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0 Motivation

This paper is concerned with the frame problem – that is, the problem of logical
reasoning about action and change, and, in particular, the problem of correctly
reasoning about facts which a particular action leaves unchanged. We will
concentrate on Reiter’s work: it is insightful, and mathematically interesting.

0.1 Reiter

Ray Reiter [16] argues that, for a solution to the frame problem, what will suffice
is to be able to solve the following three subproblems:

preconditions given an action α and a state s, find out whether the action

can be executed in s, giving a transition s
α %%

t , for some suitable state
t.

progression given an action s
α %%

t , and given a theory Ξs describing the
state s, find the theory Ξt describing t.

regression given a transition as before, and given a proposition P , find a propo-
sition P ′ which will be true at s iff P is true at t.

These three problems are fundamental, in the following sense. Given a theory
describing the initial state, it is clear that we could then use the preconditions,
and the solution to the progression problem, to list all the attainable states and
their corresponding theories. But it turns out that we can, in turn, use a solution
for the regression problem to solve the progression problem: [16, ch. 9] so the
regression problem is, in fact, the more fundamental. It is also, as it happens,
far easier to solve: the realisation that this is so is an important insight due to
Reiter [15], Pednault [13, 14] and others.

This paper, then, will describe how to solve Reiter’s problems, giving a
solution to the regression problem first. Our machinery will allow us to give a
more general – and, hopefully, a more perspicuous – solution than Reiter’s.

0.2 Our Approach

Intuitively, our machinery will be as follows. Suppose that we have some sort
of representation of states and actions: for definiteness, we could think of a
labelled transition system, where the nodes represent states and the transitions
represent actions. States can be total or partial: we can think of partial states
as representing, nondeterministically, sets of total states.

We will distinguish between what philosophers call action types and action
tokens (see Davidson [5, 4], Hornsby [7, 6], and Wetzel [21]). An action type
(for example, the action of standing up) can be instantiated more than once as
an action token. In the context of a transition system, we will label transitions
with the action types, with individual transitions being the tokens.
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For the purposes of AI we want something less abstract than merely a la-
belled transition system: specifically, we would like to be able to represent,
and calculate with, this labelled transition system using the resources of formal
logic. Specifically, we will give ourselves a language L, an entailment relation,
and, for each node (i.e. state), we will want to find a theory, in the language,
which represents the propositions true in the corresponding state. This theory
should be categorical in the deterministic case, but, in general, it will not be.
The essence of the frame problem, of course, is to be able to calculate “what is
true” in a particular state: in more realistic terms, it is to determine what the
corresponding theory is.

0.3 Our Relation with Orthodoxy

0.3.1 The Unique Names Assumption

Choices have been made here which are far from orthodox. Conceptually, we
are taking the idea of a labelled transition system as primary: this is in sharp
contrast with most work in AI [16, p. 83], which works with what the AI commu-
nity calls “situations” – namely, sequences of actions starting from the initial
state – and assumes that any two such situations are distinct. In a labelled
transition system, by contrast, states – that is, “snapshots” of the system –
are primary, and a single state may be attained by more than one sequence of
actions. Representations such as ours – apart from their use in McCarthy and
Hayes’ early work [11] – are comparatively rare.

Our representation, although unorthodox, has important consequences. It
allows eventualities in which, for example, the state attained by a non-trivial
sequence of actions could be the same as the initial state. This means that, in
general, states do not have canonical descriptions: in terms of the usual termi-
nology, we are not making the unique names assumption for states. However,
this is not necessarily a bad thing: as Reiter observes [16, pp. 94ff.], the unique
names assumption is clearly not universally true of the real world.

Furthermore, the unique names assumption is mathematically difficult to
handle: it amounts to insisting on the initial model of the relevant theory, and
this is, in many circumstances, an artificial thing to do. We can, of course,
always recover, from a labelled transition system, a tree of situations: all we
have to do is to consider the set of paths from the initial state. The two will
be, in a very strong sense, mathematically equivalent (they will be equivalent
up to bisimulation [12, 19, 18, 9]): this equivalence is enough to ensure that, if
we are concerned only with how these mathematical objects describe the world
of states and actions, nothing will be lost by considering one rather than the
other, and it will be mathematically more natural to consider the more general
(that is, non-initial) model.

0.3.2 Fibrations

The other contentious choice is that we shall be working, as it were, locally: our
formalism will give us, for each state, a logical theory, which describes what is
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true in that state or set of states, but no more. By contrast, most work in AI
considers global theories which describe all possible situations. These theories
are typically expressed in untyped first-order languages, which have individuals
corresponding to states and to reified predicates, and relations which describe
the fact that a predicate holds in a situation. We can, using such languages,
express extremely arcane relationships between situations in different states.

As with our other contentious choice, this can be justified. Our choice is
notationally simpler: a global theory must do a good deal of indexing, in order
to differentiate what is true in one situation from what is true in another.
This extra notation can be quite overwhelming, as Reiter implicitly admits [16,
pp. 117ff.]. Furthermore, one of the things that we frequently want to do,
in these formalisms, is to say that a proposition is about a particular situation:
this is, in the standard AI formalisms, a semantic rather than a syntactic matter
(since situations are simply individuals alongside other individuals, and can be
referred to using terms of arbitrary complexity). Consequently, one must, in
the standard formalisms, resort to rather arbitrary definitions to try to express
what it is for a proposition to be about a situation (see [16, pp. 45ff.]). Our
formalism is much more straightforward: propositions are typed, their types are
states, and a proposition is about a particular state if it has that type.

It might, one might think, be argued that our choice, although notationally
simpler, is less expressive: we are limited to talking of one state at a time.
However, this is not so. In addition to our descriptions of states, we will have
Reiter’s regression operators: if we have a transition between states s and t,
there will be a regression operator, mapping propositions at t to propositions at
s. And we can, given regression operators, use the machinery of fibred category
theory to recover, from the local data, a suitable global logic [8, 1]; they are
equivalent in the sense that systematic and natural translations can be given
between one way of doing things and the other. And we can, in practice, express
all that we need to in this global theory. So, despite appearances, we have not
lost anything, and we have gained a great deal of notational – and, indeed,
conceptual – clarity.

0.4 Definitions

0.4.1 Transition Systems

Definition 1. A labelled transition system consists of

1. a set Σ of states,

2. a set A of labels,

3. a set T ⊂ A× Σ× Σ of transitions

Intuitively, each transition is given by specifying its label, its source, and its
target: this triple gives us an element of A× Σ× Σ.
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We will often draw labelled transition systems thus:

s
α
''

β
// t

α

��
u

α

__????????
β

VV

this will say that there are α-labelled transitions from s to t, from t to u, and
from u to s, and β-labelled transitions from s to t and u to t; similarly, we will
draw individual transitions thus

s
α %%

t

Remark 1. In practice, transitions will be action tokens, and the labels at-
tached to those transition will be action types: will will, consequently, often
refer to both transitions and labels as actions. This may seem to be ambigu-
ous, but is, in practice, not so: ordinary language is good at making implicit
type-token distinctions, and this will usually be sufficient for clarity.

Remark 2. Our definition of labelled transition systems – which is the standard
one – does not rule out indeterminacy: thus, there may be more than one
transition with the same starting point and the same label. However, we will
work from now on with deterministic transition systems.

0.4.2 The Associated Category

Definition 2. Given a deterministic transition system, as above, the associated
category has for objects the states of the system: a morphism between nodes s
and t will be a composable sequence of transitions (which may have zero length).
This morphism will be labelled with the sequence of the labels: the associated
category is thus enriched in the free monoid on the set of labels.

1 Reiter’s Approach

In this section we will describe the specifics of Reiter’s approach.

1.1 Terminology and the Correspondence with Our Sys-
tem

As is standard in the area, Reiter uses a terminology of situations and fluents:

a possible world history, which is simply a sequence of actions, is
represented by a first-order term called a situation. . .

Generally, the values of relations and functions in a dynamic
world will vary from one situation to the next. Relations whose
truth values vary from situation to situation are called relational
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fluents. They are denoted by predicate symbols taking a situation
term as their last argument. Similarly, functions whose truth values
vary from situation to situation are called functional fluents, and are
denoted by functional symbols taking a situation term as their last
argument. [16, p. 19]

Reiter’s situations, then, are histories, whereas the objects in our category are
instantaneous states. There may seem to be a conflict with our system here,
but very little, in fact, depends on it: in practice, Reiter’s fluents only depend
on the last state in a history. Relational and functional fluents, evaluated at a
history with last state s, will correspond, in our system, to relations or functions
with the appropriate signature and with type s. Reiter furthermore works with
a distinguished initial situation S0: since, in his formalisation, situations are
identical with their histories, this means that his situations form a tree with
root node S0.

1.1.1 Syntax

Reiter’s language is many-sorted, with sorts for actions, situations and indi-
viduals. Situations are thus individuals in his language, of sort situation: his
language, correspondingly, has a constant S0, of sort situation, together with a
function symbol do : action×situation → situation. Situations are generated by
successively applying actions to the initial situation: this corresponds on a syn-
tactic level to his stipulations about the tree structure of the set of situations.
[16, pp. 47ff.] Fluents are predicates, which have arguments of sort situation:
a fluent will hold at a particular situation iff the corresponding predicate is
satisfied by the situation.

The syntax is as follows [16, pp. 47ff.].

Definition 3. Define the language Lsitcalc by the following clauses.

〈situation〉 ::= S0 | do(〈action〉, 〈situation〉)|s
〈action〉 ::= b(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|

β(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, 〈situation〉)| a
〈object〉 ::= t(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|

τ(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, 〈situation〉)| x
〈proposition〉 ::= p(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|

φ(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, 〈situation〉)|
〈situation〉 @ 〈situation〉 | Poss(〈situation〉) |
〈situation〉 = 〈situation〉|〈action〉 = 〈action〉| 〈object〉 = 〈object〉|
X(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|
Y (〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, 〈situation〉)|
〈proposition〉 ∧ 〈proposition〉 | ¬〈proposition〉 |
∃s.p(s) | ∃a.p(a) | ∃x.p(x) | ∃X.p(X)| ∃Y.p(Y )

Here s, a, and x stand for first-order variables of the appropriate sorts (there
are countably many variables of each sort). Similarly, b, t, p, and X stand
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for non-fluent function symbols of sorts action and object, non-fluent predicate
symbols, and non-fluent propositional variables, whereas β, τ , φ and Y stand
for functional fluents of sorts action and object, relational fluents, and fluent
propositional variables.

We can (although Reiter does not do this explicitly) define a sublanguage
L by leaving out the fluents; this language will be the language of “constant
formulae”, i.e. those formulae which take the same value in all situations.

Definition 4. Define the language L by the following clauses.

