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1 Introduction

The ongoing Large Hadron Collider programme, together with related experimental fa-

cilities, necessitates the calculation of scattering processes in perturbative quantum field

theory to ever greater precision. The state of the art in such calculations typically evolves

on two complementary fronts. Firstly, there is the calculation of specific processes at fixed

order in perturbation theory (including both QCD and electroweak corrections). Secondly,

there is the inclusion of successive infinite towers of kinematically enhanced contributions,

and the matching of these so-called resummed predictions with fixed order results. The

state of the art for most processes of interest is next-to-leading order (NLO) in perturbation

theory, supplemented by next-to-next-to-leading logarithmic (NNLL) resummed contribu-

tions. A few processes are known beyond this order, and in this paper we focus on inclusive

quantities in the production of heavy particles, which depend on a single ratio ξ of kine-

matic scales, such that ξ → 0 at threshold. Examples include the Drell-Yan production of

a vector boson, which is currently known to NNLO [1–8], and the closely related process
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of Higgs boson production via gluon-gluon fusion, which has been calculated up to an im-

pressive N3LO [9–16] in the large top mass limit. The differential cross-section in QCD for

these and other single-scale quantities assumes the generic form

dσ

dξ
= Kew (4παs)

n0

∞∑
n=0

(αs
π

)n 2n−1∑
m=0

[
c(−1)
nm

(
logm ξ

ξ

)
+

+ c(δ)
n δ(ξ) + c(0)

nm logm ξ + . . .

]
,

(1.1)

where Kew collects electroweak coupling and normalisation factors, αs = g2
s/(4π) is the

strong coupling, and n0 denotes the power of the strong coupling in the Born interaction.

Commencing at NLO, each order in αs is accompanied by a series of divergent contributions

as the threshold variable tends to zero, associated with QCD radiation that is soft and/or

collinear with the hard particles in the underlying scattering process. The first set of

terms in the square bracket in eq. (1.1) constitutes the leading power (LP) in the threshold

variable ξ, which mixes with the second set of terms, that originates also from purely

virtual corrections. The third set of terms is next-to-leading power (NLP) in a systematic

expansion in ξ, and formally divergent as ξ → 0, albeit integrably so. Finally, the ellipses

in eq. (1.1) denotes higher power corrections in ξ which vanish at threshold.

The practical significance of threshold contributions is well-known, and a variety of

approaches exist for resumming LP terms to all orders in perturbation theory [17–23] in

order to obtain meaningful comparisons of theory with data. In recent years, the NLP

terms in eq. (1.1) have also received a great deal of attention, for a number of reasons.

Firstly, they can dominate the theoretical uncertainty in the threshold region once the

first few powers of LP logarithms have been resummed (see e.g. [24], and [25] for a more

recent discussion). Secondly, the origin and general structure of NLP terms — including

whether or not they share similar universality properties with their LP counterparts — is

an interesting problem of quantum field theory in its own right. Thirdly, the classification

of NLP contributions in cross-sections is closely related [26] to the study of so-called next-

to-soft theorems, which have been explored in both a gauge theory [27] and gravitational

context [28–30] due to their intriguing relation with asymptotic symmetries.

Whether or not a general resummation prescription exists for NLP terms is still an

open question, that has been explored using an assortment of methods [31–56], some of

them building upon the earlier work of refs. [57–59]. In order to further develop and

test such formalisms, it is crucial to have detailed theoretical data — namely, explicit

results for threshold logarithms up to NLP power in specific processes. Furthermore, it

is extremely useful to classify separately contributions to each individual NLP term that

come from real or virtual radiation that is soft and/or collinear (or hard, in the case of

multiple emissions). Drell-Yan production offers a particularly clean testing ground in

this regard, given that all threshold logarithms associated with purely real radiation are

manifestly (next-to-) soft in origin (see e.g. [22]). Virtual gluons, however, can indeed be

collinear with one of the incoming parton legs, as well as hard or soft, thus leading to a

nontrivial structure of threshold logarithms. A convenient way to classify each individual

contribution is to carry out the integration over virtual momenta using the method of

regions [60–62], which explicitly separates out the modes of the loop momentum into non-
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overlapping soft, collinear or hard configurations. This method was heavily used in the

calculation of the total cross-section for Higgs boson production at N3LO [14, 15], and was

also used in ref. [34] to reanalyse the 1-real, 1-virtual contribution to the NNLO Drell-Yan

cross-section, first calculated in refs. [3–8], to obtain the contribution associated with each

separate virtual region. This data proved essential when deriving a factorisation formula

for next-to-soft effects [35, 36], which generalises the well-known soft-collinear factorisation

formula at LP (see e.g. ref. [63]), and which may pave the way for a NLP resummation

formalism (see refs. [45–51, 54, 55, 64] for an alternative approach based on effective field

theory, and [65] for a recent example of resummation).

Reference [34] focused specifically on abelian-like contributions to the qq̄ initial state,

which in QCD are associated with the colour structure CnF at O(αns ). At any given order,

such terms are amongst the most complicated in terms of the number of different NLP

effects that underly their structure. Furthermore, the development of factorisation formu-

lae and/or resummation prescriptions for threshold corrections can be made systematically

simpler by beginning with the abelian-like theory (as in refs. [34–36, 59]), before generalis-

ing to the non-abelian case. We will thus restrict ourselves to abelian-like contributions in

this paper, but our aim is to extend the classification of threshold contributions, up to NLP

in the threshold variable, to diagrams involving one virtual gluon and two real emissions.

As in ref. [34], the presence of the virtual gluon means that there are non-trivial regions

to analyse. Furthermore, the results will have a direct bearing on how to generalise the

factorisation formula of refs. [35, 36] to include the effects of more than one gluon emission,

which is clearly a necessary component for resummation. Although this is our main moti-

vation, it should be stressed that the results of this paper constitute part of the Drell-Yan

cross-section at N3LO, which is not yet known, although leading power threshold terms

have been previously evaluated in refs. [66–68].

The structure of our paper is as follows. In section 2, we review necessary facts

regarding Drell-Yan production, and outline the various steps used in our calculation. In

section 3, we present results for the abelian-like contribution to the Drell-Yan K factor,

before discussing their structure. We conclude in section 4. Some technical details are

contained in the appendices.

2 Outline of the calculation

2.1 Drell-Yan production

In this section, we review some necessary facts about the Drell-Yan process, and the method

of regions, that will be needed for what follows. Throughout, we focus on the quark-

antiquark Drell-Yan production of a colour singlet vector boson, corresponding to the LO

process

q(p) + q̄(p̄)→ V (Q). (2.1)

For our purposes, we may take V to be an off-shell photon, and let eq denote the electro-

magnetic charge of the incoming quark. We further define the variable

z =
Q2

s
, (2.2)
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where Q2 is the virtuality of the vector boson, and s = (p+ p̄)2 the squared centre of mass

energy. At leading order, z = 1, such that the cross-section may be written

σ(0) = σ0δ(1− z), (2.3)

where

σ0 =
e2
qπ(1− ε)
Ncs

, (2.4)

and Nc is the number of colours. At higher orders, one has 0 ≤ z ≤ 1, such that the upper

limit corresponds to threshold production. We may then define the K factor(αs
4π

)n
K(n)(z) =

1

σ0

dσ(n)(z)

dz
, (2.5)

where the right-hand side contains the differential cross-section at O(αns ). The complete

K factor for Drell-Yan production, including all partonic channels and full z dependence,

has been previously calculated up to NNLO (n = 2) [2–8], and leading power threshold

contributions at N3LO have been evaluated in refs. [66–68]. At any given order, one must

include the effects of additional radiation, that may be real or virtual. Reference [34]

reanalysed the 1-real, 1-virtual contribution to K(2) (for the qq̄ channel), up to the first

subleading power in a threshold expansion about z = 1. In this limit, the K factor assumes

a form similar to eq. (1.1), containing plus distributions and logarithms of the threshold

variable ξ = 1 − z. As discussed in the introduction, ref. [34] focused on all contributions

up to next-to-leading power (NLP) in ξ, that are proportional to the colour factor C2
F ,

where CF is the quadratic Casimir in the fundamental representation. Such contributions

are similar to those one would obtain in an Abelian theory, upon replacing g2
sCF with

the relevant squared electromagnetic charge of the quark, and the aim of ref. [34] was to

classify the precise origin of all such contributions, according to whether the virtual gluon

is hard, soft or collinear with one of the incoming (anti-)quarks. Here, we carry out a

similar analysis for the case of one virtual gluon, and two real emissions. This contributes

to the N3LO factor K(3)(z), and the virtual gluon has a number of non-trivial momentum

regions that give rise to NLP terms.

The amplitude we consider is shown schematically in figure 1, and corresponds to the

process

q(p) + q̄(p̄)→ V ∗(Q) + g(k1) + g(k2) (2.6)

at one-loop order. Labelling this by A2r,1v, its contribution to the differential cross-section

occurs through interference with the pure two real emission amplitude A2r:

dσ2r,1v

dz
=

1

4N2
c

1

2s
2Re

[ ∫
ddk

(2π)d

∫
dΦ(3)δ

(
z − Q2

s

)
×A2r,1v(p, p̄, k1, k2, k)A†2r(p, p̄, k1, k2)

]
, (2.7)

where the prefactors originate from colour/spin averaging and the Lorentz-invariant flux

factor, we work in d = 4−2ε spacetime dimensions throughout, and dΦ(3) is the differential
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Figure 1. Contribution to the Drell-Yan process at N3LO, consisting of two real gluon emissions

dressing the one-loop amplitude. The latter involves a loop momentum k.

phase space for the 3-body final state. There are 48 distinct Feynman diagrams that

contribute to the abelian-like one-loop amplitude (where we define abelian-like diagrams

to be those that contribute to the C3
F colour structure in the cross-section, thereby also

excluding diagrams with a fermion loop). We have generated all such diagrams using

QGRAF [69], and subsequently used Reduze [70, 71] (version 2) to construct the interference

term appearing in eq. (2.7). At this stage, one must carry out the integration over the

loop momentum k appearing in eq. (2.7) and figure 1. To this end, we also use Reduze to

reduce the one-loop integration to a set of scalar master integrals, using integration by parts

identities. These integrals may themselves be represented as scalar Feynman diagrams with

topologies of increasing complexity. The box and pentagon master diagrams are shown in

figure 2, where the simpler bubbles and triangles are omitted for brevity.

As stated above, the aim of our paper is to classify the structure of the K factor up

to NLP terms in the threshold expansion. We must then consider each master integral,

and elucidate its corresponding contribution to threshold behaviour, according to whether

the loop momentum is hard, soft or (anti-)collinear to one of the incoming partons. Here

we follow the standard approach of the method of regions [60–62], which we describe more

fully in the following section.

