1830.01s 30:30
04 Beatles for Sale 2053.41s 34:13
05 Help! 2061.06s 34:21
06 Rubber Soul 2148.1s 35:48
07 Revolver 2099.3s 34:59
08 Sgt. Pepper’s Lonely Hearts Club Band 2390.57s 39:50
09 Magical Mystery Tour 2209.88s 36:49
10CD1 The Beatles 2781.91s 46:21
10CD2 The Beatles 2834.08s 47:14
11 Abbey Road 2844.08s 47:24
12 Let It Be 2110.88s 35:10

so these were quite important initial factors in choosing them as the test

corpus.

There are many other practical reasons why the Beatles albums were

felt to be a good corpus for the chord transcription project. The albums

of this work. This is a testament to the quality of the songwriting and production in itself.
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are widely available in most parts of the world so other researchers should

not have difficulty sourcing the same audio material. In addition to this,

there is already a large body of research work on analysis of the music

of The Beatles in terms of music theory and criticism [Pol, Ped03]. This

made the transcription process a little easier because harmonic analyses

were available for a large number of the songs [Pol] and these served as a

useful starting point for the transcription work.

The albums cover the development of the band from their first record-

ings in 1963 to their final sessions in 1970 during which time they were at

the forefront of new music recording and production techniques resulting

in a very wide variety of sounds, styles, effects and timbres being present

in a small but coherent corpus. As an example of the wide diversity that

can be found in the collection, we may consider the contrasts between the

traditional guitar-based rock and roll of songs like “I saw her standing

there”, the opening track on Please Please Me, and classical-music influ-

enced arrangements of Revolver ’s “Eleanor Rigby” or Sgt. Pepper’s Lonely

Hearts Club Band ’s “She’s leaving home”. Likewise we can compare these

styles with the psychedelic phasing sound effects of Sgt. Pepper’s Lonely

Hearts Club Band ’s “Lucy in the sky with diamonds” or the proto heavy

metal of “Helter Skelter” and music concrète of “Revolution nine” from

The Beatles (more commonly known as “The white album”). Such was

their impact on the world of popular music that it would be difficult for

artists who have followed in the genre since to legitimately claim not to

have been influenced either directly or indirectly by the Beatles in some

way.

A fair criticism that can be levelled at a corpus containing only one

artist’s output is that it is the same voices on all songs. Although this is

true, the Beatles were well known for trying to avoid what Pollack calls

“foolish consistency” [Pol] throughout their work and both the vocal styles

and the instruments that were used vary quite considerably through the

collection.

Another aspect of the Beatles work that makes them a good candidate

for chord recognition tests compared to other popular music artists is

that their songwriting often includes complex harmonic progressions. It
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was their particular skill in wrapping melody lines in interesting harmonic

structures that produced such memorable songs. In the author’s opinion

it is also what makes the collection particularly interesting as a test corpus

for chord recognition.

6.2 Transcription file format

The file format that was chosen for the Beatles chord transcriptions is

the Wavesurfer2 ‘.lab’ file. This is a flat ASCII text file with each line

representing a labelled time segment in an annotation. The arrangement

of data in each line of a ‘.lab’ file is:

start-time end-time label

where the start and end times are given in seconds and, in the case of the

chord transcription files, the labels are chord symbols which conform to

the syntax defined in section 4.2.

Although the ‘.lab’ file allows unlabelled time gaps to exist between seg-

ments and also for segments to overlap in time, the Beatles transcription

files contain only contiguous sequences of non-overlapping chord segments.

Any non-chordal section of the music is given the label "N".

6.3 The transcription process

To transcribe the Beatles songs by hand, a four stage process was followed

for each song. The four stages are:

1. Familiarisation

2. Aural transcription

3. Chord boundary tapping

4. Chord segment labelling

2C4DM’s Sonic Visualiser, a more recent audio visualisation and analysis application which
was used extensively later in the transcription process is also compatible with .lab files.
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In the familiarisation stage, the transcriber listens to the song a number

of times until they become familiar with the structure in terms of both

harmonic rhythm and also the order of sections such as verses, bridges

and choruses etc.

In the aural transcription stage, detailed chord sequences for each sec-

tion of the song are written out. This stage was done by carefully listening

to each section of the audio and transcribing each chord individually. This

time consuming job was made much easier by being able to refer to the

comprehensive notes on the Beatles recordings from Alan Pollack [Pol].

Pollack’s notes contain harmonic analyses of many of the songs which

served as a very good starting point for this part of the task.

With the chord sequences transcribed, the chord start times can be

recorded by tapping keys on the computer keyboard while listening to the

audio. The keystrokes are recorded as timestamps relative to the start of

the audio file and are saved in ‘.lab’ files with dummy text labels which

will be altered afterwards. The initial output lab file after tapping will

look something like this:

0.000000 1.370000 STAMP1

1.370000 1.915668 STAMP2

1.915668 2.519387 STAMP3

...

After the initial recording of the timestamps, the new transcription files

can be loaded into an audio annotation program and the timestamps can

be altered to correct for inaccuracies. In actual fact, due to latency issues

with the java application used to play the audio and record the keystrokes,

it was found that all timestamps had a small offset of about +4ms. The

transcriptions were therefore loaded into Matlab and all timestamps were

shifted to correct for this offset before making finer adjustments by hand.

The initial transcription work was done using the audio annotation tool

Wavesurfer [SB00] which is why the ‘.lab’ files were chosen as the tran-

scription format. Later work on the transcriptions was done using Sonic

Visualiser [CLSB06] which brought a greater level of timing accuracy to

the transcription collection because it allows annotation boundaries to be
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Figure 6.1: Chords from the transcription file of the Beatles’ No Reply shown
in Wavesurfer

sonified using audio samples such as drum stick clicks. Our ears are very

sensitive to small timing differences (down to a resolution of around 10ms

[HA96]) between the events in the audio track and these sonified chord

onsets. This is a much more accurate method of aligning the chord on-

sets than using our eyes to try to locate and adjust timing differences

represented as lines on visualisations of the audio such as waveforms and

spectrograms. One reason for this is that sonifying the onsets means the

timing can be judged in time, which is the correct dimension, instead of

time being represented on the x-axis of a visualisation on the computer

screen. It also means that only one sensory modality is used to detect

the timing differences instead of having to try to detect differences be-

tween the auditory information from the sound playback and the visual

information on the screen.

Once the timestamps are judged to be in the right places, the dummy

labels can be replaced with the chord symbols worked out in the aural-

transcription stage. Figure 6.1 is a screen shot showing a section of the

transcription file for “No Reply”, from the album Beatles for sale, in

Wavesurfer.

6.4 Transcription policy

To transcribe such a large collection manually takes a lot of time and

effort so it is important that certain transcription policies are decided at
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the beginning in order to keep the annotations as consistent as possible.

6.4.1 Treatment of the melody line

In general, the chord labels in transcriptions correspond to the chord which

would be written on a lead sheet for musicians to play from. That is to

say, the melody line itself is considered to be separate from the harmony.

For example, if the musical instruments are playing a C major chord with

no sevenths or extensions but the melody line includes a B♭ (the flattened

seventh) we ignore the melody and simply label the chord C major.

6.4.2 Consistent inconsistencies

The transcriptions are intended to represent which chords are perceived

to be present in the audio at any given time. Each song has been listened

through and analysed second by second which means that in some cases,

where a musical score or lead sheet might suggest a direct repeat of ma-

terial, if the audio differs slightly in the repeat then the transcription will

reflect this. For example, in “Glass Onion” on the first disc of the white

album there is a two bar phrase that occurs at the end of each refrain;

the lead vocal sings “look into a glass onion” with chord label ‘F:7’ for

the first bar and ‘G’ for the second. Each time the phrase occurs there

is a two-crotchet fill on the drums on beats three and four of the second

bar. In the first two instances of this pattern (at times 29.33 and 59.42

seconds respectively) the instruments that play the ‘G’ chord fade through

the drum fill and there are also clearly audible notes being played be-

neath it on the bass guitar which support the chord. On the third repeat

however (time 1:18.7), the instruments cut off very abruptly as if faded

out deliberately. This time the drum fill has no accompanying harmonic

material so those two beats are labelled as an ‘N’ chord. Figure 6.2 shows

the three instances of the phrase viewed in Wavesurfer and all have very

similar spectrograms. On first glance it would appear that the final repeat

has been labelled inconsistently but by listening carefully to the audio in
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Figure 6.2: Three instances of a repeated phrase in Glass Onion with what, at
first glance, appears to be inconsistent labelling for the final instance (bottom).

each instance we can hear that this is not the case3.

3Another example of this kind of apparent inconsistency can be found in the transcription
of “I’m so tired” also on the first disc of the white album at times 1:45 and 1:51.
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6.5 Verification of transcriptions

The initial creation of the large collection of chord transcriptions was the

first step in producing a dataset that can be used as a ground truth for

evaluation. However, such a large data set created by hand is bound to

contain a certain number of errors. One kind of error is typographical

mistakes which can cause chord symbols to deviate from the correct for-

mat. For example, it would be easy to accidentally type the label ‘C;maj7’

with a semicolon instead of the correct ‘C:maj7’ with a colon separator.

Identifying and fixing such errors is simple using computer programs to

automatically check the syntax of the chord symbols (see the discussion

of the chord tools in section 4.4). Another type of error is where the

chord symbols are correctly formatted but a chord label has been missed

out from the sequence causing all the following labels to be shifted out

of line by one place. This kind of error can cause an otherwise accurate

transcription to be completely wrong after the missing chord label and

as such is sometimes possible to see when looking at the transcription in

an audio annotation program. A more subtle error still is where a chord

label is correctly formatted but a modifier has been missed off the root

note, for example ‘B:min’ instead of ‘Bb:min’. This kind of mistake is very

difficult to spot by just looking at the chord labels but if you can sonify

the transcriptions then they are very noticeable when compared to the

original audio.

To ensure that the transcriptions were as free from mistakes as possible

required a rigorous verification process. It would have taken a very long

time for someone to manually check every label (effectively re-transcribing

the songs) so an alternative method was devised. After the files had all

been checked and corrected for chord syntax, the following process was

followed for every file:

1. Convert chord transcription to standard MIDI file

2. Synthesise the MIDI file as digital audio

3. Combine synthesised chords audio with original Beatles audio

4. Conduct human verification listening test
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5. Correct identified mistakes

6. Repeat stages 1 to 5 until no more mistakes are identified

6.5.1 Converting chord transcriptions to MIDI files

The chord transcription files were converted to standard MIDI files using

functions from the chord tools discussed in section 4.4 and the University of

Jyväskylä Matlab MIDI toolbox4 by Tuomas Eerola and Petri Toiviainen

[ET04].

6.5.2 Synthesising MIDI files as digital audio

Once the MIDI files had been created, we used the open source software

synthesiser Timidity5 to synthesise the MIDI events to digital audio. This

task was not straightforward however because the aim of the process was

to produce wave files of synthesised chords that could be played along with

the original Beatles recordings for comparison. This meant that the final

synthesised audio needed to be both in tune with the original recordings

and also accurately synchronised with them in time.

The default setting for tuning in Timidity is to use the standard con-

cert A = 440Hz as a reference. Many of the Beatles songs deviate from

this tuning however; some because the band’s instruments may have been

tuned to themselves in the absence of any other reference and some be-

cause the song was mastered at a different tape speed to that at which it

was recorded in order to produce an interesting effect6.

In order to synthesise audio with the same tuning as the original record-

ings, a secondary annotation task was therefore introduced to the project:

the tuning reference frequency must be determined for each song in the

collection. For most songs in the collection this was a fairly straight for-

ward task because the tuning remained constant throughout the song.

However, in the case of ‘Strawberry Fields Forever’ from Magical Mystery

4https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox
5http://timidity.sourceforge.net/
6‘When I’m Sixty Four’ is a good example of this. The tape speed was deliberately increased

during mastering in order to make McCartney’s voice sound more brittle. This raised the key
by almost a semitone [Mac08]
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Tour and Abbey Road ’s ‘The End’, the tuning actually alters during the

songs where material from different recording sessions have been spliced

together to create the final track7.

Retuning the MIDI files was accomplished using the MIDI pitch-bend

control which alters the tuning pitch of a MIDI instrument. MIDI pitch-

bend can be used as a real-time continuous control so it has a 14-bit

resolution making it fine enough to be used dynamically with wide pitch-

bend ranges without hearing the graduations.

To calculate the correct pitch bend value for retuning a MIDI file we

first find the difference in cents between the tuning frequency used on the

recording and 440Hz. To find the difference between two frequencies, f1

and f2, in cents we use the following equation:

cents = 1200. log2(
f1

f2

) (6.1)

The standard setting for MIDI pitch-bend (and the one that Timidity

defaults to) is a full scale bend range of ±1 whole tone which is equivalent

to ±200 cents. The 14-bit resolution gives a total of 16384 possible pitch

bend values with the mid-range value 8192 representing no bend. Thus

we find
8192

200
= 40.96 pitch bend units per cent. (6.2)

For the annotated tuning reference value fref, we may therefore cal-

culate the pitch bend value to alter the MIDI file with in the following

way:

pitch bend value = 8192 +
(

40.96 × 1200 × log2(
fref

440
)
)

(6.3)

The resulting pitch bend message is inserted into the main track of the

MIDI file at the beginning of each song to alter the tuning when the wave

file is synthesised.

With the tuning corrected, the MIDI file can then be synthesised as

audio but it is then necessary to synchronise the result with the original

7In the case of ‘Strawberry Fields Forever’, the two separate takes that were used were
actually recorded in completely different keys a whole tone apart. John Lennon decided he
liked the start of one take and the end of the other which resulted in the engineers having to
speed up one and slow the other one down so they were in roughly the same key at the edit.
[Mac08, Lew92]
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recordings. The wave files produced using Timidity begin where the first

audible event happens (i.e. the first note that is synthesised). This means

that where transcriptions have a silence at the beginning (denoted by N

in the transcription), the synthesised wave file will not be synchronised

properly with the original audio. To correct for this, each synthesised

audio file was loaded into Matlab and the correct number of zero-amplitude

samples prepended to realign it.

6.5.3 Listening tests

To verify the accuracy of the transcriptions, we combined a mono version

of the original Beatles audio with the MIDI synthesised audio. The orig-

inal audio was put in the left stereo channel and the synthesised audio

in the right channel. These files were then given to a group of twenty

volunteers to listen to and note anything that sounded incorrect to them.

The volunteer listeners were all people who listened to music regularly but

were not necessarily trained musicians. The listeners were not expected

to provide detailed explanations of what they thought was wrong, they

were simply asked to note the approximate time of what they perceived

as possible errors. To prepare listeners for the task, a simple training ex-

ample was produced which had two wave files of the same song; one file

was completely correct but the other included incorrect chord labels and

timing errors to demonstrate the kinds of mistakes to listen for.

In the first verification stage, the audio files were distributed among

the listeners so that each song would be listened to once. Distribution

of files was done on a track by track basis so that each volunteer would

hear songs from all twelve albums. Any mistakes that were noted at this

stage were found and fixed. The complete set of transcriptions were then

re-synthesised as wave files and given to the volunteers again to check in

a second stage. In the second stage, the tracks were distributed such that

the majority of listeners did not have to check the same song twice (for

two songs, this was not possible due to the availability of volunteers so the

author double checked the second stage for those tracks as well). After the

second stage was completed, all remaining mistakes that were identified



CHAPTER 6. A REFERENCE TRANSCRIPTION DATASET 148

were fixed before the collection was released.

By following this verification process and making sure that each song

was checked by at least two different people we can be fairly confident that

most significant errors have been caught. In terms of audible mistakes

caused by bad timing or incorrect chord labels, we may be fairly sure

that the collection is reliable. However, it would be impossible to claim

that the collection was perfect simply because even if all these errors have

been removed, the transcriptions represent one person’s opinion of what

the chords are and other musicians may disagree with labelling decisions

in various places. Since the collection has been made available for the

whole research community to use, it is hoped that any further errors that

may still exist will be reported so that the accuracy of the collection may

continue to improve over time.

6.6 Transcription collection statistics

In this section we will look at some of the statistics of the transcription

collection. These details are important because we wish to know some-

thing about the nature of the data in the collection before using it as a

ground truth for evaluation purposes.

At the time of writing8, the transcription collection contains a total of

14621 individual chord labels covering 8 hours, 8 minutes and 53 seconds

of audio material (or 29333 seconds).

6.6.1 Chord cardinality

Before examining the statistics of unique chord symbols and chordtypes

we shall look at the more general property of chord cardinality in the

collection.

The distribution of cardinalities for the whole collection is given in

table 6.3. We include non-chord ‘N’ in the statistics as a zero cardinality

category. The pie chart in figure 6.3 represents these values graphically.

8Some values in this section may alter very slightly over time because the collection is
updated periodically if errors are identified.
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Figure 6.3: Pie chart showing the distribution of chord cardinalities for the
whole collection.

Table 6.3: Numbers of chord symbols of each different cardinality in the Beatles
transcription collection.

Cardinality Symbol Count Percentage

0 (No chord) 427 2.92%
1 (Monad) 69 0.47%
2 (Dyad) 57 0.39%
3 (Triad) 11621 79.48%
4 (Tetrad) 2194 15.01%
5 (Pentad) 252 1.72%
6 (Hexad) 1 0.01%

We find that all cardinalities between 0 and 6 are represented at least

once in the collection. Nearly 80% of the chords in the collection are

triads, 15% tetrads, 2.9% are the non-chord ‘N’ and the remaining 2.1%

is shared between the other cardinalities. Figure 6.4 shows a bar graph of

the distributions of chord cardinalities for each album. In it we can see

that the later albums tend to have higher numbers of tetrads than the

earlier ones with the exception of disc 2 of the white album. It is also

interesting to note that ‘Let It Be’ is the only album in the collection that

contains no pentad chords.
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Figure 6.4: Bar chart showing the distributions of chord cardinalities in each album. Lower cardinalities are on the left, higher
on the right.
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Figure 6.5: Bar chart showing total number of transcribed chord symbols (dark
blue) compared to run time in seconds (light yellow) for each album.

6.6.2 Chord symbol counts: frequency and duration

The total number of transcribed chord symbols in the collection is 14621.

The total chord counts for each individual album are shown in column

‘TSC’ of table 6.4. These values are shown graphically in the bar chart

of Figure 6.5 where they are compared with the run times of the albums

(presented earlier in table 6.2). The two sets of values are closely correlated

with a mean time period across the whole collection of approximately 2

seconds per chord.

We will now use the chord comparison methods described in chapter 5

to calculate statisitics for the number of unique chords and chordtypes in

the Beatles transcription collection.

Unique chords

The 14621 chords in the collection comprise 406 unique chord symbol

strings. This value has been calculated using direct string comparison,

Ms, of chord labels across the whole collection. The numbers of unique

chord symbols for each album are shown in the Ms column of table 6.4.

A table showing the full 406 unique symbols with their related frequency
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Table 6.4: Chord count statistics for each album in the collection.

Disc Album TSC Ms M−→
v M−→

p M∼

v
M∼

p
M

′

s M
′
−→
v

M
′
−→
p

M
′
∼

v
M

′
∼

p

01 Please Please Me 1011 45 45 45 39 39 39 39 39 38 38
02 With the Beatles 977 62 62 62 53 53 52 51 51 51 51
03 A Hard Day’s Night 1056 51 51 51 42 42 42 42 42 42 42
04 Beatles for Sale 1141 62 62 62 49 49 46 46 46 44 44
05 Help! 1138 60 58 58 45 45 46 45 45 44 44
06 Rubber Soul 1101 67 67 65 58 55 59 58 56 57 54
07 Revolver 909 77 75 71 67 63 63 60 56 60 56
08 Sgt. Pepper’s Lonely Hearts Club Band 1146 110 107 104 73 70 74 73 71 71 68
09 Magical Mystery Tour 1017 95 93 93 63 62 53 52 52 49 48
10CD1 The Beatles 1495 112 111 109 84 81 75 75 73 73 69
10CD2 The Beatles 1179 92 92 92 72 72 69 69 69 66 66
11 Abbey Road 1454 123 119 115 83 78 73 73 69 71 66
12 Let It Be 997 68 68 65 52 49 52 52 49 50 47
All Whole collection 14621 406 364 346 227 202 246 234 219 206 180

Key: TSC Total symbol count
Ms String matching M

′

s Bass-blind string matching
M−→

v Ordered pnset matching M
′
−→v

Bass-blind ordered pnset matching
M−→

p Ordered pcset matching M
′
−→
p

Bass-blind ordered pcset matching

M∼

v
Unordered pnset matching M

′
∼

v
Bass-blind unordered pnset matching

M∼

p
Unordered pcset matching M

′
∼

p
Bass-blind unordered pcset matching
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and duration information can be found in the accompanying online infor-

mation9.

Of course, direct string comparison does not necessarily tell us the real

story in terms of tonal content because alternative spellings for the same

chord (for example ‘D#:min’ and ‘D#:(1,b3,5)’) will be interpreted as

separate symbols. When we use ordered pnset comparison M−→
v we find

that there are in fact 364 unique pnsets in the collection therefore 42 of

the 406 unique symbol strings have equivalent spellings in the collection.

The numbers of unique pnsets for each album are given in the M−→
v column

of table 6.4.

We can also use ordered pcset matching function M−→
p to count the

number of enharmonic equivalent chord symbols in the collection. In this

case, chords such as ‘D#:min’ and ‘Eb:min’ will be considered the same

because both contain the same ordered set of pitch classes {3,6,10}. The

number of unique ordered pnsets is 346 so 60 of the 406 unique chord

symbol strings have enharmonic equivalents in the collection.

It is also interesting to look at the unordered pnset and pcset counts

(M∼
v

and M∼
p
) for the collection. These values tell us about the pitchname

and pitchclass content of the symbols without restricting the order of the

elements in pnsets and pcsets. An example of chords which would be

considered equivalent by this function are ‘C#:maj6’ and ‘A#:min7’, both

of which contain pitchnames "A#","C#","E#" and "G#" but in different

orders. There are 227 unique unordered pnsets and 202 unique unordered

pcsets. The values of these counts for each album are shown in the M∼
v

and M∼
p

columns of table 6.4.

The second half of table 6.4 contains results for the same five matching

functions again but this time with each calculated bass-blind (i.e. ignoring

the bass interval of chords if any are specified, see section 5.5). Count-

ing using the bass-blind string matching function M
′
s gives a total of 246

unique chord symbols and thus we note that 160 of the 406 unique chord

symbol strings include a specified bass interval. The bass-blind count for

9http://www.isophonics.net/content/reference-annotations-beatles
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Figure 6.6: Bar charts showing unique chord symbol counts for each album
using five different counting methods. Upper chart shows counts including bass
intervals; lower chart shows bass-blind counts.

pnsets M
′−→v is 234 so there are 12 chord symbols that have pitchname equiv-

alents out of the 246 unique bass-blind chord symbol strings. Likewise,

the count for pcsets M
′−→
p

is 219 so 27 symbols have pitchclass equivalents

out of the 246 chord symbols. We also calculate the values for bass-blind

unordered pnsets and pcsets M
′
∼
v

and M
′
∼
p
. The value for M

′
∼
v

is 206 and

the value for M
′
∼
p

is 180.

The bar charts in figure 6.6 represent the unique symbol counts for each

album graphically for all five counting methods; the upper chart showing

counts including bass intervals and the lower chart bass-blind counts. We

see that for all counting methods, the later albums generally had higher
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numbers of unique chords than the earlier ones; ‘Abbey Road’ (disc 11)

having the highest number. This trend might suggest that the Beatles use

of harmony became more complex and their choice of key more varied as

their songwriting developed over the lifetime of the group. In contrast, we

note that ‘Let It Be’ has a low number of unique chords compared to the

other later albums. This may reflect the ‘back to basics’ approach that

the Beatles took on the Let It Be project [Lew92, Ped03, Mac08, Pol].