〈action〉 ::= b(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)| a
〈object〉 ::= t(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)| x
〈proposition〉 ::= p(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|

〈action〉 = 〈action〉| 〈object〉 = 〈object〉|
X(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l)|
〈proposition〉 ∧ 〈proposition〉 | ¬〈proposition〉 |
∃s.p(s) | ∃x.p(x) | ∃X.p(X)

(The symbols have the same meanings as in the previous definition.)

We can also define the sublanguage of terms uniform in a situation [16,
p. 58]:

Definition 5. Let σ be a term of sort situation. Define the sublanguage Lσ
by the clauses:

〈action〉 ::= α | α(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, σ)
〈object〉 ::= τ | τ(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, σ)
〈proposition〉 ::= φ | φ(〈action〉1, . . . , 〈action〉k, 〈object〉1, . . . , 〈object〉l, σ)|

¬〈proposition〉| 〈proposition〉 ∧ 〈proposition〉| ∃a.p(a), ∃x.p(x)

Here α and τ are terms of the appropriate sort from L: φ is a proposition from
L.

Remark 3. Reiter stipulates that his predicates and function symbols should
have arities of the form (〈action〉 ∪ 〈object〉)n. This is ambiguous: it could mean
that each argument place is determinately of sort 〈action〉 or of sort 〈object〉, or
that each argument place can is of a new sort, 〈action〉 ∪ 〈object〉. I have chosen
the first alternative: it is more probable, and, in any case, there is no way
of using predicates, or function symbols, of the second sort which cannot be
disambiguated into the use of predicate symbols of the first sort, since all terms
of the language, even the variables, are determinately of one sort or the other.

Remark 4. Reiter stipulates that predicate or function symbols have at most
one argument place of sort 〈situation〉. This condition is clearly not preserved
under the logical operators: for example, if s1 and s2 are variables of sort
situation, then p(s1) ∧ q(s2) has two argument places of that sort. Similarly,
propositions of the form s1 @ s2 and s1 = s2 have more than one 〈situation〉

argument place.
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We finally define the language of regressible propositions [16, p. 62]: these
are, roughly speaking, the propositions which are uniform in situations specified
by a sequence of actions, starting from the initial situation.

Definition 6. If α = (α1, . . . , αk) is a sequence of actions, and if s is a situation,
let

do(α, s) = do(α1, do(. . . do(αk, s) . . .))

The regressible propositions, Lregr, are the closure under the logical connectives
of ⋃

α

(
Ldo(α,S0) ∪

⋃
Poss(b(α′1, . . . , α

′
k, t1, . . . , tl), do(α,S0))

)
Remark 5. Reiter is not quite consistent in his definition of uniform formulae:
in [16, Definition Definition 4.4.1, p. 58], he gives a BNF-style definition which
does not include propositional variables: but he then goes on to say, less for-
mally, that “a formula of Lsitcalc is uniform in σ if it does not . . . ”, and giving
a series of exclusions which does not exclude propositional variables. I have
chosen the stricter definition, and have also aligned my definition of regressible
formulae with that of the uniform formulae.

1.1.2 Action Theories

Given this language, Reiter then defines what he calls an basic action theory, D:
this is a theory which axiomatises the behaviour of the system. It has several
components.

Foundational Axioms for Situations These axiomatise the fact that the
situations form a tree, freely generated by the primitive axioms:

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2 (1)
∀X.X(S0) ∧ (∀a, s.(X(s) → X(do(a, s)))) → ∀X.∀s.X(s) (2)

and we also axiomatise the notion of a prehistory:

¬(s @ S0) (3)
s @ do(a, s′) ↔ s v s′ (4)

This group of axioms, (1)–(4), will be referred to as Σ [16, p. 50.].

Unique Names for Actions We suppose the following unique names axioms
for actions [16, p. 31]:

α(a1, . . . , ak, x1, . . . , xl) 6= α′(a′1, . . . , a
′
k, x

′
1, . . . , x

′
l) (5)
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for distinct function symbols α, α′

α(a1, . . . , ak, x1, . . . , xl) = α(a′1, . . . , a
′
k, x

′
1, . . . , x

′
l)

→ (
k∧
i=1

ai = a′i) ∧ (
l∧
i=1

xi = x′i) (6)

The collection of all axioms (5) and (6) will be referred to as Duna [16, p. 31].

Action Precondition Axioms We suppose that the predicate Poss is defined
by axioms of the following form, one for each action function symbol A:

Poss(A(a1, . . . , ak, x1, . . . , xl, s), s) ↔ ΠA(a1, . . . , ak, x1, . . . , xl, s) (7)

where the ai are action variables, the xi are object variables, s is a state variable,
and ΠA ∈ Ls.

The collection of all of the axioms (7) will be referred to as Dap [16, p. 59].

Successor State Axioms We assume axioms of the following form:

F (a1, . . . , ak, x1, . . . , xl, do(a, s)) ↔ ΦF (a1, . . . , ak, x1, . . . , xl, a, s) (8)

for each relational fluent F , where a, a1, . . . , ak are action variables, x1, . . . , xl
are object variables, s is a situation variable, and ΦF ∈ Ls,

α(a1, . . . , ak, x1, . . . , xl, do(a, s)) = a↔ Aα(a1, . . . , ak, x1, . . . , xl, a, s) (9)

for each action-valued functional fluent α, where a, a1, . . . , ak are action vari-
ables, x1, . . . , xl are object variables, s is a situation variable, and Aα ∈ Ls,

τ(a1, . . . , ak, x1, . . . , xl, do(a, s)) = a↔ Φτ (a1, . . . , ak, x1, . . . , xl, a, s) (10)

for each object-valued functional fluent τ , where a, a1, . . . , ak are action vari-
ables, x1, . . . , xl are object variables, s is a situation variable, and Φτ ∈ Ls.

The collection of all the axioms (8)–(10) will be referred to as Dss [16,
pp. 59f.].

The Initial State We assume that we have a set of first-order sentences
DS0 ⊆ LS0 : these will axiomatise the initial situation [16, p. 60.].

Definition 7. A collection of axioms of the form

Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

will be called a basic action theory provided that the right hand sides Aα and
Φτ of (9) and (10) satisfy

Duna,DS0 ` Aα defines a function (11)
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and

Duna,DS0 ` Φτ defines a function (12)

(with the standard expansions of what it is for a relation to be functional,
written out in full in [16, p. 60]).

1.2 The Regression Operator

1.2.1 Reiter’s Definition

Given this language, one of Reiter’s goals is to define what he calls a regres-
sion operator : that is, an operator R on a suitable class of propositions (the
regressible propositions of Definition 6). R will take any regressible proposition
into a proposition in LS0 . Reiter defines the regression operator R inductively,
starting with terms F (s), where F (·) is a fluent fluent atom, and s is a situation
of the form do([α1, . . . , αn],S0). If n = 0, then we are already at the initial
situation, and we let R(F (S0)) = F (S0). Otherwise, s = do(α1, s

′), for some
ground situation s′; so, by the successor state axiom for F (8),

Dss ` F (s) ↔ Φ(do([α2, . . . , αn],S0))

So we let R(F (s)) = R(Φ(do([α2, . . . , αn],S0))); note that Fs ∈ L(s) and
R(F (s)) ∈ L(s

′), and s′ @ s. Finally, if P is logically complex, we define R
compositionally [16, pp. 64f.]:

R(¬W ) = ¬R(W ) (13)
R(W1 ∧W2) = R(W1) ∧R(W2) (14)

R(∃x.W ) = ∃x.R(W ) (15)

An induction jointly over the logical complexity of formulae, and over the tree of
situations, shows that R is well defined, and that R(P ) ∈ LS0 , for any P ∈ Lregr.

We have

Theorem 1 (Reiter’s Regression Theorem). For any regressible P , R(P ) ∈
LS0 , and

D ` P
iff DS0 +Duna ` R(P ) (16)

We give our own proof of this: we will need lemmas from this proof later on,
and it seems sensible to integrate them with a proof of the regression theorem.
First a series of lemmas:

Lemma 1. If γ ∈ Lregr for all γ ∈ Γ, and if P ∈ Lregr, then, if

Γ ` P (17)

we have

R(Γ) ` R(P ) (18)
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Proof. This follows from the inductive clauses (13)–(15).

Lemma 2. For P in Lregr,

D ` P (19)

iff

Duna,Dap,Dss,DS0 ` P (20)

Proof. That (20) entails (19) is trivial, since Duna ∪Dap ∪Dss ∪DS0 ⊆ D. Now
suppose that

D 0 P :

then there is a model M of Duna ∪ Dap ∪ Dss ∪ DS0 in which P is false. Now
models of Duna ∪ Dap ∪ Dss ∪ DS0 look like models of D except that there will
be, in general, extra situations beyond the accessible tree: but we can produce
a model M ′ of D from M simply by restricting the set of situations to be the
accessible ones. M ′ will continue to satisfy the axioms in Duna∪Dap∪Dss∪DS0

because none of these axioms quantifies over situations. Similarly, P will be
false in M ′ because it is in Lregr and it only involves situations in the accessible
tree. M ′ is thus a countermodel to (19), and we have

Duna,Dap,Dss,DS0 0 P.

Remark 6. In the analogy with arithmetic which Reiter develops in [16, pp. 48ff],
we can regard Duna∪Dap∪Dss∪DS0 ⊆ D as corresponding to an axiomatisation
of primitive recursive arithmetic. The elements of Lregr will correspond to the
primitive recursive predicates, and Lemma 2 will correspond to a well known
conservativity theorem.

Lemma 3. If

Duna,Dap,Dss,DS0 ` P, (21)

for P ∈ Lregr, then there is a collection Γ of instantiations at ground situations
of elements of Dap,Dss,DS0 such that

Duna,Γ ` P

Proof. An induction on the structure of a cut free proof of (21).

Proof of Reiter’s Regression Theorem. Suppose that we have D ` P , for P ∈
Lregr. By Lemmas 2 and 3, there is a set Γ of instantiations of elements of
Dap,Dss,DS0 with

Duna,Γ ` P.

12



So, by Lemma 1, we have

R(Duna), R(Γ) ` R(P ).

Now, the elements of Duna do not involve situations, so R acts trivially on them.
Examination of the definition of R shows that R(γ) = > for every instantiation
of an element of Dap ∪ Dss ∪ DS0 at a ground situation: so we have

Duna ` R(P ),

which was to be proved.

Remark 7. The equivalence (16) shows that Reiter’s regression operator, for
a transition α, is a weakest preconditions operator for α. If we have a sequence
of actions α, and a fluent predicate ψ, then R(ψ(do(α, S0))) will – because the
only situation it mentions is S0 – be of the form φ(S0). Thus, (16) becomes

D ` ψ(do(α, S0)) (22)
iff DS0 +Duna ` φ(S0)

which is exactly the weakest preconditions condition.

