o
Yo

QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY OF LONDON

Department of Computer Science

Research Report No. RR-03-05 ISSN 1470-5559 December 2003

Categories and Types for Axiomatic

Domain Theory
Adam Eppendahl

Categories and Types for Axiomatic Domain Theory

Adam Eppendahl

Submitted for the degree of Doctor of Philosophy
University of London
2003

Categories and Types for Axiomatic Domain Theory

Adam Eppendahl

Abstract

Domain Theory provides a denotational semantics for programming languages and calculi con-
taining fixed point combinators and other so-called paradoxical combinators. This dissertation
presents results in the category theory and type theory of Axiomatic Domain Theory.

Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dual-
sequent calculus to include recursive linear types and define a class of models by adding Freyd’s
notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus.

We observe that algebraic compactness is better behaved in the context of categories with
structural actions than in the usual context of enriched categories. We establish a theory of
structural algebraic compactness that allows us to describe our models without reference to en-
richment. We develop a 2-categorical perspective on structural actions, including a presentation
of monoidal categories that leads directly to Kelly’s reduced coherence conditions.

We observe that Benton’s adjoint type constructors can be treated individually, semantically
as well as syntactically, using free representations of distributors.

We type various of fixed point combinators using recursive types and function types, which
we consider the core types of such calculi, together with the adjoint types. We use the idioms of
these typings, which include oblique function spaces, to give a translation of the core of Levy’s
Call-By-Push-Value. The translation induces call-by-value and call-by-name translations of the
core of Plotkin’s Fixed Point Calculus.

Following Freyd, we construct a canonical fixed point operation from the algebras provided
by the algebraic compactness of our models. Our analysis of Freyd’s construction exposes a
remarkable property of morphisms from coalgebras to algebras: morphisms from Gp to s corre-
spond one-for-one to morphisms from p to Hs, where p is a coalgebra for HG and s an algebra
for GH. We give an application of this property to the transposition of recursive coalgebras in
Taylor’s categorical theory of recursion where G is not left adjoint to H.

We develop a theory of parametric transformations corresponding to the uniformity property
characterizing canonical fixed points and use this to derive abstract conditions on categories
of domains which ensure that the interpretation of fixed point combinators coincides with the
canonical fixed point operation.

Submitted for the degree of Doctor of Philosophy
University of London
2003

Contents
1 Introduction 6
1.1 Background 6
1.1.1 AxiomaticDomainTheory, 6
1.1.2 FixedPoints e 8
1.1.3 Categorical Semantics of Linear and Computation Types 8
1.2 MainResults e 9
1.2.1 Recursive Morphisms 9
1.2.2 Structural Algebraic Compactness 9
1.2.3 Adjoint Types and Free Distributor Representations 10
1.2.4 QuotientRelations 11
1.3 Additional Contributions L 11
1.3.1 MinimalCoherence. 11
1.3.2 FixedPointAlgebras 12
1.3.3 Exponential Structure. 12
1.3.4 ObliqgueTypes e 13
1.35 Directors 13
14 OVEIVIEW o 13
1.4.1 CategoryTheory e 13
142 TypeTheory e 14
2 Recursive Morphisms 16
2.1 Obliqgue AdjunctionsforFree e 17
2.1.1 The Distributor of Recursive Morphisms 17
2.1.2 Two Oblique Adjunctions 18
2.2 Recursive Coalgebras and Corecursive Algebras 20
2.2.3 Preservation of Recursive Coalgebras 21
2.2.5 Freyd’s Square for Recursive Coalgebras 21
2.2.9 Transposition of Corecursive Algebras and Recursive Coalgebras 22
3 Monoidal Categories and Structural Actions 25
3.1 LaxMonoidsand Comonoids 25
3.1.1 LaxMonoidO-Cells 25
3.1.3 LaxMonoid1-Cells, 26
3.1.8 LaxComonoids 32
3.1.10 Preservation of Internal Comonoids 35
3.2 Monoidal Categories 35
3.2.1 The Monoidal Category of Endofunctors 35
3.2.2 The Transpose of Lax Monoid Structure 36
3.2.3 Coherent Lax Monoids and Monoidal Categories 36
3.3 Structural Actions 37
3.3.3 Diagonal Structure 38