2.2 The method of regions

In the method of regions, singular parts of integrals in perturbative amplitudes are parti-

tioned, according to physical criteria on the loop momenta. In the case of the threshold

expansion considered in this paper, it is possible to separate completely the singular be-

haviour into non-overlapping regions, whose individual contributions reconstruct the full

integral (itself expanded about the threshold limit) when summed. As an example, con-

sider the diagram (B1) of figure 2, where we have associated the loop momentum k with a

particular internal line. One may expand this momentum in a Sudakov decomposition

kµ =
1

2
(n− · k)nµ+ +

1

2
(n+ · k)nµ− + kµ⊥ ≡ k+ n

µ
+ + k− n

µ
− + kµ⊥, (2.8)

where we have defined dimensionless lightlike vectors

nµ+ =
2√
s
pµ, nµ− =

2√
s
p̄µ, n− · n+ = 2 (2.9)
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Figure 2. Pentagon (Pi) and box (Bi) scalar master diagrams that contribute to eq. (2.7).

in the directions of the incoming particles, as well as the vector k⊥ transverse to the beam

direction i.e. such that

k⊥ · n− = k⊥ · n+ = 0. (2.10)

Denoting the Sudakov components of the loop momentum via kµ = (k+,k⊥, k−), we may

define the various regions by different scaling behaviours of these components. That is,

one may introduce a book-keeping parameter λ ∼
√

1− z, such that the regions we need

to consider are given by momenta of the form

Hard : k ∼
√
s (1, 1, 1) ; Soft : k ∼

√
s
(
λ2, λ2, λ2

)
;

Collinear : k ∼
√
s
(
1, λ, λ2

)
; Anti-collinear: k ∼

√
s
(
λ2, λ, 1

)
, (2.11)

where the terms collinear and anti-collinear denote collinearity with respect to p and p̄

respectively. In any given (scalar) master integral, the denominators can be systematically

expanded in λ in each region, keeping the first subleading power where necessary to achieve

NLP order in the final expression for the K factor. The integral in each region can then be

carried out, and the results from all regions added together to reproduce, in principle, the

threshold expansion of the full integral. Note that these are not the only possible scalings:

in principle, it is also possible to consider momenta scaling as

Semi-hard : k ∼
√
s(λ, λ, λ); Hard-collinear : k ∼

√
s(1,
√
λ, λ);

Ultra-collinear : k ∼
√
s(1, λ2, λ4)

– 6 –
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b

c

d

a

p

p̄

k2

Q

k1

Figure 3. A particular master diagram, with internal lines labelled for convenience.

and so on. It is possible, however, to show that the only regions relevant for the thresh-

old expansion are the hard, (anti-)collinear and soft regions defined by the scalings of

eqs. (2.11). All other regions give scaleless integrals, which vanish in dimensional regu-

larisation, such that we may discard them in the following. By definition, the incoming

momenta are (anti-)collinear:

p ∼
√
s(1, 0, 0), p̄ ∼

√
s(0, 0, 1), (2.12)

while the gluon momenta are soft, i.e.

k1 ∼ k2 ∼
√
s(λ2, λ2, λ2). (2.13)

There is an interesting subtlety in the above procedure, if one wants to be sure of having

characterised all possible regions of a given master integral. Before the region expansion,

a given master integral possesses a symmetry under shifts of the loop momentum, such

that one may associate the loop momentum k with an arbitrary internal line of the master

diagram. However, the decomposition of k into regions breaks Lorentz invariance, leading

to a violation of the shift symmetry. It may then be the case that particular choices

of k are such that one cannot unambiguously identify all possible regions. To illustrate

this point, let us consider diagram (B1) of figure 2, which we redraw in figure 3 so as

to label the internal lines in what follows. In this particular case, certain choices of the

loop momentum may indeed lead to an important region being missed, if not interpreted

carefully. Furthermore, this is a problem that arises for the first time at N3LO, due to

requiring the presence of a virtual gluon, and two real emissions. Although in principle

all regions are unambiguously identified by poles in propagators, as discussed clearly in

ref. [60], some choices of loop momentum k can be more convenient than others, in that

they allow all regions to be characterised in terms of softness or collinearity of k alone.

Given that this can be a point of confusion, we believe it is instructive to spell out the fine

details here.

We consider the expansion in regions of the box integral represented in figure 3. The

integral is defined as

I =

∫
[dk]

1

DaDbDcDd
, (2.14)
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Db k2 √
s n+k

(h) 1 1

(c) λ2 λ2

(c) λ2 1

(s) λ4 λ2

Dd k2 −
√
s n−k

(h) 1 1

(c) λ2 1

(c) λ2 λ2

(s) λ4 λ2

Table 1. Scaling associated with the terms in the propagators Db and Dd, as defined in eq. (2.17),

where we set s ∼ 1. Leading terms in each region are highlighted in grey.

where Di represents the propagator associated with line i in figure 3, and we have intro-

duced the convenient notation ∫
[dk] ≡ eεγE

(4π)ε
µ2ε

MS

∫
ddk

(2π)d
, (2.15)

where d = 4 − 2ε, and µMS = µ e−γE/2(4π)1/2. Choosing the loop momentum k to cor-

respond to line a seems natural, because in this way the regions are directly associated

with having a hard, collinear or soft “gluon” exchange in the loop, which should be easily

interpreted in the context of an effective field theory containing soft and collinear gluons.

We can then define the denominators

Da = k2,

Db = (k + p)2 = k2 + 2k · p,
Dc = (k + p− k1 − k2)2 = k2 + 2k · p− 2k · (k1 + k2)− 2p · (k1 + k2) + 2k1 · k2,

Dd = (k − p̄)2 = k2 − 2k · p̄, (2.16)

and expand the loop momentum k in regions using the Sudakov decomposition of eq. (2.8).

One obtains (writing a · b ≡ ab in places so as to compactify expressions),

Da = k2,

Db = k2 +
√
s n+k,

Dc = k2 +
√
s n+k − n−k n+(k1 + k2)− n+k n−(k1 + k2)− k⊥(k1 + k2)⊥

−
√
s n+(k1 + k2) + 2k1k2,

Dd = k2 −
√
s n−k. (2.17)

The scaling in λ of the various terms in the different regions is provided in tables 1 and 2.

In the following we keep only the leading terms for each propagator, thus getting the

leading power contribution to the box integral. The hard region turns out to give

Ih =

∫
[dk]

1

k2
(
k2 +

√
s n+k

)2(
k2 −

√
s n−k

)
=

i

(4π)2

(
µ2

MS

−s

)ε
1

s2

(
2

ε
− εζ2 −

14ζ3

3
ε2 +O(ε3)

)
. (2.18)
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Dc k2
√
s n+k −n−k n+(k1 + k2) −n+k n−(k1 + k2) −k⊥ · (k1 + k2)⊥ −

√
s n+(k1 + k2) 2k1 · k2

(h) 1 1 λ2 λ2 λ2 λ2 λ4

(c) λ2 λ2 λ2 λ4 λ3 λ2 λ4

(c) λ2 1 λ4 λ2 λ3 λ2 λ4

(s) λ4 λ2 λ4 λ4 λ4 λ2 λ4

Table 2. Scaling associated with the terms in the propagators Dc, as defined in eq. (2.17). Leading

terms in each region are highlighted in grey.

Following the same criterion, a naive expansion in the collinear region, assuming the scaling

assigned in table 1 and 2 gives, to leading power,

Ic =

∫
[dk]

1

k2
(
k2+
√
s n+k

)(
k2+
√
s n+k−n−k n+(k1+k2)−

√
s n+(k1+k2)

)(
−
√
s n−k

)
= − i

4π2

(
µ2

MS√
s n+(k1+k2)

)ε
1

s3/2 n+(k1+k2)

(
2

ε2
−ζ2−

14ζ3

3
ε−47ζ4

8
ε2+O(ε3)

)
.

(2.19)

Note that the hard region gives a subleading power contribution compared to the collinear

region. Within a consistent expansion to leading power the hard region is thus zero, even if

it is not scaleless. Furthermore, is it possible to show that integration in the anti-collinear

and soft regions give scaleless results:

Ic̄ =

∫
[dk]

1

k2
(√
s n+k

)2(
k2 −

√
s n−k

) = 0

Is =

∫
[dk]

1

k2
(√
s n+k

)(√
s n+k −

√
s n+(k1 + k2)

)(
−
√
s n−k

) = 0. (2.20)

Thus, the leading power contribution to the integral in eq. (2.14) seems to be given by

the collinear region in eq. (2.19). This conclusion is erroneous, however, as an important

contribution has been missed, where the latter can be revealed easily by shifting the loop

momentum to k′ = k + p. As discussed above, shift symmetry is broken by the region ex-

pansion, such that shifting the loop momentum can lead to inequivalent regions in general.

With the new choice of loop momentum, the propagators read

Da = (k′ − p)2 = k′2 − 2k′ · p,
Db = k′2,

Dc = (k′ − k1 − k2)2 = k′2 − 2k′ · (k1 + k2) + 2k1 · k2,

Dd = (k′ − p− p̄)2 = k′2 − 2k′ · (p+ p̄) + 2p · p̄, (2.21)

so that applying the Sudakov decomposition of eq. (2.8) gives

Da = k′2 −
√
s n+k

′,

Db = k′2,

Dc = k′2 − n−k′ n+(k1 + k2)− n+k
′ n−(k1 + k2)− k′⊥ · (k1 + k2)⊥ + 2k1 · k2,

Dd = k′2 −
√
s (n+k

′ + n−k
′) + s. (2.22)
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Da k′2 −
√
s n+k

′

(h′) 1 1

(c′) λ2 λ2

(c′) λ2 1

(s′) λ4 λ2

Dd k′2 −
√
s n+k

′ −
√
s n−k

′ s

(h′) 1 1 1 1

(c′) λ2 λ2 1 1

(c′) λ2 1 λ2 1

(s′) λ4 λ2 λ2 1

Table 3. Scaling associated with the terms in the propagators Da and Dd, as defined in eq. (2.22).

Dc k′2 −n−k′ n+(k1 + k2) −n+k
′ n−(k1 + k2) −k′⊥ · (k1 + k2)⊥ 2k1 · k2

(h′) 1 λ2 λ2 λ2 λ4

(c′) λ2 λ2 λ4 λ3 λ4

(c′) λ2 λ4 λ2 λ3 λ4

(s′) λ4 λ4 λ4 λ4 λ4

Table 4. Scaling associated with the terms in the propagators Dc, as defined in eq. (2.22).

The scaling of the various component in the different regions is provided in tables 3 and 4.

Notice that we label the new regions with a prime, to distinguish them from the regions

considered with the previous parameterization. It is easy to check that the new hard,

collinear and anti-collinear regions still give the same result as the old corresponding re-

gions:

Ih′ =

∫
[dk′]

1(
k2 −

√
s n+k′

)(
k′ 2
)2(

k2 −
√
s (n+k′ + n−k′) + s

) = Ih,

Ic′ =

∫
[dk]

1(
k2 −

√
s n+k′

)(
k′ 2
)(
k′2 − n−k′ n+(k1 + k2)

)
(−
√
s n−k′ + s)

= Ic,

Ic̄′ =

∫
[dk]

1(
−
√
s n+k′

)(
k′ 2
)(
k′2 − n+k′ n−(k1 + k2)

)
(−
√
s n+k′ + s)

= Ic̄ = 0.

(2.23)

The new soft region, however, is not scaleless, and gives a new contribution which was not

present in the old parameterization:

Is′ =

∫
[dk]

1(
−
√
s n+k′

)(
k′ 2
)(
k′2 − k′ · (k1 + k2) + 2k1 · k2

)
s

= − i

4π2

(
µ2

−2k1 · k2

)ε
1

s3/2 n+(k1 + k2)

[
− 1

ε2
+
ζ2

2
+

7ζ3

3
ε+

47ζ4

16
ε2 +O(ε3)

]
.