1.2.2 Analysis

In order to compare Reiter’s system with ours, we need a rather more abstract
view of what he is doing. The core of the definition is given by the correspon-
dence (22) between predicates evaluated at do(α, S0) and predicates evaluated
at S0: we can regard it as simply a mapping between predicates, which – in the
case considered in (22) – takes the predicate ψ into the predicate φ = R(ψ).
(22) trivially entails that

R(>) = > (23)
R(ψ1 ∧ ψ2) = R(ψ1) ∧R(ψ2) (24)

However, other properties (in particular, whether R commutes with ∨ or pre-
serves ⊥) are not trivially entailed by eqrefeq:reiterCore, and there are circum-
stances in which one may well not have this: for example, if one has actions with
“disjunctive effects” – that is, if one uses successor state axioms to specify, not
the effect of actions on propositional atoms, but their effect on disjunctions –
then we find that we can define a regression operator, and prove the analogue of
the regression theorem for it, but that this operator will preserve neither ∨ nor
⊥. The fact that our regression operator can be consistently defined to preserve
∨ and ⊥ is quite closely tied to the syntactic form of the effect axioms, and,
specifically, the fact that the successor state axioms are defined for propositional
atoms.

We can, then, differentiate between properties of R which only depend on
rather formal features of its definition – such as the fact that it preserves > and

13



commutes with ∧ – an others – preserving ⊥ and commuting with ∨ – which
seem to be less fundamental and more dependent on particular details of the
system. This turns out to be the case: in particular, we will be able to develop,
as well as a system very strictly analogous to Reiter’s, one in which the weakest
precondition operators only respect ∧ and >. Furthermore, if we have classical
logic, and if the regression operator respects ∧, ∨, ⊥, and >, then it must respect
¬ as well, since any lattice homomorphism between boolean algebras is, in fact,
a boolean algebra homomorphism [10, p. 4].

1.3 The Progression Operator

1.3.1 Reiter’s Definition

Reiter defines progression [16, pp. 207ff.] in the following terms.

Definition 8. Suppose we have a basic action theory D = Σ ∪ Duna ∪ Dap ∪
Dss ∪DS0 . Let Sα be a situation: then a set of sentences, DSα , is a progression
of DS0 if

1. DSα
⊆ LSα

2. Let Dα = Σ ∪ Duna ∪ Dap ∪ Dss ∪ DSα
: then D � Dα

3. For every model Mα of Dα, there is a model of D such that

(a) M and Mα have the same domains

(b) M and Mα interpret L identically

(c) M and Mα interpret all fluents about Sα and its future identically

(d) M and Mα interprets Poss identically in Sα and its future.

Such a progression operator is second-order definable, and Reiter also gives
two cases in which one can define it in first-order terms [16, pp. 210ff.].

1.3.2 Analysis

First, a lemma:

Lemma 4. For P ∈ LS0 ,

D ` P

iff

DS0 ,Duna ` P

Proof. It is easy to check, by examining the definition of the regression oper-
ator, that, for P ∈ LS0 , R(P ) = P . We then apply the regression theorem
(Theorem 1), and obtain the equivalence.

14



Now suppose that we have a basic action theory for which we can define
progression for arbitrary finite theories: by restricting to theories consisting of
one proposition, we get a map (where Sα is a ground situation)

ηSα
: LS0 → LSα

,

while the restriction of the regression operator gives a map

RSα
: LSα

→ LS0

We have the following:

Proposition 1. For suitable entailment relations on LS0 and LSα
, ηSα

is left
adjoint to RSα : to be precise, for P ∈ LS0 and Q ∈ LSα , we have

Duna, P ` RSα
(Q)

iff

Duna, ηSα(P ) ` Q.

Proof. We proceed semantically, and then use soundness and completeness to
derive the syntactic entailments. We will use Reiter’s terminology for a basic
action theorem with DS0 = {P}: thus, we will have throughout

D = Σ ∪ Duna ∪ Dap ∪ Dss ∪ {P}

and

Dα = Σ ∪ Duna ∪ Dap ∪ Dss ∪ {ηSα(P )}

So, by the regression theorem,

Duna, P � RSα
(Q)

iff D � Q

iff every model ofD models Q

iff (by the definition of progression)

every model ofDα models Q
iff Dα � Q

iff (by the lemma)

Duna, ηSα
(P ) � Q
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2 The Systems

We want to start with a fixed deterministic labelled transition system (or, more
generally, from a category derived therefrom) and construct a logic, together
with operators α∗, which will allow us to solve the precondition and regression
problems. We will also want extra machinery to solve the progression problem:
that is, we will want α∗ to have a left adjoint, which we will write α!.

Our system will be typed: a proposition will be about a state (or set of
states), and we will express this by making the states (or sets of states) into
types. More formally, we start with a category C, together with a functor into
the free monoid over the set of labels, and let our types be the objects of this
category. Propositions will be generated by our language L together with the
operators α∗ and α!. The types, and syntax, are summarised in Table 1.

2.1 The Intuitionistic System

At this stage we need to make some decisions about the syntax and semantics
of our logic. Given only the operators α∗, we can easily write down entailments

of the form P ` α∗Q between single propositions: here, if s
α %%

t , P would
be a proposition at s and Q would be a proposition at t. We would here have
something very like Hoare triples.

However, in order to have something which is more like a logical system,
we need to have some notion of contexts. An initial idea would be to consider
entailments such as

P1, . . . , Pn ` α∗Q, (25)

where (with the above assumptions) P1, . . . , Pn are all propositions at s and Q
is a proposition at t. But this will not do: entailments of the form (25) are not
closed under cut, and there is no obvious way to give rules for → or for ¬. So, if
we are to have non-trivial contexts on the left – or, indeed, on the right – then
they must be capable of incorporating propositions located at different states.

A convenient way of doing this is as follows. We will consider, at first, left
contexts only. Left contexts are normally generated by a context constructor,
which is syntactically ‘ , ’, and which has the semantics of ∧. We add another
context constructor {·}α:s→t, which will have (for a given α) the semantics of
α!. An entailment of the form (25) can be written, using these contexts, as

{P1, . . . , Pn}α:s→t ` Q, (26)

and the adjunction between α∗ and α! means that (25) and (26) are equivalent.

Remark 8. Suppose that we have α : s → t, and that Γ is a flat context at s
(i.e. that it is constructed using only , and not {·}·). We then have

Γ : s ` α∗(Q : t)
============
{Γ}α : t ` Q : t
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Note that, in the sequent on the top, both sides are of the same type. Our
cut elimination theorem will show that α∗ is exactly a weakest preconditions
operator. This is, in fact, the content of Reiter’s “Regression Theorem” [16,
Thm. 4.55, p 65], or our Theorem 1.

But, as well as entailments such as (26), we can also have entailments with
nested occurrences of the {·}· operator, or entailments where different {·}· oper-
ators (or none) apply to different parts of the context. In this way, we can have
a cut rule, and we can have rules for → and ¬. If we have left contexts of this
form, our entailments will have single propositions on the right, and full contexts
on the left. This will, in the usual way, mean that our logic is intuitionistic.

Remark 9. We are using, here, a context constructor {·}α, which has the
semantics of α!. We could ask whether we could, instead, use an operator with
the semantics of α∗: but, in this case, we could not. The validity of the left rule
for ∨ will, when the principal formula is nested at some depth, require that the
context constructor commutes with ∨. In the intuitionistic case, the weakest
preconditions operator, α∗, is right adjoint to α!: consequently, α∗ commutes
with ∧, but not necessarily with ∨, whereas α! commutes with ∨. We could
argue in exactly the same way about the requirements for the validity of the
left rule for ¬.

2.2 The Classical System

We can also define a system with classical semantics, although we need a good
deal more machinery.

There are several issues to deal with. The first is that, in the standard
sequent calculus formulations of classical logic, we have non-trivial contexts
both on the left and on the right. In standard classical logic, the only context
constructor, on the left or on the right, is the comma, but it has different
semantics on each side: ∧ on the left and ∨ on the right. In order for the
classical ¬ rule should be valid, the two interpretations of the comma must be
de Morgan dual to each other.

So, if we want to have full contexts on the right, we need to have suitable
context constructors on both sides, and these context constructors need to be
de Morgan dual to each other. The comma is fine: we just have it represent
∧ on the left, and ∨ on the right. However, we also need another constructor,
one which moves between situations. Our analysis of Reiter’s system shows
that, in the classical case, we can reasonably expect α∗ to be a Boolean algebra
homomorphism, and thus to have both a right and a left adjoint. So, there are
two choices for the semantics of our context constructor:

1. the semantics of α∗ on both sides. Notice that α∗, being a Boolean algebra
homomorphism, is de Morgan self dual, and commutes with ∧ and ∨.

2. the semantics of α! on the left and the semantics of α∗ on the right. Notice
here that α! commutes with ∨, α∗ commutes with ∧, and (because α∗ is
a Boolean algebra homomorphism) α! is de Morgan dual to α∗.
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The first choice gives us a system with good properties. The second choice,
although it yields rules for ∧ and ∨, still suffers from problems. α! does not
commute with ∧, and α∗ does not commute with ∨: and this turns out to mean
that the second choice does not give us a valid axiom rule for entailments like

{P}α ` {P}α ,

or a valid cut rule for premises like

Γ ` {∆, P}α {P,Γ′}α ` ∆′.

The second issue is this: we need to give a right rule for α! (and, dually, a
left rule for α∗). Now the intuitionistic right rule for α! (fully annotated with
the types for propositions and contexts) is

Γ : s ` Q : s
α!R

{Γ}α:s→t : t ` (α!Q) : t
(27)

and we should notice that this relates entailments at two different types: the
antecedent is at s and the consequent at t. We can do this in the intuitionistic
system, because there is only one proposition on the right, and we can transport
the left context to type t simply by enclosing it in {·}α.

However, with the classical calculus, we can have nested contexts on the
right, and we may want to apply the classical right rule for α! – however we
might choose to formulate it – at any depth of nesting. In such a case, the
type of a proposition is tied to the type of the hole in the context into which it
fits: we must thus have a way of making α!P fit into the hole in which P went.
We should, then, have a means of transforming contexts so that, if we have a
morphism α : s → t, and if Γ[] has a hole of type s, we can form a context –
which we can write 〈Γ[]〉α – which will have a hole of type t. This can be done –
this is what the operator defined in Definition 13 – but it will require our base
category C to have pullbacks.

Example 1. There are two significant examples in which we can define such
pullbacks. One of them is Reiter’s case, when the base category is a tree: here
pullbacks are trivial, but they certainly exist. The other case is where the
base category has one object, and the endomorphisms of that object are all
invertible and hence form a group: this is a very useful object for reasoning
about symmetries. Here pullbacks are given by conjugation in the group.