3.3.6 The Indexed Category Construction 38

4 Structural Algebraic Compactness 41
4.1 Algebraic Compactness in the Structural Setting 42
4.1.3 The structurality of delivery functors. 42
4.1.12 The structural compactness of opposites and doubles. 44
4.2 CompactnessinVarious Settings 0. 45
4.2.1 Indexed Compactness 45
4.2.4 Structural Compactness and Indexed Compactness 46
4.2.8 Enriched Compactness and Indexed Compactness 46
4.2.12 Structural Compactness Meets Enriched Compactness 48
4.3 Structurally Algebraically Compact Categories of Domains 48
4.3.1 Categories of Pointed Objects 48
4.3.5 Categoriesof PartialMaps 49
5 Structural Adjunctions 50
5.1 Monoidal Adjunctions as Structural Adjunctions 50
5.1.3 Closed Structure 51
5.1.8 Cartesian Structure 51
5.1.13 Symmetric Structure 52
5.2 Structural Adjunctions Proper e 52
5.2.2 StructuralityandBalance oL 53
5.2.6 Exponential Structure 53
5.3 Structural Adjunctions on Categories of Domains 55
5.3.1 Categories of Eilenberg-Moore Algebras 55
5.3.4 CategoriesofKleisliMaps 55
6 Canonical Fixed Points 57
6.1 Corecursive Algebras and Unique Fixed Points 57
6.1.2 \Very Unique Fixed Points and Unique Fixed Generalized Points 58
6.1.7 Comonoids and Parameterized Unique Fixed Points 60
6.1.10 Comonads and Parameterized Unique Fixed Points 61
6.2 Fixed PointAlgebras e 62
6.2.3 Uniform Families of Recursive Morphisms 62
6.2.8 Transposition of Fixed PointAlgebras 63
6.2.11 Fixed Point Objects as Fixed PointAlgebras 65
6.2.17 Freyd Algebras as Fixed PointAlgebras 66
6.3 Canonical Fixed Points in Compact Structural Adjunctions 67
6.3.1 Ordinary FixedPoints 67
6.3.2 Parameterized Fixed Points. 67
6.3.3 Internal Fixed Points o 68
6.3.4 UniformFixedPoints. 68
7 Recursive Linear Types 70
7.1 ARecursive Linear/NonLinearCalculus 70
7.1.1 Linear and Nonlinear Lambda Calculi 71
7.1.2 Admissible Weakenings and Contractions 72
7.1.3 PairingandUnits e 73
7.1.4 RecursiveLinear Types 73
7.2 Obligue Termsand TypesS o o i i 78
7.2.1 TheTermDistributor 78
7.2.2 TheAdjoint Fragmentsof LNL 78

7.2.5 TheOblique FunctionTypes 80

6 Contents
8 Recursive Types for Fixed Point Combinators 83
8.1 Recursive Combinatorsin Recursive Types
8.1.1 Recursive CombinatorsinFPC
8.1.2 Recursive CombinatorsinRLNL 89
8.2 AlinearFixed PointCalculus 98
8.2.1 FixedPointldioms e 98
8.2.2 TranslatingFPCintoRLNL 100
8.2.3 Parameterized Adjoint Types 101
9 Quotient Relations and Parametric Models 106
9.1 Quotient Diparametricity e 106
9.1.1 QuotientRelations e 106
9.1.5 Push-me-pull-you's 108
9.1.10 Componentwise Liftings 110
9.1.12 Uniformity as Quotient Diparametricity 113
9.2 Domain Theoretic Models of Recursive Linear Types 116
9.21 RLNLModels e 116
9.2.5 Recursive TypesinTermModels 117
9.2.7 UniformityinRLNLModels 119
9.2.9 Fixed Point Combinators in Domain Theoretic Models 120
10 Directions for Future Work 121
10.1 Fox's ConstructionandLemn®® 121
10.2 The Free Adjunction on the Distributor Classifier 121
10.3 Logical Relations 121
10.4 Other Fixed Point Transformations 122
10.5 Other Recursive Types i it e 122
10.6 Parametricity and Compactness e e
10.7 Modelsofclosed LNL. 123
10.8 2-CategoriesforTypes 0 i e 123
Bibliography 125
A Distributors and Directors 128
A.1 Distributors over Directors. 128
A.2 FreeDistributors 129
A.3 The Distributor/Director Classifier 130
A.4 Locally Small Distributors 130
A5 Foreand Aft. 131
A.6 Distributors and Adjunctions e 131
B Structural Actions 133
B.1 Categories with Structural Actions 133
B.2 The Indexed Category Construction 134
B.3 Structural Functors and Natural Transformations
C Directed Graph Categories 136

