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Categories and Types for Axiomatic Domain Theory

Adam Eppendahl

Abstract

Domain Theory provides a denotational semantics for programming languages and calculi con-
taining fixed point combinators and other so-called paradoxical combinators. This dissertation
presents results in the category theory and type theory of Axiomatic Domain Theory.

Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dual-
sequent calculus to include recursive linear types and define a class of models by adding Freyd’s
notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus.

We observe that algebraic compactness is better behaved in the context of categories with
structural actions than in the usual context of enriched categories. We establish a theory of
structural algebraic compactness that allows us to describe our models without reference to en-
richment. We develop a 2-categorical perspective on structural actions, including a presentation
of monoidal categories that leads directly to Kelly’s reduced coherence conditions.

We observe that Benton’s adjoint type constructors can be treated individually, semantically
as well as syntactically, using free representations of distributors.

We type various of fixed point combinators using recursive types and function types, which
we consider the core types of such calculi, together with the adjoint types. We use the idioms of
these typings, which include oblique function spaces, to give a translation of the core of Levy’s
Call-By-Push-Value. The translation induces call-by-value and call-by-name translations of the
core of Plotkin’s Fixed Point Calculus.

Following Freyd, we construct a canonical fixed point operation from the algebras provided
by the algebraic compactness of our models. Our analysis of Freyd’s construction exposes a
remarkable property of morphisms from coalgebras to algebras: morphisms from Gp to s corre-
spond one-for-one to morphisms from p to Hs, where p is a coalgebra for HG and s an algebra
for GH. We give an application of this property to the transposition of recursive coalgebras in
Taylor’s categorical theory of recursion where G is not left adjoint to H.

We develop a theory of parametric transformations corresponding to the uniformity property
characterizing canonical fixed points and use this to derive abstract conditions on categories
of domains which ensure that the interpretation of fixed point combinators coincides with the
canonical fixed point operation.
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Chapter 1

Introduction

Domain theory provides denotational semantics for programming languages whose intended se-
mantics is inconsistent with the properties of ordinary sets and functions. The theory grew out
of the unexpected discovery of a denotational semantics for the untyped lambda calculus and has
been the subject of constant reformulation. Axiomatic Domain Theory is an abstract formulation
that accounts for certain aspects of concrete domains. We present various results in the cate-
gory theory and type theory of Axiomatic Domain Theory. Although motivated by the structures
of Axiomatic Domain Theory we hope our results will be useful to Categorical Semantics in
general.

1.1 Background

The untyped lambda calculus is based on an abstraction operation whose intended semantics
requires an invertible mapping from functionsS→ S to elements ofS. Now it is impossible for
a set Scontaining more than one element to cover thesetof functionsS→ S. So, even without
additional features to make the calculus a practical programming language, the only possible
semantics given by sets and functions is degenerate. Practical programming languages may be
based on simpler operations with perfectly good set semantics, but eventually, with the addition
of more sophisticated program constructs, the intended semantics ‘goes recursive’. For example,
a series of programming languages of increasing sophistication is described in Chapters 9 through
11 of [40]. Each language is given a denotational semantics in semantic domains specified by
a set of ‘domain equations’. In Chapters 9, 10 and 11 the equations are non-circular and have
set solutions. The equation for D in Chapter 11 (page 300), however, is recursive and has no set
solution.

Although an equation such asD ∼= D→ D has no useful solution if the operations are in-
terpreted näıvely as constructions on sets, the existence of structures—‘domains’—with closure
properties stronger than sets allows us to write such equations. We must keep in mind, however,
that we are using a metalanguage requiring careful interpretation. In other words, the form of
denotational metalanguages follows the known closure properties of domains. In the language of
Categorical Semantics: the type theory follows the categorical structure.

1.1.1 Axiomatic Domain Theory

Scott’s semantics for the untyped lambda calculus is based on the properties of certain partially
ordered sets. It is possible for a partially ordered setD containing more than one element to
cover the (partially ordered) set of functionsD→ D that preserve colimits of increasing chains
in D. The notions of colimit and increasing chain both use the order onD. Technically, ordered
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sets provide a denotational semantics for the untyped lambda calculus and for programming lan-
guages such as the one in Chapter 11 of [40], but scientifically the order leads to new questions.
A semantics may say that a given term or fragment of code denotes a particular function on a par-
ticular set with a particular order, but what is the significance of the order? On the one hand, we
would like to ignore it and reason naı̈vely about our semantics. On the other, perhaps it reflects
something important and useful.

So, although the collection of results about partially ordered sets known as Classical Domain
Theory provides a new world for the semantics of programming languages, the existence of
this new world raises difficult philosophical and technical questions. What is the significance
of the order? What are domainsreally? What is their intrinsic logic? What is their intrinsic
mathematics? These questions have lead mathematicians and computer scientists to reformulate
the classical theory in various ways. Among these are several abstract formulations, including a
collection of results known as Axiomatic Domain Theory.

These days, the standard conception of mathematics is entirely axiomatic and so Axiomatic
Domain Theory is distinguished from Classical Domain Theory, Geometric Domain Theory and
Synthetic Domain Theory not by having axioms but by the role and language of its axioms. In
the classical theory, the language of ordered sets is used to axiomatize domains. In the geometric
theory, the language of geometric logic is used. In the synthetic theory, the language of topos
theory is used, first externally and then internally, to axiomatize first a mathematical universe and
then an internal category of domains. In the ‘axiomatic’ theory, the language of category theory
is used to axiomatize categories of domains and categories used to construct them.

While Geometric and Synthetic Domain Theory are guided by philosophical views of pro-
gram semantics, Axiomatic Domain Theory is guided by the observation of mathematical struc-
ture. The concrete partial orders of the classical theory carry all sorts of structure, both at the
level of individual partial orders and at the level of categories of partial orders. There are so many
technical results about this structure that it becomes difficult to determine the status of any spe-
cific construction or property. For example, what is the status of CPO enrichment? The axiomatic
theory selects some structure as primitive, derives other structure and presents the constructions
and properties of these structures abstractly. For example, CPO enrichment has been shown to
follow from certain abstract constructions on structure with certain abstract properties [11]. By
way of comparison, Topos Theory does much the same thing for Set Theory: imagine that Topos
Theory were known as Axiomatic Set Theory.

The epicentre of Axiomatic Domain Theory would have to be the notion of algebraic com-
pactness. A category is algebraically compact if it has an invariant for every endofunctor (in
some class) and these invariants are initial as algebrasand final as coalgebras. We call such
an invariant a ‘Freyd algebra’ (which is so much more satisfying, homonymically, than ‘bifree
algebra’). In [14], Freyd observes that certain concrete categories of domains are algebraically
compact and shows how this can be used to model parameterized and mixed variance recursive
types.

Following Freyd’s results, Plotkin and Fiore took algebraic compactness as a target property
for abstract constructions yielding categories of domains [10]. Given a categorical framework
for partiality and induction, a category of partial maps is constructed and seen to be algebraically
compact. This would appear to be done without any mention of ordered sets, but the existence
of invariants follows from a derived order enrichment. However, because the order enrichment is
derived from the purely categorical axioms for partiality and induction, it is fair to say that this
provides an order-free account of categories of domains. On the other hand, the heavy use of
enriched category theory presents a significant technical barrier to potential uses of this theory.
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1.1.2 Fixed Points

While the solution of seemingly paradoxical domain equations is more than enough to motivate
the use of partial orders, the order structure is useful just for its fixed points. The same colimits
that are used to solve domain equations give fixed points that can be used to model iterative
program constructs. For example, the semantics of the ‘while’ construct in Chapter 9 of [40] is
given by a fixed point operation.

In some languages, such as the lambda calculus, a fixed point operator can actually be pro-
grammed. Given a partial order semantics for such a language, it is natural to ask how the fixed
points given by the interpretation of such a program compare with the fixed points given by col-
imits in the partial order. For Scott’s semantics of the untyped lambda calculus Park showed that
the two coincide, but also constructed a non-standard semantics in which they don’t [29].

In what might be seen as the early days of the Axiomatic Domain Theory, the notion of
Natural Numbers Object (NNO) was weakened to a notion of Fixed Point Object (FPO) [28].
In Axiomatic Set Theory a NNO generates a collection of maps exemplified by the primitive
recursive functions on the set natural numbers. In Axiomatic Domain Theory, an FPO generates
maps exemplified by the recursive functions on the natural numbers ordered vertically, but unlike
the successor on the naturals the successor on the vertical naturals has a fixed point and so a
FPO also induces a collection of fixed points exemplified by least fixed points. A corresponding
metalanguage with a fixed point operation is proposed in [8].

Because fixed point objects can be derived from a Freyd algebras, as observed in [14] and
[28], attention has now shifted from the axiomatics of recursive maps and least fixed points to the
axiomatics of recursive domains. Similarly, attention has shifted to metalanguages with recursive
types such as Plotkin’s FPC [25].

1.1.3 Categorical Semantics of Linear and Computation Types

In the early days of Categorical Semantics Lawvere showed that the categorical product abstracts
essential structure from concrete presentations of algebraic theories. Similarly, cartesian closed
categories were shown to abstract from lambda theories. In both cases, there is a slight tension
between the concrete presentations and the categorical structure. Algebraic theories, in deference
to Universal Algebra, are not simply categories with products. Lambda theories, in deference
now to Category Theory, are not simply (typed) lambda calculi. But it is a good sort of tension
and many theoreticians take it for granted that type theories are closely related to categorical
structure.

With linear lambda calculi things get a bit hairy. It is immediately clear, for example, how
tensor should be handled, but bang is more troublesome. Categorically, bang appears to be a
comonad, but this becomes delicate syntactically. Two approaches have been successful, the
more traditional Intuitionistic Linear Logic [5] and Dual Intuitionistic Linear Logic, a calculus
with contexts divided into two areas [1]. Alternatively the comonad can be factored into a pair
of adjoint functors. This leads to a calculus with two kinds of sequent, Linear/Non-Linear Logic
[4]. The three approaches have been carefully compared in [24]. Interestingly, Linear/Non-
Linear Logic produces a monad as well as a comonad.

Monads have been used to model type theories with explicit computation types such as the
Computational Lambda Calculus [27]. More recently, it has been found useful to factor the
monad into a pair of adjoint functors leading to a calculus with two kinds of sequent, Call-By-
Push-Value [23].

On the categorical side, indexed comonads calledstructural actionshave been used to ab-
stract from the action of extending a linear context with a banged type [6]. A unified categorical
framework for the algebra of computational monads, including an abstract account of the action
of extending a computational context with a valued type [32], has been developed in [33].
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1.2 Main Results

This thesis contains some original mathematics. These results are not difficult, but appear to be
new and may have applications beyond their use here.

1.2.1 Recursive Morphisms

Given a monotonic endofunctionF on an ordered set, it can be useful to consider the ordered
set of pre fixed points for the endofunction: elementsa such thatFa≤ a. For example, the
endofunction has a least fixed point if and only if there is a least pre fixed point. The notion of
pre fixed point appears quite technical but the generalization for endofunctors on categories has
proven to be very useful. Analgebra for an endofunctorF is an objecta together with a map
s : Fa→ a. For certain endofunctors, the notion of algebra is directly meaningful. Moreover, the
dual notion of coalgebra is also meaningful.

The ordered set of pre fixed points generalises to a category of algebras. Because morphisms
in the category of algebras must commute with the mapss, they are much more expressive than
the order on the set of pre fixed points. Likewise, coalgebra morphisms are more expressive
than the order on the set of post fixed points. Equally expressive is the notion of morphism from
coalgebra to algebra. Such morphisms have received little attention in the literature. They are,
however, natural mathematical objects and might have been discovered, for example, by asking
what an algebra is for̃F : C̃→ C̃, whereF is an endofunctor onC andC̃ is the category of twisted
arrows Mac Lane describes in Exercise IX.6.3 of [22].

We call such morphisms ‘recursive’ because their defining condition,f = s◦F f ◦ p, says
they may be rewritten in terms of themselves and because they seem to turn up whenever one
looks at recursion categorically. In Freyd’s theory of algebraic compactness, for example, they
can be found in the proof of the Iterated Square Theorem. Actually, the proof carefully steps
around them, but they are there if one looks.

Another place they turn up is in the proof of the dinaturality of initial algebra delivery. We
observe that this follows from a remarkable property of recursive morphisms. Given a functor
G : A→B, dinaturality says any functorH : B→A takes initial algebras forGH to initial algebras
for HG. Lemma 2.1.4 says that recursive morphisms fromp→ Hscorrespond, in the manner of
an adjunction, with recursive morphismsGp→ s. For algebra morphisms or, dually, coalgebra
morphims, any adjunctionG a H is known to lift to such a correspondence, but for recursive
morphisms the correspondence does not require an adjunction.

1.2.2 Structural Algebraic Compactness

It is fair to say that enriched category theory, on its own, does not support the basic theory of
algebraic completeness. The problem concerns structure on the function delivering invariants.
Given an invariant for every endofunctor onD, then for every functorB×D→ D we have a
delivery functiontaking each objectb of B to an object ofD that is invariant under the action of
b. Given aninitial invariant for every endofunctor, we can use the initiality of each invariant to
extend the delivery function to a functorB→ D.

In the motivating examples of such categories, however, we are only given invariants for en-
riched endofunctors. These invariants are initial so, for every enriched functorB×D→ D, we
obtain a functorB→ D, but initiality does not give an enrichment. In the motivating examples,
it is known that these functors do enrich so one might simply strengthen the notion of algebraic
completeness for enriched categories by asking for an enrichment of each delivery functor. Al-
ternatively, it has been observed that in the motivating examples the given invariants satisfy a
strengthened form of initiality that does give an enrichment. This suggests a strengthening of the
notion of algebraic completeness for enriched categories by asking for invariants with strength-
ened initiality. When it is observed that the strengthened initiality follows from plain initiality
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when the enrichment ofD has cotensors, which it does in the motivating examples, this provides
a workable notion of algebraic completeness for enriched categories [10].

A more sophisticated account of this solution has been developed using indexed and internal
category theory [34]. It is observed that with mild conditions on the enriching category, which are
satisfied in the motivating examples, enriched categories, functors and transformations give rise
to indexed categories, functors and transformations which can be viewed as internal categories,
functors and transformations. The strengthened form of initiality is then seen to be the external-
ization of plain internal initiality. Again, it is observed that internal initiality follows from plain,
external initiality when the original enrichment has cotensors and so in the motivating examples
the whole issue disappears.

When algebraically compact, and hence complete, categories of domains, are actually con-
structed they tend to come out enriched and compact in the strengthened sense described above.
Either the construction starts with an enriched category or, as demonstrated in Axiomatic Domain
Theory, an enrichment may be derived. Given a recursive type theory, however, we would like
to describe compact models directly in terms of the structure used to interpret the type theory.
From the enriched point of view, we do this using the cotensors that simplify the enriched theory
of completeness.

The action of cotensors can be described without reference to enrichment, in which case they
are called costructural actions. Functors and transformations that respect costructural actions
are then called costructural. We observe that in the motivating examples enriched endofunctors
correspond to costructural endofunctors and so we have an initial invariant for every costruc-
tural endofunctor. Initiality allows us to extend the delivery function to a functor, but it also
gives us transformations making the functor costructural. Unlike the enriched setting, then, the
costructural setting supports the basic theory of algebraic completeness.

Actually, we base our theory on the dual notions of tensor, structural action, final invariant
and cocompleteness because structural actions are covariant in both arguments and because struc-
tural actions may be viewed as a mechanism for representing parameterized maps. Lemma 4.1.4
says that the delivery of final coalgerbas for structural endofunctors extends to a structural func-
tor.

1.2.3 Adjoint Types and Free Distributor Representations

Benton decomposes the bang of Linear Logic into a sequence of two type constructors, U and L
[3]. We see this as a nod towards domain models which have a lift operation: bang is LU and lift
is UL. With L left adjoint to U, LU is a comonad and UL is a monad.

Syntactically, Benton’s approach uses two forms of sequent, linear and non-linear. Semanti-
cally, these correspond to two categories,D andC. The constructor U corresponds to a functor
D→C with a left adjoint corresponding to L. The categoryD is monoidal closed,C is cartesian
closed and the adjunction is monoidal. We call such adjunctions LNL structures. It can be shown
that Benton’s two-sequent calculus LNL generates the free LNL structure (over a graph of basic
types) and that the category of LNL theories is equivalent to the category of LNL structures.

We observe that, despite their conceptual origin as factors of LU or UL, U and L can be
treated individually, both syntactically, which is easy, and semantically, which is less obvious.
Our aim is to make the theory of adjoint types easier to understand conceptually and easier to use
technically.

Categorically, our analysis is based on distributors (formerly known as profunctors). We
appeal to a simple picture of free distributors lifted from the paths-in-a-directed-graph picture of
free categories (see Appendix A). Distributors may be represented by functors—hence the term
profunctor—in two ways, fore and aft. An adjunction is a pair of functors representing the same
distributor in two ways. Proposition 7.2.3 says that when Benton’s calculus is restricted to just
U, it generates the free distributor with an aft-representation. Restricted to L, it generates the
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free profunctor with a fore-representation. Together, therefore, the rules for U and L generate an
adjunction, but this is an artifact of the double representation.

1.2.4 Quotient Relations

One of the principle motives behind the use of categorical structure is the prospect of precise
definitions capturing intuitions about uniformity. In models of LNL terms are interpreted by
transformations. The notion of transformation itself requires very little structure. Transforma-
tions, in general, are given by collections of edgesFa→ Ga in one graph indexed by the nodes
a of another. This includes domain and codomain node functionsF andG. A given transfor-
mation, or class of transformations, often carries extra structure that allows us to express some
notion of uniformity. Identifying a good notion of uniformity for some class of transformations
is important because it allows us to abstract from particular transformations to any uniform trans-
formation.

In many mathematical transformations the node functions lift to functors and the transfor-
mations are natural, but in some transformations interpreting terms in a type theory the node
functions simply don’t lift to functors and we must look beyond naturality. Here we consider
a similar but more general notion of uniformity known as binary relational parametricity. The
definitions we use can be found in Appendix C. Abstractly, binary relational parametricity is
based on the observation that the node functions for term transformations, which interpret type
constructions, lift to operators on graph categories, which are typically given by categories of
binary relations. When a transformation lifts to a graph operator transformation we say it is
parametricor, when the graph operators have been diagonalized,diparametric. In models of
type theories, diparametricity accomodates the mixed variance of some type constructors, which
breaks functorality and, hence, naturality.

Given such an abstract categorical framework for parametricity, we are expected to provide
our own category of binary relations or some method of constructing such categories to obtain
a useful notion of parametricity. We show that the uniformity that characterizes fixed point
operators induced by fixed point objects corresponds to a form of relational (di)parametricity
obtained from a particular category of relations we call ‘quotient relations’.

Parametricity with respect to quotient relations is defined using pull-backs so any functor
that preserves pull-backs lifts to quotient relations. Corollary 9.1.9 shows that function spaces
automatically lift to quotient relations even though they generally don’t preserve pull-backs

1.3 Additional Contributions

This dissertation also contains a number of conceptual and technical innovations. These are
manifest in various original definitions that either convey the author’s personal view of the subject
or are useful in organising the mathematics.

1.3.1 Minimal Coherence

In addition to their stronger uses, universal properties often ensure that the equalities we least
want to mention take care of themselves. Category theory has been very useful in helping to
express and identify universal properties and category theory has also helped identify the next
best thing to universal properties: coherence. Like universal properties, coherence provides the
equalities that allow us to be glib. Unlike universal properties, coherence requires a small lan-
guage of its own which involves a choice of primitives. One method of choosing these primitives
is to borrow from an adjacent universal property. For example, when monoidal coherence was
discovered the coherence conditions were borrowed from products. Later it was observed that
the conditions can be simplified.
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This use of coherence, as a means of ellipsis, requires a coherence theorem: from minimal
conditions, maximum coherence. The point we would like to make here is that the choice of
primitives and coherence conditions may begin and end with a specific application and be useful
even without a coherence theorem. In Chapter 3 we sketch a 2-categorical picture of coherence
conditions and their immediate application to the preservation of internal structures. When an
internal structure is externalized as 2-cells, it is not hard to see what coherence, in the form of 2-
cells, is required for a given 1-cell (functor) to preserve the given internal structure. We illustrate
the procedure with lax left monoid structure. To our surprise this leads straight to the simplified
monoidal coherence conditions, although the 2-categorical picture does not appear to suggest the
coherence theorem that follows from these conditions.

For the notion of structural action, we use this 2-categorical perspective to identify the ap-
propriate coherence conditions and to obtain a fine analysis of the canonical structural action on
a monoidal category.

1.3.2 Fixed Point Algebras

An important consequence of algebraic compactness, which Freyd demonstrates in [14], is the
fixed point operation it induces in the compact category and, more importantly, in related cat-
egories. Not only does this guarantee the existence of fixed points but it provides a canonical
choice of fixed points analogous to least fixed points in categories of partial orders. In our ax-
iomatics, the compact categoryD is related to a categoryC by an adjunctionL aU : D→C. In
Chapter 6 we use the compactness ofD to construct a family of maps fixd : (Ud _ Ud)→Ud
in C that internalizes a fixed point operation for endomaps on objects of the formUd. We show,
following Freyd, that in categories of domains the resulting fixed point operation is characterized
by a uniformity property analogous to Plotkin’s Axiom for least fixed points.

A very similar account has appeared in [31]. We work with an adjunction instead of a
comonad and provide details where [31] refers the reader to Freyd [14]. In particular, we in-
troduce a notion of fixed point algebra that includes both Freyd algebras and fixed point objects
and prove a transposition theorem that includes the transposition of Freyd algebras to fixed point
objects and to parameterized fixed point objects.

A fixed point algebra induces a family of recursive morphisms. Given certain conditions,
this is the unique uniform family of recursive morphisms. In the case of a Freyd algebra for the
identity endofunctor onD, we obtain a family of maps analogous to bottom maps. In the case of
a fixed point algebra for the identity endofunctor onC we obtain a family of maps analogous to
least fixed points.

1.3.3 Exponential Structure

Our emphasis on structural actions plays down the role of enrichment because we concentrate
on the structure used to model type constructions. However there is one aspect of enrichment
that is important from this point of view as it is closely connected with the construction of struc-
tural actions in a monoidal adjunction. That is the enrichment of the monoidal categoryD in the
cartesian categoryC via the monoidal functorU : D→ C. The important property of this en-
richment is that the underlying category ofD enriched in itself, via the function space(e( d),
is isomorphic to the underlying category ofD enriched inC, via the function spaceU(e( d).
From the structrual point of view, the operationU(e( d) provides an alternative representation
of parameterized maps inD.

We therefore introduce a notion ofexponentialthat abstracts from this operation and from
the hom objects of enriched structure generally. This leads to a pleasantly symmetrical definitons
describing the structure on Kleisli adunctions, which don’t carry the full monoidal structure but
still give models of recursive types.
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1.3.4 Oblique Types

The calculus shown in Figure 8.4 matches a fragment of Levy’s Call-By-Push-Value with re-
cursive computation types and we use Levy’s syntax to emphasise the match. Likewise, the
translations given in Section 8.2.2 correspond to the call-by-name and call-by-value translations
Levy studies in [23]. Levy’s carefully motivated operational semantics, however, is wasted on
the models we consider. Our models abstract from adjunctions given by the lift functor on cate-
gories of partial orders and lift can be viewed as a model of nontermination, but, as computational
effects go, nontermination is extremely degenerate.

The point we would want to make here is that, independently of Levy’s operational analysis,
the importance of the oblique function space is indicated categorically by the notion of costruc-
tural action and type theoretically by the idioms used to type fixed point combinators. The latter
point alone is enough to motivate a type theory with oblique function spaces in which fixed point
combinators are more succinctly derived. We extend the minimal calculus that matches CBPV
to a calculus with types modelled by structural actions and exponentials.

1.3.5 Directors

In our analysis of adjoint types we use various notions of free distributor. This views distributors
not as 1-cells in bicategories generalizing categories of sets and relations, but as objects with
structure that is respected by distributor morphisms. The idea of a free distributor then requires
a forgetful functor includes distributors among objects with less structure.

We therefore use a notion ofdirector which is a distributor without any composition. The
situation is directly analogous to categories and directed graphs. Indeed the free distributor con-
struction is given by a free category construction. The usefulness of these definitions results from
the two different ways functors (or directed graph morphisms) induce distributors (or directors).

1.4 Overview

The idea of the thesis is to extend LNL with recursive types and to look at the interpretation of
fixed point combinators in algebraically compact models. This is a fairly mundane undertaking
and the bulk of the thesis concerns interesting things that turn up along the way. The majority
of these things, those presented in Chapters 2, 3, 4, 5, and 6, are essentially categorical. Chap-
ters 7 and 8 present some findings in type theory and Chapter 9 brings the two subjects closest
with results about categorical models of types. Chapters 4 and 6 are an amplification of [14].
Chapter 3 can—and perhaps, given the mathematical tone of the thesis, should—be replaced by
Appendix B. Personally, my favourite bits are Chapter 2 and Appendix A.

1.4.1 Category Theory

As LNL models are adjunctions, we want to say that an algebraically compact model is a an
adjunction in which the one category is algebraically compact. For our definition of algebraically
compact category, we use categories with structural actions. The notions of structural action
and of structural endofunctor include natural transformations that must satisfy certain coherence
conditions. We have therefore developed a general picture of coherence which is described in
Chapter 3. Since we look at coherence conditions as polyhedra that may be pasted together, we
use explicit 2-categorical language in that chapter, albeit in a very elementary way. The chapter
includes a very condensed account of structural actions and the indexed category construction,
but the 2-categorical picture suggests a more general and complicated notion of structural functor
than we need for our theory of algebraic compactness. We therefore include an elementary
account of structural actions and functors in Appendix B. The real interest of Chapter 3 is the
integrated picture of internal and external structure that emerges.
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In Chapter 4 we lift the theory of algebraic compactness from ordinary categories to cat-
egories with structural actions. Here we play down the 2-categorical perspective because the
elementary theory is quite pretty. Also, the actions are directly meaningful as a mechanism for
representing parameterized maps. We include some examples of compact categories from do-
main theory, but these are best viewed in the context of an adjuntion as described in Chapter 5.
Although we are keen to show here that nothing more than the structural setting isneededfor a
precise description of compact categories, the more traditional enriched and internal settings are
very closely related.

Equipped with a theory of compactness that says ‘look for structural actions’, it is interest-
ing to revisit traditional descriptions of domain theoretic models. In Chapter 5 we first revisit
monoidal adjunctions and then consider purely structural descriptions. We are encouraged in
this by the Kleisli models which are missing parts of the monoidal structure but carry all the
necessary structural actions. By the end of Chapter 5, we can say what an algebraically compact
model is and are in a position to interpret an extended LNL.

An interpretation of LNL with recursive types is going to include fixed point operations so,
before we consider such interpretations, we look at the native fixed point operations. We expect
to have fixed points because the luff subcategory in which Freyd constructs fixed points is a
special case of our adjunction. In Chapter 6 we dissassemble Freyd’s construction and adapt it
to the adjunctions we consider. We give an abstract description that includes fixed points for
parameterized maps, and here the structural actions fit in very nicely, but the really interesting
thing to come out of our analysis is actually used very weakly in the fixed point construction
itself. That is a result concerning recursive morphisms.

Chapter 2 describes this result and gives an application to ordinary (non domain-theoretic)
recursion theory. As recursive morphisms relate objects in one category to objects in an other,
it is well to view them in terms of distributors. Because distributors also appear in our analysis
of LNL, we have included in Appendix A a brief introduction to the aspects of distributors we
employ.

Once we have described an extended LNL and played a little with the resulting type theory,
we look at its interpretation in algebraically compact models. In the first section of Chapter 9
we develop a theory of uniform transformations that corresponds directly to the uniformity char-
acterizing the fixed point operation derived in Chapter 6. The theory is presented in terms of
a categorical framework for relational parametricity but without mention of the logical content
usually associated with relational parametricy. The framework, or at least the part we use, is
described in Appendix C. In the second section of Chapter 9 we apply the theory to the interpre-
tation of fixed point combinators. This requires added conditions on our notion of algebraically
compact model, but when these conditions are satisfied, as in concrete domain-theoretic adjunc-
tions, the interpretation of any fixed point combinator is uniform and hence must coincide with
the canonical fixed point operation. The coincidence result is somewhat contrived and it more
the notion of quotient parametricity and its relation to fixed point uniformity we would like to
emphasise.

1.4.2 Type Theory

In algebraically compact adjunctions it is the functors modelling linear types that have invariants,
so in Chapter 7 we extend LNL with recursive linear types. Then, in Chapter 8, we find recursive
linear types that allow us to type fixed point combinators.

In Chapter 7 we also take a close look at the main feature of LNL: mixed derivations of two
kinds of sequent. Two special type constructors L and U are used to pass between the two kinds
of sequent within a derivation. On the face of it, the constructors L and U are modelled by, and
generate, adjoint functors. We show that these adjoint constructors can be understood separately
if the term model for the calculus is viewed as a distributor. The concepts and terminology we
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use are developed in Appendix A.
In Chapter 8 we pause to consider what sort of calculus might be useful in place of LNL.

We have already seen in Chapter 5 that the monoidal adjunctions that motivated LNL are better
viewed as structural adjunctions in the case of algebraically compact models. Moreover, The
derivations of fixed point combinators use an idiom that corresponds to the construction of the
costructural action in the structrual adjunction. We therefore propose a calculus motivated by
structural adjunctions. This calculus is tentative and, as we observe in Chapter 10, other type
idioms and categorical structure suggest variant forms of recursive type.



18

Chapter 2

Recursive Morphisms

Given an endofunctorF : C→C, it is now commonplace to consider the category AlgF of alge-
bras and algebra morphisms forF or the category CoaF of coalgebras and coalgebra morphisms
[17]. In both cases, morphisms are given by maps that commute with ‘constructors’ or ‘destruc-
tors’ on objects ofC. Here we investigate the analogous notion of morphism from the objects of
CoaF to the objects of AlgF .

Definition 2.0.3 Given a coalgebra p for F and an algebra s for F, arecursive morphismfrom
p to s is given by a map f such that f= s◦F f ◦ p.

p f // s

Fb
F f // Fa

s

��
b

p

OO

f // a

We call such maps ‘recursive’ because the equationf = s◦F f ◦ p allows f to be rewritten in
terms of itself. For certain choices ofp, F ands, we recover familiar recursive function equations.
If we take, for example,F f = c+ f ands= 〈g,h〉, we obtain the recursive equation

f (x) =
{

g(u) when p(x) = inl(u)
h( f (y)) when p(x) = inr(y) c+b

c+ f // c+a

〈g,h〉
��

b

p

OO

f // a

and, ifc = 1, so thatg is just an element ofa, andp is given by the predecessor on the naturals,
we obtain the equation for primitive recursion.

f (n) =
{

g whenn = 0
h( f (m)) whenn = m+1

1+N
1+ f // 1+a

〈g,h〉
��

N

pred

OO

f // a

By taking power-set functors forF , more general forms of recursion can be obtained. This
approach to recursion has been developed by Taylor [42, Section 6.3] and we apply some of our
results to Taylor’s framework in Section 2.2.9.
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Originally, however, we came upon recursive morphisms as fixed points. If we take the
identity on 1 forp, so thatf is just an element ofa, andF f = f we obtain the simple fixed point
equation forf .

f = s( f ) 1
f // a

s

��
1

id

OO

f // a

If we takeF f = c× f andp = (idc, idc), we obtain a parameterized fixed point equation forf .

f (u) = s(u, f (u)) c×c
c× f // c×a

s
��

c

(id,id)

OO

f // a

This is the sort of recursive morphism we actually use in our analysis of fixed point objects
in Chapter 6. The broader importance of recursive morphisms is suggested in Section 2.2.5
where Freyd’s diagram chase proof of the Square Theorem is reconstructed in terms of recursive
morphisms and also by the simplicity of Lemma 2.1.4 in Section 2.1.2.

Mathematically, the important result is Lemma 2.1.4. In Section 2.2.3, we show how the
(object level) dinaturality of initial algebra delivery can be understood in terms of the (object
level) dinaturality of recursive coalgebra delivery which follows directly from the Lemma. In
Section 2.2.9, we show how the Lemma applies to the transposition of recursive coalgebras and
corecursive algebras. Recursive coalgebras feature prominently in Taylor’s framework for recur-
sion. Our use of corecursive algebras in Chapter 6 is fairly weak but a stronger use has recently
turned up in work by Simpson and Escardo characterizing the real interval [38].

2.1 Oblique Adjunctions for Free

While it is known that adjunctions lift to categories of algebras and coalgebras for certain pairs
of endofunctors including the pair given by the adjunction [16, Section 2.5], for recursive mor-
phisms we obtain a form of adjunction even if the underlying functors are not adjoint.

2.1.1 The Distributor of Recursive Morphisms

Recursive morphisms do not form a category. Coalgebras are distinct from algebras, and so
we have no identity recursive morphisms and no composable pairs on which to define composi-
tion of recursive morphisms. However, recursive morphisms do compose in the usual way with
coalgebra morphisms on the one side and with algebra morphisms on the other.

Fb′
Fg // Fb

F f // Fa
Fh //

s

��

Fa′

s′

��
7→

Fb′
F(h◦ f◦g) // Fa′

s′

��
b′

p′

OO

g // b

p

OO

f // a h // a′ b′

p′

OO

h◦ f◦g // a′

This gives a bimodular action

Coa(p′, p)× (p,s)rec×Alg(s,s′) // (p′,s′)rec,

where(s, p)rec is the set of recursive morphisms tosfrom p. In other words, recursive morphisms
give the oblique arrows of a distributor from AlgF down to CoaF (see Appendix A).

CoaF AlgFrec
oo_ _ _
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Both CoaF and AlgF include the category InvF of F invariants, which has mutually inverse
coalgebra-algebra pairs for objects and coalgebra/algebra morphisms for arrows. When the dis-
tributor rec, is restricted to InvF , it coincides with the hom distributor on InvF . Both the hom
distributors on InvF and rec lie over the hom distributor onC.

Fb
F f //

��

Fa

s

��
InvF� _

��

InvF
hom
oo_ _ _

� _

��

((s−1,s),(p, p−1))InvF
� _

��

b

p

OO

f // a

OO

Fb
F f // Fa

s

��
CoaF

under
��

AlgFrec
oo_ _ _

under
��

(s, p)rec

��

b

p

OO

f // a

C C
hom

oo_ _ _ _ _ (a,b)C b
f // a

2.1.2 Two Oblique Adjunctions

Suppose we have a natural transformationη : E⇒ F from one endofunctor to another. Compo-
sition withη gives functorsη ◦ (·) : CoaE→CoaF and(·)◦η : AlgF→ AlgE. By the naturality
of η we havef = s◦ (F f ◦η) ◦ p iff f = s◦ (η ◦E f) ◦ p, which meansf is a morphism from
η ◦ p to s iff f is a morphism fromp to s◦η . With respect to recursive morphisms, we have
something of an adjunction

Proposition 2.1.3 Given a coalgebra p for E, an algebra s for F and a natural transformation
η : E⇒ F, there is a bijection, natural in the choice of p and s, between morphisms fromη ◦ p
to s and morphisms from p to s◦η .

η ◦ p // s

p // s◦η

The proposition gives an oblique adjunction (see Section A.6).

CoaF

a

AlgFrec
oo_ _ _

(·)◦η

��
CoaE

η◦(·)

OO

AlgErec
oo_ _ _

Here is another one. Suppose we have a functorG : B→ A that we compose with functors
H : A→ B to obtain pairs of endofunctorsGH andHG.

(A,A) GH

(A,B)

(A,G)vvv

;;vvv

(G,B)
HHH

##H
HH

H
9

<<yyyyyyyyy

�

""E
EEEEEEEE

(B,B) HG
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The functorG lifts to algebras: it carries algebras forHG to algebras forGH and carries algebra
morphisms forHG to algebra morphisms forGH. The functorsH lift in the same way, taking
algebras forGH to algebras forHG. The functorsG andH also lift to coalgebras.

CoaGH

Hyyssssssssss
under
��

AlgGH

Hyysssssssss
under
��

CoaHG

G
99ssssssssss

under
��

A

H
yyrrrrrrrrrrrr

AlgHG

G
99sssssssss

under
��

A

H
yyssssssssssss

B

G

99rrrrrrrrrrrr
B

G

99ssssssssssss

It turns out that an oblique adjunction exists betweenG on coalgebras andH on algebras, even if
G andH are not themselves adjoint.

CoaGH

a

AlgGHrec
oo_ _ _

H
��

CoaHG

G

OO

AlgHGrec
oo_ _ _

Lemma 2.1.4 Given a coalgebra p for HG and an algebra s for GH, there is a bijection, natural
in the choice of p and s, between morphisms from Gp to s and morphisms from p to Hs.