We see that the values for simple string comparison are the same or

slightly higher than the ordered pnset and pcset comparisons in all cases

as we would expect given that there are some equivalent spellings of chords

in the collection. When we look at the unordered pnset and pcset counts

in the upper chart of figure 6.6, these are lower in all cases as we would

expect but we note that the difference between ordered and unordered

counts are much larger for the later albums. This shows that the use

of inversion was more prevalent in the later albums and supports the

notion that Paul McCartney’s bass lines were more inventive in terms of

influencing harmonic function later in the Beatles’ career [Mac08, Pol].

Looking at the lower chart in figure 6.6 we can see that the difference

between ordered and unordered counts is much smaller for bass-blind com-

parisons. We also note that in the top chart, disc 11 (Abbey Road) has the

highest number of unique chords by a margin of more than 10 chords over

any other album for the ordered counting methods. However, when using

unordered or bass-blind comparison for the counts, we find that discs 08

and 10CD1 (Sgt. Pepper’s Lonely Hearts Club Band and the first disc

of the White album) actually have very similar numbers to Abbey Road,

some even slightly higher. Likewise, in the lower chart we note the com-

paritively low unique chord counts for disc 09 (Magical Mystery Tour).

The ordered counts from the upper chart suggest that the album has a

high unique chord count compared to some of the other albums but the

bass-blind counts show that this is actually only due to the numbers of

inverted chords on that album.

We will now look in more detail at the frequency and duration of the

unique chord symbols in the collection. The statistics for both of these sets

of data are shown in table 6.5 for the top 26 unique chord symbols (using
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Table 6.5: Statistics for the top 26 out of the 406 unique chord symbols in the
transcription collection counted using string matching of chord symbols. The
final category ‘Others’ accounts for the other 380 unique symbols. Chords are
listed in order of duration.

Chord Symbol frequency % frequency Aggregate time % time

A:maj 1568 10.72 3311.82 11.29
E:maj 1039 7.11 2714.06 9.25
G:maj 1385 9.47 2685.85 9.16
D:maj 1353 9.25 2404.14 8.20
C:maj 966 6.61 2120.08 7.23
N 427 2.92 1312.32 4.47
B:maj 503 3.44 980.80 3.34
F:maj 489 3.34 870.38 2.97
A:min 365 2.50 738.16 2.52
Bb:maj 318 2.18 641.40 2.19
F#:min 291 1.99 583.10 1.99
B:min 293 2.00 539.71 1.84
D:min 197 1.35 533.48 1.82
E:min 336 2.30 518.00 1.77
C#:min 165 1.13 408.57 1.39
G:7 150 1.03 400.13 1.36
D:7 132 0.90 377.63 1.29
C#:maj 69 0.47 374.98 1.28
F#:maj 189 1.29 349.80 1.19
A:7 116 0.79 284.71 0.97
Eb:maj 161 1.10 281.09 0.96
Ab:maj 153 1.05 246.18 0.84
E:7 90 0.62 211.09 0.72
A:min7 94 0.64 209.20 0.71
Db:maj 89 0.61 194.37 0.66
F:min 84 0.57 191.80 0.65
Others 3599 24.62 5850.15 19.95

the Ms count). Values are presented in both terms of absolute frequency

counts and duration totals as well as percentages of the whole collection

for both. Using ordered pnset M−→v to count instead, we find that the

data for the top 26 chords are exactly the same as Ms with the exception

of ‘A:min7’ and ‘E:7’ which have their positions reversed. We note that

pnsets can have more than one equivalent chord symbol however, and on
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Figure 6.7: The percentages of chord count frequency (red dashed line) and
duration (blue solid line) for the whole collection plotted against the percentage
of unique symbols accounting for those values.

closer inspection we find that this change in the list order is because the

chord ‘C/6’ has the same ordered pnset as ‘A:min7’ and is thus subsumed

into the ‘A:min7’ category.

To help visualise the values in table 6.5, pie charts for the symbol

frequency and collected symbol durations are shown in Figure 6.8. What

we find is that a small number of chord symbols make up quite a large

proportion of the whole collection. In fact, in terms of symbol frequency,

almost 50% of the chord symbols in the collection comprise just seven

chords10: ‘A:maj’, ‘E:maj’, ‘G:maj’, ‘D:maj’, ‘C:maj’, ‘N’ and ‘B:maj’. For

chord duration, the situation is similar with almost 50% of the time in the

collection accounted for by the first six of those symbols. In other words, in

both cases, roughly half the collection is accounted for by less than 2% of

the total of 406 unique symbols. Likewise, ten symbols (2.5%) account for

60% of the total; sixteen symbols (4%) account for 70% and the top twenty

six chords (6%) account for over 80% of the total collection. Figure 6.7

shows this relationship graphically, plotting the curves of percentages of

the total for both frequency and duration against the percentage of the

unique chord symbols that accounts for that part of the total. We also note

10It should be noted that although the transcriptions use the single root pitchnames such
as ‘A’ to denote major chords, we use the equivalent form ‘A:maj’ here to improve clarity in
the tables and graphs.
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Figure 6.8: Pie charts showing chord symbol frequency (above) and allocation of
time to chord symbols (below) for whole Beatles transcription collection (using
direct string comparison). The top 80% (26 chord symbols) are represented
individually with the remaining 380 lower frequency and shorter time chords in
both cases aggregated into the category ‘Others’. Segments in both pie charts
are ordered according to total symbol duration. The numeric values represented
in the two pie charts can be found in table 6.5.
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Figure 6.9: Pie chart showing allocation of time to unique ordered pcsets for
the whole Beatles transcription collection. The top 80% (25 categories) are
represented individually with the remaining 321 lower frequency and shorter
time pcsets aggregated into the category ‘Others’. Equivalent chord symbols
are given next to the pcset values for clarity.

that the top five chords in the list are all easy to play in open fingerings

on a guitar in standard tuning.

As we can see from the pie charts in figure 6.8, the distributions of

symbol frequency and aggregate duration are quite similar to each other.

This is the case for all of the counting methods that we have used. There-

fore we will concentrate on the duration statistics for our further analysis

because this is a more important factor than symbol frequency in evalua-

tion of chord recognition algorithms when calculating chord symbol recall

(discussed in section 8.1). It should be noted that pie charts in figures 6.8

to 6.11 have been plotted so that the categories that make up the top 80%

of the collection for each different counting method are shown individually.

Figure 6.9 shows a pie chart for the total durations of unique ordered

pcsets (M−→
p ) allowing quick comparision with the statistics for the string

matching and ordered pnset comparison methods in figure 6.8. We see

that the results for M−→
p are quite similar to those for Ms durations for the
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Figure 6.10: Pie chart showing allocation of time to unique unordered pcsets
for whole Beatles transcription collection. The top 80% (20 categories) are
represented individually with the remaining 182 lower frequency and shorter
time pcsets aggregated into the category ‘Others’. Equivalent chord symbols
are given next to the pcset values for clarity.

top ranking chords; the top eleven chords remaining unchanged. ‘C#:maj’

displaces ‘B:min’ in twelth position because using an ordered pcset count,

‘Db:maj’ and ‘C#:maj’ are mapped to the same category.

Looking at the statistics for unordered pcsets (figure 6.10) we find that

the percentages grow slightly for most of the top categories and also note

that the order of the top three chords changes with ‘G:maj’ moving up

from third to second place. The reason for these changes is that by ignor-

ing the order of chord elements, inversions of chords are no longer treated

as separate categories. The durations for ‘G:maj’ and ‘E:maj’ are very sim-

ilar for the Ms, M−→v and M−→p ordered counting methods (their durations

differing by only 0.09%). However, using M∼
p

unordered pcset counting,

the three inversions of a G major triad i.e. root position (non-inverted)

‘G:maj’, first-inversion ‘G:maj/3’ and second-inversion ‘G:maj/5’ are all

combined in the {7,11,2} pcset category. The number of first and sec-

ond ‘G:maj’ inversions is 118 symbols which have a combined duration of

164.23 seconds (0.56% of the total). This is more than the number of first
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Figure 6.11: Pie chart showing allocation of time for bass-blind string compar-
ison for whole Beatles transcription collection. The top 20 chord categories are
represented individually with the remaining 226 lower frequency and shorter
time chords in both cases aggregated into the category ‘Others’.

and second inversions of ‘E:maj’ which total 41 symbols with combined

duration of 48 seconds (0.17% of the total). These values make a sufficient

difference to cause the change in the list order.

Using bass-blind string comparison, M
′
s we find that the order of the

chords in terms of duration again remains essentially the same as M∼
p

for the highest categories (see pie chart in Figure 6.11). However, the

top categories all grow slightly as they incorporate the symbols of the

same type that previously had their own categories because of specified

alternative bass intervals that were not part of the main chord interval list.

This means that for M
′
s comparison, the top five chord symbols account

for nearly 50% of the total collection duration. The distributions for the

other bass-blind counts, M
′−→v , M

′−→p , M
′
∼
v

and M
′
∼
p

are all quite similar to M
′
s

with very slight variations in the sizes of categories but no change to the

order of the top fourteen chords.
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Chordtypes

We now look at the numbers of unique chordtypes in the collection. The

chordtype counts for each album and the collection totals are shown in

table 6.6. The left side for the table shows chordtype counts using string

matching Mq, ordered rlsets and rcsets M−→
i

and M−→
r and unordered rlsets

and rcsets M∼

i
and M∼

r
. The right side of the table shows counts for

the bass-blind versions of these comparison methods. The values from

table 6.6 are shown graphically in the bar charts in figure 6.12; the upper

chart showing the values from the left side of the table and the lower chart

showing values from the bass-blind counts from the right side of the table.

Using string comparison Mq, we find that there are 133 individual

chordtypes. We also find that both ordered rlset comparison M−→
i

and

ordered rcset comparison M−→r counts total 122 individual chordtypes. The

difference between the count for Mq and the counts for M−→
i

and M−→
r can be

explained by a number of chords that have equivalent chordtype spellings.

For example, chordtypes ‘X:min(*b3)’, ‘X:(1,5)’ and ‘X:maj(*3)’ are

used in various different contexts in the collection but are all equivalent

to the rlset {"1","5"} or rcset {0,7}.
From the bar charts in figure 6.12 we can see that the values for M−→

i

and M−→
r are always the same as are the counts for M∼

i
and M∼

r
. This tells

us that there are no chord symbols in the collection that are alternative

enharmonic interval spellings of the same rcset (see section 5.3.3).

Following the same trend as seen in figure 6.6 with the unique chord

symbols, the later albums tend to have higher numbers of unique chord-

types (with the exception of ‘Let It Be’).

Comparing the upper and lower charts in figure 6.12, we can see that

including chord inversion has a large effect on the chordtype counts. Disc

10CD1 (the first disc of the white album) has the highest number of unique

chordtypes for the ordered counting methods although it is very closely

followed by discs 08 and 11 (‘Sgt. Pepper’s Lonely Hearts Club Band’ and

‘Abbey Road’). The order changes in the bass-blind counts with disc 08

having the highest number of unique chordtypes when bass intervals are

ignored. We note that the counts for disc 10CD1 and 11 are both much
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Figure 6.12: Bar charts showing unique chordtype counts for each album us-
ing five different counting methods. Upper chart shows counts including bass
intervals; lower chart shows bass-blind counts.
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Table 6.6: Chordtype count statistics for each album in the collection.

Disc Album Mq M−→
i

M−→r M∼

i
M∼

r
M

′

q M
′
−→
i

M
′
−→r

M
′
∼

i
M

′
∼

r

01 Please Please Me 17 17 17 12 12 11 11 11 11 11
02 With the Beatles 24 24 24 17 17 15 15 15 15 15
03 A Hard Day’s Night 21 21 21 14 14 14 14 14 14 14
04 Beatles for Sale 25 25 25 17 17 12 12 12 12 12
05 Help! 29 29 29 18 18 18 18 18 18 18
06 Rubber Soul 24 24 24 18 18 18 18 18 18 18
07 Revolver 27 26 26 18 18 16 16 16 16 16
08 Sgt. Pepper’s Lonely Hearts Club Band 46 44 44 28 28 28 27 27 26 26
09 Magical Mystery Tour 38 36 36 20 20 17 17 17 17 17
10CD1 The Beatles 48 47 47 31 31 24 24 24 23 23
10CD2 The Beatles 38 38 38 27 27 25 25 25 24 24
11 Abbey Road 47 46 46 29 29 25 25 25 24 24
12 Let It Be 25 25 25 15 15 15 15 15 15 15
All Whole collection 133 122 122 63 62 66 62 62 55 55

Key:
Mq String chordtype matching M

′

q Bass-blind string chordtype matching
M−→

i
Ordered rlset matching M

′
−→
i

Bass-blind ordered rlset matching

M−→
r Ordered rcset matching M

′
−→
r

Bass-blind ordered rcset matching
M∼

i
Unordered rlset matching M

′
∼

i
Bass-blind unordered rlset matching

M∼

r
Unordered rcset matching M

′
∼

r
Bass-blind unordered rcset matching
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Table 6.7: Statistics for the top 20 of the 133 unique chordtypes in the tran-
scription collection (counted using string matching of chordtypes). The final
category ‘Others’ accounts for the other 113 unique symbols. Chordtypes are
listed in order of aggregate duration.

Chordtype Frequency % frequency Aggregate time % time

X:maj 8367 57.23 17304.75 58.99
X:min 2065 14.12 4089.62 13.94
X:7 787 5.38 1876.51 6.4
N 427 2.92 1312.32 4.47
X:min7 312 2.13 606.62 2.07
X:maj/5 382 2.61 529.2 1.8
X:9 121 0.83 287.5 0.98
X:maj/3 226 1.55 258.76 0.88
X:maj6 106 0.72 237.65 0.81
X:maj7 119 0.81 216.1 0.74
X:aug 101 0.69 172.42 0.59
X:min/5 147 1.01 167.43 0.57
X:min(*b3) 18 0.12 149.53 0.51
X:sus4 118 0.81 134.48 0.46
X:7(#9) 43 0.29 126.07 0.43
X:min/b3 88 0.6 114.02 0.39
X:maj/9 38 0.26 89.07 0.3
X:dim 61 0.42 88.5 0.3
X:dim7 42 0.29 83.03 0.28
X:maj/b7 57 0.39 79.84 0.27
Others 996 6.81 1410.05 4.81

higher than those for disc 10CD2 in the upper chart with disc 10CD1 being

slightly higher than disc 11. However, in the lower chart discs 10CD2 and

11 have exactly the same counts and are both slightly higher than disc

10CD1.

Table 6.7 shows the frequency and duration information for the top 20

chordtypes counted using string comparison Mq; these values are repre-

sented graphically by the pie charts in figure 6.13. Looking at the distri-

bution of chordtypes we find that the top 20 chordtype categories account

for 93% of the collection in terms of symbol frequency and over 95% of the

duration for the whole collection. The root position major triad chordtype

‘X:maj’ accounts for over half the collection in both terms of frequency and
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duration. The root position minor triad ‘X:min’ is second accounting for

about 14% and the root position seven chord ‘X:7’ is third at around 6% of

the total. We note that the first and second inversions of both the major

and minor triads are also found in the top 20 categories. The non-chord

‘N’ is the fourth place in the list because many of the songs have silence

at the start and at the end of the audio tracks.

When counted using bass-blind string comparison M
′
q, the top cate-

gories grow further as can be seen in the pie charts in figure 6.14 (the

values for which can be found in table 6.8). With this counting method

the major triad chordtype category (which now subsumes first and sec-

ond inversions) accounts for over 60% of the collection, the minor triad

category for around 16% and ‘X:7’ still accounts for around 6%. The

non-chord ‘N’ is still in fourth place and because it cannot be inverted or

altered with an alternative bass interval, it remains at 4.47% of the total

duration as before. Whereas the top 20 chords were around 95% of the

collection counting with Mq, when we count with bass-blind M
′
q, the top

20 chords now account for over 98% of the collection.

In their ISMIR09 paper [OGF09c], Oudre et al present a bar graph

repartitioning the durations in the transcription collection into the top

three chordtypes (‘X:maj’,‘X:min’ and ‘X:7’) and aggregating the other

types into a fourth ‘others’ category. Figure 6.15 shows this same infor-

mation calculated here using bass-blind string comparison M
′
q. In their

paper, they make the assumption that the only chordtypes used in the col-

lection are the 17 members of the chord shorthand list given in table 4.2.

However, as we have already seen from the statistics in this section, this

is not the case and there are in fact 133 different chordtypes in all when

using Mq as the comparison method for counting. This number reduces to

66 when bass-blind string matching M
′
q is used and we find that fifteen of

the seventeen shorthand labels are in fact present in the top 20 chordtypes

using this counting method. The other five chordtypes that are in the top

twenty are ‘N’, ‘X:(1)’, ‘X:7(#9)’, ‘X:maj(9)’ and ‘X:min(*b3)’. The two

remaining shorthand chordtypes ‘X:sus2’ and ‘X:maj9’ are lower in the

M
′
q list at positions 28 and 36 respectively.

It is interesting to look at the statistics for a wider range of chord
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Table 6.8: Statistics for the top 20 of the 66 unique chordtypes in the transcrip-
tion collection (counted using bass-blind string matching of chordtypes). The
final category ‘Others’ accounts for the other 46 unique symbols. Chordtypes
are listed in order of aggregate duration.

Chordtype Frequency % frequency Aggregate time % time

X:maj 9246 63.24 18411.11 62.76
X:min 2464 16.85 4543.68 15.49
X:7 846 5.79 1945.33 6.63
N 427 2.92 1312.32 4.47
X:min7 342 2.34 650.87 2.22
X:9 122 0.83 289.62 0.99
X:maj6 143 0.98 276.93 0.94
X:maj7 153 1.05 271.1 0.92
X:aug 105 0.72 178.25 0.61
X:min(*b3) 20 0.14 152.48 0.52
X:sus4 134 0.92 149.64 0.51
X:7(#9) 43 0.29 126.07 0.43
X:maj(9) 50 0.34 122.65 0.42
X:dim 78 0.53 109.9 0.37
X:dim7 55 0.38 101.55 0.35
X:min6 44 0.3 73.55 0.25
X:(1) 65 0.44 67.36 0.23
X:hdim7 41 0.28 64.26 0.22
X:minmaj7 30 0.21 47.95 0.16
X:min9 18 0.12 31.87 0.11
Others 195 1.33 406.95 1.39

symbols in the same visual representation that Oudre et al use. Figure 6.16

shows the distribution of the top twelve chordtypes for each album along

with a final ‘Others’ category which reveals some details that are hidden

in Figure 6.15’s ‘others’ category. For example, in Figure 6.15, the second

disc of the white album seems to have a very high number of ‘Other’

chords. When we look at the second graph we can see that almost all of

the duration of ‘other’ chords for that disc is in fact in the ‘N’ category

which can be accounted for in most part by the non-tonal material in

Revolution 9 which totals 315.45 seconds.
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Figure 6.13: Pie charts showing chordtype frequency (above) and allocation of
time to chordtypes (below) for whole Beatles transcription collection (string
matching). The top 20 chord categories are represented individually with the
remaining

6.6.3 Chord roots

Using a bass-blind pnset comparison with cardinality limited to 1, M
′−→
v ,1

,

we can find the distribution of enharmonically spelled chord roots (pitch-

names) in the collection. Table 6.9 shows the values for the distribution of

root pitchnames (excluding ‘N’) and figure 6.17a shows these values graph-

ically. There are sixteen root pitchname categories in the table. The seven
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Figure 6.14: Pie charts showing chordtype frequency (above) and allocation of
time to chordtypes (below) for whole Beatles transcription collection (inversion-
blind string matching). The top 20 chord categories are represented individually
with the remaining 47 lower frequency and shorter time chords in both cases
aggregated into the category ‘Others’.
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Figure 6.15: Bar chart showing distribution of time for the top three chordtypes
in the transcriptions for each album with the remaining 63 types aggregated
into category ‘Others’.
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171Figure 6.16: Bar chart showing distribution of time for the top twelve chordtypes in the transcriptions for each album with the

remaining 54 types aggregated into category ‘Others’.



CHAPTER 6. A REFERENCE TRANSCRIPTION DATASET 172

Table 6.9: Pitchname distribution for chord roots for whole collection (excludes
‘N’ chords).

Pitchname Frequency % frequency Aggregate time % time

A 2494 17.57 5082.73 18.14
D 2254 15.88 4154.04 14.82
E 1817 12.8 4027.53 14.37
G 2030 14.3 3824.68 13.65
C 1391 9.8 2988.56 10.67
B 1091 7.69 1909.79 6.82
F 866 6.1 1594.71 5.69
F# 673 4.74 1232.99 4.4
Bb 469 3.3 936.7 3.34
C# 315 2.22 876.22 3.13
Eb 249 1.75 466.85 1.67
Ab 213 1.5 360.48 1.29
G# 151 1.06 209.79 0.75
Db 98 0.69 208.35 0.74
D# 43 0.3 80.34 0.29
Gb 40 0.28 67.38 0.24

natural pitchnames are present and are the top seven categories in the ta-

ble. They are also joined by sharps F♯, C♯, G♯ and D♯ and flats B♭, E♭,

A♭, D♭ and G♭.

We can also use the same approach to look at the distribution of chord

root pitchclasses by using a bass-blind cardinality-1 ordered pitch class

comparison M
′−→p ,1

. The values for this count are given in table 6.10 and

these are shown graphically in figure 6.17b. Enharmonic equivalents that

were separate in table 6.9 are now merged so we are left with just the 12

pitchclass categories.

6.6.4 Triad content

Using bass-blind cardinality-3 pcset comparison M
′−→p ,3

for counting chord

symbols allows us to map all chords into equivalent triad categories. Many

current chord recognition algorithms [PP08, Bel07, WDR09, WEJ09, RUS+09,

RK08] are designed to only detect major and minor triads so counting with

M
′−→p ,3

gives us useful information about the collection with respect to their
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Figure 6.17: Pie charts showing distribution of durations (excluding ‘N’ chords)
for a) chord root pitchnames and b) chord root pitchclasses .

evaluation.

Table 6.11 shows the frequency and time statistics for the M
′−→p ,3

count.

We can see that the 24 major and minor triads are all represented in

the collection with ‘A:maj’ being the top ranking triad at 13.13% of the
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Table 6.10: Pitchclass distribution for chord roots for whole collection (excludes
‘N’ chords).

Pitchclass Frequency % frequency Aggregate time % time

9 (A) 2494 17.57 5082.73 18.14
2 (D) 2254 15.88 4154.04 14.82
4 (E) 1817 12.8 4027.53 14.37
7 (G) 2030 14.3 3824.68 13.65
0 (C) 1391 9.8 2988.56 10.67
11 (B) 1091 7.69 1909.79 6.82
5 (F) 866 6.1 1594.71 5.69
6 (F#/Gb) 713 5.02 1300.37 4.64
1 (C#/Db) 413 2.91 1084.57 3.87
10 (A#/Bb) 469 3.3 936.7 3.34
8 (G#/Ab) 364 2.56 570.27 2.04
3 (D#/Eb) 292 2.06 547.19 1.95

duration of the collection and the pcset equivalent to ‘Eb:min’/‘D#:min’

being the lowest ranked of the major and minor triads at 0.25% of the

collection total duration. With the exception of ‘N’ which has its own

category, all other chords that do not fit into the major or minor triad

categories collectively account for 3.89% of the total collection duration.