2.3 The Calculi

We can now present our two systems, intuitionistic and classical. The syntax
for propositions and contexts is given by Table 1; note that we have explicit
notation – ε – for the empty context. There are also rules for equivalence of
contexts, and these are given in Table 2: we indicate the rules that only apply
classically or intuitionistically. The rules for equivalence of contexts themselves
rely on the rules for the equality of morphisms in a category, which we have
written down in Table 3 (for these, see, for example, [20, Chapter 8]).
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Remark 10. We will, almost exclusively, write {Γ}α ` P instead of the more
pedantic {Γ}α:s→t ` P : in most cases, the source and target of α can be inferred
from the context. There is some scope for ambiguity here, however: we might
have two actions of type α terminating in a state t, in which case the type of
α∗Γ ought to be disambiguated by an explicit typing.

We will also need a notion of a context-with-a-hole, or, as we shall describe
it, a marked context :

Definition 9. A marked intuitionistic context is given by the clauses:

Γ[] : t := [: t]
| Γ[] : t,Γ : t | Γ : t,Γ[] : t
| {Γ[] : s}α (α : s→ t),

and a marked classical context by the clauses:

Γ[] : t := [: t]
| Γ[] : t,Γ : t | Γ : t,Γ[] : t

| {Γ[] : u}β (β : t→ u)

where Γ stands for a context (of the apppropriate sort) as defined in Table 1.
(Type symbols are optional, and will frequently be omitted when no confusion
arises).

The point of marked contexts is that we should be able to substitute into
them, so next we define an appropriate notion of substitution:

Definition 10. If Γ[: t] is a marked classical or intuitionistic context, and
if Γ′ : t is a context (either classical or intuitionistic, respectively, and either
marked or unmarked), then we define Γ[Γ′], the subsitution of Γ′ in Γ[] by the
clauses

[Γ′] := Γ′

Γ[Γ′],Γ′′ := (Γ[Γ′′]),Γ′′

Γ′′,Γ[Γ′] := Γ′′, (Γ[Γ′])
{Γ[Γ′]}α := {(Γ[Γ′])}α in the intuitionistic case

{Γ[Γ′]}α := {(Γ[Γ′])}α in the classical case

The result is a marked or unmarked context, depending on what Γ′ is.

Lemma 5. The operation of substitution is a congruence for equivalence of
contexts.

Proof. Elementary.

Remark 11. Notice that Γ[] denotes, in all cases, a marked context: since we
have an explicit notation for the empty context, we can distinguish between Γ[]
and Γ[ε].
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Definition 11. The nesting, ν, of either sort of context is a morphism of C
defined as follows:

ν([: t]) = Idt
ν(Γ[],Γ′) = ν(Γ[])
ν(Γ,Γ′[]) = ν(Γ′[])
ν({Γ[]}α) = α ◦ ν(Γ[])
ν({Γ[]}α) = ν(Γ[]) ◦ α

Two nestings will be equal if they are equal as morphisms of C.

Lemma 6. The nesting of a marked context is invariant under equivalence of
contexts.

Proof. Elementary.

Notice that the nesting of an intuitionistic context behaves covariantly,
whereas the nesting of a classical context behaves contravariantly: and, in fact,
we have

Proposition 2. If Γ[: s] : t is a marked intuitionistic context, then

ν(Γ[: s] : t) : s→ t,

whereas, if Γ[: s] : t is a marked classical context,

ν(Γ[: s] : t) : t→ s.

Proof. Obvious.

We will need the following two notions to define our classical system.

Definition 12. Two marked contexts, Γ[] and Γ′[], will be similarly nested if
their nestings are equal.

Definition 13. If (Γ[: t]) : u is a marked classical context, and if C has pull-
backs, and if α : s → t is a morphism, then we define the marked context
〈Γ[: t]〉α, which has type s×t u, by the following inductive clauses:

〈[: t]〉α = [: s]

〈Γ,Γ′[: t] : u〉α = {Γ}α×tu , 〈Γ′[: t] : u〉α

〈Γ[: t],Γ′ : u〉α = 〈Γ[: t]〉α , {Γ′}α×tu〈
{Γ[: t] : u}β:u′→u

〉α
= {〈Γ[: t]〉α : s×t u}

(s×tu)×uβ : s×t u′

Lemma 7. If Γ[: t] : u is a marked classical context, and if α : s→ t, then

ν(〈Γ[]〉α) = α×t ν(Γ[]).
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Proof. Induction.

Lemma 8. The operation 〈·〉· is a congruence with respect to equivalence of
classical contexts.

Proof. The obvious induction.

The following is merely a restatement of the last clause of Definition 13, but
it will be convenient to be able to cite it.

Lemma 9. If Γ[: t] is a marked classical context, and if α : s→ t, then〈
{Γ[: t] : s}β:u′→u

〉α
= {〈Γ[: t]〉α : s×t u}

(s×tu)×uβ : s×t u′

Remark 12. We should point out that 〈·〉· is not a context constructor: the
only context constructors are the comma and {·}·. 〈·〉· is an operation on con-
texts, defined by the above clauses: it takes a context, constructed with the
usual constructs, and it yields another context, constructed with those same
constructors. Correspondingly, Lemma 9 says that two context are equal, rather
than equivalent, and equality here means typographical equality.

Remark 13. Notation such as 〈Γ[Γ′]〉α might seem to be ambiguous: is the
〈·〉α performed before, or after, the substitution into the marked context? How-
ever, it is not: 〈·〉α can only be performed on a marked context, so that the
substitution must be performed after 〈·〉α.

So, given these preliminaries, the intuitionistic system is given by the rules
in Table 4, and the classical system by the rules in Table 5.

Remark 14. From either set of rules, it follows that

P : s ` α∗(Q : t)
=============
α!(P : s) ` Q : t

(28)

and so α! is, as promised, a left adjoint to α∗. From the classical rules, we can
derive

α∗P : t ` Q : s
============
P : s ` α∗Q : s,

(29)

and so, in the classical calculus, α∗ is a right adjoint to α∗.

3 Semantics: The Intuitionistic System

The goal of this and the following sections will to prove soundness and com-
pleteness for both systems, relative to their intended semantics. We start with
the intuitionistic system.

The semantics of this logic should be a category, fibred over a labelled tran-
sition system (regarded as a category together with a functor into the free
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propositions P : t (P ∈ L, t ∈ Ob(C))

P : t α : s→ t

α∗P : s
P : s α : s→ t

α!P : t

(classical case only)
P : s α : s→ t

α∗P : t

intuitionistic contexts Γi : t := P : t | Γi : t,Γi : t
| {Γi : s}α (α : s→ t)

classical contexts Γc : t := P : t | Γc : t,Γc : t
| {Γc : u}α (α : t→ u)

intuitionistic entailments
Γi : t P : t

Γi ` P well-formed

classical entailments
Γc : t ∆c : t

Γc ` ∆c well-formed

Table 1: Types and Syntax
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common
Γ ≈ Γ′ Γ′ ≈ Γ′′

Γ ≈ Γ′′ Γ ≈ Γ

Γ,Γ′ ≈ Γ′,Γ
Γ ≈ Γ′ Γ1 ≈ Γ′1

Γ,Γ1 ≈ Γ′,Γ′1

Γ, ε ≈ Γ

intuitionistic only {Γ}Id ≈ Γ {Γ}β◦α ≈ {{Γ}α}β

α = β

{Γ}α ≈ {Γ}β

Γ : s ≈ Γ′ : s α : s→ t

{Γ}α ≈ {Γ′}α

classical only {ε}α ≈ ε {Γ}Id ≈ Γ

{Γ}α◦β ≈
{
{Γ}β

}α α = β

{Γ}α ≈ {Γ}β

Γ : t ≈ Γ′′ : t α : s→ t

{Γ}α ≈ {Γ′}α

Table 2: Rules for Equivalence of Contexts

Id ◦ α = α α = α ◦ Id

(α ◦ β) ◦ γ = α ◦ (β ◦ γ)
α = β

γ ◦ α = γ ◦ β

α = β

α ◦ γ = β ◦ γ

Table 3: Rules for Category Theory
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Γ ` Q Γ ≈ Γ′
≈

Γ′ ` Q

Γ[{Γ′}α, {Γ
′′}α] ` P

join
Γ[{Γ′,Γ′′}α] ` P

Axiom
Γ, P ` P

⊥ L
Γ[⊥] ` Q

Γ[ε] ` Q
LW

Γ[Γ′] ` Q

Γ `
RW

Γ ` Q

Γ[P, P ] ` Q
LC

Γ[P ] ` Q

Γ[P1] ` Q Γ[P2] ` Q
∨L

Γ[P1 ∨ P2] ` Q

Γ ` Qi
∨Ri

Γ ` Q1 ∨Q2

Γ[P1, P2] ` Q
∧L

Γ[P1 ∧ P2] ` Q

Γ ` Q1 Γ ` Q2
∧R

Γ ` Q1 ∧Q2

Γ′, P → Q ` P : s Γ[Γ′, Q : s] ` R
→ L

Γ[Γ′, P → Q : s] ` R

Γ, P ` Q
→ R

Γ ` P → Q

Γ[P : t] ` Q α : s→ t
α∗L

Γ[{α∗P}α] ` Q
{Γ}α ` Q

α∗R
Γ ` α∗Q

Γ[{P}α] ` Q
α!L

Γ[α!P ] ` Q

Γ ` Q
α!R

{Γ}α ` α!Q

Γ ` P : s Γ′[P : s] ` Q
cut

Γ′[Γ] ` Q

Table 4: The Intuitionistic Sequent Calculus
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Γ ` ∆ Γ ≈ Γ′ ∆ ≈ ∆′

≈
Γ′ ` ∆′

Γ[{Γ′}α, {Γ′′}α] ` ∆
joinL

Γ[{Γ′,Γ′′}α] ` ∆

Γ ` ∆[{∆′}α, {∆′}α]
joinR

Γ ` ∆[{∆′,∆′′}α]

Γ[{Γ′,Γ′′}α] ` ∆
splitL

Γ[{Γ′}α, {Γ′′}α] ` ∆

Γ ` ∆[{∆′,∆′′}α]
splitR

Γ ` ∆[{∆′}α, {∆′}α]

Axiom
Γ[P ] ` ∆[P ]

Γ : t ` ∆ : t
{}α

{Γ}α:s→t ` {∆}α:s→t

⊥ L
Γ[⊥] ` ∆

>R
Γ ` ∆[>]

Γ[ε] ` ∆
LW

Γ[Γ′] ` ∆

Γ ` ∆[ε]
RW

Γ ` ∆[∆′]

Γ[P, P ] ` ∆
LC

Γ[P ] ` ∆

Γ ` ∆[P, P ]
RC

Γ ` ∆[P ]

