ISSN 1470-5559

A Type Theory for to Reiter’s Regression

Graham White

‘a_@_s’ Queen Mary

University of London
RR-06-02 April 2006 Department of Computer Science

A Type Theory for to Reiter’s Regression

Graham White
Department of Computer Science
Queen Mary, University of London

London, UK
graham@dcs.qmul.ac.uk

April 29, 2006

Abstract

We develop a type-theoretic formulation of the approach to the frame
problem given by Reiter in his book Knowledge in Action.

1 Introduction

Reiter [8] (following the technical leads of Pednault [6, 7] and others) has de-
scribed an approach to the frame problem in which the central concept is that
of regression: this is an operation which takes a proposition, asserted of one
situation, and maps it to its preconditions, asserted of the previous situation.
As Reiter shows, the regression operator has good computational and techni-
cal properties: it is, in an appropriate sense, monotonic, it is computationally
tractable, and it can be used directly to solve many concrete Al problems.

Conceptually appealing though Reiter’s approach is, the mathematical im-
plementation can often be a little ragged. One problem which frequently arises
is this: we are working with a single, global language which has terms for situ-
ations and for fluents, and we want to be able to say that a given proposition
is “about” a given situation. This is not a purely syntactic matter: criteria for
this “aboutness” may be difficult, or impossible, to find (see, for example, [8,
§9.1.3, p. 210]

This suggests that we should try starting the other way round: that we
should use a language in which there is a primitive relation between propositions
and the situations that they are about, and see if we can use that language to
handle the frame problem in Reiter’s style. This can be done, and it reveals
unexpected connections. The resulting logic is a type theory: situations are
types, and a proposition is about a particular situation iff it has that type.
And, in fact, Reiter’s regression operators turn out to be they key ingredient in
this construction.

2 The Type Theory

2.1 Situations and Actions

we are given a set X of states, and, for each pair of states, a set (which may be
empty) of transitions between them. If there is a transition « between states s

and ¢, we can write it thus:
e

s ¢t
We also assume that, given a compatible pair of transitions (that is, a pair of
transitions « and 3 with the source of one the same as the target of the other)
we can compose them, giving a transition (o a:

Boa

AT

«@
S —t—>1u

We can also assume that, for any state s, there is an identity transition Id : s ~~
s, which leaves everything unchanged.

Example 1. In the case of traditional AI — for example, [8, § 4.2.2] — the states
and transitions form a tree: transitions are sequences of actions and, since we
have a distinguished root node, states may also be identified with sequences of
actions. We also have additional apparatus: actions have labels, and different
transitions may have the same label — for example, we may have, as in [8, p.51],

T
N N

This labelling corresponds to the the type/token distinction in the philosophy
of action [1, 5].

Example 2. In the case of the theory of automata, actions again have labels:
however, the states and transitions do not form a tree. We may, for example,

have something like
«@

T
S —>1t

B
RN
U
The role of the labelling here is somewhat different — labels stand for observables

— and the fact that transitions do not form a tree is important. A tree-like
structure of actions and transitions will correspond to the initial model of some

suitable first-order theory: the theory of automata uses, instead of initial models,
final models, and, correspondingly, coinduction replaces induction [10, 9, 4].
Final models are very rarely considered in Al, with the honourable exception of
Norman Foo’s work. [2].

Remark 1. What we have here is a very minimal structure: it does not have to
have labelled actions, and it enforces neither initial nor final models. If we add to
it identity transitions (that is, a transition from each object to itself which does
nothing), then we have a category: identity transitions are implicitly present in
the traditional Al picture, since, according to that picture, transitions are finite
sequences of actions, and identity transitions are just sequence of length zero.
At any event we may assume that we have a category of states and transitions:
this should not be contentious, since, as we have argued, it assumes less than
the standard action descriptions of two well-established disciplines.

2.2 Regression and Progression
The goal of this work is to define operators analogous to Reiter’s regression:

that is, to assign, to each transition

—\
S t,

a map «*, taking propositions of type ¢ to propositions of type s, which satisfies
the “regression theorem” [8, pp. 67f.]:

If we have a transition a between states s and ¢, then, if P is a
proposition at s and @) is a proposition at ¢, then

PHQ

if and only if
PFa*@Q

That is, a*Q should be the weakest preconditions of Q.