(2.24)

In order to reconcile these results, note that the problem with the original choice of loop

momentum is that the external scales are not well separated: both the “collinear” scale√
s n+(k1 + k2) ∼ λ2 and the “soft” scale 2k1 · k2 ∼ λ4 appear in the same propagator Dc.

This causes problems in the collinear region because, even if the leading power terms in

Dc scales as λ2 (see table 4), the loop integration is still over the full domain. There is
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therefore a region of the integration domain in which k ∼ −p, so that one has

Dc|leading collinear = k2 +
√
s n+k − n−k n+(k1 + k2)−

√
s n+(k1 + k2)

k∼−p−−−→
√
s n+(k1 + k2)−

√
s n+(k1 + k2)→ 0, (2.25)

i.e. the leading power terms ∼ λ2 cancel, causing the subleading power term 2k1 · k2 ∼ λ4

to become leading. Considering this term small in the expansion of the propagator thus

leads to the wrong analytic structure of the integral in this limit. The consequence is that

the propagator Dc cannot be expanded in the collinear region when parametrizing the loop

momentum as in eq. (2.16). Rather, one needs to consider a more general collinear region

“C”, in which the propagator Dc is kept unexpanded:

IC =

∫
[dk]

1

k2 +
√
s n+k − 2k · (k1 + k2)−

√
s n+(k1 + k2) + 2k1 · k2

· 1

k2

1

k2 +
√
s n+k

1

−
√
s n−k

. (2.26)

Evaluating IC exactly and expanding at threshold after integration, indeed one finds that

it contains both the contribution from the collinear and the soft region associated with the

alternative loop momentum choice of eq. (2.21):

IC = − i

(4π)2

1

s3/2 n+(k1 + k2)

Γ2(−ε)Γ(ε)

Γ(−2ε)

×

[
1

2

(
µ2

MS

−2k1 · k2

)ε
−

(
µ2

MS√
s n+(k1 + k2)

)ε ]
= Is′ + Ic′ . (2.27)

An independent check can be performed with the program Asy [61, 72], which provides

a geometrical method to reveal the regions contributing to a given integral. Using the

program with the integral in eq. (2.14) reveals the existence of three non-scaleless regions,

which correspond to the hard, collinear and soft regions found within the second param-

eterization of the loop momentum in eq. (2.21). The same program can be used to verify

that we have captured all regions in every other diagram.

Some readers may be wondering why the hard region exhibits infrared singularities

in the above results, which can be another common point of confusion in the method of

regions. The approach we have taken above is to perform all required momentum scalings,

and to set to zero any integrals which remain scaleless in dimensionless regularisation. In

the soft region, expansion of the propagators changes the ultraviolet scaling behaviour of the

integral, and thus introduces (spurious) ultraviolet divergences, whose effect is to cancel

infrared divergences associated with exchange of multiple gluons between the incoming

(anti)-quark legs, i.e. associated with the scale s. One can instead choose to isolate these

UV divergences and absorb them into the hard function, and the effect of this procedure

is to transfer poles in ε from the hard to the soft region. Given that this has no bearing

on the final result for the K factor (which is a sum of all regions), we do not do this here.

However, it should be remembered throughout that ε poles appearing in the hard region

are indeed of soft origin.
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Figure 4. Physical intepretation of the soft region occuring for the first time at N3LO: an incoming

collinear quark (or antiquark) turns into a soft quark by emitting a collinear gluon. The soft quark

then emits two soft gluons.

Despite the above cancellation between UV and IR divergences, there remains the

above-mentioned nonzero contribution to the soft region, which is particularly interesting

in that it is new at N3LO in perturbation theory. To see this, note that we need a virtual

gluon in order to discuss decomposition of the loop momentum. Furthermore, the new

soft region involves the momentum scale k1 · k2, which can only be formed if there are at

least two soft gluons in the final state. Detailed scrutiny of the region expansion applied

to each of our Feynman diagrams reveals that the sole contribution to the soft region

stems from physical configurations similar to those of figure 4. In the example shown,

the incoming collinear quark turns into a soft quark by emitting a collinear gluon, where

the soft quark then emits two soft gluons. As is well-known, soft quarks are subleading

(in the momentum expansion) relative to soft gluons. Thus, we expect the soft region to

contribute at NLP level only. Furthermore, the somewhat complicated structure of soft

and collinear emissions, together with the fact that this region occurs for the first time

at N3LO, suggests that it will be suppressed by a number of powers of ε, so as to give

subleading logs in the final result for the K factor. We will see in what follows that both of

these expectations are borne out. It is also worth mentioning that a similar soft region was

seen in the N3LO Higgs boson computation of ref. [15], where it was found to indeed be

nonzero. We expect an essentially identical contribution to appear within the framework

of soft collinear effective theory (SCET).

In summary, application of the method of regions to the process of figure 1 reveals

the presence of hard, (anti-)collinear and soft regions. The latter crucially relies on the

presence of a virtual gluon (giving rise to a loop momentum expandable in regions), as well

as two real emissions, to provide the nonzero scale k1 · k2 associated with the soft region.

After expanding all propagators in each region, all integrals over the loop momentum k can

be carried out analytically. Given that such integrals at one-loop order are quite standard

in the literature, we do not report intermediate results here. Results for the squared matrix

element in each region can be found in the following section. In order to cross-check our

results, all steps of this calculation (e.g. diagram calculation, reduction to master integrals,

expansion in regions, loop integration) have been carried out twice, in two completely

independent implementations, and with full agreement.
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2.3 Phase space integration

Applying the methods of the previous section, one obtains the interference term appearing

in the integrand of eq. (2.7), expanded in regions and integrated over the loop momentum.

The results are compact enough to report here, and it is first convenient to define the

invariants

t2 = (p− k1)2 = −2p · k1,

t3 = (p− k2)2 = −2p · k2,

u2 = (p̄− k1)2 = −2p̄ · k1,

u3 = (p̄− k2)2 = −2p̄ · k2,

s12 = (k1 + k2)2 = 2k1 · k2, (2.28)

as well as the combination

M =

∫
ddk

(2π)d
A2r,1v(p, p̄, k1, k2, k)A†2r(p, p̄, k1, k2), (2.29)

consisting of the 1-loop double real contribution contracted with the conjugate tree-level

result, integrated over the loop momentum. Results for the hard region at (next-to) leading

power are then as follows:

MLP
hard = N

(
µ2

MS

−s

)ε
fH

1

s3

t2 t3 u2 u3
;

MNLP
hard = N

(
µ2

MS

−s

)ε
s2(t2 + t3 + u2 + u3)

t2 t3 u2 u3

[
fH

2 +
1

2

t2 u3 + t3 u2 − s12 s

(t2 + t3)(u2 + u3)
fH

1

]
. (2.30)

where

N = 128π α3
s(1− ε)C3

F e
2
q Nc (µ2)2ε, (2.31)

and the various functions {fXi } are defined in appendix A. Likewise, the squared matrix

element in the collinear region turns out to be

MLP
col. = 0;

MNLP
col. = N (µ2

MS
)ε

s2

t2t3u2u3

{[
u2(−t2)−ε + u3(−t3)−ε

]
fC

1

+
t3u2 + t2u3 − s12s

t2 + t3

[(
(−t2)−ε − 2(−t2 − t3)−ε + (−t3)−ε

)
fC

2

−
(
t2
t3

(−t2)−ε − (t22 + t23)

t2t3
(−t2 − t3)−ε +

t3
t2

(−t3)ε
)
fC

3

]}
. (2.32)
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The anti-collinear region can be straightforwardly obtained through the exchange p ↔ p̄.

Finally, there is the soft region, which yields

MLP
soft = 0;

MNLP
soft = N

(
µ2

MS

−s12

)ε
s2

t2t3u2u3

×
{

t3 f
S
1

t2(t2 + t3)2

[
(s12s− t2u3 − t3u2)

(
t2 + t3 − t3 2F1

(
1, 1, 1− ε, t2

t2 + t3

))]
+

fS
2

s s12(t2 + t3)

[
(t2u3 − t3u2)2 − s12s(t2u3 + t3u2)

]
+

fS
3

s s12t2(t2 + t3)2

[
s2

12s
2t3(t2 − t3) + t3(t2 + t3)(t2u3 − t3u2)2

+ s12st2(t2 + t3)(t2u3 − 3t3u2)− t3
(
s2

12s
2(t2 − t3) + (t2 + t3)(t2u3 − t3u2)2

− 2s12st2(t2u3 + t3u2)
)

2F1

(
1, 1, 1− ε, t2

t2 + t3

)]
+ {t2, t3 ↔ u2, u3}+ {t2, t3 ↔ u3, u2}+ {t2, u2 ↔ t3, u3}

}
. (2.33)

To compute the contribution of eqs. (2.30)–(2.33) to the differential cross-section or K

factor, we must integrate over the Lorentz-invariant three-body phase space associated with

the final state, as stated in eq. (2.7). One is free to choose a particular momentum frame

for the phase space integration. Furthermore, given that each separate term in eqs. (2.30)–

(2.33) is Lorentz invariant, we are free to choose different frames for different types of

contribution, according to convenience. For the hard and collinear regions, expanding the

right-hand side of eqs. (2.30)–(2.32) before substituting into eq. (2.7) reveals a series of

terms, all containing the master integral

I1(α1, α2, β1, β2, γ1, γ2, δ) =

∫
dΦ(3)sδ12 t

−α1
2 t−α2

3 u−β12 u−β23 (t2 + t3)−γ1(u2 + u3)−γ2 ,

(2.34)

where δ ∈ {0, 1}. For these values of δ, it is possible to obtain a result for this integral

as an expansion in the threshold variable (1− z) for any value of the spacetime dimension

d, by decomposing each real gluon momentum ki in a Sudakov decomposition, similar to

eq. (2.8). We spell out this derivation in appendix B, and here present the results

I1(α1, α2, β1, β2, 0, 0, 0) =

(−1)−C 2−1−2d π3−2d Ω2
d−2 s

d−3−C (1− z)2d−5−C

Γ(2d− 4− C)

×

[
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)]

×

[
1 + (1− z)

((
d−2

2 − α1

) (
d−2

2 − β2

)
+
(
d−2

2 − α2

) (
d−2

2 − β1

)
2d− 4− C

)
+O[(1− z)2]

]
;
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I1(α1, α2, β1, β2, γ1, γ2, 0) =

(−1)−C−γ1−γ2 2−1−2d π3−2d Ω2
d−2 s

d−3−C−γ1−γ2

× (1− z)2d−5−C−γ1−γ2

Γ(2d− 4− C − γ1 − γ2)

[
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)]

× Γ(d− 2− α1 − α2 − γ1)Γ(d− 2− β1 − β2 − γ2)

Γ(d− 2− α1 − α2)Γ(d− 2− β1 − β2)(2d− 4− C − γ1 − γ2)
[1 +O(1− z)] ;