Γ[P1] ` Q Γ[P2] ` Q
∨L

Γ[P1 ∨ P2] ` Q

Γ ` ∆[Q1, Q2]
∨R

Γ ` ∆[Q1 ∨Q2]

Γ[P1, P2] ` ∆
∧L

Γ[P1 ∧ P2] ` ∆

Γ ` ∆[Q1] Γ ` ∆[Q2]
∧R

Γ ` ∆[Q1 ∧Q2]

Γ[ε] ` ∆[P ]
¬L

Γ[¬P ] ` ∆[ε]

Γ[Q] ` ∆[ε]
¬R

Γ[ε] ` ∆[¬Q]

Γ[{P}α] ` ∆
α∗L

Γ[α∗P ] ` ∆

Γ ` ∆[{Q}α]
α∗R

Γ ` ∆[α∗Q]

〈Γ[P : s]〉α:s→t ` {∆}α×tu

α!L
Γ[(α!P ) : t] : u ` ∆ : u

Γ ` ∆[Q]
α!R

Γ ` ∆[{α!Q}α]

Γ[P ] ` ∆
α∗L

Γ[{α∗P}α] ` ∆

{Γ}α×tu ` 〈∆[Q : s]〉α×tu : s×t u
α∗R

Γ : u ` ∆[(α∗Q) : t] : u

Γ : s ` ∆[P : t] : s Γ′[P : t] : u ` ∆′ : t ν(∆[]) = α, ν(Γ[]) = β
cut

{Γ}s×tβ , {Γ′[ε]}α×tu ` {∆[ε]}s×tβ , {∆′}α×tu

Axiom, ¬L, ¬R: Γ[], ∆[] similarly nested.

Table 5: The Classical Sequent Calculus
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monoid over the set of action labels). The fibres should be models of intuition-
istic logic (i.e. complete Heyting algebras), and the reindexing functors should
be ∧-semilattice homomorphisms: that is, they should preserve finitary and
infinitary meets – that is, ∧ and

∧
– but not necessarily ∨, ¬ or →. These

conditions mean that we have left adjoints to reindexing.
Suppose that we have our semantics: that is, a category E fibred over C,

whose fibres are Heyting algebras, and with left adjoints to reindexing. Being
Heyting algebras, the fibres are partial orders, and we will write the partial
order ≤.

Definition 14. An assignment is an assignment, to every t ∈ Ob(C) and every
atomic P ∈ L, an element JP Kt ∈ Ob(Et).

Given an assignment, we can define, for each P : t, its semantic value JP Kt by
induction on its syntactic complexity: the intuitionistic operators are interpreted
in the usual way, α∗ is interpreted as the reindexing functor (also written α∗),
and α! is interpreted as the left adjoint to reindexing.

We also define JΓKt for contexts:

Definition 15. The semantic value of a context is given by the clauses

• JΓKt = JP Kt if Γ = P

• JΓ,Γ′Kt = JΓKt ∧ JΓ′Kt

• J{Γ}αKt = α!JΓKs (for α : s→ t).

And, finally, a definition of semantic entailment:

Definition 16.

Γ : t 
 P : t (30)

iff

JΓKt ≤ JP Kt (31)

for every assignment

. (32)

3.1 Soundness

We now prove soundness. The proofs for rules involving the standard connec-
tives will be similar to the standard proofs for intuitionistic logic: the proofs for
the rules for α∗ and α! will need some attention to the category theory. We give
the proofs of these rather systematically, in preparation for the more complex
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classical case. First we formulate the category theoretic facts; here X and Y
are appropriate objects of the total category:

X ≤ α∗Y iff
α!X ≤ Y (33)
X ≤ α∗α!X (34)

α!α
∗X ≤ X (35)

α!(X ∧ Y ) ≤ α!X ∧ α!Y (36)
α!(X ∨ Y ) = α!X ∨ α!Y (37)

α! ⊥ =⊥ (38)

Here (33) is a statement of the adjunction between α! and α∗, (34) is its unit,
and (35) its counit; (36) follows from the functoriality of (·)!; while (37) and
(38) follow from the fact that (·)! is a left adjoint.

3.1.1 The Structural Rules

We first prove soundness for the structural rules: that is, the relevant rules in
Table 2, together with the join rule from Table 4.

Proposition 3. The intuitionistic rules for the equivalence of contexts in Ta-
ble 2 are sound with respect to 
: that is, if Γ : t ≈ Γ′ : t, then JΓKt = JΓ′Kt
(and so, in particular, we have, for any P , Γ 
 P iff Γ′ 
 P ).

Proof. This follows from the functoriality of (·)!.

Proposition 4. The join rule is sound for 
.

Proof. This follows from (36).

3.1.2 The Standard Rules

We can now move on to consider the soundness of the “standard” rules – that
is, the rules which use only the standard connectives of intuitionistic logic –
with these contexts. The right rules are dealt with in the same way as for
intuitionistic logic:

Proposition 5. The right rules for ∧, ∨ and → are sound for our contexts.

For the left rules, we need

Lemma 10 (Semantic Monotonicity). Consider a context Γ[Γ′ : s] : t.
Then, for any Γ′′ : s, if JΓ′Ks ≤ JΓ′′Kt, JΓ[Γ′]Kt ≤ JΓ[Γ′′]Kt.

Proof. An induction on the complexity of contexts, using the functoriality of
the context constructors.

Proposition 6. The left rules for ∧ and ∨, → and ¬ are sound for our contexts.
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Proof. ∧ and ∨ are straightforward: they rely on the two identities

JΓ[P ∧Q]Kt = JΓ[P,Q]Kt (39)
JΓ[P ∨Q]Kt = JΓ[P ]Kt ∨ JΓ[Q]Kt. (40)

The first follows from the functoriality of the context constructors: the second
follows from an induction on the depth of nesting, using (37).

The proof for → is again very similar to the standard proof. If we have the
premises of the rule, that is, that JΓ′, P → QKs ≤ JP Ks and JΓ[Q]Kt ≤ JRKt,
then we argue as follows:

JΓ′, P → QKs ≤ JP Ks,

and so

JΓ′, P → QKs ≤ JΓ′, P → Q,P Ks
≤ JQKs

and so, by semantic monotonicity,

JΓ[Γ′, P → Q]Kt ≤ JΓ[Q]Kt
≤ JRKt

which was to be proved.

Finally ⊥:

Proposition 7. The rule ⊥ L is sound for 
.

Proof. We use (37), together with an induction on the depth of nesting.

3.1.3 α∗ and α!

Proposition 8. The right rule for α∗ is sound for 
.

Proof. Suppose that we have the premise of the right rule, namely

J{Γ}αKt ≤ JP Kt where α : s→ t.

Then, by definition of J·K·,

α!(JΓKs) ≤ JP Kt

and so, by the adjunction (33)

JΓKs ≤ α∗(JP Kt)
= Jα∗P Ks

which was to be proved.
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Proposition 9. The left rule for α∗ is sound for 
.

Proof. Suppose that α : s → t, and that we have the premise for the left rule,
namely

JΓ[P : t]Ku ≤ JQKu

Using the counit (35) of the adjunction, we have

J{α∗P}αKt ≤ JP Kt

By semantic monotonicity, we then have

JΓ[{P}α]Ku ≤ JQKu

which is the conclusion.

Proposition 10. The right rule for α! is sound for 
.

Proof. This follows from the functoriality of α!.

Proposition 11. The left rule for α! is sound for 
.

Proof. This follows from the definition of the semantic value of α!.

3.1.4 The Cut Rule

Proposition 12. The cut rule is sound for 
.

Proof. This follows trivially from semantic monotonicity.

3.2 Completeness

We can now prove completeness for the intuitionistic logic.

Theorem 2. Suppose that we have

Γ : t 
 P : t

Then
Γ : t ` P : t

Proof. We prove this by contraposition: we suppose that Γ : t 0 P : t, and
we concoct a model, and an assignment, which provides a counterexample to
Γ : t 
 P : t. The model will be what is, in categorical semantics, called the
generic model [8, p. 249].

Let us first define a category E as follows:

objects will be equivalence classes of typed propositions P : t, under the equiv-
alence relation

P : t ∼= Q : t iff P : t ` Q : t andQ : t ` P : t
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morphisms There is a morphism from P : s to Q : t, over α : s→ t, iff

{P : s}α ` Q : t

for some α : s→ t.

identity of morphisms Two morphisms, with the same source and target,
are identical iff they lie over the same morphism in the base.

Then we establish the following:

1. There is a functor π : E → C, which takes a morphism in E – i.e. a proof
of {P : s}α ` Q : t – to the morphism α in C.

2. π is a fibration, with the α∗ as reindexing functors: that is, if we have
α : s→ t and β : t→ u, then, given

{P}α;β ` R

we have

{P}α ` β
∗R

and

{β∗R}β ` R

The first of these follows from the right rule for α∗ (together with the
equivalence {Γ}α;β ≈ {{Γ}α}β) and the second is just the left rule for α∗.

3. The fibres of π are Heyting algebras. This follows straightforwardly from
the rules, and the fact that the fibres are partial orders.

4. α! is left adjoint to α∗. This follows straightforwardly from the rules.

5. α∗ commutes with ∧ and >. This follows either directly from the rules,
or from the previous assertion.

We now define an interpretation J·K· of the typed language into E , by mapping
typed propositional letters of L into their equivalence classes: a tedious induction
on complexity shows that JP : tKt is the equivalence class of P : t for general P .

Finally, we have our result: if we do not have {Γ : s}α ` P : t, then induction
on the complexity of environments shows that there is no morphism from JΓKs
to JP Kt over α. Consequently (by the adjunction and the properties of fibred
categories)

J{Γ}αKt � JP Kt,

which is what was to be proved.
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4 Semantics: The Classical System

We can now prove analogous results for our classical system.
The semantics of this logic should be a category, fibred over a labelled transi-

tion system (regarded as a category together with a functor into the free monoid
over the set of action labels). The fibres should be models of classical logic (i.e.
Boolean algebras), and the reindexing functors should be boolean algebra ho-
momorphisms. These conditions mean that we have left and right adjoints to
the substitution functors.

Definition 17. Let C be a category with pullbacks. A classical Reiter category
over C is a category fibred by Boolean algebras over C: the reindexing functors
α∗ should be Boolean algebra homomorphisms, and should have both left and
right adjoints, α∗ and α∗, and the adjoints should satisfy the following Beck-
Chevalley conditions [8, p. 97]:

(α)∗β!P a` (s× β)!(α×t u)∗P
α)∗β∗P a` (s× β)∗(α×t u)∗P

for morphisms α : s→ t, β : u→ t in the base and for P : u.

We make the usual definitions, as in the intuitionistic case: only the defini-
tion of J·Kt is appreciably different.