Having defined regression, a successful theory ought to be able also to define
progression. Reiter’s formulation — slightly adapted to our formalism — is as
follows: given a set of sentences I'y at a situation s, then, for transition « from
s to a situation ¢, a set of sentences I'; is a progression of I'y to ¢ iff

1. T; is a set of sentences at ¢, and
2. T's and I'; should be equivalent with respect to entailment of any sentences
about the future of ¢.
2.3 The Rules

We can now describe the type theory. This will be given by a sequent calculus:
sequents will be labelled by a pair of situations, s and ¢, and an action which

yields the situation ¢ when performed in s. We will write such a sequent like
this:
a:s~t P, P EQy,...,Qm (1)

The P; are propositions at s, and @); are propositions at ¢. It will be valid (with
respect to our transition system) iff, whenever all of the P; are true at s, one
of the @); is true at ¢. As usual, we will use I', A and so on to stand for sets of
propositions: P, (Q etc. will stand for propositions.

We define two operators for each transition a: there will be a regression
operator, a*, and a progression operator, ay. It will turn out that a* commutes
both with conjunctions and disjunctions, so that o*I" can be defined element-
wise for sets of propositions both on the left and on the right of sequents. a,
on the other hand, will commute only with disjunctions, so we can apply i,
elementwise, to sets of propositions on the right of sequents, but not on the left:
on the left it will be explicitly applied to single propositions.

We have not done as Reiter does, and explicitly defined a primitive notion
of progression for sets of propositions: we assume that things are finite enough
to be able to work with conjunctions instead of Reiter’s sets of propositions. If
not, then the required modifications are notationally tedious, but conceptually
obvious.

The rules of our calculus are given in Table 1.

2.4 The Key Properties

We show now that the operators a* and «; are, in fact, regression and progres-
sion operators.
First some trivial technical lemmas.

Lemma 1. o* commutes with conjunctions and disjunctions; that is,
of(PANQ) = a"PAa™@Q
o*(PVv@) + a"PVva'@

Proof. We have:

Axiom Axiom
Id:t~t;PQ+-P . Id:t~tP,QFQ
A
Id:s~s;PANQFP Id:is~s;PAQFQ
a*R a*R
a:s~~t;PANQFa*P i} a:s~tPANQFa"Q -
o o
Id:s~s;a"(PAQ)Fa*P Id:s~ s;a"(PAQ)Fa*@Q
Id:s~s;a"(PAQ)Fa*PAa™Q

The proofs of the other entailments are similar. O

Remark 2. This means that it is sufficient to know o™ only on atoms and the
negations of atoms: a* can then by evaluated on general sentences by writing
them in negation normal form. This is an assumption which Reiter [8, pp. 26ff]
seems to make implicitly.

AR

Table 1: The Sequent Calculus

Axiom
Id:s~s;I',)PFP A
a:s~tIFA a:s~t0FA
WL
a:s~t;IPFA a:s~t;I'FPA
a:swt;F,P,PI—ACL a:s~t;I'F P P A
a:s~tI,PFA a:s~~t;I'FPA
1L TR
a:s~t;, 1FA a:s~~tI'FT,A
Id:s~ s;I'F P a*A a:s~t;0,a*"PEFA
a:s~tT,-PHA h a:swt;Fl——'P,Aﬁ
a:s~t0,PPFA a:s~4T,PbEA . a:s~~1tTFQ, QA
\Y
a:s—~t;0,PLVPEFA a:s~~tTFQ1VQA
a:s~40,P,PbHA . a:s~tTFQ1,A a:s~tTFQy A R
A A
a:s—~t;0,PLANPFA a:s~tTFQ1NQq A
a:s~t0,PFA Id:s~s;T'F P,a*A . a:s~t0,a"Q1 F Qe A
— —
a:s—~t;I,PL - P,FA a:s~~tT'FQ1 — Qs A
a:t~u;I'FA aofB:s~u;I'FA
a*L a*R
aof:s~u; B TFA B:s~t;T'Fa*A
Id:s~s;PFa*A . B:s~tTFA
e
Id:t~t,ayPF A ! aof:s~u;I'FaA

Bis~tTFQ a:t~ul',QFA
aofB:is~uwl T FA

cut

Lemma 2. oy commutes with disjunctions: that is,

Oé!(P\/ Q) A+ PV aQ.

Proof.
d:s~sPVQFP,Q
05— tPVOF aPaQ)
Id:sws;P\/Q}—a*agP,a*agQa ol
Id:t~ta(PVQ)F aP,oaQ. ' VR
Id:t~t;a(PVQ)FaPVaQ
and

Id:sws;.Pl—P\/Q
a:s~tPFa(PVQ)
Id: s~ s;PFa*a(PVQ) X

d:t—-taPraPVvQ) Id: t ~ t;00Q F (P V Q)

*

Id:t~taPVaQt a(PVQ)

Now the crucial results:

Proposition 1. o* is a regression operator: that is,
aofB:s~u;PFQ

holds iff
B:5~t;PFa"Q

does.