Gp // s

p // Hs

Proof. The bijection is given byg 7→ s◦Ggandh 7→Hh◦ p. If g is a recursive morphism fromp
to Hs, we see thath = s◦Gg is a recursive morphism fromGp to sby applyingG to the diagram
for g.

HGb
HGg // HGHa

Hs
��

GHGb
GHGg//

GHh

&&LLLLLLLLLL GHGHa

GHs
��

b

p

OO

g // Ha Gb

Gp

OO

Gg //

h

&&MMMMMMMMMMMM GHa

s
��
a

Likewise by applyingH to the diagram forh, we see thatg′ = Hh◦ p is a recursive morphism
from p to Hs.

GHGb
GHh

$$I
IIIIIIII HGHGb

HGHh

&&LLLLLLLLLL

Gb

Gp

OO

h

$$I
IIIIIIIII GHa

s

��

HGb

HGp

OO

HGg′ //

Hh

&&LLLLLLLLLL HGHa

Hs
��

a b

p

OO

g′ // Ha

But then
g′ = Hh◦ p = H(s◦Gg)◦ p = Hs◦HGg◦ p = g,

the morphism we started with. Similarly,h′ = s◦G(Hh◦ p) = h starting with any morphismh
from Gp to s. �
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The Lemma gives an isomorphism betweenG∗ ◦ recGH and recHG ◦H∗ in Dist (see Sec-
tion A.6).

CoaGH

G∗
���
�
�

∼=

AlgGHrec
oo_ _ _

H∗

���
�
�

7→
InvGH

G∗
���
�
�

∼=

InvGH
hom
oo_ _ _

H∗

���
�
�

7→
InvGH

H




a

CoaHG AlgHGrec
oo_ _ _ InvHG InvHG

hom
oo_ _ _ InvGH

G

JJ

If the isomorphism is restricted to the categories InvGH and InvHG of GH andHG invariants, we
obtain an isomorphism directly betweenG∗ andH∗ and hence an adjunctionGa H : InvGH→
InvHG (see Proposition A.6.4).

Now if we swapG andH in Lemma 2.1.4 and restrict again to invariants, we obtain a second
adjunctionH aG : InvHG→ InvGH. The unit of this adjunction at(p, p−1) is p while the counit
of G a H at the same invariant isp−1. Likewise, the counit ofH a G is inverse to the unit of
Ga H. The functorsG andH therefore lift to form an equivalence between InvGH and InvHG.
Freyd appeals to this equivalence for a direct proof thatG preserves initial invariants [15, Section
5].

Proposition 2.1.5 The functor G takes initial invariants for HG to initial invariants for GH.

Note however that this is really a direct consequence of Lemma 2.1.4 and, using Proposition 2.2.2,
should be viewed as a special case of Corollary 2.2.4.

2.2 Recursive Coalgebras and Corecursive Algebras

Recursive coalgebras (Definition 2.2.1) occur in Taylor’s treatment of recursion where they are
the coalgebras that ‘obey the recursion scheme’ [42, Section 6.3].

Definition 2.2.1 An algebraσ is corecursiveif for every coalgebra p there exists a unique mor-
phism zp from p toσ . Dually, a coalgebraπ is recursiveif there is a unique rs from π to every
algebra s.

Fb
Fzp // Fφ

σ

��

Fω
Frs // Fa

s

��
b

p

OO

zp // φ ω

π

OO

rs // a

If t is a terminal object, then the unique algebraFt → t is a corecursive algebra. Dually, ifi
is an initial object, then the unique coalgebrai → Fi is a recursive coalgebra. The following
embellishment of Lambek’s Lemma [21, Lemma 2.2] provides more examples.

Proposition 2.2.2 (after Lambek) The following are equivalent:

1. p is a final coalgebra.

2. p is the inverse of a corecursive algebra.

Dually, the following are equivalent:

1. s is an initial algebra.

2. s is the inverse of a recursive coalgebra.
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However, not every corecursive algebra or recursive coalgebra has an inverse. Also, unlike final
coalgebras and initial algebras, corecursive algebras and recursive coalgebras are not unique up
to isomorphism. Ifn 7→ n−1 is taken as a functor on the partial order(Z,≤), then every algebra
is corecursive (there are no coalgebras), no algebra has an inverse and no two are isomorphic.

By the recursion theorem, every well-founded binary relation≺ corresponds to a recursive
coalgebra for the covariant power-set functorP on Set, but none of these is the inverse of an
initial algebra forP. For an account of well-foundedness and the general recursion theorem in a
categorical context, see Taylor [42, Chapter 6].

Pb
Prs // Pa

s

��
b

≺

OO

rs // a

2.2.3 Preservation of Recursive Coalgebras

Proposition 2.1.5 is the basis of a categorical generalisation of the dinaturality of the least fixed
point operator: IfφA andφB are functors giving (the carriers of) initial invariants for categories
of endofunctors onA andB, then, because initial objects are unique up to coherent isomorphism,
we get a natural isomorphism from the functorG◦φB ◦ (G,B) to the functorφA ◦ (A,G). This is
the dinaturality hexagon forφA andφB.

(A,A)
φA //

∼=

A

<<
<<

<<
<<

(A,B)

(A,G)vvv

::vvv

(G,B)
HHH

$$H
HH

A

(B,B)
φB // B

G

AA��������

We now consider recursive coalgebras forG although, by symmetry, the same arguments
apply to recursive coalgebras forH and, by duality, to corecursive algebras forG and forH.
From the bijection of Lemma 2.1.4 we see thatGp is a recursive coalgebra wheneverp is.

Corollary 2.2.4 The functor G takes recursive coalgebras for HG to recursive coalgebras for
GH

However, because recursive coalgebras are not unique up to coherent isomorphism, the provision
of recursive coalgebra structure on the object part of a functor from(A,A) to A does not fix the
arrow part of the functor. Similarly, even ifφA andφB have been chosen to give (the carriers of)
recursive coalgebras, the fact thatGφB(HG) carries recursive coalgebra structure, does not fix
a comparison withφA(GH). The uniqueness of the recursive morphism into algebras requires
a coherent choice of arrows and a coherent choice of comparisons, but then ensures that these
choices will be mutually coherent (when tested with recursive morphisms). Corollary 2.2.4 only
ensures that dinaturality of recursive coalgebra delivery cannot fail at the object level.

2.2.5 Freyd’s Square for Recursive Coalgebras

A weak form of Freyd’s Square (Theorem 2.2.8 below) holds for recursive coalgebras.

Proposition 2.2.6 If a recursive coalgebraπ for TT is of the form Tτ ◦ τ, thenτ is a recursive
coalgebra for T .
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Proof. SupposeTτ ◦τ is a recursive coalgebra forTT ands is an algebra forT. If r is a morphism
from Tτ ◦τ to s◦Ts, then so iss◦Tr◦τ, but there is just one such morphism and sor = s◦Tr◦τ,
i.e. r is a morphism fromτ to s. On the other hand, ifr = s◦Tr ◦ τ thenTr = Ts◦TTr◦Tτ and
we haver = s◦Ts◦TTr◦Tτ ◦ τ, i.e. r is a morphism fromTτ ◦ τ to s◦Ts.

TTTι
TTTr // TTTa

TTs
��

TTι

TTτ

OO

TTr // TTa

Ts
��

Tι

Tτ

OO

Tr // Ta

s

��
ι

τ

OO

r // a

�
This proof sits inside the proof of the Square Theorem given in [14]. The following proposition
provides a sufficient condition for the premise.

Proposition 2.2.7 If a recursive coalgebraπ for TT has an inverse, thenπ is of the form Tτ ◦ τ

whereτ has an inverse.

Proof. Let σ be inverse toπ and letτ be the unique morphism fromπ to Tσ . The mapTτ is then
a morphism fromTπ to TTσ . Now Tπ ◦Tσ is the identity onTTTι , soTτ ◦ τ is a morphism
from π to TTσ , butπ is also a morphism fromπ to TTσ becauseTTσ ◦TTπ is the identity on
TTι and so we must haveπ = Tτ ◦ τ.

TTι
TTπ //

TTτ

$$I
IIIIIIII TTTTι

TTσ

��

TTTι

TTTτ

99ssssssssss

Tσ

��

ι

π

OO

τ

$$I
IIIIIIIII

π // TTι

TTπ

OO

Tι

Tτ

99ssssssssss

Tπ

OO

Now we showτ has an inverse. By Corollary 2.2.4 (withT for G and the identity forH), if
π is recursive, then so isTπ. Let ς be the unique morphism fromTπ to σ . Now the identity
is a morphism fromπ to σ but, again becauseTπ ◦Tσ is the identity,ς ◦ τ is also a morphism
from π to σ and so must be the identity. Likewise, becauseπ ◦σ is the identity onTTι and the
identity onTι is a morphism fromTπ to Tσ , τ ◦ ς must be the identity. �

Using Proposition 2.2.2, Propositions 2.2.6 and 2.2.7 combine to form an important theorem.

Theorem 2.2.8 (Freyd’s Iterated Square)Initial algebras for TT are of the formς ◦Tς where
ς is an initial algebra for T .

2.2.9 Transposition of Corecursive Algebras and Recursive Coalgebras

Proposition 2.1.3 has the following corollary.
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Corollary 2.2.10 If σ is a corecursive algebra for F, thenσ ◦η is a corecursive algebra for E.

If F is of the formHG we can put Lemma 2.1.4, together with Proposition 2.1.3, to obtain
a correspondence between certain recursive morphisms into an algebras for GH and arbitrary
recursive morphisms intoHs◦η .

G(η ◦ p) // s

η ◦ p // Hs
p // Hs◦η

We apply this correspondence to the transposition of corecursive algebras. Given a natural
transformationη : Id⇒ RL, we calls= Rs◦η the transposeof s, even ifη is not the unit of an
adjunction.

Corollary 2.2.11 If σ is a corecursive algebra for LR, then its transpose, Rσ ◦η , is a corecursive
algebra for the identity endofunctor.

Corollary 2.2.11 produces corecursive algebras for the identity endofunctor. If we also have a
natural transformationι : S→ Id (not necessarily the counit of a comonad), then Corollary 2.2.10,
with ι for η , takes corecursive algebras for the identity to corecursive algebras forS. Alterna-
tively, we can produce corecursive algebras forSstarting with a corecursive algebraτ for LSR,
in which case the transformationι is superfluous. WithR for H, LS for G andηS : S⇒ RLSfor
η , we see that corecursive algebras forLSRtranspose to corecursive algebras forS.

LS(ηS◦ p) // σ

ηS◦ p // Rσ

p // Rσ ◦ηS

This is so useful we make it a lemma and view Corollary 2.2.11 as the special caseS= Id.

Lemma 2.2.12 Given functors R: D→C and L: C→ D, a natural transformationη : Id→ RL
and an endofunctor S: C→C, corecursive algebras for LSR transpose to corecursive algebras
for S.

The dual of Lemma 2.2.12 applies to the transposition of recursive coalgebras. Taylor’s
version of the recursion theorem is based on a categorical formulation of well-foundedness and
says well-founded coalgebras are recursive [42, Section 6]. When the endofunctor in question
is the covariant power-set functor on Set, we recover the notion of a well-founded relation and
the theorem says recursive definitions based on well-founded relations are well-defined. This
particular endofunctor carries monad structure that factors through a variety of adjunctions [41].
The typical situation is an adjunctionF aU : D→C topped by a monadT on D such that the
original monad, possibly theT of another factorization, is given by the compositeUTF. We may
consider the notions of well-foundedness and recursiveness with respect to both the factorT and
the originalUTF. The dual of Lemma 2.2.12 says that recursive coalgebras forUTF transpose
to recursive coalgebras forT.

Corollary 2.2.13 If π is a recursive coalgebra for UTF then its transpose, Fπ ◦ε, is a recursive
coalgebra for T .

Corollary 2.2.13 uses the natural transfomationε : FU ⇒ Id that comes with the adjunction
F a U to transpose coalgebras forUTF into coalgebras forT. In the case of the power-set-
like endofunctors studied in [41] there is another natural transformationκ : T ⇒ TFU that can
be used to transform coalgebras forT into coalgebras forUTF: composep : b→ Tb with
κ : Tb→ TFUb and applyU to obtain a coalgebraU(κ ◦ p) : Ub→UTFUb. With TF for H,
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U for G andκ for η , we see that recursive coalgebras forT transform to recursive coalgebras for
UTF.

U(κ ◦π) // s

κ ◦π // TFs
π // TFs◦κ

Corollary 2.2.14 If π is a recursive coalgebra for T then U(κ ◦π). is a recursive coalgebra for
UTF.

Note that the preservation of recursive coalgebras results from the mere existence ofε andκ and
not from the laws of the adjunction. However, with power-set-like endofunctors, much more is
true. The above transform reflects recursive coalgebras and both the transform and transposition
preserve and reflect well-founded coalgebras [41].
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Chapter 3

Monoidal Categories and Structural Actions

In Section 3.1 we illustrate our approach to coherence conditions using a notion of lax left
monoid. We set up a unified account of monoids and monoidal structure which serves as ba-
sis for an account of comonoids and comonoidal structure. Our lax 2-categorical setting requires
careful attention to the exact forms of duality relating monoidal and comonoidal structures. We
show how comonoids in lax monoid categories are preserved by oplax monoidal functors. In
Section 3.2 we describe how, despite our very weak approach to coherence, Kelly’s simplified
coherence conditions for monoidal categories may be derived from the notion of lax monoid.

In Section 3.3 we indicate how the theory of structural actions fits into our picture of coher-
ence and the preservation of comonoids. As in our derivation of monoidal coherence conditions,
the conditions for structural actions correspond to structure on the transpose of the action. For an
elementary account of structural actions see Appendix B.

3.1 Lax Monoids and Comonoids

In a categoryC with products, the notion of a monoid object can be given either by a product
theory or directly in terms of various commutative diagrams. In the later case we don’t use the
universal properties of products so much as the structure induced by some choice of products.
This amounts to monoidal structure which replaces the universal properties of products with the
coherent isomorphisms those properties would induce were the monoidal multiplication actually
to give products.

3.1.1 Lax Monoid 0-Cells

Given a monoidal 2-categoryC (with monoidal structure written as product structure), we can
replace the commutative diagrams in the definition of monoid structure with 2-cells. We look at
a diagram

C× (C×C) C×⊗ // C×C

⊗

��

(C×C)×C

assoc
77ooooooooooo

⊗×C
��

C×C
⊗ // C

as giving a 1-cell(C×C)×C→C that decomposes both as⊗◦(⊗×C) and as⊗◦(C×⊗)◦assoc
for some 1-cell⊗. In a 2-category, this is to say the domain of the identity 2-cell on this 1-cell is
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given as⊗◦ (⊗×C) and the codomain as⊗◦ (C×⊗)◦assoc for some 1-cell⊗. Our definition
of lax monoid structure allows, in place of the identity some 1-cell(C×C)×C→C, any 2-cell
with the same domain and codomain.

Definition 3.1.2 Lax monoid structureon a 0-cell C of a monoidal 2-categoryC, is given by
2-cellsλ , ρ, α and β whose domains and codomains are given by 1-cells I: 1→ C and⊗ :
C×C→C assembled as shown.

C× (C×C) C×⊗ // C×C

⊗

��

1×C
left //

I×C
��

C (C×C)×C

assl
77ooooooooooo

⊗×C
��

C×C

⇒λ

⊗ // C C×C

⇒α

⊗ // C

(C×C)×C
⊗×C // C×C

⊗

��

C×1
right //

C×I
��

C C× (C×C)

assr
77ooooooooooo

C×⊗
��

C×C

⇒ρ

⊗ // C C×C

⇒β

⊗ // C

We distinguish between left-hand and right-hand associativity because we are not assuming the
monoidal structure on the ambient 2-category is symmetric and we don’t want to rely on inverses
to assl and assr. Much of this Chapter goes through without, say, theρ andβ , but this leads to
categories without right identities in the indexed category construction in Section 3.3.6.

Definition 3.1.2 does not include coherence conditions. A lax monoid in the monoidal 2-
category of categories is therefore not necessarily a monoidal category even ifλ , ρ, α andβ are
all natural isomorphisms. Likewise, a lax monoid in the monoidal 2-category of 2-categories is
not necessarily a monoidal 2-category. Note however that Definition 3.1.2 only uses the monoidal
structure onC as lax monoid structure. So given a lax monoidC in the monoidal 2-category of
2-categories, we can recycle Definition 3.1.2 as a definition of lax monoid inC. Here we are
only interested in the simpler case where we have a lax monoidC in the monoidal 2-category of
categories. We makeC into a 2-category by adding identity 2-cells and apply Definition 3.1.2
which now gives a definition of monoid inC. BecauseC is a degenerate 2-category whose only
2-cells are identities, we drop the ‘lax’ and the 2-cell diagrams of Definition 3.1.2 amount to
commutative diagrams inC. When the lax monoid structure onC is given by monoidal structure,
assl and assr are mutual inverses, the associativity diagrams imply one another and we recover
the usual definition of monoid object in a monoidal category.

3.1.3 Lax Monoid 1-Cells

Say we have lax monoid structure on 0-cellsC andC′ of a monoidal 2-categoryC and we want
a definition of compatible structure on 1-cells fromC to C′. Rather than thinking in terms of
morphisms that lax commute with the operations of our lax monoids, we obtain our definition by
viewing a 1-cell fromC to C′ as a 0-cell in an arrow 2-category constructed overC and applying
Definition 3.1.2 to this 0-cell.

Definition 3.1.4 The lax arrow 2-category ArrC is constructed over a 2-categoryC by taking
1-cells F : C0→C1 of C for the 0-cells ofArrC, pairs of 1-cells G0 : C0→C′

0 and G1 : C1→C′
1
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together with a 2-cellψG : G1 ◦F ⇒ F ′ ◦G0 for the 1-cells ofArrC and pairs of 2-cellsα0 and
α1 such that(F ′ ◦α0) ·ψG = ψG′ · (α1◦F) (see Figure 3.1) for the 2-cells ofArrC.

Interpreted in ArrC, Definition 3.1.2 gives our definition of monoidal structure on 1-cells of the
original 2-categoryC. Monoidal structure onC lifts to monoidal structure on ArrC in the obvious
way. Multiplication in ArrC is given by multiplying the corresponding diagrams inC, the identity
on 1 inC becomes the unit for ArrC, and the naturality squares inC for the transformations left,
right, assl and assr become the components of the corresponding natural transformations for
ArrC. Clearly, structure on ArrC lifted in this way fromC is strictly preserved by the domain
and codomain projections back toC. Any lax monoid in ArrC defined with respect to monoidal
structure lifted fromC therefore projects to a pair of lax monoids1 in C and so we can take lax
monoid structure on a 1-cellF between two lax monoidsC andC′ to be given by any lifting of
the pair of lax monoids to a lax monoidF : C→C′ in ArrC.

Definition 3.1.5 Lax monoid structureon a 1-cell F: C→C′ in a 2-categoryC is given by lax
monoid structure on F taken as a 0-cell in the 2-categoryArrC.

In ArrC, the four 2-cell diagrams in Definition 3.1.2 become four prisms inC. Figures 3.5 and 3.6
show the prisms for left identity and left associativity. These are drawn as cubes underlying lax
squares in ArrC with each cube split into two hemi-cubes to match the compatibility cube shown
in Figure 3.2. By stacking such prisms it is clear that lax monoid 1-cells compose to form
composite lax monoid 1-cells. Lax monoids inC thus form a category over (the plain category
part of) the 2-categoryC.

Definition 3.1.6 The categoryMonC has lax monoid 0-cells inC for 0-cells and lax monoid
1-cells for 1-cells.

The compatibility conditions on 2-cells in ArrC result in coherence conditions between the struc-
ture 2-cell for a lax monoid 1-cellF : C0 → C1 and the structure 2-cells for the lax monoid
structures onC0 andC1. Concretely, inCat, lax monoid structure on a functorF requires natural
transformationsψ⊗ andψI making the following diagrams commute.

F(I0⊗0 c)
Fλ0 // Fc

FI0⊗1 Fc

ψ⊗
88ppppppppppp

Fc

I1⊗1 Fc

ψI⊗1Fc

OO

λ1 // Fc

tttttttttt

These are the standard coherence conditions on a monoidal functor in the theory of monoidal
categories (which normally associates the natural transformationsψ⊗ andψI with the functor
F). So while Definition 3.1.2 does not give a definition of monoidal category when interpreted
in Cat, Definition 3.1.5 does give the familiar definition of monoidal functor.

Just as Definition 3.1.2 can be recycled to give a definition of monoid in a categoryC that is
itself a lax monoid inCat, Definition 3.1.5 can be recycled to give a definition of monoid map in
C. The arrow 2-category ArrC,—again treatingC as a degenerate 2-category whose only 2-cells
are the identities—is the degenerate 2-category obtained from the familiar arrow categoryC→.
Just as monoidal structure lifts to the arrow category, the lax monoid structure onC lifts to ArrC

1Not to be confused with a lax monoid inC×C. Definition 3.1.2 requires monoidal structure but we
have not assumed the monoidal structure onC is symmetric and so the usual construction of monoidal
structure onC×C is not available.
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0-cell 1-cell 2-cell

F F
G

  

F
G

##

F
G′

##
F ′ F ′

⇒α

F ′

C0

F

��

C0

G0

��?
??

??
??

?

F

��

C0

G0

""E
EE

EE
EE

EE

F

��

C0
G′

0

""E
EE

EE
EE

EE

C′
0

F ′

��

C′
0

⇒α0

F ′

��

C′
0

F ′

��

C1 C1

⇒ψG

G1

��@
@@

@@
@@

C1

⇒ψG

G1

""E
EE

EE
EE

EE

C′
1 C′

1 C′
1

C0

F

��

C0
G′

0

""E
EE

EE
EE

EE

F

��

C′
0

F ′

��

C1

G1

""E
EE

EE
EE

EE
C1

⇒ψG′

G′
1

""E
EE

EE
EE

EE

C′
1

⇒α1

C′
1

F ′G0c
F ′α0 // F ′G′

0c

G1Fc

ψG

OO

α1F // G′
1Fc

ψG′

OO

Figure 3.1: The arrow 2-category ArrC overC.
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F
H //

G

  

F ′′

G′

!!
F ′

⇒α

H′
// F ′′′

C0
H0 //

G0

��>
>>

>>
>>

>

F

��

C′′
0

G′
0

  A
AA

AA
AA

C′
0

⇒α0

H′
0 //

F ′

��

C′′′
0

F ′′′

��

C1

⇒ψG

G1

��@
@@

@@
@@

C′
1

⇒ψH′

H′
1 // C′′′

1

C0
H0 //

F

��

C′′
0

G′
0

  A
AA

AA
AA

F ′′

��

C′′′
0

F ′′′

��

C1

⇒ψH

H1 //

G1

��?
??

??
??

? C′′
1

⇒ψG′

G′
1

  A
AA

AA
AA

A

C′
1

⇒α1

H′
1 // C′′′

1

Figure 3.2: A lax square in ArrC.
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1×C0
left //

I0×C0

JJJ
J

%%JJ
JJ

1×F

��

C0

@@
@@

@@
@@

C0×C0

⇒λ0

⊗0 //

F×F

��

C0

F

��

1×C1

⇒ψI×F

I1×C1

JJJ
J

%%JJ
JJ

C1×C1

⇒ψ⊗

⊗1 // C1

1×C0
left //

1×F

��

C0

@@
@@

@@
@@

F

��

C0

F

��

1×C1
left //

I1×C1

JJJ
J

%%JJ
JJ

C1

AA
AA

AA
A

C1×C1

⇒λ1

⊗1 // C1

Figure 3.3: Compatibility with left identity.

(C0×C0)×C0
assl //

⊗0×C0

QQQQ
Q

((QQQQQ

(F×F)×F

��

C0× (C0×C0)
C0×⊗0// C0×C0

⊗0

##F
FF

FF
FF

FF

C0×C0

⇒α0

⊗0 //

F×F

��

C0

F

��

(C1×C1)×C1

⇒ψ⊗×F

⊗1×C1

QQQQ
Q

((QQQQQ

C1×C1

⇒ψ⊗

⊗1 // C1

(C0×C0)×C0
assl //

(F×F)×F

��

C0× (C0×C0)
C0×⊗0//

F×(F×F)

��

C0×C0

⊗0

##F
FF

FF
FF

FF

F×F

��

C0

F

��

(C1×C1)×C1
assl //

⊗1×C1

QQQQ
Q

((QQQQQ

C1× (C1×C1)

⇒F×ψ⊗

C1×⊗1// C1×C1

⇒ψ⊗

⊗1

##G
GG

GG
GG

GG

C1×C1

⇒α1

⊗1 // C1

Figure 3.4: Compatibility with left associativity.
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and we can apply Definitions 3.1.5 and 3.1.6 to obtain the category MonC. When the lax monoid
structure onC is given by monoidal structure, this is the usual category of internal monoidsC.

As with monoidal structure, it is not necessary to preserve lax monoid structure strictly in
order to carry internal structure from to one lax monoid to another.

Proposition 3.1.7 Lax monoid functors lift to internal monoids.

MonC0
MonF //___

forget
��

MonC1

forget
��

C0
F // C1

Proof. The functor MonF takes a monoid

I0
o // c c⊗0 c m // c

in C0 to the monoid

I1
Fo◦ψI // Fc Fc⊗1 Fc

Fm◦ψ⊗ // Fc

in C1. To see this, think ofc as a 1-cell 1→C0. Theno is a 2-cell

1 1

c
��

uniq
oo

1

⇒o
I0 // C0

andm is a 2-cell
1×1

c×c
��

1
diag
oo

c
��

C0×C0

⇒m
⊗0 // C0

and the diagrams that make these a monoid inC0 are given by four prisms (two of which are
shown in Figures 3.5 and 3.6). For example, the prism shown in Figure 3.5 gives the diagram

c c

c⊗0 c

m
;;xxxxxxxxx

c

I0⊗0 c

o⊗0c

OO

λ0 // c

��������

which is

I0⊗0 c
λ0 //

o⊗0c
��

c

c⊗0 c m // c

When these four prisms are stacked on the four prisms makingF a lax monoid functor (two of
which are shown in Figures 3.5 and 3.6), the four resulting prisms (one of which is shown in
Figure 3.7) give the diagrams making

I1
ψI // FI0

Fo // Fc Fc⊗1 Fc
ψ⊗ // F(c⊗0 c) Fm // Fc
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a monoid inC1. For example, the stack shown in Figure 3.7 gives the diagram

Fc Fc

F(c⊗0 c)

Fm
::uuuuuuuuu

Fc⊗1 Fc

ψ⊗
88pppppppppp

Fc

FI0⊗1 Fc

Fo⊗1Fc

OO

I1⊗1 Fc

ψI⊗1Fc

OO

λ1 // Fc

xxxxxxxxxxxxxxxxxxxxx

which is

I1⊗1 Fc
λ1 //

(Fo◦ψI )⊗1Fc
��

Fc

Fc⊗1 Fc
Fm◦ψ⊗// Fc

Monoid mapsf : c→ c′ in C0 become monoid mapsF f : Fc→ Fc′ in C1 by the naturality ofψI

andψ⊗ and the funtorality ofF .

I1
ψI // FI0

Fo // Fc

F f

��

Fc⊗1 Fc
ψ⊗ //

F f⊗1F f
��

F(c⊗0 c) Fm //

F( f⊗0 f )
��

Fc

F f

��
I1

ψI // FI0
Fo′ // Fc′ Fc′⊗1 Fc′

ψ⊗ // F(c′⊗0 c′)Fm′
// Fc′

�

3.1.8 Lax Comonoids

In a monoidal categoryC, comonoid structure on an objectc is defined as monoid structure onc
taken as an object of the opposite categoryCop. A little more care is required for the definition of
comonoid maps which are the opposites of monoid maps in the opposite category: the category
of comonoids inC is given by(MonCop)op. In terms of arrow categories, comonoid maps are
monoid objects in the opposite of the arrow category overCop. This has arrows for objects and
op-squares

c0

��

c′0oo

��
c1 c′1oo

for arrows.
In a monoidal 2-category everything is more delicate. In a 2-category we can take opposites

of either the 1-cells, the 2-cells or both and this leads to even more possibilities in the construction
of arrow categories.

Definition 3.1.9 Given a 2-categoryC, we writeOpC for the 2-category with op-2-cells (oppo-
site hom categories).

Taking the opposite of a category is therefore a 2-functor(·)op : Cat→OpCat.
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1×1

1×c

��

1
left−1

oo

AA
AA

AA
AA

A

1×1

uniq×1KKKK

eeKKKK

c×c

��

1
diag

oo

c

��

1×C0

⇒o×c

I0×C0

JJJ
J

%%JJ
JJ

C0×C0

⇒m

⊗0 // C0

1×1

1×c

��

1
left−1

oo

BB
BB

BB
BB

c

��

1

c

��

1×C0
left //

I0×C0

JJJ
J

%%JJ
JJ

C0

@@
@@

@@
@@

C0×C0

⇒λ0

⊗0 // C0

Figure 3.5: Internal left identity.

(1×1)×1

(c×c)×c

��

1× (1×1)
assl−1
oo 1×1

1×diag
oo

1×1

diag×1RRRRRR

hhRRRR

c×c

��

1
diag

ccGGGGGGGGGG

c

��

diag
oo

(C0×C0)×C0

⇒m×c

⊗0×C0

QQQQ
Q

((QQQQQ

C0×C0

⇒m

⊗0 // C0

(1×1)×1

(c×c)×c

��

1× (1×1)
assl−1
oo

c×(c×c)

��

1×1

c×c

��

1×diag
oo

1
diag

ccGGGGGGGGGG

c

��

(C0×C0)×C0
assl //

⊗0×C0

QQQQ
Q

((QQQQQ

C0× (C0×C0)

⇒c×m

C0×⊗0// C0×C0

⇒m

⊗0

##F
FF

FF
FF

FF

C0×C0

⇒α0

⊗0 // C0

Figure 3.6: Internal left associativity.
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1×1

1×c

��

1
left−1

oo

AA
AA

AA
AA

A

1×1

uniq×1KKKK

eeKKKK

c×c

��

1
diag

oo

c

��

1×C0

⇒o×c

I0×C0

JJJ
J

%%JJ
JJ

1×F

��

C0×C0

⇒m

⊗0 //

F×F

��

C0

F

��

1×C1

⇒ψI×F

I1×C1

JJJ
J

%%JJ
JJ

C1×C1

⇒ψ⊗

⊗1 // C1

1×1

1×c

��

1
left−1

oo

BB
BB

BB
BB

c

��

1

c

��

1×C0
left //

1×F

��

C0

@@
@@

@@
@@

F

��

C0

F

��

1×C1
left //

I1×C1

JJJ
J

%%JJ
JJ

C1

AA
AA

AA
A

C1×C1

⇒λ1

⊗1 // C1

Figure 3.7: Internal left identity.
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3.1.10 Preservation of Internal Comonoids

Lax monoid functorsF : C0→C1 from one lax monoid category to another do not necessarily lift
to carry comonoids inC0 to comonoids inC1. Taken as 2-cells, the counit and comultiplication
of a comonoid are not confluent with theψ in Arr so, although the identity and associativity dia-
grams for comonoid structure still give four prisms, these cannot be stacked on the correponding
prisms for lax monoid structure onF . If we want to lift F to internal comonoids, we require
oplax monoid structure onF .

Definition 3.1.11 Oplax monoid structureon a 1-cell F is given by lax monoid structure on F
taken as a 0-cell inOpArrOpC.

The 2-category OpArrOpC is ArrC with the structure 2-cellsψ reversed. The hemi-cubes in
Figure 3.1 must be taken as a complete cube to remain meaningful; with theψ reversed, the
cube falls into a different pair of confluent pasting diagrams. Note that theα0 andα1 are not
reversed in OpArrOpC so oplax structure onF : C0→C1 projects tolax structure onC0 andC1.
These projections are given by Opdom and Opcod from OpArrOpC to OpOpC, which isC, and
preserve monoidal structure lifted fromC. With theψ reversed our prisms stack and we can lift
F to internal comonoids.

Proposition 3.1.12 Oplax monoid functors lift to comonoids.

CoMonC0
CoMonF//___

forget
��

CoMonC1

forget
��

C0
F // C1

3.2 Monoidal Categories

Interpreted inCat, Definition 3.1.2 does not give a definition of monoidal category because it
does not include coherence conditions relating the 2-cellsλ , ρ andα. Definition 3.1.5, however,
does give the usual definition of monoidal functor including the usual coherence conditions and
we can use this ‘local coherence’ to recover the familiar coherence conditions for monoidal
categories. A monoidal category is a lax monoid whose multiplication⊗ :C×C→C is monoidal
when transposed to a functor⊗̂ : C→ [C,C].

3.2.1 The Monoidal Category of Endofunctors

Each category[C,C] of endofunctors and natural transformations carries two monoidal struc-
tures given by composition (carried out left-to-right or right-to-left). In symmetric monoidal 2-
categories such asCat these are inter-derivable, but here we take the left closed structure which
fits our definition of lax monoid.

1
ident // [C,C] [C,C]× [C,C]

comp // [C,C]

· � // idC 〈g, f 〉 � // g◦ f
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3.2.2 The Transpose of Lax Monoid Structure

In a left closed monoidal 2-category such asCat, the left identity and left associativity 2-cells of
Definition 3.1.2 transpose to 2-cells with domain and codomain as shown.

[C,C× (C×C)]
[C,C×⊗]// [C,C×C]

[C,⊗]

��

1
ˆleft //

I

��

[C,C] (C×C)

ˆassl
77ooooooooooo

⊗
��

C

⇒λ̂

⊗̂ // [C,C] C

⇒α̂

⊗̂ // [C,C]

In Cat the codomains can be rewritten.

1

I

��

1

ident
��

C×C
⊗̂×⊗̂ //

⊗
��

[C,C]× [C,C]

comp
��

C

⇒λ̂

⊗̂ // [C,C] C

⇒α̂

⊗̂ // [C,C]

These diagrams can be viewed as unit and multiplication 1-cells in the arrow category OpArrOpCat
lying over the unit and multiplication 1-cells of the lax monoidsC and[C,C] in Cat.

1
I // C

⊗̂
��

C×C
⊗ //

⊗̂×⊗̂
��

C

⊗̂
��

1

⇐̂
λ

ident// [C,C] [C,C]× [C,C]

⇐̂
α
comp // [C,C]

Lax monoid structure on a categoryC thus transposes to give potential oplax monoid structure
on ⊗̂. The natural transformationλ transposes to a potentialψ⊗ and the natural transformation
α to a potentialψI .

3.2.3 Coherent Lax Monoids and Monoidal Categories

Given a lax monoid inCat, the left transposed natural transformations constitute oplax monoid
structure on⊗̂ exactly when the following diagrams commute in[C,C]. Double lines indicate
equalities in[C,C] which would be isomorphisms wereC a bicategory.

(c⊗ I)⊗ (·)

αvvmmmmmmmmmmmmm

ρ⊗(·) // c⊗ (·)

(c⊗ (·))◦ (I ⊗ (·))

(c⊗(·))◦λ

��

c⊗ (·)

(c⊗ (·))◦ IdC c⊗ (·)

rrrrrrrrrr

(c⊗ (c′⊗c′′))⊗ (·)

αssggggggggggggggggggggg

β⊗(·) // ((c⊗c′)⊗c′′)⊗ (·)

α

��
(c⊗ (·))◦ ((c′⊗c′′)⊗ (·))

(c⊗(·))◦α

��

((c⊗c′)⊗ (·))◦ (c′′× (·))

α◦(c′′×(·))
ggggggg

ssggggggg

(c⊗ (·))◦ ((c′⊗ (·))◦ (c′′⊗ (·))) ((c⊗ (·))◦ (c′⊗ (·)))◦ (c′′⊗ (·))
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These commute in[C,C] exactly when the following diagrams commute inC for all c′ andc′′′.

(c⊗ I)⊗c′

αwwppppppppppp

ρ⊗c′ // c⊗c′

c⊗ (I ⊗c′)

c⊗λ

��

c⊗c′

c⊗c′ c⊗c′

rrrrrrrrrr

(c⊗ (c′⊗c′′))⊗c′′′

αttjjjjjjjjjjjjjjjj

β⊗c′′′ // ((c⊗c′)⊗c′′)⊗c′′′

α

��
c⊗ ((c′⊗c′′)⊗c′′′

c⊗α

��

(c⊗c′)⊗ (c′′×c′′′)

αttjjjjjjjjjjjjjjj

c⊗ ((c′⊗ (c′′⊗c′′′))) c⊗ ((c′⊗ (c′′⊗c′′′)))

When λ , ρ, α and β are natural isomorphisms,β is α−1 and we have the usual coherence
diagrams for a monoidal category.