6.6.5 Chord times

Figure 6.19 shows a histogram of chord duration for the whole collection.

The upper plot is the whole histogram and the lower plot is a blown up

view of the part between 0 and 10 seconds where most of the chord symbols

reside. The mean length of chords in the collection is 2.0062 seconds and

the median is 1.6254 seconds; the standard deviation is 2.5628. A few

very long outlier chord durations pull the mean upwards; table 6.12 shows

details of the longest chords in the collection. The longest chord is a

‘C#:maj’ in Within you, without you on ‘Sgt.Pepper’s Lonely Heart’s Club

Band’ which has a duration of 137.4 seconds. This occurs during a part

of the song where the sitar plays a solo melody and the accompaniment

play a drone with no implied changes in harmony during the section. It

is interesting to note that the top ten longest chords are all on the later
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Figure 6.18: Pie chart showing distribution of equivalent triad chords in the
collection counted using bass-blind cardinality-3 pcset comparison. The 24
major and minor triad categories are all represented along with the non-chord
‘N’. Other triad chords are aggregated into the ‘Others’ category.

albums from disc 07 (Revolver) onwards. The shortest chord symbol is the

‘N’ chord at the start of Piggies on disc 2 of the white album which is 16.8

milliseconds long. This just describes a very short silence before the song

actually starts so we may consider it to not really be part of the music

as such. Discounting the non-chord ‘N’ symbols at the start of songs, the

shortest chord symbol in the collection is actually a 0.174 second ‘C:maj’

at time 50.094 seconds in Kansas City - Hey, Hey, Hey, Hey from ‘Beatles

for Sale’.
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Table 6.11: Equivalent distribution of triad chords in the collection counted
using bass-blind cardinality-3 pcset comparison.

Pitchclass Frequency % frequency Aggregate time % time

A:maj 1868 12.78 3850.88 13.13
G:maj 1765 12.07 3422.54 11.67
D:maj 1838 12.57 3317.67 11.31
E:maj 1283 8.78 3235.06 11.03
C:maj 1257 8.6 2632.55 8.97
F:maj 671 4.59 1234.64 4.21
B:maj 653 4.47 1176.87 4.01
A:min 528 3.61 1050.9 3.58
Bb:maj 397 2.72 807.44 2.75
F#:min 368 2.52 717.87 2.45
E:min 474 3.24 706.14 2.41
D:min 328 2.24 679.14 2.32
B:min 369 2.52 648.96 2.21
C#:maj 188 1.29 610.86 2.08
F#:maj 256 1.75 475.39 1.62
C#:min 197 1.35 441.71 1.51
D#:maj 221 1.51 392.26 1.34
G#:maj 229 1.57 369.89 1.26
F:min 170 1.16 332.07 1.13
G:min 213 1.46 319.5 1.09
G#:min 104 0.71 150.51 0.51
C:min 57 0.39 118.66 0.4
Bb:min 63 0.43 114.69 0.39
D#:min 31 0.21 74.05 0.25
N 427 2.92 1312.32 4.47
Others 666 4.56 1140.89 3.89
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Figure 6.19: Histogram of chord times for the whole collection. The upper plot
is the whole histogram including the outlier chords with very long durations
(the top ten of which are marked with circles here and detailed in table 6.12).
The lower plot shows the histogram between 0 and 10 seconds which is where
the majority of chord times are.
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Table 6.12: The top ten longest chords in the transcription collection

Album Disc Song Symbol Length Time

08 Within You Without You C# 137.42s 136.06s
09 Blue Jay Way C 98.23s 133.77s
12 Come Together D:min 64.00s 192.27s
09 All You Need Is Love G 61.64s 163.10s
10CD2 Revolution 9 N 54.34s 447.86s
08 A Day In The Life E 42.47s 261.15s
09 Hello Goodbye C 39.90s 165.63s
10CD2 Helter Skelter E 37.80s 224.45s
13 Across the Universe Db 35.33s 187.45s
07 Love You To C:min(*b3) 30.88s 4.96s



Chapter 7

Local audio file alignment

One big problem for researchers in the MIR field is finding large annotated

audio test sets which they can use as a ground truth to test their algo-

rithms. Although several large annotation databases have been provided

by various members of the community [HSAG05, GHNO02, BLEW04,

Dow08] including the author’s own Beatles transcriptions discussed in

chapter 6, it is often still a problem for people to obtain exactly the same

audio for use with this annotation data due to copyright and availability

issues.

For many sets of annotation data, the times of events are given relative

to the start of a particular audio file. The timing information in such

annotations can only be considered to be accurate for the audio they

were annotated from. However, it is not always possible to provide the

actual audio files that the annotations refer to as well as the annotations

themselves. Because of this, researchers often have to obtain the audio

data from elsewhere making it difficult to be fully confident in the accuracy

of the combination of their audio and someone else’s annotations.

In this chapter we propose a solution to this problem. By using short

audio fingerprints taken from the original annotated audio, it is possible

to alter local audio files, aligning them accurately with the original au-

dio. This technique provides a simple, legal way for researchers to acquire

accurately aligned audio data for annotated data sets. This is a very im-

portant factor in obtaining accurate experimental results. As an example,

after performing an alignment process on local copies of Beatles audio

files, Ellis [Ell09] comments that a 20% increase in results was achieved

for evaluations because the transcriptions were correctly aligned to the

179
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audio material.

The system uses two short time-domain fingerprints for each song,

the technical details of which are discussed in section 7.2.2. The first

fingerprint is used to find the time difference between the start of the

local audio and the start of the original song. This information allows

the local song to be aligned accurately to the original by inserting or

deleting samples at the start and end as necessary. The second fingerprint

is used on the newly aligned local audio to check whether the process was

successful.

The system has been implemented in Matlab and used the twelve Bea-

tles studio albums as a test set. In experiments, we found that the align-

ment process is successful for all 180 songs in the collection as long as the

local audio came from same mastering process as the original.

This work has many potential applications in MIR where authors of an-

notations containing timing information are unable to provide the original

audio they used.

7.1 Access to audio for annotated data sets

The problem for researchers who provide annotated data containing time

information is that such data requires the local copy of the audio file used

by other researchers be accurately time-aligned with the original. This

poses the question: how can other researchers obtain audio files that are

properly aligned to the source audio files that were used to produce our

transcription data?

Providing audio data directly

A simple answer would be to give other researchers the original source

audio files that were used in the transcription process. The RWC database

is an example of this model [GHNO02], providing copyright-free audio

material and annotations for research work. This approach cannot be

used for copyright audio such as the Beatles however, because it is illegal

to copy and distribute such material.
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Indirect access to copyright material

Another approach to the problem is to keep the legally owned copyright

material on a secure server and allow indirect access through software

tools and web services. Researchers can do experiments on the material

via these services instead of having to own local copies of the material

themselves. An example of an initiative that will employ this approach is

the Networked Environment for Music Analysis (NEMA) project [pi08].

Although an elegant and potentially very useful solution to the problem,

this approach may not be appropriate in all situations. This model re-

quires a guaranteed network connection to the servers and researchers

might be limited in what they can do depending on the tools, services and

content provided on the host systems.

Providing references for copyright material

It is possible to provide references to copyright material so that other

researchers may purchase the same material legally themselves. In the case

of the Beatles chord transcriptions, it is easy to provide the list of catalogue

numbers for the CD releases of the twelve albums so that other researchers

can acquire their own copy of exactly the same audio information. This

does not completely solve the problem however; the audio still needs to

be extracted from the CD somehow and the result of this process is not

completely predictable from computer to computer. Unfortunately, even

if two researchers both use exactly the same audio CD as the source, it

is not guaranteed that the audio files produced by different CD ripping

software applications (or even the same application running on different

platforms) will be accurately time-aligned with each other. Comparing

track times for the same Beatles CDs ripped on separate computers, the

times were found to differ by as much as 1838 samples (41ms) which will

cause an audible delay in terms of annotations of event onsets.



CHAPTER 7. LOCAL AUDIO FILE ALIGNMENT 182

7.2 Aligning wave files using audio fingerprints

To solve the problem highlighted in section 7.1 we employ a simple au-

dio fingerprinting technique to realign local copies of audio files ensuring

sample-accurate alignment to the original audio used to produce annota-

tions. Using this technique it is possible for other researchers to legally

obtain perfectly aligned audio files for use with the annotated data sets

while only a very small amount of meta-data (i.e. the fingerprint informa-

tion) needs to be provided by the owner of the original audio files.

7.2.1 Audio fingerprinting

Audio fingerprinting is often used in content-based retrieval of digital mu-

sic. In this application, a particular audio file can be found from a large

database of files when given a small segment of that same audio as a

search query [CBKH05, KAH+02, HK02, RHG08]. For this reason, fin-

gerprints must be produced for whole libraries of audio and must be robust

to amplitude variation, noise, time-stretching and other distortions. The

techniques used for this kind of application usually involve time-frequency

analysis in order produce small fingerprints describing the features of the

audio data.

Unlike the usual applications of audio fingerprinting, there is no need

to search a large database for a given fingerprint in order to solve our

problem. We already know which file the fingerprint belongs to; we are

simply interested in aligning the local file relative to the position of the

fingerprint data in the original audio. For this reason, we need a finger-

printing technique that does not distort time information so that we may

achieve sample-accurate alignment.

7.2.2 Fingerprint technique

The technique that we have developed uses the sign of the first backward

difference to generate fingerprint data. This simple algorithm produces a

1 or a 0 for each sample of the audio signal depending on the sign of the

difference between the current audio sample and the previous sample. For
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Figure 7.1: Signal xn with corresponding sign of first backward difference ∇n

and fingerprint function ρn(x). ρn(x) is invariant to different amplitude scalings
of xn.

a discrete time signal x, the backwards difference ∇n at time point n is

given by:

∇n = xn − xn−1 (7.1)

We may describe the sign of the first backward difference, function ρn(x),

mathematically in the following way:

ρn(x) =

{

1 if ∇n ≥ 0

0 if ∇n < 0
(7.2)

Figure 7.1 shows that ρn(x) is a binary function that tells us in which

direction the amplitude of the signal is moving. We can see that while

the signal rises in amplitude the function produces a string of ones and

while it falls, it produces zeros. A transition from 1 to 0 or from 0 to 1

denotes a change in direction. No attempt is made to track the absolute

signal amplitude so ρn(x) is invariant to different amplitude scalings of

the original signal.
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Figure 7.2: Fingerprint arrangement in original audio xn

7.2.3 Alignment of local audio files using fingerprints

To align local audio files with the originals we use two fingerprints for

each song. The first fingerprint ρ
(1)
m is used to align the local audio then

the second one ρ
(2)
m is used to check the alignment. Figure 7.2 shows the

arrangement of these two fingerprints in a song file.

If xn is our original audio signal of length N , we define the alignment

fingerprint function ρ
(1)
m for a particular song as:

ρ(1)
m = ρnA+m(x) for 0 ≤ m < M (7.3)

where nA is the index of xn at which the alignment fingerprint starts

(i.e. an offset from x0) and M is the length of the fingerprint. We define

a check fingerprint for the song, function ρ
(2)
m as:

ρ(2)
m = ρN−nC−M+m(x) for 0 ≤ m < M (7.4)

where nC is distance of fingerprint ρ
(2)
m from the end of the song in samples

(i.e. its offset from xN ).

We may now define a fingerprint correlation function Cn(x) to give a

measure of how well a fingerprint matches segments of ρn(x):

Cn(x) =
∑

m

∣

∣ρn+m(x) − ρ(1)
m | (7.5)

for 0 ≤ n < N −M and 0 ≤ m < M. If M is set to be large enough to

avoid false matches then we may assume that the following is true:

Cn(x)

{

= 0 if n = nA

6= 0 Otherwise
(7.6)

That is to say where Cn(x) evaluates to zero, the fingerprint exactly

matches that section of ρn(x) and this should only happen once across

the original audio signal at the point where n is equal to nA.
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Figure 7.3: Aligning a local audio file using fingerprint ρ
(1)
m for alignment and

ρ
(2)
m to check. In this example, nD samples will be removed from the start of yn

and nE samples will be appended at the end to align it with original signal xn.

After alignment using ρ
(1)
m , if ρ

(2)
m matches such that n2 = nC then we know the

process was successful.

Given this assumption, we may now use ρ
(1)
m to align a local audio file.

If yn is a local audio signal of length L, we can find its fingerprint function

ρ(yn) then calculate the correlation function:

Cn(y) =
∑

m

∣

∣ρ(yn+m) − ρ(1)
m | (7.7)

for 0 ≤ n < L−M and 0 ≤ m < M. The minimum value of Cn(y) marks

the section of ρ(yn) that best matches the alignment fingerprint ρ
(1)
m . It

should be noted that this value may be non-zero due to noise or distortion

such as artefacts caused by compression. As long as local signal yn is not

too heavily distorted then the minimum value of Cn(y) will still mark the

best match. We will call the index of this value n1 which can be expressed

as:

n1 = arg min(Cn(y)) (7.8)

Once n1 is determined, we must find the number of samples, nD, that

must be inserted or removed at the start of local audio yn:

nD = nA − n1 (7.9)

To align the local audio with the original audio xn we alter the start of yn

in the following way:

if nD











> 0 insert nD samples before y0

= 0 do not need to alter yn

< 0 delete samples y0 to y|nD|−1

(7.10)
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Figure 7.3 illustrates the relationship between nD, nA and n1 at the start

of a local audio signal yn. In this example nD samples will be removed at

the start in order to align yn with original signal xn.

Once yn has been aligned to the start of the original audio xn, we must

then ensure the local audio is the same length as xn. This can be done by

calculating a value nE, the number of samples that must be appended to

or removed from the end of yn:

nE = N − L + nD (7.11)

The example in figure 7.3 shows that nE samples will be appended to yn

in order to alter it to be length N .

7.2.4 Checking the alignment

With the alignment complete, let ŷn be the newly aligned version of yn.

We may now check that the alignment was successful by confirming that

fingerprint ρ
(2)
m matches ŷn at the correct position relative to the end of

the signal. To do this we calculate the correlation function Cn(ŷ) thus:

Cn(ŷ) =
∑

m

∣

∣ρN−n+m(ŷ) − ρ(2)
m | (7.12)

for M ≤ n < N and 0 ≤ m < M. Then we find the best match for

fingerprint ρ
(2)
m , n2, from the correlation function:

n2 = arg min(Cn(ŷ)) (7.13)

If n2 and nC are the same value (as is the case shown in figure 7.3) then

the fingerprint matches at the same point as it would in the original audio

signal xn and we know that ŷn is correctly aligned:

n2 − nC

{

= 0 if ŷn correctly aligned

6= 0 Otherwise
(7.14)

If the alignment fails, the software notifies the user that it was unable to

align the local audio file to the orginal.
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7.3 Testing the fingerprinting technique

The fingerprinting technique described in section 7.2.2 has been imple-

mented and tested in Matlab using the Beatles studio albums as a test

set. Figure 7.4 shows correlation functions Cn(x) and Cn(y) generated for

the first 10 seconds of the song ‘I saw her standing there’ from the Bea-

tles first album ‘Please Please Me’. The fingerprint ρ
(1)
m and correlation

function Cn(x) were generated from the original wave file that was used

for the Beatles chord transcriptions. The correlation function Cn(y) was

generated using the same fingerprint technique but the audio data was

taken from another version of the song ripped on a separate computer.

As figure 7.4a shows, the two functions are almost identical as we would

expect from the same song. However, in figure 7.4b and 7.4c we can see

that we can see that Cn(x) matches ρ
(1)
m at 200000 samples whereas Cn(y)

matches at 199300 samples (i.e. nA = 200000 and n1 = 199300). This

shows us that the two files are out of line by 700 samples (approximately

16ms) at the beginning so to align them we must insert that many extra

samples at the start of the local audio file.

7.3.1 An alignment tool for the Beatles album collection

We have developed a set of Matlab scripts to automatically align local

wave files given the correct fingerprint data. To evaluate the system we

used the Beatles studio albums as a test set.

Fingerprint length and position

We experimented with different lengths of fingerprints. Figure 7.5 shows

the number of alignment failures (i.e. the number of songs that failed the

fingerprint ρ
(2)
m check after alignment) against fingerprint length. We found

that for prints more than 180 samples in length we could align all the 180

songs in the Beatles studio album collection successfully. For the publicly

available alignment code we chose to use 200 samples (4.5ms at 44.1kHz

sample rate) for the fingerprint length in order to provide a margin of

error.
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Figure 7.5: The number of alignment failures (from a total of 180 files) for
different fingerprint lengths.

To make sure that there was sufficient room to accommodate any rea-

sonable difference in start times between local and original audio files, the
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length of the the start time offset nA was set to 200000 samples (about

4.5 seconds into the song). The end time offset nC was set to be 800000

samples (about 18 seconds) from the end of the song. This is a larger

value than nA because we found that for smaller values the check fin-

gerprints were being generated from the noise or the silence at the end

of songs where there were long fade outs or large gaps between tracks1.

This made the alignment checking results unstable because the assump-

tion from equation 7.6 does not hold for noise or long sections of silence,

causing false positives in the fingerprint matching.

7.3.2 Fingerprint data files

We generated a fingerprint file for each song in the collection. The finger-

print information may easily be stored as a string of ones and zeros in a

standard text file. The fingerprint files contain the following information:

• metadata about the song: song title and album title

• length of the original song file in samples (N )

• start time alignment offset (nA)

• end time check offset (nC)

• the fingerprint data for fingerprints ρ
(1)
m and ρ

(2)
m

Each fingerprint file is around 600 bytes long so the total size of all the

files for the Beatles collection comes to 155kB and reduces to 82kB when

zipped. An example of the text format for a fingerprint file is shown in

table 7.1.

Padding extra samples

When extra samples need to be inserted into the local audio for alignment,

we have to decide what sample values to insert. For a single wave file the

only option is to pad any extra samples with zeros. For large collections

1In actual fact nC could have been set at 400000 (9.1 seconds) except for one song, ‘The
End’ from the album ‘Abbey Road’ which has a 17 second silence at the end.
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Table 7.1: Example alignment fingerprint file

*** Beatles transcription alignment fingerprint file ***

Filename: 01_-_I_Saw_Her_Standing_There.wav

Album: 01_-_Please_Please_\ame

Samples: 7752960

Offset: 200000

Fingerprint:

00001110111000111111111000....00000011011100000111111100

Checkoffset: 800000

Checkprint:

01111111110000000001111110....00011110000011110000001111

such as the Beatles on the other hand, we have the option of taking extra

samples required at the start of yn from the end of the previous track on the

album and extra samples at the end from the start of the next track. This

technique means that songs which segue into each other (quite common on

the later Beatles albums) will not contain big discontinuities in their wave

files which would be caused by zero padding. This approach is obviously

preferable to zero padding but is only safe if it can be guaranteed that the

CD ripping process did not insert extra samples at the beginning or end

of local audio tracks itself.

Practical implementation

Calculating the fingerprint correlation functions Cn(y) and Cn(ŷ) is time

consuming. To make the alignment and checking processes a little more

efficient, we do not need to evaluate them over the whole wave file. For

the alignment fingerprint ρ
(1)
m we calculate Cn(y) for the first 10 seconds

of the song file. This is done because if ρ
(1)
m cannot be found in the first

10 seconds of the file it is probably safe to assume that the local audio is

not the same version of the song as the original. For checking the second

fingerprint ρ
(2)
m , we already know exactly where it should be so we only

need to evaluate Cn(ŷ) for a small window around sample ŷN−nC−M . If

ρ
(2)
m does not match at the expected position then we know the alignment

has failed. With this implementation, all 180 songs can be aligned and
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checked successfully in 20 minutes on our main test machine2.

7.3.3 Testing

We tested the alignment system on several versions of the Beatles audio

ripped from the original CDs on different computer systems. The align-

ment process completed successfully on all 180 songs for standard 44.1kHz

wave files. We also tested the system on mp3 compressed versions of the

Beatles files at the fourteen different bit rates supported by the LAME

open source mp3 encoder [lam]. Although our fingerprinting technique

works in the time domain, we found that the algorithm could successfully

align the whole collection for all the bitrates tested, the lowest of which

was 32kbps.

2A 3GHz Intel Core Duo PC with 4GB RAM running Ubuntu Linux 8.04.



Chapter 8

Chord recognition evaluation

methods

With many researchers working in the chord recognition area it is neces-

sary to compare results fairly with those of peers to clearly establish the

state of the art. With so many different algorithms being developed in

the community it is sometimes difficult to compare like with like in terms

of the results they produce. The work reported in this chapter focuses on

facilitating the rigorous evaluation of chord recognition algorithms.

In this chapter we examine the current evaluation techniques in use and

propose a new approach to these techniques that will allow more general

and fair comparisons to be drawn between algorithms.

Contribution

The main contributions we make in this chapter are:

• Formal treatment of chord recall using parameterised ordered set

matching functions.

• Introduction of dictionary based evaluation.

• Development of a new chord sequence likeness measure.

• Proposal of an improved segmentation quality measure.

• Development of a transparent evaluation process separating recog-

niser frame rate from evaluation frame rate.

192
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8.1 Chord symbol recall

The most obvious evaluation criterion for chord recognition is how often

we can identify the correct chord. In much of the current research [PP08,

LS08, RK08, VPM08, WDR09, OGF09c, KO09c, WEJ09, RUS+09], the

most common performance metric that is used for this is what we shall

call chord symbol recall, also known sometimes as the average overlap

score [OGF09c] or relative correct overlap [Mau10]. This is a measure of

what proportion of the time chords in the annotated ground truth chord

sequence have been identified correctly in the machine estimated sequence.

If both sequences comprise a number of finite length time segments, each

segment corresponding to one chord symbol, the chord recall is given by

R =
|estimated segments ∩ annotated segments|

|annotated segments| (8.1)

where | · | represents the duration of a set of chord segments. That is,

the summed duration of time periods where the correct chord has been

identified, normalised by the total duration of the evaluation data. We

may calculate the chord recall in two ways: one is to sample the chord

sequences into a set of uniform length chord symbol frames and calculate

the frame-based chord symbol recall ; the other is to sum the durations of

the continuous sections of estimated segments that correctly match the

annotation and calculate the segment-based chord symbol recall.

8.1.1 Frame-based chord symbol recall

For a particular audio file split into a number of analysis frames, we may

define the frame-based chord recognition recall R as:

R =
NC

NT

(8.2)

where NT is the total number of analysis frames and NC is the number

of frames where the correct chord was identified. This measure is what

Oudre [OGF09c] refers to as the ‘average overlap score’ and has been used

by many researchers in the community including the author [OGF09c,

Lee08, HS05] for chord symbol recall evaluation. It has been a popular
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Figure 8.1: Calculating the frame-based recall measure for a set of analysis
frames. There are twenty frames in total in this example, fifteen of which are
correct matches so the recall score is R = 15

20 = 0.75.

measure because most chord recognition algorithms from recent years have

themselves been frame-based so it is common to sample the annotated

ground truth data at the same frame rate as the recogniser to perform the

recall evaluation.

A visual representation of the frame-based recall measure can be seen

in figure 8.1 where fifteen out of twenty frames are correct matches giving

a recall value of 15
20

= 0.75. The recall value provides an intuitive metric

between 0 as the worst case and 1 as the best case for chord recognition.

Using a parameterised matching function for recall calculation

In chapter 5 we introduced a chord matching function MT for comparing

two chords X and Y which we recall from equation 5.25 takes the form

MT (X, Y) =

{

1 if X matches Y

0 otherwise

where T denotes the comparison method used to evaluate the result of the

matching function.