C.1 Graph Categories, Functors and Transformations
C.2 Graph Operators and Parametric Transformations

List of Figures

3.1 Thearrow 2-category AtroverC.o 28

3.2 Alaxsquarein AI€. 29
3.3 Compatibility with leftidentity. 30
3.4 Compatibility with left associativity. 30
3.5 Internalleftidentity.. oo 33
3.6 Internalleftassociativity. 33
3.7 Internalleftidentity..o 34
7.1 Rulesandequationsforclosed LNL. 75
7.2 Rules and equations for pairing. 76
7.3 Rulesandequationsforunits.., 76
7.4 Exchangerules. 77
7.5 Rules and equations for recursive lineartypes. 77
8.1 Rulesandequationsforclosed FPC 95
8.2 Rulesforclosed RLNL. 96
8.3 Equationsforclosed RLNL. 97
8.4 Jumping fragment of CBPV with recursive computationtypes. 102
8.5 The call-by-name image of FPCinCBPV 103
8.6 Thecall-by-valueimage of FPCinCBPV 104
8.7 Rulesforclosed LFPC. 105
10.1 Rules and equations for linear recursive nonlineartypes. 124

10.2 Rules and equations for nonlinear recursive lineartypes. 124

Chapter 1

Introduction

Domain theory provides denotational semantics for programming languages whose intended se-
mantics is inconsistent with the properties of ordinary sets and functions. The theory grew out
of the unexpected discovery of a denotational semantics for the untyped lambda calculus and has
been the subject of constant reformulation. Axiomatic Domain Theory is an abstract formulation
that accounts for certain aspects of concrete domains. We present various results in the cate-
gory theory and type theory of Axiomatic Domain Theory. Although motivated by the structures

of Axiomatic Domain Theory we hope our results will be useful to Categorical Semantics in
general.

1.1 Background

The untyped lambda calculus is based on an abstraction operation whose intended semantics
requires an invertible mapping from functioBs— Sto elements of. Now it is impossible for

a set Scontaining more than one element to cover skeof functionsS— S. So, even without
additional features to make the calculus a practical programming language, the only possible
semantics given by sets and functions is degenerate. Practical programming languages may be
based on simpler operations with perfectly good set semantics, but eventually, with the addition
of more sophisticated program constructs, the intended semantics ‘goes recursive’. For example,
a series of programming languages of increasing sophistication is described in Chapters 9 through
11 of [40]. Each language is given a denotational semantics in semantic domains specified by
a set of ‘domain equations’. In Chapters 9, 10 and 11 the equations are non-circular and have
set solutions. The equation for D in Chapter 11 (page 300), however, is recursive and has no set
solution.

Although an equation such &= D — D has no useful solution if the operations are in-
terpreted niavely as constructions on sets, the existence of structures—'domains’—uwith closure
properties stronger than sets allows us to write such equations. We must keep in mind, however,
that we are using a metalanguage requiring careful interpretation. In other words, the form of
denotational metalanguages follows the known closure properties of domains. In the language of
Categorical Semantics: the type theory follows the categorical structure.

1.1.1 Axiomatic Domain Theory

Scott’s semantics for the untyped lambda calculus is based on the properties of certain partially
ordered sets. It is possible for a partially orderedBeatontaining more than one element to
cover the (partially ordered) set of functiobs— D that preserve colimits of increasing chains

in D. The notions of colimit and increasing chain both use the orddd.ofechnically, ordered

1.1. Background 9

sets provide a denotational semantics for the untyped lambda calculus and for programming lan-
guages such as the one in Chapter 11 of [40], but scientifically the order leads to new questions.
A semantics may say that a given term or fragment of code denotes a particular function on a par-
ticular set with a particular order, but what is the significance of the order? On the one hand, we
would like to ignore it and reason iv@ly about our semantics. On the other, perhaps it reflects
something important and useful.

So, although the collection of results about partially ordered sets known as Classical Domain
Theory provides a new world for the semantics of programming languages, the existence of
this new world raises difficult philosophical and technical questions. What is the significance
of the order? What are domaimsally? What is their intrinsic logic? What is their intrinsic
mathematics? These questions have lead mathematicians and computer scientists to reformulate
the classical theory in various ways. Among these are several abstract formulations, including a
collection of results known as Axiomatic Domain Theory.