Definition 3.2.4 A lax monoid in a left closed monoidal 2-category isleft coherentif the left
transpose of multiplication is monoidal.

For coherent lax monoids then, the functor⊗̂ is oplax monoidal and so lifts to the categories of
comonoids inC and[C,C].

Proposition 3.2.5 The 2-category of monoidal categories, monoidal functors and monoidal nat-
ural transformations is the sub-2-category ofStrMonCat given by the coherent strong monoids.

3.3 Structural Actions

Structural actions may be presented in ‘curried form’ as indexed comonads. If Com[A,A] is the
category of comonads onA then structural actions ofC on A correspond to functors fromC to
Com[A,A]. This point of view simplifies the construction of the associated indexed category:
the Kleisli construction gives a functor from Com[A,A] to Cat which can be composed with any
structural action ofC on A to obtain aC-indexed category. Note that this account of structural
actions and their associated indexed categories relies on the closed structure of the 2-category
Cat.

Structural actions may also be presented in ‘uncurried form’ as actions with extra structure.
Given an action� : C×A→ A, we ask for a natural transformation with componentsδca : c�
a→ c� (c�a) which we call pseudo-diagonals, and a natural transformation with components
ιca : c� a→ a, which we call pseudo-terminals. These transformations must make the action
of each object inC a comonad. The Kleisli categoryAc for the action of an objectc is then the
fibre overc in the associatedC-indexed category. We think ofAc as the categoryA with maps
parameterized byc. Note that the action may be viewed as an endofunctor onA parameterized
by C.

Structural actions may also be presented in terms of the canonical structural meta-action on
Cat. The motivating example of a structural action is (the self-action of) cartesian multiplication:
multiplication by an objectC carries canonical comonad structure. The 2-categoryCat is carte-
sian and the Kleisli construction for multiplication by a categoryC lifts to 2-cells, so we may
construct the 2-categoryCatC. A structural action is a comonad inCatC.
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Definition 3.3.1 Given a category C, the 2-categoryStrC has structural actions for 0-cells, (con-
stant) structural functors for 1-cells and structural natural transformations for 2-cells.

Definition 3.3.2 Given a structural action C on a 2-categoryK, the 2-categoryStrC has comon-
ads inKC for 0-cells, (constant) comonad functors inKC for 1-cells and comonad transforma-
tions inKCfor 2-cells.

A comonad is a comonoid in the functor category[D,D], but can be defined without con-
structing[D,D].

3.3.3 Diagonal Structure

In the proof of Proposition 3.1.12, coherence is only used on the diagonal ofC×C. This appears
in the orientation of the arrow 1→ 1×1: the necessary diagrams inC are indexed by singletons.
In that proof, lax squares of the form

X

��

Yoo

��
C

⇐
// D

are pasted vertically onto lax squares of the form

C //

��

D

��
C′

⇐
// D′

to obtain a lax square of the first form. When viewed as a horizontal arrow this first form can be
interpreted as a 1-cell with pointing structure: the top arrow allows us to defineY based points
I(R(y))→ c in C which the bottom arrow carries toFIR(y)→ Fc and the 2-cell restores to a
Y based pointy→ FIR(y)→ Fc in D. Now the structure we obtained by externalizing internal
commutative comonoid structure can be generalized to commutative lax monoid structure in a
2-category of cells with pointing structure.

Definition 3.3.4 Thelax pointing2-categoryPC is constructed over the 2-categoryC by taking
1-cells F : C→ C′ of C for the 0-cells ofArrC, pairs of 1-cells H: D→ C and H′ : C′ → D′

together with a 2-cellψH : G⇒H ′ ◦F ◦H for the 1-cells ofArrC and pairs of compatible 2-cells
α andα ′ for the 2-cells ofArrC.

Commutative lax monoid structure in a 2-category of the form PC induces internal diagonal
structure on its second projection.

Definition 3.3.5 Diagonal structureis commutative lax monoid structure on a 0-cell in the 2-
categoryPCat.

Inside a category with commutative lax monoid structure, ‘diagonal structure’ refers to internal
commutative comonoid structure that is coherent with respect to the monoid structure of the
category.

3.3.6 The Indexed Category Construction

Diagonal structure onC→ [A,A] determines a functor fromC to the category of comonoids in
[A,A], otherwise known as the category of comonads onA, and hence gives a sort of indexed
comonad onA. The Kleisli construction takes a comonadT on A to a category on the objects
of A with arrows froma to a′ given by mapsTa→ a′ in A. The construction is contravariantly
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functorial and so composed with the functor fromC gives an indexed category onC. Writing
c� (·) for the comonad over an objectc of C, the arrows in the category overc are given by maps
c�a→ a′. Change of fibre over a mapf from c′ to c in Cop is the identity on objects and takes
an arrowg : c′�a→ a′ overc′ to the arrowg◦ ( f �a) : c�a→ a′ overc.

Diagonal structure on[A,A] can be described independently of closed structure on the ambi-
ent 2-category.

Writing � for the transposē∆ of ∆, we transpose the unit and multiplication 1-cells in PCat
that make∆ a lax monoid in PCat to obtain the diagrams below.

C× (C×A) C×� // C×A

�

��

1×A
left // A (C×C)×A

assl
77ooooooooooo

C×A

term×A

OO

⇑ῑ

� // A C×A

diag×A

OO
⇑δ̄

� // C

These correspond to the counit and comultiplication 2-cells for a comonad 1-cell� : A A on
the 0-cellA in the 2-categoryCatC of C indexed functors, which is the 2-category overC in the
simple 2-fibration ofCat over itself, meaning that� is given by a functor� : C×A→ A.

A A

�

��
�O
�O
�O
�O
�O
�O
�O

A

id

??
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
� ///o/o/o/o/o/o/o A

⇑̄
ι

A

�

??
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
� ///o/o/o/o/o/o/o A

⇑̄
δ

If we would like to take∆ :C→ [A,A] and∆′ :C→ [A′,A′] for 0-cells in some 2-category, this
correspondence suggests a natural notion of structure preserving 1-cell from∆ to ∆′: any 1-cell
F : A A′ in CatC that is a comonad 1-cell with respect to the comonads� and�′ corresponding
to ∆ and∆′.

A
� ///o/o/o

F
�� �O
�O
�O

A

F
�� �O
�O
�O

A′

⇒θ
�′
///o/o/o A′

(Lax) comonad 1-cell inCatC means comonad 0-cell in ArrCatC. Blute, Cockett and Seely [6]
refer to a comonad� : A A as a ‘structural action’ and to a functorF : A→ A′ as ‘strong
structural’ functor when

C×A
uniq×A// 1×A

left // A
F // A′

gives a comonad 1-cell.

Note that the natural 1-cells from∆ : C→ [A,A] to ∆′ : C′→ [A′,A′] taken as a lax monoid
0-cells in PCat are lax or oplax monoid 1-cells in PCat, which are lax monoid 0-cells in ArrPCat
or OpArrOpPCat,

C

∆
��

C′
J

oo

∆′
��

[A,A]

⇐
θ

G // [A′,A′]
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but the transpose of the comonad square forF gives a pentagon.

C

∆
��

C

∆′
��

[A,A]

⇐
θ

[A,F ] // [A,A′] [A′,A′]
[F,A′]
oo

There should be a natural 2-category containing both sorts of 1-cell, but we do not pursue this
here.
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Chapter 4

Structural Algebraic Compactness

The motivating examples of algebraically compact categories are not algebraically compact.
Indeed Freyd warns in [15] that the notion of algebraic compactness ‘should be understood in
a 2-category setting’. To simplify the exposition, Freyd develops a theory of ordinary algebraic
compactness, which requires a Freyd algebra foreveryendofunctor, even though domain theory
constructs Freyd algebras only for endofunctors carrying certain extra structure. To admit the
domain theoretic categories that motivate the theory, we are expected to replace the 2-category
Cat of ordinary categories with a 2-category of categories carrying certain extra structure. The
2-categories that jump to mind derive from enriched and internal category theory, but we have
found an interesting alternative.

Although our elementary presentation does not mention the ambient 2-category, we develop
a theory of algebraic compactness in the 2-categoriesStr andBis of structural and bistructural
actions. Structural actions provide an account of maps parameterized by objects in the acting cat-
egoryC and, as it happens, the structural theory of algebraic compactness admits the motivating
examples. With a category of predomains forC, our setting includes the enriched setting where
the established theory is conducted [43, 39]. WhenC is the the unit category, we recover Freyd’s
attractive theory of ordinary algebraic compactness. For a broad perspective on the notion of
structural action see Chapter 3 or, for an elementary account, see Appendix B.

Lemma 4.1.4 reveals the real strength of the structural setting. It allows us to work with a
näıve definition of structurally algebraically compact category.

Definition 4.0.7 A structural category D isstructurally algebraically compactif it has a Freyd
algebra for every structural endofunctor.

In general, definitions that treat the existence of extra structure as a property are not good practice.
The definition above ignores the possibility that an endofunctor may be structural in more than
one way, so we appear to be losing information. We get away with this here because Lemma 4.1.4
produces the extra structure when it is needed. Otherwise, we would have to ask explicitly for
parameterized invariants as in [10] (see Section 4.2.8).

Over ordinary categories, every delivery of Freyd algebras extends to a functorCat(D,D)→
D which, using the closed structure ofCat, gives us a family of functorsµB : Cat(B×D,D)→
Cat(B,D) that interpret parameterized recursive types. In the structural setting, a delivery of
ordinary Freyd algebras for the functors inStr(D,D) doesn’t necessarily lift to a structural functor
Str(D,D)→D but does give us a family of functorsµB : Str(B×D,D)→ Str(B,D). So, despite
our strengthened notion of functor, there is no need to strengthen the notion of Freyd algebra.
In fact, the construction ofµ only uses the final coalgebra property of Freyd algebras. This is a
striking feature of the structural setting.
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In the structural setting, however, one must take care with opposites. Over ordinary cate-
gories, the definition of free invariant Freyd uses in [14] is visibly self-dual: The algebra part
of an invariant forF is a Freyd algebra if and only if the coalgebra part is a Freyd algebra for
Fop. In the structural setting, we cannot, in general, construct opposite categories and functors.
However, we can if the action onD has a right adjoint, in which case we say that the action is
bistructural. For bistructural actions we obtain the dualities of algebraic compactness: A cate-
gory D is compact if and only if the opposite categoryDop is compact if and only if the doubled
categoryDop×D is compact.

Our account of structural compactness makes no explicit use of enriched, internal or indexed
category theory. However, these more sophisticated perspectives are important conceptually and
technically. The indexed perspective abstracts from both the structural and enriched settings and
guides our understanding of many constructions. Technically, enriched categories have domi-
nated abstract domain theory ever since Wand introduced the use of O-categories [43]. Recent
work by Fiore [10, 11, 12], in which compact categories are actually constructed, is motivated
by questions of enrichment. So before we consider examples in Section 4.3, we explain how to
set up a correspondence between the enriched and structural settings in Section 4.2.

Terminology. In this chapter, all use of the terms ‘compact’, ‘complete’ and ‘cocomplete’ is
in the algebraic sense.

4.1 Algebraic Compactness in the Structural Setting

Our basic result, Lemma 4.1.4, actually applies to structural cocompleteness.

Definition 4.1.1 A structural category D isstructurally cocompleteif it has a final coalgebra for
every structural endofunctor.

We use the Lemma to show that structural cocompleteness implies structural parameterized co-
completeness.

Definition 4.1.2 A structural category D isstructurally parameterized cocompleteif it has a
structural parameterized final coalgebra for every structural parameterized endofunctor. Given a
structural parameterized endofunctor F: B×D→D, astructural parameterized final coalgebrais
a structural functorφ : B→D together with a transformation whose componentsπb : φb→Fbφb
are final coalgebras.

To handle compactness properly, we require opposites, but opposites are not a natural feature
of the purely structural setting. Therefore, in Section 4.1.12, we strengthen the notion of struc-
tural action to that of bistructural action and check that the dualities of ordinary compactness lift
to the (bi)structural setting. The whole thing works out very nicely.

4.1.3 The structurality of delivery functors.

The universal properties of final coalgebras allow us to build both a delivery functor and a natural
transformation that makes the delivery functor structural.

Lemma 4.1.4 Given a structural functor F: B×D→ D and a final coalgebraπb : φb→ Fbφb
for each endofunctor Fb: D→D, final coalgebra delivery lifts to a structural functorφ : B→D.
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Proof. Using the final coalgebra property, the functor part of the structural endofunctorF deter-
mines the functor part ofφ while the transformationθF determines the transformationθφ .

Fbφb′
Fbφ f // Fbφb F(c�b)(c�φb)

F(c�b)θφ // F(c�b)φ(c�b)

Fb′φb′

F f φb′

OO

c�Fbφb

θF

OO

φb′

πb′

OO

φ f // φb

πb

OO

c�φb

c�πb

OO

θφ // φ(c�b)

π(c�b)

OO

The functorality ofφ and the naturality and coherence ofθφ follow from the uniqueness of
induced maps. Take, for example, the coherence ofθφ with respect to theι . The components of
the compositeφι ◦θφ and the components ofι give coalgebra morphisms which must both equal
the unique morphism induced by the final coalgebra.

Fb(c�φb)
Fbθφ // Fbφ(c�b)

Fbφι // Fbφb

F(c�b)(c�φb)

Fι(c�φb)

OO

F(c�b)θφ // F(c�b)φ(c�b)

Fιφ(c�b)

OO

c�Fbφb

θF

OO

c�φb

c�πb

OO

θφ // φ(c�b)

π(c�b)

OO

φι // φb

πb

OO Fb(c�φb) Fbι // Fbφb

F(c�b)(c�φb)

Fι(c�φb)

OO

Fιι // Fbφb

c�Fbφb

θF

OO

ι // Fbφb

c�φb

c�πb

OO

ι // φb

πb

OO

�
If we have a final coalgebra for every structural endofunctor onD, then we have one for every

endofunctor of the formFb, whereF is a structural functor onB×D. Therefore, in the structural
setting, we get parameterized cocompleteness for free.

Corollary 4.1.5 Every structurally cocomplete category is structurally parameterized cocom-
plete.

Given a structurally cocomplete categoryD, we build a family of functors fromStr(B×D,D)
to Str(B,D) indexed byB, the structural category of parameters.

Theorem 4.1.6 For structurally cocomplete D, parameterized final coalgebra delivery gives a
family of functors

µB : Str(B×D,D)→ Str(B,D)

that is natural in B up to a canonical isomorphism.

Note that, although we do have a functorY : Str(D,D)→ D, we are not simply composing this
with the transpose ofF to obtain a functorY ◦ F because this does not tell us how to make
the composite structural. The categoryStr(D,D) and the functorsF andY are not, in general,
structural.

Using Lemma 4.1.4 and the same square root construction Freyd uses in [14], it can be
shown that the product of structurally cocomplete categories is structurally cocomplete. If the
product is structurally cocomplete, the factors are structurally cocomplete, and so the structurally
cocompleteness of the product is equivalent to the structurally cocompleteness of the factors.
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Theorem 4.1.7 Structural categories A and B are structurally cocomplete if and only if their
product is structurally cocomplete.

Every Freyd algebra has an associated final coalgebra, so Lemma 4.1.4 specializes to Freyd
algebra delivery.

Corollary 4.1.8 Given a structural functor F: B×D→D and a Freyd algebraσb : Fbφb→ φb
for each endofunctor Fb, Freyd algebra delivery lifts to a structural functorφ : B→ D.

The results for cocompleteness specialize to results for compactness.

Theorem 4.1.9 If D is structurally compact then it is structurally parameterized compact and
parameterized Freyd algebra delivery gives a family of functors

µB : Str(B×D,D)→ Str(B,D)

natural in B up to a canonical isomorphism.

Theorem 4.1.10Structural categories A and B are structurally compact if and only if their prod-
uct is structurally compact.

The dual of Lemma 4.1.4 applies to the parameterized initial algebra construction, but pro-
duces a costructural delivery functor from a costructural parameterized endofunctor.

Corollary 4.1.11 Given a costructural functor F: B×D→D and a initial algebraσb : Fbωb→
ωb for each endofunctor Fb: D→ D, then initial algebra delivery lifts to a costructural functor
ω : B→ D.

Given a functorF : B×D→ D and a Freyd algebraσb : Fbφb→ φb for each endofunctor
Fb : D→ D, we are spoiled for choice: we can build a delivery functor using either the initial
algebra construction or the final coalgebra construction. But the first lifts to the costructural
setting while the second lifts to the structural setting, and the two settings are distinct. A structural
action onD does not, in general, give a structural action on the opposite categoryDop.

4.1.12 The structural compactness of opposites and doubles.

However, if the action part of a structural action onD has a right adjoint, then there is a corre-
sponding structural action onDop.

Definition 4.1.13 Anadjunction of parameterized functorsbetween� : C×A→B and�: Cop×
B→ A is given by a natural bijection B(c�a,b)→ A(a,c � b). Thecounitε : c� (c � b)→ b
at c and b corresponds to the identity on c� b.

For our purposes,A = B = D and we work in terms of the action�op: C×Dop→ Dop. We
therefore use the corresponding bijection

r : D(c�d′,d)→ Dop(c �op d,d′).

An adjunction between actions then sets up a correspondence between structurality and costruc-
turality.

Proposition 4.1.14 Given adjoint actions�a�, transformationsι andδ that make� structural
correspond to transformations rι and r(ε ◦ (c� ε)◦δ ) that make�op structural.

This allows us to make the following definition.

Definition 4.1.15 Abistructural actionis a structural action together with a right adjoint costruc-
tural action with corresponding transformations.
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A similar correspondence exists at the level of functors.

Proposition 4.1.16 Given bistructural actions on A and B each transformationθ that makes a
functor F : A→ B structural corresponds to a transformation r(Fε ◦θ) that makes the opposite
functor Fop structural.

Definition 4.1.17 A bistructural functoris a functor between bistructural categories equipped
with a transformation making it structural together with a corresponding transformation making
it costructural.

For bistructuralD, structural cocompleteness, completeness and compactness are equivalent
to costructural cocompleteness, completeness and compactness.

Corollary 4.1.18 A bistructural category D is structurally (co)complete (compact) if and only if
it is costructurally (co)complete (compact).

This allows the following definition.

Definition 4.1.19 A bistructural category isbistructurally (co)complete (compact)if it has a
(final)initial (co)algebra (Freyd algebra) for every bistructural endofunctor.

Bistructural categories have bistructural opposites, bistructural cocompleteness is dual to bistruc-
tural completeness and bistructural compactness is self-dual.

Corollary 4.1.20 A bistructural category D is bistructurally cocomplete (compact) if and only if
the corresponding Dop is bistructurally complete (compact).

Here we must be careful. As we mentioned at the end of the previous section, there are two
ways to construct the delivery functor for Freyd algebras. At the level of ordinary categories,
they give the same functor, but here we must also check that the double delivery is bistructural.

Proposition 4.1.21 Given a bistructurally compact category D, the structural final coalgebra
and the costructural initial algebra constructions produce corresponding delivery functors.

With this sanity check out of the way, we are free to use the doubling trick.

Corollary 4.1.22 A bistructural category D is structurally compact if and only if Dop×D is
structurally compact.

4.2 Compactness in Various Settings

The indexed setting provides a useful perspective on both the structural and the enriched settings.
An indexed category associates a categoryDc to each objectc in C. Arrowsd′→ d in Dc corre-
spond to arrowsc�d′→ d in the structural setting and to arrowsc→D(d′,d) in the enriched
setting. We think of the indexed setting as neutral and view the structural and enriched settings
as parameterized and curried, respectively. For the notion of indexed category see [18].

4.2.1 Indexed Compactness

The 2-categoryInd of C-indexed categories replaces the individual categories and functorsCat
with families of categories and functors indexed by the objects ofC. Products and opposites lift
componentwise fromCat. The notion of algebraic compactness also lifts. The indexed definition
requires a Freyd algebra in each component of the indexed category. These must be preserved by
the reindexing functors, which lift to algebras and coalgebras via their commutativity with the
components of the indexed endofunctor.
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Definition 4.2.2 An indexed categoryD is indexedly compactif, for every indexed endofunctor
F : D→ D, each component of F has a Freyd algebra and reindexing preserves Freyd algebras.

The delivery construction also lifts, so indexedly compact categories are indexedly parameterized
compact and we obtain a family of functors

µB : Ind(B×D,D)→ Ind(B,D).

While Definition 4.2.2 is the natural notion of compactness in the indexed setting, a weaker,
technical definition is sufficient to obtain structural compactness from enriched compactness.

Definition 4.2.3 An indexed categoryD is compact atc if, for every indexed endofunctorF :
D→ D, the componentFc has a Freyd algebra.

4.2.4 Structural Compactness and Indexed Compactness

As described in Chapter 3 (and in Appendix B), given a structural action onD we may con-
struct an indexed categoryD. Locally, the construction gives functorsi : Str(B,D)→ Ind(B,D).
Globally, we have a 2-functori : Str→ Ind. We would like to findD in Str for which i reflects
compactness. For our purposes, the existence of (what we will call) a unit will suffice.

Definition 4.2.5 A structural action on D has unit u if the mapsι : u�d→ d are isomorphisms.

WhenD has unitu, D is isomorphic toDu and the isomorphism matches each structural endo-
functorF onD with the endofunctorFu onDu.

Proposition 4.2.6 If D has unit u andD is compact at u, then D is structurally compact.

Corollary 4.2.7 If D has a unit andD is indexedly compact, then D is structurally compact.

Note that we are being somewhat glib. The universal properties of Freyd algebras and Corol-
lary 4.1.8 ensure that the details take care of themselves.

The 2-functori preserves products. so, locally, we have functors

iB : Str(B×D,D)→ Ind(B×D,D)

and, whenD has a unit andD is indexedly compact, thei commute with theµ (up to a canonical
isomorphism).

Str(B×D,D)
µB //

iB
��

Str(B,D)

i
��

Ind(B×D,D)
µB // Ind(B,D)

Similar results hold for bistructural compactness. Also, the restriction ofi to bistructural ac-
tions preserves opposites and so, for indexed categories corresponding to bistructural categories,
we can play any games we like with opposites and doubles.

4.2.8 Enriched Compactness and Indexed Compactness

In the enriched setting, we cannot base a theory of compactness on the sort of naı̈ve definition
we use in the structural setting. Take, for example, a naı̈ve definition of enrichedly complete
category.

A V-categoryA isV-algebraically completeif for everyV-functorF , the underlying
functorF0 onA0 has an initial algebra. [10, Definition 6.1.4]
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Because the delivery of initial algebras does not, in general, enrich, it is necessary to either
strengthen the definition of initial algebra [34, Condition 2.3] or ask explicitly for an enrichment.

Let V be cartesian. AV-categoryB is parameterisedV-algebraically completeif it
is V-algebraically complete and for everyV-functor F : A×B → B and every in-
dexed family{ιF0

A : F(A,F†
0 A)→ F†

0 A}A∈|A| of initial F0(A,−)-algebras, the induced

functorF†
0 A :A0→B0 V-enriches. [10, Definition 6.1.7]

The problem revolves around the underlying category construction. It helps to observe that
the underlying category is just one component of an indexed category [37, 34]. Briefly, to con-
struct an indexed categoryD from a V-enriched categoryD, the mapsc→ D(d′,d) in V are
collected to form the arrowsd′ → d of Dc. We define composition and identities inDc using
composition and identities inD together with mapsc→ c⊗c andc→ I .

c⊗c

��

coo

���
�
� I coo

���
�
�

D(d′,d)⊗D(d′′,d′) // D(d′′,d) I // D(d,d)

If these maps makec a comonoid, we obtain a category. Because the comonoid structure onc
affects the behaviour of arrows inDc, we must distinguish between the categories produced with
different structures. In general then, we obtain a category indexed over ComV, the category of
comonoids inV. WhenV has a good category of comonoids, the indexed category retains much
of the information in the enriched category.

The monoidal categoryV always has at least one comonoid, the canonical comonoid on the
unit I . The ordinary underlying category, rather unfortunately denotedD0, is the componentDI

of the associated indexed categoryD and so the functor part of enriched endofunctors onD is
the component atI of the associated indexed endofunctor. The naı̈ve definition of enrichedly
compact category thus amounts to compactness atI .

Definition 4.2.9 An enriched categoryD is enrichedly compactif, for every enriched endofunc-
tor F , the underlying endofunctorF0 onD0 has a Freyd algebra.

Proposition 4.2.10 An enriched categoryD is enrichedly compact if the indexed categoryD is
compact at I.

When the monoidal structure onV gives products, the forgetful functor from ComV to V
has an inverse. So whenV is cartesian each object carries a canonical comonoid structure which
can be used in the above construction to obtain aV-indexed category. Globally this gives a
2-functor j : Enr→ Ind from the 2-category ofV-enriched categories to the 2-category ofV-
indexed categories. Moreover, withV cartesian, every indexed functor fromE to D is obtained
from an enriched functor fromE toD.

Proposition 4.2.11 If the enriching categoryV is cartesian andD is enrichedly compact then
theV-indexed categoryD is compact at1.

Remark. In the indexed category construction, the comonoidc is being used as a enriched
cocategory. Given aCop-enriched categoryB with the same objects asD (soB andD together
form aCop×C-enriched category), we takeDB(d′,d) = C(B(d′,d),D(d′,d)) and define compo-
sition and identities using the cocategory structure on the hom objects ofB.

B(d′,d)⊗B(d′′,d′)

��

B(d′′,d)oo

���
�
� I B(d,d)oo

���
�
�

D(d′,d)⊗D(d′′,d′) // D(d′′,d) I // D(d,d)
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4.2.12 Structural Compactness Meets Enriched Compactness

The established notions of tensors and cotensors for enriched categories (see [7, Section 6.5])
provide a connection with structural and costructrual actions.

Proposition 4.2.13 Given aV enriched categoryD, V tensors give a structural action on the
underlying category D=D0 andV cotensors give a costructural action.

WhenV is cartesian, the structural action has unit 1 and gives the same indexed categoryD
as the enriched category. So, whenV is cartesian, we can apply Propositions 4.2.11 and 4.2.6.

Theorem 4.2.14 If V is cartesian andD hasV tensors and is enrichedly compact, then D=D0

is structurally compact.

To return from the structural or costructural action to the enriched category, we might intro-
duce a notion ofV exponential.

Definition 4.2.15 V exponentialsfor a structural (or costructural) action on D consist of a func-
tor ∧ : D×Dop→V together with a natural isomorphism D(c�e,d)∼= V(c,d∧e) (or a natural
isomorphism D(e,c→ d)∼= V(c,d∧e)).

Note however that in generalV exponentials do not give anything like aV-enriched category.
It has been observed that forV-enriched categories withV cotensors,V-algebraic complete-

ness implies parameterisedV-algebraic completeness [10]. We understand this in terms of the
corresponding costructural action, for which costructural completeness implies parameterized
costructural completeness.

4.3 Structurally Algebraically Compact Categories of Domains

The notion of Freyd algebra was motivated by the properties of invariants constructed in domain
theory. We therefore expect to find compact categories among the naturally occuring categories
of domain theory. These categories are either given concretely as categories of partial orders or
abstractly as (categories constructed from) categories satisfiying certain axioms. The concrete
categories are then viewed as (categories constructed from) the abstract categories.

It is generally accepted that the language of abstract domain theory should be based on the
monad structure carried by the lift functor. However, different perspectives on the monad struc-
ture have emerged. One account observes that, in the concrete examples, the category of monad
algebras represents the category of strict maps. The lift functor is then viewed as the signature of
a theory of domains (in a categorical theory of algebraic theories). Another account observes that
the Kliesli category represents the category of partial maps which suggests that the lift functor is
connected with the representation of partiality.

The notion of compactness does not clarify the role of the monad. In both the concrete
and abstract cases, both the categories of strict and of partial maps are compact. Compactness
provides a common axiomatics for the interpretation of recursive types in a variety of domain
theoretic models.

In the abstract examples below, accessibility and local presentability are size conditions
which ensure that the base category internalizes certain constructions from the ambient set theory
(or topos). The canonical actions of the base category are described in Section 5.3 of Chapter 5.

4.3.1 Categories of Pointed Objects

Let CPO be the category ofpredomainsandcontinuous maps. Objects are partial orders with
colimits of ω chains. Arrows are maps that preserve colimits ofω chains. Let CPPO⊥, be the
category ofdomainsandstrict maps. Objects are pointed predomains with all elements strictly
greater than the point. Arrows are continuous maps that preserve the point. The motivating
example of an algebraically compact category is CPPO⊥ [14].
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Fact 4.3.2 The categoryCPPO⊥ is not algebraically compact.

The usual fix is based on the canonical CPO-enrichment of CPPO⊥: the category CPPO⊥ has
Freyd algebras for all CPO-enriched endofunctors. Because CPO is cartesian and CPPO⊥ has
CPO tensors and cotensors, the enrichment corresponds to a bistructural action of CPO on
CPPO⊥ and structural, indexed and enriched compactness are all equivalent. Concretely, the
structural action ofc ond is the quotient ofc×d that identifies pairs containing the least element
of d and the corresponding costructural action is just the function spacec→ d.

Example 4.3.3 The categoryCPPO⊥ is bistructurally algebraically compact with respect to the
bistructural action ofCPO.

The lift functor may be viewed abstractly as a monad with extra structure. Fioreet aluse the
following definition. Adomain-theoretic commutative monadis a commutative strong monadT
on a cartesian closed categoryC, with an initial object 0 and an inductive fixed point object. For
the details see [12, Section 1]. A fixed point object is inductive if it is the colimit of the chain

0
b // T0

Tb // TT0
TTb // TTT0

TTTb // . . .

The lift functor is a domain-theoretic commutative monad on CPO. The object of vertical natural
numbers is the inductive fixed point object. The category of monad algebras for the lift monad is
isomorphic to the category CPPO⊥ of domains and strict maps, so Example 4.3.3 may be viewed
as an instance of the following.

Example 4.3.4 The category CT of monad algebras for a domain-theoretic commutative monad
T on C is bistructurally algebraically compact with respect to the canonical action of C (assum-
ing C is locally presentable and T is accessible).

4.3.5 Categories of Partial Maps

Let pCPO be the category ofpredomainsandcontinuous partial maps. Objects are partial orders
with colimits of ω chains. Arrows are partial maps, defined on sets that contain colimits ofω

chains, that preserve colimits ofω chains. The category pCPO carries a structural action of CPO
and is structurally isomorphic to the category CPPO⊥. The action ofc ond is simply the product
c×d and the corresponding costructrual action is simply the predomain of functions fromc→ d.

Example 4.3.6 The categorypCPOis bistructurally algebraically compact with respect to the
bistructural action ofCPO.

Again the lift functor may be viewed abstractly, this time as a means of representing partiality.
Pull-backs are used to set up a correspondence between certain partial maps and maps in the
Kliesli category. Fioreet al use the following definition. Alifting monad is a commutative
strong monad on a categoryC with a terminal object, such that the unitη is cartesian,C has all
pull-backs ofη1 andη classifies partial maps with domains given by pull-backs ofη1 [12]. See
[12, Appendix A] for details. The lift functor is a lifting monad on CPO and the Kliesli category
for this monad is isomorphic to pCPO, so Example 4.3.6 may be viewed as a instance of the
following.

Example 4.3.7 The Kliesli category CT for a domain-theoretic lifting monad T on C is bistruc-
turally algebraically compact with respect to the canonical action of C (assuming C is locally
presentable and T is accessible).
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Chapter 5

Structural Adjunctions

Algebraically compact categories do not exist in a vacuum. They typically participate in an
adjunction and enrich in a category with fixed points. The precise status of these structures is
still the subject of active research [11, 12]. Here we show how known categories of domains may
be presented in terms of the structural setting. This allows us to apply the theory of structural
compactness developed in Chapter 4. The structural setting, which allows us to present the
structure of categories of domains with no mention of enrichment, reduces the technical overhead
associated with the use of algebraic compactness.

In Section 5.1, we examine monoidal structures from the perspective of the structural set-
ting. To apply our theory of structural compactness, it is enough to show that monoidal adjunc-
tions may always be viewed as structural adjunctions. Additional structure—closed, symmetric,
cartesian—however, can also be viewed in terms of structural actions. Symmetric structure, for
example, makes the monoidal structure structural. This allows the monoidal structure to partici-
pate in endofunctors with invariants given by structural compactness.

Kleisli categories of domains, which represent categories of partial maps, have costructural
actions (known as Kleisli exponentials) without having the closed structure that would give us
the costructural action in a monoidal adjunction. Therefore, in Section 5.2, we give definitions
that describe categories of domains directly in terms of structural actions.

Eilenberg-Moore categories of domains, which represent categories of pointed objects, then
provide our standard examples of monoidal adjunctions with all the trimmings, while Kleisli
categories of domains provide examples of (more) purely structural adjunctions.

5.1 Monoidal Adjunctions as Structural Adjunctions

A monoidal adjunctionis an adjunction given by monoidal functors and monoidal transforma-
tions between monoidal categories. Likewise, astructural adjunctionis given by structural func-
tors and structural transformations between categories with structural actions (of some fixed cate-
gory). If we ignore the functors and transformations that make the adjoints monoidal or structural
we obtain theunderlying adjunction.

Theorem 5.1.1 For every monoidal adjunction there is a canonical structural adjunction with
the same underlying adjunction and acting categoryComC.

Proof. Given a monoidal adjunctionL a U : D→ C, a general theorem of 2-algebraic struc-
ture [19] (established by Day in the special case of monoidal structure) constructs inverses to
the transformations that make the left adjointL monoidal. For example, the transpose of the
transformationIC→ U(ID) gives an inverse to the transformationID → L(IC). Using this op-
monoidal structure,L lifts to comonoids (by Proposition 3.1.12) and so precomposition with
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L carries the canonical structural action of ComD on D to a structural action of ComC on D
given byc�d = Lc⊗d, where herec is a comonoid inC. In more detail, the transformation
ψL : c�Lc′ = Lc⊗D Lc′ → L(c⊗C c′) that makesL monoidal also makes it structural, and the
transformationψU that makesU monoidal gives us a transformationψU ◦(η⊗CUd) : c⊗CUd→
U(Lc⊗D d) = U(c�d) that makesU structural. It can be checked that the unit and counit are
then structural tranformations. �

We view monoidal adjunctions as structural adjunctions so that we can ask for structural
compactness.

Definition 5.1.2 Acocomplete (compact) monoidal adjunctionis a monoidal adjunction in which
D is structurally cocomplete (compact) with respect to the canonical structural action ofComC.

The notion of compact monoidal adjunction captures enough of the structure of categories of
domains to proceed directly to a discussion of canonical fixed points (see Section 6.3.1), but our
full theory of canonical fixed points makes use of additional structure.

5.1.3 Closed Structure

Given a monoidal closed adjunction, we could construct a bistructural adjunction, but parts of a
monoidal closed adjunction can be dropped and we are left with structures that still look sensible
from the structural perspective.

Monoidal structure isclosedif its multiplication, viewed as a parameterized endofunctor, has
a right adjoint (Definition 4.1.13).

Definition 5.1.4 Asemiclosed monoidal adjunctionis a monoidal adjunction in which the monoidal
structure on D is closed.

With D closed monoidal, the canonical structural action onD has a right adjoint and the corre-
sponding costructural action onD is given byc � d = Lc( d. This makesD bistructural.

Definition 5.1.5 A (co)complete (compact) semiclosed monoidal adjunctionis a semiclosed monoidal
adjunction in which D is bistructurally (co)complete (compact).

Closed structure can also be described independently of monoidal structure. A closed cate-
gory D has an objectI and an operation(: Dop×D→ D together with natural transformations
satisfying coherence laws.

Definition 5.1.6 A semimonoidal closed adjunctionis a closed adjunction La U : D→ C in
which the closed structure on C is adjoint to monoidal structure.

We ask for monoidal structure onC so that the closed adjunction can be viewed as a costructural
adjunction with acting category ComC.

Definition 5.1.7 Acomplete (compact) semimonoidal closed adjunctionis a semiclosed monoidal
adjunction in which D is costructurally complete (compact).

5.1.8 Cartesian Structure

Monoidal structure iscartesianif its multiplication gives products and its unit is final.

Definition 5.1.9 Amonoidal/cartesian adjunctionis a monoidal adjunction in which the monoidal
structure on C is cartesian.

The properties of products induce a symmetry on the multiplication and commutative comonoid
structure on objects. Given a symmetric monoidal categoryC, we write CComC for the full sub-
category of ComC spanned by the commutative comonoids (the symmetry is used to express the
commutativity of a comonoid).
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Proposition 5.1.10 (after Fox [13]) Cartesian monoidal structure carries a unique symmetry
and the forgetful functorforget : CComC→C has a unique sectioncom :C→CComC (meaning
forget◦com= IdC).