I1(α1, α2, β1, β2, γ1, γ2, 1) =

(−1)−C−γ1−γ2 2−1−2d π3−2d Ω2
d−2 s

d−2−C−γ1−γ2

× (1− z)2d−3−C−γ1−γ2

[
2∏
i=1

Γ

(
d− 2

2
− αi

)
Γ

(
d− 2

2
− βi

)]

× Γ(d− 1− α1 − α2 − γ1)Γ(d− 1− β1 − β2 − γ2)

Γ(d− 1− α1 − α2)Γ(d− 1− β1 − β2)Γ(2d− 2− C − γ1 − γ2)

×
[(

d− 2

2
− α1

)(
d− 2

2
− β2

)
+

(
d− 2

2
− α2

)(
d− 2

2
− β1

)]
[1 +O(1− z)] ,

(2.35)

which are sufficient to integrate eqs. (2.30) and (2.32) to NLP order in (1 − z). Here we

have defined

C =

2∑
i=1

(αi + βi), (2.36)

as well as the total solid angle in (d− 2) spatial dimensions

Ω(d−2) =
2π

d−2
2

Γ
(
d−2

2

) . (2.37)

For the soft region, we rely on the symmetry of eq. (2.33) under the (combined) exchange of

p↔ p̄ and k1 ↔ k2 to reduce the number of distinct terms that need to be integrated. There

remain two types of terms: (i) those involving the hypergeometric function 2F1(1, 1; 1 −
ε; t2/(t2 + t3)); (ii) those without the hypergeometric. Terms of the latter form are similar

to those that occur in the double real emission contribution to the NNLO Drell-Yan cross-

section [3, 4] (see also ref. [33] for a recent derivation in the present notation). To integrate

them, one may apply straightforward algebraic identities such as

1

t2(t2 + t3)
+

1

t3(t2 + t3)
=

1

t2 t3
,

t2
t3

=
(t2 + t3)

t3
− 1 (2.38)

(and similarly for {ui}) to create a series of terms of the form of eq. (2.34), with at most one

αi and at most one βi non-zero. Furthermore, δ will have a fractional power that depends

on ε, due to the presence of the factor s−ε12 in eq. (2.33). As described in refs. [3, 4, 33],

this integral can be carried out exactly in the centre of mass frame of the two final state

gluons. We review this derivation in appendix C.
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The most difficult phase space integrals occur in terms of type (i) above, namely those

in the soft region involving a hypergeometric function. All such terms involve the master

integral

I2(α1, α2, β1, β2, γ1, γ2, δ) =

∫
dΦ(3)sδ12 t

−α1
2 t−α2

3 u−β12 u−β23 (t2 + t3)−γ1(u2 + u3)−γ2

× 2F1

(
1, 1; 1− ε; t2

t2 + t3

)
, (2.39)

and we note that similar integrals have been carried out for Higgs boson production in

refs. [12, 73], whose methods prove very useful for the present study. We proceed as

follows. We first apply identities similar to eq. (2.38) to put all terms in the form where

at most one αi and at most one βi is nonzero, finding in all cases that α2 = 0. As we

explain in appendix C, for integrals involving only (α1, β1) potentially nonzero, one may

use the centre of mass frame of the outgoing gluons to derive the analytic result (valid for

arbitrary d)

I2(α1, 0, β1, 0, γ1, γ2, δ) =

21−2d(−1)−α1−β1−γ1−γ2 π1−d sd−3+δ−α1−β1−γ1−γ2

× Γ(d−2+δ−α1−γ1)Γ(d−2+δ−α1−β1)Γ(d/2−1+δ)

Γ(2d−4+2δ−α1−β1−γ1−γ2)Γ(d−2+δ−β1)Γ(d−2+δ−α1)Γ(d−2−α1−β1)

×Γ(d/2−1−β1)Γ(d/2−1−α1)Γ(d−2+δ−β1−γ2)

Γ(d/2−1)
(1−z)2d−5+2δ−α1−β1−γ1−γ2

×4F3(1, 1, d−2+δ−α1−β1, d/2−1−α1; d−2+δ−α1, a+1, d−2−α1−β1; 1)

+. . . , (2.40)

where the ellipsis denotes subleading powers of (1 − z). This expression can be easily

expanded in ε using the HypExp package for the hypergeometric function [74, 75]. All

necessary values of the parameters {αi, βi, γi, δ} are collected in appendix C, together with

results for each integral, where for convenience we define

I2(α1, β1, α2, β2, γ1, γ2, δ) = (4π)−3+2ε e−2εγE sd−3+δ−C−γ1−γ2 (1− z)2d−5+2δ−C−γ1−γ2

× Î2(α1, β1, α2, β2, γ1, γ2, δ) + . . . (2.41)

For integrals involving (α1, β2) non-zero, we were not able to find any comparable closed

form expression. However, they can be evaluated using Mellin-Barnes techniques, and the

“energies and angles” phase space parametrisation described in refs. [12, 73]. We describe

this method in appendix C, but note here that in order to apply it to integrals involving

negative powers of γ1 and/or γ2, one must reexpress them in terms of other integrals,

some involving more than two nonzero values of (α1, α2, β1, β2). Results are collected

in appendix C, again using the notation of eq. (2.41). All aspects of the phase space

integration, including the calculation of all relevant master integrals, have been carried out

twice and completely independently, with full agreement.
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3 Results

We now have all the necessary ingredients for assembling the abelian-like terms (∼ C3
F ) in

the 2-real, 1-virtual contribution to the K factor of eq. (2.5), in the qq̄ channel up to NLP

order.1 We will present separate results for the hard, (anti-)collinear and soft regions. For

the hard region, one has (in the normalisation of eq. (2.5))

K
(3),H
qq̄

∣∣∣
C3

F

=

128×
{

1

ε5
(D0−1)+

1

ε4

(
−4D1+

3D0

2
+4L−4

)
+

1

ε3

(
8D2−6D1+

(8−21ζ2)

2
D0

−8L2+16L−31

4
+

21

2
ζ2

)
+

1

ε2

[
−32D3

3
+12D2+(−16+42ζ2)D1+

(
8−63

4
ζ2

−23ζ3

)
D0+

32

3
L3−32L2+(31−42ζ2)L−18+42ζ2+23ζ3

]
+

1

ε

[
32

3
D4−16D3

+(32−84ζ2)D2+(−32+63ζ2+92ζ3)D1+

(
16−42ζ2−

69

2
ζ3+

1017

16
ζ4

)
D0−

32

3
L4

+
128

3
L3+(−62+84ζ2)L2+(72−168ζ2−92ζ3)L−36+

651

8
ζ2+92ζ3−

1017

16
ζ4

]
−128

15
D5+16D4+

(
−128

3
+112ζ2

)
D3+(64−126ζ2−184ζ3)D2+

(
−64+168ζ2

+138ζ3−
1017

4
ζ4

)
D1+

(
32−84ζ2−92ζ3+

3051

32
ζ4−

1053

5
ζ5+

483

2
ζ3 ζ2

)
D0+

128

15
L5

−128

3
L4+

(
248

3
−112ζ2

)
L3+(−144+336ζ2+184ζ3)L2+

(
144−651

2
ζ2−368ζ3

+
1017

4
ζ4

)
L

}
, (3.1)

where (given the focus of our study) we report only enhanced (non-constant) terms in the

finite part, and we have made the conventional choice

µ2
MS

= 4πe−γEµ2 = Q2 (3.2)

for the dimensional regularisation scale in the MS scheme. NLP terms will be sensitive to

this choice, given that the K factor contains the dimensional combination(
µ̄2

s

)ε
→
(
Q2

s

)ε
= zε.

Note that we have identified

logn(1− z)

1− z
→
[

logn (1− z)

1− z

]
+

≡ Dn

1As in ref. [34], we will present the unrenormalised K factor.
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everywhere, i.e. we have neglected the delta function contribution that arises from rewrit-

ing LP terms in terms of plus distributions. The delta function terms mix with virtual

corrections not included here, and thus are not worth reporting. For the collinear region,

we find

K
(3),C
qq̄

∣∣∣
C3

F

= 32

{
− 1

ε4
+

1

ε3

(
5L−5

4

)
+

1

ε2

(
−3

2
−25

2
L2+

25

4
L+

21

2
ζ2

)
+

1

ε

[
125L3

6
−125L2

8
+

(
15

2
−105ζ2

2

)
L−2+

105

8
ζ2+41ζ3

]
−625

24
L4+

625

24
L3

+

(
−75

4
+

525ζ2

4

)
L2+

(
10−525

8
ζ2−205ζ3

)
L

}
, (3.3)

where the anti-collinear region gives an identical contribution. Finally, we have the soft

region, whose contribution is

K
(3),S
qq̄

∣∣∣
C3

F

= 32

{
1

ε

(
2

3
ζ2 +

1

3
ζ3

)
− (4ζ2 + 2ζ3)L

}
. (3.4)

The total result for the (unrenormalised) K factor up to NLP order in the threshold

expansion can be obtained from the above results through the combination

K
(3)
qq̄

∣∣∣
C3

F

=
[
K(3),H + 2K(3),C +K(3),S

]
C3

F

. (3.5)

Equations (3.1), (3.3), (3.4) constitute the main results of this paper. As discussed above,

our main motivation for presenting them is as a prerequisite for formulating and testing

general prescriptions for classifying (and potentially resumming) NLP threshold corrections

in arbitrary processes. Although a full study in this regard is beyond the scope of this paper,

it is worthwhile to make a few remarks regarding the implications of our results.

Following a detailed analysis of the 1-real, 1-virtual K factor in the qq̄ channel [34],

refs. [35] considered a general amplitude with N hard particles, which is then dressed

by an extra gluon emission. A process-independent factorisation formula was presented,

building on the earlier work of ref. [59], which captured all abelian-like contributions to

the amplitude up to NLP order in the threshold expansion, in the absence of final state

jets. This formula was generalised to include all fully non-abelian contributions in ref. [36],

and extends the well-known soft-collinear factorisation formula for LP threshold effects

(see e.g. [63]). It includes a number of universal functions describing soft and collinear

behaviour, whose operator definitions involve (generalised) Wilson lines [29, 32]. A new

function occuring at NLP level is the so-called jet emission function, first introduced in

ref. [59]. As its name suggests, it describes the dressing of a jet function (collecting virtual

collinear effects) with an additional radiative gluon. A fully non-abelian operator definition

for this quantity has been proposed for (anti-)quark jets in ref. [36], and calculated at one-

loop order. A similar calculation is in progress for gluons, which would have immediate

applications in e.g. Higgs boson production via gluon-gluon fusion.

In processes containing two or more additional gluons, an open question is whether

the functions appearing in the one-emission case are sufficient to capture all physics up
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to NLP order in the threshold expansion, or whether new functions should appear. For

example, one may consider generalising the jet emission function to a family of quantities

representing the dressing of a nonradiative jet with arbitrary numbers of additional gluons.

For resummation of NLP effects to be possible, it should ideally be the case that these

higher multiplicity jet emission functions are related by an iterative property to those with

lower numbers of emissions (for a preliminary discussion in a purely abelian context, see

ref. [59]). Or, this may be possible only up to a given subleading logarithmic order.