These days, the standard conception of mathematics is entirely axiomatic and so Axiomatic
Domain Theory is distinguished from Classical Domain Theory, Geometric Domain Theory and
Synthetic Domain Theory not by having axioms but by the role and language of its axioms. In
the classical theory, the language of ordered sets is used to axiomatize domains. In the geometric
theory, the language of geometric logic is used. In the synthetic theory, the language of topos
theory is used, first externally and then internally, to axiomatize first a mathematical universe and
then an internal category of domains. In the ‘axiomatic’ theory, the language of category theory
is used to axiomatize categories of domains and categories used to construct them.

While Geometric and Synthetic Domain Theory are guided by philosophical views of pro-
gram semantics, Axiomatic Domain Theory is guided by the observation of mathematical struc-
ture. The concrete partial orders of the classical theory carry all sorts of structure, both at the
level of individual partial orders and at the level of categories of partial orders. There are so many
technical results about this structure that it becomes difficult to determine the status of any spe-
cific construction or property. For example, what is the status of CPO enrichment? The axiomatic
theory selects some structure as primitive, derives other structure and presents the constructions
and properties of these structures abstractly. For example, CPO enrichment has been shown to
follow from certain abstract constructions on structure with certain abstract properties [11]. By
way of comparison, Topos Theory does much the same thing for Set Theory: imagine that Topos
Theory were known as Axiomatic Set Theory.

The epicentre of Axiomatic Domain Theory would have to be the notion of algebraic com-
pactness. A category is algebraically compact if it has an invariant for every endofunctor (in
some class) and these invariants are initial as algedmddfinal as coalgebrasWe call such
an invariant a ‘Freyd algebra’ (which is so much more satisfying, homonymically, than ‘bifree
algebra’). In [14], Freyd observes that certain concrete categories of domains are algebraically
compact and shows how this can be used to model parameterized and mixed variance recursive
types.

Following Freyd'’s results, Plotkin and Fiore took algebraic compactness as a target property
for abstract constructions yielding categories of domains [10]. Given a categorical framework
for partiality and induction, a category of partial maps is constructed and seen to be algebraically
compact. This would appear to be done without any mention of ordered sets, but the existence
of invariants follows from a derived order enrichment. However, because the order enrichment is
derived from the purely categorical axioms for partiality and induction, it is fair to say that this
provides an order-free account of categories of domains. On the other hand, the heavy use of
enriched category theory presents a significant technical barrier to potential uses of this theory.

10 Chapter 1. Introduction

1.1.2 Fixed Points

While the solution of seemingly paradoxical domain equations is more than enough to motivate
the use of partial orders, the order structure is useful just for its fixed points. The same colimits
that are used to solve domain equations give fixed points that can be used to model iterative
program constructs. For example, the semantics of the ‘while’ construct in Chapter 9 of [40] is
given by a fixed point operation.

In some languages, such as the lambda calculus, a fixed point operator can actually be pro-
grammed. Given a partial order semantics for such a language, it is natural to ask how the fixed
points given by the interpretation of such a program compare with the fixed points given by col-
imits in the partial order. For Scott’'s semantics of the untyped lambda calculus Park showed that
the two coincide, but also constructed a non-standard semantics in which they don't [29].

In what might be seen as the early days of the Axiomatic Domain Theory, the notion of
Natural Numbers Object (NNO) was weakened to a notion of Fixed Point Object (FPO) [28].
In Axiomatic Set Theory a NNO generates a collection of maps exemplified by the primitive
recursive functions on the set natural numbers. In Axiomatic Domain Theory, an FPO generates
maps exemplified by the recursive functions on the natural numbers ordered vertically, but unlike
the successor on the naturals the successor on the vertical naturals has a fixed point and so a
FPO also induces a collection of fixed points exemplified by least fixed points. A corresponding
metalanguage with a fixed point operation is proposed in [8].

Because fixed point objects can be derived from a Freyd algebras, as observed in [14] and
[28], attention has now shifted from the axiomatics of recursive maps and least fixed points to the
axiomatics of recursive domains. Similarly, attention has shifted to metalanguages with recursive
types such as Plotkin's FPC [25].