The inclusion forget : CComC→ ComC restricts the cononical structural action of ComC onC
to a structural action of CComC and, when the monoidal structure is cartesian, precomposition
with com :C→ CComC carries this to a structural action ofC, but this action is just the original
multiplication onC, so the multiplication of a cartesian monoidal categoryC is a structural action
of C on itself. Similarly, the canonical action of ComC on D is carried to an action ofC on D
given byc�d = Lc⊗d, wherec is now an object ofC. By Theorem 5.1.1

Corollary 5.1.11 For every monoidal/cartesian adjunction there is a canonical structural ad-
junction with the same underlying adjunction and acting category C.

Definition 5.1.12 Acocomplete (compact) monoidal/cartesain adjunctionis a monoidal/cartesian
adjunction in which D is structurally cocomplete (compact) with respect to the canonical struc-
tural action of C.

5.1.13 Symmetric Structure

In a monoidal adjunction, the adjunction is structural. In a symmetric monoidal adjunction, ev-
erything in sight is structural, the adjunction, the multiplications, the actions and all the natural
transformations, and in a symmetric closed monoidal adjunction, everything in sight is bistruc-
tural.

In more detail, suppose the monoidal structure onC is symmetric, as in a monoidal/cartesian
adjunction. We can use the symmetryγ : c⊗ b→ b⊗ c to produce a transformationθb, with
componentsc⊗ (b⊗a)→ b⊗ (c⊗a). This transformation satisfies the laws for the structurality
of the action ofb. Note that these laws involveθb and the transformations that make the action of
c structural and are independent of any transformations that may make the action ofb a comonad.

WhenC is symmetric closed monoidal, the opposite of the function space gives a structural
action onCop and the symmetry, which makes the action ofb onC a structural endofunctor, also
makes the corresponding action onCop a structural endofunctor. It can also be checked that the
adjunction between these endofunctors has structural unit and counit.

Definition 5.1.14 A symmetric monoidal/cartesian closed adjunctionis a semiclosed monoidal
adjunction in which D is symmetric and C is cartesian closed.

Remark. Given a symmetry for the structure onD, semiclosed monoidal adjunctions have duals.
Choose an objectr in D, and observe that, via the symmetry, the functor¬ : Dop→ D given
by ¬d = d( r is right adjoint to its own opposite¬op. The self adjunction is monoidal and,
composed with the adjunctionL aU , produces a second semiclosed monoidal adjunction(¬op◦
L) a (U ◦¬) : Dop→C.

5.2 Structural Adjunctions Proper

Since we view a monoidal adjunction, as a structural adjunction, we could simply ask for a
compact structural adjunction and proceed directly to a discussion of canonical fixed points (see
Section 6.3.1).

Definition 5.2.1 A compact structural adjunctionis a structural adjunction LaU : D→C with
D structurally compact.

However, our theory of fixed points makes use of additional structure and, as we saw in Sec-
tion 5.1, the additional structure can be described directly in terms of structural actions.



5.2. Structural Adjunctions Proper55

5.2.2 Structurality and Balance

As we observed in Section 5.1.13, when a structural adjunction is given by a monoidal adjunction
the structurality of the actions, taken as functors, can be derived from a symmetry. If we do not
ask for monoidal structure, we must ask for the structurality of the actions directly. For example,
our account of parameterized fixed points requires the structurality of the action ofC on itself.

In the case of a self-action, structurality is like a cross between symmetry and associativity.
If we ask for structurality at one pointb of a self-action�, we are asking for a transformation
θb with componentsc� (b� a)→ b� (c� a), which we think of as a form of (lax) symmetry
onC. If we ask for structurality of the whole action, we are asking for a transformationθ� with
componentsc� (b�a)→ (c�b)� (c�a). Givenθ� we obtain aθb for eachb by composition
with λ � (c� a). On the other hand, by composition with(c� b) � λ we obtain anαb with
componentsαb : c� (b�a)→ (c�b)�a, which is a lax associativity.

To avoid the expression ‘structural structural action’, we use the word ‘balance’.

Definition 5.2.3 A structural action or structural functor isbalancedif the functors and trans-
formations that make it structural are themselves structural.

As it stands, this definition is a bit slippery. For our purposes, we will assume that structural
actions on products are given by products of structural actions and that the acting categoryC
carries a fixed self-action�. A balanced structural action� : C×D→ D therefore includes a
natural transformationθ� with componentsc� (b�d)→ (c�b)� (c�d).

A balanced adjunctionis given by balanced functors and natural transformations between
categories with balanced actions. For example, symmetric monoidal adjunctions give balanced
adjunctions, balanced monoidal adjunctions in fact. For parameterized fixed points, however
it is really the balancedself-action ofC that is most useful. We therefore make the following
definition.

Definition 5.2.4 A suitable structural adjunctionis a structural adjunction LaU : D→C where
C is the acting category and the action on C is balanced.

For example, a monoidal/cartesian adjunction gives a suitable structural adjunction. This is
enough for an account of parameterized fixed points, but to get the most out of the structural
compactness ofD, we can ask for everything to be balanced.

Definition 5.2.5 A suitable balanced adjunctionis a balanced adjunction LaU : D→C where
C is the acting category (and the balance is with respect to the action on C).

For example, a symmetric monoidal/cartesian adjunction gives a suitable balanced adjunction.

5.2.6 Exponential Structure

Suppose we view a monoidal/cartesian adjunction as a suitable structural adjunction with the
action ofC on itself given by the product and the action onD given byc�d = Lc⊗d. With D
monoidal, we haved ∼= d⊗ I and soLc∼= Lc⊗ I = c� I . The unitI allows us to expressL in
terms of�.

If we intend to deriveL from an objectI , we might just ask for a structural functorU into the
acting category.

Definition 5.2.7 A suitable structural functoris a structural functor U: D→C where C is the
acting category.

Given a suitable structural functorU , we could ask for an objectI such thatL, given by
Lc = c� I , is left adjoint toU . Now suppose the action onD is bistructural, with adjoint action
�: Cop×D→ D, and consider the functorP : C→ Dop given byPc= c �op I . WhenU arises
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from a semiclosed monoidal adjunction,P is (monoidal) left adjoint toR: Dop→C given byRd=
U(d( I). Considering thatUd may be isomorphically expressed asU(I ( d), we generalize
from U : D→C to an exponential− : D×Dop→C.

Definition 5.2.8 A balanced exponentialis a balanced bistructural category D with a balanced
action on the acting category and with an exponential given by a structural functor− : D×Dop→
C and structural units and counits.

A suitable exponential is determined by a balanced structural action

• � : C×C→C, δ� : c�a→ c� (c�a), ι� : c�a→ a

• θ� : c� (b�d)→ (c�b)� (c�d)

and a balanced structural action

• � : C×D→ D, δ� : c�d→ c� (c�d), ι� : c�d→ d

• θ� : c� (b�d)→ (c�b)� (c�d)

that has a right adjoint as a functor parameterized byC,

• �: Cop×D→ D, ε→ : c� (c � d)→ d, η→ : d→ (c � (c�d))

and a structural right adjoint as a functor parameterized byD.

• − : D×Dop→C, ε : (d−e)�e→ d, η : c→ ((c�d)−d)

• θ− : c� (d−e)→ ((c�d)−(c�e))

Any categoryD has a balanced exponential with acting categoryC = 1. With respect to the
canonical actions, any semiclosed monoidal/cartesian adjunctionL aU has an exponential given
by d−e= U(e( d). If the adjunction is symmetric, then the exponential is balanced.

An exponential includes isomorphisms

D(c�e,d)∼= C(c,d−e)∼= D(e,c � d)

from which we may obtain adjunctions both fromD toC and fromDop toC. When the exponen-
tial is balanced, we obtain suitable balanced adjunctions.

Proposition 5.2.9 Given a balanced exponential on D and an object e in D, the functors defined
by Lc= c�e and Ud= d−e give a suitable balanced adjunction.

The adjoint functors in a semiclosed monoidal/cartesian adjunction are recovered from the canon-
ical exponential by takinge= I .

Exponentials on bistructural categories have opposites. If(C,D,�,�,−) is a balanced ex-
ponential, then so is(C,Dop,�op,�op,−σ ), whered−σ e= e−d. If Proposition 5.2.9 is applied
to the opposite of a balanced exponential, we obtain a suitable balanced adjunction betweenDop

andC. If the exponential is built from a semiclosed monoidal/cartesian model and we takee= r
we obtain the dual adjunction mentioned at the end of Section 5.1.13.

A cocomplete suitable exponentialhasDop×D structurally cocomplete. The opposite of a
cocomplete suitable exponential is cocomplete. Likewise for complete suitable exponentials. A
compact suitable exponentialhasDop×D or, equivalently,D structurally compact. Compact
suitable exponentials have compact opposites.



5.3. Structural Adjunctions on Categories of Domains57

5.3 Structural Adjunctions on Categories of Domains

The examples of compact categories given in Section 4.3 are characterized by adjunctions with
the base category. For categories of pointed objects the adjunction is monoidal closed and hence
bistructural. For categories of partial maps it is a proper bistructural adjunction.

5.3.1 Categories of Eilenberg-Moore Algebras

Given a monadT on a categoryC, the categoryCT of Eilenberg-Moore algebras forT is charac-
terized by an adjunction withC. WhenC is cartesian closed andT has a commutative strength,
CT is symmetric monoidal closed and so is the adjunction [20].

The abstract category of pointed objectsCT in Example 4.3.4, therefore participates in a
monoidal/cartesian adjunction. From this we obtain a canonical structural action ofC onCT . Due
to the cartesian structure onC, enriched endofunctors onD correspond to structural endofunctors
and so enriched compactness forD is equivalent to structural compactness.

Example 5.3.2 The Eilenberg-Moore adjunction constructed from a domain-theoretic commu-
tative monad is a compact symmetric monoidal/cartesian closed adjunction.

The categoriesD = CPPO⊥ andC = CPO carry the standard concrete example of such an
adjunction. The left adjoint is the lift functor which adds a least element and the right adjoint is
the forgetful functor which includes domains among predomains. It can be checked that CPPO⊥
is isomorphic to CPOT , whereT = forget◦ lift.

Example 5.3.3 The adjunctionlift a forget : CPPO⊥→CPOis a compact symmetric monoidal/cartesian
closed adjunction.

5.3.4 Categories of Kleisli Maps

Given a monadT on a categoryC, the categoryCT of Kleisli maps forT is also characterized
by an adjunction withC. A structural monadis given by a structural endofunctor and structural
transformations.

Theorem 5.3.5 Given a structural monad T: A→ A, the Kleisli adjunction is structural with
the canonical action of c on a map given by f: a′ → Ta in the Kleisli category CT given by
θa◦ f : c�a′→ T(c�a).

Proof. Because a structural action is an indexed comonad, a structural monad is a monad with an
indexed distributive law over the indexed comonad. Just as a distributive law allows one to lift a
Kleisli adjunction to a comonad adjunction (see [35]), the indexed distributive law allows us to
lift the Kleisli adjunction to an indexed comonad adjunction, which is a structural adjunction.�

The notion of a strong monad on a cartesian category coincides with the notion of a structural
monad with respect to the canonical structural action given by the cartesian structure.

Corollary 5.3.6 Given a cartesian category C with a strong monad T, the Kleisli adjunction is
a suitable structural adjunction with the canonical actions of C.

The abstract category of partial mapsCT in Example 4.3.7 therefore participates in a suit-
able structural adjunction. Again, due to the cartesian structure onC, the structural algebraic
compactness of the Kleisli category follows from its enriched compactness.

Example 5.3.7 The Kleisli adjunction constructed from a domain-theoretic commutative lifting
monad is a compact suitable structural adjunction.
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The categoriesD = pCPO andC = CPO carry the standard concrete example of such an
adjunction. The left adjoint is the inclusion of total maps among partial maps and the right
adjoint is the lift functor that represents partial maps using the extra element. It can be checked
that pCPO is isomorphic to CPOT , whereT = lift ◦ incl.

Example 5.3.8 The adjunctionincl a lift : pCPO→ CPO is a compact suitable structural ad-
junction.
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Chapter 6

Canonical Fixed Points

It is observed in [14] that certain Freyd algebras correspond to fixed point objects in a related
category. The idea of a fixed point object is to generate fixed points for some class of endomaps
via some generic endomap equipped with a fixed point. By generic, we mean equipped with a
canonical endomap morphism into any endomap of the given class. When the fixed point and
canonical endomap morphisms are unique in some sense, and the generic endomap belongs to the
given class, the family of fixed points that it generates is characterized by a uniformity property.
This is what happens in categories of domains and in categories of complete partial orders the
characterization is known as Plotkin’s Axiom.

In our setting the fixed point object is given by transposition.

Theorem 6.0.9 Given an adjunction LaU : D→C, Freyd algebras for LU transpose to fixed
point objects in C (with respect to the monad UL).

This gives us a generic endomap suc :Uω → Uω that induces ordinary fixed points. Forc-
parameterized fixed points, we transpose a Freyd algebraL(c×Uψc)→ ψc to ac-parameterized
endomap succ : c×Uψc→Uψc.

In the tradition of abstract nonsense, we view succ as an algebra for the endofunctorS tak-
ing a to c× a and introduce a notion of fixed point algebra, an artifical device that subsumes
Freyd algebras and Mulry’s notion of fixed point object. This allows us to be particularly glib
in the statement of our general transposition result. Given an adjunctionL aU : D→C and an
endofunctorS: C→C, fixed point algebras forLSU transpose to fixed point algebras forS.

The notion of fixed point algebra, together with the transposition result, falls neatly into two
halves. The clean half is the based on the notion of corecusive algebra. Given a natural transfor-
mationη : IdC⇒UL and an endofunctorS: C→C, corecursive algebras forLSU transpose to
corecursive algebras forS. Note that this does not use the laws of the adjunction, just one of the
natural transformations.

The dirty half depends on notions of ‘pointed’ object and ‘strict’ map and the full adjunc-
tion laws. In an effort to tease apart the exact conditions used, we work with abstract classes of
pointed objects and strict maps. In applications we adopt definitions that abstract from adjunc-
tions between categories of partial orders where these terms originated.

6.1 Corecursive Algebras and Unique Fixed Points

Algebras for the identity endofunctor are endomaps. A corecursive algebra for the identity end-
ofunctor is an endomap with a strong form of unique fixed point.
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Definition 6.1.1 An endomap has avery unique fixed pointif it is a corecursive algebra for the
identity endofunctor.

If by point we mean a map from some fixed objectb, an endomaps with a very unique fixed
point has a unique fixed pointzb.

b
zb // φ

s

��
b

zb // φ

Typically b is a terminal object or a monoidal unit, but becausezb exists uniquely not just for
someb but forall b, our endomap has a unique fixed point in a generalised sense.

In Section 6.1.2, we examine a natural generalization of the notion of unique fixed point, but
we also show that the notion of very unique fixed point is strictly stronger. In Sections 6.1.7
and 6.1.10, we derive definitions for unique parameterized fixed points by interpreting Defini-
tion 6.1.1 in the Kleisli categories of comonads.

6.1.2 Very Unique Fixed Points and Unique Fixed Generalized Points

A b-point inφ is just any map fromb to φ and afixed b-point fors : φ → φ is ab-point z such
thats◦z= z.

Definition 6.1.3 An endomaps has a unique fixed pointif it has a unique fixed b-point zb for
each b.

In Set,s has a unique fixed point when there is a unique elementz∈ φ such thats(z) = z. In
a general categoryC, the mapszb behave as maps sending everything to one particular point, a
sort of virtual elementz. In terms of the Yoneda representation ofC, which represents a mapf
as the transformation̂f takingz to f ◦z in the category[Cop,Set] of presheaves onC, b-points in
φ are elements of̂φ at b ands has a unique fixed point when the transformationŝ fixes exactly
one element of̂φ at eachb, which is to say the equalizer of̂id andŝ is isomorphic to the constant
presheaf 1.

∗_

��

1

��

∗_

��
b zb //
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b zb //
_
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φ

b s◦zb // φ φ̂ b id◦zb
// φ

More generally, a diagram d inC has a unique fixed pointif lim d̂ ∼= 1 in [Cop,Set]. When
the diagram consists of an endomaps : φ → φ in parallel with the identity onφ we recover
Definition 6.1.3. IfC has a generating object, such a one element set in Set, our general notion
of unique fixed point simplifies. Ifb is a generating object, then

d has a unique fixed pointiff there is a unique cone on d with vertexb.

Another useful characterization involves the category Cone(d) of cones and cone morphisms
over the diagram d.

Lemma 6.1.4 The following are equivalent:

1. d has a unique fixed point.

2. The vertex projection fromCone(d) to C is an isomorphism.
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When d has a unique fixed point, the inverse of the vertex projection isb 7→ zb and every map
f : b→ a is a morphism from the conezb to the coneza

d

··
··
··
··
··
··

b
f //
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or, from the point of view of the cones, precomposition with an arbitrary mapf from b to a
carries the coneza to the conezb. When f is an endomap, precomposition withf has no effect at
all.

Corollary 6.1.5 If an endomaps has a unique fixed point, then for any f: b→ a we have zb =
s◦za◦ f .
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OO

zb // φ

In the case of a corecursive endomap, this means the mapszp depend solely on the carrier ofp.
It does not mean an endomap with a unique fixed point is a corecursive endomap. The notion of
corecursive endomap is stronger becauses◦z◦ p = z may hold forz other thanzb.

Counterexample 6.1.6If s : 3→ 3 fixes one element and swaps the other two, thens ◦ s = id.
This givess◦ id◦ s = id ands◦ s◦ s = s and so, ifs is taken forp, both id ands can be taken for
zp, buts 6= id.

More generally, ifs is a corecursive endomap and there existss− such thats ◦ s− = id, then
s is an identity and hence the identity on a terminal object. In particular, ifs is a corecursive
isomorphism, then it is the identity on a terminal object.

Limits. The relationships between limits, terminal objects and unique fixed points can get a
little confusing. The Yoneda representation preserves limits, so if d has limitt andt is terminal,
thend̂ has limit t̂ and t̂ is terminal which means d has a unique fixed point. Converses follow
from Lemma 6.1.4. When d has a unique fixed point,

t is terminaliff zt is a limit cone

or, looked at another way, whenC has a terminal objectt,

d has a unique fixed pointiff d has limitt in C.

In particular, in the presence of an endomaps with a unique fixed point, an objectt is terminal
iff zt equalizes idφ ands or, looked at the second way, in the presence of a terminal objectt, an
endomaps has a unique fixed pointiff t equalizes idφ ands.
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6.1.7 Comonoids and Parameterized Unique Fixed Points

Our treatment of parameterized maps is based on comonad structure. The comonads we have in
mind are given by multiplication, multiplication by any object inC if C has products or multipli-
cation by a comonoid object ifC is monoidal. By Proposition 5.1.10, the first is a special case of
the second, so supposeC carries monoidal structure andc carries comonoid structure given by
the maps

δ : c→ c⊗c and κ : c→ I .

If ⊗ actually gives products,δ andκ will be the diagonal and terminator forc. The functor
c⊗(·) carries comonad structure with comultiplication and counit given by the composite natural
transformations

α ◦ (δ ⊗ (·)) : c⊗ (·)⇒ c⊗ (c⊗ (·)) and λ ◦ (κ⊗ (·)) : c⊗ (·)⇒ (·),

whereα andλ are the associativity and left identity natural transformations for the monoidal
structure onC. We think of the Kleisli categoryCc for this comonad as a category of parameter-
ized maps: arrows inCc are given by mapsc⊗a→ a′ in C.

For a definition of parameterized very unique fixed point we interpret our definition of very
unique fixed point in such a Kleisli category. Whenc is a monoidal unit,c⊗ (·) is isomorphic to
the identity,Cc is isomorphic toC and the following reduces to Definition 6.1.1.

Definition 6.1.8 A c-parameterized endomaps : c⊗ψ → ψ has ac-parameterized very unique
fixed pointif the endomap it gives in Cc is corecursive algebra.

Taken as an endomap inCc, a c-parameterized map with a very unique fixed point has a unique
fixed point in the sense of Section 6.1. This means for each objectb, there is a unique fixed
b-point in the categoryCc for the endomap given bys, which is to say, a uniquec-parameterized
map zb : c⊗ b→ a such thatf ◦ (c⊗ zb) ◦ νb = x, using the definition of composition inCc.
Expandingν in terms of the monoidal structure, this becomesf ◦ (c⊗zb)◦α ◦ (δ ⊗b) = zb.

c⊗ (c⊗b)
c⊗zb // c⊗ψ

s

��

(c⊗c)⊗b

α

OO

c⊗b

δ⊗b

OO

zb // ψ

Compare this with a naı̈ve definition based on the example of products in Set. If we define a
‘c-parameterized fixed point’ fors to be a mapz : c→ ψ such thats◦ (c⊗x)◦δ = x

c⊗c
c⊗z // c⊗ψ

s

��
c

δ

OO

z // ψ

and ask for a unique suchz, we are implicitly fixingb = I where Definition 6.1.8 quantifies over
arbitraryb. This can be seen in the following proof.

Proposition 6.1.9 A c-parameterized endomap with a c-parameterized unique fixed point has a
unique ‘c-parameterized fixed point’.
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Proof. By coherence and naturality,ρ gives a coalgebra morphism fromδ to νI , so we have a
‘c-parameterized fixed point’zδ given byzI ◦ρ, wherezI gives the unique fixedI -point for the
endomaps gives inCc. In a monoidal category,ρ is an isomorphism and sozδ must be unique: a
second parameterized fixed point fors would give a second fixedI -point.

c⊗ (c⊗ I)
c⊗zI // c⊗ψ

s
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c⊗c

c⊗ρ
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(c⊗c)⊗ I

α

OO

c⊗c

ρ
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c⊗ I

δ⊗I

OO

zI // ψ

c

δ

OO
ρ
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6.1.10 Comonads and Parameterized Unique Fixed Points

More generally, supposeS : C→C carries comonad structure with comultiplicationν : S⇒ SS
and counitι : S⇒ Id.

Definition 6.1.11 An S-parameterized endomaps : Sψ → ψ has aS-parameterized very unique
fixed pointif the endomap it gives in the Kleisli category CS is a corecursive algebra.

Now the diagram inC that saysf is a morphism fromνb to s is the same diagram that saysf
gives a fixedb-point for the arrow given bys in the Kleisli categoryCS.

SSb
S f // Sψ

s

��
Sb

ν

OO

f // ψ

This means that, as endomaps inCS, corecursive algebras forS have unique fixed points in the
sense of Section 6.1. Actually, they have very unique fixed points.

Proposition 6.1.12 Taken as an endomap in the Kleisli category for S, a corecursive algebra for
S has a very unique fixed point.

This is Corollary 2.2.11 with the left and right Kleisli adjoints,KL andKR, for L andR. In this
adjunction, the transpose of a maps : Sa→ a′ in C is the map froma to a′ in CS given bys.
Note that we do not use the fact thatKL is left adjoint toKR. The comonad structure is used to
build the natural transformation IdCS⇒ KRKL, which is all we need. Here is another instance of
Corollary 2.2.11.

Proposition 6.1.13 Given functors R and L, a natural transformationη : Id→RL and a comonad
S, corecursive algebras for LSR transpose to give endomaps in CS with very unique fixed points.

This can be seen either as Lemma 2.2.12 followed by Proposition 6.1.12 or as Corollary 2.2.11
with L◦KL andKR◦R for L andR.

D
R // C

KR //
L
oo CS

KL

oo
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As we pointed out after Corollary 2.2.11, the transformationι can also be used to obtain
corecursive algebras forS from corecursive endomaps inC. Whenι is the counit of comonad
structure onS, this amounts to usingKR to carry endomaps inC to endomaps inCS. Using
η : Id→ RL, corecursive endomaps inC can be obtained from corecursive algebras forLR. We
therefore have two ways of obtaining corecursive endomapsCS, starting either with a corecursive
algebra forLSRor one forLR. In applications, the second is seen to be a degenerate form of the
first, with weaker properties.

6.2 Fixed Point Algebras

In this section, each category is equipped with a class of pointed objects and a class of strict maps.
We use boldface variables to range over these maps and objects. Astrict algebra morphismis one
given by a strict maph and apointed algebrais one with a pointed carriera (indicated by a dot on
the structure map when the carrier is implicit). Note that a pointed algebra does not necessarily
have a strict structure map and, although the terms ‘strict’ and ‘pointed’ suggest certain concrete
examples, the results below hold with fairly weak conditions on the choice of pointed objects and
strict maps. Note in particular that strict maps are not necessarily between pointed objects.

Definition 6.2.1 A fixed point algebrais a corecursive algebra from which there is a unique strict
algebra morphism into any pointed algebra.

Fb
Fzp // Fψ

Fr f //

s

��

Fa

f

��
b

p

OO

zp // ψ
r f // a

Note that fixed point algebras do not necessarily have strict structure maps and are not necessarily
pointed.

In the presence of a fixed point algebra, each set rec(p, f ) of recursive morphisms contains a
canonical recursive morphismcrm(p, f ) = r f ◦zp. The existence of such morphisms also follows
from a weaker form of fixed point algebra that appears in our analysis of transposition.

Definition 6.2.2 A weak fixed point algebrais a corecursive algebra equipped with a strict al-
gebra morphism into each pointed algebra.

6.2.3 Uniform Families of Recursive Morphisms

A fixed point algebra induces a well-behaved family of recursive morphisms into pointed alge-
bras. Given a coalgebrap and an algebrason a pointed objectc, we composer s with the unique
recursive morphismzp for s to obtain a canonical recursive morphism crp(p,s) into s.

Definition 6.2.4 A familyR(p,s) of recursive morphisms isuniform (with respect to strict maps)
if, given any strict morphismh between pointed algebras s0 and s1 we find thatR(p,s1) = h ◦
R(p,s0).

s0

h

  A
AA

AA
AA

A

p

R(p,s0)
??

R(p,s1) // s1

In applications, strict maps are closed under composition and families of canonical recursive
morphims are uniform.
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Proposition 6.2.5 If strict maps are closed under composition, the family of recursive morphisms
induced by a fixed point algebra is uniform.

Proof. If strict maps compose, then strict endomap morphisms compose. So, given a strict
endomap morphismh from s0 to s1, h◦ r s0 is a strict endomap morphism froms to s1 which must
then equal the unique strict recursive morphismr s1. From h ◦ r s0 = r s1 we haveh ◦ r s0 ◦ zb =
r s1 ◦zb, which meansh◦crm(p,s0) = crm(p,s1).

s
rs0 //

rs1
OOOOOOO

''OOOOOO

ṡ0

h

��?
??

??
??

p

zp

@@

crm(p,s0)

88

crm(p,s1) // ṡ1

�
If the fixed point algebra is pointed, uniformity characterizes its family of recursive morphisms.

Proposition 6.2.6 In the presence of apointedfixed point algebras for F, any uniform family of
recursive morphisms into pointed algebras s is given bycrm(p,s) = rs◦zp.

ṡ
rs

��=
==

==
==

=

p

zp

@@

rs◦zp // ṡ

Proof. Let R(p,s) be a uniform family of recursive morphisms for pointed algebrass. Our fixed
point algebras is pointed so this family includes a recursive morphism R(p,s) which must then
equal the unique recursive morphismzb. The algebra morphismr s is strict, so uniformity gives
R(p,s) = r s◦R(p,s) and hence R(p,s) = r s◦zp which means R(p,s) = crm(p,s).

ṡ
r f

&&MMMMMMMMMMMMM

p

R(p,s)=zp

88

R(p,s)=crm(p,s) // ṡ

�

Lemma 6.2.7 If strict maps are closed under composition, a pointed fixed point algebra induces
the unique uniform family of recursive morphisms (for a given endofunctor).

Applied to the identity endofunctor on categories of complete partial orders, we obtain the char-
acterization of least fixed points known as Plotkin’s Axiom.

6.2.8 Transposition of Fixed Point Algebras

Theorem 2.2.12 says corecursive algebrasLSRφ → φ transpose to corecursive algebrasSRφ →
Rφ . We want to extend this to fixed point algebras. Whereas Theorem 2.2.12 holds with no
conditions onR, L, η andS, the transposition of a fixed point algebras to a fixed point algebras
is less general. Given a pointed algebras for S, we need to show that there exists a unique strict
morphismr s from s to s. We expect to obtain this morphism from the unique strict morphismr ŝ

from s to some pointed algebrâs.

LSRφ
LSRr ŝ //

s

��

LSRd

ŝ
��

7→

SRφ
Srs //

s
��

Sa

s

��
φ

r ŝ // d Rφ
rs // a
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If s is an algebra forLSRthen its transposes is an algebra forS, without conditions onR, L, η

andS. Also, if f gives an algebra morphism froms to s′, thenR f gives an algebra morphism
from s to s′. In other words, the functorR lifts to a functorR from AlgLSRto AlgS.

LSRd
LSR f //

s
��

LSRd′

s′

��
7→

SRd
SR f //

s
��

SRd′

s′
��

d
f // d′ Rd

R f // Rd′

AlgLSR R //____________

under
��

AlgS

under
��

D
R // C

Suppose the algebrâs is pointed and transposes tos. SupposeR preserves strictness. Taking
r s = Rr ŝ then gives us a strict morphism froms to s. So, ifRpreserves strictness and issurjective
on pointed objects, meaning every pointed object in AlgS is the image of some pointed object
in AlgLSR, thens is a weak fixed point algebra. Now ifR preserves strictness, then so doesR
(which does not mean strict algebras transpose to strict algebras) and this is a natural condition
to place onR. On the other hand, supposeR is surjective on pointed objects. The existence ofd
with a = Rd does not ensure the existence ofd such thatD(LSRd,d) containŝswith s= Rŝ. But
supposeR is alsosemi right adjoint to L. By this we mean a natural transformationε is given
such thatf = R(εd ◦L f ) ◦ηa for any mapf into anya = Rd. This is equivalent to the triangle
law Rε ◦ηa = ida. Now, takingŝd = εd ◦Lswe haves= Rŝ◦ηa = Rŝ. Note that different choices
of d will give different ŝd.

Proposition 6.2.9 If R preserves strictness, is surjective on pointed objects and is semi right
adjoint to L, then a fixed point algebra for LSR transposes to a weak fixed point algebra for S.

To show that ther s are unique requires further conditions. Given an arbitrary strict morphismm
from s to s, we need to show thatm = r s. This follows from the uniqueness ofr ŝ, if we assume
thatR is full on strict mapsmeaning every strict morphism fromRsto Rs′ is the image of some
strict morphism froms to s′. Our strict morphismm is then of the formRm̂, wherem̂ is some
strict morphism froms to ŝ, butr ŝ is the unique such morphism sôm = r ŝ andm = Rm̂ = Rr ŝ= r s.

When isR full on strict morphisms? It is not enough forR to be full on strict maps because
we may havem = Rm̂ without m̂ being a morphism froms to ŝ. Suppose, however, thatR is full
on strict maps andL is semi left adjointto R. This meansf = ε ◦L(R f ◦η) for all f : Lc→ d.
Now if m = Rm̂ andRm̂ is a morphism froms to s thenm̂ is a morphism froms to ŝ.

Theorem 6.2.10 If R preserves strictness, is surjective on pointed objects, full on strict maps
and right adjoint to L, then a fixed point algebra for LSR transposes to a fixed point algebra for
S.

In applications, we find ourselves with a categoryD equipped with a class of pointed objects
and a class of strict maps and are given a functorR : D→ C along which we would like to
transpose fixed point algebras. What objects and maps inC should we take as pointed and strict
if we would like R to satisfy the conditions of Theorem 6.2.10? If we equipC with the class
of pointed objects given by applyingR to pointed objects inD, thenR is surjective on pointed
objects by definition. If we equipC with the class of strict maps given by applyingR to strict
maps inD, R preserves strictness. However, despite being surjective on strict maps,R may not
be full on strict maps. IfRd0 = Rd1 with d0 6= d1, thenm : d→ d0 and, hence,Rm : Rd→ Rd0

may be strict without there being a strictm′ : d→ d1 such thatRm′ = Rm. However, if we want
R to preserve strictness, we cannot force fullness on strict maps by definingm : c→ c′ to be strict
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if for all d overc andd′ overc′ there is a strict map̂m : d→ d′ overm. Fortunately, this problem
does not arise in the adjunctions we consider between concrete categories of domains. In these
adjunctions,R is injective on objects and the above definitions coincide.

6.2.11 Fixed Point Objects as Fixed Point Algebras

As we saw in Section 6.1, a recursive morphism out of an identity coalgebra for the identity endo-
functor is a fixed point and so the canonical recursive morphisms induced by a fixed point algebra
for the identity endofunctor include canonical fixed points for endomaps on pointed objects. A
fixed point algebra for the identity endofunctor therefore serves as fixed point object.

Definition 6.2.12 A (weak) fixed point objectis a (weak) fixed point algebra for the identity
endofunctor.

b
zp // ψ

r f //

s

��

a

f

��
b

p

OO

zp // ψ
r f // a

As observed in Section 6.1, such endomaps have unique fixed points in a strong sense.
Specialised to the identity endofunctor, the results of Section 6.2.3 become results about fixed

point objects and families of fixed points for endomaps on pointed objects. For eachb, a fixed
point object induces a well-behaved family of fixedb-points. Given an endomapf on a pointed
objectc, we composer f with the unique fixedb-pointzb for s to obtain a canonical fixedb-point
cfp( f ) for f .

Definition 6.2.13 A familyF( f ) of fixed b-points isuniform (with respect to strict maps)if, given
any strict maph such that f1◦h = h◦ f0, we find thatF( f1) = h◦F( f0).

f0
h

��?
??

??
??

b

F( f0)
@@

F( f1) // f1

Corollary 6.2.14

• If strict maps are closed under composition, the family of fixed b-points induced by a fixed
point object is uniform.

• In the presence of apointedfixed point object, any uniform family of fixed b-points for
pointed endomaps f is given bycfp( f ) = r f ◦zb.

• If strict maps are closed under composition, a pointed fixed point object induces the unique
uniform family of fixed b-points for each b.

Note that, because a fixed point object has a very unique fixed point, the family cfp( f ) is also
uniform with respect to change ofb. Composition with any mapg : b0→ b1 takes canonical
b1-points to canonicalb0-points. In the presence of a final object 1, this means the canonical
fixedb-points are determined by the canonical fixed 1-points.

Taking S= Id, Proposition 6.2.9 produces weak fixed point objects and Theorem 6.2.10
produces fixed point objects.

Corollary 6.2.15 If R preserves strictness, is surjective on pointed objects
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• and is semi right adjoint to L, then a fixed point algebra for LR transposes to a weak fixed
point object.

• and is full on strict maps and right adjoint to L, then a fixed point algebra for LR transposes
to a fixed point object.

Now, suppose we have an endofunctorSwith comonad structure and we construct its Kleisli
adjunctionKL aKR. The right adjointKR is the identity on objects and hence injective on objects.
It carries a mapf : a→ b to the map inCS given by f ◦ ιa : Sa→ b. Strict maps inCS are therefore
maps of the formh◦ ι whereh is a strict map inC. Corollary 6.2.15, withKL andKR for L andR,
says fixed point algebras forS= KL ◦KR transpose to fixed point objects in the Kleisli category
CS with respect to the above definition of strict map and pointed object in CS. In Section 6.1 we
only needed the natural transformationη : Id⇒ KRKL, but here we are using both triangle laws
of the adjunctionKL ◦KR. The one law gives the existence ofr f and, hence, the existence of a
canonical family ofc-parameterized fixedb-points inCS. The other, the uniqueness of this family
with respect to uniformity (assuming the fixed point algebra forS is pointed).

Definition 6.2.16 A parameterized fixed point objectis a fixed point algebra for a comonad.

WhenS is c⊗ (·), maps of the formf ◦ ιa : c⊗ a→ b give ‘constant’ maps in the Kleisli
categoryCc. The behaviour of composition with such maps simplifies the initiality property of
a fixed point object inCc. Being a strict morphism from an endomap given bys′ : c⊗a′ → a′

to an endomap given bys : c⊗a→ a is equivalent to being of the formf ◦ ιa with f an algebra
morphism froms′ to s, and so the initiality property reduces, as expected, to the algebra initiality
property of the original fixed point algebra. Given any mapf : c⊗a→ a, with a pointed, a fixed
point algebrasc for c⊗ (·) induces both canonical fixedb-points inCc, as described above, and a
‘c-parameterized fixed point’r f ◦zI ◦ρ (see Proposition 6.1.9).

c⊗c
c⊗ρ // c⊗ (c⊗ I)

c⊗zI // c⊗ψ
c⊗r f //

sc

��

c⊗a

f

��
c

δ

OO

ρ // c⊗ I

ν

OO

zI // ψ
r f // a

6.2.17 Freyd Algebras as Fixed Point Algebras

The notion of free algebra introduced by Freyd in [14] is equivalent to our notion of fixed point
algebra in the special case where all objects are pointed and all maps strict.