At NNLO in Drell-Yan production, it was already noticed that, perhaps unsurpris-

ingly, the (anti-)collinear region in the method of regions maps straightforwardly to the

contribution of the jet emission functions associated with the incoming (anti-)quark legs in

the factorisation approach. Furthermore, this contribution started only at next-to-leading-

logarithmic (NLL) order, and at next-to-leading power (NLP) in the threshold variable. In

the present calculation, we also see that the (anti-)collinear regions start only at O(ε−4)

rather than O(ε−5). Thus, again we find that collinear effects are NLP, and give only sub-

leading (NLL) threshold logarithms. Indeed, the only source of leading logarithmic effects,

at both LP or NLP in the threshold expansion, is the hard region, as can be clearly seen

in eq. (3.1). This observation will certainly be a useful guide when examining the extent

to which (multiple) jet emission functions are relevant at higher orders in perturbation

theory. Furthermore, there is much existing evidence (most notably in ref. [38]) that the

highest power of the NLP log exponentiates in Drell-Yan. The observation that collinear

effects do not affect this log at N3LO provides a significant hint regarding how to formally

prove this property.

The new soft region at this order depends crucially on the presence of two gluons,

and so would seem to be a correction to factorisation formulae of the type presented

in refs. [35, 36], in that it cannot be composed iteratively from lower-order information.

However, it is worthwhile to note that the soft region itself is heavily suppressed in the ε

expansion, so that it only contributes logarithmic terms at N4LL level. If this behaviour

persists at higher orders, such a region is unlikely to trouble realistic efforts to resum

NLP effects, but it should of course be fully understood, as it will be present in the exact

Drell-Yan K factor at higher orders.

Further insights into the iterative structure of our results can be obtained by examining

the squared matrix elements before integration over the final state phase space, but after

the integration over the loop momentum of the virtual gluon. In the case of the hard

region (eq. (2.30)), we find that the coefficient fH
1 matches the similar function found in

the one-loop quark form factor, such that the leading power term agrees with what one

obtains from applying the well-known eikonal Feynman rules to the non-radiative one-loop

Drell-Yan process. At NLP, we noted that the second coefficient fH
2 already appears in the

1-real, 1-virtual contributions at NNLO. Thus, there is strong evidence that the hard region

can indeed be understood using the existing tools of refs. [32, 33, 35, 36]. In the collinear

region, we find that the function fC
1 in the first line of eq. (2.32) occurs already at NNLO,

such that this contribution factorises into a one-loop jet emission on the quark leg, dressed

by a tree-level emission from the anti-quark (and vice versa for the anti-collinear region).

The remaining collinear contributions, involving the additional coefficients fC
2,3, lack such
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a straightforward interpretation, leaving open the possibility that one must consider a

separate jet emission function for pairs of gluons. Finally, as discussed already above, the

soft region is not expected to be iteratively obtainable from lower order information.

4 Conclusion

In this paper, we examine abelian-like contributions to Drell-Yan production in the qq̄

channel at N3LO, namely those with the colour structure ∝ C3
F . We have classified all

logarithmically enhanced contributions near threshold when one gluon is virtual, and the

other two real, up to next-to-leading power (NLP) in the threshold variable (1 − z). Our

motivation is to work towards a systematic classification of NLP threshold effects, building

on e.g. the factorisation formulae of refs. [35, 36] (see refs. [45–51] for similar work within

the context of effective field theory). To this end, we present results for the unrenor-

malised K factor, using the method of regions [60–62] to separate contributions according

to whether the virtual gluon is hard, soft or collinear with one of the incoming particles.

Our hope is that this provides a great deal of useful information for elucidating the general

structure of NLP effects, similar to how previous methods of region analyses at NNLO [34]

directly informed the construction of factorisation formulae valid to subleading order in

the threshold expansion.

There are a number of noteworthy features in our result. Firstly, there is a nonzero soft

region that appears for the first time at N3LO, and which we find persists upon integration

over the final state phase space. The presence of such a contribution requires at least one

virtual gluon and two real gluons, and thus does not appear to be iteratively relatable to

lower order information. A similar region was found to be nonzero in the recent (and closely

related) calculation of Higgs boson production via gluon-gluon fusion [73], whose methods

prove very useful for the present analysis. The overall contribution of this region to the

Drell-Yan K factor is highly subleading, in that it contributes with a single pole in the

dimensional regularisation parameter ε at O(α3
s), corresponding to a N4LL NLP logarithm

in the finite part of the K factor. It would be interesting to see what effect such a region

has at higher orders in perturbation theory, and indeed whether it has a straightforward

counterpart in SCET.

Unlike the hard region, the collinear region does not contribute to the leading NLP

logarithm, suggesting that collinear effects are not relevant to the potential resummation

of the highest power of NLP logs to all orders in perturbation theory. Both the hard and

collinear regions in our analysis show signs of an iterative structure, whereby parts of the

results can be obtained from lower order information. These observations will prove highly

useful in generalising factorisation formulae for NLP effects to higher orders in perturbation

theory.

There are a number of directions for further work. Immediately related to the present

study would be the calculation of threshold contributions in the triple real emission con-

tributions to Drell-Yan production at N3LO, or in the double-virtual, single real channel.

Furthermore, one can generalise the calculation to include all possible colour structures,

involving fully non-abelian corrections, and also different initial states. We expect that our
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methods would generalise to these cases, especially given that similar methods have been

used in the N3LO Higgs calculation of ref. [68]. Finally, the implications of our results for

developing a fully systematic classification of NLP threshold effects in arbitrary scattering

processes will be the subject of much further study.
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A Coefficients entering the matrix element

In this appendix, we collect results for the various coefficients appearing in eqs. (2.30)–

(2.33). Starting with the hard region, we have

fH
1 = − 2

ε2
− 3

ε
− 8 + ζ2 + ε

(
−16 +

3ζ2

2
+

14ζ3

3

)
+ ε2

(
−32 + 4ζ2 + 7ζ3 +

47ζ4

8

)
+ ε3

(
−64 + 8ζ2 +

56ζ3

3
+

141ζ4

16
+

62ζ5

5
− 7

3
ζ3ζ2

)
+ ε4

(
−128 + 16ζ2 +

112ζ3

3

+
47ζ4

2
+

93ζ5

5
− 7ζ2ζ3

2
+

949ζ6

64
− 49ζ2

3

9

)
+O(ε5);

fH
2 = (1− ε)fH

1 . (A.1)

The coefficients for the (anti-)collinear regions are

fC
1 = −2

ε
− 5

2
+ ε
(
− 3 + ζ2

)
+ ε2

(
− 4 +

5ζ2

4
+

14ζ3

3

)
+ ε3

(
− 6 +

3ζ2

2
+

35ζ3

6
+

47ζ4

8

)
+ ε4

(
− 10 + 2ζ2 + 7ζ3 +

235ζ4

32
+

62ζ5

5
− 7ζ2ζ3

3

)
+O(ε5);

fC
2 = − 1

4ε
+

1

8
+ ε

(
3

4
+
ζ2

8

)
+ ε2

(
2− ζ2

16
+

7ζ3

12

)
+ ε3

(
9

2
− 3ζ2

8
− 7ζ3

24
+

47ζ4

64

)
+ ε4

(
19

2
− ζ2 −

7ζ3

4
− 47ζ4

128
+

31ζ5

20
− 7ζ2ζ3

24

)
+O(ε5);
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fC
3 =

1

4ε2
− 1

8ε
− 3

4
− ζ2

8
+ ε

(
−2 +

ζ2

16
− 7ζ3

12

)
+ ε2

(
−9

2
+

3ζ2

8
+

7ζ3

24
− 47ζ4

64

)
+ ε3

(
−19

2
+ ζ2 +

7ζ3

4
+

47ζ4

128
− 31ζ5

20
+

7

24
ζ2 ζ3

)
+ ε4

(
−39

2
+

9ζ2

4
+

14ζ3

3
+

141ζ4

64

+
31ζ5

40
− 7ζ2 ζ3

48
− 949ζ6

512
+

49ζ2
3

72

)
+O(ε5). (A.2)

For the soft region, we have

fS
1 =

1

4ε2
+

1

4ε
+

1

2
− ζ2

8
+ ε

(
1− ζ2

8
− 7ζ3

12

)
+ ε2

(
2− ζ2

4
− 7ζ3

12
− 47ζ4

64

)
+ ε3

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64
− 31ζ5

20
+

7ζ2ζ3

24

)
+ ε4

(
8− ζ2 −

7ζ3

3
− 47ζ4

32
− 31ζ5

20
+

7ζ2ζ3

24
− 949ζ6

512
+

49ζ2
3

72

)
+O(ε5);

fS
2 =

1

4ε
+

1

2
+ ε

(
1− ζ2

8

)
+ ε2

(
2− ζ2

4
− 7ζ3

12

)
+ ε3

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64

)
+ ε4

(
8− ζ2 −

7ζ3

3
− 47ζ4

32
− 31ζ5

20
+

7ζ2ζ3

24

)
+O(ε5);

fS
3 =

1

4ε
+

1

4
+ ε

(
1

2
− ζ2

8

)
+ ε2

(
1− ζ2

8
− 7ζ3

12

)
+ ε3

(
2− ζ2

4
− 7ζ3

12
− 47ζ4

64

)
+ ε4

(
4− ζ2

2
− 7ζ3

6
− 47ζ4

64
− 31ζ5

20
+

7ζ2ζ3

24

)
+O(ε5). (A.3)

B Phase space integrals in the hard and (anti-)collinear regions

In this appendix, we spell out the derivation of eq. (2.35), using the Sudakov decomposition

of eqs. (2.8)–(2.10). Furthermore, we define the quantities ki+ = n− · ki and ki− = n+ · ki,
using a slightly different convention to the Sudakov decomposition of the loop momentum

in section 2.2, so as to make factors of 2 more convenient in the following. The 3-body

phase space in d dimensions is given by∫
dΦ(3) = (2π)d

∫
ddq

(2π)d−1

(
2∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

)

× δ+(q2 −Q2)δ(d)

q +
2∑
j=1

kj − (p+ p̄)

 (B.1)

where

δ+(k2) = θ(k0)δ(k2) (B.2)

and θ is the Heaviside function

θ(k0) =

{
k0 if k0 > 0

0 otherwise.
(B.3)
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We may carry out the integral over the photon momentum q using the delta function in

eq. (B.1), obtaining∫
dΦ(3) = (2π)3−2d

(
2∏
i=1

∫
ddkiδ+(k2

i )

)
δ

(p+ p̄)−
2∑
j=1

kj

2

−Q2


= (2π)3−2d

[
2∏
i=1

1

2

∫
dki+ dki− d

d−2ki⊥ δ+(k2
i )

]
× δ[(1− z)s− 2(k1 + k2) · (p+ p̄) + 2k1 · k2], (B.4)

where in the second line we have used eq. (2.2). The delta function in the last line can be

expressed as a Fourier transform:

δ[(1−z)s−2(k1+k2)·(p+ p̄)+2k1 ·k2] =
1

s

∫ ∞
−∞

dω

2π
eiω(1−z)e

−2iω
s

(k1·p+k2·p+k1·p̄+k2·p̄)e
2iω
s
k1·k2 ,

(B.5)

where we can Taylor expand the exponential in k1 · k2, given that higher order terms will

be suppressed by powers of 1− z:

e
2iω
s
k1·k2 = 1 +

2iω

s
k1 · k2 +O(k4

i ). (B.6)