Using matching function MT , it therefore follows that to evaluate the

frame based recall for a sequence of machine estimated chord symbols

E compared to an annotated sequence A (where both sequences are NT
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Figure 8.2: Segments of estimated sequence E compared with hand annotated
sequence A.

frames in length), the number of correct matches NC may be expressed as

NC =

NT−1
∑

n=0

MT (An, En) (8.3)

and we may therefore restate the recall equation for sequences A and E,

parameterised by T as

RT (A,E) =

∑NT−1
n=0 MT (An, En)

NT

(8.4)

8.1.2 Segment-based chord symbol recall

The accuracy of the frame-based recall calculation is limited by its frame

rate. As the frame rate increases, accuracy can be improved but the com-

putation time required to perform the evaluation also increases because

there are more frames to evaluate matches for. To solve this problem,

we may calculate the chord symbol recall as a continuous time function

by considering matches between overlapping segments in the two chord

sequences instead of sampling them into discrete frames. In the limit, as

frame length approaches zero, both calculations would produce the same

result.

For this measure we consider hand annotated sequence A as a sequence

of segments SA and machine estimated sequence E similarly as segments

SE as shown in figure 8.2. Each segment is of finite length and contains

one chord symbol. For any segment Sj
A in the annotated sequence we find

all the corresponding estimate segments Si
E for which |Si

E ∩ Sj
A| 6= 0 and
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calculate the matching function MT (Si
E, Sj

A). The durations of overlapping

segments which are correct matches are summed together to give τC which

is normalised by the total duration τT thus

RT (SE, SA) =
τC

τT

=

∑

S
j
A

∑

Si
E
|Si

E ∩ Sj
A|.MT (Si

E, Sj
A)

∑

S
j
A
|Sj

A|
(8.5)

This measure is equivalent to Mauch’s relative correct overlap [Mau10].

8.1.3 Defining a correct match

The chord symbol recall metric is a good general way of measuring chord

recognition performance but to use it we must be careful to define what

is meant by a ‘correct match’ between a hand-transcribed chord and a

machine-estimated one. How we choose to calculate MT will have a large

effect on the recall result.

In section 6.6 we saw that the Beatles chord transcription collection

contains 14621 individual chord labels. Depending on the method used to

count, those 14621 chord labels comprise 406 unique chord symbols which

in turn comprise 66 unique chordtypes1. The largest number of chords

that can be recognised by the algorithms from the MIREX09 competiton

that are studied in this work is twelve chord types [RRHS09a] (see ta-

ble 8.4 later in the chapter for a summary of the chord vocabularies of

the MIREX09 algorithms studied in this work). The majority of current

algorithms can recognise less than five and many still deal only with ma-

jor and minor triads. This poses the question: how can we make a fair

comparison between the machine estimated chords produced by our algo-

rithms with those from the manually annotated transcription collection

when the chord vocabularies of each differ so much?

Many current chord recognition algorithms produce triad chords for all

of their estimates [PP08, Bel07, WDR09, WEJ09, RUS+09, RK08] with

some exceptions [OGF09c, Mau10, RRHS09a] that also include seventh

chords thus producing a mixture of triads and tetrads in their estimates.

As discussed in section 6.6.1, the Beatles transcription collection contains

1These values are the counts for Ms and M
′
q taken from tables 6.4 and 6.6 respectively.
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chord symbols with cardinalities ranging from zero (the ‘N’ chord) to six

(‘A:9(11)’ in Tell me why from ‘A Hard Day’s Night’). Given that the

cardinalities of machine-estimated chords are therefore likely to differ from

that of the transcribed chords we wish to evaluate them against, we must

find a fair way to compare them that takes this into account.

MIREX Chord detection evaluation

Many recent pieces of research [OGF09c, KO09c, WDR09] have adopted

the evaluation method used for the MIREX chord detection task [mirb]

so that they can compare their algorithm against the evaluation results

which provide a good performance baseline. The MIREX08 evaluation

used the Beatles transcription collection as its ground truth for evaluation

and MIREX09 used the collection again plus additional annotated files

including songs by Queen and Zweieck provided by Mauch et al [MCD+09].

MIREX08 dealt only with the recognition of major and minor chords

and the evaluation system that year mapped all chord shorthands (defined

in section 4.2.4 table 4.2) to either major or minor categories as follows:

major: maj, dim, aug, maj7, 7, dim7, hdim7, maj6, 9,

maj9, sus4, sus2, others

minor: min, min7, minmaj7, min6, min9

Major family chords were mapped to the major triad and minor family

chords mapped to the minor triad. All other chord qualities were also

mapped to the major triad.

This mapping provides an easy way to reduce the evaluation problem

to simply comparing major or minor triad categories so there is no need

to worry about chord cardinality. However, there are some problems with

approaching the evaluation in this way. Augmented, suspended and dimin-

ished chords (‘aug’, ‘sus2’, ‘sus4’, ‘dim’, ‘dim7’ and ‘hdim7’) are mapped

to the major category. In the case of the augmented triad this could be

considered a reasonable mapping because its interval list (1,3,#5) con-

tains a major third. However, the suspended chord types ‘sus2’ and ‘sus4’

do not contain a major or minor third interval and are therefore no more

major than they are minor. To put them in one category or the other is
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a compromise and this will unfairly favour recognition algorithms with a

bias towards producing major labels when a suspended chord is present in

the audio. Furthermore, the diminished chord types are arguably closer

to minor than the major chord because they contain a minor third. Map-

ping them to major will also influence the evaluation results negatively as

we might reasonably expect a major-minor chord recognition algorithm to

return a minor result when a diminished chord is present in the audio.

For MIREX09, some of these issues were addressed with the mappings

for the major-minor evaluation system2 being altered to:

major: maj, aug, maj7, 7, maj6, 9, maj9, sus4, others

minor: min, min7, minmaj7, min6, min9, dim, dim7, hdim7, sus2

Again, any chord that does not fit into the seventeen shorthand categories

is mapped to major by default. The diminished chords are now mapped

more suitably to minor and the suspended second chord ‘sus2’ has also

been remapped to minor. The decision to move ‘sus2’ to minor may be

supported by the argument that its intervals (1,2,5) are closer to minor

(1,b3,5) than major (1,3,5). In doing this it evens out the problem

of favouring biased algorithms to a certain extent because the suspended

chords are now split between the two categories. However, the problem

still remains that chords which are neither major or minor family get

mapped to one or the other to enable evaluation.

We may express the MIREX chord evaluation algorithm formally in

terms of matching function MT . Let mapYY(X) be the MIREX chord

mapping function for year YY that maps chord X to the major or mi-

nor category. Major category chords return 0 and minor category chords

return 12 so the mapping functions for MIREX08 and MIREX09 are

map08(X) =

{

12 if QX ⊆ {"min"}
0 otherwise

(8.6)

map09(X) =

{

12 if QX ⊆ {"min"|"sus2"|"dim"|}
0 otherwise

(8.7)

2Many thanks to Mert Bay for providing the MIREX chord mapping script to check these
details.
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Table 8.1: Summary of ordered chord matching functions from chapter 5.

Ms Chord symbol string matching Mq Chordtype string matching

M−→
v Ordered pnset matching M−→

i
Ordered rlset matching

M−→
p Ordered pcset matching M−→

r Ordered rcset matching

Now let mx(X) be a function that transforms chord symbol X into an

integer representation such that major family chords map to the values 0

to 11 (with respect to C:maj = 0), minor chords map to values 12 to 23

and the non-chord ‘N’ mapping to 24. This may be expressed as

mxYY(X) =

{

pRX
+ mapYY(X) if X 6= "N"

24 otherwise
(8.8)

where pRX
is the pitchclass corresponding to root pitchname RX (see equa-

tion 5.23). We may therefore state the MIREX08/09 matching function

Mmx as

MmxYY
(X, Y) =

{

1 if |mxYY(X) − mxYY(Y)| = 0

0 otherwise
(8.9)

and we can then calculate NC and hence Rmx using this function as de-

scribed in equation 8.3.

Using an ordered set matching function for recall calculation

To solve the problems inherent in the chord mapping approach of recall

evaluation algorithms like those used for MIREX08/09, we propose the use

of ordered set matching functions as described in chapter 5 (a summary

of these can be seen in table 8.1). As discussed before, there are multiple

ways of expressing the same chord using the chord syntax described in

chapter 4, so the direct string matching function Ms is not suitable for use

in the recall evaluation. However, the pnset and pcset matching functions,

M−→
v and M−→

p , do not suffer from the same problem and are therefore well

suited to this task.
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Table 8.2: Comparison of different chord matching functions including results
for MIREX08/09 chord mapping, ordered pnset and pcset matching functions
and cardinality limited pcset matching functions.

Example chord X chord Y Mmx08
Mmx09

M−→
v M−→

p M−→
p ,3

M−→
p ,2

1 C:maj C:maj 1 1 1 1 1 1
2 C:min C:min 1 1 1 1 1 1
3 C:dim C:dim 1 1 1 1 1 1
4 C:aug C:aug 1 1 1 1 1 1
5 C:maj C:min 0 0 0 0 0 0
6 C#:maj Db:maj 1 1 0 1 1 1
7 C:dim7 C:(1,#2,#4,6) 1 0 0 1 1 1
8 C:maj C:(1,#2,#4,6) 1 1 0 0 0 0
9 C:maj C:(1,b3,5) 1 1 0 0 0 0
10 C:min C:(1,b3,5) 0 0 1 1 1 1
11 C:maj C:maj7 1 1 0 0 1 1
12 C:dim C:sus2 1 1 0 0 0 0
13 C:sus2 C:sus4 1 0 0 0 0 0
14 C:min C:dim 0 1 0 0 0 1
15 C:min C:aug 1 0 0 0 0 0

Table 8.2 shows the results of several different matching functions on

various pairs of chords. We will initially look at the first four columns

which contain values for the MIREX matching functions Mmx08
and Mmx09

plus the ordered pnset and pcset matching functions M−→
v and M−→

p . We

see that in the first four examples (rows 1 to 4), the two chord symbols

being compared are identical and all four matching functions output 1 as

expected. Likewise, in row 5 the chords compared are major and minor

triads so in all cases, the matching functions produce 0.

In row 6, the chords have different root pitchnames but are enharmonic

equivalents. Here, functions Mmx08
, Mmx09

and M−→
p output a 1 because

they are blind to enharmonic spellings of the root whereas M−→v outputs 0

because it compares pitchnames.

Row 7 shows two chords that are alternative interval spellings of the

same set pitchclasses relative to the root. M−→p produces a 1 because the

pcsets of both chords are (0,3,6,9). However, M−→
v outputs 0 in this case

because the intervals of a diminished seventh are (1,♭3,♭5,♭♭7) and will

therefore evaluate to a different pnset compared with (1,♯2,♯4,6). It is
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interesting to note the values of functions Mmx08
and Mmx09

for this ex-

ample; Mmx08
produces a 1 because, using mapping function map08 (equa-

tion 8.6), the ‘dim7’ chordtype is mapped to the major category and any

chord spelled with an interval list instead of a shorthand label will be

also mapped to the major category regardless of its actual tonal qualities.

Function Mmx08
on the other hand produces a 0 because mapping function

map09 (equation 8.7) maps ‘dim7’ to minor while again treating interval

list spellings as major. The unintended consequence of mapping chords

to categories in this way are demonstrated more clearly in row 8 however

because both Mmx08
and Mmx09

consider interval list spellings to be the

same as the major chord label which is clearly an incorrect match in this

case.

Rows 9 and 10 illustrate another problem of ignoring the interval list

representation of chords. In row 9, a major triad is compared with a minor

triad that has been spelled as an interval list. Both MIREX functions

consider these to be the same whereas the pnset and pcset comparisons

show that they are in fact different. The problem is compounded in row

10 where a correct match between a minor triad shorthand and minor

triad interval list are evaluated as incorrect matches by the chord mapping

functions.

Row 11 shows us a potential deficiency in the standard ordered match-

ing functions. Where the MIREX functions consider ‘maj’ and ‘maj7’

chord types to be correct matches, M−→
v and M−→

p consider them differ-

ent because they are of different cardinality. Depending on the algorithm

being evaluated, this may not be a desirable result.

Rows 12 through 15 show the effects of the mappings where different

chords are compared. In all cases, M−→
v and M−→

p produce 0 but the MIREX

functions produce varying results. In row 12, both MIREX functions con-

sider ‘dim’ and ‘sus2’ to be a correct match. In row 13, Mmx08
considers

‘sus2’ and ‘sus4’ to be a correct match but Mmx09
considers them to be

different. In rows 14 and 15, the two functions disagree again on whether

‘min’ matches ‘dim’ or ‘aug’.

We can see from the results in table 8.2 that in a situation where

correct enharmonic spelling is required, pnset matching is desirable. In
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automatic chordal analysis of symbolic music where enharmonic spellings

are known, such as [PB02], this would be a good method to use. However,

for chord recognition from audio, the algorithms under evaluation cannot

distinguish between different absolute enharmonic spellings3 so we assert

that an ordered pcset matching function is the best method to use in recall

evaluation calculation.

Cardinality-limited recall evaluation

In row 11 of table 8.2 we saw that the straight forward matching function

M−→
p evaluated the chords ‘C:maj’ and ‘C:maj7’ as an incorrect match

because their cardinalities differ. This is a correct result but in many

cases the chord recognition algorithm under evaluation may only be able

to produce triad chord estimates so we may wish to consider ‘maj’ and

‘maj7’ chord types as a correct match in this situation.

In section 5.4 we introduced the cardinality parameter M to the match-

ing function MT,M . This allows us to consider two chord symbols a correct

match if a particular subset of the chords’ elements are the same. Using the

matching function MT,M , it therefore follows that to evaluate the frame-

based recall for an annotated frame sequence A compared to an estimated

sequence E (where both sequences are NT frames in length), the number

of correct matches NC is

NC =

NT−1
∑

n=0

MT,M(An, En) (8.10)

and the recall equation becomes parameterised by T and M

RT,M(A,E) =

∑NT−1
n=0 MT,M(An, En)

NT

(8.11)

and likewise, the segment-based recall becomes

RT,M(SE, SA) =

∑

S
j
A

∑

Si
E
|Si

E ∩ Sj
A|.MT,M(Si

E, Sj
A)

∑

S
j
A
|Sj

A|
(8.12)

3Some algorithms may be able to infer correct relative spellings between chords based on
key analysis prior to chord recognition but even in this case the algorithm still would not be
able to decide whether the original key was D♯ or E♭.



CHAPTER 8. CHORD RECOGNITION EVALUATION METHODS 203

In table 8.2, the two rightmost columns show the results for the car-

dinality limited matching functions M−→
p ,3 and M−→

p ,2 which will effectively

compare the triad and dyad subsets of chords respectively. We can see

that these two functions produce exactly the same results as M−→p in all

but two rows. In row 11, both functions consider ‘maj’ and ‘maj7’ to be

correct matches because they share the same cardinality-2 and cardinality-

3 pcsets:

{−→p "C:maj"}3 = {−→p "C:maj7"}3 = {0, 4, 7} (8.13)

so it follows that

{−→p "C:maj"}2 = {−→p "C:maj7"}2 = {0, 4} (8.14)

We should also note that in row 14, the results for M−→
p ,3 and M−→

p ,2 differ.

This is because the ‘min’ and ‘dim’ chord types are different triads but

they both contain a minor third interval

{−→p "C:min"}3 = {0, 3, 7}
{−→p "C:dim"}3 = {0, 3, 6}

∴ {−→p "C:min"}3 6= {−→p "C:dim"}3 (8.15)

but

{−→p "C:min"}2 = {−→p "C:dim"}2 = {0, 3} (8.16)

By defining the cardinality of the evaluation in this way, any chord from

the transcription collection can be compared with any machine-estimated

chord and a reliable evaluation of a match can be made.

Another useful property of using this system is that we can run several

recall evaluations on our recognition results using different parameters

which can give us useful information about the algorithm performance

such as how good it is at identifying the root or the first interval correctly

compared to its triad recognition. This also allows true ‘apples to apples’

comparisons between different algorithms to be made possible. For exam-

ple, if two researchers write recognition algorithms that can only produce

triad estimates then a cardinality-3 recall calculation is a suitable way of

comparing them. If one researcher then writes a tetrad recognition algo-

rithm, they may wish to evaluate it with a cardinality-4 recall calculation
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to see how the algorithm performs on tetrads. However, if they wish to

compare the new algorithm against the triad algorithms, they can also

run a cardinality-3 evaluation to compare the algorithms directly.

Treatment of bass intervals

Another chord property we may wish to include in our evaluation is in-

version (discussed in section 5.5). Using pcset comparison this will be

achieved automatically because, by definition, the ordering of the pcsets

will naturally reflect the inversion of a chord. Caution must be exercised

using this kind of approach however because it will lead to issues with the

evaluation of root identification accuracy. To illustrate, we recall the ex-

ample in section 4.2.3 where chords C:min7/b3 and Eb:maj6 were shown

to be equivalent in terms of their constituent pitchnames. In a system

that considers inversions, these two chords will obviously evaluate as a

correct match:

−→p "C:min7/b3" = −→p "Eb:maj6" = {3, 7, 10, 0} (8.17)

therefore

M−→
p ,M("C:min7/b3", "Eb:maj6") = 1 (8.18)

This is obviously the correct result for a system that compares ordered

pcsets but now we have the situation where two chord symbols with com-

pletely different root pitchnames (i.e. not enharmonic equivalents) can be

considered to be a correct match.

The majority of chord recognition algorithms currently focus on root

and chord type recognition. Few can recognise inversions so for the re-

call evaluations on these algorithms it is sensible to use the bass-blind

matching function M
′−→
p ,M

(see equation 5.78). This means that if a chord

recognition algorithm outputs a chord symbol estimate with the correct

root and chordtype but the annotated chord is also marked as an inversion,

it will still be recognised as a correct match.

In an evaluation system we now have a choice of methods for calculat-

ing the chord symbol recall. By including bass intervals we may compare

different inversions of chords or we may use a bass-blind comparison in-

stead for correct root identification. However, there is nothing to stop



CHAPTER 8. CHORD RECOGNITION EVALUATION METHODS 205

Table 8.3: Mapping of chord shorthands for an inversion-blind, cardinality-3
evaluation of a major-minor algorithm. Mappings are shown for major and
minor triads along with a third group that are unmatchable.

Category Chord types

major: maj, maj7, 7, maj6, 9, maj9
minor: min, min7, minmaj7, min6, min9

unmatchable: aug, dim, dim7, hdim7, sus2, sus4

us calculating more than one evaluation result by using different chord

matching parameters (which should be clearly stated) for each evaluation.

In fact we would argue that this is a very good approach for showing

information about different aspects of an algorithm’s performance.

8.1.4 Dictionary-based recall evaluation

Using ordered pcset comparison with specified parameters for maximum

cardinality and treatment of inversion we can now successfully compare

any two sets of chord symbols to evaluate the recall measure. However,

this approach still does not completely solve the problems caused by the

differing chord vocabularies between the machine estimates and hand an-

notated transcriptions. Table 8.4 shows the vocabularies of the different

chord recognition algorithms that were entered for the MIREX09 chord

detection (untrained) evaluation. These algorithms will be evaluated in

section 9.

If a recognition algorithm can only recognise major or minor triad

chords then we know a priori that there is a large set of chords that will

never match either of them for any cardinality greater than 1. Given that

the algorithm is blind to any chord types other than major and minor,

should we necessarily penalise it for being unable to recognise chords it

was not designed to ‘see’ to start with?

Considering a simple major-minor triad recognition algorithm; for an

inversion-blind, cardinality-3 evaluation, the seventeen shorthand chord

types will be mapped as shown in table 8.3. It should be noted that this

table does not include the very large set of all other possible non-shorthand
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Table 8.4: Chord vocabularies for MIREX09 (untrained) chord recognition algorithm entries plus two extra chord recognition
algorithms by the author marked with an asterisk*

Algorithm Abstract Author(s) Chord vocabulary

ch aes * Harte N, maj, min, aug, dim

ch hcdf [HS09] " N, maj, min, aug, dim

ch hcdfa * " N, maj, min, aug, dim

de [Ell09] Ellis N, maj, min

ko1 [KO09a] Khadkevich, Omologo N, maj, min

ko2 " " " N, maj, min

md [MND09a] Mauch, Dixon N, maj, min, dim, 7, maj6, maj7

ogf1 [OGF09a] Oudre, Grenier, Fevotte N, maj, min

ogf2 [OGF09b] " " " N, maj, min, 7

pp [PP09] Papadopoulos, Peeters maj, min

pvm1 [PVM09] Pauwels, Varewyck, Martens maj, min, dim, aug

pvm2 " " " " maj, min, dim, aug

rrhs1 [RRHS09a] Rocher, Robine, Hanna, Strandh N, maj, min

rrhs2 " " " " " N, maj, min

rrhs3 " " " " " N, maj, sus4, aug, 7, sus2, maj(9),

min, min7, dim, min(9), dim7
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chord types that would also be mapped into these three groups for such

an evaluation.

What should we do with the chords that are mapped into the unmatch-

able category? We propose that if we know in advance that they cannot

ever be matched then frames containing these chord types should be ex-

cluded from the recall evaluation and the number of omitted frames should

be recorded along with the recall result. This will provide a more accu-

rate idea of the algorithm’s performance than an evaluation that includes

a large number of frames that can never possibly give correct matches. It

will also give a good indication as to the suitability of a particular song for

evaluation purposes. Pardo and Birmingham [PB02] make a similar argu-

ment in their approach to evaluating their symbolic chord analysis system

where chord symbols that are not part of the algorithm’s vocabulary are

excluded from the evaluation.

Although the recall evaluation will exclude these unmatchable chord

types, it will still be informative to analyse the confusion between the tran-

scribed and machine-estimated chord symbols for the unmatchable frames

even though they are not relevant to the quantitative recall performance

of the algorithm.

Let Dα be a set of chordtype strings (as defined in section 5.1, equa-

tions 5.1 and 5.2) that defines the chord vocabulary for a given recognition

algorithm α. We will call Dα the dictionary for that algorithm. For the

major-minor recognition algorithm (which we will call algorithm 0 here),

the dictionary is therefore:

D0 = {"maj", "min"} (8.19)

If An is the transcribed chord symbol for frame n in a cardinality-M

pcset recall evaluation for algorithm α then we will define a pcset inclusion

function I−→p ,M,Dα
(An) such that

I−→p ,M,Dα
(An) =

{

1 if ∃ QX ∈ Dα such that M−→r ,M

(

An, X
)

= 1

0 otherwise

(8.20)

i.e. if the chordtype QAn
of symbol An matches one of the chordtypes QX in

the dictionary Dα at the given cardinality M then frame n will be included
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in the recall result; otherwise it should be excluded. We may also define

a pnset inclusion function I−→v ,M,Dα
in the same way:

I−→v ,M,Dα
(An) =

{

1 if ∃ QX ∈ Dα such that M−→
i ,M

(

An, X
)

= 1

0 otherwise

(8.21)

To illustrate, if we use a cardinality-3 pcset evaluation on algorithm

0, a frame containing a transcribed ‘F:sus4’ chord will be excluded from

the results because chordtype ‘sus4’ is not a member of dictionary D0:

∀ QX ∈ D0 M−→
r ,3("F:sus4", X) = 0 (8.22)

therefore

I−→p ,3,D0
("F:sus4") = 0 (8.23)

However, a transcribed ‘Gb:7’ chord would be included in the evaluation

because at cardinality-3 it is equivalent to the ‘maj’ chordtype i.e.