Proposition 6.2.18 For all algebrass, the following are equivalent:

1. s is initial and the inverse of a final coalgebra.

2. s is initial and corecursive.

Fb
Fzp // Fψ

Fr f //

s

��

Fa

f

��
b

p

OO

zp // ψ
r f // a

Definition 6.2.19 A Freyd algebrais an algebra that is initial and corecursive.
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Suppose that inD all objects are pointed and all maps are strict. Then, with conditions onR,
Corollary 6.2.15 says a Freyd algebra forLR transposes to a fixed point object inC,

If we are also given an endofunctorS on C, Theorem 6.2.10 then says a Freyd algebra for
LSRtransposes to fixed point algebra forS. If S carries comonad structure, we obtain a fixed
point object inCS as described in the previous section or we can transpose the Freyd algebra for
LSRdirectly to a fixed point object inCS using Corollary 6.2.15 withKR◦RandL◦KL for L and
R.

6.3 Canonical Fixed Points in Compact Structural Adjunctions

Given a structurally compact categoryD, we take all objects and maps inD to be pointed and
strict. If anyone asks for actual points and strictness, we can turn to the structural compactness of
D. Given any structural action onD, the identity endofuctor onD is trivially structural, so when
D is structurally compact it contains an initial/final object⊥= µd.d. As⊥ is initial, every object
d in D has a canonical point⊥ :⊥→ d given by the unique map from⊥. As⊥ is final, we also
obtain canonical generalized points⊥ : e→ d given by the unique maps that factor though⊥. In
this sense, every object inD is pointed. Moreover, by the universal properties of⊥, every map in
D preserves the canonical points induced by⊥ and so, in this sense, every map is strict.

Given a functorR, we take pointed objects and strict maps in the codomain ofRas follows.

1. c is pointed ifc = Rd for some pointedd

2. f is strict if f = Rg for some strictg

If asked for points and strictness, we can obtain these from the domain ofR: asked for a point
in Rd, we applyR to a point ind. Strictness in the codomain then follows from strictness in the
domain.

With these classes of pointed object and strict map the conditions of Proposition 6.2.9 are
satisfied by the various forms of compact structural adjunction described in Chapter 5. The weak
fixed point object produced by Proposition 6.2.9 is enough to identify canonical fixed points.

On categories of domains, with conditions on the domain-theoretic monad satisfied by con-
crete monads,R is injective on objects, and the conditions of theorem 6.2.10 are satisfied. In
these adjunctions the canonical fixed points are characterized by their uniformity.

6.3.1 Ordinary Fixed Points

Given a compact structural adjunctionL aU : D→C, the compositeLU is structural and so we
have a Freyd algebraσ : LUω → ω. The mapσ transposes to a weak fixed point object inC
by Corollary 6.2.15. This weak fixed point object induces a canonical family of fixed points for
endomaps on objects of the formUd. Likewise for a compact costructural adjunction.

In particular, every compact monoidal adjunction and every compact closed adjunction has a
canonical family of generalized fixed points, as does every compact suitable structural adjunction,
including the adjunctions derived from a balanced exponential on a compact category, in which
case we have a canonical family of fixed points for endomaps on objects of the formd−e.

Although the fixed point object induces fixedb-points for anyb in C, these are generated by
the fixed 1-points, where 1= U⊥. As right adjoint,U takes the final object⊥ in D to a final
object inC which generates the unique fixedb-points of the fixed point object. Similarly, the
canonical 1-pointU⊥ : U⊥→Ud generates canonicalb-points inUd. It can be checked that
these are the points the fixed point object induces for the identity endomap onUd.

6.3.2 Parameterized Fixed Points

Given a compact structural adjunctionL aU : D→C with a balanced action� onC, the functors
takingd to L(x�Ud) are structural and so we have Freyd algebrasσx : L(x�Uψx)→ ψx. By
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Corollary 6.2.15, theσx transpose to weakx-parameterized fixed point objects inC which induce
families of parameterized fixedb-pointsx�b→Ud for parameterized endomapsx�Ud→Ud
on objects of the formUd. Again, these are generated by thex-parameterized fixed 1-points.

In particular, every compact suitable adjunction has canonical families of parameterized
fixed pointsc� b→ Ud for endomapsc�Ud→ Ud. When the adjunction derives from a
suitable exponential on a compact category we have a canonical family of parameterized fixed
points for endomapsc� (d−e)→ (d−e). When the adjunction or exponential is given by a
monoidal/cartesian adjunction these fixedb-points are generated by the family of ‘c-parameterized
fixed points’c→Ud corresponding to thec-parameterized fixed 1 pointsc×1→Ud.

The compact category of pointed objectsCT for a domain-theoretic commutative monad on
C, is characterised by a monoidal/cartesian adjunction withC and the compact category of partial
mapsCT for a domain-theoretic commutative lifting monad, by a suitable structural adjunction
(see Section 5.3). Either way, the categoryC has a (parameterized) fixed point object which
induces canonical (parameterized) fixed points.

In CPO, the parameterized fixed point objectUψc is an infinitec-branching tree and the
generic parameterized endomap succ carries nodes up along the branch indicated by the element
of c. In particular,ψ1 is the vertical natural numbers and suc1 is the successor map. The treeUψc

also has a point for eachc-stream. In the order, each stream lies just above the path it indicates
up through the tree. Forc= 1, there is the one stream above the one path, but in general there are
many. In can be checked that the fixed points induced by these fixed point objects are least fixed
points.

6.3.3 Internal Fixed Points

If the monoidal structure onC in a compact suitable adjunction is closed, we can internalise
the operation that produces canonical (parameterized) fixed points inC. We use the existence of
parameterized fixed points. For eachd in D, we take the evaluation map(Ud _Ud)�Ud→Ud
as a(Ud _ Ud)-parameterized endomap and construct the(Ud _ Ud)-parameterized fixed
point (Ud _ Ud)→Ud. These maps make up a transformation with components

cfpd : (Ud _ Ud)→Ud

that internalise the canonical fixed point operation. By internalising parameterized evaluation to
obtain a map(c�Ud _ Ud) � (c�Ud)→ (c�Ud), we may even internalise the operation
producing canonical parameterized fixed points. This produces a transformation

cfpb
d : (b�Ud _ Ud)→ (b _ Ud).

In particular, every compact monoidal/cartesian closed adjunction has an internal (parameter-
ized) fixed point operation and, if the acting category is bistructural, so does a compact suitable
adjunction. For example, CPO is cartesian closed, and hence bistructural, so the adjunctions with
pCPO and with CPPO⊥ both induce internal (parameterized) fixed point operations.

Given a balanced exponential, without a costructural action on the acting categoryC, we
cannot internalise the fixed point operation directly, but we can construct a corresponding trans-
formation with componentsd−((d−e)�e)→ (d−e) or, for parameterized fixed points,d−((c�
(d−e)�e)→ (d−(c�e)).

6.3.4 Uniform Fixed Points

Given a compact structural adjunctionL aU : D→C. SupposeU is injective on objects. The
image ofU then forms a subcategory ofC. In particular, strict maps inC are closed under com-
position and a fixed point object induces a uniform family of fixed points by Corollary 6.2.14.
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Moreover, because the original Freyd algebra is pointed (all objects are pointed inD) and trans-
position preserves pointedness, our fixed point object is pointed and hence, by Corollary 6.2.14,
the fixed point object induces the unique uniform family of fixed points inC (with respect to
strict morphisms between endomaps on pointed objects).

On categories of partial orders the lift monad is injective on objects and so the the monad’s
right Kleisli adjoint, which does all the ‘object work’, is injective on objects. Also, partial or-
ders carry at most one lift monad algebra structure, which amounts to a least element, and so
the monad’s right Eilenberg-Moore adjoint is also injective on objects. In categories of partial
orders then, canonical fixed points, which coincide with least fixed points, are characterized by
uniformity.

The right Kleisli for any comonad is injective on objects, so ifR is such an adjoint, or an
injective-on-objects functorU followed by such an adjoint, a fixed point object in the codomain
of R induces the unique uniform family of fixed points (assuming strict maps in the domain ofR
are closed under composition).

If the comonad onC given by the action of somex is a structural, then the structural com-
pactness ofD gives us anx-parameterized fixed point objectψx that induces the unique uniform
family of fixed points in the Kliesli categoryCx.
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Chapter 7

Recursive Linear Types

In [3], Benton studies a linear/nonlinear logic with mixed derivations of two kinds of sequent.
Various forms of the logic are presented including a natural deduction system with a calculus
of assigned terms called LNL. This calculus has models in symmetric monoidal/cartesian closed
adjunctions. The monoidal category interprets linear sequents and the cartesian category, non-
linear sequents. Examples include adjunctions constructed from models of Intuitionistic Linear
Logic and the adjunctions used in denotational semantics, which we describe in Chapter 5. In the
domain theoretic examples, the monoidal category is algebraically compact and this can be used
to model recursive types. The existence of invariant algebras for endofunctors on the monoidal
category, suggests that we allow type recursion on linear type expressions containing a free linear
type variable, which are interpreted as endofunctors on the monoidal category. With recursive
linear types, even the pure calculus, with no base types, has a rich collection of types and terms
including fixed point combinators.

In Section 7.1, we introduce our syntax for LNL, which includes derivations of types in con-
text to regulate the formation of recursive types, and discuss the linearity of its logic of derivable
sequents. We then add rules for recursive linear types. Our syntax for function types, units and
pairing is standard. Our syntax for adjoint types matches Levy’s CBPV and for recursive types,
Plotkin’s FPC.

In Section 7.2, we analyse adjoint types in LNL theories and their term models. The special
feature of LNL is the decomposition of bang, which controls weaking and conraction in Lin-
ear Logic, into two type constructors. We observe that the term model is naturally viewed as a
distributor and that, from this point of view, the two constructors may be understood in isola-
tion. Also, using linear and nonlinear function types, the isomorphism giving the adjunction, is
definable in the closed fragment of LNL.

7.1 A Recursive Linear/NonLinear Calculus

LNL has two kinds of sequent which, following Benton, we refer to as ‘linear’ and ‘nonlinear’.
The rules and equations for LNL are given in Figures 7.1, 7.2 and 7.3. We have added explicit
type rules and linear type contexts to control the construction of recursive linear types, but this
has no effect on the LNL rules. In addition to the beta reductions and commuting conversions
Benton gives in [3], we include eta laws and the application equation

(g)(b to x in a) =a b to x in (g)a

to obtain a full equational theory. The application equation is used in Section 7.2.5 where we
internalize the adjunction LNL generates and is required for completeness with respect to cate-
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gorical models.
We use upright X for nonlinear base types, italicX andY for nonlinear types, upright x and

y for variables of nonlinear type,Γ for lists of nonlinear typings and italicx, y and f for terms
of nonlinear type. We use upright A for linear type variables,Ψ for lists of linear type variables,
italic A andB for linear types, upright a and b for variables of linear type,Π for lists of linear
typings and italica, b, andg for terms of linear type.

Syntactically, type contexts are lists of distinct type variables. and term contexts are lists
of variable typings with distinct term variables. Comma and the little bar, or ‘stile’, both mean
concatenation. By convention, we use the stile when joining a nonlinear list to a linear list.

For the reader familiar with [3], we note some cosmetic changes. In place of ‘`C ’, and
‘`L’ we use ‘B . . . `’ and ‘I . . . `’ to distinguish nonlinear and linear sequents. In place
of a semicolon, which would clash with the notation used in seperation logics, we use a stile
to divide contexts into nonlinear and linear halves. In place of Benton’s syntax for mixing, we
follow the syntax of Levy’s CBPV [23]. This admits operational readings that can be used to
incorporate computational effects, although the only effect we have in mind is the possiblity of
nonterminating recursions. As effects go, nontermination is very degenerate which allows for
more structure on linear types than is found in CBPV. To remind ourselves of this specialization,
we use L in place of the F in CBPV.

Benton [3] here thinking

F L lift
G U underlying domain

F(x) produce(x) produce resultx
G(a) thunk(a) treata as data (address of instructionsa)

let F(b) = x in a bto x in a bind the result ofb to x and proceed witha
derelict(x) force(x) treatx as instructions (load program counter withx)

Also, seeing as our semantics requires a list of typings and interprets exchange explicitly, our
derivations make explicit use of the exchange rules shown in Figure 7.4.

The equations we write all have implied free occurence and derivablity conditions which may
be reconstructed as described in [23]. We use arrows to remind ourselves how certain equations
are used in reduction systems, but the theory is equational.

We take the collection of nonlinear base types to be some countable infinity. In place of a
collection of base types, we may as well parameterize our calculus on a graph F with base types
for nodes and (unary) basic operations for edges. In this case we consider the calculus LNL(F)
which extends LNL with a rule and a term constructor f( ) for each basic operation f.

B Γ ` x : X

B Γ ` f(x) : Y

We assume that the base types of F are included in our infinite collection of base types so that
LNL and LNL(F) have the same types. Note that the categorical semantics of the above rule
costs us nothing because X and Y are not derived types. In applications, more expressive basic
operations involving derived types could be added.

We use square brackets for substitution into expressions with holes. The maximal decompos-
tion of B into an expression with holes filled with a variable A is writtenB[A]. The expression
with just the holes (and no free occurence of A) isB[] and the same expression with the holes
filled with some expressionC is writtenB[C].

7.1.1 Linear and Nonlinear Lambda Calculi
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The closed fragment of LNL, shown in Figure 7.1, contains the simply typed lambda calculus
and a linear version of the same calculus.

B X . . . BY

B x : X, . . . ,y : Y ` y : Y

I A

I a :A` a :A

B X BY

B (X_Y)

I A I B

I (A(B)

B Γ,x : X ` y : Y

B Γ ` λx.y : (X_Y)

IΠ,a :A` b : B

IΠ ` λa.b : (A(B)

B Γ ` x : X B Γ ` f : (X_Y)

B Γ ` ( f )x : Y

IΠ ` a : A IΠ′ ` g : (A(B)

IΠ,Π′ ` (g)a : B

The linear calculus differs from the nonlinear calculus in the rule for variables: the context
contains just the linear variable being introduced. This exact match between linear variables in
the context and free linear variables in the term is preserved by the other linear rules, which are
multiplicative in the linear part of the context. Consequently, the collection of derivable linear
sequents admits no weakening or contraction on linear types whatsoever, while the collection of
nonlinear sequents admits all weakenings and all contractions.

7.1.2 Admissible Weakenings and Contractions

The elimination rule for L

ΨI Γ,x : X p Π ` a : A ΨI Γ p Π′ ` b : LX

ΨI Γ p Π,Π′ ` b to x in a : A

uses the nonlinear part of the context. Together with the mixed version of the linear variable
introduction rule,

ΨB X . . . ΨBY ΨI A

ΨI x : X, . . . ,y : Y p a :A` a :A

this expands the collection of derivable linear sequents to admit weakening on types of the form
LX. Given a derivation ofIΠ ` a : A, each variable introduction

I A

I a :A` a :A
is replaced with

B X I A

I x : X p a :A` a :A

to obtain a derivation ofI x : X p Π ` a : A. We then use the elimination rule for L.

I x : X p Π ` a : A I b : LX ` b : LX

IΠ,b : LX ` b to x in a : A

Together with the introduction rule for L,

ΨB Γ ` x : X

ΨI Γ ` produce(x) : LX
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the elimination rule admits contraction on types of the form LX. Given a derivation ofIΠ,b0 : LX,b1 : LX ` a[b0,b1] : A,
each variable introduction

B X

I LX

I bi : LX ` bi : LX

is replaced with

B X

B x : X ` x : X

I x : X ` produce(x) : LX

to obtain a derivation ofI x : X p Π ` a[produce(x),produce(x)] : A. We then use the elimina-
tion rule for L.

I x : X p Π ` a[produce(x),produce(x)] : A I b : LX ` b : LX

IΠ,b : LX ` b to x in a[produce(x),produce(x)] : A
.

Unlike the mixed linear variable rule, the elimination rule for U and the introduction rule for
L, introduce linear sequents with purely nonlinear term context.

Note that variables in the nonlinear part of the context can appear free in terms of linear type,
but that the linear part of the context is always empty for terms of nonlinear type.

The elimination rule for the unary type constructor L uses cut-and-bind machinery: the rule
cuts to a so-called parasitic typeA via a nonlinear variable x which is bound in the resulting term.
Such terms are known as let-expressions and appear in programming languages, computational
lambda calculi, linear lambda calculi and mixed calculi such as LNL [3] and CBPV [23].

Let-expressions require so-called commuting conversions, equations of the form

c[b to x in a] =cc b to x in c[a] .

At the level of proofs, commuting conversions allow us to permute an instance of the cut-and-
bind rule with parasitic typeA past the introduction and elimination rules for the typeA. At
least one equation is required for each type constructor that may be used to produce the type
of the parasitic formula—in this case, one for each linear type constructor. If new linear type
constructors are added, new commuting conversions must be added.

The equational theory of closed LNL is generated by the equations in Figure 7.1. It has the
usual beta and eta laws for the two kinds of function type together with beta and eta laws for U
and L. It has two commuting conversions for L elimination, one with respect to(() elimination
and one with respect to L elimination.

7.1.3 Pairing and Units

LNL has pairing and units for both nonlinear and linear types. For nonlinear types it has additive
rules and for linear types, multiplicative rules. This reflects the intended semantics in cartesian
and monoidal categories Syntactically, the multiplicative rules maintain the exact, context-term
match for linear variables.

In the logic of derivable terms, these rules give us intuitionistic conjunction and truth and
linear tensor and unit. At level of terms, both the introduction and elimination rules for nonlinear
pairing and unit can be understood in terms of basic operations, whereas the elimination rules for
linear pairing and unit use cut-and-bind machinery.

The linear pairing and unit elimination rules have their own commuting conversions as well
as commuting conversions with the other cut-and-bind rules.

7.1.4 Recursive Linear Types
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Notice that our LNL type expressions contain two kinds of identifier, ‘base types’ of nonlinear
type and ‘type variables’ of linear type. The terminology reflects the intended use. The collec-
tion of nonlinear base types is global and is chosen prior to type formation while the collection
of linear type variables is local and is given for each sequent. While we may indulge in substi-
tution on base types meta-syntactically, the rules for recursive linear types (Figure 7.5) only use
substitution of linear type expressions for linear type variables.

We extend LNL with a type constructor that binds one linear type variable in a linear type to
produce a new linear type. The rules and equations for the new type construction are shown in
Figure 7.5. A type of the formµA.B is recursive in the sense that the associated introduction and
elimination rules use substitution ofµA.B for A in B.

As recursive types are linear and may occur as a parasitic type, we include a commuting
conversion with respect to each of the cut-and-bind rules.

The simplest recursive linear type is the origin,⊥ = µA.A. In our domain model, this is
the one point domain, which is initial and final in the category of strict maps. Perhaps the next
simplest is the vertical naturals,̄N = µA.LUA. In our domain model, this is≤ on the natural
numbers together with an element greater than every number. Generalizing the vertical naturals,
are the vertical lists,X∗ = µA.L(X×UA). In our domain model, this is the set of finite and
infinite lists of elements ofX ordered by list extension and alphabetically using the order onX.
This set may also be viewed as a tree. Recursive types of the form HB = µA.(LUA(B) are used
to type fixed point combinators in Sections 8.1.2 and 8.1.2.
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ΨB X Ψ,A I A

ΨB X . . . ΨBY

ΨB x : X, . . . ,y : Y ` y : Y

ΨB X . . . ΨBY ΨI A

ΨI x : X, . . . ,y : Y p a :A` a :A

ΨB X ΨBY

ΨB (X_Y)

ΨI A ΨI B

ΨI (A(B)

ΨB Γ,x : X ` y : Y

ΨB Γ ` λx.y : (X_Y)

ΨI Γ p Π,a :A` b : B

ΨI Γ p Π ` λa.b : (A(B)

ΨB Γ ` x : X ΨB Γ ` f : (X_Y)

ΨB Γ ` ( f )x : Y

ΨI Γ p Π ` a : A ΨI Γ p Π′ ` g : (A(B)

ΨI Γ p Π,Π′ ` (g)a : B

ΨI A

ΨB UA

ΨB X

ΨI LX

ΨI Γ ` a : A

ΨB Γ ` thunk(a) : UA

ΨB Γ ` x : X

ΨI Γ ` produce(x) : LX

ΨB Γ ` x : UA

ΨI Γ ` force(x) : A

ΨI Γ,x : X p Π ` a : A ΨI Γ p Π′ ` b : LX

ΨI Γ p Π,Π′ ` b to x in a : A

(λx. f [x])y �β f [y]
(λa.g[a])b �β g[b]

force(thunk(a)) �β a

produce(y) to x in a[x] �β a[y]
f =η λx.( f )x
g =η λa.(g)a
x =η thunk(force(x))
a =η a to x in produce(x)

(g)(b to x in a) =a b to x in (g)a
(b to x in g)a �cc b to x in (g)a

(b to x in a) to y in c �cc b to x in (a to y in c)

Figure 7.1: Rules and equations for closed LNL.
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ΨB X ΨBY

ΨB (X×Y)

ΨI A ΨI B

ΨI (A⊗B)

ΨB Γ ` x : X ΨB Γ ` y : Y

ΨB Γ ` (x,y) : (X×Y)

ΨI Γ p Π ` a : A ΨI Γ p Π′ ` b : B

ΨI Γ p Π,Π′ ` (a.b) : (A⊗B)

ΨB Γ ` z : (X×Y)

ΨB Γ ` first(z) : X

ΨB Γ ` z : (X×Y)

ΨB Γ ` second(z) : Y

ΨI Γ p Π ` c : (A⊗B) ΨI Γ p Π′,a :A,b : B` d : D

ΨI Γ p Π,Π′ ` c to aand b in d : D

first((x,y)) �β x

second((x,y)) �β y

(e. f ) to aand b in d[a,b] �β d[e, f ]
z =η (first(z),second(z))
c =η c to aand b in (a.b)

(b to x in a) to c and d in e �cc b to x in (a to c and d in e)
(c to aand b in g)e �cc c to aand b in (g)e

(c to aand b in d) to y in e �cc c to aand b in (d to y in e)
(c to aand b in d) to eand f in g �cc c to aand b in (d to eand f in g)

Figure 7.2: Rules and equations for pairing.

ΨB 1 ΨI I

ΨB Γ

ΨB Γ ` () : 1

ΨB Γ

ΨI Γ ` ∗ : I

ΨI Γ p Π ` b : I ΨI Γ p Π′ ` a : A

ΨI Γ p Π,Π′ ` b to nix in a : A

∗ to nix in a �β a

x =η ()
(b to x in a) to nix in e �cc b to x in (a to nix in e)

(c to aand b in d) to nix in e �cc c to aand b in (d to nix in e)
(b to nix in g)e �cc b to nix in (g)e

(b to nix in a) to x in e �cc b to nix in (a to x in e)
(b to nix in a) to eand f in g �cc b to nix in (a to eand f in g)

(b to nix in a) to nix in e �cc b to nix in (a to nix in e)

Figure 7.3: Rules and equations for units.
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Ψ,Ψ′ B X

Ψ′,ΨB X

Ψ,Ψ′ I A

Ψ′,ΨI A

ΨB Γ,Γ′ ` x : X

ΨB Γ′,Γ ` x : X

ΨI Γ p Π,Π′ ` a : A

ΨI Γ p Π′,Π ` a : A

Figure 7.4: Exchange rules.

Ψ,A I B

ΨI µA.B

ΨI Γ p Π ` a : B[µA.B]

ΨI Γ p Π ` fold(a) : µA.B

ΨI Γ p Π ` a : µA.B

ΨI Γ p Π ` unfold(a) : B[µA.B]

unfold(fold(a)) �β a

a =η fold(unfold(a))
unfold(b to x in a) �cc b to x in unfold(a)

unfold(c to aand b in d) �cc c to aand b in unfold(d)
unfold(b to nix in a) �cc b to nix in unfold(a)

Figure 7.5: Rules and equations for recursive linear types.
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7.2 Oblique Terms and Types

We analyse the term model of LNL in terms of distributors (see Appendix A). First we observe
that substitution over the terms of LNL—and this applies to other mixed calculi—can be read di-
rectly as a distributor. The adjoint type constructors L and U are shown to function independently
as representations for this term ditributor. The function types of LNL provide these representa-
tions of the term distributor with a pair of internalizations that we call the oblique function types.

7.2.1 The Term Distributor

The theory of LNL terms with one free variable forms the total category of a distributor. Objects
are type expressions which are classified as nonlinear or linear.

B X I A

Arrows are equivalence classes of derivable terms in singleton context. The equivalence is gen-
erated by the equational theory and alpha conversion. Composition is given by well-typed sub-
stitution and identities by the variable introduction rules. The arrows are classified as nonlinear,
oblique or linear.

B x : X ` y[x] : Y I y : Y ` a[y] : A I a :A` b[a] : B

The nonlinear and linear arrows, together with nonlinear and linear objects, form the term cate-
goriesC andD as in an ordinary term model of LNL, while the oblique arrows give a distributor
between these categories. Oblique arrows cannot be composed with one-another but can be com-
posed with linear and nonlinear arrows to produce new oblique arrows. For example, the arrows
given by the three terms above can be composed to produce an oblique arrow fromX to B.

I x : X ` b[a[y[x]]] : B

Remark. Barber’s Dual Intuitionistic Linear Logic [1] can be translated into the logic of deriv-
able linear sequents in LNL (for details see [24]). The types appearing in the nonlinear part of
a DILL context are translated to linear LNL types according to their DILL type structure and
then to nonlinear types LNL using U so as to appear in the nonlinear part of an LNL sequent
ΨI UΓ p Π ` a : A. Ordinarily a translation of one type theory into another induces a functor
between the corresponding term categories, but here we have a problem with identities. What we
actually obtain from our translation is a distributor morphism. This suggests that the distributor
structure is more fundamental than either of the categories.

7.2.2 The Adjoint Fragments of LNL

Given a graph F of nonlinear basic types and operations, the term category over the rules

B X
,

B X . . . BY

B x : X, . . . ,y : Y ` y : Y
and

B Γ ` x : X

B Γ ` f(x) : Y

is the free category on F. This term category only uses the unary forms of the variable introduc-
tion rule and the operation rule,

BY

B y : Y ` y : Y

B x : X ` x : X

B x : X ` f(x) : Y
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but, if we add the rules for nonlinear pairing, units and function types, we need to use the general
forms to obtain the free cartesian closed category on F.

Given a graph G of basic linear types and operations, we could obtain the free category on
G using a linear base type rule, the linear variable rule from LNL, and a linear operation rule
analogous to the unary rule above. We could then obtain the free symmetric monoidal closed
category by adding the rules for linear pairing, units and function types. However, given both
basic nonlinear and basic linear operations, we are in a position to add basic operations from
basic nonlinear types to basic linear types.

Given a directorK from G to F (see Appendix A) and using W for basic linear operations,k
for oblique edges from X to W andg for basic linear operations from V to W, the term distributor
over the rules

B X IW

B X . . . BY

B x : X, . . . ,y : Y ` y : Y

I A

I a :A` a :A

B Γ ` x : X

B Γ ` f(x) : Y

B Γ ` x : X

I Γ ` k(x) : W

I Γ p Π ` a : V

I Γ p Π ` g(a) : W

is the free distributor onK. This free distributor only uses the unary forms of the operation rules,

B z : Z ` x : X

B z : Z ` f(x) : Y

B z : Z ` x : X

I z : Z ` k(x) : W

I z : Z ` a : V

I z : Z ` g(a) : W

I c :C ` a : V

I c :C ` g(a) : W

but, again, we need the general forms if we want to obtain the free distributor between categories
with more structure.

When the rules and equations for U are added, the term distributorP becomes the free dis-
tributor onK with an aft representation by a functorU : D→C (see Section A.5). In particular,
P is isomorphic toC(−,U(+)) and every (oblique) morphism from K to a distributor of the form
A(−,F(+)), factors uniquely via the canonical (oblique) morphism from K toP.

The term categoryD is the free category on G, whereasC is the free category on F with a
copy ofD glued viaP, which is to say,C is the total category ofP.

On the other hand, when the rules and equations for L are added, the term distributorP
becomes the free distributor with a fore representation by a functorL : C→ D, in which caseP
is isomorphic toD(L(−),+). The term categoryC is the free category on F, whileD is a copy of
C glued viaP to the free category on G, which is to say,D is the total category ofP.

Proposition 7.2.3 The term distributor P is isomorphic to C(−,U(+)) over LNL theories includ-
ing the rules and equations forU and is isomorphic to C(L(−),+) over LNL theories including
the rules and equations forL.

Proof. For each object(X,B) in Cop×D, we require the components of natural isomorphims
from C(−,U(+)) andD(L(−),+) to P(−,+). Composition with any natural oblique transfor-
mation fromU to IdD gives a natural transformation fromC(−,U(+)) to P(−, Id(+)). Like-
wise, composition with a transformation from IdC to L gives a transformation fromD(L(−),+)
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to P(Id(−),+). Natural transformations are thus given by Composition with the arrows given by
the sequents

I x : UB` force(x) : B and I x : X ` produce(x) : LX

which, by the substitution lemma, form an oblique transformation, give us one half of the iso-
morphism.

C(X,UB)
(id,force(x)) // P(X,B)
(id,thunk(b))

oo
(a to x in b,id) // D(LX,B)
(produce(x),id)

oo

Inverses are given by substitution for b in the raw terms ‘thunk(b)’ and ‘ato x in b’, where x is
the free variable in the term giving an arrow inP(X,B). Although these terms are not in the type
theory, and hence do not give arrows, substitution into them still produces natural transformations
and the equations that make them inverses to the representable natural transformations above are
instances of the beta and eta laws for L and U. �
If the rules for both U and L are added,P is the free distributor with both such representations,
in which case we have an adjunctionL `U .

Corollary 7.2.4 Over theories including the rules and equations for bothU and L, the term
functor L is left adjoint to the term functor U.

The rules for U and L interact to produceω copies of both free categories in both term categories
and, generally, neitherL norU has a retract.

For Benton’s LNL, we takeK to be the degenerate director given by F with no oblique edges
and empty G. The free distributor onK is then just the empty distributor from the free categoryC
on F to the empty category. The free distributor of the formC(−,U(+)) hasU the empty functor
into C. On the other hand, the free distributor of the formD(L(−),+) hasD isomorphic, viaL,
to C, the free category on F.

The free distributor with both representations, however, is less degenerate. The categoryC
containsω copies of the free category on F and, whileL still gives an isomorphism betweenC
andD (assuming no other linear type constructors),U is a proper inclusion.

Generally however, we see no reason not to use a director of basic operations. We will write
LNL(K) for the theory generated by the rules of LNL together with a rule for each edge in K.

7.2.5 The Oblique Function Types

In the full equational theory of closed LNL, there is a correspondence between terms (in context)
of nonlinear type(X_UB) and terms (in context) of linear type(LX(B) with no free variables
of linear type. The nonlinear-to-linear direction can be expressed using substitution on a free
nonlinear variable.

B f : (X_UB),x : X ` f : (X_UB) B f : (X_UB),x : X ` x : X

B f : (X_UB),x : X ` (f)x : UB

I f : (X_UB),x : X ` force((f)x) : B

I f : (X_UB),x : X ` force((f)x) : B I f : (X_UB) p b : LX ` b : LX

I f : (X_UB) p b : LX ` b to x in force((f)x) : B

I f : (X_UB) ` λb.b to x in force((f)x)︸ ︷︷ ︸
lin[f]

: (LX(B)
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In the other direction, we use substitution on a linearmeta-variableg because terms of nonlinear
type cannot have free linear variables. The following typing requires thatg contain no free linear
variables: the introduction rule for U requires a purely nonlinear context.

derivation weakened with x :X

I Γ,x : X ` g : (LX(B)

B Γ,x : X ` x : X

I Γ,x : X ` produce(x) : LX

I Γ,x : X ` (g)produce(x) : B

B Γ,x : X ` thunk((g)produce(x)) : UB

B Γ ` λx.thunk((g)produce(x))︸ ︷︷ ︸
non[g]

: (X_UB)

Given any nonlinear term (in context)f of type(X_UB), we have

non[lin[ f ]] =def λx.thunk((lin[ f ])produce(x))
=def λx.thunk((λb.b to x in force(( f )x))produce(x))
=β λx.thunk(produce(x) to x in force(( f )x))
=β λx.thunk(force(( f )x))
=η λx.( f )x
=η f .

The other direction is less straightforward. Given any linear term (in context)g of type(LX(B),
we have

lin[non[g]] =def λb.b to x in force((non[g])x)
=def λb.b to x in force((λx.thunk((g)produce(x)))x)
=β λb.b to x in force(thunk((g)produce(x)))
=β λb.b to x in (g)produce(x).

Here we make use of theapplication law

(g)(b to x in a) =a b to x in (g)a

with b for b andproduce(x) for a.

=n λb.(g)(b to x in produce(x))
=η λb.(g)b
=η g.

The nonlinear-to-linear direction can be abstracted to a linear combinator

I ` λg.g to f in lin[f]︸ ︷︷ ︸
linlin

: (L(X_UB)((LX(B))

or to a nonlinear combinator

I ` λ f.thunk(lin[f])︸ ︷︷ ︸
linnon

: ((X_UB)_U(LX(B)),
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and we have

non[linlin ] =def λx.thunk((linlin)produce(x))
=def λx.thunk((λg.g to f in lin[f])produce(x))
=β λx.thunk(produce(x) to f in lin[f])
=β λx.thunk(lin[x])
=def linnon

and

lin[linnon] =def λb.b to x in force((linnon)x)
=β λb.b to x in force(thunk(lin[x]))
=β λb.b to x in lin[x]
=def linlin .

The nonlinear combinator has an inverse

I ` λy.non[force(y)]︸ ︷︷ ︸
nonnon

: (U(LX(B)_(X_UB)).

We have

λ f.(nonnon)(linnon)f =def λ f.(λy.non[force(y)])(linnon)f
=β λ f.non[force((linnon)f)]
=def λ f.non[force((λ f.thunk(lin[f]))f)]
=β λ f.non[force(thunk(lin[f]))]
=β λ f.non[lin[f]]
= λ f.f

λy.(linnon)(nonnon)y =def λy.(λ f.thunk(lin[f]))(nonnon)y
=β λy.thunk(lin[(nonnon)y])
=def λy.thunk(lin[(λy.non[force(y)])y])
=β λy.thunk(lin[non[force(y)]])
= λy.thunk(force(y))
=β λy.y

So, internally, the type(X_UB) is naturally isomorphic to the type U(LX(B). We refer to
the ‘type’ represented by(X_UB) and(LX(B) as theoblique function typeonX andB.



85

Chapter 8

Recursive Types for Fixed Point Combinators

A significant feature of the untyped lambda calculus are the recursive combinators. These in-
clude divergent combinators which reduce to themselves and fixed point combinatorsY with the
property that(Y) f reduces to( f )(Y) f . Fixed point combinators are also known as ‘paradoxical
combinators’ because they provide a semantics for logical paradoxes. For example, the meaning
of the statement ‘this statement is false’ would be the fixed point of the operation that swaps
‘true’ with ‘false’.

In the untyped calculus, these combinators are part of the base theory and are inherited by
any extension and/or refinement that respects the beta-law. The simply typed lambda calculus,
however, has models without fixed points and so fixed point combinators are excluded from the
base theory. If we require a fixed point combinator of type(τ → τ)→ τ in a simply typed
calculus, we can add a constantYτ together with an equationf (Yτ( f )) =τ Yτ( f ). The equation
saysYτ must be interpreted as a fixed point operator but doesn’t say which (and some models
have more than one fixed point operator).

Recursive combinators may reappear in the base theory when recursive types are added.
The laws governing the contents of certain recursive types require that certain terms satisfy the
fixed point equation. We derive some of these in Section 8.1. In Chapter 9 we use fixed point
combinators to construct recursive maps into and out of recursive types in term models of RLNL.

Looking at the derivation of recursive combinators in RLNL we notice certain idioms involv-
ing oblique function types. This suggests a calculus with an oblique function type which would
be interpreted directly by a costructural action. This, in turn, suggests we replace L and U with
type constructors for the structural action and exponential onD which we view as parameterized
versions of the adjoint types. We sketch the resulting type theory in Section 8.2.

8.1 Recursive Combinators in Recursive Types

The following three paragraphs set out the somewhat stylized treatments of divergence, the Curry
fixed point scheme and the Turing fixed point combinator which we lift to FPC in Section 8.1.1
and to RLNL in Section 8.1.2. All three are based on the same self-application scheme: in the
untyped lambda calculus we are free to apply any termx to itself.

D[x] = (x)x

Divergence. Abstracting, we obtain a self-application combinator which is applied to itself to
obtain a divergent combinator.
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X = λx.D[x]
Ω = (X)X

The termΩ is of the formD[x] and beta-reduces to itself in one step.