VL

3)

Proof. Suppose that we have (2); then we can derive (3) by an application of
a*R. Conversely, suppose that we have a proof of (3). Note that we have

Axiom

Id:iu~u;QFQ
a:t~ua'QFQ

is valid, so we can simply apply the cut rule and derive (2).

O

Remark 3. This generalises Reiter’s definition of a regression operator, which

restricts to the case where [is the identity transition.

Proposition 2. «y is a progression operator; that is, we have
a:t~u;BPFQ (4)

iff we have

aof:s~u;PFQ (5)

Proof. Suppose first that we have a proof II of (5): we derive a proof of (4) as
follows.

I
OzOﬁ:s%u;Pl—Q
B:s~t;PFa"@Q
6L
a:t~u;/PFQ

Conversely, if we have a proof of (4), we can cut with the conclusion of

Axiom

Id:s~s;PFP
B:s~t; P+ 6P

AR

thus obtaining (5). O

Remark 4. We could also obtain the above result by first deriving the equiv-
alence

PrFa*@Q

OqP H Q

and then deducing Proposition 2 from Proposition 1.

2.5 Making Regression Explicit

The above system is interesting, but does not really allow us to do any of the
calculation possible in Reiter’s system: it is valid for any system of regression
operators. It shows, as it were, the properties that regression operators in
general must have.

However, we are working with Reiter’s system, and for this we have quite
concrete descriptions of the regression operators: they are as follows. Since
the regression operators commute with conjunctions and disjunctions, we may
delay cashing out the operators until we have reduced the formulae to positive
or negative atoms: in any case, Reiter only defines them for atoms, and we are
working with his definitions.

Reiter’s regression operator is defined as follows. Suppose that we are given,
for each action «, an set of what are called effect azioms [8, pp. 25ff.]:

before | after
o1 U1
Ok Vg

where the ¢;, 1; in £, and where the s are atoms or the negations of atoms.

«@
Reiter [8, pp. 26ff] defines, for each action ¢~ > and atom F' € £, a successor

state axiom of the form
F is true at t iff ®(F, «) is true at s, (6)

where ®(F, «) can be defined purely syntactically from the successor state ax-
ioms for «: the definition does not depend on the =j.

Consider the successor state axioms: they are, as we have described, of the
form “if ¢ holds at s, then 1 holds at ¢”, where we are assuming that there
is a single-stage transition o between s and t. In these axioms, the s are
always (positive or negative) atoms: so we can, for each single-stage action «
and each relational symbol F' in the language, collect the antecedents of the
corresponding successor state axioms together into two formulae: ¥ (a, F) will
be the preconditions at s for F' to become true at ¢ as a result of o, whereas
~v~ (e, F) will be the preconditions at s for F' to become false at ¢ as a result of
.

Now F' will be true at t if either it becomes true as a result of «, or if it is
true at s and not forced to become false as a result of a. Consequently,

a'F =" (o, F) V(F A=~ (o, F)) (7)

and, similarly,
a*=F =~ (a, F)V (=F A " (a, F)) (8)

So we may write the following two rules for regression. Suppose that we
have composable actions o and 3:

aof3

5N

S—>t—>u
Suppose also that « is atomic. Then we have the following pair of right rules:
Bis~t;TFyt (o, F)
B:s~t;T'Fa*F
B:s~t; P, THFFA- (aF)
B:s~uI'Fa*F

a*R1

a*R2

There are, of course, corresponding rules with the signs reversed for dealing
with —F.

There is also a left rule. For simplicity, we give in the case where we have
just one formula on the left: corresponding, but more complex, rules can be
given for more general antecedents. Again we assume that we have composable

actions
aof3

N

«
S——t———1Uu

but, this time, that § is atomic.

aOﬁ:swu;W(ﬁ,F)l—Q aofl:s~u; F,-y~ (B, F)FQ
aof:s~ua"FFQ

fL

and, of course, there will be a corresponding rule with the signs reversed for
—F.
2.5.1 The Initial State

It only remains for us to show how we specify the initial state. If we have a
collection of axioms — say {n; }ic;r — which are supposed to hold in the initial
state, then we can represent them in the calculus as

Axiom

Id: SO ~ S()H‘ ;i

for each 7 € I.

3 Semantics

At this stage, one might justifiably ask for a semantics; we need, after all, to
show that these constructions are non-vacuous. A suitable semantics will be
given by the following collection of objects.

1. a category of states and transitions: this will be called the base category,
and will be the same as the category of states and transitions which we
have been using for labelling our sequents with.