Definition 18. An assignment is an assignment, to every t ∈ Ob(C) and every
atomic P ∈ L, an element JP Kt ∈ Ob(Et).

Given an assignment, we can define, for each P : t, its semantic value JP Kt by
induction on its syntactic complexity: the intuitionistic operators are interpreted
in the usual way, α∗ is interpreted as the reindexing functor (also written α∗),
α! is interpreted as the left adjoint, and α∗ the right adjoint, to reindexing.

We also define JΓKt for contexts: here we have to make a distinction between
left and right contexts, since {·}α is intepreted differently on the left and on the
right.

Definition 19. The semantic value of a left context is given by the clauses

• JΓKt = JP Kt if Γ = P

• JΓ,Γ′Kt = JΓKt ∧ JΓ′Kt

• J{Γ : u}βKt = β∗(JΓKu) (for β : t→ u).

The semantic value of a right context is given by the clauses

• J∆Kt = JP Kt if ∆ = P

• J∆,∆′Kt = J∆Kt ∨ J∆′Kt

• J{∆ : u}βKt = β∗(J∆Ku) (for β : t→ u).
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And, finally, a definition of semantic entailment:

Definition 20.

Γ : t 
 ∆ : t

iff

JΓKt ≤ J∆Kt

for every assignment.

4.1 Soundness

First a pair of lemmas:

Lemma 11 (Semantic Monotonicity: Classical Case). If (Γ[∆ : u]) : t is
a left or right context, and if J∆Ku ≤ J∆′Ku for some ∆′ : u, then JΓ[∆]Kt ≤
JΓ[∆′]Kt.

Proof. The obvious induction, using the functoriality of α! or α∗, as appropriate,
and α∗.

Lemma 12. Up to equivalence of contexts and applications of the classical
structural rules, every classical marked context Γ[: t] : s is equivalent to one of
the form

Γ′ : s, {[: t]}α

for some α : s→ t.

Proof. We can use the split and join rules to reduce Γ[: t] : s to a context of the
form

Γ′ : s,
{
· · · {[: t]}βk · · ·

}β1

,

where the context after the comma consists of a number of nested {·}βi with
nothing in them apart from a single occurrence of [: t]: we then use the category-
theoretic rules, together with the rules for equivalence of contexts, to compose
the βi into a single morphism α.

4.1.1 The Structural Rules

We now prove the soundness of the structural rules, that is, the rules in Table 2,
together with joinL, joinR, splitL, and splitR.

Proposition 13. The rules for the equivalence of left and right contexts in
Table 2 are sound with respect to 
: that is, if Γ : t ≈ Γ′ : t, then JΓKt = JΓ′Kt
(and so, in particular, if Γ : t ≈ Γ′ : t and ∆ : t ≈ ∆′ : t, we have Γ 
 ∆ iff
Γ′ 
 ∆′).
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Proof. This follows from the functoriality of α!, α∗, and α∗ and the definitions
of the semantic value of contexts.

Proposition 14. The rules joinL, joinR, splitL, and splitR, are sound for 
.

Proof. Clear.

4.1.2 The Standard Classical Rules

Proposition 15. The rules LW, RW, LC, RC, ∨L, ∨R, ∧L and ∧R are sound
for 
.

Proof. Standard, using semantic monotonicity as necessary.

Proposition 16. The rules ¬L and ¬R are sound for 
.

Proof. Consider ¬L: ¬R is entirely similar. Using Lemma 12, we can assume
without loss of generality that the premise of the rule is of the form

Γ ` {P}α ,∆

and the conclusion is of the form

Γ, {¬P}α ` ∆.

Suppose that α : s→ t. We have, then, to prove that if

JΓKs ≤ J{P}αKs ∨ J∆Ks

then

JΓKs ∧ J{¬P}αKs ≤ J∆Ks.

But, since

J{¬P}αKs = α∗(J¬P Kt)
= α∗(¬JP Kt)
= ¬α∗JP Kt

(since α∗ is a Boolean algebra homomorphism), we have the result.
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4.1.3 The Functorial Rules

In this section we consider the rules for α∗, α! and α∗.

Proposition 17. The rules α∗L and α∗R are sound for the classical semantics.

Proof. By definition, Jα∗P Ks = α∗JP Kt = J{P}αKs, and the result follows.

Proposition 18. The rules α∗L and α!R are sound for the classical semantics.

Proof. Consider α!R: by semantic monotonicity, it suffices to prove that, for
any P : s and for α : s→ t,

JP Ks ≤ J{α!P}αKs
= α∗Jα!P Kt
= α∗α!JP Ks,

but this is simply the unit of the adjunction α! a α∗.
The proof for α∗L is dual.

Proposition 19. The classical rule α!L is sound for the classical semantics.

Proof. By Lemma 12, we can assume that the conclusion is of the form

Γ, {α!P}β ` ∆,

where P : s, α : s → t, and β : u → t. This means that the premise is of the
form

{Γ}α×tu , {P}s×tβ ` {∆}α×tu

Now the semantic value of the premise is

(α×t u)∗JΓKu ∧ (s×t β)∗JP Ks ≤ (α×t u)∗J∆Ku,

whereas the semantic value of the conclusion is

JΓKu ∧ β∗α!JP Ks ≤ J∆Ku,

which, by the Beck-Chevalley condition, is equivalent to

JΓKu ∧ (α×t u)!(s×t β)∗JP Ks ≤ J∆Ku;

the result follows from the adjunction α! a α∗, together with standard properties
of Boolean algebras.

Proposition 20. The classical rule α∗R is sound for the classical semantics.

Proof. Dual to the above.
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4.1.4 The Cut Rule

Proposition 21. The cut rule is sound for the classical semantics.

Proof. Suppose that ν(∆[]) = α : s→ t, and that ν(Γ′) = β : u→ t. We apply
Lemma 12, and can assume that the rule application is of the form

Γ ` ∆, {P}α {P}β ,Γ′ ` ∆′

{Γ}s×tβ , {Γ′}α×tu ` {∆}s×tβ , {∆′}α×tu

So, the semantic values of the premises of the cut rule are

JΓKs ≤ J∆Ks ∨ α∗JP Kt

and

JΓ′Kt ∧ β∗JP Ku ≤ J∆′Ku,

from which we can derive, respectively,

(s×t β)∗JΓKs ≤ (s×t β)∗J∆Ks ∨ (α×t β)∗JP Kt

and

(α×t u)∗JΓ′Kt ∧ (α×t β)∗JP Ku ≤ (α×t u)∗J∆′Ku,

whereas the semantic value of the conclusion is

(s×t β)∗JΓKs ∧ (α×t u)∗JΓ′Ks ≤ (s×t β)∗J∆Ks ∨ (α×t u)∗J∆′Ks;

soundness follows from standard Boolean algebra.

So, putting all these results together, we have

Theorem 3. The classical semantics is sound for the classical calculus.

4.2 Completeness

Theorem 4. The classical semantics is complete: that is, if, for a given base
category C, and for an object t of C,

JΓKt ≤ J∆Kt

for two contexts Γ : t and ∆ : t, then

Γ ` ∆.

This theorem will be proved by constructing a term, or generic, model, which
we define as follows.
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Definition 21. Let C be a category with fibre products. The term model, EC ,
over C is given by the following data:

the objects of the model are given by pairs P : s, where P is a proposition
and s is an object of C

morphisms between P : s and Q : t are given by proofs

P ` {Q}α

for some morphism α : s→ t of C. Two such morphisms are equal iff their
source and target are the same, and the corresponding morphisms of C are
equal.

the composition of morphisms corresponding to proofs

Π···
P : s ` {Q : t}α

and
Π′
···

Q : t ` {R : u}β

is given by the proof

Π···
P : s ` {Q : t}α

Π′
···

Q : t ` {R : u}β
{}α

{Q : t}α `
{
{R : u}β

}α
≈

{Q : t}α ` {R : u}α◦β
cut

P : s, {}α ` {}α , {R : u}α◦β
≈

P : s ` {R : u}α◦β

identity morphisms are given by the proofs

Axiom
P : t ` P : t

≈
P : t ` {P : t}Id

the display functor p, maps a typed propositions P : t to the object t, and a
proof of P : s ` {Q : t}α to the morphism α : s→ t.

liftings of base morphisms are chosen as follows. Let α : s→ t be a morphism
in the base, and let P : t be an object of the total category over t: let the
lifting of α be the following proof:

Axiom
{P : t}α ` {P : t}α

α∗L
(α∗P : t) : s ` {P : t}α

In the indexed category viewpoint, this corresponds to using α∗ as substi-
tution functors.

36



left and right adjoints to the substitution functors are given by α! and α∗.

We now prove

Proposition 22. EC is a classical Reiter category.

Proof. It is clear than EC is a category (equality of morphisms is so strong that
laws like associativity are immediate). It is likewise clear that p is a functor. We
have to check that the liftings are Cartesian: so, consider composable morphisms
α : s → t and β : t → u in the base, together with a proof Π of P : s `
{R : u}β◦α lying over α ◦ β. We need to produce a proof of P : s ` {(α∗R) : t}α
(commutativity of the resulting diagram is trivial). But this is immediate:

Π···
P : s ` {R : t}α◦β

≈
P : s `

{
{R : t}β

}α
β∗R

P : s ` {(β∗R) : t}α

This establishes the functoriality of the α∗. Consequently, EC is fibred over C:
the fibres are Boolean algebras, because the inference rules are a superset of the
normal classical inference rules.

We need to show that α! and α∗ are left and right adjoint functors to the α∗.
Functoriality is easy. For example, the following construction, which produces
a proof of α∗P ` α∗Q from a proof of P ` Q, establishes functoriality for α∗:

Π···
P : s ` Q : s

α∗L
{(α∗P ) : t}α ` Q : s

α∗R
(α∗P ) : t ` (α∗Q) : t

Given functoriality, we only need to establish the unit and counit for each ad-
junction. The unit for α! a α∗ is proven like this:

Axiom
P : s ` P : s

α!R
P : s ` {α!P : s}α

α∗R
P : s ` α∗α!P : s

and the counit like this:

Axiom
{Q : t}α ` {Q : t}α

α∗Q : t ` {Q : t}α
α!L

α!α
∗Q : t ` Q : t
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The proof of the adjunction for α∗ is dual.
Finally, we must verify the Beck-Chevalley conditions: for α!, we prove these

as follows. Suppose that α : s→ t, β : u→ t, and that P : u. Then we have

Axiom
{P}α×tu ` {P}α×tu

(α×t u)∗R
{P}α×tu ` (α×t u)∗P

(s×t β)!R
{P}α×tu ` {(s×t β)!(α×t u)∗P}s×tβ

β!L
{β!P}α ` (s×t β)!(α×t u)∗P

α∗L
α∗β!P ` (s×t β)!(α×t u)∗P

and

Axiom
{P}α×tu ` {P}α×tu

(α×t u)∗L
(α×t u)∗P ` {P}α×tu

β!R
(α×t u)∗P `

{
{β!P}β

}α×tu

≈
(α×t u)∗P ` {β!P}(α×tu)◦β

≈
(α×t u)∗P ` {β!P}(s×tβ)◦α

≈
(α×t u)∗P ` {{β!P}α}

s×tβ

α∗R
(α×t u)∗P ` {α∗β!P}s×tβ

(s×t β)!L
(s×t β)!(α×t u)∗P ` α∗β!P

The proofs of the Beck-Chevalley conditions for α∗ are dual. This concludes the
proof that EC is a classical Reiter category.