Ω =def

(X)X =def

(λx.D[x])X �β D[X]
=def (X)X

def= Ω

Operationally, we have an infinite loop and this can be used to iterate the application of some
term f . Equationally, the result of such iteration gives a fixed point off .

Curry. If we apply a termf to the self-application scheme before abstracting, we obtain a fixed
point for f .

X′[ f ] = λx.( f )D[x]
C[ f ] = (X′[ f ])X′[ f ]

The termC[ f ] is of the formD[x] and, assuming x is not free inf , reduces to( f )C[ f ] in one step.

C[ f ] =def (X′[ f ])X′[ f ]
=def

(λx.( f )D[x])X′[ f ] �β ( f )D[X′[ f ]]
=def ( f )(X′[ f ])X′[ f ]

def= ( f )C[ f ]

Abstracting on this scheme, we obtain a fixed point combinator.

Y = λ f.C[f]

Given some termf , the term(Y) f beta-reduces toC[ f ], which beta-reduces to( f )C[ f ], which
beta-expands to( f )(Y) f . Note that this reasoning uses beta-expansion in the argument off .

Turing. By first applying the self-application scheme tof and then applyingf , we can abstract
on f before abstracting the self-application to obtain a fixed point combinator of the formD[x].

X′′ = λx.λ f.(f)(D[x])f
Z = (X′′)X′′

Given some termf , the term(Z) f beta-reduces directly to( f )(Z) f .

(Z) f =def

((X′′)X′′) f =def

((λx.λ f.(f)(D[x])f)X′′) f =β

(λ f.(f)(D[X′′])f) f �β ( f )(D[X′′]) f

=def ( f )((X′′)X′′) f

def= ( f )(Z) f
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Note that the reduction requires two steps. The Turing combinator trades the beta-expansion
required to reason about the Curry combinator for an extra evaluation step.

First we lift our untyped combinators to a fragment of the metalanguage FPC. Then we lift
these to a fragment of our type theory RLNL. The fragments we use have function spaces and
recursive types. Although our primary concern is the existence of a fixed point combinator in the
equational theory of RLNL, we avoid reductions in the arguments of applications as these raise
operational questions.

8.1.1 Recursive Combinators in FPC

We use the fragment of FPC shown in Figure 8.1. This has a function space(⇀) and a recursion
operatorµ that binds one type variable. Any type may be substituted for a type variable. We use
the equivalences generated by the beta-reductions shown.

In FPC, every typeT contains a divergent combinator and every type of the form((T⇀T)⇀T)
contains a fixed point combinator. The recursive typeµS.(S⇀T) allows us to lift the diver-
gent combinatorΩ to T and the Curry fixed pointC[ f ] to ((T⇀T)⇀T). The recursive type
µS.(S⇀((T⇀T)⇀T)) allows us to lift the Turing combinator to((T⇀T)⇀T).

Divergence. Let T be a type variable. We can apply terms of typeM = µS.(S⇀T) to themselves
by unfolding one copy to the type(M⇀T).

T,S�S

S,T�T

T,S�T

T,S� (S⇀T)

T� µS.(S⇀T)︸ ︷︷ ︸
M

T�M

T�x : M ` x : M

T�M

T�x : M ` x : M

T�x : M ` unfold(x) : (M⇀T)

T�x : M ` (unfold(x))x︸ ︷︷ ︸
D[x]

: T

Abstracting, we obtain a combinator of type(M⇀T).

T�x : M ` D[x] : T

T� ` λx.D[x]︸ ︷︷ ︸
X0

: (M⇀T)

We can apply this to itself by folding one copy into typeM.

T� ` X0 : (M⇀T)

T� ` fold(X0) : M T� ` X0 : (M⇀T)

T� ` (X0)fold(X0)︸ ︷︷ ︸
Ω0

: T

This term beta-reduces to itself in two steps.
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Ω0 =def

(X0)fold(X0) =def

(λx.D[x])fold(X0) �β D[fold(X0)]
=def (unfold(fold(X0)))fold(X0)
=β (X0)fold(X0)

def= Ω0

The termΩ0 is not of the formD[x]. The self-application combinatorX0 acts on terms of typeM
while the self-application of self-application inΩ0 is performed on a term of type(M⇀T). Note
however thatΩ0 reduces toD[fold(X0)] which is of the formD[x].

X = fold(X0)
Ω = (unfold(X))X

Now Ω is of the formD[x]. and reduces to itself.

Ω =def

(unfold(X))X =def

(unfold(fold(λx.D[x])))X =β

(λx.D[x])X �β D[X]
=def (unfold(X))X

def= Ω

Here is the cycle in terms of the self-application scheme.

Ω =β Ω0 �β Ω =β · · ·
D[X] =β (λx.D[x])X �β D[X] =β · · ·

D[fold(λx.D[x])] =β (λx.D[x])fold(λx.D[x]) �β D[fold(λx.D[x])] =β · · ·

Here is the cycle with expanded definitions.

Ω =β Ω0 �β · · ·
(unfold(X))X =β (X0)fold(X0) �β · · ·

(unfold(fold(X0)))fold(X0) =β (X0)fold(X0) �β · · ·
(unfold(fold(λx.D[x])))fold(λx.D[x]) =β (λx.D[x])fold(λx.D[x]) �β · · ·

(unfold(fold(λx.(unfold(x))x)))fold(λx.(unfold(x))x) =β (λx.(unfold(x))x)fold(λx.(unfold(x))x) �β · · ·

Erasingfold() andunfold(), bothΩ0 andΩ become the untypedΩ and beta-equivalence be-
comes an identity.

Curry. Let f be a term variable of type(T⇀T). First we weaken the context in our derivation
for self-application to include f.

T�T T�T

T� (T⇀T) T�M

T� f : (T⇀T),x : M ` x : M

T�T T�T

T� (T⇀T) T�M

T� f : (T⇀T),x : M ` x : M

T� f : (T⇀T),x : M ` unfold(x) : (M⇀T)

T� f : (T⇀T),x : M ` (unfold(x))x︸ ︷︷ ︸
D[x]

: T
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As in the untypedX′, we apply f to the result of self-application before abstracting on x.

T� f : (T⇀T),x : M ` D[x] : T

T�M

T�T T�T

T� (T⇀T)

T�x : M, f : (T⇀T) ` f : (T⇀T)

T� f : (T⇀T),x : M ` f : (T⇀T)

T� f : (T⇀T),x : M ` (f)D[x] : T

T� f : (T⇀T) ` λx.(f)D[x]︸ ︷︷ ︸
X′

0[f]

: (M⇀T)

We can apply this term to itself by folding one copy into typeM.

T� f : (T⇀T) ` X′
0[f] : (M⇀T)

T� f : (T⇀T) ` fold(X′
0[f]) : M T� f : (T⇀T) ` X′

0[f] : (M⇀T)

T� f : (T⇀T) ` (X′
0[f])fold(X

′
0[f])︸ ︷︷ ︸

C0[f]

: T

Now, given any termf of type(T⇀T), C0[ f ] is beta-equivalent to( f )C0[ f ].

C0[ f ] =def

(X′
0[ f ])fold(X

′
0[ f ]) =def

(λx.( f )D[x])fold(X′
0[ f ]) �β ( f )D[fold(X′

0[ f ])]
=def ( f )(unfold(fold(X′

0[ f ])))fold(X
′
0[ f ])

=β ( f )(X′
0[ f ])fold(X

′
0[ f ])

def= ( f )C0[ f ]

Erasing f in C0[ f ] givesΩ0. We can avoid the beta-reduction in the argument off by using
D[fold(X′

0[ f ])] in place ofC0[ f ].

X′[f] = fold(X′
0[f])

C[f] = (unfold(X′[f]))X′[f]

The termC[ f ] is of the formD[x] and erasingf givesΩ. Without the f , the termsΩ andΩ0

beta-reduce to each another, but here the rearrangement reorders the two beta-reductions with
respect to the application off .

C[ f ] =def

(unfold(X′[ f ]))X′[ f ] =def

(unfold(fold(λx.( f )D[x])))X′[ f ] =β

(λx.( f )D[x])X′[ f ] �β ( f )D[X′[ f ]]
=def ( f )(unfold(X′[ f ]))X′[ f ]

def= ( f )C[ f ]

Abstracting, we obtain a combinator of type((T⇀T)⇀T).
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Y = λ f.C[ f ]

Given some termf of type (T⇀T), the term(Y) f beta-reduces toC[ f ], which beta-reduces to
( f )(Y) f , which beta-expands tof (Y( f )). As in the untyped calculus, this uses beta-expansion
in the argument off .

Turing. To type the Turing combinator, we replace T with((T⇀T)⇀T) in our recursive type
M.

T,S�S

S,T�T S,T�T

S,T� (T⇀T) S,T�T

S,T� ((T⇀T)⇀T)

T,S� ((T⇀T)⇀T)

T,S� (S⇀((T⇀T)⇀T))

T� µS.(S⇀((T⇀T)⇀T))︸ ︷︷ ︸
M′

The result of self-application is now of type((T⇀T)⇀T).

T�T T�T

T� (T⇀T) T�M′

T� f : (T⇀T),x : M′ ` x : M′

T�T T�T

T� (T⇀T) T�M′

T� f : (T⇀T),x : M′ ` x : M′

T� f : (T⇀T),x : M′ ` unfold(x) : (M′⇀((T⇀T)⇀T))

T� f : (T⇀T),x : M′ ` (unfold(x))x︸ ︷︷ ︸
D′[x]

: ((T⇀T)⇀T)

With type((T⇀T)⇀T), we can apply the result of self-application to our endofunction f.

T�M′

T�T T�T

T� (T⇀T)

T�x : M′, f : (T⇀T) ` f : (T⇀T)

T� f : (T⇀T),x : M′ ` f : (T⇀T) T� f : (T⇀T),x : M′ ` D′[x] : ((T⇀T)⇀T)

T� f : (T⇀T),x : M′ ` (D′[x])f : T
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Now we can proceed as forX′, except we abstract on f before we abstract on x.

T� f : (T⇀T),x : M′ ` (D′[x])f : T

T�M′

T�T T�T

T� (T⇀T)

T�x : M′, f : (T⇀T) ` f : (T⇀T)

T� f : (T⇀T),x : M′ ` f : (T⇀T)

T� f : (T⇀T),x : M′ ` (f)(D′[x])f : T

T�x : M′ ` λ f.(f)(D′[x])f : ((T⇀T)⇀T)

T� ` λx.λ f.(f)(D′[x])f : (M′⇀((T⇀T)⇀T))

T� ` fold(λx.λ f.(f)(D′[x])f)︸ ︷︷ ︸
X′′

: M′

We apply this combinator to itself by unfolding one copy.

T� ` X′′ : M

T� ` X′′ : M

T� ` unfold(X′′) : (M⇀T)

T� ` (unfold(X′′))X′′︸ ︷︷ ︸
Z

: T

Given any termf of type(T⇀T), (Z) f reduces directly to( f )(Z) f .

(Z) f =def

((unfold(X′′))X′′) f =def

((unfold(fold(λx.λ f.(f)(D′[x])f)))X′′) f =β

((λx.λ f.(f)(D′[x])f)X′′) f =β

(λ f.(f)(D′[X′′])f) f �β ( f )(D′[X′′]) f

=def ( f )((unfold(X′′))X′′) f

def= ( f )(Z) f

Erasing the operationsfold() andunfold() in the FPC combinator

Z = (unfold(fold(λx.λ f.(f)((unfold(x))x)f)))fold(λx.λ f.(f)((unfold(x))x)f),

we recover the untyped combinator

Z = (λx.λ f.(f)((x)x)f)λx.λ f.(f)((x)x)f.

8.1.2 Recursive Combinators in RLNL

In our FPC derivations, free variables of recursive type appear twice in some expressions, whereas
in RLNL recursive types are linear and so variables of recursive type must appear exactly once.
Any typing of these combinators in RLNL will therefore pass through types of the form UA. In
place of variables of recursive typeµx.B we use variables of type Uµx.B. This requires thatB
contain applications of U and L so that we can fold and unfold the terms we build into and out of
typeµx.B.
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Divergence. Linearity prevents us from applying a variable of recursive typeM directly to itself.
We therefore start with a variablex of type UM. The destructor for U gives us a termforce(x) of
typeM which we can unfold to a function type and apply to some form ofx. SupposeM unfolds
to type(M(B). We can then applyunfold(force(x)) to force(x) to obtain a term of type B.
Before we can abstract we must apply the constructor for U to obtain a term of type UB. Now
we would like to apply the resulting self-application combinator

X0 = λx.thunk((unfold(force(x)))force(x))

of type(UM_UB) to itself, but we find there is no way to fold this term into type UM. However,
observe that(UM_UB) is an oblique function space isomorphic to U(LUM(B) which suggests
thatM should unfold to(LUM(B). So takeM = µx.(LUx(B). Nowunfold(force(x)) must
be applied to a term of type LUM, so, instead of the destructor for U, we apply the constructor
for L to our variablex of type UM:

D[x] = (unfold(force(x)))produce(x)

Applying the constructor for U and abstracting, we obtain the combinator

X1 = λx.thunk(D[x])

of type (UM_UB), but now this type is isomorphic to the type UM via thunk(fold(lin[ ])).
and so our combinator can be applied to itself:Ω1 = (X1)thunk(fold(lin[X1])). This term
beta-reduces tothunk(D[thunk(fold(lin[X1]))]) andD[thunk(fold(lin[X1]))] beta-reduces to
force(Ω1), soΩ1 is beta-equivalent tothunk(force(Ω1)).

Ω1 =def (X1)thunk(fold(lin[X1]))
�β thunk(D[thunk(fold(lin[X1]))])
=def thunk((unfold(force(thunk(fold(lin[X1])))))produce(thunk(fold(lin[X1]))))
=β thunk((unfold(fold(lin[X1])))produce(thunk(fold(lin[X1]))))
=β thunk((lin[X1])produce(thunk(fold(lin[X1]))))
=β thunk(produce(thunk(fold(lin[X1]))) to x in force((X1)x))
=β thunk(force((X1)thunk(fold(lin[X1]))))
=def thunk(force(Ω1))

We can avoid the extra thunk-force, as well as the reduction under a thunk, by using the term
force(Ω1) of type B. This term beta-reduces to itself and, along the way, to

(lin[X1])produce(thunk(fold(lin[X1]))).

The term lin[X1] is beta-equivalent toλa.ato x in D[x] so, putting

X = λa.ato x in D[x],

force(Ω1) is beta-equivalent to

Ω = (X)produce(thunk(fold(X))).
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The derivation of this term completely avoids the type(UM_UB).

B,X I X

B,X B UX

B,X I LUX

X,BI B

B,X I B

B,X I (LUX(B)

BI µX.(LUX(B)︸ ︷︷ ︸
M

BIM

BB UM

BB x : UM ` x : UM

BI x : UM ` produce(x) : LUM

BIM

BB UM

BB x : UM ` x : UM

BI x : UM ` force(x) : M

BI x : UM ` unfold(force(x)) : (LUM(B)

BI x : UM ` (unfold(force(x)))produce(x)︸ ︷︷ ︸
D[x]

: B

BI x : UM ` D[x] : B BI ;a : LUM ` a : LUM

BI ;a : LUM ` ato x in D[x] : B

BI ` λa.ato x in D[x] : (LUM(B)

BI ` fold(λa.ato x in D[x]) : M

BI ` thunk(fold(λa.ato x in D[x]))︸ ︷︷ ︸
X

: UM

BB ` X : UM

BI ` produce(X) : LUM

BB ` X : UM

BI ` force(X) : M

BI ` unfold(force(X)) : (LUM(B)

BI ` (unfold(force(X)))produce(X)︸ ︷︷ ︸
Ω

: B

This term beta-reduces to itself in four steps.

Ω =def

(unfold(force(X)))produce(X) =def

(unfold(force(thunk(fold(λa.ato x in D[x])))))produce(X) =β

(unfold(fold(λa.ato x in D[x])))produce(X) =β

(λa.ato x in D[x])produce(X) �β

produce(X) to x in D[x] �β D[X]

D[X] =def (unfold(force(X)))produce(X)

def= Ω
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Curry. Let f be a variable of type U(LUB(B), which is isomorphic to the endofunction type
(UB_UB).

BI B

BB UB

BI LUB BI B

BI (LUB(B)︸ ︷︷ ︸
E

BI f : UE,x : UM ` D[x] : B

BB f : UE,x : UM ` thunk(D[x]) : UB

BI f : UE,x : UM ` produce(thunk(D[x])) : LUB

BI E

BB UE

BIM

BB UM

BB f : UE,x : UM ` f : UE

BI f : UE,x : UM ` force(f) : E

BI f : UE,x : UM ` (force(f))produce(thunk(D[x]))︸ ︷︷ ︸
B[f,x]

: B

BI f : UE,x : UM ` B[f,x] : B BI f : UE;a : LUM ` a : LUM

BI f : UE;a : LUM ` ato x in B[f,x] : B

BI f : UE ` λa.ato x in B[f,x] : (LUM(B)

BI f : UE ` fold(λa.ato x in B[f,x]) : M

BI f : UE ` thunk(fold(λa.ato x in B[f,x]))︸ ︷︷ ︸
X′[f]

: UM

BB f : UE ` X′[f] : UM

BI f : UE ` produce(X′[f]) : LUM

BB f : UE ` X′[f] : UM

BI f : UE ` force(X′[f]) : M

BI f : UE ` unfold(force(X′[f])) : (LUM(B)

BI f : UE ` (unfold(force(X′[f])))produce(X′[f])︸ ︷︷ ︸
C[f]

: B

C[ f ] =def

(unfold(force(X′[ f ])))produce(X′[ f ]) =def

(unfold(force(thunk(fold(λa.ato x in B[ f ,x])))))produce(X′[ f ]) =β

(unfold(fold(λa.ato x in B[ f ,x])))produce(X′[ f ]) =β

(λa.ato x in B[ f ,x])produce(X′[ f ]) �β

produce(X′[ f ]) to x in B[ f ,x] �β B[ f ,X′[ f ]]

B[ f ,X′[ f ]] =def (force( f ))produce(thunk(D[X′[ f ]]))
=def (force( f ))produce(thunk((unfold(force(X′[ f ])))produce(X′[ f ])))
=def (force( f ))produce(thunk(C[ f ]))

BI f : UE ` C[f] : B BI x : UM;g : LUE ` g : LUE

BI x : UM;g : LUE ` g to f in C[f] : B

BI ` λg.g to f in C[f]︸ ︷︷ ︸
Y

: (LUE(B)
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Given any termf of type UE, thunk((Y)produce( f )) is a fixed point of non( f ) and, given
any termf of type(UB_UB), (non(Y))lin( f ) is a fixed point off .

Turing. We replaceB with (LUE(B) in our recursive typeM.

x,BI x

x,BB Ux

x,BI LUx

BI E

BB UE

BI LUE BI B

BI (LUE(B)

x,BI (LUx((LUE(B))

BI µx.(LUx((LUE(B))︸ ︷︷ ︸
M′

BIM′

BB UM′

BB x : UM′ ` x : UM′

BI x : UM′ ` produce(x) : LUM′

BIM′

BB UM′

BB x : UM′ ` x : UM′

BI x : UM′ ` force(x) : M′

BI x : UM′ ` unfold(force(x)) : (LUM′((LUE(B))

BI x : UM′ ` (unfold(force(x)))produce(x)︸ ︷︷ ︸
D′[x]

: (LUE(B)

BI f : UE,x : UM′ ` D′[x] : (LUE(B)

BI f : UE,x : UM′ ` f : UE

BI f : UE,x : UM′ ` produce(f) : LUE

BI f : UE,x : UM′ ` (D′[x])produce(f) : B

BI f : UE,x : UM′ ` (D′[x])produce(f) : B

BB f : UE,x : UM′ ` thunk((D′[x])produce(f)) : UB

BI f : UE,x : UM′ ` produce(thunk((D′[x])produce(f))) : LUB

BI E

BB UE

BIM′

BB UM′

BB f : UE,x : UM′ ` f : UE

BI f : UE,x : UM′ ` force( f ) : E

BI f : UE,x : UM′ ` (force( f ))produce(thunk((D′[x])produce(f)))︸ ︷︷ ︸
B′[f,x]

: B

BI f : UE,x : UM′ ` B′[f,x] : B BI x : UM′;g : LUE ` g : LUE

BI x : UM′;g : LUE ` g to f in B′[f,x] : B

BI x : UM′ ` λg.g to f in B′[f,x] : (LUE(B) BI ;a : LUM′ ` a : LUM′

BI ;a : LUM′ ` ato x in λg.g to f in B′[f,x] : (LUE(B)

BI ` λa.ato x in λg.g to f in B′[f,x] : (LUM′((LUE(B))

BI ` fold(λa.ato x in λg.g to f in B′[f,x]) : M′

BB ` thunk(fold(λa.ato x in λg.g to f in B′[f,x]))︸ ︷︷ ︸
X′′

: UM′

X′′ = thunk(fold(λa.a to x in λg.g to f in (force( f ))produce(thunk(((unfold(force(x)))produce(x))produce(f)))))
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BB ` X′′ : UM′

BI ` produce(X′′) : LUM′

BB ` X′′ : UM′

BI ` force(X′′) : M′

BI ` unfold(force(X′′)) : (LUM′((LUE(B))

BI ` (unfold(force(X′′)))produce(X′′)︸ ︷︷ ︸
Z

: (LUE(B)

(Z)produce( f ) =def

((unfold(force(X′′)))produce(X′′))produce( f ) =def

((unfold(force(thunk(fold(λa.ato x in λg.g to f in B′[f,x])))))produce(X′′))produce( f ) =β

((unfold(fold(λa.ato x in λg.g to f in B′[f,x])))produce(X′′))produce( f ) =β

((λa.ato x in λg.g to f in B′[f,x])produce(X′′))produce( f ) =β

(produce(X′′) to x in λg.g to f in B′[f,x])produce( f ) =β

(λg.g to f in B′[f,X′′])produce( f ) �β

produce( f ) to f in B′[f,X′′] �β

B′[ f ,X′′]

B′[ f ,X′′] =def (force( f ))produce(thunk((D′[X′′])produce( f )))
=def (force( f ))produce(thunk(((unfold(force(X′′)))produce(X′′))produce( f )))
=def (force( f ))produce(thunk((Z)produce( f )))

Given any termf of type UE, thunk((Z)produce( f )) is a fixed point of non( f ) and, given
any termf of type(UB_UB), (non(Z))lin( f ) is a fixed point off .
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Θ,T�T

Θ�S . . . Θ�T

Θ�s :S, . . . , t : T ` t : T

Θ�S Θ�T

Θ� (S⇀T)

Θ�Γ,s :S` t : T

Θ�Γ ` λs.t : (S⇀T)

Θ�Γ ` s : S Θ�Γ ` f : (S⇀T)

Θ�Γ ` ( f )s : T

Θ,S�T

Θ� µS.T

Θ�Γ ` t : T[µS.T]

Θ�Γ ` fold(t) : µS.T

Θ�Γ ` t : µS.T

Θ�Γ ` unfold(t) : T[µS.T]

(λx. f [x])y �β f [y]
unfold(fold(a)) �β a

f =η λx.( f )x
a =η fold(unfold(a))

Figure 8.1: Rules and equations for closed FPC
.
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ΨB X ΨI A

ΨB X . . . ΨBY

ΨB x : X, . . . ,y : Y ` y : Y

ΨB X . . . ΨBY ΨI A

ΨI x : X, . . . ,y : Y p a :A` a :A

ΨB X ΨBY

ΨB (X_Y)

ΨI A ΨI B

ΨI (A(B)

ΨB Γ,x : X ` y : Y

ΨB Γ ` λx.y : (X_Y)

ΨI Γ p Π,a :A` b : B

ΨI Γ p Π ` λa.b : (A(B)

ΨB Γ ` x : X ΨB Γ ` f : (X_Y)

ΨB Γ ` ( f )x : Y

ΨI Γ p Π ` a : A ΨI Γ p Π′ ` g : (A(B)

ΨI Γ p Π,Π′ ` (g)a : B

Ψ,A I B

ΨI µA.B

ΨI Γ p Π ` a : B[µA.B]

ΨI Γ p Π ` fold(a) : µA.B

ΨI Γ p Π ` a : µA.B

ΨI Γ p Π ` unfold(a) : B[µA.B]

ΨI A

ΨB UA

ΨB X

ΨI LX

ΨI Γ ` a : A

ΨB Γ ` thunk(a) : UA

ΨB Γ ` x : X

ΨI Γ ` produce(x) : LX

ΨB Γ ` x : UA

ΨI Γ ` force(x) : A

ΨI Γ,x : X p Π ` a : A ΨI Γ p Π′ ` b : LX

ΨI Γ p Π,Π′ ` b to x in a : A

Figure 8.2: Rules for closed RLNL.
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(λx. f [x])y �β f [y]
(λa.g[a])b �β g[b]

unfold(fold(a)) �β a

force(thunk(a)) �β a

produce(y) to x in a[x] �β a[y]
f =η λx.( f )x
g =η λa.(g)a
a =η fold(unfold(a))
x =η thunk(force(x))
a =η a to x in produce(x)

(g)(b to x in a) =a b to x in (g)a
(b to x in g)c �cc b to x in (g)c

unfold(b to x in a) �cc b to x in unfold(a)
(b to x in a) to y in c �cc b to x in (a to y in c)

Figure 8.3: Equations for closed RLNL.
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8.2 A Linear Fixed Point Calculus

The idioms that appear in our derivations of recursive combinators and the structural view of the
motivating models of RLNL suggest new types.

8.2.1 Fixed Point Idioms
Looking at the derivations of fixed point combinators in Section 8.1.2 we see that we have used
RLNL in a stylized way. The rules for the function space( _ ) and the constructor L are used
only within three particular idioms.

Idiom Sugar

ΨB T

ΨI LT ΨI R

ΨI (LT(R)

ΨB T ΨI R

ΨI (T→R)

ΨI Γ,a :T ` r : R ΨI Γ;y : LT ` y : LT

ΨI Γ;y : LT ` y to ain r : R

ΨI Γ ` λy.y to ain r : (LT(R)

ΨI Γ,a :T ` r : R

ΨI Γ ` λa.r : (T→R)

ΨB Γ ` t : T

ΨB Γ ` produce(t) : LT ΨI Γ ` f : (LT(R)

ΨI Γ ` ( f )produce(t) : R

ΨB Γ ` t : T ΨI Γ ` f : (T→R)

ΨI Γ ` ( f )t : R

Each rule shown to the right can be read as sugar for the idiom to the left. Sugared derivations
and terms are shorter than the original. Here is the sugared form of the derivation ofΩ.

A,BI A

A,BB UA A,BI B

A,BI (UA→B)

BI µA.(UA→B)︸ ︷︷ ︸
M

BIM

BB UM

BB a : UM ` x : UM

BIM

BB UM

BB a : UM ` x : UM

BI a : UM ` force(a) : M

BI a : UM ` unfold(force(a)) : (UM→B)

BI a : UM ` (unfold(force(a)))a : B

BI ` λa.(unfold(force(a)))a︸ ︷︷ ︸
A

: (UM→B)

BI ` A : (UM→B)

BI ` fold(A) : M

BB ` thunk(fold(A)) : UM BI ` A : (UM→B)

BI ` (A)thunk(fold(A))︸ ︷︷ ︸
Ω

: B
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Here is the sugared form of the Turing combinator.

A,BI A

A,BB UA

BI E

BB UE BI B

BI (UE→B)

A,BI (UA→(UE→B))

BI µA.(UA→(UE→B))︸ ︷︷ ︸
M′

BIM′

BB UM′

BB a : UM′ ` x : UM′

BIM′

BB UM′

BB a : UM′ ` x : UM′

BI a : UM′ ` force(a) : M′

BI a : UM′ ` unfold(force(a)) : (UM′→(UE→B))

BI a : UM′ ` (unfold(force(a)))a︸ ︷︷ ︸
D′[a]

: (UE→B)

BI f : UE,a : UM′ ` f : UE BI f : UE,a : UM′ ` D′[a] : (UE→B)

BI f : UE,a : UM′ ` (D′[a])f︸ ︷︷ ︸
C[f,a]

: B

BI f : UE,a : UM′ ` C[f,a] : B

BB f : UE,a : UM′ ` thunk(C[f,a]) : UB

BI E

BB UE

BIM′

BB UM′

BB f : UE,a : UM′ ` f : UE

BI f : UE,a : UM′ ` force( f ) : E

BI f : UE,a : UM′ ` (force( f ))thunk(C[f,a])︸ ︷︷ ︸
B′[f,a]

: B

BI f : UE,a : UM′ ` B′[f,a] : B

BI a : UM′ ` λ f.B′[f,a] : (UE→B)

BI ` λa.λ f.B′[f,a]︸ ︷︷ ︸
A′′

: (UM′→(UE→B))

BI ` A′′ : (UM′→(UE→B))

BI ` fold(A′′) : M′

BB ` thunk(fold(A′′)) : UM′ BI ` A′′ : (UM′→(UE→B))

BI ` (A′′)thunk(fold(A′′))︸ ︷︷ ︸
Z

: (UE→B)

The sugared derivations inhabit the calculus shown in Figure 8.4 which matches a fragment
of Levy’s Call-By-Push-Value. In the RLNL derivations of our recursive combinators the linear
part of the context is only used in the introduction idiom (and only with one variable), so we can
drop this part of the context.
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This calculus has rules for just the one constructor U, which Levy refers to as the jump-
ing fragment of CBPV. Following the analysis in Section 7.2, we understand the rules for this
constructor as generating the free distributor with an aft representation.

In the presence of a proper oblique function type, the isomorphism between the two represen-
tations described in Section 7.2.5 factors into two isomorphisms denoted by terms in two closed
fragments of LNL, one without linear function types, the other without nonlinear. In models
without one or the other function type, much of the expressivity is retained.

8.2.2 Translating FPC into RLNL

The untyped and FPC combinators are sensitive to the choice of operational semantics. In partic-
ular, call-by-value theories require special, new fixed point combinators because the combinators
inherited from the base theory are bottomized in call-by-value semantics. Fortunately, the struc-
ture of our models allows us to side-step the issue of call-by-valueversuscall-by-name. In fact
this was one of the original reasons for choosing a mixed linear/nonlinear calculus, the intu-
ition being that if the recursive types live in the linear part of the calculus their use should be
insensitive to the evaluation sequence.

A price is paid in type complexity. We now view the situation in terms of Levy’s operational
analysis: the type theory forces us to specify, with a ‘thunk’, the points in the term where evalu-
ation is defered. This sits well with the idea of linear use. A parameter whose meaning requires
evaluation must appear in exactly one place so as to have a well defined evaluation context. Note
however that our sugared derivations don’t require linear identifiers.

Our translations of (our fragment of) FPC into RLNL factor through (our fragment of) CBPV
with recursive computation types. The translations into CPBV match Levy’s translations of call-
by-name and call-by-value calculi (which use the rules for L). The translation of (our fragment
of) CPBV into RLNL is given by the above sugaring.

The equations we have given for FPC generate a ‘call-by-name theory’ because a call-by-
value semantics induces fewer equivalences. We translate the rules of the closed/recursive frag-
ment of FPC into CBPV derivations as shown in Figure 8.5. FPC sequents are translated into
CBPV sequents of the form

ΨI a1 : UA1, , . . . , ,an : UAn ` t : B

with context types and term types translated slightly differently. This corresponds to the idea that
parameters are passed as thunks. Note that the translation carries our derivations of recursive
combinators in FPC to our (sugared) derivations in RLNL.

For a call-by-value semantics, we translate the rules of the closed/recursive fragment of FPC
into CBPV derivations as shown in Figure 8.6. We give two, simultaneous translations of types
into non-linear types and into linear types. The linear translation is used in the translation of
recursive types. FPC sequents are translated into CBPV sequents of the form

ΨI a1 : A1, , . . . , ,an : An ` t : FB.

Again we translate context types and term types slightly differently.
The fixed point combinators we have given for the lambda calculus and FPC misbehave in

a call-by-value semantics. Evaluated under call-by-value, bothY( f ) and f (Y( f )) diverge, so
while Y( f ) is a fixed point of f in the sense thatf (Y( f )) = Y( f ), it is not useful. The same
holds forZ( f ). There is a work-around for this problem: inA′[f], replaceD[a] with λg.D[a](g)
and, inA′′, we replaceD[a]( f ) with λg.D[a]( f )(g). This delays the evaluation of the argument
passed tof : the argument is passed as a ‘thunk’ and is only evaluated if ‘forced’ byf . Note that
the call-by-value image of these call-by-value fixed point combinators in RLNL is equivalent to
our RLNL combinators.
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8.2.3 Parameterized Adjoint Types

The oblique function type is naturally interpreted by a costructural action and the calculus shown
in Figure 8.4 is naturally interpreted in a suitable structural functor (Definition 5.2.7), on a struc-
turally compact bistructural category. This suggests the addition of rules for a type for the struc-
tural action onD. It also suggests a linear variable introduction rule which is interpreted by the
transformationι : c�d→ d. If a linear area is added to the other rules, this allows linear iden-
tifiers to appear in derivations but only one at a time: a multiplication onD would be needed to
interpret multiple linear identifiers.

Since the right Kleisli adjoint for a domain-theoretic lifting monad, which is our leading
example of a suitable structural functor, may be viewed as one component of an exponential,
we propose the calculus shown in Figure 8.7 with a type for the exponential. This calculus is
naturally interpreted by a suitable exponential on a structurally compact bistructural category.
A translation into RLNL can be derived from the construction of a suitable exponential from a
monoidal/cartesian closed adjunction.
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I A

B X . . . BY

B x : X, . . . ,y : Y ` y : Y

B X I B

I (X→B)

I Γ,x : X ` b : B

I Γ ` λx.b : (A→B)

I Γ ` x : X I Γ ` g : (X→B)

I Γ ` (g)x : B

Ψ,A I B

ΨI µA.B

ΨI Γ;Π ` a : B[µA.B]

ΨI Γ;Π ` fold(a) : µA.B

ΨI Γ;Π ` a : µA.B

ΨI Γ;Π ` unfold(a) : B[µA.B]

I A

B UA

I Γ ` a : A

B Γ ` thunk(a) : UA

B Γ ` x : UA

I Γ ` force(x) : A

Figure 8.4: Jumping fragment of CBPV with recursive computation types.
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Θn,TnI Tn

ΘnI Sn

ΘnB USn . . .