Putting things together, the phase space becomes∫
dΦ(3) =

(2π)3−2d

22s

2∏
i=1

∫ ∞
0

dki+

∫ ∞
0

dki−

∫ ∞
−∞

dd−2ki⊥δ(ki+ki− − |ki⊥|2)

×
∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)e

−ω̃√
s

∑2
j=1(kj++kj−)

×
[
1 +

2ω̃

s

(
1

2
(k1+k2− + k1−k2+)− k1⊥ · k2⊥

)]
, (B.7)

where we have transformed ω̃ = iω. We can now use this result to carry out the integral

of eq. (2.34) for the two special cases of δ ∈ {0, 1}.
For δ = 0, we may note that the integrand of eq. (2.34) has no transverse momentum

dependence, such that the linear term k1⊥ ·k2⊥ in eq. (B.7) leads to an odd integrand, and

can be neglected. Using polar coordinates for the ki⊥ integrals, one may use the onshell

delta functions to eliminate the integral over |ki⊥|, such that eq. (2.34) becomes

I1(α1, α2, β1, β2, γ1, γ2, 0) = (−1)(C+γ1+γ2) (2π)3−2d

24
s−1− 1

2
(C+γ1+γ2)Ω2

d−2

∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

×
∫ ∞

0
dk1+e

−ω̃√
s
k1+k

d−4
2
−β1

1+

∫ ∞
0

dk2+e
−ω̃√

s
k2+k

d−4
2
−β2

2+

(
1

k1++k2+

)γ2
×
∫ ∞

0
dk1−e

−ω̃√
s
k1−k

d−4
2
−α1

1−

∫ ∞
0

dk2−e
−ω̃√

s
k2−k

d−4
2
−α2

2−

(
1

k1−+k2−

)γ1
×
(

1+
ω̃

s
(k1+k2−+k1−k2+)

)
.

(B.8)
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After a variable change k̃i± = ω̃√
s
ki±, we may recognize the inverse Laplace transform∫ i∞

−i∞

dω̃

2πi
eω̃(1−z)

(
1

ω̃

)m
=

(1− z)m+1

Γ(m)
. (B.9)

The integrals over k̃i± will be of the form:∫ ∞
0

dk̃2± e
−k̃2± k̃n2±

∫ ∞
0

dk̃1± e
−k̃1± k̃m1±

(
1

k̃1± + k̃2±

)l
,

for which the variable transformation

k̃1± = Λw ; k̃2± = Λ(1− w)

yields∫ 1

0
dw wm(1− w)n

∫ ∞
0

dΛ e−ΛΛm+n+1−l =
Γ(m+ 1)Γ(n+ 1)

Γ(m+ n+ 2)
Γ(m+ n− l + 2). (B.10)

Substituting these results, we obtain eq. (2.35) as required.

The integral of eq. (2.34) with δ = 1 appears only at NLP level, such that we may

entirely neglect the term k1 · k2 in eq. (B.6), as it will lead to terms suppressed by further

powers of (1− z). Carrying out similar steps to the δ = 0 case, one again finds eq. (2.35).

C Phase space integrals in the soft region

In this appendix, we describe various integrals (of increasing complexity) that occur when

integrating the squared matrix element in the soft region (eq. (2.40)) over the final state

phase space.

C.1 Integrands with no hypergeometric function

First, we need integrals of the form of eq. (2.34), in which at most one parameter {αi} and

at most one parameter {βi}. The Sudakov decomposition of appendix B turns out not to

be helpful here, due to the fractional power of δ. Instead, one may simplify the calculation

by working in the centre of mass frame of the two outgoing gluons [3, 4, 33]. In this frame,

one writes

k1 =

√
s12

2
(1, 0, . . . , sin θ2 sin θ1, cos θ2 sin θ1, cos θ1),

k2 =

√
s12

2
(1, 0, . . . ,− sin θ2 sin θ1,− cos θ2 sin θ1,− cos θ1),

p =
(s− t̃)
2
√
s12

(1, 0, . . . , 0, 1),

Q =

(
s−Q2 − s12

2
√
s12

, 0, . . . , 0, |q| sinψ, |q| cosψ

)
,

p̄ =

(
t̃+ s12 −Q2

2
√
s12

, 0, . . . , 0, |q| sinψ, |q| cosψ − (s− t̃)
2
√
s12

)
, (C.1)
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where

t̃ ≡ 2p ·Q = (p+Q)2 −Q2,

ũ ≡ 2p̄ ·Q = (p̄+Q)2 −Q2,

s12 ≡ 2k1 · k2 = s− t̃− ũ+Q2,

cosψ =
(s−Q2)(ũ−Q2)− s12(t̃+Q2)

(s− t̃)
√
λ(s,Q2, s12)

,

|q| =
√
λ(s,Q2, s12)

2
√
s12

, (C.2)

and λ is the Källen function λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc. The Mandelstam

invariants t̃ and ũ can in turn be expressed as functions of the photon energy fraction

z = Q2/s and of two further variables 0 < x < 1 and 0 < y < 1, such that

ũ = s [1− y(1− z)]

t̃ = s

[
z + y(1− z)− y(1− y)x(1− z)2

1− y(1− z)

]
, (C.3)

where (1− z) is the threshold variable. The 3-body phase space in d dimensions now takes

the form∫
dΦ(3) =

1

(4π)d
sd−3

Γ(d− 3)
(1− z)2d−5

∫ π

0
dθ1

∫ π

0
dθ2(sin θ1)d−3(sin θ2)d−4

×
∫ 1

0
dy

∫ 1

0
dx[y(1− y)]d−3[x(1− x)]d/2−2[1− y(1− z)]1−d/2. (C.4)

In terms of the above definitions, one finds

p · k1 =
s− t̃

4
(1− cos θ1)

p · k2 =
s− t̃

4
(1 + cos θ1)

p̄ · k1 = A−B cos θ1 − C sin θ1 cos θ2

p̄ · k2 = A+B cos θ1 + C sin θ1 cos θ2, (C.5)

where

A =
t̃+ s12 −Q2

4
,

B =

√
s12

2
|q| cosψ − (s− t̃)

4
,

C =

√
s12

2
|q| sinψ. (C.6)
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These quantities satisfy the relation

A2 = B2 + C2, (C.7)

such that upon defining

cosχ =
B

A
, (C.8)

and using the above definitions, the angular integral may be carried out using the result [3]

(first derived in [76])∫ π

0
dθ1

∫ π

0
dθ2

sind−3 θ1 sind−4 θ2

(1− cos θ1)p(1− cosχ cos θ1 − sinχ sin θ1 cos θ2)q

= 21−p−qπ
Γ
(
d
2 − 1− q

)
Γ
(
d
2 − 1− p

)
Γ(d− 3)

Γ (d− 2− p− q) Γ2
(
d
2 − 1

) 2F 1

[
p, q;

d

2
− 1; cos2

(χ
2

)]
. (C.9)

At this stage, one must carry out the integrals over the variables x and y appearing in

eq. (C.4). These can all be carried out in terms of beta functions, or using the identity∫ 1

0
dxxα−1(1− x)β−1

2F1(a, b; c; zx) =
Γ(α)Γ(β)

Γ(α+ β)
3F2(a, b, α; c, α+ β; z). (C.10)

C.2 Integrands with a hypergeometric function

Next, we must consider phase space integrals such as those of eq. (2.39), where the integrand

contains a hypergeometric function. As is the case for the similar integrals in refs. [12, 73],

we have not found it possible to obtain a useful closed form analytic result for arbitrary

values of the parameters. However, for a certain subclass of the parameters, we can indeed

find such a result, valid for any d. Let us present this case first.

C.2.1 The case α2 = β2 = 0

If α2 and β2 are both zero, eq. (2.39) reduces to

I2(α1, 0, β1, 0, γ1, γ2, δ) = (−2)−α1−β1−γ1−γ2I(α1, β1, γ1, γ2,−ε, 4− 2ε), (C.11)

where

I(α1, β1, γ1, γ2, δ, a, d) =

∫
dΦ(3)(p · k1)−α1(p̄ · k1)−β1(p · k1 + p · k2)−γ1(p̄ · k1 + p̄·k2)−γ2

× (2k1 · k2)δ2F1

(
1, 1; a+ 1;

p · k1

p · k1 + p · k2

)
. (C.12)

In the centre of mass frame of the two outgoing gluons (see section C.1), this becomes

I(α1, β1, γ1, γ2, δ, a, d) = 22α1+γ1−γ2
∫
dΦ(3) sδ12 (s−t̃)−α1−γ1 A−β1−γ2(1−cos θ1)−α1

×(1−cosχ cos θ1−sinχ sin θ1 cos θ2)−β12F1

(
1, 1; a+1;

1−cos θ1

2

)
.

(C.13)
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Next, one can use the Mellin-Barnes representation for the hypergeometric function

PFQ(a1, . . . , aP ; b1, . . . , bQ;x) =

∫ i∞

−i∞

dw

2πi
(−x)wΓ(−w)

×

[
P∏
i=1

Γ(ai + w)

Γ(ai)

] Q∏
j=1

Γ(bi)

Γ(bi + w)

 , (C.14)

so that eq. (C.13) becomes

I(α1, β1, γ1, γ2, δ, a, d) = 22α1+γ1−γ2
∫
dΦ(3) sδ12 (s−t̃)−α1−γ1A−β1−γ2Γ(1+a)

×
∫ i∞

−i∞

dw1

2πi
(−1)w1 2−w1

Γ2(1+w1)Γ(−w1)

Γ(1+a+w1)
(1−cos θ1)−(α1−w1)

×(1−cosχ cos θ1−sinχ sin θ1 cos θ2)−β1 . (C.15)

The angular integrals can be carried out using eq. (C.9), to get

I(α1, β1, γ1, γ2, δ, a, d) =

N2α1−β1+γ1−γ2+1π
Γ(d/2−1−β1)Γ(1+a)Γ(d−3)

Γ2(d/2−1)

×
∫ 1

0
dy

∫ 1

0
dx[y(1−y)]d−3[x(1−x)]d/2−2[1−y(1−z)]1−d/2sδ12 (s−t̃)−α1−γ1A−β1−γ2

×
∫ i∞

−i∞

dw1

2πi
(−1)w1

Γ2(1+w1)Γ(d/2−1−α1+w1)Γ(−w1)

Γ(1+a+w1)Γ(d−2−α1−β1+w1)

×2F1

(
α1−w1, β1; d/2−1; cos2 χ

2

)
. (C.16)

At this point, we may expand the integrand in (1−z), taking the leading power only. After

some work, we end up with

I(α1, β1, γ1, γ2, δ, a, d) = N21+α1+β1+γ1+γ2πsδ−α1−β1−γ1−γ2(1−z)2δ−α1−β1−γ1−γ2

×Γ(1+a)Γ(d/2−1−β1)Γ(d−3)

Γ2(d/2−1)

∫ 1

0
dy yd−3+δ−β1−γ2(1−y)d−3+δ+α1−γ1

×
∫ i∞

−i∞

dw1

2πi
(−1)w1

Γ2(1+w1)Γ(d/2−1−α1+w1)Γ(−w1)

Γ(1+a+w1)Γ(d−2−α1−β1+w1)

×
∫ 1

0
dxxd/2−2+δ(1−x)d/2−2

2F1(α1−w1, β1; d/2−1; 1−x).