Definition 22. Let Γ be a left context: let the propositionalisation of Γ, Γ, be
defined by

P = P

Γ′,Γ′′ = Γ′ ∧ Γ′′

{Γ}α = α∗Γ

Similarly, if ∆ is a left context, the propositionalisation of ∆, ∆, is defined by

P = P

∆′,∆′′ = ∆′ ∨∆′′

{∆}α = α∗∆

Lemma 13. For any Γ and ∆,

Γ ` ∆
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iff

Γ ` ∆

Proof. The obvious induction.

Proof of Theorem 4. Suppose that Γ : t 
 ∆ : t. Define an interpretation of the
language in EC by sending P : t to P : t as an object of EC . We establish, by
induction, that, with respect to this interpretation, JΓKt = Γ, and J∆Kt = ∆.
Since Γ : t 
 ∆ : t, we must have JΓKt ≤ J∆Kt, and, consequently, Γ ≤ ∆: by
the definition of EC , this means that Γ ` ∆. By the lemma, we have Γ ` ∆.

5 Proof Theory

In this section we prove cut elimination for our systems: first the intuitionistic
system, and then the classical. Although the result is proved in broadly the
same way for both systems, the details are rather different.

5.1 The Intuitionistic System

We carry out an induction simultaneously on cut depth and on the complexity
of the cut formula: as usual, we only present the interesting cases.

5.1.1 The Base Cases

The base cases of the induction are where one premise is either an axiom, ⊥ L,
or >R: apart from some care over the more elaborate contexts, these cases are
handled exactly as in the cut elimination theorem for intuitionistic logic, and
we will not describe them here.

5.1.2 Permuting the Cut Upwards

We now turn to the inductive cases: that is, the case where neither of the
premises of a topmost cut is a leaf node. First, then, we consider cases where
the cutformula is non-principal on the left side. The cases where we have rule
applications of the normal connectives are, with a little extra care because of
our more elaborate contexts, more or less standard. The cases of interest are
the applications of α∗ and α!: we show the argument for the former. The cut
will look like

Π···
Γ ` P

Π′
···

{Γ′[P ]}α ` Q
α∗R

Γ′[P ] ` α∗Q
cut

Γ′[Γ/P ] ` α∗Q
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and we can permute the cut upwards:

Π···
Γ ` P

Π′
···

{Γ′[P ]}α ` Q cut
{Γ′[Γ/P ]}α ` Q

α∗R
Γ′[Γ/P ] ` α∗Q

The argument for α!R is very similar. In all of these cases we have

Result Cut depth reduced by 1, cut rank unchanged.

5.1.3 Principal against Principal

Here we deal with the case where the cut is principal on both sides. The
intuitionistic connectives and structural rules are handled in the normal manner
(we have to use the multicut trick to handle LC): we deal solely with the cases
of α! and α∗. The cases are as follows:

α∗ We have
Π···

{Γ}α ` P
α∗R

Γ ` α∗P

Π′
···

Γ′[P ] ` Q
α∗L

Γ′[{α∗P}α] ` P
cut

Γ′[{Γ}α] ` P
We replace this with

Π···
{Γ}α ` P

Π′
···

Γ′[P ] ` Q
cut

Γ′[{Γ}α] ` P

Result Cut depth reduced by two, cut rank reduced by 1.

α!

Π···
Γ ` P

α!L
{Γ}α ` α!P

Π′
···

Γ′[{P}α] ` Q
α!L

Γ′[α!P ] ` Q
cut

Γ[{Γ}α] ` Q
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We replace this with

Π···
Γ ` P

Π′
···

Γ′[{P}α] ` Q
cut

Γ′[{P}α] ` Q

Result Cut rank reduced by 1, cut depth reduced by 2.

So, finally, we have

Theorem 5. The cut rule can be eliminated in the intuitionistic system.

Proof. By the cases above.

5.2 The Classical System

We will make the usual induction over cut rank and cut depth. The classical
system needs more care than the intuitionistic system, mainly because of the
constraints on the cut rule (that is, that the cutformulae should be similarly
nested in both premises). We need a definition of the rank of a formula:

Definition 23. Let A be a formula in the classical language. We define the
rank of A, |A|, by the clauses

|P | = 1 for P atomic
|¬P | = |P |+ 1
|α∗P | = |P |+ 1
|α!P | = |P |+ 1
|α∗P | = |P |+ 1

|P ∧Q| = 1 + max(|P |, |Q|)
|P ∨Q| = 1 + max(|P |, |Q|)
|P → Q| = 1 + max(|P |, |Q|)

There are, as usual, three cases to consider in the cut elimination process:
where either of the premises is an axiom, ⊥ L, or >R, where the cutformula is
non-principal in either of the premises, and were the cutformula is principal in
both of the premises.

5.2.1 The Base Cases

The base cases are ⊥ L, >R, and Axiom. The case of ⊥ L looks like this:

⊥ L
Γ[⊥] ` ∆[P ]

···
Γ′[P ] ` ∆′

cut
Γ[⊥],Γ′[ε] ` ∆[ε],∆′

41



and we replace it with
⊥ L

Γ[⊥],Γ′[ε] ` ∆[ε],∆′

The other base cases are similar.

5.2.2 Moving the Cut Upwards

Most of the cases where we move a cut upwards are handled in exactly the same
way as in classical logic, and are omitted: however, we do have to take care
when the rule that we cut against changes the typing of the entailment. The
cases to consider are as follows.

{}α Here the cut application looks like

Π···
Γ ` ∆[P ]

{}α
{Γ}α ` {∆[P ]}α

Π′
···

Γ′[P ] ` ∆′

cut
{Γ}α×uγ , {Γ′[ε]}(β◦α)×tu ` {∆[ε]}α×uγ , {∆′}(β◦α)×tu

where we have P : u, Γ,∆ : t, Γ′,∆′ : v, α : s → t, ν(∆[]) = β : u → t,
and ν(Γ′[]) = γ : v → t. Diagramatically, the situation looks like this.

s×u v
s×uγ

||xxxxxxxxx
(β◦α)×uv

��

α×uv %%KKKKKKKKK

α×uγ

��

s

α
""E

EE
EE

EE
EE t×u v

β×uv %%KKKKKKKKKK

t×uγzzttttttttt

Γ,∆ : t

β %%J
JJJJJJJJ Γ′,∆′ : v

γ
yyssssssssss

P : u

We replace the above application of cut with

Π···
Γ ` ∆[P ]

Π′
···

Γ′[P ] ` ∆′

cut
{Γ}t×uγ , {Γ′[ε]}β×uv ` {∆[ε]}t×uγ , {∆′}β×uv

{}α×uv{
{Γ}t×uγ , {Γ′[ε]}β×uv

}α×uv

`
{
{∆[ε]}t×uγ , {∆′}β×uv

}α×uv

splitL, splitR{
{Γ}t×uγ

}α×uv

,
{
{Γ′[ε]}β×uv

}α×uv

`
{
{∆[ε]}t×uγ

}α×uv

,
{
{∆′}β×uv

}α×uv

≈
{Γ}α×uγ , {Γ′[ε]}(β◦α)×uv ` {∆[ε]}α×uγ , {∆′}(β◦α)×uv
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Result Cut rank unchanged: cut depth reduced by 1.

α∗L, α∗R, α!R, α∗L These rules change the nesting of the contexts, but only
around the principal formula: since we are considering rule applications
in which the cutformula is not principal, this does not affect the cuts that
we are considering.

α!L The cut application looks like this:

Π···
Γ ` ∆[Q : v] : w

Π′
···

〈Γ′[P ][Q]〉α ` {∆′}α×tu

α!L
Γ′[(α!P ) : t][Q : v] ` ∆′ : u

cut
{Γ}γ×vw , {Γ′[α!P ][ε]}u×vδ ` {∆[ε]}γ×vw , {∆′}u×vδ

where the category theory, and typing, looks like this:

(s×t u)×u (u×v w)
(s×tu)×vδ

uullllllllllllll
α×t(u×vw)

((QQQQQQQQQQQQQ

〈Γ′〉α : s×t u

xxrrrrrrrrrrr

α×tu ))SSSSSSSSSSSSSS
u×v w

u×vδvvmmmmmmmmmmmmm

γ×vw %%KKKKKKKKKK

P : s

α
&&MMMMMMMMMMM Γ′,∆′ : u

βuukkkkkkkkkkkkkk

γ
((QQQQQQQQQQQQQ

Γ,∆ : w

δyyssssssssss

α!P : t Q : v

We replace the above cut with the following (we use Lemma 7 to justify
the typing):

Π···
Γ ` ∆[Q]

Π′
···

〈Γ′[P ][Q]〉α ` {∆′}α×tu

cut
{Γ}(γ×vw)◦(α×t(u×vw))

,
{
〈Γ′[P ][ε]〉α

}(s×tu)×vδ `

{∆[ε]}(γ×vw)◦((α×t(u×tw))
,
{
{∆′}α×tu

}(s×tu)×vδ

Now, by Lemma 9,{
〈Γ′[P ][ε]〉α

}(s×tu)×vδ =
〈
{Γ′[P ][ε]}u×vδ

〉α
;

since these two expressions are typographically equal, we can replace one
by another in the proof without any rule application. Furthermore, we can
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work on the last expression on the right, using the context equivalence rule{
{·}φ

}ψ
≈ {·}ψ◦φ and the fact that

(α×t u) ◦ ((s×t u)×v δ = (u×v s) ◦ (α×t (u×v w)) :

so, we can continue the proof as follows:

{Γ}(γ×vw)◦(α×t(u×vw)
,
〈
{Γ′[P ][ε]}u×vδ

〉α
`

{∆[ε]}(γ×vw)◦((α×t(u×tw))
, {∆′}(u×vs)◦(α×t(u×vw))

≈{
{Γ}γ×vw

}α×t(u×vw)

,
〈
{Γ′[P ][ε]}u×vδ

〉α
`{

{∆}γ×vw
}α×t(u×vw)

,
{
{∆′}u×vδ

}α×t(u×vw)

α!L
{Γ}γ×vw , {Γ′[α!P ][ε]}u×vδ ` {∆[ε]}γ×vw , {∆′}u×vδ

result Cut depth reduced by one, cut rank unchanged.