∃ QX ∈ D0 for which M−→
r ,3("Gb:7", X) = 1 (8.24)

so

I−→p ,3,D0
("Gb:7") = 1 (8.25)

Let us consider another recognition algorithm that can detect only

major, minor and major-seven chords, which we will call algorithm 1. We

may define its dictionary as

D1 = {"maj", "min", "maj7"} (8.26)

For this algorithm, a frame containing a transcribed ‘F:sus4’ will still be

excluded from the result for any cardinality greater than 1. However, while

the ‘Gb:7’ will be still included for a cardinality-3 evaluation, it will be

excluded for cardinality-4 because the three chordtypes in the dictionary

do not match the ‘7’ chordtype for this cardinality

∀ QX ∈ D1 M−→r ,4("Gb:7", X) = 0 (8.27)

so

I−→p ,4,D1
("Gb:7") = 0 (8.28)
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but

I−→p ,3,D1
("Gb:7") = 1 (8.29)

Using this dictionary-based evaluation, we may calculate the number of

frames NE of annotated sequence A that will be included in the evaluation

in the following way

NE =

NT−1
∑

n=0

IT,M,Dα
(An) (8.30)

We must also alter the calculation of NC to avoid possible problems caused

by using a dictionary that is a subset of the chord vocabulary for the al-

gorithm under test. This is likely to be the case when comparing several

different algorithms and choosing one common dictionary to evaluate them

with. In this case we wish to exclude non-dictionary chords in the esti-

mated sequence from the summation of NC:

NC =

NT−1
∑

n=0

MT,M(An, En).IT,M,Dα
(En) (8.31)

so the frame-based recall RT,M,Dα
between annotated sequence A and

machine-estimated sequence E for cardinality-M and dictionary Dα where

T ∈ {−→v ,−→p } becomes

RT,M,Dα
(A,E) =

NC

NE
=

∑NT−1
n=0 MT,M(An, En).IT,M,Dα

(En)
∑NT−1

n=0 IT,M,Dα
(An)

(8.32)

and likewise the segment-based chord symbol recall becomes

RT,M,Dα
(SE, SA) =

τC

τE
=

∑

S
j
A

∑

Si
E
|Si

E ∩ Sj
A|.MT,M(Si

E, Sj
A).IT,M,Dα

(Si
E)

∑

S
j
A
|Sj

A|.IT,M,Dα
(Sj

A)

(8.33)

It is important to note that we are now no longer evaluating across

the whole hand annotated ground truth, but a subset thereof specified by

the dictionary Dα. Because of this, it is important that we make a record

of proportion of material discarded as ‘non-dictionary’. For frame-based

recall calculations the proportion of non-dictionary frames is given by

1− NE

NT
and for segment-based recall it is the proportion of non-dictionary

segment duration 1− τE
τT

. Figure 8.3 shows how dictionary matching could

be used on the original chord symbol recall example from figure 8.1 where
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Hand

Transcription

Machine

estimates

Correct  

match?

time frames

C:maj

C:maj

G:7

G:7

F:maj

F:majD:7

1 1 1 1 1 1 1 - - - - - - 0 0 1 1 1 1 1
0 5 10 15 20

II (A) = 0
T,M,Da

II (E) = 0
T,M,Da

Figure 8.3: Evaluating the chord symbol recall using a dictionary that excludes
the X:7 chord type.

the recall was calculated as 0.75. In the dictionary example, the ‘X:7’

chord type is not in the dictionary thus IT,M,Dα
(An) = 0 for the frames

in the annotation that contain ‘G:7’ and are therefore discarded from the

summation of NE . IT,M,Dα
(En) = 0 for the ‘G:7’ and ‘D:7’ chords in the

estimated sequence so these are discarded from the summation of NC. In

this example, the recall value would be 12
14

= 0.86 which is higher than

before but we must remember that six frames are discarded so only 70%

have actually been used in the evaluation.

This approach to recall evaluation effectively treats the annotated song

data as a collection of individual test cases for an algorithm i.e. each dif-

ferent chord symbol and the audio data associated with it is an individual

test. By specifying the dictionary for a given algorithm we decide which

test cases to include from the collection. The algorithm should still be

run on the whole audio file but we can then choose how to evaluate the

resulting machine estimated chord sequence depending on the dictionary

we define for it.

A good example of where this approach is very useful in practice is

evaluating a song such as ‘Mr Moonlight’ from the album Beatles for sale.



CHAPTER 8. CHORD RECOGNITION EVALUATION METHODS 211

Table 8.5: Chord type statistics for the ‘Mr Moonlight’ Beatles transcription.
The song is 157.2 seconds long and the transcription contains 100 symbols.

Chord type Symbol frequency Aggregate time % total time

N 2% 4.57s 2.9%
X:maj 56% 98.11s 62.4%
X:sus4 33% 31.36s 19.9%
X:min 1% 7.52s 4.8%
X:7 8% 15.64s 9.9%

Table 8.5 shows the distribution of chordtypes in terms of symbol fre-

quency and aggregate duration for the song4. For this song, 33% of the

transcribed symbols are chord ‘F#:sus4’ accounting for just under 20%

of the total song duration. All the other chord symbols in the transcrip-

tion are types that will be mapped into major or minor categories for a

cardinality-3 evaluation but ‘F#:sus4’ will be unmatchable.

Suppose the example algorithm-0 produces 10ms frames and can suc-

cessfully detect a major or minor chord with 70% accuracy for audio that

is known to contain a major or minor chord type. If we run this algo-

rithm on ‘Mr. Moonlight’ we will have a total of NT = 15720 estimate

frames. If we evaluate the frame-based recall using a cardinality-3 pcset

matching function then we already know that 20% of the total number of

frames (i.e. the 3144 frames for which An = ‘F#:sus4’) cannot possibly be

matched so we choose to exclude them; thus NE = 15720 − 3144 = 12576

frames. If the algorithm achieves 8803 correct matches then, using the

dictionary based evaluation, the recall will be R−→
p ,3,D0

= 8803
12576

= 0.7 as we

would expect. However, if we calculate the recall without excluding the

unmatchable chords, the recall value will be R−→p ,3 = 8803
15720

= 0.56 which

is a significantly worse result. It should be noted that ‘Mr Moonlight’ is

unusual in the collection for its high percentage of ‘sus4’ chords which

makes it a good example here but it is not at all exceptional in contain-

ing chords which most algorithms still cannot recognise. For most songs

in the collection, the effect will be less pronounced but, as the example

4By coincidence, the total number of chord symbols in the transcription for this song is
100 so the chord frequencies can be read directly as percentages.
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demonstrates, it is definitely an issue that should be taken into account.

8.2 Chord sequence likeness measure

The frame-based recall measure R is an ‘all or nothing’ approach to evalu-

ating the accuracy of chord symbol recognition. Each pair of chord frames

(An,En) is either classified as a match, in which case it contributes to the

final score, or it is deemed not to be a match and is ignored. This measure

could be considered to be too polarised to give a full picture of the recog-

nition system performance and, in discussions on the MIREX09 chord

detection track wikipage [mirc], it has been suggested that an alternative,

linear measure be found that shows how ‘close’ chords are to each other.

Such a measure would be based on how many pitchnames or pitchclasses

were correctly identified for each frame instead of whether the chords were

an exact match.

One way to do this is to look at the shared tones in the two chord

frames An and En by using the chord likeness measure LT introduced in

section 5.6. By using the likeness measure in place of a matching function,

we can calculate an overall chord sequence likeness measure LT in a similar

way to calculating recall thus

LT (A,E) =

∑NT−1
n=0 LT (An, En)

NT

(8.34)

As with the chord symbol recall calculation, the chord likeness function

can be computed as a function of continuous time, calculating the chord

likeness for overlapping segments of chord sequence A and E:

LT (SE, SA) =

∑

S
j
A

∑

Si
E
|Si

E ∩ Sj
A|.LT (Si

E, Sj
A)

τT

(8.35)

Using the chord sequences from figure 8.1 as an example again, we can

calculate a pcset chord sequence likeness measure in the following way:

L−→
p = 1

20
×

(

7 × L−→
p ("C:maj", "C:maj") + 2 × L−→

p ("G:7", "C:maj") +

3 × L−→p ("G:7", "G:7") + 1 × L−→p ("G:7", "D:7") +

2 × L−→
p ("F:maj", "D:7") + 5 × L−→

p ("F:maj", "F:maj")
)
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=
7 × 1 + 2 × 1

6
+ 3 × 1 + 1

7
+ 2 × 2

5
+ 5 × 1

20
=

16.2762

20
= 0.8138

So we see that measure L−→
p for this example is higher than the recall value

R−→
p which was 0.75. In fact this will always be the case because when MT

is 1 then LT will also be 1 but LT can be greater than 0 where MT is 0

hence in general LT ≥ RT .

Using a chord likeness measure in this way can tell us more information

about our results than using recall on its own. For example, two algorithms

may get the same recall score yet one may get a higher likeness score

than the other suggesting that one is better at generally detecting correct

pitchclasses in the audio but perhaps its chord symbol recognition based

on those features is inferior.

It should be noted that it would be possible to get quite a high score

for LT without ever actually correctly recognising a chord symbol at all.

For example, an algorithm might consistently choose the third or fifth of a

chord for the root of a chord instead of the correct note. In this case, the

recall value would be very low but LT would make the algorithm appear

to perform well. This may be a pleasing result for algorithm designers

but the whole point of designing chord recognition algorithms is to try to

correctly recognise chords. The likeness measure tells us how good an al-

gorithm is at detecting pitchclasses at a particular time in the audio source

material but does not necessarily give an accurate reflection of the chord

symbol recognition accuracy. For this reason we believe that although it

is a potentially useful source of information about our algorithms’ perfor-

mance, a chord sequence likeness measure like this should only be used as

well as, and not instead of the stricter chord symbol recall measure.

8.3 Chord recognition segmentation measurement

In this section we will discuss the use of a segmentation metric to evaluate

chord recognition results providing an important complementary measure

to the chord symbol recall measure already covered in section 8.1.
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8.3.1 Problems with using recall on its own

The chord symbol recall measure provides a good way of measuring how

accurate a recognition algorithm is in terms of whether the estimated

chord for a given instant in the audio is correct. However, using this mea-

sure alone fails to show how consistent the recognition algorithm is. As

an example, consider the annotated sequence and three estimated chord

sequences compared with it in figure 8.4. We can see that all three esti-

mated sequences have a recall value of 0.6 because each has 12 correctly

matching frames out of the total of 20 frames. However, sequence 1 is

more musically useful because estimation of chord boundaries is better

than for the other two. In the case of sequence 2, the chord recogniser

has produced a large number of short continuous chord segments creating

a highly fragmented chord sequence. In sequence 3 by contrast the chord

recogniser has completely missed the first chord change, staying on the

same chord for the first 15 frames.

As human listeners comparing these estimated sequences to the orig-

inal, we may consider sequence 1 to have one major mistake that is to

incorrectly identify the ‘G:7’ chord as an ‘F:7’. The second sequence on

the other hand, jumps around from chord to chord making the structure of

the harmony much less coherent. From a musician’s perspective, estimate

1 could be used in a lead sheet with one minor correction whereas esti-

mate 2 would be useless by comparison. Likewise, sequence 3, although

better than the fragmented sequence 2, does not identify that there has

been a chord change at all for the first 15 frames so a musician would have

to listen for both a missing chord change and the correct second chord

instead of just correcting the second chord in sequence 1. From these

examples we can see that we require a way of measuring how good our

algorithms are in terms of fragmentation or missed chord changes as well

as finding the chord symbol recall in order to give a proper overview of

their performance.
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Figure 8.4: Three example estimated chord sequences compared to a hand
annotated sequence. All three estimated sequences have the same recall value
12
20 = 0.6 but sequences 2 and 3 are clearly poorer estimates than sequence 1
due to over-segmentation and under-segmentation respectively.

Measuring chord boundary detection accuracy

To deal with the issue of segmentation, we could look at how accurately the

chord recognition algorithm detects chord boundaries. A simple approach

used in [MD08] and [KO09b] is the chord change rate where the number of

boundaries in the hand transcription is compared to that of the machine

estimated chord sequence. If the numbers differ significantly, this will tend

to suggest fragmentation (i.e. more estimated changes than the ground

truth) or a large number of missed chord changes (fewer changes than

the ground truth). This measure, however, does not tell us if the chord

segment lengths are accurate or not. For example, an estimated sequence

could be uniformly fragmented all the way through so it will have a high

chord change rate compared to the hand transcription. On the other hand,

another estimated sequence might be quite accurate for most parts of the

song but have a short period of time where the fragmentation is very high

giving the same change rate.

Another approach is to define an allowable time deviation window for
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Figure 8.5: Segments of estimated sequence E compared with hand annotated
sequence A. The hatched areas are summed in the calculation of directional
hamming distance.

chord onsets. That is to say that an estimated chord boundary is a ‘hit’

if it is within a window length of a hand labelled boundary or a ‘miss’

otherwise. This approach can give information about how accurate the

chord boundary detection is but it has the problem of how to define the

size of the allowable onset deviation window.

For the evaluation to be fair, the onset time deviation window must

be constant across the whole test set. However, if the time window is set

rigidly to a particular number of milliseconds then it may be inappropriate

for certain types of music. For example, a slow ballad may have very few

chord changes, widely spaced in time so a long window would seem sensible

to avoid false negative results. On the other hand, fast bebop jazz might

have a chord change on every beat in which case the window would have

to be very short in order for false positives to be avoided.

8.3.2 Directional hamming distance

A better solution to measuring chord segmentation, rather than looking at

the boundaries themselves is to look at the gaps between them. Mauch et

al [MND09b, Mau10] proposed the use of the directional hamming distance

as a measure of segmentation quality for chord recognition.

The directional hamming distance (also sometimes called hamming di-

vergence) is a measure originally proposed by Huang and Dom [HD95] for

image segmentation evaluation and later used by Abdallah et al [ANS+05]
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for evaluating audio segmentation. For this measure we consider hand an-

notated sequence A as a sequence of segments Sj
A and machine estimated

sequence E similarly as segments Si
E. Abdallah et al [ANS+05] show how

we may compute the directional hamming distance dAE by finding for each

estimated segment Si
E, the largest overlapping segment Sj

A in the anno-

tated sequence i.e. max
(

|Si
E ∩Sj

A|
)

, then summing the difference between

them:

dAE =
∑

Si
E

∑

Sk
A
6=S

j
A

|Si
E ∩ Sk

A| (8.36)

Figure 8.5 shows this concept visually. The hatched areas in the diagram

represent the frames in A that overlap segment Si
E but which are not part

of the maximal overlapping segment Sj
A so those areas will contribute to

the dAE summation.

By normalising distance dAE by the length τT of the sequences A and

E, we can find a measure of the missed chord boundaries, or under-

segmentation m

m =
dAE

τT

(8.37)

Likewise, we may calculate the distance dEA and normalise by τT to pro-

vide a measure of the fragmentation, or over-segmentation f

f =
dEA

τT

(8.38)

We now have two measures m and f that tell us about the quality

of a chord recognition algorithm’s segmentation. In the ideal case where

estimated sequence E exactly equals annotated sequence A, both measures

will be 0 as there will be no over-segmentation or under-segmentation.

However, in the likely event that the two sequences do not match each

other perfectly, it should be noted that although in an extreme case we

might be able to obtain a value of 1 for m or f , it is not possible to obtain

the value 1 for both at the same time. For example, a value of 1 for f

means 100% fragmentation which implies that no two contiguous frames

in the estimated sequence E contain the same chord. In this case, it is not

possible for any under-segmentation to exist. Likewise, a value of 1 for m

means 100% missed boundaries which implies that sequence E contains
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only one segment that lasts for its whole length making it impossible for

any fragmentation to be present.

For a useful measure of segmentation quality that will complement the

chord symbol recall, it is desirable to combine the segmentation values m

and f into one measure. Mauch et al [MND09b] proposed such a combined

measure MDseg calculated using the arithmetic mean of m and f :

MDseg =
f + m

2
=

dEA + dAE

2τT

(8.39)

This measure however, suffers from the fact that m and f are not inde-

pendent. It is possible that a very low value of m or f could make the

segmentation results look better than they really are by hiding a high

value in the other.

An alternative to this approach is to use the worst case of m or f

i.e. max(m, f) as the basis for the combined measure following evalua-

tion principles described in [MMDK07]. If both are low values, then the

segmentation quality is good, if one is a high value then we know the

segmentation quality is poor so we ignore the other value. It will also

be useful to convert the values such that the final measure has a worst

case score of 0 and a best case of 1 so it truly complements the chord

symbol recall. Therefore, we propose a segmentation quality measure Q
that fulfils these requirements calculated as

Q(A,E) = 1 − max(m, f) = 1 − max(dAE, dEA)

τT

(8.40)

This idea was first proposed by the author as part of a discussion on the

MIREX09 wikipage for the chord detection track [mirb] and was subse-

quently adopted by Mauch in his recent work [Mau10]. The measure is

based entirely on the arrangement of contiguous segments of frames in the

chord recogniser’s output. It does not depend on what the chord symbols

are in each segment so it provides a truly complementary measure to the

chord symbol recall R. This being the case, we find an additional benefit

of the new measure in that it can help to detect situations where the chord

recognition algorithm under test has detected the correct relative chord

sequence but, due to tuning issues, may produce a chord sequence that

is ±1 semitone from the hand annotation. Figure 8.6 shows a graphical
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Figure 8.6: Due to tuning, an otherwise correct estimated chord sequence may
be consistently 1 semitone higher than the hand annotated sequence. In this
case, recall R will be zero but the segmentation measure Q will be 1.

example of this situation where all chords have been recognised as having

a root note one semitone higher than those in the hand annotation. In

the figure, we would achieve a zero recall score but a 100% segmentation

score. In this kind of situation, whereas before we would just have had

an apparently anomalous recall value approaching zero, we will now also

have a very high score for Q which tells us we should check to see if this

transposition problem has occurred. In real-world music audio recordings,

it is not unlikely that the tuning frequency may deviate from A440 con-

cert pitch; this is definitely true of the Beatles collection as discussed in

section 6.5.2. If the tuning frequency of a particular song recording is a

quarter tone above or below A440 then the human transcriber may well

decide to annotate one way while the chord recognition algorithm goes the

other and both will effectively be correct.

8.4 Practical considerations

When evaluating a chord recognition system it is simple for the researcher

to write evaluation routines that use the same internal data structures

such as chord frames etc. as the recognition system itself. Unfortunately,

this makes the use of one person’s evaluation software on another person’s

results very difficult because the recognition and evaluation software can

be heavily intertwined making a complicated conversion process neces-

sary. This problem can be solved if both chord recognition systems are
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programmed to produce an output in a standard format and a completely

separate evaluation system can be used to test results.

The Beatles transcription collection is available in the form of ASCII

text files (with extension .lab) as described in section 6.2. This file type

is an ideal output format for chord recognition systems as well because

the files hold all the necessary information about the recognised chord

sequence but implementation specific parameters of the recogniser such as

frame rate and hop size etc are not retained. In general, the conversion of

an internal chord sequence representation to .lab format is trivial.

We have produced an evaluation system for Matlab that can compare

two .lab files and give results for the chord symbol recall, the chord

sequence likeness and the chord segmentation quality. These functions

are available in the C4DM chords toolkit discussed in section 4.4 and can

be used to evaluate any chord recognition algorithm that is capable of

producing results in the .lab format.

8.4.1 Frame-based vs segment-based recall evaluation

For calculating the chord symbol recall between two lab files, segment-

based recall is a more accurate and more efficient method than frame-

based recall for any reasonable frame rate. By reasonable, here we mean

a frame rate high enough to give meaningful evaluation results for a chord

recognition algorithm. Given that certain types of music such as fast jazz

might have a chord change on each beat, even at the moderate tempo of

120bpm this equates to two chords per second so for frame-based analysis,

the evaluation frame rate should definitely be above 2fps. The shortest

tonal chord in the Beatles transcriptions is in fact 0.174 seconds long (see

section 6.6.5) therefore the evaluation frame rate should be at least 5.7fps

and ideally faster than 11.4fps to meet the Nyquist criterion.

Lee and Slaney [LS07, Lee08, LS08] used part of the Beatles transcrip-

tion collection as a ground truth data set. The frame rate of their chord

recogniser is 5.4fps so the chord frames are effectively 180ms long. For eval-

uation purposes they sampled the Beatles transcription files at this rate

and quote their results for frame-based recall in two ways. The first value
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is a direct frame-by-frame match which is equivalent to using frame-based

recall with a frame rate of 5.4fps. The results for their direct frame-by-

frame match were negatively affected by missed chord boundaries so they

introduced a second measure which allowed a 1 frame tolerance either side

of a chord boundary. The effective evaluation frame rate drops to 1.8fps,

making the evaluation frame length 540ms with a hop of 180ms which

improved their results. Their stated justification for using the larger eval-

uation frame size was that the hand annotated transcriptions could not be

accurate because they were produced by a human listener. However, the

chord annotations are accurate to approximately 10-20ms (see section 6.3)

so their statement suggests the local audio files used in the experiments

were probably not properly time aligned with the transcriptions (see chap-

ter 7). We would argue that for a chord recognition algorithm with a low

frame rate like this, it is better to use a high evaluation frame rate to

calculate recall, effectively oversampling the algorithm’s output instead of

undersampling the ground truth.

8.4.2 Combined chord recognition F-measure

In many areas of information retrieval, recall and precision values are often

combined into a single score called the f-measure which is calculated as the

harmonic mean of recall and precision. For chord recognition evaluation

we can combine the complementary recall and segmentation scores in a

similar way to give us an overal chord recognition f-measure:

FT,M,D(A,E) =
2 ×RT,M,D(A,E) ×Q(A,E)

RT,M,D(A,E) + Q(A,E)
(8.41)

This measure gives us more information about the performance of a chord

recognition algorithm than using chord symbol recall on its own.

8.4.3 Which metrics to use

In this chapter we have suggested several different metrics with various pa-

rameters for chord recognition evaluation. In all cases it is recommended

that both recall and segmentation quality be evaluated because, as men-

tioned in section 8.3, recall on its own is not sufficient to prove that an
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algorithm can produce a good chord transcription.

The particular recall metric and set of parameters that should be used

in an evaluation depends on the capability of the algorithm or algorithms

under test. In the case where one algorithm is being evaluated in isolation,

it is best to use a dictionary recall evaluation where the dictionary equals

the intended vocabulary of the algorithm. To determine which cardinality

value to use, we must consider whether it is acceptable to match chords

that are supersets of dictionary symbols (e.g. ‘C:maj7’ matching ‘C:maj’)

or not. For an example algorithm that can produce only major and mi-

nor triads, cardinality-3 will give results that assume all supersets of the

dictionary chords will match. Using a higher cardinality value with the

same algorithm and dictionary will reduce the number of possible matches

for symbols in the dictionary so the evaluation score will likely be lower.

However, using the cardinality parameter in this way allows us to see how

good an algorithm is at recognising a specific chord label. In an evaluation

where several algorithms are compared with each other, it is important to

use the same recall parameters for all of them. The dictionary for evalu-

ating a group of algorithms should therefore contain only the chordtypes

that are common to all the algorithms under test in order to make the

comparison fair. We demonstrate the use of these different metrics and

parameters in chapter 9.