ΘnI Tn

ΘnB UTn

ΘnB sn : USn, . . . , tn : UTn ` tn : UTn

ΘnI sn : USn, . . . , tn : UTn ` force(tn) : Tn

ΘnI Sn

ΘnB USn ΘnI Tn

ΘnI (USn→Tn)

ΘnI UΓn,sn : USn ` tn : Tn

ΘnI UΓn ` λsn.tn : (USn→Tn)

ΘnI UΓn ` sn : Sn

ΘnB UΓn ` thunk(s) : USn ΘnI UΓn ` f n : (USn→Tn)

ΘnI UΓn ` ( f n)thunk(sn) : Tn

Θn,SnI Tn

ΘnI µSn.Tn

ΘnI UΓn ` tn : Tn[µSn.Tn]

ΘnI UΓn ` fold(tn) : µSn.Tn

ΘnI UΓn ` tn : µSn.Tn

ΘnI UΓn ` unfold(tn) : Tn[µSn.Tn]

Figure 8.5: The call-by-name image of FPC in CBPV
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Θv,Tv I Tv

Θv,Tv B UTv
Θv,Tv I Tv

Θv B Sv . . . Θv B Tv

Θv B sv : Sv, . . . , tv : Tv ` tv : Tv

Θv B sv : Sv, . . . , tv : Tv ` produce(tv) : FTv

Θv B Sv

Θv B Tv

Θv I FTv

Θv I (Sv→FTv)

Θv B U(Sv→FTv)

Θv B Sv

Θv B Tv

Θv I FTv

Θv I (Sv→FTv)

Θv I Γv,sv : Sv ` tv : FTv

Θv I Γv ` λsv.tv : (Sv→FTv)

Θv B Γv ` thunk(λsv.tv) : U(Sv→FTv)

Θv I Γv ` produce(thunk(λsv.tv)) : FU(Sv→FTv)

Θv I Γv ` sv : FSv

Θv I Γv ` f v : FU(Sv→FTv) Θv I Γv,x : Sv,y : U(Sv→FTv) ` (force(y))x : FTv

Θv I Γv,x : Sv ` f v to y in (force(y))x : FTv

Θv I Γv,x : Sv ` sv to x in f v to y in (force(y))x : FTv

Θv,Sv I Tv

Θv I µSv.Tv

Θv B UµSv.Tv

Θv,Sv I Tv

Θv I µSv.Tv

Θv I Γv ` tv : FTv[µSv.Tv] Θv I Γv,x : UTv[µSv.Tv] ` fold(force(x)) : µSv.Tv

Θv I Γv ` tv to x in fold(force(x)) : µSv.Tv

Θv I Γv ` thunk(tv to x in fold(force(x))) : UµSv.Tv

Θv I Γv ` produce(thunk(tv to x in fold(force(x)))) : FUµSv.Tv

Θv I Γv ` tv : FµSv.Tv Θv I Γv,x : UµSv.Tv ` unfold(force(x)) : Tv[µSv.Tv]

Θv I Γv ` tv to x in unfold(force(x)) : Tv[µSv.Tv]

Θv I Γv ` thunk(tv to x in unfold(force(x))) : UTv[µSv.Tv]

Θv I Γv ` produce(thunk(tv to x in unfold(force(x)))) : FUTv[µSv.Tv]

Figure 8.6: The call-by-value image of FPC in CBPV
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ΨB X ΨI A

ΨB X . . . ΨBY

ΨB x : X, . . . ,y : Y ` y : Y

ΨB X . . . ΨBY ΨI A

ΨI x : X, . . . ,y : Y p a :A` a :A

B X I B

I (X→B)

I Γ,x : X p Π ` b : B

I Γ p Π ` λx.b : (A→B)

B Γ ` x : X I Γ p Π ` g : (X→B)

I Γ p Π ` (g)x : B

Ψ,A I B

ΨI µA.B

ΨI Γ;Π ` a : B[µA.B]

ΨI Γ;Π ` fold(a) : µA.B

ΨI Γ;Π ` a : µA.B

ΨI Γ;Π ` unfold(a) : B[µA.B]

ΨI A ΨI B

ΨB (A−B)

ΨB X ΨI B

ΨI (X�B)

ΨI Γ p b : B` a : A

ΨB Γ ` λb.a : (A−B)

ΨB Γ ` x : X ΨI Γ p Π ` b : B

ΨI Γ p Π ` (x p b) : (X�B)

ΨB Γ ` f : (A−B) ΨI Γ p Π ` b : B

ΨI Γ p Π ` ( f )b : A

ΨI Γ,x : X p b :` d : D ΨI Γ p Π ` c : (X�B)

ΨI Γ p Π ` c to x and b in d : D

Figure 8.7: Rules for closed LFPC.
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Chapter 9

Quotient Relations and Parametric Models

In compact models of RLNL, it is natural to compare the fixed points defined by the combinators
derived in Chapter 8 with the canonical fixed points obtained from compactness in Chapter 6.
Here we use a notion of quotient diparametricity to make this comparison. We observe that,
in the concrete categories of domains that motivate the subject, the two coincide and we derive
conditions on compact adjunctions providing an abstract form of this result. These conditions
may be seen as a typed analogue of Morris’s characterization of lambda-calculus models in which
the Park Coincidence holds [2].

9.1 Quotient Diparametricity

The type of uniformity that characterizes the canonical fixed point operation in Chapter 6 can
be viewed as a particular form of parametricity. We use the graph category framework for rela-
tional parametricity described in Appendix C together with a particular form of relation called
a ‘quotient relation’. For a theory of parametricity to apply to the interpretation of typed terms,
the operations that interpret the type constructions must lift to the structure used to define para-
metricity, in this case graphs categories of quotient relations. One way of doing this uses an
internal logic, but here we describe our liftings directly in terms of the categorical structure. This
brings out just how little structure is required in the case of quotient relations.

9.1.1 Quotient Relations

Categorically, binary relations may be represented by spans. Here we develop a theory of rela-
tions represented by cospans. We develop this theory using pull-backs, but a more general theory
could be developed using Yoneda representations. The important point is the specialized notion
of relation that results.

Definition 9.1.2 Given a category C with pull-backs, the categoryQC of cospan relationsover
C has cospans ri in C for objects

c0

r0
@@

@

  @
@@

r

c1

r1~~~

>>~~~
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and pairs of maps fi such that r′0◦ f0◦ r∗1 = r ′1◦ f1◦ r∗0 for arrows,

c0
f0 //

r0

===
=

��=
==

=

c′0

r′0

>>>

��>
>>

r∗

r∗1���

??���

pb

r∗0

>>
>

��>
>>

r r ′

c1
f1 //

r1����

@@����

c′1

r′1���

@@���

where r∗1 is a pull-back of r1 along r0 and r∗0 is the corresponding pull-back of r0 along r1.
Composition and identities are given by composition and identities in C×C.

We think of a cospanr i : ci→ r as relating those pairs inc0×c1 sent to the same element ofr. The
definition of arrow does not depend on the choice of pull-backr∗. In fact, any weak pull-back
will do, soC need only have weak pull-backs. The properties of (weak) pull-backs ensure that
composition inC×C lifts to QC. The categoriesQC andC form the edge and vertex categories
of a graph category with source and target functors as inC>.

C>

�� ��

// QC

�� ��
C C

There is an identity-on-objects functor fromC> to QC, and although it is not generally full or
faithful it extends the full and faithful graph embeddings ofC↓ andC↑ intoC> to full and faithful
graph embeddings intoQC.

C↑ ι↑ //

�� ��

QC

�� ��

C↓ι↓oo

�� ��
C C C

While in Appendix C we present the objects of Sub2Set as subobjects of products, these
correspond to equivalence classes of jointly monic spans. If we use pull-backs to cast the objects
of QSet as jointly monic spans, we obtain a full and faithful embedding ofQSet into Sub2Set.

QSet

�� ��

pb // Sub2Set

�� ��
Set Set

This means that the notion of arrow inQSet matches the notion of arrow in Sub2Set which
corresponds to the usual logical relations definition. Note, however, that not every binary relation
over Set is represented by the pull-back of a cospan. For example, no cospan relation relates

a b

x y

========

without also relatingb and x. This is a generic counter-example in that a binary relation is
represented by the pull-back of a cospaniff it is zig-zag complete.

Takeyama and Tennent proposed zig-zag completeness [36] as a characterization of relations
induced between different concrete data types that represent the same abstract data type.
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Definition 9.1.3 (Takeyama and Tennent)An n-ary relation r iszig-zag completeif, for each
permutationσ ,

σ r(a,x) and a∼ b imply σ r(b,x),

where a∼ b if there exists y such thatσ r(a, . . . ,y, . . .) andσ r(b, . . . ,y, . . .).

Proposition 9.1.4 OverSet, an n-ary relation r is represented by the wide pull-back of an n-ary
cospaniff it is zig-zag complete.

Whenn = 2, zig-zag completeness can be described in terms of composition of binary relations.
In a categoryRwith an involution(·)o : Rop→ R, an arrowr, is difunctional[26] if r ◦ ro◦ r = r.
This condition is well known in the context of relations between algebras. OrdinarilyR is the
category of relations RelC over some regular categoryC. See Meisen [26] for a study of the
relationship between pull-back spans and difunctional relations over categories other than Set.

A regular categoryC is Malt’cev if every arrow in RelC is difunctional. For example, the
category of groups is Malt’cev. Another example is Setop [30]. This is interesting because,
while Rel(Setop) uses spans in Setop to represent arrows, we are using spans in Setop to represent
objects in Sub2Set which correspond to arrows in RelSet and, either way, the arrows we get are
all difunctional. What about the category we haven’t mentioned, Sub2(Setop)? The category
QSet is equivalent to its full subcategory of jointly epic cospans, and this is equivalent to the
opposite of Sub2(Setop).

There is nearly an isomorphism betweenQSet and∃verSet>, the category of cospan diagrams
with the vertex component of arrows existentially quantified. The exceptions occur with arrows
to the identity cospan on empty sets from other cospans on empty sets.

∅ //

��>
>>

>>
>>

> ∅

��<
<<

<<
<<

< ∅ //

��<
<<

<<
<<

< ∅

��<
<<

<<
<<

<

∅

??��������

��>
>>

>>
>>

> pb 1 ∅ 1 6 ∃
//______ ∅

∅ //

??��������
∅

AA��������
∅ //

AA��������
∅

AA��������

WhenC is the category of non-empty sets or the category of pointed sets and point preserving
functions, the category of cospan relationsQC is isomorphic to the cospan category∃verC which
is equivalent to the opposite of Sub2(Cop).

9.1.5 Push-me-pull-you’s

There exists a pleasantly symmetrical constructionK which is equivalent toQ when applied to
pull-back categories.

Definition 9.1.6 Given any category C, the categoryKC of push-me-pull-you’sover C has, for
objects, commutative diamonds pj

i

p0

p1
0

@@
@

  @
@@

p0

p0
0~~~

>>~~~

p0
1

@@@

  @
@@

p1

p1

p1
1~~~

>>~~~
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such that any span ai that commutes with the cospan p1
i commutes with any cospan bi that

commutes with the span p0
i ,

p1
0◦a0 = p1

1◦a1 and p0
0◦b0 = p0

1◦b1 ⇒ b0◦a0 = b1◦a1,

p0

p1
0

@@
@

  @
@@ b0
OOOOOOO

''OOOOOOO

a

a0ooooooo

77ooooooo

a1
OOOOOOO

''OOOOOOO

p0

p0
0~~~

>>~~~

p0
1

@@@

  @
@@

p1 b

p1

p1
1~~~

>>~~~
b1ooooooo

77ooooooo

and, for arrows, pairs of maps fi such that q10◦ f0◦ p0
0 = q1

1◦ f1◦ p0
1.

p0
f0 // q0

q1
0

@@
@

��@
@@

p0

p0
0~~~

>>~~~

p0
1

@@@

  @
@@

q1

p1
f1 // q1

q1
1~~~

??~~~

Composition and identities are given by composition and identities in C×C.

The push-me-pull-you condition abstracts the property of (weak) pull-backs that ensures compo-
sition lifts fromC×C. Identities lift fromC×C because the diamonds commute. Informally, the
span generates pairs, while the cospan tests pairs. Commutativity says every pair generated must
test good. The push-me-pull-you condition says every pair that tests good must be generated.
The objects ofKC include all (weak) pull-backs and (weak) push-outs inC. Over Set or any
C with both pull-backs and push-outs, a diamond is a push-me-pull-youiff the pull-back of the
cospan commutes with the push-out of the span.

Proposition 9.1.7 (Robinson)A choice of pull-backs in C gives an equivalence between the
categoriesQC andKC which is a graph equivalence over the identity on C.

QC
pb //

�� ��

KC

�� ��
C C

Proof. One direction of the equivalence takes a cospan inQC to its chosen pull-back diamond
in KC and arrow pairs to themselves. The other direction takes a diamond inKC to its cospan
part inQC and arrows pairs to themselves. These two functors give the identity onQC and the
endofunctor onKC that normalizes push-me-pull-you’s to pull-back’s. Any push-me-pull-you is
isomorphic to any (weak) pull-back diamond with the same cospan. �

Proposition 9.1.8 Given a choice of pull-backs in C, closed structure on C lifts to closed struc-
ture onKC.

(KC)op×KC
[−,+]KC //

�� ��

KC

�� ��
Cop×C

[−,+]C // C



112 Chapter 9. Quotient Relations and Parametric Models

Proof. The cospan part of[−,+]KC is given by applying[−,+]C to the cospan of the covariant
argument and the span of the contravariant argument. The span part is given by the pull-back of
the cospan part.

p q 7→ [p,q]KC

p0 q0

q1
0

>>
>

��>
>>

[p0,q0]C

[p0
0,q

1
0]C

KKK

%%KK
K

p0

p0
0���

??���

p0
1

>>>

��>
>>

q1 [p0,q1]C

p1 q1

q1
1���

??���

[p1,q1]C

[p0
1,q

1
1]Csss

99sss

The cospan[p0
i ,q

1
i ] internalizes the test on arrow pairs in the definition ofKC. The pull-back

span then generates all pairs that test good. We must check that[hi ,gi ] carries these to good pairs
according to the cospan[p′0i ,q′1i ] . Note that the span[p1

i ,q
0
i ] does not generally generate all

the pairs in[p0
i ,q

1
i ]
∗—the contravariant place in the function space does not generally preserve

pull-backs—so we cannot appeal to the diagram

[p0,q0]
[h0,g0] // [p′0,q

′
0]

[p′10 ,q′00 ]
JJJ

$$JJ
J

[p1,q0]

[p1
0,q

0
0]uuu

::uuu

[p1
1,q

0
1]

III

$$II
I

[p′0,q′1]

[p1,q1]
[h1,g1] // [p′1,q

′
1]

[p′11 ,q′01 ]
ttt

::ttt

Instead, consider a pairfi : pi→ qi in [p0,q1]∗. We know this gives an arrow fromp to q because
[p0

i ,q
1
i ] internalises the arrow test.

p′0
h0 // p0

f0 //

>>
>>

��>
>>

>

q0
g0 //

q1
0

>>
>

��>
>>

q′0

q′10

???

��?
??

p′0

p′00���

??���

p′01

???

��?
??

p0

p0
0���

??���

p0
1

>>>

��>
>>

q0

??��������

��>
>>

>>
>>

> p1 q1 q′1

p′1
h1 // p1

f1 //

����

??����

q1
g1 //

q1
1���

??���

q′1

q′11���

??���

By the push-me-pull-you properties ofp j
i andq j

i , the composite pairhi ◦ fi ◦gi , which is [hi ,gi ]
applied to fi , gives an arrow fromp′ to q′, but then this pair tests good according to the cospan
[p′0i ,q′1i ] which internalizes the arrow test fromp′ to q′. �

Corollary 9.1.9 Given a choice of pull-backs in C, closed structure on C lifts toQC.

9.1.10 Componentwise Liftings
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If U : D→C is a pull-back functor (functor preserving pull-backs between categories with pull-
backs), then it lifts componentwise to a functorQU : QD→ QC.

d0

s0

>>
>

��>
>>

>

Ud0

Us0

DDD

""D
DD

s 7→ Us

d1

s1���

??����

Ud1

Us1zzz

<<zzz

Given an arrow pairfi in QD, we check that the imageU fi is an arrow pair inQC by taking, for
our pull-back ofUsi , the image of a pull-back ofsi .

Ud0
U f0 //

Us0

BB
B

  B
BBB

Ud′0

Us′0

CCC

!!C
CC

U(s∗)

U(s∗1 )
xxx

<<xxx

pb

U(s∗0 )
FFF

""F
FF

Us Us′

Ud1
U f1 //

Us1|||

>>||||

Ud′1

Us′1{{{

=={{{

Taken withU , the functorQU gives a graph functor.

QD
QU //

�� ��

QC

�� ��
D

U // C

Definition 9.1.2 thus gives the object part of a functorQ : PBCat→ GCat from the category
of pull-back categories to the category of graph categories. In fact, the construction extends
to functors taking pull-backs to weak pull-backs and to functors preserving weak pull-backs
between categories with weak pull-backs.

PBCat Q //

��

GCat

PBwCat

Qwssss

99ssss

��
WPBCat

QW��������

BB��������

TheseQ extend to 2-functors: the functorsQU act componentwise on the cospans that make up
the objects ofQD, so the components of any natural transformationα : U⇒U ′ also give a graph
transformation fromQU to QU ′.

Ud0
αd0 //

Us0

BB
B

!!B
BBB

U ′d0

U ′s0

DD
D

""D
DD

(Us)∗

(Us1)∗xxx

;;xxx

(Us0)∗
FFF

##F
FF

Us
αs // U ′s

Ud1
αd1 //

Us1|||

==||||

U ′d1

U ′s1zzz

<<zzz
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WhenD has pull-backs,D×D has pull-backs. These are computed componentwise, soQ(D×D)
is isomorphic toQD×QD.

GCat×GCat
× //

∼=

GCat

PBCat×PBCat

Q×Q

OO

× // PBCat

Q

OO

Any binary operationM on D×D that preserves pull-backs therefore lifts componentwise to a
binary operation onQD×QD.

QD×QD∼= Q(D×D)
QM // QC

For example, the smash product⊗ on Cppo⊥ can be expressed as a pull-back (the image under
lifting of the product expressed as a pull-back in Cpo) and so preserves pull-backs. It therefore
lifts componentwise toQCppo⊥.

d0

r0

<<
<

��<
<<

<

d′0

r′0

>>>

��>
>>

d0⊗d′0

r0⊗r′0

HHH

$$H
HH

r r ′ 7→ r⊗ r ′

d1

r1���

@@����

d′1

r′1���

@@���

d1⊗d′1

r1⊗r′1vvv

::vvv

If pull-backs are used to embedQCppo⊥ into Sub2Cppo⊥, thenQ⊗ corresponds to the smash
product� [9] which is adjoint to the parametric function space[−,+]Sub2Cppo⊥ .

QCppo⊥×QCppo⊥
Q⊗ //

pb×pb
��

QCppo⊥

pb
��

Sub2Cppo⊥×Sub2Cppo⊥
� // Sub2Cppo⊥

po

OO

While Q⊗ is equivalent to the composite po◦�◦(pb×pb), the functorQ⊗ is given by a natural,
componentwise definition, while� is defined using an existential quantification and a completion
or, more abstractly, certain coequalizers in the category of lift algebras.

How might the above apply to operations of mixed variance? WhenD andDop have pull-
backs,Dop×D has pull-backs. IfF is a pull-back functor onDop×D, we obtain a graph functor
QF on Q(Dop)×QD ∼= Q(Dop×QD). The following proposition then gives us a graph functor
on (QD)op×QD.

Proposition 9.1.11 When D and Dop have pull-backs,Q(Dop) is equivalent to(QD)op.

Proof. The pull-back operations on the objects ofQ(Dop) and(QD)op give the equivalence.�
In other words, on thoseD that have both pull-backs and push-outs, the 2-functorQ com-

mutes up to an equivalence with the opposite category 2-functor(·)op : Cat→ Catco.

GCat
(·)op

// GCatco

PBPOCat

Q

OO

'
(·)op

// PBCatco

Qco

OO

This is a little surprising. It meansQC is equivalent to(Q(Cop))op whenC has both pull-backs and
push-outs. BothQC and(Q(Cop))op have pairs of maps for arrows, but the objects are different
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and arrows are tested differently. Take for exampleQSet. In comparison with the category
Sub2Set of all binary relations over Set,QSet has the same notion of arrow but only represents
some relations (the difunctional ones), while(Q(Setop))op, having spans for objects, represents
all relations but has a more liberal notion of arrow tested using a push-out (pull-back in Setop) of
the codomain span.