α∗L Dual to the above.

5.2.3 Principal against Principal

The final case is where the cutformula is principal in both sides. The classi-
cal connectives give few surprises: we will, then, only consider the functorial
connectives.

α∗ The cut here will look like

Π···
Γ ` ∆[{P}α]

α∗R
Γ ` ∆[α∗P ]

Π′
···

Γ′[{P}α] ` ∆′

α∗L
Γ′[α∗P ] ` ∆′

cut
{Γ}β×sv , {Γ′[ε]}u×sγ ` {∆[ε]}β×sv , {∆′}u×sγ
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where the category theory, and typing, looks like

u×s v
u×sγ

����
��

��
��

��
��

��
�� β×sv

##G
GGGGGGGGGGGGGGGGGG
κ // u×t v

iiiiiiiiiiiiiiiiiii

u×t(α◦γ)
ttiiiiiiiiiiiiiiiiii

(α◦β)×tv

����
��

��
��

��
��

��
�

Γ′,∆′ : u
β

&&LLLLLLLLLL

α◦β

��;
;;

;;
;;

;;
;;

;;
;;

;;
Γ,∆ : v

γ

vvlllllllllllll

α◦γ

||yyyyyyyyyyyyyyyyyyyy

α∗P : s

α

��
P : t

Here κ is the canonical morphism u ×s v → u ×t v. Note that, because
cut is applicable, the two occurrences of α∗P must be typed with the
same object, and determinacy means that there can only be one α-typed
morphism from that object: consequently, the two occurrences of P must
be typed with the same object.

We replace the cut with

Π···
Γ ` ∆[{P}α]

Π′
···

Γ′[{P}α] ` ∆′

cut
{Γ}(β◦α)×tv , {Γ′[ε]}u×t(γ◦α) ` {∆[ε]}(β◦α)×tv , {∆′}u×t(γ◦α)

{}κ{
{Γ}(β◦α)×tv , {Γ′[ε]}u×t(γ◦α)

}κ
`{

{∆[ε]}(β◦α)×tv , {∆′}u×t(γ◦α)
}κ

splitL,splitR{
{Γ}(β◦α)×tv

}κ
,
{
{Γ′[ε]}u×t(γ◦α)

}κ
`{

{∆[ε]}(β◦α)×tv
}κ

,
{
{∆′}u×t(γ◦α)

}κ
≈

{Γ}β×sv , {Γ′[ε]}u×sγ `

{∆[ε]}β×sv , {∆′}u×sγ

Here the final application of ≈ comes from the equalities

(u×t (α ◦ γ)) ◦ κ = u×s γ

and

((α ◦ β)×t) ◦ κ = β ×s v.
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Result Cut rank reduced by one, cut depth reduced by one.

α! For this case, we will need

Lemma 14. Any classical marked context of the form 〈Γ[]〉α is equivalent
to

{Γ[]}α×tν(Γ[])
.

Proof. We use Lemma 12 to express Γ[] in the form {[]}ν(Γ[])
,Γ′′: by

Lemma 5, we have

〈Γ[]〉α ≈
〈
{[]}ν(Γ[P ])

,Γ′′
〉α

,

and the result follows from the definition of 〈·〉·.

The cut looks like

Π···
Γ ` ∆[P ]

α!R
Γ ` ∆[{α!P}α]

Π′
···

〈Γ′[P ]〉α ` {∆′}α×tv

Γ′[α!P ] ` ∆′

cut
{Γ}u×tγ , {Γ′[ε]}(α◦β)×tv ` {∆[ε]}u×tγ , {∆′}(α◦β)×tv
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The category theory looks like

u×s (s×t v)

u×s(s×tγ)

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~

β×s(s×tv)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
u×t v

β×sv

��?
??

??
??

??
??

??
??

??
??

??
??

??

u×tγ

wwoooooooooooooooooooooooooooooooooooooooo

(α◦β)×tv

��/
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
/

ηoo

Γ,∆ : u

β

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@

α◦β

��0
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
0 〈Γ′〉α : s×t v

s×tγ

wwooooooooooooooooooooooooooooooooooooooo

α×tv

��
P : s

α

��

Γ′,∆′ : v

γ

wwooooooooooooooooooooooooooooooooooooooo

α!P : t

Here η is the map 〈π1, 〈β ◦ π1, π2〉〉.
We replace the cut with the following:

Γ ` ∆[P ] 〈Γ′[P ]〉α ` {∆′}α×tv

cut
{Γ}u×s(s×tγ) ,

{
〈Γ′[ε]〉α

}β×s(s×tv) ` {∆[ε]}u×s(s×tγ) ,
{
{∆′}α×tv

}β×s(s×tv)
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We now apply Lemma 14, and can continue the proof as follows:

{Γ}u×s(s×tγ) ,
{
〈Γ′[ε]〉α

}β×s(s×tv)

` {∆[ε]}u×s(s×tγ) ,
{
{∆′}α×tv

}β×s(s×tv)

··· (≈)n

{Γ}u×s(s×tγ) ,
{
{Γ′[ε]}α×tv

}β×s(s×tv)

` {∆[ε]}u×s(s×tγ) ,
{
{∆′}α×tv

}β×s(s×tv)

splitL{
{Γ}u×s(s×tγ) ,

{
{Γ′[ε]}α×tv

}β×s(s×tv)
}η

`
{
{∆[]}u×s(s×tγ) ,

{
{∆′}α×tv

}β×s(s×tv)
}η

{}η
{Γ}(u×s(s×tγ))◦η , {Γ′[ε]}(α×tv)◦(β×s(s×tv))◦η

` {∆[ε]}(u×s(s×tγ))◦η , {∆′}(α×tv)◦(β×s(s×tv))◦η

≈
{Γ}u×tγ , {Γ′[ε]}(α◦β)×tv

` {∆[ε]}u×tγ , {∆′}(α◦β)×tv

Result Cut rank decreased by one: cut depth decreased by one.

α∗ Dual to the above.

So, finally, we have

Theorem 6. The classical system satisfies cut elimination.

Proof. We make an induction on cut rank, with an inner induction on cut depth.
Consider an uppermost cut in a proof Pi: by induction, we can decrease the
depth of the cut first, until we have either a cut against an axiom or a cut where
both formulae are principal: in that case, we can decrease the cut rank. We can
thus eliminate all of the topmost cuts, and so, by induction, we decrease all of
the cuts.

6 Interpreting the Classical System in Reiter’s
Calculus

We now show how our classical system is related to Reiter’s calculus. We first
face a merely technical problem: Reiter defines progression and regression oper-
ators between any situation and the initial situation, whereas our calculus will
require such operators between any pair of situations α @ β. This can be dealt
with, however, by realising that any situation is the initial situation of its own
future. More technically, we make definitions as follows.
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Suppose that we have a fixed sequence of actions α, then we can define a
map of the ground situations to themselves by prefixing with α.

Definition 24. Define a map (α; ·) : groundSit → groundSit by

α;S0 = Sα

α; do(β, s) = do(β,α; s)

Definition 25. Suppose that Sα v Sβ: we must then have β = α;β′ for some
β′. Define the interpretation

ιβ′,β : LSβ′ → LSβ

by (α; ·) on terms of sort situation, and by the identity on all other terms,
predicates and functions; if α is the empty sequence (i.e. if Sα = S0) then let

ιβ : LS0 → LSβ

be the similarly defined interpretation with domain LS0 .

The following is immediate:

Proposition 23. 1. ια,β is an isomorphism, for any α and β.

2. ια,β restricts to the identity on Duna.

We can now define suitable regression and progression maps R and η, be-
tween pairs of situations Sα v Sβ, by transport of structure:

Definition 26. Given situations as above, define

Rβ,α : LSβ
→ LSα

P 7→ ια(R(ι−1
β′,β

(P )))

ηα,β : LSα
→ LSβ

P 7→ ιβ′,β(ηβ′(ι−1
α (P )))

where, again, β = α;β′.

Diagrammatically, this looks as follows:

LSα

ηα,β

33 LSβ

Rβ,α
ss

LS0

ια

OO

ηβ′
33 LSβ′

ιβ′,β

OO

Rtt

(41)

We have
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Proposition 24. 1. For P ∈ LSα , R(P ) = Rα,[]

2. Rβ,γ ◦Rα,β = Rα,γ , for Sγ @ Sβ @ Sα

3. ηβ,α ◦ ηγ,β = ηSγ ,Sα
, for Sγ @ Sβ @ Sα

Proof. For the first part, we use the fact that prefixing with the empty se-
quence is the identity: the second and third parts uses the fact that prefixing is
associative, together with pasting of diagrams like (41).

Lemma 15. For Γ,∆ ⊆ LSβ′ ,

Γ ` ∆

iff

ιβ′,βΓ ` ιβ′,β∆

Proof. By the interpolation theorem, we can restrict the proofs in the premise
and conclusion to the languages Lα and Lβ . Now, since ια,β is an isomorphism
of languages, it has an inverse: both it and its inverse must preserve derivability
in the languages Lα and Lβ .

We have

Proposition 25. For Sα @ Sβ, ηα,β is left adjoint to Rβ,α: that is, for P ∈ LSα

and Q ∈ LSβ
, with α v β,

Duna, P ` Rβ,αQ

iff

Duna, ηα,βP ` Q

Proof.

Duna, P ` Rβ,αQ

iff

Duna, ι
−1
α P ` ι−1

α Rβ,αQ since Duna is invariant under ια

iff

Duna, ι
−1
α P ` R(ι−1

β′,βQ) by definition of Rβ,α

iff

Duna, ηβ′ι−1
α P ` ι−1

β′,βQ by Proposition 1, p. 15
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iff

Duna, ι
−1
β′,β(ηα,β)P ` ι−1

β′,βQ by definition of ηα,β

iff

Duna, ηα,βP ` Q by Lemma 15

Now we can define our key concept.

Definition 27. Let D be a basic action theory. Define the associated classical
Reiter category as follows:

1. The base is the tree of situations;

2. The fibre over a situation Sα is the partial order associated to the preorder
on LSα , where the ordering is induced by the entailment relation given by
Duna;

3. The reindexing functors are given by the regression operators Rβ,α;

4. The left adjoints are given by the progression operators, Rα,β

5. The right adjoints are the de Morgan duals to the progression operators.

Finally we have

Theorem 7. The associated Reiter category to D is a classical Reiter category.

Proof. The base category is a tree, and hence has fibre products. The fibres are
Boolean algebras, by construction: the reindexing morphisms, by construction,
preserve both meets and joins, and are hence Boolean algebra morphisms. The
Beck-Chevalley condition is trivial when the category is a tree.
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