Chapter 9

Results

In this chapter we will present the results for the three chord recognition

algorithms we developed in chapter 3 compared to equivalent results for

the other eleven algorithms enteredto the MIREX09 chord detection eval-

uation [MND09a, KO09a, OGF09a, PP09, PVM09, RRHS09a]. We will

evaluate these fourteen algorithms using various techniques discussed in

chapter 8 and we will discuss the merits and drawbacks of these different

methods. The 180 songs from the Beatles chord transcription collection

described in chapter 6 are used as the test set for all the evaluations. This

is a subset of the collection of annotated files used in the MIREX09 chord

detection evaluation which also included songs from another collection by

Mauch et al [MCD+09]. We have chosen to use the Beatles alone firstly

because at the time of writing we do not have access to the audio for the

others and secondly because the Beatles collection are our own transcrip-

tions which have been detailed in chapter 6 and are thus most relevant to

the work in this thesis.

For results that are calculated for the whole collection we will present

weighted average values as used in the official MIREX09 evaluations [mira]

i.e. we sum the τC values of all songs and normalise by the total duration

τT of the collection. This means that each song is weighted by its duration

in the total calculation, effectively treating the whole collection as one long

audio example.

223
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9.1 Summary of the MIREX09 Entries

The algorithms we will evaluate in this chapter are the entrants to the

MIREX09 chord detection evaluation plus two other algorithms by the

author.

Chris Harte: ‘ch aes’, ‘ch hcdf’ and ‘ch hcdfa’

The three algorithms by the author have already been discussed in detail in

chapter 3. The ‘ch aes’ algorithm is the basic frame-based system using a

tuned chromagram to provide feature vectors; ‘ch hcdf’ and ‘ch hcdfa’ use

the same recognition technique but pre-segment the chromagram using the

HCDF with simple peak-picking and enhanced thresholded peak picking

respectively. The algorithms are designed to recognise chord types ‘maj’,

‘min’, ‘aug’, ‘dim’ and ‘N’.

Dan Ellis: ‘de’

Dan Ellis’s algorithm [Ell09] is a pre-trained system that uses Gaussian

models for each chord class based on beat synchronous chroma features.

The actual chord recognition part of the system is based on a Hidden

Markov Model (HMM) [Rab89] using the per-chord Gaussians to calculate

observation likelihoods as originally described in [SE03]. The system was

trained using our Beatles transcription collection and originally submitted

to the MIREX08 evaluation. Subsequently, many of the local audio files

used in that work were found to be badly aligned with the transcriptions

(many were taken from alternative masters so time stretching was also

an issue). After correctly aligning the audio and the transcriptions, a

20% performance improvement was achieved so the updated system was

submitted again to MIREX09. The algorithm is designed to recognise

‘maj’ and ‘min’ chords plus the ‘N’ chord.

Khadkevich and Omologo: ‘ko1’ and ‘ko2’

Khadkevich and Omologo’s algorithms [KO09a] also use a HMM with

chroma feature vectors. Their system was also trained using our Beatles
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transcription collection. Their training process differs from Ellis’s in that

chord segmentation is based on the ground truth annotations rather than

beat synchronous features. The algorithms are designed to recognise ‘maj’

and ‘min’ chords plus the ‘N’ chord.

Mauch and Dixon: ‘md’

Mauch and Dixon’s algorithm [MND09a] combines several different ele-

ments. The system uses beat synchronous chromagrams as a basic fea-

ture vector, generated automatically using Davies’ beat tracking system

[Dav07]. An automatic structural segmentation is used to identify re-

peated sections at the verse-chorus level. The reasoning behind this is

that using information about the structure of the song can help in recog-

nising chord sequences because the same progressions are often repeated

several times. Separate instances of a repeated segment in a song can be

combined and a single chord progression can be inferred from the com-

bination. The system uses a dynamic bayesian network [Mur02] which

models metric position, chords and bass pitch in order to infer the most

probable chord sequence from the chroma features. Mauch has continued

to develop this system, further improving its performance since MIREX09,

in [Mau10]. The algorithm is designed to recognise the chordtypes N, maj,

min, dim, 7, maj6 and maj7.

Oudre, Grenier, Fevotte : ‘ogf’

Oudre, Grenier and Fevotte’s system is a frame-based signal processing

approach using template matching. Their basic feature vector is also the

chromagram and in their system, they use chord templates that reflect

the harmonic content of the chroma vectors rather than simple binary

templates of the kind used in our three algorithms. The chord recog-

nition is achieved by minimizing a measure of fit between the template

and the given chroma vector. The system they submitted to MIREX09

uses the Kullback-Liebler divergence as the measure of fit with templates

containing chord notes plus single harmonics. In a similar way to our

basic algorithm, they also employ low-pass filtering and median filtering
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to smooth the estimated chord sequence. The ‘ogf’ algorithm can detect

major, minor and N chords.

Papadopulous and Peeters: ‘pp’

Papadopulous and Peeters’ system is another approach that uses beat-

synchronous chroma features and HMMs. Their system detects both chord

sequence and the downbeats of bars simultaneously using one to help in

the estimation of the other. To deal with songs in different meters, they

have two time signature models, one dealing with 4
4 time and the other

with 3
4. Their system generates a sequence of observation vectors defined

by the observation probablities. Given this set of observation vectors, the

algorithm chooses the meter that fits best and estimates the most likely

chord sequence and set of downbeat positions using a maximum likelihood

calculation.

Pauwels, Varewyck and Martens: ‘pvm1’ and ‘pvm2’

Pauwels et al also use chroma features in their system. However, they

calculate the chroma features using a technique proposed by Varewyck

[PVM09] which maximally couples higher harmonics to the fundamental

frequency thus reducing the proportion of non chord tone harmonics in the

chromagram. They submitted two algorithms with alternative backends.

Their algorithm ‘pvm1’ simultaneously recognises chord sequences and key

context finding the best match for a key and chord label sequence with an

a priori tonal model. Dynamic programming is then used to determine the

optimal path of key-chord pairs. The backend of their second algorithm

‘pvm2’ is based on their earlier work [VPM08] using the cosine similarity

between chroma vectors and a set of binary chord templates to determine

chord matches in a similar way to our own chord recogniser as discussed

in chapter 3.

Rocher, Robine, Hanna and Strandh: ‘rrhs1’, ‘rrhs2’ and ‘rrhs3’

Rocher et al. [RRHS09a] use chroma features as the front end to their

system. They then use chord templates to determine possible candidate
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chord-key pairs for the extracted chroma frames. The candidate pairs for

each frame are then linked to the candidates in the next frame forming a

directed acyclic graph. Edges in the graph correspond to chord transitions.

A cost function based on Lerdahl’s chord distance [Ler01] is calculated for

each edge and dynamic programming is subsequently employed to find

the path with the minimum cost in order to produce the estimated chord

sequence as described in [RRHS09b].

Algorithm ‘rrhs1’ uses the dynamic programming system but limits the

chord vocabulary to major and minor. Algorithm ‘rrhs2’ uses the same

front end but chooses major or minor triads based on frame correlation

with the chord templates instead of the dynamic programming algorithm.

The third algorithm, ‘rrhs3’ uses the same dynamic programming system

as ‘rrhs1’ but allows for a much larger vocabulary of twelve chordtypes:

‘N’, ‘maj’, ‘sus4’, ‘aug’, ‘7’, ‘sus2’, ‘maj(9)’, ‘min’, ‘min7’, ‘dim’, ‘min(9)’

and ‘dim7’.

9.2 Comparison of chord symbol recall values

Table 9.1 shows the weighted chord symbol recall values for the fourteen

different recognition algorithms for seven different chord symbol recall

methods. The recall methods that have been used here are MIREX08

mapping R′
mx08

, MIREX09 mapping R′
mx09

, cardinality-3 pcset matching

R′−→
p ,3

, cardinality-2 pcset matching R′−→
p ,2

, cardinality-3 pcset dictionary

matching R′−→p ,3,D0
where dictionary D0 = {maj, min}, cardinality-3 pc-

set dictionary matching R′−→
p ,3,D1

with dictionary D1 = {N, maj, min} and

finally cardinality-3 pcset dictionary matching R′−→
p ,3,D2

with dictionary

D2 = {N, maj, min, aug, dim}. At the bottom of the table, the proportion

of the total duration of the annotated collection that has been included in

the evaluation is also given. For the first four recall methods, the whole

test set is included in the evaluation. For the dictionary matching recall

calculations, unmatchable chord types are excluded from the evaluations

so for dictionary D0, 92% of the total collection duration is evaluated

against and for D1 and D2 this rises to 96% and 98% respectively. The

parameters of the five different pcset matching evaluations were chosen
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Table 9.1: Weighted chord recall values for the Beatles collection.

Algorithm R′
mx08

R′
mx09

R′−→p ,3
R′−→p ,2

R′−→p ,3,D0

R′−→p ,3,D1

R′−→p ,3,D2

ch aes 0.58 0.58 0.56 0.57 0.61 0.59 0.58
ch hcdf 0.58 0.58 0.56 0.57 0.60 0.58 0.58
ch hcdfa 0.59 0.59 0.58 0.59 0.62 0.60 0.59
de 0.72 0.72 0.71 0.71 0.75 0.74 0.72
ko1 0.70 0.70 0.69 0.69 0.73 0.72 0.71
ko2 0.71 0.71 0.70 0.70 0.74 0.73 0.72
md 0.69 0.69 0.67 0.68 0.73 0.70 0.69
ogf 0.69 0.69 0.67 0.68 0.71 0.70 0.69
pp 0.67 0.67 0.66 0.67 0.72 0.69 0.68
pvm1 0.67 0.67 0.66 0.66 0.71 0.68 0.67
pvm2 0.63 0.63 0.62 0.62 0.67 0.64 0.63
rrhs1 0.66 0.66 0.65 0.66 0.70 0.68 0.67
rrhs2 0.60 0.60 0.59 0.59 0.63 0.61 0.60
rrhs3 0.65 0.57 0.51 0.52 0.55 0.53 0.52

included % 100 100 100 100 92 96 98

because we consider them to be the fairest tests for comparing this par-

ticular set of algorithms based on their different chord vocabularies. The

MIREX mapping recall methods are shown to allow comparison with our

pcset evaluation results.

All algorithms score between 50% and 76% for the seven recall meth-

ods. In most cases the different recall methods produce fairly similar

values for each algorithm with all but one case (rrhs3) having a range of

less than 10% for the different evaluations. The results from table 9.1 are

shown graphically in figures 9.1 and 9.2. We see that the recall values

for the ‘ch aes’ algorithm are slightly better in some cases than those for

the ‘ch hcdf’ algorithm although not by a large amount. The ‘ch hcdfa’

algorithm however performs better than both.

Looking at all fourteen algorithms, we see that the Ellis algorithm ‘de’

has the best recall performance for all evaluation methods. The ranking

stays constant for all recall methods apart from some slight changes in the

order for R′−→p ,3,D0
and the unusual values for algorithm ‘rrhs3’ which we

will discuss later. Figure 9.2 shows the differences between the alternative
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Figure 9.1: Plot showing weighted chord symbol recall values for each algorithm
using seven different recall methods.

Figure 9.2: Line plot showing the weighted recall values for each algorithm
against the seven different recall methods. In this plot we can see that the
same ranking is maintained for all methods except for some small changes in
R′

→
p ,3,D0

and the strange values for algorithm rrhs3 for the MIREX mappings.
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recall calulations quite clearly. With the exception of ‘rrhs3’, the values

for the MIREX mapping recall scores R′
mx08

and R′
mx09

stay roughly the

same for each algorithm. This is as we might expect given that major

and minor triads make up 78% of the whole collection and most of the

algorithms have fairly small chord vocabularies.

The values for the pcset matching recall scores R′−→
p ,2

and R′−→
p ,3

are

lower than those for R′
mx08

and R′
mx09

. This can be explained by the in-

troduction of the ‘unmatchable’ category of chords which are not mapped

to major or minor triads (as discussed in section 8.1.4). The MIREX map-

ping functions can cause false positives by mapping two different chords

into the same triad category producing an inappropriate match. The

unmatchable chords in the pcset matching functions will always be con-

sidered incorrect matches so the false positives are removed causing the

overall scores to be lower than the MIREX recall scores.

Looking at the pcset based recall values, we can see that R′−→
p ,2

is higher

in all cases than R′−→
p ,3

. We would expect this to be the case because R′−→
p ,2

will evaluate any chords with the same root and third so major chords will

be grouped with augmented chords and likewise minor with diminished.

The three dictionary-based recall evaluations R′−→
p ,3,D0

, R′−→
p ,3,D1

and

R′−→p ,3,D2
have higher scores than R′−→p ,2

and R′−→p ,3
. The scores for R′−→p ,3,D0

and R′−→
p ,3,D1

are also higher than R′
mx08

and R′
mx09

whereas R′−→
p ,3,D2

has

similar scores to the two MIREX mapping functions. We would expect

the dictionary-based scores to be higher than R′−→p ,2
and R′−→p ,3

because un-

matchable chord symbols are excluded when the dictionary is used. In the

case of D0, this means that 8% of the collection is excluded from the eval-

uation and we know that this 8% would definitely be incorrect matches

for R′−→
p ,3

. The scores for R′−→
p ,3,D1

are lower than R′−→
p ,3,D0

because D1 in-

cludes an extra chordtype meaning than only 4% of the collection is then

excluded as unmatchable. Likewise, R′−→p ,3,D2
has lower values because it

adds another two chordtypes taking the excluded percentage down to 2%.

The rankings for R′−→
p ,3,D0

are slightly different to the other recall methods

with algorithms ‘md’, ‘pp’, ‘pvm1’ and ‘pvm2’ all performing noticeably

better when evaluated against D0. In the case of ‘pp’ and the ‘pvm’ al-

gorithms this can be explained because their chord vocabularies do not
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include the ‘N’ chord therefore they can only lose out when it is added to

dictionary D1. Mauch and Dixon’s ‘md’ algorithm on the other hand is

capable of detecting ‘N’ so these results suggest that the detection accu-

racy of this algorithm is poor for this chordtype and this is confirmed in

[Mau10].

As mentioned earlier, the ‘rrhs3’ algorithm by Rocher et al. has signif-

icantly higher values for R′
mx08

and R′
mx09

than it does for the five pcset

based recall scores which follow the same trend as the other algorithms.

Why should this algorithm have such strange results compared with all

the others? Referring back to table 8.4, we can see that ‘rrhs3’ has a much

larger chord vocabulary than the other thirteen algorithms in the study.

For this reason, it is much more likely to suffer (or rather in this case gain)

from the effects of inappropriate chord mappings causing false positives

in the MIREX recall calculations. The other algorithms are, in general,

not capable of producing symbols that will be mapped incorrectly so they

will generate fewer false positives. The results support this explanation

because the R′
mx08

value is a lot higher than the R′
mx09

value. This is to

be expected given that the MIREX08 mapping converts most chordtypes

to major causing more false positives than the MIREX09 mapping which

is a little more evenly balanced (see section 8.1.3). These false positives

are not present in the pcset matching recall scores because unmatchable

chords are either treated as incorrect, in the case of R′−→
p ,3

and R′−→
p ,2

, or

they are excluded from the evaluation where dictionary based matching is

used.

Dictionary matching evaluation does not suffer from the false positives

problem faced by the MIREX08 and 09 mapping approach. Unlike R′−→p ,3

and R′−→
p ,2

, it excludes the unmatchable chord types from the calculation so

results are not artificially lowered by chord symbols which we know can-

not generate correct matches given the evaluation parameters. For this

set of chord recognisers, dictionary D0 is the most appropriate because it

is the only common subset of all the chord vocabularies for all fourteen

algorithms. Using the largest dictionary common to all algorithms is the

fairest way to compare like with like so the optimal dictionary will always

be defined by the least flexible algorithm. Because of this, we believe that
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Table 9.2: Chord dictionaries for cardinality-6 test.
Dictionary Vocabulary

D0.1 X:maj

D0.2 X:min + D0.1

D0.3 X:7 + D0.2

D0.4 N + D0.3

D0.5 X:min7 + D0.4

D0.6 X:9 + D0.5

D0.7 X:maj6 + D0.6

D0.8 X:maj7 + D0.7

D0.9 X:aug + D0.8

D0.10 X:min(*b3) + D0.9

D0.11 X:sus4 + D0.10

D0.12 X:7(#9) + D0.11

D0.13 X:maj(9) + D0.12

the pcset dictionary based evaluation function R′−→p ,3,D0
is the fairest mea-

sure to use for this particular set of algorithms. For future studies where

several algorithms are compared such as further MIREX evaluations, an

alternative dictionary may be more approriate as chord recognition algo-

rithms become more sophisticated.

9.2.1 Effects of dictionary size

To see what effect dictionary size has on the recall results we define a

set of dictionaries increasing in size from one chord to thirteen using the

most common chordtypes in the Beatles collection in order of combined

duration (as discussed in section 6.6.2). Table 9.2 details the chordtypes

in each of these thirteen dictionaries D0.1 to D0.13. We now calculate the

weighted recall values for each algorithm at cardinality-6 i.e. R′−→p ,6,Da
so

that we may determine how good the algorithms are at identifying the

chords in each dictionary. At cardinality-6, no non-dictionary chord will

ever be considered a correct match with a dictionary chord.

The results of this set of evaluations can be seen in figure 9.3 and ta-

ble 9.3. We see a general trend for all algorithms that as the dictionary

size increases, the recall value decreases in proportion with the number of
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Figure 9.3: Line plot showing the cardinality-6 recall values for each algorithm
for dictionaries D0.1 to D0.13.

chords being reincluded in the evaluation (the percentages of the collection

that are included in each evaluation are plotted in figure 9.4 for compari-

son). This is as we would expect because for each new chord added to the

dictionary, if the algorithm does not include that chord in its vocabulary

then it will only have the effect of making τE larger with no change in

τC (see equation 8.33). It is interesting to look at the changes of fortune

for various algorithms in the smaller dictionary evaluations. For dictio-

nary D0.1 (the single ‘X:maj’ triad), Papadopoulos and Peeters’ algorithm

‘pp’ has the top score, narrowly outperforming ‘de’. However, when the

‘X:min’ triad type is added in the D0.2 evaluation, ‘pp’ drops very quickly

compared to the other algorithms and changes rank from 1st to 4th place.

Algorithms ‘md’ and ‘rrhs1’ also fall more steeply than the other algo-

rithms both dropping one rank. This suggests that these algorithms are

better at detecting the ‘maj’ chordtype than they are at detecting the

‘min’ type, considerably more so in the case of ‘pp’.
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Figure 9.4: Line plot showing the proportion of the collection included in the
recall evaluation for dictionaries D0.1 to D0.13.

Introducing the the ‘X:7’ chordtype in D0.3 makes all the algorithms

scores fall steeply. This is because most of the algorithms are unable

to detect the ‘X:7’ type and it is the third most common chord type in

the collection accounting for 6.63% of the whole duration. Strangely, the

Mauch and Dixon algorithm ‘md’ falls at the same rate as all the others

for D0.3 despite the fact that the ‘X:7’ type is included in its vocabulary.

This suggests that ‘md’ is much better at major and minor triad detection

than it is at detecting seventh chords.

The inclusion of the ‘N’ chord in dictionary D0.4 again sees some al-

gorithms drop more steeply than others. In the case of ‘pp’ and the two

‘pvm’ algorithms, this is because ‘N’ is not in their vocabulary. For all

the other algorithms, it would seem that their detection performance for

non-chordal material is significantly worse than that for the major and

minor triads. After D0.5, the recall performances of the algorithms all

follow approximately the same trend, reducing at roughly the same rate

as the percentage of included chords rises.

9.2.2 Single chordtype analysis

To prove whether our explanations of the findings for dictionaries D0.1 to

D0.4 were borne out, we investigated the recall performance for several

individual chord types. Table 9.4 shows the individual cardinality-6 pcset

chord recall values1 for chord types X:maj, X:min, X:7, N, X:min7, X:aug

1Cardinality-6 is the highest cardinality of any chord in the transcription collection so a
chord will not match anythoung other than itself in this recall evaluation.
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Table 9.3: Cardinality-6 pcset recall values for dictionaries D0.1 to D0.13 shown with the proportion of the collection that is
included in each evaluation.

Algorithm D0.1 D0.2 D0.3 D0.4 D0.5 D0.6 D0.7 D0.8 D0.9 D0.10 D0.11 D0.12 D0.13

ch aes 0.654 0.638 0.588 0.559 0.545 0.539 0.534 0.529 0.526 0.522 0.520 0.517 0.515
ch hcdf 0.644 0.626 0.577 0.556 0.542 0.536 0.531 0.526 0.523 0.519 0.516 0.514 0.512
ch hcdfa 0.659 0.641 0.591 0.573 0.559 0.553 0.547 0.542 0.539 0.535 0.532 0.530 0.527
de 0.783 0.771 0.711 0.693 0.675 0.668 0.661 0.655 0.651 0.646 0.643 0.640 0.637
ko1 0.755 0.739 0.682 0.672 0.656 0.649 0.642 0.636 0.632 0.628 0.624 0.622 0.619
ko2 0.769 0.752 0.693 0.683 0.667 0.660 0.653 0.647 0.642 0.638 0.634 0.632 0.629
md 0.751 0.729 0.674 0.642 0.627 0.620 0.617 0.613 0.609 0.605 0.602 0.599 0.596
ogf 0.728 0.722 0.665 0.657 0.641 0.634 0.628 0.622 0.618 0.613 0.610 0.607 0.604
pp 0.784 0.738 0.681 0.650 0.634 0.627 0.621 0.615 0.611 0.606 0.603 0.600 0.598
pvm1 0.743 0.734 0.676 0.643 0.627 0.620 0.614 0.608 0.604 0.600 0.597 0.594 0.592
pvm2 0.698 0.690 0.636 0.608 0.593 0.587 0.581 0.575 0.572 0.568 0.565 0.563 0.560
rrhs1 0.732 0.713 0.658 0.638 0.622 0.616 0.609 0.603 0.600 0.595 0.592 0.589 0.587
rrhs2 0.660 0.646 0.595 0.578 0.564 0.558 0.552 0.547 0.544 0.540 0.537 0.534 0.532
rrhs3 0.583 0.549 0.509 0.496 0.484 0.479 0.474 0.470 0.467 0.463 0.462 0.460 0.458
Included % 62.78 78.27 84.91 89.35 91.57 92.56 93.50 94.43 95.04 95.72 96.23 96.66 97.10
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Figure 9.5: Plot showing the recall values for each algorithm for individual
chord types ‘X:maj’, ‘X:min’, ‘X:7’, ‘N’, ‘X:min7’, ‘X:aug’ and ‘X:dim’.

Table 9.4: Cardinality-6 recall values for individual chordtypes. The chordtypes
are ordered by their percentage of the total collection duration.

Algorithm X:maj X:min X:7 N X:min7 X:aug X:dim

ch aes 0.65 0.57 0 0 0 0.13 0.28
ch hcdf 0.64 0.55 0 0 0 0.14 0.27
ch hcdfa 0.66 0.57 0 0 0 0.15 0.26
de 0.78 0.72 0 0.08 0 0 0
ko1 0.76 0.67 0 0.50 0 0 0
ko2 0.77 0.68 0 0.50 0 0 0
md 0.75 0.64 0.02 0 0 0 0
ogf 0.73 0.69 0 0.50 0 0 0
pp 0.78 0.55 0 0 0 0 0
pvm1 0.74 0.70 0 0 0 0.02 0.26
pvm2 0.70 0.66 0 0 0 0.18 0.34
rrhs1 0.73 0.64 0 0.24 0 0 0
rrhs2 0.66 0.59 0 0.24 0 0 0
rrhs3 0.58 0.41 0.03 0.24 0.02 0 0.01

Included % 62.8 15.5 6.6 4.4 2.2 0.6 0.4

and X:dim i.e. R′−→
p ,6,Da

where Da is an individual chord in each case. These

values are shown graphically in figure 9.5.