(C.17)

The y integral can be carried out immediately in terms of Gamma functions. The x integral

would give a 3F2, but then the remaining Mellin-Barnes integral could be cumbersome.

Instead, we can introduce a second Mellin-Barnes representation, after which the x integral

– 27 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
4

can be carried out in terms of Gamma functions, yielding

I(α1, β1, γ1, γ2, δ, a, d) = N21+α1+β1+γ1+γ2πsδ−α1−β1−γ1−γ2(1−z)2δ−α1−β1−γ1−γ2

×Γ(1+a)Γ(d/2−1−β1)Γ(d−2+δ−β1−γ2)Γ(d−2+δ−α1−γ1)Γ(d/2−1+δ)

Γ(d/2−1)Γ(2d−4+2δ−α1−β1−γ1−γ2)Γ(β1)

×Γ(d−3)

∫ i∞

−i∞

dw1

2πi

∫ i∞

−i∞

dw2

2πi
(−1)w1+w2

×Γ2(1+w1)Γ(d/2−1−α1+w1)Γ(−w1)Γ(α1−w1+w2)Γ(β1+w2)Γ(−w2)

Γ(α1−w1)Γ(1+a+w1)Γ(d−2−α1−β1+w1)Γ(d−2+δ+w2)
.

(C.18)

We must now carry out the double Mellin-Barnes integral. However, this can be done

straightforwardly, by recognising the w2 integral as∫ i∞

−i∞

dw2

2πi
(−1)w2

Γ(α1 − w1 + w2)Γ(β1 + w2)Γ(−w2)

Γ(d− 2 + δ − w2)

=
Γ(α1 − w1)Γ(β1)

Γ(d− 2 + δ)
2F1(α1 − w1, β1; d− 2 + δ; 1)

=
Γ(d− 2 + δ)Γ(d− 2 + δ − α1 − β1 + w1)

Γ(d− 2 + δ − α1 + w1)Γ(d− 2 + δ − β1)
, (C.19)

where we have used Gauss’ identity

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (C.20)

At this stage we are left with

I(α1, β1, γ1, γ2, δ, a, d) = N21+α1+β1+γ1+γ2πsδ−α1−β1−γ1−γ2(1−z)2δ−α1−β1−γ1−γ2

×Γ(d/2−1−β−1)Γ(d−2+δ−β1−γ2)Γ(d−2+δ−α1−γ1)Γ(d/2−1+δ)

Γ(d/2−1)Γ(2d−4+2δ−α1−β1−γ1−γ2)Γ(d−2+δ−β1)

×Γ(d−3)

∫ i∞

−i∞

dw1

2πi
(−1)w1

×Γ2(1+w1)Γ(d−2+δ−α1−β1+w1)Γ(d/2−1−α1+w1)Γ(−w1)

Γ(d−2+δ−α1+w1)Γ(1+a+w1)Γ(d−2−α1−β1+w1)
.

(C.21)

Using eq. (C.14) we can recognise the w1 integral as∫ i∞

−i∞

dw1

2πi
(−1)w1

Γ2(1 + w1)Γ(d− 2 + δ − α1 − β1 + w1)Γ(d/2− 1− α1 + w1)Γ(−w1)

Γ(d− 2 + δ − α1 + w1)Γ(1 + a+ w1)Γ(d− 2− α1 − β1 + w1)
=

Γ(d− 2 + δ − α1 − β1)Γ(d/2− 1− α1)

Γ(d− 2 + δ − α1)Γ(1 + a)Γ(d− 2− α1 − β1)

× 4F3(1, 1, d− 2 + δ − α1 − β1, d/2− 1− α1; d− 2 + δ − α1, 1 + a, d− 2− α1 − β1; 1).

(C.22)

Putting everything together, we obtain the result of eq. (2.40).
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C.3 General parameter values

As stated above, for other necessary values of the parameters, we are not able to find a

closed form solution for the integral of eq. (2.39), valid for any spacetime dimension d.

Instead, we may settle for an expansion in the dimensional regularisation parameter ε. To

this end, it is useful to use an alternative phase space parametrisation, as discussed in

refs. [12, 73]. We first write eq. (2.39) as

I2(α1, α2, β1, β2, γ1, γ2, δ) = (−2)−α1−α2−β1−β2−γ1−γ2J(α1, α2, β1, β2, γ1, γ2, δ, a, d),

(C.23)

where a = −ε and

J(α1, α2, β1, β2, γ1, γ2, δ, a, d) =

∫
dΦ(3)(2k1·k2)δ(p·k1)−α1(p·k2)−α2(p̄·k1)−β1(p̄·k2)−β2

×(p·k1+p·k2)−γ1(p̄·k1+p̄·k2)−γ22F1

(
1, 1; a+1;

p·k1

p·k1+p·k2

)
,

(C.24)

which differs from eq. (C.12) in having arbitrary powers of all two-particle invariants.

Reference [12] starts by scaling momenta according to2

p =
√
s p1, p̄ =

√
s p2, k1 = (1− z)

√
s p3, k2 = (1− z)

√
s p4. (C.25)

so that eq. (C.24) becomes

J(α1, α2, β1, β2, γ1, γ2, δ, a, d) = sd−3+δ−C(1−z)2d−5+2δ−C

×
∫
dΦ(3)(2p3·p4)δ(p1·p3)−α1(p1·p4)−α2(p2·p3)−β1(p2·p4)−β2

×(p1·p3+p1·p4)−γ1(p2·p3+p2·p4)−γ22F1

(
1, 1; a+1;

p1·p3

p1·p3+p1·p4

)
,

(C.26)

where

C = α1 + α2 + β1 + β2 + γ1 + γ2.

The integral in the second line is now dimensionless. Furthermore, if one wants the leading

behaviour in (1 − z), then this has already been extracted, so that one can set z = 1 in

the integral itself. In practice this is done by using a particular parametrisation for the

rescaled momenta, and a particular expression for the soft phase space. The momenta are

parametrised in the lab frame, which immediately implies

p1 =
1

2
(1, 1, 0 . . .) , p2 =

1

2
(1,−1, 0, . . .) . (C.27)

Furthermore, we can choose to write p3 and p4 in terms of a d-velocity βi:

pi =
Ei
2
βi, i ∈ {3, 4}. (C.28)

2Our notation {pi} coincides with the notation used in ref. [12] after the rescaling has taken place.
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Note that, despite appearances, Ei is dimensionless due to the rescaling introduced above.

Upon substituting eqs. (C.27) and (C.28) into eq. (C.26), the phase space integral becomes

2C
∫
dΦ(3) sδ34 s

−α1
13 s−α2

14 s−β123 s−β224 (s13 + s14)−γ1 (s23 + s24)−γ2

× 2F1

(
1, 1; a+ 1;

s13

s13 + s14

)
, (C.29)

where following ref. [12] we have defined

sij = 2pi · pj , (C.30)

where the current notation s12 should not be confused with the scale s12 = 2k1 · k2 used in

the main text. At this point one may introduce the Mellin-Barnes representation (see e.g.

ref. [77])

2F1 (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)Γ(c− a)Γ(c− b)

×
∫ i∞

−i∞

dz1

2πi
Γ(a+ z1)Γ(b+ z1)Γ(c− a− b− z1)Γ(−z1)(1− z)z1 , (C.31)

as well as the identity

1

(A+B)λ
=

1

Γ(λ)

∫ i∞

−i∞

dz

2πi
Γ(−z)Γ(λ+ z)

Az

Bz+λ
, (C.32)

for values of λ > 0, to rewrite the combinations (s13 +s14) and (s23 +s24). Then, eq. (C.29)

assumes the triple Mellin-Barnes form

2C
Γ(a+ 1)

Γ2(a)Γ(γ2)

∫ i∞

−i∞

dz1

2πi

∫ i∞

−i∞

dz2

2πi

∫ i∞

−i∞

dz3

2πi

× Γ2(1 + z1)Γ(a− 1− z1)Γ(γ1 + z1 + z2)Γ(γ2 + z3)Γ(−z1)Γ(−z2)Γ(−z3)

Γ(γ1 + z1)

×
∫
dΦ(3) sδ34 s

z2−α1
13 s−z2−α2−γ1

14 sz3−β123 s−z3−β2−γ224 . (C.33)

The phase space integral now has the form of multiple products of two-particle invariants,

thus is of the same form as the integrals considered in refs. [12, 73]. The invariants can be

rewritten using the parametrisation of eqs. (C.27) and (C.28):

s1i =
Ei
2
β1 · βi, s2i =

Ei
2
β2 · βi, s34 =

E3E4

2
β3 · β4, i ∈ {3, 4}. (C.34)

Furthermore, the leading behaviour of the phase space measure as z → 1 is given by3 (see

e.g. ref. [12])

dΦ(3) z→1−−−→ (2π)3−2d2−2(d−1)δ(1− E3 − E4)

4∏
i=3

Ed−3
i dEi dΩ

(d−1)
i , (C.35)

3Given that the soft region contributes only at next-to-leading power in (1 − z), the leading behaviour

in (1− z) is sufficient for our purposes.
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where dΩ
(d−1)
i is the differential solid angle associated with particle i. Using eqs. (C.34)

and (C.35) in eq. (C.33), one may carry out the Ei integrals using∫ 1

0
dE3

∫ 1

0
dE4 δ(1− E3 − E4)Eλ3−1

3 Eλ4−1
4 =

Γ(λ3)Γ(λ4)

Γ(λ3 + λ4)
, (C.36)

yielding

22C−δ+5−4dπ3−2d Γ(a+ 1)

Γ2(a)Γ(γ2)Γ(2d− C + 2δ − 4)

∫ ∞
−i∞

dz1

2πi

∫ ∞
−i∞

dz2

2πi

∫ ∞
−i∞

dz3

2πi

× Γ2(1 + z1)Γ(a− 1− z1)Γ(γ1 + z1 + z2)Γ(γ2 + z3)Γ(−z1)Γ(−z2)Γ(−z3)

Γ(γ1 + z1)

× Γ(z2 + z3 + d− α1 − β1 + δ − 2)Γ(d− z2 − z3 − α2 − β2 − γ1 − γ2 + δ − 2)

×
∫
dΩ

(d−1)
3

∫
dΩ

(d−1)
4 (β3 · β4)δ(β1 · β3)z2−α1 (β2 · β3)z3−β1

× (β1 · β4)−z2−α2−γ1 (β2 · β4)−z3−β2−γ2 . (C.37)

Next, we must carry out the angular integrals. Given that each d-velocity β3 and β4 occurs

thrice rather than twice, we can no longer use eq. (C.9). Unfortunately, there is no known

closed form for the angular integral involving three angular quantities. There is, however,

a triple Mellin-Barnes form [78] (see also eq. (5.17) of ref. [12]) in d = 4− 2ε dimensions:∫
dΩ

(d−1)
i (βi · βj1)−λ1(βi · βj2)−λ2(βi · βj3)−λ3 =

22−λ1−λ2−λ3−2επ1−ε

Γ(λ1)Γ(λ2)Γ(λ3)Γ(2− λ1 − λ2 − λ3 − 2ε)

×
∫ i∞

−i∞

dz4

2πi

∫ i∞

−i∞

dz5

2πi

∫ i∞

−i∞

dz6

2πi
Γ(−z4)Γ(−z5)Γ(−z6)

× Γ(λ1 + z4 + z5)Γ(λ2 + z4 + z6)Γ(λ3 + z5 + z6)Γ(1− λ1 − λ2 − λ3 − ε− z4 − z5 − z6)

×
(
βj1 · βj2

2

)z4 (βj1 · βj3
2

)z5 (βj2 · βj3
2

)z6
. (C.38)

Upon using this result, the remaining integral over the angular variables of particle 4 can

be carried out using eq. (C.9), which it is more convenient to write as∫
dΩ

(d−1)
i (βi · βj1)−λ1(βi · βj2)−λ2 = 22−λ1−λ2−2επ1−ε Γ(1− ε− λ1)Γ(1− ε− λ2)

Γ(1− ε)Γ(2− 2ε− λ1 − λ2)

× 2F1

(
λ1, λ2; 1− ε; 1− βj1 · βj2

2

)
. (C.39)

Our general phase space integral now has the form of a six-fold Mellin-Barnes integral,

which applies if γ1 and γ2 are both non-zero. If either of them is zero, we do not need to

apply eq. (C.32) for the relevant combination of invariants, and thus we will obtain a lower

order Mellin-Barnes integral from the outset. Our strategy for carrying out an integral for

general (α1, α2, β1, β2, γ1, γ2, δ, a) is as follows:
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1. For specific parameter values, one should try to reduce the five fold MB integral using

Barnes’ lemmas. We have found that this is indeed possible for many integrals.