c0
f0 //

r0

<<<
<

��<
<<

<

c′0

r′0

>>>

��>
>>

c0 //
f0 c′0   

r′+1

@@

@@@

r∗

r∗1���

??���

pb

r∗0

>>
>

��>
>>

r r ′ r
@@

r0���

����

��
r1

==
=

==
==

r ′
@@

r′0��

���

pb
��

r′1

>>

>>>

r ′+

c1
f1 //

r1����

@@����

c′1

r′1���

@@���

c1 //
f1

c′1

>>
r′+0~~

~~~

Note, however, that this method of lifting mixed variance functors goes all wrong when ap-
plied to closed structure. AssumingCop has pull-backs, these are not generally preserved by the
contravariant parts[−,c]C : Cop→C of a function space functor[−,+]C. However, given just
pull-backs inC, any function space functor[−,+]C :Cop×C→C lifts to a reflexive graph functor
[−,+]QC : (QC)op×QC→ QC, with or without pull-backs inCop and whether or not those inC
are preserved.

9.1.12 Uniformity as Quotient Diparametricity

In [28], Mulry internalizes uniformity (for transformations of fixed point type) using a notion of
‘strong dinaturality’. A transformationα is strongly dinaturalif, for all g : d→ d′,

F(d,d)
αd //

F(d,g)
KKK

K

%%KK
KK

G(d,d)

G(d,g)
KKK

K

%%KK
KK

P

<<xxxxxxxxx

""F
FFFFFFFF pb F(d,d′) G(d,d′)

F(d′,d′)
αd′ //

F(g,d′)ssss

99ssss

G(d′,d′)

G(g,d′)ssss

99ssss

AssumingC has pull-backs, this is parametricity with respect to certain objects inQC.

Proposition 9.1.13 Strong dinatural transformations from F to G are identical with diparamet-
ric transformations fromQF ◦ ((ι↑◦ ��)× ι↓) to QG◦ ((ι↑◦ ��)× ι↓).

(D↓)op×D↓ ��×D↓
// (Dop)↑×D↓ ι↑×ι↓ // Q(Dop)×QD

iso
// Q(Dop×D)

QG //
QF
// QC

Diamonds of the form

d

g
@@@

@

��@
@@

d

��������

g
>>>

>

��>
>>

d′

d′

�������
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are pull-backs, This means the above functor(ι↑◦ ��) can be written asι↓ followed by a pull-back
operation from(QD)op to Q(Dop).

(D↓)op
(ι↓D)op

//

��
��

(QD)op

pb
��

(Dop)↑
ι
↑
Dop // Q(Dop)

The above functors on(D↓)op×D↓ therefore factor through functors on(QD)op×QD.

(D↓)op×D↓(ι
↓)op×ι↓// (QD)op×QD

pb×QD// Q(Dop)×QD
iso
// Q(Dop×D)

QG //
QF
// QC

Corollary 9.1.14 A family of maps is strongly dinatural if it gives a diparametric transformation
fromQF ◦ (pb×QD) to QG◦ (pb×QD).

Now suppose transformationα has the type of a fixed point operator. That is, supposeF
is the function space[−,+] of some closed categoryC andG is the second projectionπC on
Cop×C. The function space lifts to a functor[+,−]QC given byQ[−,+]◦(pb×QC). The second
projectionπQC on (QC)op×QC throws away its first argument and so equalsQπC ◦ (pb×QC).
Therefore, by the Corollary, a diparametric transformation from[+,−]QC to πQC gives a strong
dinatural transformation from the functor[+,−] to the functorπC. In this case, however, the
converse holds.

Proposition 9.1.15 A family of mapsfc : [c,c]→ c is strongly dinaturaliff it gives a diparametric
transformation from[−,+]QC : (QC)op×QC→ QC to πQC : (QC)op×QC→ QC.

Proof. We check that thea priori stronger parametricity condition is implied by strong dinatu-
rality. Strong dinaturality for these two functors says, modulo an internalisation, that we have
g(f( f0)) = f( f1), for any f0, f1 andg such thatg◦ f0 = f1◦g.

c0
f0 //

g

��

c0

g

��
⇒

1
f( f0) // c0

g

��
c1

f1 // c1 1
f( f1) // c1

Diparametricity says, modulo an internalisation, that we haveg0(f( f0)) = g1(f( f1)), for any f0,
f1 and cospan(g,h) such thatg◦ f0◦g∗1 = h◦ f1◦g∗0.

c0
f0 // c0

g0
>>

>

��>
>>

g∗

g∗1~~~

>>~~~

f ∗ //

g∗0

@@@

  @
@@

g∗

g∗1~~~

>>~~~

pb

g∗0

@@@

  @
@@

g

c1
f1 // c1

g1���

??���

⇒

1
f( f0) // c0

g0
>>

>

��>
>>>

1

�������� f( f ∗) //

<<
<<

<<
<<

g∗

g∗1~~~

??~~~

pb

g∗0

@@@

��@
@@

g

1
f( f1) // c1

g1���

@@����
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⇒

1
f( f0) //

==
==

==
= c0

g0
??

?

��?
??

1

�������
pb

==
==

==
= 1

f( f ∗) // g

1
f( f1) //

�������
c1

g1���

??���

This follows from strong dinaturality applied tof ∗, f0 andg∗1 and to f ∗, f1 andg∗0, where f ∗ is
the unique span map from( f0◦g∗1, f1◦g∗0) to (g∗1,g

∗
0). �

.
We have given a direct proof, but the Proposition is just one consequence of the following

Lemma.

Lemma 9.1.16 If F : Cop×C→ C preserves pull-backs in it’s covariant component or takes
push-outs to pull-backs in it’s contravariant component, then a family of mapsαc : F(c,c)→
G(c,c) is strong dinatural if and only if it is diparametric with respect toQC.

Proof. Suppose the covariant functorF(r∗,+) preserves pull-backs. Then(F(r∗, r∗1),F(r∗, r∗0))
is a pull-back of(F(r∗, r0),F(r∗, r1)) and we obtain a mapi from the pull-backF(r∗, r)∗ to
F(r∗, r∗). Diparametricity atr i then follows from strong dinaturality atr∗1 (upside-down in the
diagram below) pasted alongαr∗ to strong dinaturality atr∗0.

F(c0,c0)
αc0 //

F(r∗1 ,c0)
KK

%%KK
KKK

G(c0,c0)

G(r∗1 ,c0)
HH

$$H
HHH

F(r∗,r0)
JJJ

JJ

%%JJ G(r∗,r0)
GGGG

##GG

F(r∗, r)∗

::vvvvvvvvvvvvvvvvvvv
i //______

$$H
HHHHHHHHHHHHHHHHHH
F(r∗, r∗)

F(r∗,r∗1 )ss

99sssss

F(r∗,r∗0 )
KK

%%KK
KKK

pb? F(r∗, r) G(r∗, r∗)

G(r∗,r∗1 )
vv

::vvvv

G(r∗,r∗0 )
HH

$$H
HHH

G(r∗, r)

F(r∗,r1)ttttt

99tt
G(r∗,r1)wwww

;;ww

F(c1,c1)
αc1 //

F(r∗0 ,c1)ss

99sssss

G(c1,c1)

G(r∗0 ,c1)vv

::vvvv

On the other hand, ifF(−, r) takes push-outs to pull-backs. Then(F(r0, r),F(r1, r)) is a pull-
back of(F(r∗1, r),F(r∗0, r)) and we obtain a mapj from F(r∗, r)∗ to F(r, r). Diparametricity atr i

then follows from strong dinaturality atr0 and atr1.

F(c0,c0)
αc0 //

F(c0,r0)
KKK

%%KKKKK

G(c0,c0)

G(c0,r0)
HH

$$HH
HHH

F(r∗1 ,r)
JJJ

JJ

%%JJ
G(r∗1 ,r)
GG

GG

##GG

F(r∗, r)∗

::vvvvvvvvvvvvvvvvvvv j //______

$$H
HHHHHHHHHHHHHHHHHH
F(r, r)

F(r0,r)sss

99sssss

F(r1,r)
KKK

%%KKKKK

pb? F(r∗, r) G(r, r)

G(r0,r)vv

::vvvvv

G(r1,r)
HH

$$HH
HHH

G(r∗, r)

F(r∗0 ,r)
ttttt

99tt
G(r∗0 ,r)
wwww

;;ww

F(c1,c1)
αc1 //

F(c1,r1)sss

99sssss

G(c1,c1)

G(c1,r1)vv

::vvvvv

�
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Note that neither half of Lemma 9.1.16 uses the full bifunctorality ofF andG. If F(id, r0) ◦
F(r∗1, id) 6= F(r∗1, id)◦F(id, r0), so thatF(r∗1, r0) is not well defined, then we can takeQF((r0, r1),(s0,s1))
to be the cospan(F(id, r0)◦F(r∗1, id)),F(id, r1)◦F(r∗0, id), in which case the first half of the proof
goes though, or we can take it to be(F(r∗1, id)◦F(id, r0),F(r∗0, id)◦F(id, r1)) in which case the
second half goes though.

WhenF(−.+) is the function space[−,+] associated with some tensor product⊗, so that
F [r,+], is a right adjoint tor⊗ (·) and, hence, preserves pull-backs, then, by the Lemma, strong
dinaturality from[−,+] to G(−,+) is equivalent to diparametricity with respect toQC. Also, in
the case of function spaces, the operatorQ[−,+] is functorial.

9.2 Domain Theoretic Models of Recursive Linear Types

The addition of recursive types to LNL is motivated by the existence of invariants in domain-
theoretic adjunctions. The fact that, in these adjunctions, the invariants are actually Freyd alge-
bras allows us to interpret nested and mixed variance recursive types. However, we do not see
that the equational theory of RLNLrequiresthat a recursive type be interpreted by a Freyd alge-
bra. The term model does not then form a compact adjunction and so domain-theoretic models
are special.

To get around a lack of Freyd algebras in the term model, the general notion of RLNL model
we give in Section 9.2.1 uses a technical notion of pre Freyd algebra. In Section 9.2.5 we describe
how a fixed point combinator can be used to show that the term model has pre Freyd algebras.

In the notion of uniformity defined in Chapter 6 variation is limited to strict maps. In Sec-
tion 9.2.7 we observe that this can be built into a modified notion of quotient relation, although
in RLNL models variation is already limited in this way.

This means that the transformation interpreting any fixed point combinator is uniform, so
long as the structure modeling the term derivation lifts to quotient relations. Since compact
adjunctions have canonical fixed points and these are characterized by uniformity when the right
adjoint is injective on objects, In Section 9.2.9 we give a definition of domain-theoretic adjunction
that ensures that all structure lifts to quotient relations. This ensures that fixed points defined by
combinators coincide with the canonical fixed points of the model, which, in partial order models,
coincide with least fixed points.

9.2.1 RLNL Models

The type theory LNL is interpreted in a symmetric monoidal/cartesian closed adjunctionL aU :
D→C. Linear types and terms in context are interpreted using objects and transformations in
the monoidal closed categoryD and linear types and terms, using functors and transformations
in the cartesian closed categoryC.

Definition 9.2.2 (Benton [3]) AnLNL model in a symmetric monoidal/cartesian closed LaU :
D→ C is given by a function from types in context to families of objects indexed by tuples of
objects in D that respects the equations

JA1, . . . ,Ak I AkK = dk, at (d1, . . . ,dk)
JΨB (X_Y)K = [JΨB XK,JΨBYK]C
JΨI (A(B)K = [JΨI AK,JΨI BK]D

JΨI LXK = LJΨB XK
JΨB UAK = UJΨI AK

JΨB (X×Y)K = JΨB XK× JΨBYK
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JΨI (X⊗Y)K = JΨI XK⊗ JΨIYK

JΨB 1K = 1

JΨI IK = I

and a function from terms in context to transfomations that respects the equations

domJΨB x : X ` f(x) : YK = JΨB XK
codJΨB x : X ` f(x) : YK = JΨB YK

JΨB x1 : X1, . . . ,xn : Xn ` xn : XnK = πn = λC ◦ tJΨBX1K×···×JΨBXnK

JΨI x1 : X1, . . . ,xn : Xn p a :A` a :AK = λD ◦ ((u◦LtJΨBX1K×···×JΨBxnK)⊗ idJΨIAK)
JΨB Γ ` thunk(a) : UAK = UJΨI Γ ` a : AK ◦η

JΨI Γ ` force(x) : AK = ε ◦LJΨB Γ ` x : UAK
JΨI Γ ` produce(x) : LXK = LJΨB Γ ` x : XK

JΨI Γ p Π,Π′ ` b to x in a : AK = JΨI Γ,x : X p Π ` a : AK ◦
d◦ (LidJΨBXK⊗ JΨI Γ p Π′ ` b : LXK)◦αD

By adding interpretations for the recursive linear type construction and the rules for intro-
ducing and eliminating recursive types, we extend the definition of LNL model to a definition
of RLNL model. As we control the construction of recursive types using type contexts, our in-
terpretation of recursive types is based on an interpretation of types in context. We interpret the
nonlinear and linear type sequentsΨB X andΨI A derivable in RLNL, as functors on|D|k
where|D| is the discreet category of objects ofD, andk is the number of type variables inΨ.
These functors lift to functors on(Dop×D)k. Except for the function types, the operations used
to interpret types extend to functors on multiples ofD. To accomodate function types, we can use
functors on multiples ofDop×D. All these functors are structural with respect to the canonical
structural actions.

Proposition 9.2.3 In an LNL model, the interpretation of each type in context extends to a struc-
tural functor on a multiple of Dop×D.

To interpret the introduction and elimination rules for recursive types we require an invari-
ant for the endofunctor interpreting the type construction that appears in the recursive type. As
the calculus allows recursive types to be nested, it is also necessary that the delivery of these
invariants lifts to a functor with invariants of its own. The theory of structural algebraic compact-
ness presented in Chapter 4 provides just such invariants; however, we would also like the term
category to have the structure we require for our models and although we see how to construct
canonical recursive maps to and from invariants in the term category, we do not see that these are
unique. Let us say that apre Freyd algebrais an algebra with a given recursive morphism from
any coalgebra and a given algebra morphism to any algebra.

Definition 9.2.4 AnRLNL(F) modelis an LNL(F) model in whichΨI b : B[µA.B[A]] ` fold(b) : B[A]
is interpreted as a pre Freyd algebra for the (parameterized) functor that interpretsΨ,A I B.

9.2.5 Recursive Types in Term Models

The type theory LNL can be used to build a categorical model of itself. In the symmetric
monoidal closed categoryD, objects are linear type expressions and arrows are equivalence
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classes of derivable terms in singleton linear context. The equivalence is generated by the equa-
tional theory and alpha conversion on the variable appearing in the context. Composition is given
by well-typed substitution of term for free variable and identities are given by the linear variable
introduction rule.

We define a functor⊗ : D×D→D by taking an arrow given by the pair of termsΨI a :A` b : B
andΨI a′ : A′ ` b′ : B′ to the arrow given by

ΨI c : (A⊗A′) ` c to aand a′ in (b.b′) : (B⊗B′) .

We define a functor[−,+] : Dop×D→ D by taking an arrow given byΨI b : B` a : A and
ΨI a′ : A′ ` b′[a′] : B′ to the arrow given by

ΨI g : (A(A′) ` λb.b′[(g)a] : (B(B′) .

We check that these operations are functorial. A cartesian closed categoryC is defined in the same
way using nonlinear types and nonlinear sequents with singleton context, except the functor giv-
ing products takes an arrow given by the pair of termsΨB x : X ` y : Y andΨB x′ : X′ ` y′ : Y′

to the arrow given byΨB z : (X×X′) ` (first(z),second(z)) : (Y×Y′).
We define a functorL : C→D by applying the type constructor L to objects and taking an ar-

row given byB x : X ` y[x] : Y to the arrow given byI a : LX ` ato x in produce(y[x]) : LY
and we define a functorU : D→C by applying the type constructor U to objects and taking an
arrow given byI a :A` b[a] : B to the arrow given byB x : UA` thunk(b[force(x)]) : UB.
We check that these operations are functorial.

By Corollary 7.2.4,L is left adjoint toU and from the proof of Proposition 7.2.3 we see that
the unit atX is given by

B x : X ` thunk(produce(x)) : ULX

and the counit atB is given by

I a : LUB` ato x in force(x) : B.

In [24] it is shown that this construction gives the object part of an equivalence between a
category of LNL theories and a category of symmetric monoidal/cartesian closed adjunctions,
which means that LNL isthe language for such adjunctions. We do not have a similar result for
RLNL and compact adjunctions. However, in the term model of RLNL, we can use fixed point
combinators to construct the morphisms into and out of an invariant, even if this does not make
the invariant a Freyd algebra as there is nothing to say that these are the unique such morphisms.

Given a functor defined by a linear type expression AI B[A], consider the arrow given by

I b : B[µA.B[A]] ` fold(b) : µA.B[A]

as the structure morphism of an algebra. First, given an arrowp from C to B[C] we require a
recursive morphism given by an arrow fromC to µA.B[A]. Such an arrow is a fixed point of
the endofunction onD(C,µA.B[A]) given by composition withp[c] andfold(b). Internally, this
endofunction is represented by

λ f.thunk(λc.fold((B[force(f)])p[c])) : (U(C(µA.B[A])_U(C(µA.B[A])),

whereB[ f ] is determined by the type expressionB[A]. Applying a fixed point combinator, we
obtain a term of type U(C(µA.B[A]) which gives a term of type(C(µA.B[A]) which uncurries
to give the desired arrow fromC to µA.B[A]. We check that this gives a recursive morphism.
The arrow given byfold(b) has an inverse given byunfold(a) and a similar construction gives
us a recursive morphism fromunfold(a) to any algebra forB.

Proposition 9.2.6 The monoidal category of the term model for RLNL(K) has a pre Freyd alge-
bra for every endofunctor defined by a type expression in RLNL(K).
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9.2.7 Uniformity in RLNL Models

For uniformity to characterize canonical fixed points, it is necessary thatg vary overstrict maps
only. In Mulry’s setting, the notion of strong dinaturality must be correspondingly weakened. In
that setting, strict maps are algebra morphisms and so Mulry uses the notion of strong dinatural
transformation with variation restricted to algebra morphisms [28, Def. 3.11].

Before we consider the interpretation of RLNL, we observe that a factorization system in Cat
can be used to describe the correspondingly weakened parametricity condition. Strict maps will
be those in the image of some functorU : D→C. In Mulry’s setting,U is the forgetful functor
from the category ofLU-algebras.

In Cat every functorF factors as a bijective-on-objects functorFbo followed by a full-and-
faithful functor Fff . If D is the domain ofF , the interpolating categoryHF has the objects of
D for objects and has hom sets given by Hom(F(−),F(+)). This factorization system lifts to
graph functors, because the operationH is the object part of a functor from Fun, the category
of functors and functor squares commuting up to given natural isomorphisms, to Cat. A graph
morphism gives a graph in Fun whichH then sends to a graph category. AssumingU is a pull-
back functor, we therefore obtain a graphH(QU) by factoring the graph functorQU . Note that
H(QU) is notQ(HU). Our definition of the latter requiresHU to have pull-backs (which it does,
by the way, ifU creates pull-backs).

H(QU)
QUff

##G
GG

GG
GG

GG

����

QD

QUbo

;;vvvvvvvvv QU //

����

QC

����

HU
Uff

$$I
IIIIIIIII

D

Ubo

::uuuuuuuuuu U // C

WhenL aU is a closed adjunction, the closed structure onC lifts alongUff to closed structure
onHU by defining

[−,+]HU
def= [LU−,+]D.

This closed structure commutes withUff up to a natural isomorphismτ :U [LU−,+]D⇒ [U−,U+]C
which is the internalisation of transposition. Similarly, closed structure onQC lifts to closed
structure onH(QU) and we obtain a graph functor[−,+]H(QU) : H(QU)op×H(QU)→H(QU).
This is the image underH of closed structure on the graphQU overU in Fun.

Proposition 9.2.8 A family of mapsfd : [Ud,Ud]→ Ud in C indexed by the objects of D is
strongly dinatural with variation restricted to Diff it gives a diparametric transformation from
[−,+]H(QU) to πH(QU).

Remark. More generally, Section 6.2 uses uniformity to characterize the canonical recursive
morphisms R(p,s) induced by a fixed point algebra. When the operation that produces canonical
recursive morphisms is internalized to a collection of maps R :[b,Fb]× [Fa,a]→ [b,a], this uni-
formity can also be viewed as diparametricity with respect to quotient relations. This generalizes
the situation with the canonical fixed point operations.

In an RLNL model, types are interpreted by functors on (multiples of)D, so parametricity
is already with respect to quotient relations overD. In the case of the fixed point type(Ud �
Ud)→Ud this amounts to restricting variation to strict maps.
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9.2.9 Fixed Point Combinators in Domain Theoretic Models

Consider a compact symmetric monoidal/cartesian closed adjunction. The right adjoint is not
obliged to be injective on objects, so we ask for this to ensure that the canonical fixed point op-
eration is the unique uniform fixed point operation. The majority of the structure in the compact
adjunction lifts to quotient relations: products and right adjoints preserve pull-backs, the closed
structure lifts by Corollary 9.1.9, natural transformations are automatically (di)parametric and,
using identity relations, Freyd algebras for (diagonalized) endofunctors that lift also lift. This
leaves the left adjoint and monoidal multiplication. In concrete adjunctions between categories
of partial orders these preserve pull-backs, so we ask for this explicitly.

Definition 9.2.10 Adomain-theoretic monoidal adjunctionis a compact symmetric monoidal/cartesian
closed adjunction whose right adjoint is injective on objects and whose left adjoint and monoidal
multiplication preserve pull-backs.

Consider an RLNL model in a compact adjunction. Although the compactness provides a model
of recursive types, we do not see that our weakened notion of RLNL model is not obliged to
follow this interpretation. We therefore ask for this explicitly. One might say that the Freyd
algebras provide the canonical interpretation of recursive types.

Definition 9.2.11 A domain-theoretic model of RLNLis a model in a domain-theoretic adjunc-
tion with recursive types interpreted by Freyd algebras.

The natural transformations that interpret RLNL are quotient diparametric and all the structure
that interprets the rules of RLNL preserves quotient diparametricity so every term is interpreted
by a quotient diparametric transformation.

Proposition 9.2.12 In a domain-theoretic model of RLNL the interpretation of any term gives a
quotient diparametric transformation.

Corollary 9.2.13 In a domain-theoretic model of RLNL the interpretation of any fixed point
combinator coincides with the canonical fixed point operator.
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Chapter 10

Directions for Future Work

Limits on space and time have forced us to ignore, as best we could, a number of interesting
possibilities. We sketch those that seem most promising or intriguing, beginning with those we
most hope to pursue in future.

10.1 Fox’s Construction and Lemma 2.1.4

Loosely speaking Lemma 2.1.4 uses the structure maps of the algebras and coalgebas as unit and
counit maps at the level of algebra/coalgebra morphisms. Similarly, Fox’s construction uses the
structure of commutative comonoids to build the maps required by products and a final object.

Given a monoidal category with mulitplication⊗ : D×D→D, the multiplication gives prod-
ucts if⊗ is right adjoint to the diagonalδ : D→ D×D. If we apply Lemma 2.1.4 to these two
functors we obtain an oblique adjunction between algebra/coalgebras for∆⊗ and⊗∆. Coalge-
bras for the latter are given by mapsp : d→ d⊗d which is a step towards comonoids and parts
of the oblique adjunction are reminiscent of Fox’s construction.

This is only part of a complete picture however. While the products and final objects are
described by independent adjunctions, there is a curious symbiosis between multiplications and
units in Fox’s construction. So, for a start, it would seem that Lemma 2.1.4 would have to be
applied to a pair of functors involving both multiplication and unit.

We find the possibility of a connection particularly intriguing as we have used Lemma 2.1.4
so closely with Fox’s construction in our account of parameterized fixed point objects.

10.2 The Free Adjunction on the Distributor Classifier

The free adjunction over a director looks to be very interesting. The simplest case is that of the
free adjuntion over the director with just the one oblique edge between two kinds of object (which
happens to be the distributor classifier). This has objects of the form(UL)n⊥, (UL)nU>, (LU)n>
and(LU)nL⊥, with n∈ N, and lots of maps. It appears to be some sort of vertical naturals glued
to itself upside down. Computationally, it would seem to be the free computational calculus on
one ‘tick’.

10.3 Logical Relations

We have used the graph category framework for binary relational parametricity in a very elemen-
tary way. Really we should have built a graph compact adjunction to obtain a theory of logical
relations for RLNL. Using a more sophisticated form of quotient relation it may be possible to
show thatanycompact adjunction is a parametric model (with respect to the more sophisticated
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notion of relation) and therefore interprets fixed point combinators as canonical fixed. In fact,
this was the original aim of this thesis. The sticking point seems to be the left adjoint (which is
one point of tensor multiplication onD and so there is trouble there too).

10.4 Other Fixed Point Transformations

As we mentioned in Section 6.3.3, in a purely exponential model we have an alternative inter-
nalization of the fixed point operator and it is not difficult to derive a fixed point combinator to
inhabit the corresponding type expression in LFPC. Because exponential models have opposites,
we also obtain a dual fixed point operator with components((e−d) � d)−e→ (e−d), but we do
not see the corresponding combinator (in the absence of an action type�).

10.5 Other Recursive Types

There is another idiom staring out at us from the fixed point derivations. The recursive types are
always used in conjuntion with the type constructor U in one of three idioms.

Idiom Sugar

Ψ,A I B[UA]

ΨI µA.B[UA]

ΨB UµA.B[UA]

Φ,Y I B[Y]

ΦB µY.B[Y]

ΨI Γ ` a : B[UµA.B[UA]]

ΨI Γ ` fold(a) : µA.B[UA]

ΨB Γ ` thunk(fold(a)) : UµA.B[UA]

ΦI Γ ` a : B[µY.B[Y]]

ΦB Γ ` fold(a) : µY.B[Y]

ΨB Γ ` x : UµA.B[UA]

ΨI Γ ` force(x) : µA.B[UA]

ΨI Γ ` unfold(force(x)) : B[UµA.B[UA]]

ΦB Γ ` x : µY.B

ΦI Γ ` unfold(x) : B[µY.B]

Here is the sugared form of the derivation ofΩ.

Y,BB Y Y,BI B

A,BI (Y→B)

BI µA.(UA→B)︸ ︷︷ ︸
M

BBM

BB x : M ` x : M

BBM

BB x : M ` x : M

BI x : M ` unfold(x) : (M→B)

BI x : M ` (unfold(x))x : B

BI ` λx.(unfold(x))x︸ ︷︷ ︸
A

: (M→B)

BI ` A : (UM→B)

BB ` fold(A) : M BI ` A : (M→B)

BI ` (A)fold(A)︸ ︷︷ ︸
Ω

: B
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This derivation inhabits LFPC together with the rules shown in Figure 10.1.

10.6 Parametricity and Compactness

In view of Plotkin’s observations on parametricity and compactness the term model of RLNL
could probably be made compact if the calculus were extended in some way that would allow
parametricity to be expressed, for example by including a type constructor that internalises the
collection of quotient relations or allows it to be internalised. Or perhaps it is enough to add
structure that ensures the left adjoint and tensor preserve pull-backs as in domain-theoretic mod-
els.

10.7 Models of closed LNL.

While closed LNL has an notion of model in symmetric closed adjunctions inherited from the
notion of LNL model in symmetric monoidal closed adjunctions, the question of term models
and, hence, categorical completeness requires other structure.

Without product types, there are [sigh] at least two ways to build a categorical term model
out of a simply typed lambda calculus. We can abandon the notion of types as objects and
build a cartesian closed category of contexts and simultaneous substitutions, or we can use types
as objects, but index our model with a category of contexts. In the first case we obtain a simple
category with complex objects and a contrived function space, while in the second case we obtain
an indexed category with simple objects and natural function spaces.

As the category of types acts on the category of contexts by context extension, the notion of
structural action might still be useful. For closed relevant calculi the notion of structural action
might be generalized from indexed comonad to indexed structure that models the relevant form
of context extension.

10.8 2-Categories for Types

In Chapter 3 we have a definition of lax monoid in categories with lax monoid structure. This is
an example of what Baez calls the microcosm principle: internal structure requires like external
structure. Does this apply to fixed point structure? Is there a 2-category in which the invariants
of compact categories are induced by a generic endofunctor in a 2-categorical analogue of a fixed
point object? Something like this seems to be happening in Wraith’s construction of a natural
number object in the category of bounded toposes which is then used to identify internal iterates
(which makes essential use of distributors). A starting point might be the 2-category of compact
adjunctions or, to connect with Wraith’s construction, Vicker’s Geometric Domain Theory.
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Φ,Y I B

ΦB µY.B

ΦI Γ ` a : B[µY.B]

ΦB Γ ` fold(a) : µY.B

ΦB Γ ` x : µY.B

ΦI Γ ` unfold(x) : B[µY.B]

unfold(fold(a)) �β a

x =η fold(unfold(x))

Figure 10.1: Rules and equations for linear recursive nonlinear types.

Ψ,A B X

ΨI µA.X

ΨB Γ ` b : X[µA.X]

ΨI Γ ` fold(b) : µA.X

ΨI Γ p Π ` b : µA.X ΨI Γ,x : X[µA.X] p Π′ ` a : A

ΨI Γ p Π,Π′ ` b to x in a : A

fold(y) to x in a[x] =β a[y]
a =η a to x in fold(x)

Figure 10.2: Rules and equations for nonlinear recursive linear types.
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Appendix A

Distributors and Directors

Distributors—the structures formerly known as profunctors—are commonly presented as a form
of binary relation between categories with an emphasis on relational composition, but this is not
the view we describe here. Our picture of distributors is based on an elementary notion of oblique
arrow, an arrow from one kind of object to another, strictly incomparable kind of object. The two
kinds of object live in categories of their own, with plain arrows, but there are no plain arrows
between the two kinds of object. Moreover, in a single distributor, all the oblique arrows go from
the one kind of object to the other and so oblique arrows are never composed with one another.

We are being coy about the order of the two kinds because there are two ways of orienting
these structures. The way of the profunctor agrees with the orientation of the oblique arrows and
the way of the distributor disagrees. Although we focus on the oblique arrows, the 2-theory of
these structures works better the distributor way (see [7]). To help with the orientation we think
of the structure vertically: the oblique arrowsup from A to B, which form a profunctorup from
A to B, form a distributordownfrom B to A.

If composition is dropped, categories become directed graphs and distributors become, for
lack of a better word,directors. Directors have oblique edges from one kind of node up to another
kind of node. As with distributors, there are no edges back down from the other kind of node and
so a path in a director contains at most one oblique edge. Just as our picture of categories begins
with directed graphs, our picture of distributors begins with directors.

A.1 Distributors over Directors.

We picture a director as a collection of special edges connecting nodes in one graph to the nodes
in another. By ‘graph’ we mean ‘(small) directed graph’. As in a graph, the notion of composable
pair of edges is well defined, but no composite is given.

Definition A.1.1 A (small) directorfrom a graphG down to a graphF is a (small) collection of
oblique edges from nodes inF up to nodes inG.

Definition A.1.2 A director morphismfrom K to K′ is a pair of graph morphisms fromF to F′

and fromG to G′ together with a function from the oblique edges ofK to the oblique edges ofK′

that is compatible with the graph morphisms on nodes.

Directors and director morphisms form a category Dir.

Definition A.1.3 Thetotal graphof a directorK from G to F is F+G with the oblique edges of
K attached as plain edges.
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This extends to a functor Dir→Gra, where Gra is the category of graphs.

Definition A.1.4 A (small) distributorfrom a (small) category D down to a (small) category C
is a (small) collection of oblique arrows from objects in C up to objects in D that is closed under
composition with arrows in C and D.

Definition A.1.5 A morphism of distributorsfrom P to P′ is a pair of functors from C to C′ and
from D to D′ together with a function from the oblique arrows of P to the oblique arrows ofP′

that commutes with composition.

Distributors and distributor morphisms form a category Dis, which should not be confused with
the bicategoryDist of distributors where distributors are composed. Another representation of
the category Dis is obtained by pulling the underlying graph functor from Cat to Gra back along
the total graph functor.

Definition A.1.6 The total categoryof a distributor P from C to D is C+ D with the oblique
arrrows of P attached as plain arrows.

This extends to a functor Dis→ Cat that lies over the total graph functor. The square is a pull-
back.

Dis

under
��

total // Cat

under
��

Dir
total // Gra

A.2 Free Distributors

Just as we picture an arrow in the free category on a graph F as a (possibly empty) path in
F (together with start and finish nodes), we picture an oblique arrow in the free distributor on
a director K as a (possibly empty) path in F followed by an oblique edge in K followed by a
(possibly empty) path in G. The paths inG and the paths inF are the arrows in the domain and
codomain of the path distributor. In both the path category and the path distributor, the empty
paths (together with their start and finish node) are the identity arrows. There are no oblique
identity arrows because a path that contains an oblique edge is not empty.

Definition A.2.1 Thepath distributorof a directorK from G to F is the director frompathGto
pathFwith each oblique edge given by a path inF followed by an oblique edge inK followed by
a path inG.

The path construction commutes with the total graph/category construction. Rather than
construct the oblique arrows seperately from the arrows, we can take the paths in the total graph
and pick out those containing an (ex)oblique edge as the oblique arrows.

Dis
total // Cat

Dir

path

OO

total // Gra

path

OO

The path construction for directors is left adjoint to the underlying director functor from
distributors to directors and so produces the free distributor with respect to underlying director
morphisms. The adjunction gives us a path monad on Dir analogous to the path monad on Gra.
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A.3 The Distributor/Director Classifier

So far, our picture of distributors is compositive: we begin with two, distinct categories and add
certain oblique arrows to obtain a composite structure. Alternatively, we might begin with one
category and identify two kinds of object. If we then prohibit arrows down from the one kind
to the other, we can identify the arrows up from the other kind as oblique. This second point of
view is neatly expressed using the notion of a classifier.

The category of directors is equivalent to the slice category Gra/↑, where↑ is the graph that
has two nodes with reflexive edges and one irreflexive edge between them. The graph↑ classifies
directors: the oblique edges are singled out and sent to the one irreflexive edge while the domain
and codomain graphs are sent to the two reflexive subgraphs. Note that edges back down from
the domain are prohibited by the lack of a second irreflexive edge.

Likewise, the category of distributors is equivalent to the slice category Cat/↑, where↑ is now
the category with two objects and one non-identity arrow between them. Interestingly, Cat/↑ is
the same as the comma category(under,↑), where under is the underlying graph functor and↑
is the graph classifying directors. In a sense, the graph↑ actually classifies both directors and
distributors.

Note that a Grothendieck construction for categories gives us a functor Cat↑→Cat/↑, where
Cat↑ is the category of functors (pointing up) and functor squares.

A.4 Locally Small Distributors

Whether we view oblique arrows as connecting two categories or as singled out by a classifying
functor, oblique arrows can only be composed with plain arrows to produce other oblique arrows.
This suggests a third point of view that allows for a more subtle treatment of size than the one-
size-fits-all approach adopted (implicitly) above.

Just as the notion of category can be expressed in terms of hom’ sets, the notion of a dis-
tributor can be expressed in terms of het’ sets, where by ‘heteromorphism’ we mean ‘oblique
arrow’.

Definition A.4.1 A locally small distributorfrom a locally small category D to a locally small
category C has a sethet(d,c) of oblique arrows for each object d in D and each object c in C
together with bimodular actions

comp : hom(c′,c)× (d,c)het×hom(d,d′)−→ (d′,c′)het.

Note that for het sets the covariant argument is written first and the contravariant second. Ideally
we would write one above the other, but this looks odd in print. To remind ourselves of the
reversal, we write the ‘het’ after its arguments. To distinguish between different categories and
distributors, we often write the symbol for the category or distributor in place of the ‘hom’ or
‘het’.

Given a distributorP, the bimodular actions can be rearranged to give the local components
of a functor from the locally small categoryD×Cop to the locally small category Set.

C(X,Y)× (A,Y)P×D(A,B) −→ (B,X)P
C(X,Y)×D(A,B) −→ Set((A,Y)P,(B,X)P)

Cop(Y,X)×D(A,B) −→ Set((A,Y)P,(B,X)P)
D(A,B)×Cop(Y,X) −→ Set((A,Y)P,(B,X)P)

(D×Cop)((A,Y),(B,X)) −→ Set((A,Y)P,(B,X)P)
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The bimodularity of the actions is equivalent to the functorality of these components. Hence the
snappy definition often found in the literature: a distributor is a functor fromD×Cop to Set.

D

P

���
�
� D×Cop

P

��

(d,c)
_

��
C Set (d,c)P

Given a locally small categoryC, by reversing the arguments to the hom sets forC we obtain the
het sets(b,a)C =C(a,b) of a distributor fromC to itself. Note that the hom distributor uses three
copies of each arrow inC, two for the two copies ofC that provide the domain and codomain and
a third copy for the collection of oblique arrows.

A.5 Fore and Aft

Functors induce distributors—which explains the term ‘profunctor’—and graph morphisms in-
duce directors. Given a graph morphismG from C up toD, we can take oblique edges fromc
to d to be given by plain arrows fromGc to d. Note that we require two copies of each edge
from Gc to d. The original stays inD where it may well follow other edges of the same form.
A second copy is formally detached (more precisely, one end is detached) fromD to become an
oblique edge and follow edges toc in C. We call the resulting director thefore directorand write
G∗. Given a functor, the same construction produces a distributor.

Definition A.5.1 Given a functor G from C to a locally small category D, thefore distributorG∗
is given by G∗(d,c) = D(Gc,d).

This extends to a functor Cat↑→ Dis which is equivalent to the functor Cat↑→ Cat/ ↑ given by
a Grothendieck construction.

Given a graph morphismH from D down toC we can take the edges fromc to Hd as oblique
edges fromc to d to obtain a directorH∗ which we call the aft director. This aft construction can
be expressed in terms of the fore construction using various dualities, but we prefer to continue
with elementary definitions until it is clear that one construction is more fundamental.

Definition A.5.2 Given a functor H from D to a locally small category C, theaft distributorH∗

is given by H∗(d,c) = C(c,Hd).

This extends to a functor Cat↓→ Dis which is equivalent to the functor Cat↓→ Cat/ ↑ given by
another Grothendieck construction.

The categories For and Aft are the categories of distributors-with-a-fore-representation and
distributors-with-an-aft-representation. The free distributor-with-a-fore-representation over a di-
rectorK from G down toF is the distributor induced by the inclusion functor from pathF up into
pathK. The free distributor-with-an-aft-representation overK is the distributor induced by the
inclusion functor from pathG down into pathK. The requirement that the distributor be induced
by a functor generates extra objects.

A.6 Distributors and Adjunctions

If we replace categories with distributors we obtain a generalization of the notion of adjunc-
tion. Instead of a natural bijection between elements of hom sets, we ask for a natural bijection
between elements of het sets.
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Definition A.6.1 Anoblique adjunctionis given by a natural isomorphism R(d,Gc)∼= Q(Hd,c),
where R and Q are distributors and G and H are functors.

D1

a

D0R
oo_ _ _

H
��

C1

G

OO

C0Q
oo_ _ _

Ordinary adjunctions correspond to the special case of an oblique adjunction between hom dis-
tributors.

D

a

D
hom
oo_ _ _

H
��

C

G

OO

C
hom
oo_ _ _

In this case the isomorphism can be viewed as an isomorphism between the fore distributor
induced byG and the aft distributor induced byH.

Proposition A.6.2 If G is left adjoint to H, then G∗ is isomorphic to H∗ in Dis.

The converse fails because, in general, an isomorphism betweenG∗ andH∗ in Dis may include
automorphisms ofD andC.

Proposition A.6.3 G left adjoint to H if and only if G∗ is isomorphic to H∗ in Dis over identities
on D and C.

In the bicategoryDist, where distributors are composed and hom distributors are identities,
the oblique adjunction isomorphism can be writtenG∗ ◦D∼= C◦H∗.

D1

G∗
���
�
�

∼=

D0D
oo_ _ _

H∗

���
�
�

C1 C0C
oo_ _ _

With identities forC andD, we obtain a characterization of ordinary adjunctions.

Proposition A.6.4 G is left adjoint to H inCat if and only if G∗ is isomorphic to H∗ in Dist.

D

G∗
���
�
�

∼=
D

H∗

���
�
�

C C

This is a direct consequence of the definitions ofG∗ andH∗, but also follows from bicategorical
properties of the inclusion of bicategoriesCat→Dist given by the aft construction (Propositions
7.8.5 and 7.9.1 in Borceux [7]). Proposition A.6.4 should not be confused with the following
proposition.

Proposition A.6.5 Given any functor F, the distributor F∗ is left adjoint to F∗ in Dist.

The category Adj of adjunctions and adjunction morphisms is a category of distributors-with-
both-fore-and-aft-representations. It is equivalent to the pull-back of the projection For→ Dis
along the projection Aft→ Dis.

Adj //

��

For

��
Aft // Dis

The free adjunction over a director exists but is more complex than the free distributors described
above.
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Appendix B

Structural Actions

Here is an elementary account of structural actions and the indexed category construction. While
we developed this material independently, another, differently motivated account has appeared in
the work of Blute, Cockett and Seely [6] and we use their terminology.

In a nutshell, a structural action is an indexed comonad, and the Kleisli construction pro-
duces an indexed category. Chapter 3 develops an even more abstract perspective which views a
structural action as the transpose of a functor that preserves comonoid objects. Although such ab-
stract points of view help to get the definitions and coherence conditions right, Chapter 4, which
actually uses the definitions and conditions, can be understood on the basis of the following
elementary account.

B.1 Categories with Structural Actions

An action of a categoryC on a categoryD is a functor fromC×D to D. Functors on product
categories are sometimes said to be bifunctorial, so we are taking actions to be bifunctorial. We
are interested in actions with certain extra structure.

Definition B.1.1 A structural actionis an action� : C×D→ D, together with natural transfor-
mations,duplicationandelimination, with componentsδ : c�d→ c� (c�d) andι : c�d→ d
such thatι ◦δ = id, (id� ι)◦δ = id andδ ◦δ = (id�δ )◦δ .

We may think of a structural action as an indexed comonad: the action of each object inC
has the structure of a comonad onD and, importantly, the transformation given by each map in
C is a comonad transformation1.

Proposition B.1.2 Structural actions of C on D correspond to functors from C to the category of
comonads on D.

With this in mind, the category of comonads onD and comonad transformations has a structural
action onD, called thestandard structural action, corresponding to the identity on the category
of comonads.

Given any functorR : C→C′ and a structural action� : C′×D→D, the composite�◦ (R×
Id) : C×D→ D is a structural action. This is the reindexing alongR of the indexed comonad
given by�. Taking 1 forC and the category of comonads onD for C′, the unit category 1 has a
structural action onD for each comonad onD, which includes the identity comonad. Taking 1

1The definition of structural action in [6] overlooks this second condition, although it follows from the
naturality of the duplication and elimination transformations.
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for C′ with the identity action onD, reindexing along the unique functor fromC to 1 gives the
constant identity structural action onD.

The theory of algebraic compactness we present in Chapter 4 requires products of categories
with structural actions. Given structural actions�A and�B on categoriesA andB, the action
�A×B at c takes(a,b) to (c�A a,c�B b). This gives a structural action on the product ofA and
B. It can be checked that this is a product in the category of structural actions ofC. The unit is
the constant identity action ofC on the unit category 1.

We also require a notion of costructural action which we define using the opposite of the
category acted upon.

Definition B.1.3 A costructural actionof C on D is a structural action of C on Dop.

This differs inessentially from [6] which uses the opposite of the action of the opposite of the
acting category: our costructural action ofC is the opposite of their costructural action ofCop.

B.2 The Indexed Category Construction

Suppose we have a structural action� :C×D→D. We may use the action to interpret the notion
of a parameterized map with parameterizing objects taken fromC. We consider a map fromc�d
to d′ as ac-parameterized map fromd to d′. Each map fromc�d to d′ is meant to represent a
collection of maps fromd to d′ indexed by the contents ofc.

The duplication transformation allows us compose such parameterized maps. The composite
of ac-parameterized maps given byg : c�d→ d′ andg′ : c�d′→ d′′ is given byg′ ◦ ((id�g)◦
δ ) : c�d→ d′′. This is Kleisli composition for the comonad given by the action ofc.

We use the elimination transformation to interpret the notion of a constant parameterized
map, one that ignores its parameter. Given a mapg : d→ d′, we think of thec-parameterized
map given byg◦ ι : c� d→ d′ as constantlyg for all elements ofc. The constant identities,
which are given by the components of elimination, behave as identities under composition of
parameterized maps.

Given a mapr : c→ c′, c′-parameterized maps, represented by maps fromc′� d, can be
reparameterized toc-parameterized maps, represented by maps fromc�d, by composition with
r �d : c�d→ c′�d in D. Reparameterization commutes with composition and identities be-
cause the natural transformation from the action ofc to the action ofc′ given by f is a comonad
transformation.

To sum up, for each objectc of C there is a category ofc-parameterized maps. This category
is the Kleisli category for the comonad given by the action ofc. For each mapr : c→ c′ of in C
there is a functor from the category ofc′-parameterized maps to the category ofc-parameterized
maps. In other words, we have an indexed category.

Proposition B.2.1 Given a structural action� : C×D→ D, the Kleisli category for the action
of an object c gives the category over c in an indexed category over C.

B.3 Structural Functors and Natural Transformations

A functor between categories with structural actions does not have to commute with the actions
in order to lift to an indexed functor between the indexed categories constructed from the actions.
All that is required is a well placed natural transformation.

Definition B.3.1 A structural functorbetween categories with structural actions� and�′ is a
functor F equipped with a natural transformation with componentsθ : c�′Fd→ F(c�d) such
that Fι ◦θ = ι and Fδ ◦θ = θ ◦ (id�θ)◦δ .
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If the functor part of a structural transfomation is the identity onD, then it corresponds to an
indexed comonad transformation, a natural transformation between two functors fromC to the
category of comonads onD. Just as comonad transformations lift to functors between Kleisli
categories, indexed comonad trasformations lift to indexed functors between indexed Kleisli cat-
egories. If the acting categoryC is the unit category 1, so that structural actions correspond
to comonads, then a structural functor is a lax comonad functor, a functor between comonad
carriers that lifts to the Kleisli categories for those comonads by means of a coherent natural
transformation. In general then, structural functors correspond to a form of indexed comonad
transformation/functor, although this is not very helpful conceptually.

A natural transformation between structural functors lifts to an indexed natural transforma-
tion if it coheres with the transformations that make the functors structural.

Definition B.3.2 A structural natural transformationbetween structural functors F and F′ is any
natural transformation with componentsα : Fd→ F ′d such thatα ◦θ = θ ′ ◦ (id�α).

Suppose we are given a structural action� : C×D→D. Objects inD correspond to functors
from 1 toD and there is a unique structural action ofC on the unit category 1, the constant identity
action, so we may ask if these pointing functors corresponding to objects inD are structural. We
are asking for a transformation with componentsθ : c�d→ d, whered is a fixed object ofD. We
observe that the elimination transformationι : c�d→ d, which is natural, satisfies the conditions
for a structural functor. In addition, maps inD correspond to structural natural transformations
between these structural pointing functors. Note that we are exploiting the degeneracy of the
category 1.

Again using opposites, we define costructural functors and natural transformations.

Definition B.3.3 A costructural functorF is given by a structural functor Fop and acostructural
natural transformationis the opposite of a structural natural transformation.
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Appendix C

Directed Graph Categories

If the notion of directed graph is interpreted in the category of categories or, equivalently, the no-
tion of category is interpreted in the category of directed graphs we obtain an abstract framework
for binary relational parametricity. Our definitions and terminology follow [9], but the ideas go
back to Reynolds and company.

C.1 Graph Categories, Functors and Transformations

A graph categoryconsists of a category of edgesRe together with asourcefunctor (·)0 and a
targetfunctor(·)1 to a category of verticesRv.

Re

(·)0

��
(·)1

��
Rv

For example, the arrow categoryC↓ can be viewed as the edge category of a graph category with
source and target given by domain and codomain, respectively. Another example is Sub2Set, the
pull-back of the subset fibration SubSet along binary products in Set. This category has binary
relations for objects and parametric pairs of functions for arrows (meaning pairs that preserve
relatedness).

Sub2Set

�� ��
←−

Sub2Set //

pb
��

SubSet

��
Set Set×Set

× // Set

A graph functorconsists of an edge functorFe and a vertex functorFv such that(Fes)0 = Fv(s0)
and(Fes)1 = Fv(s1).

Se

(·)0

��
(·)1

��

Fe // Re

(·)0

��
(·)1

��
Sv

Fv // Rv
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For example, there is thegraphgraph functor〈·〉 from Set↓ to Sub2Set. The vertex functor is the
identity on Set and the edge functor takes a functionf to its graph〈 f 〉, the set of pairs(x, f x).

Set↓

�� ��

〈·〉 // Sub2Set

�� ��
Set Set

A graph transformationconsists of an edge natural transformationαe and a vertex natural trans-
formationαv such that(αes)0 = αv(s0) and(αes)1 = αv(s1).

Se

(·)0

��
(·)1

��

Fe ''

Ge

77
�� ��
�� αe Re

(·)0

��
(·)1

��
Sv

Fv ''

Gv

77
�� ��
�� αv Rv

For example, given binary relationsr andr ′ over Set, each pair of functions that is parametric
with respect tor andr ′ corresponds to a graph transformationf thus:

1

in1

��
in0

��

r
,,

r′
22

�� ��
�� fe Sub2Set

�� ��
1+1

{r0,r1}
**

{r′0,r
′
1}

44
�� ��
�� { f0, f1} Set

A graph categoryR can be viewed either as an internal directed graph in the large category
of categories, as presented above, or as an internal category in the large category of directed
graphs, in which case it has an arrow graphR1 and an object graphR0 together with graph
morphisms for domain, codomain, composition and identities. Similarly, graph functors and
graph transformations can be viewed as internal, directed graph morphisms and directed graph
transformations (replace 1-cells with 2-cells in the definition of directed graph morphism) or
as internal functors and internal natural transformations. Either way, graph categories, graph
functors and graph transformations form a large 2-category GCat.

Note that we must be careful to distinguishC↓ from the graph categoryC↑ with source and
target given by codomain and domain, respectively. The graph categoryC↓ of down arrowsis
not generally isomorphic to the graph categoryC↑ of up arrows. The two are equivalent as graph
categories over the identity onC iff C is a groupoid. Note that thereis a graph isomorphism
between the graph of down arrows on the opposite ofC and opposite of the graph of up arrows
onC.

(Cop)↓

�� ��

�� // (C↑)op

�� ��

��
oo

Cop Cop

The graphsC↓ andC↑ both embed fully and faithfully intoC>, the graph of cospans overC. This
has the domain of the first cospan component for source and the domain of the second for target.

C↑ //

�� ��

C>

�� ��

C↓oo

�� ��
C C C
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C.2 Graph Operators and Parametric Transformations

The notion of graph category is useful because it comes apart in ways that plain categories and
plain graphs do not.

Definition C.2.1 A graph operatorfrom S to R consists of an edge function Fe from the objects
of Se to the objects of Re and a vertex function Fv from the objects of Sv to the objects of Rv such
that (Fes)0 = Fv(s0) and(Fes)1 = Fv(s1).

In other words, a graph operator is a graph morphism from the object graph ofS to the object
graph ofR. For example, the identity onR0, the object graph ofR, gives a graph operator from
Rop to R and the diagonal graph morphism∆ : R0→ R0×R0 gives a graph operator fromR to
Rop×R. Note that, while every graph functor restricts to a graph operator, operators such as those
above do not generally extend to graph functors.

Given graph operatorsF andG on S, a parametric transformationfrom F to G is a family
of mapsαd : Fd→ Gd indexed by the objects ofSv that lifts to a family of mapsαs : Fs→ Gs
indexed by the objects ofSe, meaning(αs)0 = αs0 and(αs)1 = αs1 for all s.

Fs0 αs0
// Gs0

Fs
_

OO

_

��

αs
_

OO

//
_

��

Gs
_

OO

_

��
Fs1 αs1

// Gs1

For graph categories with at most one suchαs we just draw aparametricity square:

Fs0
αs0 //

OO

Fs
��

Gs0OO

Gs
��

Fs1
αs1 // Gs1

Given a construction that lifts categories and object functions to graph categories and graph
operators, we can ask when a (not necessarily natural) transformation lifts to a parametric trans-
formation. For example, the arrow graph construction leads to the notion of natural transforma-
tion.

Proposition C.2.2 Natural transformations from F to G are identical with parametric transfor-
mations from F↓ to G↓.

Fs0
αs0 //

Fs
��

Gs0

Gs
��

Fs1
αs1 // Gs1

Within this framework of binary relational parametricity, the fundamental notions are functoral-
ity: when does an object function lift to a functor? And parametricity: When does a transforma-
tion lift to a parametric transformation? As the Proposition shows, naturality is a derived notion.
Another derived notion is that of diparametricity.

Definition C.2.3 A diparametric transformationbetween operators F and G on Sop×S is a para-
metric transformation between the operators F◦∆ and G◦∆ on S.

S
∆ // Sop×S

G //
F
// R
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Just as dinaturality weakens naturality, diparametricity weakens parametricity. Note, however,
that diparametricity is expressed in terms of parametricity, unlike dinaturality which cannot, in
general, be expressed in terms of naturality. Also, because diparametricity squares compose,
diparametrics compose.

F(s0,s0)
αs0 //

OO

F(s,s)
��

G(s0,s0)
α ′

s0 //
OO

G(s,s)
��

H(s0,s0)OO

H(s,s)
��

F(s1,s1)
αs1 // G(s1,s1)

α ′
s1 // H(s1,s1)

Remark. Stretching our framework, dinaturality can be expressed in terms of diparametricity.
Given a categoryC, the quasi-categoryDC of diamondshas commutative diamonds for objects
and commuting pairs of maps (as inKC) for arrows. By ‘quasi’ we mean that composition is a
partial operation on composable pairs and the equations of category theory hold just where both
sides exist. A ‘graph quasi-category’ has a category of vertices and quasi-category of edges.
The definitions of ‘graph operator’ and ‘parametric transformation’ are unaffected because they
ignore composition. Without extra conditions (see Section 9.1.5), there is no guarantee that com-
ponentwise composition of arrows inDC gives arrows inDC. On the other hand, every functor
F lifts componentwise to a quasi-functorDF which preserves what composites exist. Also, we
have an isomorphism between the graph quasi-categories(DC)op andD(Cop). Dinaturality is
parametricity with respect to certain objects in the quasi-category of diamonds.

F(d,d)
αd // G(d,d)

G(d,g)
KKK

K

%%KK
KK

F(d′,d)

F(g,d)ssss

99ssss

F(d′,g)
KKK

K

%%KK
KK

G(d,d′)

F(d′,d′)
αd′ // G(d′,d′)

G(g,d′)ssss

99ssss

Proposition C.2.4 Dinatural transformations from F to G are identical with diparametric trans-
formations fromDF ◦ ((ι↑◦ ��)× ι↓) to DG◦ ((ι↑◦ ��)× ι↓).

(D↓)op×D↓ ��×D↓
// (Dop)↑×D↓ ι↑×ι↓ // D(Dop)×DD

iso
// D(Dop×D)

DG //
DF
// DC