The recall value for ‘X:maj’ is highest for all algorithms. In most cases,

the recall for ‘X:min’ is slightly less but, as suggested by the results in the

previous section, the ‘X:min’ recall for ‘pp’ is much lower than their score



CHAPTER 9. RESULTS 237

‘X:maj’.

All of the algorithms include ‘X:maj’ and ‘X:min’ chord types in their

vocabularies. However, ‘X:7’ is only included in the vocabularies of ‘md’

and ‘rrhs3’ so the recall values for this chord type are zero for most of

the algorithms. The ‘X:7’ recall scores for ‘md’ and ‘rrhs3’ are very low

compared to their performance for ‘X:maj’ and ‘X:min’ as suggested by

the previous section’s results.

For the ‘N’ chord recall, the results are interesting. All the algorithms

apart from ‘pp’ and the two ‘pvm’ entries are supposed to be able to

identify ‘N chords. However, only the ‘ko’ and ‘ogf’ algorithms can do so

with a 50% level of accuracy. The recalls for the three ‘rrhs’ algorithms are

lower, all scoring 24% and ‘de’ is lower still at 8%. Surprisingly, despite

the fact they are meant to be able to recognise the ‘N’ chord, ‘md’ and the

three ‘ch’ algorithms all score zero for this chord type.

Only ‘rrhs3’ is designed to recognise the ‘X:min7’ type so we would

expect zeros for all other algorithms. The ‘X:min7’ recall score for ‘rrhs3’

is low compared with its performance for the major and minor triad types

with a score of 2%.

The ‘ch’ and ‘pvm’ algorithms are able to recognise the ‘X:aug’ triad

type but the scores in all cases are all below 18%. The ‘ch’ and ‘pvm’

algorithms are slightly better at recognising the ‘X:dim’ however, with

scores rising to around 30%. Algorithms ‘md’ and ‘rrhs3’ are also quoted

as recognising ‘X:dim’ but score very poorly for this type.

9.2.3 Effects of evaluation cardinality

Our final set of results for chord symbol recall look at the effects of using

different cardinalities for pcset dictionary based evaluations. Table 9.5

shows the results for the ‘X:maj’ chordtype for cardinalities 1 to 6; these

results are shown graphically in figure 9.6. At cardinality 1, all tonal chord-

types (i.e. all chords except for ‘N’ which has cardinality 0) are included

in the recall calculation so this is effectively a test of root identification

accuracy. Since this test treats all chordtypes other than ‘N’ as correct

matches, the total percentage of the collection that is included is 95.5%.
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Table 9.5: Chord symbol recall values for chordtype ‘X:maj’ with evaluation
cardinality values 1 to 6.

Algorithm M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

ch aes 0.66 0.63 0.63 0.65 0.65 0.65
ch hcdf 0.65 0.63 0.62 0.64 0.64 0.64
ch hcdfa 0.66 0.64 0.64 0.66 0.66 0.66
de 0.78 0.76 0.77 0.78 0.78 0.78
ko1 0.75 0.74 0.74 0.76 0.76 0.76
ko2 0.75 0.75 0.76 0.77 0.77 0.77
md 0.76 0.77 0.77 0.75 0.75 0.75
ogf 0.76 0.72 0.72 0.73 0.73 0.73
pp 0.74 0.76 0.77 0.78 0.78 0.78
pvm1 0.73 0.72 0.72 0.74 0.74 0.74
pvm2 0.71 0.68 0.68 0.70 0.70 0.70
rrhs1 0.75 0.71 0.72 0.73 0.73 0.73
rrhs2 0.68 0.64 0.64 0.66 0.66 0.66
rrhs3 0.75 0.59 0.58 0.58 0.58 0.58

Included% 95.5 74.1 73.4 62.8 62.8 62.8

Figure 9.6: Line plot showing the recall values for each algorithm for chord type
‘X:maj’ against evaluation cardinality.

As we can see clearly in the figure, the ‘rrhs3’ algorithm has a much higher

score for this cardinality than it does for the other cardinality values, again
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supporting our explanation of false positives causing the strange values it

produced for R′
mx08

and R′
mx09

which we saw in table 9.1.

Increasing the cardinality to 2 removes all chordtypes that do not have

a major third interval ‘(1,3)’ as their first two elements. Most algorithms

perform better at root identification than cardinality 2 but ‘md’, ‘ko2’, and

‘pp’ improve improve as the cardinality increases. This is because these

algorithms are much better at detecting major family chords than they

are at other families.

Results are fairly static for most algorithms between cardinality-2 and

3. This can be explained because the only major change between these

two cardinalities is the exclusion of augmented chords at cardinality-3

and most of the algorithms cannot recognise this chord type. The ‘ch’

algorithms all drop in performance slightly here because ‘X:aug’ is in their

vocabulary but their recall perfomance for that type is poor as seen in

section 9.2.2.

Moving from cardinality-3 to cardinality-4 produces a marked improve-

ment in the scores for most algorithms. This is because at this stage all

chords which are not exactly equal to ‘X:maj’ are now excluded from the

matching so chordtypes such as ‘X:maj7’ and ‘X:7’ are no longer consid-

ered matches with ‘X:maj’. The major exception to this trend is algorithm

‘md’ which drops in performance at this stage. This is because it is capable

of producing ‘X:7’ symbols and these would have added to its cardinality

3 score but their effect is removed at cardinality 4. For cardinality 5 and

6 the values all stay the same for the chord types ‘X:maj’ because it is

a triad chord and can therefore not be considered equal to anything but

itself for cardinality 4 and above as discussed in section 5.4. The effect of

excluding all tetrad chords and above at cardinality 4 is more pronounced

than the effect of excluding augmented chordtypes at cardinality 3 simply

because there are many more tetrads in the collection than augmented

chords (as shown in section 6.6.2).

For comparison we also tested the effect of different cardinality values

on the recall for chordtype ‘X:min’ the values for which are shown in

table 9.6 and figure 9.7. The results for cardinality 1 are exactly the

same as for the ‘X:maj’ results as we would expect but at cardinality 2 all
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Table 9.6: Chord symbol recall values for chordtype ‘X:min’ with evaluation
cardinality values 1 to 6.

Algorithm M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

ch aes 0.66 0.53 0.54 0.57 0.57 0.57
ch hcdf 0.65 0.51 0.52 0.55 0.55 0.55
ch hcdfa 0.66 0.53 0.54 0.57 0.57 0.57
de 0.78 0.68 0.70 0.72 0.72 0.72
ko1 0.75 0.64 0.67 0.67 0.67 0.67
ko2 0.75 0.64 0.68 0.68 0.68 0.68
md 0.76 0.57 0.59 0.64 0.64 0.64
ogf 0.76 0.64 0.67 0.69 0.69 0.69
pp 0.74 0.50 0.53 0.55 0.55 0.55
pvm1 0.73 0.65 0.67 0.70 0.70 0.70
pvm2 0.71 0.62 0.63 0.66 0.66 0.66
rrhs1 0.75 0.59 0.62 0.64 0.64 0.64
rrhs2 0.68 0.54 0.57 0.59 0.59 0.59
rrhs3 0.75 0.39 0.41 0.41 0.41 0.41

Included% 95.5 19.4 18.3 15.5 15.5 15.5

Figure 9.7: Line plot showing the recall values for each algorithm for chord type
‘X:min’ against evaluation cardinality.

algorithm scores drop significantly. At cardinality 2, all chordtypes that

have a minor third as their first interval are considered correct matches
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Figure 9.8: Plot showing likeness values L∼
p

compared to the three sets of
dictionary based recall values from table 9.1

so chordtypes such as ‘X:dim’ will be matched with ‘X:min’. The two

algorithms that drop the most are ‘pp’ and ‘rrhs3’ which, again, is in line

with what we saw in the results from section 9.2.2. The results for ‘pp’

are interesting because it is the top ranking algorithm in the ‘X:maj’ test

but is one of the lowest ranking in this test.

All algorithms improve as the cardinality rises from 2 to 3 reflecting

the removal of diminished type chords at cardinality 3. The ‘ch’ and ‘pvm’

algorithms plus ‘rrhs3’ see less improvement than the others at this stage

because ‘X:dim’ is part of their vocabulary. All algorithms improve again

at cardinality 4 and above because of the removal of all tetrads and above

at that stage.

9.3 Chord Likeness

The leftmost column of numbers in table 9.7 are the results for the like-

ness measure L∼
p

between the algorithm outputs and the hand annotated

files. These values are shown in figure 9.8 compared with the recall values

R′−→
p ,3,D0

, R′−→
p ,3,D1

and R′−→
p ,3,D2

. It has been suggested by some contributors

to the MIREX wiki [mirb] that this kind of measure be used in place of the

recall measure for grading algorithms. The chord likeness measure gives

higher scores than the stricter recall measures for all algorithms. However,

it seems to have a greater effect on the algorithms that scored badly for
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Table 9.7: Weighted values for chord likeness L∼
p
, segmentation quality Q and

combined recall and segmentation F-measure F→
p ,3,D0

for each algorithm across

the whole Beatles collection. The F-measure is calculated using the segmenta-
tion quality Q and dictionary based recall measure R′

→
p ,3,D0

which is also shown

in the table for reference.

Algorithm L∼
p

R′−→p ,3,D0

Q F−→
p ,3,D0

ch aes 0.687 0.613 0.612 0.613
ch hcdf 0.685 0.603 0.680 0.639
ch hcdfa 0.698 0.617 0.725 0.667
de 0.765 0.754 0.831 0.791
ko1 0.744 0.728 0.777 0.752
ko2 0.751 0.740 0.781 0.760
md 0.741 0.732 0.806 0.768
ogf 0.752 0.708 0.757 0.731
pp 0.733 0.721 0.832 0.773
pvm1 0.726 0.712 0.805 0.756
pvm2 0.713 0.668 0.694 0.680
rrhs1 0.731 0.697 0.788 0.740
rrhs2 0.690 0.627 0.583 0.604
rrhs3 0.664 0.547 0.492 0.518

recall than those that scored well and thus compresses the range of values

across the different algorithms.

9.4 Chord segmentation quality and F-measure

In chapter 8 we introduced the segmentation quality measure Q and the

combined segmentation and recall F-measure F . Figure 9.9 shows the

results for Q compared with recall R′−→p ,3,D0
and the combined measure

F−→
p ,3,D0

; the values for these are shown in table 9.7. We can see that the

scores for Q are generally higher than the recall score for all algorithms

except for ‘rrhs2’ and ‘rrhs3’. In most cases, the segmentation quality

values are better with algorithms ‘ch hcdfa’, ‘pp’, ‘pvm1’ and ‘rrhs1’ all

scoring much higher than their recall.

In the case of the three ‘ch’ algorithms, it is interesting to look at the

difference between recall and segmentation scores. The ‘ch aes’ algorithm
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Figure 9.9: Plot showing segmentation measure Q and recall R′
→
p ,3,D0

compared

with combined measure F→
p ,3,D0

for each algorithm.

has no specific segmentation part except for application of a median filter

to smooth the output chord symbol frames. This algorithm has almost

exactly the same scores for recall and segmentation. The ‘ch hcdf’ algo-

rithm uses the same underlying chord recognition technique but employs

the HCDF algorithm to segment the music before estimating chord sym-

bols for each segment. The recall value actually falls for this algorithm

compared to ‘ch aes’ but the segmentation score is significantly better.

The addition of the enhanced peak picking of the HCDF in algorithm

‘ch hcdfa’ improves the segmentation quality significantly again and pulls

the recall up slightly compared to the previous two algorithms. That the

recall value falls for ‘ch hcdf’ is an interesting result; this may be due to

over-segmentation giving rise to some short segments with bad chord sym-

bol estimates. With the better segmentation performance of the ‘ch hcdfa’

algorithm, over-segmentation is reduced so the number of short incorrect

segments falls helping the recall performance slightly.

Combined F-measure

Taking the harmonic mean of the segmentation quality Q and recall value

R we can produce a single combined chord recognition score F . In this
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Figure 9.10: Plot showing the Friedman test mean ranks of the MIREX09
algorithms for chord recall R′

→
p ,3,D0

.

case, the recall method we have chosen is a cardinality-3 dictionary-based

pcset matching function R′−→p ,3,D0
so we quote the f-measure with the same

parameters F−→
p ,3,D0

. Looking at figure 9.9 again, we can see that the

combination of recall and segmentation actually has quite a large effect

on the ranking of the algorithms. When considering recall alone, ‘de’

is in first place followed by ‘ko2’ then ‘md’ with ‘ko1’, ‘pp’, ‘pvm1’ and

the ‘ogf’ algorithms close behind. Using the f-measure that includes the

segmentation scores, the top performer is still Dan Ellis’s ‘de’ algorithm

but ‘pp’ jumps up to second place with ‘md’ again in third position. Lower

down the table, the ‘ch hcdfa’ algorithm benefits significantly from the

inclusion of segmentation in a final combined score. Where it would be

considered to have roughly the same performance if a little lower than

‘rrhs1’ on recall alone, it is clearly the better performing algorithm when

f-measure is used.

9.4.1 Friedman test for statistical significance

Along with the weighted average values for chord symbol recall, statisti-

cal analysis of the recall results were also presented for MIREX09 [mira]

using the Friedman rank test for significance [Fri40]. Mauch also chooses
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Figure 9.11: Plot showing the Friedman test mean ranks of the MIREX09
algorithms for chord segmentation Q.

de pp md ko2 ko1 pvm1 ogf rrhs1 pvm2 ch_hcdfa ch_hcdf ch_aes rrhs2 rrhs3
0

2

4

6

8

10

12

M
e

a
n

 C
o

lu
m

n
 R

a
n

k
s

Chord F results Friedman Mean Ranks

Figure 9.12: Plot showing the Friedman test mean ranks of the MIREX09
algorithms for chord f-measure F→

p ,3,D0

to use this test to evaluate his results in [Mau10]. The Friedman test is

a non-parametric test that calculates statistical significance of the differ-

ence between the algorithm results from their relative ranks for each song

instead of their absolute output values. The test determines whether the

mean ranking for algorithms differ significantly and because it works on

ranks instead of absolute values it also has the advantage of compensating

for varying difficulty of the songs in the test set.
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Using the Friedman test on the song-wise results for chord symbol recall

R′−→p ,3,D0
, chord segmentation Q and the combined chord f-measure F−→

p ,3,D0

we obtain the mean ranks shown in figures 9.10, 9.11 and 9.12. The rank-

ing results for chord symbol recall put the algorithms in the same order

as the weighted averages but the top performing algorithms are closer to-

gether. In fact, the test determines that for recall measure R′−→
p ,3,D0

, the

difference between the top algorithm ‘de’ and the next six algorithms ‘ko2’,

‘md’, ‘ko1’, ‘pp’, ‘pvm1’ and ‘ogf’ is not statistically significant. A simi-

lar situation is true for segmentation quality and f-measure. The results

for the chord segmentation are similarly close showing that the difference

between top performing algorithm ‘pp’ and the next two ‘de’ and ‘md’

is not statistically significant. The difference between second place ‘de’

and the next six ‘md’, ‘pvm1’, ‘ko2’, ‘ko1’, ‘ogf’, ‘rrhs1’ is not statistically

significant. The results for the f-measure also show the difference between

the top seven algorithms is not statisically significant.

For our recall evaluation, Dan Ellis’ algorithm achieves the highest

score. It is interesting that this is not the case for the official MIREX09

results [mira]. The MIREX09 evaluation test set included songs by Queen

and Zweieck as well as the Beatles collection, whereas we used only the

Beatles. Ellis used the Beatles transcriptions collection to train his recog-

nition algorithm, so it may be that it is overfitting the training set and

does not perform so well on other material.

For the authors’ own algorithms, the friedman test shows that the

difference between ‘ch hcdfa’ and the other two ‘ch hcdf’ and ‘ch aes’ for

recall is not statistically significant. However, the segmentation results

show that ‘ch hcdf’ is significantly better than ‘ch aes’ and that ‘ch hcdfa’

is significantly better than ‘ch hcdf’. The combined f-measure results

show that ‘ch hcdfa’ is not significantly better than ‘ch hcdf’ but it is

significantly better than ‘ch aes’.

9.5 Problem songs

The twelve Beatles albums comprise 180 songs and in this corpus there

are a wide range of musical styles and timbres. Some songs are easier than
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Figure 9.13: Image showing recall values as a greyscale colour intensity for each
song on the x-axis for all fourteen algorithms. Dark areas show low scores. Dark
vertical lines show songs that are problematic for more than one algorithm.
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Figure 9.14: Image showing segmentation values as a greyscale colour intensity
for each song on the x-axis for all fourteen algorithms. Dark areas show low
scores. Dark vertical lines show songs that are problematic for more than one
algorithm.

others for algorithms to perform chord recognition on as you would expect

with a widely varied set of songs. However, there are a few songs in the

collection for which all, or almost all the algorithms perform very badly.

It is interesting to look at the individual recall and segmentation scores

for all the songs for all the algorithms to see which are the ‘problem’ songs

in the collection and why.

To get an idea of how the different algorithms performed on the songs

individually we can plot average recall and segmentation scores for each

song from each algorithm as greyscale colour intensities in an image map
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as shown in figures 9.13 and 9.14. Certain songs are problems for all

algorithms and these show up as dark vertical lines on the plots from

top to bottom. The best example of this for the recall values is song

150, ‘Revolution 9’ from disc 1 of the white album, which shows up as a

clear dark line on both the recall map and the segmentation map. This

track is not a tonal pop song but rather an example of electoacoustic

musique concrète. Originated by Schaffer [Rey96] in the late 1940s and

subsequently developed by composers including Stockhausen, Varese and

Xenakis [Lev02]; this style of music is created by arranging and mixing

snippets of pre-recorded audio tape into a new order to build composi-

tions. It is therefore unsurprising that chord recognition algorithms find

it problematic because there is no real chord structure present in the audio

except for small snatches of sampled tonal material that appear from time

to time in the mix.

For MIREX09, seven songs were excluded from the final evaluation

results because they had average recall scores across all thirteen algorithms

less than 25%. Table 9.8 shows the details for these seven songs and for

four others that we have found to have low averages in all our evaluations.

‘Revolution 9’ is among the songs that were excluded from MIREX09.

Some songs are difficult for some algorithms but not for others. Song

107, ‘Lovely Rita’ from Sgt. Pepper has very low recall scores for all al-

gorithms except for ‘de’ and the three ‘ch’ algorithms. Algorithm ‘de’

actually scores 87% for the recall on this song but ‘md’, ‘pp’, both ‘ko’

and both ‘ogf’ algorithms score zero. When we look at the segmentation

scores, however, the scores look perfectly normal for all algorithms. On

further investigation we find that this track has been mastered with a tun-

ing centre frequency around 425Hz which is a long way off concert pitch

440Hz. In fact, 425Hz is about a quarter tone flat which means some

algorithms may well decide that the song is in the key one semitone below

that of the hand annotation. Figure 9.15 shows the outputs for algorithms

‘de’, ‘md’ and ‘pp’ compared with the hand annotation for a short excerpt

of ‘Lovely Rita’. It is clear to see that ‘md’ and ‘pp’ have basically esti-

mated the chord sequence correctly but the symbols they have produced

are all one semitone lower than the annotated symbols due to this tuning
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Figure 9.15: An excerpt of ‘Lovely Rita’ shown with the hand annotated chord
symbols (A), the Dan Ellis algorithm output (DE), Mauch and Dixon output
(MD) and the Papadopoulos and Peeters output (PP). MD and PP algorithms
have both estimated the tuning a semitone below the hand annotation.

problem.

‘Wild honey pie’ is another track that many algorithms have difficulty

with for chord symbol recall. This time ‘de’ and ‘pp’ score well but the

others all fail. The tuning frequency for this song again is about a quar-

tertone flat from concert pitch but an added difficulty is that all of the

tonal chords in the hand annotation are in fact ‘X:7’ type chords. This

may mean that even if algorithms correctly guess the tuning, they may

still have difficulty correctly identifying the chord family.

Looking at the image map in figure 9.14, we can see that song 105,

‘Within you without you’ from Sgt. Pepper, has very poor segmentation

scores but the recall scores for this song do not appear to be too unusual.

This song is probably the hardest for segmentation because it contains the

longest continuous annotated tonal chord in the collection (as discussed

in section 6.6.5). Although the implied harmony of that section of the

song does not change for slightly more than 137 seconds, the movement in

the sitar melody line and string arrangements will doubtless cause chord

recognition algorithms to over-segment that section compared to the tran-

scription.
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Table 9.8: ‘Problem songs’ in the collection. These are the songs that algorithms generally have the most trouble with either in
terms of recall or segmentation. Those marked with a cross in the MX09 column were excluded from the MIREX09 evaluations.
It should be noted that although ‘Ticket to ride’ was excluded from MIREX09, it appears to have fairly normal results in our
evaluations.

R′
−→
p ,3,D0

Q
No. Disc Track Tuning MX09 mean max min range mean max min range
62 05 07 Ticket To Ride 430 ✗ 0.64 0.84 0.37 0.46 0.64 0.85 0.30 0.55
82 06 13 If I Needed Someone 441 X 0.27 0.62 0.16 0.45 0.49 0.59 0.33 0.26
87 07 04 Love You To 440 ✗ 0.42 0.90 0.00 0.90 0.43 0.74 0.16 0.58
105 08 08 Within You Without You 440 X 0.37 0.61 0.21 0.39 0.17 0.28 0.06 0.22
107 08 10 Lovely Rita 425 ✗ 0.19 0.87 0.00 0.87 0.69 0.91 0.40 0.51
126 10CD1 05 Wild Honey Pie 426 ✗ 0.17 0.88 0.00 0.87 0.58 0.92 0.25 0.67
127 10CD1 06 The Continuing Story of Bungalow Bill 438 ✗ 0.23 0.70 0.09 0.61 0.64 0.83 0.51 0.32
126 10CD1 14 Don’t Pass Me By 436 ✗ 0.29 0.69 0.09 0.59 0.61 0.76 0.23 0.52
140 10CD2 02 Yer Blues 440 X 0.43 0.59 0.28 0.32 0.50 0.67 0.31 0.36
144 10CD2 06 Helter Skelter 440 X 0.54 0.86 0.29 0.57 0.45 0.88 0.23 0.65
150 10CD2 12 Revolution 9 440 ✗ 0.20 0.43 0.09 0.34 0.31 0.57 0.18 0.39



Chapter 10

Conclusions and future work

In this thesis we have addressed the subject of chord recognition from

audio and the evaluation of algorithms designed to perform that task.

After reviewing theoretical underpinnings of pitch perception, consonance

and harmony theory, a novel six dimensional model for pitch space was

presented in chapter 2. This model was employed in chapter 3 as the

basis of a pre-segmentation stage that improves the performance of our

chord recognition algorithm from [HS05]. To test our chord recognition

algorithms, we require a large annotated collection of audio for use as a

ground truth and at the start of this work none was available. For this

reason, we designed the chord symbol model and text syntax in chapter 4

and used it in the annotation process, discussed in chapter 6, allowing

us to produce the Beatles chord transcription collection. In chapter 7 we

proposed a novel alignment method based on simple audio fingerprints

which allows a researcher to align their local copies of the Beatles audio

accurately with our transcriptions.

In chapter 5 we presented methods for comparing chord symbols in our

syntax which we subsequently used for analysing the statistics of the tran-

scription collection in chapter 6. These same chord comparison methods

were also used as a basis for a novel dictionary-based chord symbol recall

calculation proposed in chapter 8. Along with the new chord symbol recall

method, we also presented a complementary chord segmentation measure

based on directional hamming distance and proposed an f-measure score

for chord recognition evaluation combining the two.