2. One must shift the contours of the MB integrals, picking up residues of poles where

appropriate, to extract all singularities in ε. The output of this procedure is a set

of (possibly simpler) MB integrals whose integrands can be safely expanded in ε. To

shift the contours, we use the publicly available package MBResolve [79].

3. One can expand the integrands in ε, and apply Barnes’ lemmas where possible to

simplify the list of Mellin-Barnes integrals. This is done using a combination of the

publicly available packages MB [80] and barnesroutines. At this stage, the output

consists of a list of (simpler) Mellin-Barnes integrals, some of which will have been

completely carried out.

4. Each remaining integral can be carried out in terms of infinite sums, for which we

use MBsums [81]. The resulting sums must then be carried out explicitly, and added

together. Here, we use the package xSummer [82], which itself relies on FORM [83].4

All analytic results for the ε expansions of Mellin-Barnes integrals have been checked nu-

merically using the package MB. A complication in step 6 is that the individual sums may

not converge, and even the sum of the sums may not converge. In such cases, we introduce

a regulator xz into the MB integral (where z is the Mellin variable), before taking the limit

x→ 1 having carried out all sums. An additional possible complication (at step 2) is that

MBResolve may not be able to resolve the singularities in ε. Here one can apply extra

regulators to deal with the problem, as documented in ref. [79].

Note that the above method will fail if either of the parameters (γ1, γ2) is negative,

given that eq. (C.32) assumes that the left-hand side is a genuine denominator. We indeed

encounter such integrals, with parameter values (all with a = −ε and d = 4− 2ε):

J(1, 0, 0, 1, 0,−1,−ε−1, a, d), J(0, 0, 0, 1, 1,−1,−ε−1, a, d), J(2, 0, 0, 1,−1,−1,−ε−1, a, d).

Using the simple identities

p̄ · (k1 + k2)

p̄ · k2
=
p̄ · k1

p̄ · k2
+ 1,

p · (k1 + k2)

p · k2
=
p · k1

p · k2
+ 1, (C.40)

we may derive the following relations:

J(1, 0, 0, 1, 0,−1, δ, a, d) = J(1, 0,−1, 1, 0, 0, δ, a, d) + J(1, 0, 0, 0, 0, 0, δ, a, d);

J(0, 0, 1, 1,−1, 0, δ, a, d) = J(0, 0,−1, 1, 1, 0, δ, a, d) + J(0, 0, 0, 0, 1, 0, δ, a, d);

J(2, 0, 0, 1,−1,−1, δ, a, d) = J(1, 0,−1, 1, 0, 0, δ, a, d) + J(1, 0, 0, 0, 0, 0, δ, a, d)

+ J(2,−1,−1, 1, 0, 0, δ, a, d) + J(2,−1, 0, 0, 0, 0, δ, a, d).

(C.41)

Integrals on the right-hand side that only involve powers of p·k1 and/or p̄·k1 can be carried

out using the analytic result of eq. (2.40). Remaining integrals can be carried out using

4We are extremely grateful to Ömer Gürdoğan for providing an interface from Mathematica to xSummer.
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the Mellin-Barnes approach outlined in this section. Note, however, that for the second

term in the last line of eq. (C.41), it is straightforward to derive a closed form, valid for

any d. Starting with the definition

J(2,−1, 0, 0, 0, 0, δ, a, d) =

∫
dΦ(3) (2k1 · k2)δ(p · k2)

(p · k1)2 2F1

(
1, 1; a+ 1;

p · k1

p · (k1 + k2)

)
,

(C.42)

we may use the centre of mass frame of the two outgoing gluons (cf. section C.1) to get

J(2,−1, 0, 0, 0, 0, δ, a, d) =
2

(4π)d
sd−4+δ(1−z)2d−6+2δ

Γ(d−3)

×Γ(d/2−1+δ)Γ(d/2−1)Γ(d−3+δ)

Γ(2d−5+2δ)

∫ π

0
dθ1

∫ π

0
dθ2 sind−3 θ1 sind−4 θ2

×
(

1+cos θ1

2

)(
1−cos θ1

2

)−2

2F1

(
1, 1; a+1;

1−cos θ1

2

)
(C.43)

(n.b. we have already carried out the x and y integrals from eq. (C.4)). The angular

integrals can be carried out by transforming to

u =
1− cos θ1

2
, v =

1− cos θ2

2
, (C.44)

from which one finds

∫ π

0
dθ1

∫ π

0
dθ2 sind−3 θ1 sind−4 θ2

(
1+cos θ1

2

)(
1−cos θ1

2

)−2

2F1

(
1, 1; a+1;

1−cos θ1

2

)
= 22d−7

∫ 1

0
dv[v(1−v)](d−5)/2

∫ 1

0
duud/2−4(1−u)d/2−1

2F1(1, 1; a+1;u)

= 22d−7 Γ2((d−3)/2)Γ(d/2−3)Γ(d/2)

Γ2(d−3)
3F2(1, 1, d/2−3; a+1, d−3; 1). (C.45)

Putting everything together, one obtains

J(2,−1, 0, 0, 0, 0, δ, a, d) =
1

64πd
sd−4+δ(1−z)2d−6+2δΓ(d/2−1+δ)Γ(d/2−1)Γ(d−3+δ)

Γ(2d−5+2δ)Γ3(d−3)

×Γ2((d−3)/2)Γ(d/2−3)Γ(d/2) 3F2(1, 1, d/2−3; a+1, d−3; 1).

(C.46)

C.4 Results

We here collect analytic results, as a Laurent expansion in ε, for the quantities Î2(α1, β1, α2,

β2, γ1, γ2, δ) appearing on the right-hand side of eq. (2.41). Given that we report only
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logarithmic terms in (1− z), it is sufficient to expand up to O(ε).

Î2(0, 0, 1, 0, 2, 0,−ε) =
1

12ε3
− 5π2

24ε
− 115ζ3

18
− 337π4ε

4320
;

Î2(1, 0, 1, 0, 2, 1, 1− ε) =
1

12ε3
− 1

12ε2
− 1

ε

(
1

4
+

5π2

24

)
− 3

4
+

11π2

72
− 115ζ3

18

+ ε

(
−9

4
+

11π2

24
− 337π4

4320
+

67ζ3

18

)
;

Î2(0, 0, 1, 0, 1,−1,−1− ε) =
5

24ε3
− 83π2

144ε
− 659ζ3

36
− 173π4ε

960
;

Î2(1, 0, 1, 0, 1, 0,−ε) =
7

36ε3
− 103π2

216ε
− 775ζ3

54
− 149π4ε

864
;

Î2(2, 0, 1, 0, 1, 1, 1− ε) =
7

36ε3
+

5

36ε2
− 1

ε

(
1

12
+

103π2

216

)
+

1

12
− 83π2

216
− 775ζ3

54

+ ε

(
− 1

12
− π2

72
− 149π4

864
− 659ζ3

54

)
;

Î2(0, 0, 0, 1, 2, 0,−ε) =
1

16ε3
− 13π2

96ε
− 23ζ3

6
− 107π4ε

1920
;

Î2(1, 0, 0, 1, 1, 0,−ε) =
11

48ε3
− 53π2

96ε
− 148ζ3

9
− 727π4ε

3456
;

Î2(1, 0, 0, 1, 2, 1, 1− ε) =
1

6ε3
+

1

12ε2
+

1

ε

(
1

4
− 5π2

12

)
+

3

4
− 19π2

72
− 227ζ3

18

+ ε

(
9

4
− 19π2

24
− 167π4

1080
− 157ζ3

18

)
;

Î2(2, 0, 0, 1, 1, 1, 1− ε) =
5

12ε2
− 1

4ε
+

1

4
− 77π2

72
+ ε

(
−1

4
+

17π2

72
− 295ζ3

9

)
;

Î2(1, 0,−1, 1, 0, 0,−1− ε) =
3

16ε3
+

19

48ε2
− 1

ε

(
19

12
+

149π2

288

)
+

19

3
− 247π2

288
− 49ζ3

3

+ ε

(
−76

3
+

247π2

72
− 3137π4

17280
− 433ζ3

18

)
;

Î2(1, 0, 0, 0, 0, 0,−1− ε) =
1

8ε3
− 41π2

144ε
− 33ζ3

4
− 971π4ε

8640
;

Î2(0, 0,−1, 1, 1, 0,−1− ε) = − 1

24ε3
+

19

48ε2
+

1

ε

(
−19

12
+

13π2

144

)
+

19

3
− 247π2

288
+

47ζ3

18

+ ε

(
−76

3
+

247π2

72
+

41π4

960
− 433ζ3

18

)
;

Î2(2, 0, 0, 1, 0, 0,−ε) =
11

48ε3
+

2

3ε2
− 1

ε

(
1

3
+

53π2

96

)
+

1

3
− 59π2

36
− 148ζ3

9

+ ε

(
−1

3
+

2π2

3
− 727π4

3456
− 887ζ3

18

)
;
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Î2(0, 0, 0, 0, 1, 0,−1− ε) =
1

24ε3
− 13π2

144ε
− 47ζ3

18
− 41π4ε

960
;

Î2(2,−1,−1, 1, 0, 0,−1− ε) =
5

16ε3
+

1

ε2
− 1

ε

(
1

3
+

77π2

96

)
+

1

3
− 95π2

36
− 295ζ3

12

+ ε

(
−1

3
+

5π2

9
− 491ζ3

6
− 1693π4

5760

)
;

Î2(2,−1, 0, 0, 0, 0,−1− ε) =
1

4ε2
− 1

6ε
+

1

6
− 41π2

72
+ ε

(
−1

6
+

13π2

36
− 33ζ3

2

)
. (C.47)
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