2. for each object s of the base category, a boolean algebra A,: this algebra
will be called the propositions at s

3. for each morphism « : s ~ t of the base category, a lattice homomorphism

o Ay — A,

4. for each morphism « : s ~ t of the base category, an V-semilattice homo-
morphism
Q) AS — At

left adjoint to a* — that is, such that
aP <@

in At iff

in At-

Interpretations will be given in the usual way: for each object s of our transition
system, we give a boolean algebra homomorphism from the propositions at s
to As. If we are specifying regression explicitly, a la Reiter, we would also
stipulate that the regression operators had the desired effects. An entailment
will then be valid in a model if, for all interpretations, whenever all elements of
the antecedent are T in A, then at least one element of the consequent is T in
Ay

We can, then, prove soundness and completeness. Soundness is, as usual,
easy but tedious. Completeness needs more work, and also needs assumptions
on the base category: if we are working in the standard Al case, where the base
category is a tree, then we can do this by first proving cut elimination for the
type theory, and then defining a canonical model by a Lindebaum construc-
tion: elements of A, will be equivalence classes of propositions at s under the
equivalence relation generated by

Id:s~ s;PFQ.

We need cut elimination to show that the Boolean algebras thus generated are
non-trivial.

3.1 The Basis for Our Semantics

The semantics that we have given uses a particular mathematical structure: it
is what is known as a fibred category. Intuitively, this can be regarded as a
family of categories, parametrised by another category: here the parametrising
category — what is usually referred to as the base category — is the category of
states and transitions, whereas the parametrised categories — what are called
the fibres — are the boolean algebras A;.

One of the crucial points in the definition of a fibred category is this: that we
must ensure that isomorphic objects in the base correspond to equivalent fibre
categories. More generally, we must ensure that, if there is a morphism in the
base, the corresponding fibres are related by a suitable functor: this is usually
called a pullback, but it is also what we described as a regression operator. So,
in terms of fibred categories, Reiter’s operators are not something that has to
be added: they are a basic part of the definition.

3.1.1 The System

Now there is not much point in describing mathematical apparatus unless it
has a use, and fibred categories have an important use: they give the semantics
of type theories. Types correspond to objects in the parametrising category:
propositions of those types correspond to objects in the parametrised categories:
and morphisms are entailments.

Remark 5. Note for the cognoscenti: this corresponds to the propositions-as-
objects rather than the propositions-as-types paradigm [3, p. 138].

10

So, corresponding to our fibred category, we have the type theory that we
have just described: and the process of discovery was — as often occurs — opposite
to the process of exposition: the fibred category was discovered first, and then
it was made concrete by translating it into type-theoretic terms.

4 Conclusion

We have shown that Reiter’s treatment of regression has hidden category-
theoretic structure of a well-known sort. However, the story does not end there:
we can, on the basis of the category theory, construct a type theory, and this type
theory can be used to perform the sort of regression arguments that Reiter uses.
From this perspective, Reiter’s insights are, in fact, similar to techniques used
in other research communities — the main similarities are with Grothendieck’s
work on fibred categories, and with Lawvere’s work on the semantics of the
quantifiers. What is surprising is that these other approaches have quite dif-
ferent motivations: Grothendieck was working on geometry, whereas Lawvere
was working on quantification; neither of these contexts is directly compara-
ble with what Reiter was doing. Many problems in artificial intelligence thus
seem to be closer to mainstream mathematics than either AI practitioners, or
mathematicians, realise.

11

References

[1]

Donald Davidson. The individuation of events. In Essays on Actions and
FEvents, pages 163-180. Oxford University Press, 1980. Originally published
in [?, 216-34].

Norman Y. Foo, Abhaya Nayak, Maurice Pagnucco, and Dongmo Zhang.
State minimisation revisited. In Markus Stumptner, Dan Corbett, and
Michael J. Brooks, editors, Australian Joint Conference on Artificial Intel-
ligence, volume 2256 of Lecture Notes in Computer Science, pages 153—164.
Springer, 2001.

B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in
Logic and the Foundations of Mathematics. North Holland, Amsterdam,
1999.

Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:229-259, 1997.

Jaegwon Kim. Supervience and Mind: Selected Philosophical Essays. Cam-
bridge Studies in Philosophy. Cambridge University Press, Cambridge,
1993.

Edwin P. Pednault. Toward a Mathematical Theory of Plan Synthesis. PhD
thesis, Department of Electrical Engineering, Stanford University, Stanford
CA, 1986.

Edwin P. Pednault. Synthesising plans that contain actions with context-
dependent effects. Computational Intelligence, (4):357-372, 1988.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying
and Implementing Dynamical Systems. MIT Press, Cambridge MA, 2001.

Jan Rutten. Universal coalgebra: A theory of systems. Theoretical Com-
puter Science, (249):3-80, 2000.

Davide Sangiorgi. On the bisimulation proof method. Mathematical Struc-
tures in Computer Science, 8(5):447-479, October 1998.

12