Using the measures and techniques proposed in chapter 8 we presented

evaluation results for our three chord recognition algorithms compared to

251
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the entrants of the MIREX09 chord detection evaluation in chapter 9.

We used the new recall evaluation techniques to analyse the recognition

algorithms for different chord dictionaries and performance on individual

chord types. Analysis of the results for the fifteen algorithms we evaluated

also provided us with data on the relative difficulty of songs in the Beatles

collection for the task of chord recognition. This information allowed us to

identify ‘problem songs’ in the collection for which all algorithms obtained

low scores.

We will now summarise the main outcomes from the research work

presented here and follow with suggested directions for further work.

10.1 Conclusions

In chapter 2, we introduced a novel six dimensional model for equal tem-

pered pitch space based on neo-riemannian music theory principles. By

projecting chords as points inside the six dimensional torus we may vi-

sualise tonal relationships in a new way. In chapter 3 we showed how

this model could be used to derive a six dimensional tonal centroid fea-

ture from twelve dimensional chroma vectors generated from digital audio

recordings. We use the tonal centroid as the basis for our HCDF enabling

harmonic segmentation. We have demonstrated that using the HCDF as a

pre-segmentation step in our chord recognition system improved the algo-

rithm’s performance. Lee and Slaney [LS07, Lee08, LS08] have also used

the tonal centroid as a feature vector for chord recognition itself.

One of the major contributions of this work is the Beatles transcription

collection presented in chapter 6. We needed to create this set of chord

annotations because no large collection was available when we started

the research presented here. In order to produce a set of transcriptions

that would be accurate and convenient for use in automated evaluation

processes, we have developed a novel machine readable chord syntax which

was presented in chapter 4. The syntax we have developed is easy to

use for human musicians because it avoids potential sources of ambiguity

(discussed in section 4.1) while staying close to common chord notation

conventions discussed in section 4.2. The resulting context independent
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chord model and associated text syntax is very flexible. For human users’

convenience, we defined a list of seventeen shorthand chordtype labels for

commonly occurring chords but the system allows for the spelling of any

conceivable chord that might be found in western tonal harmony through

the use of an interval list notation. The shorthand labels are themselves

just macro definitions of interval lists, thus the system could easily be

extended to include further shorthands if required.

We have used the chord syntax for producing our transcriptions but its

uses are not limited to this task alone. Our chord model has been used as

the basis for the RDF chord description in the OMRAS II chord ontology

[SRMH07]. A heavier encoding of the model, based on XML or RDF,

may be useful for data storage and transfer, particularly in the context of a

larger framework such as the Music Ontology project [RASG07] which has

to handle many different classes of musical data. Entering data manually

in this kind of format is cumbersome compared to lighter format such

as our syntax. Furthermore, given the machine readable nature of our

syntax, it is ideally suited for use as a manual entry format that can be

converted to alternative formats automatically by a computer. Indeed, a

very slightly altered version of our syntax (the ‘#’ symbol is replaced with

‘s’) is used in the OMRAS II chord ontology [SRMH07] in just this way

to provide compact chord labels for the chord symbol service.

Developing the chord symbol syntax enabled us to take on the task

of transcribing the Beatles collection. In order to ensure that the chord

transcriptions were of high quality, we devised a process for creating and

verifying the accuracy of annotations as discussed in section 6.5. We

have written a Matlab toolkit for manipulating chord data in our syntax

and this enabled us to automatically check the transcription collection for

correct syntax. The human listening tests used in the verification process

were also made possible by the use of our Matlab functions and MIDI file

tools to generate audio files containing synthesised versions of the chords

combined with the original Beatles recordings.
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Impact of the Beatles transcription collection

The impact of our transcription collection on the MIR community has

been significant. The full set of verified Beatles transcriptions have been

available since 2007. At the time of writing, this means they have been

in use in the community for nearly three years. Many researchers in-

cluding [Bel07, BPKF07, PP08, LS08, RK08, OGF09c, KO09c, RUS+09,

MND09b] have used the transcriptions in their evaluations and many more

have requested copies of the collection and the Matlab tools. At the time

of writing, the number of researchers who have asked us directly for copies

of the transcriptions is 67. However, given that ‘.lab’ and RDF versions

of the transcriptions are publically available on the isophonics website as

announced at the ISMIR09 conference [MCD+09], the number of people

actually using the collection is almost certainly higher. The transcription

collection is an ongoing project and if users notify us of errors, we make

corrections and release updated versions.

The transcription collection has been used as the test set for the

MIREX08 and MIREX09 audio chord detection evaluations. As a re-

sult, the chord syntax as been adopted as a de-facto standard for output

of chord recognition algorithms in the MIREX chord detection track. For

MIREX09, new transcriptions in the same format provided by Mauch et

al [MCD+09] were also included in the evaluation process.

Uses for the transcriptions other than in chord recognition evaluation

have also been found. Mauch’s paper ‘Discovering chord idioms through

Beatles and real book songs’ [MDH+07], on which this author is also cred-

ited, demonstrates the use of the transcription collection as a primary

data source for computational musicology itself. The collection has also

generated recent interest from the online community involved in the info-

graphics project ‘Charting the Beatles’1.

1http://www.chartingthebeatles.com
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Audio alignment

Since the initial release, a number of researchers have complained about

errors in the collection, referring to large timing discrepancies between

the transcription and their local copy of the Beatles audio. To solve this

problem, we developed the alignment method discussed in chapter 7 that

allows the user to modify their local copy of the Beatles audio such that it

is accurately aligned with our original audio files. The system employs a

simple audio fingerprinting technique so the alignment data for the whole

collection can be sent in a file less than 200kB in size. The algorithm

will fail to align a local audio file that is time-stretched compared to our

original. Dan Ellis found large timing discrepancies between his local audio

and the transcriptions. Some of these problems were due to bad alignment,

but some songs had been taken from different releases of the material

and hence were the product of an alternative mastering process. After

realignment, Ellis reported a 20% improvement in performance for his pre-

trained chord recognition system [Ell09]. It is likely that Lee and Slaney

also had audio that was aligned poorly with the transcriptions, given their

comments on the accuracy of human transcriptions in [LS07, Lee08, LS08].

In order to use the alignment system on other types of music, it is im-

portant to consider that the Beatles recordings were all performed by real

musicians without the aid of computerised sequencers and digital samplers.

More recent music recordings using electronically generated sounds, such

as drum loops and samples, could contain multiple matches for a finger-

print and confuse the algorithm. This problem might be mitigated slightly

by using an adaptive algorithm that could choose the positions of the fin-

gerprints carefully if there is an element such as a vocal or instrumental

track which does not contain repeated material. Another possibility is that

more than two fingerprints could be used and a slightly more complex al-

gorithm introduced to search for the best match of several fingerprints

relative to each other.
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Chord symbol comparison

In chapter 5, we restated our chord syntax algebraically allowing us to

define a set of functions for converting between different musical objects

including chords, intervals, pitchnames and pitchclasses. We used these

definitions as a basis for formalising the chord matching problem by defin-

ing ordered and unordered set matching functions in section 5.2. Using the

set matching functions on strings (ordered sets of characters), pnsets (sets

of pitchnames) and pcsets (sets of pitch classes), we then defined a system

for comparing chord symbols by regarding them as strings, pnsets or pc-

sets depending on the context of the required comparison. We extended

the system to allow direct comparison of chords with different cardinali-

ties. In the same chapter we also proposed a chord likeness measure based

on the number of tones shared between two chords.

Using the chord symbol toolkit, we implemented our chord matching

functions in matlab and then used them to investigate the statistics of the

transcription collection in section 6.6. By varying the parameters of the

chord matching functions we were able to extract interesting data about

the make up of the collection with regards to specific chords and chord

types. This information is very useful because it gives us an insight into

the nature of the collection. This allows us to be more confident when

drawing conclusions from our evaluation results.

Chord recognition evaluation

In chapter 8, we used our chord matching functions again to develop a

general method for calculating chord symbol recall. By using our chord

matching functions in the calculation, we were able to define a set of pa-

rameters for the recall equation: match type, cardinality and dictionary.

By selecting appropriate values for these three parameters, our chord sym-

bol recall method can be used to evaluate any set of chord recognition al-

gorithms in a fair manner. We also argued that using chord symbol recall

alone is not the best way to evaluate chord recognition systems. In sec-

tion 8.3, we proposed a segmentation quality measure that complements

the recall evaluation and showed how the two may be combined to give a
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single chord recognition f-measure.

In chapter 9, we used the evaluation techniques presented in chapter 8

to evaluate our three chord recognition algorithms and re-evaluate the out-

put data from the recognition systems that were entered to the MIREX09

chord detection track. We presented evaluation results for our chord sym-

bol recall method using various different parameters and compared these

results with recall values calculated with the same chord mappings that

were used to produce MIREX08 and 09 evaluation results.

In our recall results we found that the ranking of the algorithms stayed

fairly constant for different parameters. One exception however was the

‘rrhs3’ algorithm by Rocher et al. This algorithm appeared to perform sig-

nificantly better when evaluated with MIREX08 and 09 chord mappings

compared with our new recall evaluation methods. However, the reported

chord vocabulary for the ‘rrhs3’ algorithm is larger than the other algo-

rithms, containing 12 different chord types. It is therefore likely that the

strange results in the MIREX mapping categories were due to incorrect

chord mapping generating false positive matches.

Songs with an average score of less than 25% across all algorithms

were discarded from the official MIREX09 results on the assumption that

there was something wrong with their transcription or alignment. How-

ever, we found that recall values for such ‘problem songs’ could vary quite

significantly between algorithms and, in some cases, one or two algorithms

obtained very high scores where others scored very poorly. A good exam-

ple of this was Lovely Rita for which Dan Ellis’ algorithm scored 87% but

several others scored zero. In that case, it was found that tuning was the

cause of the problem; the reference tuning frequency for the song being

almost a quartertone away from concert pitch. As a result, some algo-

rithms generated a sequence of chord symbols that were correct in terms

of relative progression, but with estimated roots one semitone lower than

the ground truth annotation throughout. Some people might claim that

the transcriptions are incorrect when they find this situation. However, as

we can see from our results, not all algorithms will necessarily get the tun-

ing ‘wrong’ so changing the transcriptions would just reverse the current

situation. By including the segmentation quality metric, we were able to
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show that these algorithms were actually producing good results because

their segmentations were still mostly correct despite the low recall scores.

We therefore recommend that attention be paid to songs where large dis-

crepancies exist between the results for two performance measures. In

cases where recall is significantly lower than the segmentation score, it

is advisable to re-evaluate the recall result for that song using a trans-

posed version of the ground truth to check for anomalous results caused

by tuning errors.

As with all research, the state of the art in chord recogntion constantly

advances. In MIREX08, all the entries were major/minor chord recognis-

ers. For MIREX09, the algorithms were a mixture with some still detecting

only major and minor chords, but others having larger vocabularies of up

to twelve chord types. At the time of writing, preparation for MIREX10 is

already underway and undoubtedly there will be new algorithms entered

this year that will perform better and handle larger chord vocabularies.

The evaluation measures we have demonstrated in this thesis are designed

with these future possibilities in mind. As the capabilities of algorithms

advance, we need only alter the parameters of the evaluation methods in

order to deal with the new developments.

The statistics in section 6.6 show that the Beatles transcriptions con-

tain a very high proportion of major and minor triad chords. As such,

the test set is ideal for the algorithms that have been evaluated here in

chapter 9. However, as algorithms improve and chord vocabularies grow,

we will need more varied ground truth test sets in order to evaluate the

new algorithms properly. It is hoped that the techniques and tools devel-

oped in this work will make the task easier for the creators of new chord

transcriptions in the future.

10.2 Future work

In this section we will summarise potential directions for future work.
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Computational musicology

The statisics we presented in section 6.6 only scratch the surface of the

possible information that could be extracted from the Beatles transcription

collection using the chord matching functions we developed in chapter 5.

One area we would like to explore is the extension of chord matching

functions to include prime pcset matching. Prime pcset analysis is popular

in the music theory community [Lew82, For85, Sol82] and it would be very

interesting to further analyse the Beatles transcription collection in this

way.

The statistics that we presented here are all based on analysis and clas-

sification of individual chord symbols. In this work we have not analysed

the transcriptions in terms of chord progression. However, it is precisely

the Beatles’ skilled use of harmonic progression that made so many of

their songs so instantly memorable. We therefore intend to pursue further

research on chord progression patterns in the collection.

It would also be interesting to analyse Mauch’s chord transcriptions

for the Queen and Zweieck songs using the techniques we employed in

section 6.6. This will enable us to compare the properties of the different

collections in a quantitative way.

Chord syntax

The chord label syntax described in chapter 4 has been specifically de-

signed to be key context independent. It would be possible however, to

extend the chord model to allow definition of a key context and then

specify chord roots relative to that key context. For example, the chord

progression

C:maj | D:min7 | F:maj | G:7 | C:maj

could be described as

I:maj | II:min7 | IV:maj | V:7 | I:maj

or perhaps in the cleaner, but slightly less intuitive form

1:maj | 2:min7 | 4:maj | 5:7 | 1:maj
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in the key of C major. The original model was designed for use in simple

text annotations where each chord symbol has to stand alone, entirely

separate from others. Using an encoding such as RDF where a higher level

of structure may be expressed, the ability to model chord progressions in

terms of a key context and relative chord symbols may be useful for future

analysis and annotation tasks.

Conversion of a chord progression stored using this alternative model to

the context free form is simple. However, conversion from the context-free

form to key context and relative chord symbols is not trivial. This leads

to another possible area of future work, designing algorithms that can

automatically infer key context from the context-free chord transcriptions

that we already have.

Chord sequence comparison

The chord sequence likeness measure introduced in section 5.6 is a simple

method for comparing chord sequences in terms of their component pitch-

names or pitchclasses. Where one chord sequence is a transposed version

of the other, this simple likeness measure will evaluate as a low score.

Likewise, if two chord sequences are the same but are not time aligned,

this measure will also fail to reflect their similarity.

An interesting area of possible future work is the development of a

chord sequence similarity measure that can detect similar relative chord

progressions in different songs. By treating each unique chord symbol as

a dimension in a vector space, we may view a chord sequence as a path in

this space. Moving from one chord to the next in a progression will cause

a unit change in one dimension only. Ordering of the dimensions in the

space might be based on an analysis of chord symbol frequency. Small

differences between sequences caused by insertion or deletion of chords

in one relative to the other may therefore be discarded using a principal

component analysis. As a result, a pair of chord sequences that have

similar relative progressions will have similar paths in the space regardless

of key. Such a system would potentially be very useful in cover song

detection.
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Extended test set

The statistics in section 6.6 show that over three quarters of the chords in

the Beatles collection are major and minor triads. As chord recognition

systems become more advanced, a collection of annotated audio that con-

tains a more balanced mixture of chord types may be more appropriate

in order to keep the evaluation of chord symbol recall fair. Producing

ground truth transcriptions of chords from jazz and classical music as

well as further pop music recordings may help to make the test set more

balanced.

An alternative approach could be to generate synthesised test audio

containing more varied types of chords [WDR09]. This would allow con-

trolled testing for recognition algorithms. However, this would not be

a substitute for transcriptions of real recordings. While synthesised test

data can be generated that contains any chord we want, it should be noted

that in any large collection of real western tonal music, the proportion of

major and minor triads will always be higher than other chordtypes due

to the nature of western harmony.

Audio chord recognition

There are numerous ways in which we might improve our chord recogni-

tion algorithms in the future. Simple steps such as pre-processing to detect

sections of silence would immediately have a positive impact on perfor-

mance. Use of better chord templates that reflect the harmonic content of

chord chroma and a different template matching mechanism should also

see improved results.

Another possible direction in future work has become apparent through

the analysis of our results in chapter 9. The various algorithms perform

differently for different chord types. We therefore believe that it might be

interesting to develop a ‘mixture of experts’ chord recognition system that

incorporates several of these different algorithms. The separate algorithms

can be used in parallel to generate chord estimates and a decision on the

final estimate can be made using our knowledge of how reliable each expert

is for the particular chords they produce.
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Chord tools

The current version of the chord toolkit is implemented in Matlab. Johan

Pauwels has also implemented a parser for the chord symbols in C++.

At the time of writing, the MIREX10 evaluation system is being re-

implemented in Java and our chord symbol syntax will be used as the

basis for the chord detection task again. To make the tools available on

open platforms we intend to produce implementations of the chord tools

in Java and Python and these will be open sourced in the same way as

our Matlab version.
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[SB00] K̊are Sjölander and Jonas Beskow. Wavesurfer - an open

source speech tool. In Proceedings of the International Con-

ference on Spoken Language Processing, 2000.

[Sch54] Arnold Schoenberg. Structural Functions of Harmony. Faber

and Faber Limited, London, 1954.

[SE03] Alexander Sheh and Daniel P.W. Ellis. Chord Segmentation

and Recognition using EM-Trained Hidden Markov Models.

Proceedings of the ICMC 2003, 2003.

[SF] Eleanor Selfridge-Field. Music theory for computer applica-

tions, Retrieved August 2010.

http://www.ccarh.org/courses/254/MusicTheory ComputerApps2004.htm.

[She64] Roger Shepard. Circularity in judgments of relative pitch.

Journal of the Acoustical Society of America, 35:2346–2353,

1964.

[SIY+08] K. Sumi, K. Itoyama, K. Yoshii, K. Komatani, T. Ogata, and

H.G. Okuno. Automatic chord recognition based on prob-

abilistic integration of chord transition and bass pitch esti-

mation. In Proceedings of the 9th International Conference

on Music Information Retrieval, ISMIR 2008, Philadelphia,

USA, 2008.



BIBLIOGRAPHY 277

[SJ01] B. Su and S. Jeng. Multi-timbre chord classification using

wavelet transform and self-organized map neural networks. In

Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 3377–

3380, 2001.

[SMW04] Arun Shenoy, Roshni Mohapatra, and Ye Wang. Key deter-

mination of acoustic musical signals. In International Con-

ference on Multimedia and Expo. 2004.

[Sol82] Larry Solomon. The list of chords, their properties and

uses. Interface, Journal of New Music Research, 11(2):61–

107, 1982.

[SRMH07] Christopher Sutton, Yves Raimond, Matthias Mauch, and

Christopher Harte. The Chord Ontology, 2007.

http://purl.org/ontology/chord/.

[Sta97] Richard P. Stanley. Enumerative Combinatorics, Volume 1.

Cambridge University Press, Cambridge, 1997.

[Ste02] Mark Steedman. Helmholtz’ and Longuet-Higgins’ Theories

of Consonance and Harmony. Unpublished Tutorial Paper,

2002.

[SVB09] Ricardo Scholz, Emmanuel Vincent, and Frédéric Bimbot.

Robust modeling of musical chord sequences using probabilis-

tic n-grams. In Proceedings of the IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP).

2009.

[Tag03] Philip Tagg. Tagg’s harmony handout, available at

www.tagg.org. Version 3, (accessed April 2010), 2003.

[Tay89] Eric Taylor. The AB Guide to Music Theory Part 1. ABRSM

Publishing Ltd, Portland Place, London, UK, 1989.

[Tay91] Eric Taylor. The AB Guide to Music Theory Part 2. ABRSM

Publishing Ltd, Portland Place, London, UK, 1991.



BIBLIOGRAPHY 278

[Tem01] D. Temperley. The Cognition of Basic Musical Structures.

MIT Press, Cambridge, MA, 2001.

[Tuk71] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley,

1971.

[Ulr77] John Wade Ulrich. The analysis and synthesis of jazz by

computer. In Proceedings of the 5th International Joint Con-

ference on Artifcial Intelligence. Los Altos, 1977.

[VPM08] Matthias Varewyck, Johan Pauwels, and Jean-Pierre

Martens. A novel chroma representation of polyphonic music

based on multiple pitch tracking techniques. In Proceedings of

the 16th ACM International Conference on Multimedia, pages

667–670, 2008.

[WDR09] Jan Weil, J. L. Durrieu, and Gaël Richard. Automatic genera-
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Appendix A

Derivation: inequalities for 6D space

Interval distance relations from the tonic that must be satisfied:

d(P5,P4) < d(M3,m6) < d(m3,M6) < d(M2,m7) < d(m2,M7) < d(d5,a4)

(A.1)

Distances in the six dimensional space in terms of radii of the circle of

fifths r1, the circle of minor thirds r2 and the circle of major thirds r3:

d(P5,P4)2 = (2r1 sin
π

12
)2 + 2r2

2 + (2r3 cos
π

6
)2 (A.2)

d(M3,m6)2 = (2r1 cos
π

6
)2 + (2r3 cos

π

6
)2 (A.3)

d(m3,M6)2 = 2r1
2 + 2r2

2 (A.4)

d(M2,m7)2 = r1
2 + (2r2)

2 + (2r3 cos
π

6
)2 (A.5)

d(m2,M7)2 = (2r1 cos
π

12
)2 + 2r2

2 + (2r3 cos
π

6
)2 (A.6)

d(d5,a4)2 = (2r1)
2 + (2r2)

2 (A.7)

These simplify to

d(P5,P4)2 = (2 −
√

3)r1
2 + 2r2

2 + 3r3
2 (A.8)

d(M3,m3)2 = 3r1
2 + 3r3

2 (A.9)

d(m3,M6)2 = 2r1
2 + 2r2

2 (A.10)

d(M2,m7)2 = r1
2 + 4r2

2 + 3r3
2 (A.11)

d(m2,M7)2 = (2 +
√

3)r1
2 + 2r2

2 + 3r3
2 (A.12)

d(d5,a4)2 = 4r1
2 + 4r2

2 (A.13)
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Inequality 1

Let us assume r1 = 1 then

d(P5,P4) < d(M3,m6)

(2 −
√

3)r1
2 + 2r2

2 + 3r3
2 < 3r1

2 + 3r3
2

(2 −
√

3) + 2r2
2 < 3

r2
2 <

1 +
√

3

2

therefore

r2 <

√

1 +
√

3

2
(A.14)

Inequality 2

d(M3,m6) < d(m3,M6)

3r1
2 + 3r3

2 < 2r1
2 + 2r2

2

3 + 3r3
2 < 2 + 2r2

2

3r3
2 < 2r2

2 − 1

r3
2 <

2r2
2 − 1

3

therefore

r3 <

√

2r2
2 − 1

3
(A.15)

and since the radii cannot be negative, r3
2 ≥ 0 so

r2 >
1√
2

(A.16)

Inequality 3

d(m3,M6) < d(M2,m7)

2r1
2 + 2r2

2 < r1
2 + 4r2

2 + 3r3
2

2 + 2r2
2 < 1 + 4r2

2 + 3r3
2

1 − 2r2
2 < 3r3

2
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since r2 > 1√
2
, the left hand side of this inequality will be negative so it is

redundant.

Inequality 4

d(M2,m7) < d(m2,M7)

r1
2 + 4r2

2 + 3r3
2 < (2 +

√
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2 + 2r2
2 + 3r3
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3
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3

2

therefore

r2 <

√
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3

2
(A.17)

This is the same result as d(P5,P4) < d(M3,m6).

Inequality 5

d(m2,M7) < d(d5,a4)
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√
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2 + 2r2

2 + 3r3
2 < 4r1

2 + 4r2
2
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3
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2

3
. (A.18)

This inequality is always satisfied if inequality 2 is satisfied because

√

2r2
2 − 1

3
<

√

(2 −
√

3) + 2r2
2

3
. (A.19)

Therfore we are left with

1√
2

< r2 <

√

(1 −
√

3)

2
(A.20)
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and

r3 <

√

2r2
2 − 1

3
. (A.21)