1.1.3 Categorical Semantics of Linear and Computation Types

In the early days of Categorical Semantics Lawvere showed that the categorical product abstracts
essential structure from concrete presentations of algebraic theories. Similarly, cartesian closed
categories were shown to abstract from lambda theories. In both cases, there is a slight tension
between the concrete presentations and the categorical structure. Algebraic theories, in deference
to Universal Algebra, are not simply categories with products. Lambda theories, in deference
now to Category Theory, are not simply (typed) lambda calculi. But it is a good sort of tension
and many theoreticians take it for granted that type theories are closely related to categorical
structure.

With linear lambda calculi things get a bit hairy. It is immediately clear, for example, how
tensor should be handled, but bang is more troublesome. Categorically, bang appears to be a
comonad, but this becomes delicate syntactically. Two approaches have been successful, the
more traditional Intuitionistic Linear Logic [5] and Dual Intuitionistic Linear Logic, a calculus
with contexts divided into two areas [1]. Alternatively the comonad can be factored into a pair
of adjoint functors. This leads to a calculus with two kinds of sequent, Linear/Non-Linear Logic
[4]. The three approaches have been carefully compared in [24]. Interestingly, Linear/Non-
Linear Logic produces a monad as well as a comonad.

Monads have been used to model type theories with explicit computation types such as the
Computational Lambda Calculus [27]. More recently, it has been found useful to factor the
monad into a pair of adjoint functors leading to a calculus with two kinds of sequent, Call-By-
Push-Value [23].

On the categorical side, indexed comonads calledctural actionshave been used to ab-
stract from the action of extending a linear context with a banged type [6]. A unified categorical
framework for the algebra of computational monads, including an abstract account of the action
of extending a computational context with a valued type [32], has been developed in [33].

1.2. Main Results 11

1.2 Main Results

This thesis contains some original mathematics. These results are not difficult, but appear to be
new and may have applications beyond their use here.

1.2.1 Recursive Morphisms

Given a monotonic endofunctidh on an ordered set, it can be useful to consider the ordered
set of pre fixed points for the endofunction: elemeatsuch thatFa < a. For example, the
endofunction has a least fixed point if and only if there is a least pre fixed point. The notion of
pre fixed point appears quite technical but the generalization for endofunctors on categories has
proven to be very useful. Aalgebrafor an endofunctoF is an objecta together with a map

s: Fa— a. For certain endofunctors, the notion of algebra is directly meaningful. Moreover, the
dual notion of coalgebra is also meaningful.

The ordered set of pre fixed points generalises to a category of algebras. Because morphisms
in the category of algebras must commute with the ngisey are much more expressive than
the order on the set of pre fixed points. Likewise, coalgebra morphisms are more expressive
than the order on the set of post fixed points. Equally expressive is the notion of morphism from
coalgebra to algebra. Such morphisms have received little attention in the literature. They are,
however, natural mathematical objects and might have been discovered, for example, by asking
what an algebra is fdf : € — €, whereF is an endofunctor o& andC is the category of twisted
arrows Mac Lane describes in Exercise 1X.6.3 of [22].

We call such morphisms ‘recursive’ because their defining conditica,so F f o p, says
they may be rewritten in terms of themselves and because they seem to turn up whenever one
looks at recursion categorically. In Freyd’s theory of algebraic compactness, for example, they
can be found in the proof of the Iterated Square Theorem. Actually, the proof carefully steps
around them, but they are there if one looks.

Another place they turn up is in the proof of the dinaturality of initial algebra delivery. We
observe that this follows from a remarkable property of recursive morphisms. Given a functor
G: A— B, dinaturality says any functét : B — Atakes initial algebras fd&H to initial algebras
for HG. Lemma 2.1.4 says that recursive morphisms fipm Hs correspond, in the manner of
an adjunction, with recursive morphisr@gp — s. For algebra morphisms or, dually, coalgebra
morphims, any adjunctio® - H is known to lift to such a correspondence, but for recursive
morphisms the correspondence does not require an adjunction.

1.2.2 Structural Algebraic Compactness

It is fair to say that enriched category theory, on its own, does not support the basic theory of
algebraic completeness. The problem concerns structure on the function delivering invariants.
Given an invariant for every endofunctor @ then for every functoB x D — D we have a
delivery functiortaking each objedb of B to an object oD that is invariant under the action of
b. Given aninitial invariant for every endofunctor, we can use the initiality of each invariant to
extend the delivery function to a functBr— D.

In the motivating examples of such categories, however, we are only given invariants for en-
riched endofunctors. These invariants are initial so, for every enriched fuBct@ — D, we
obtain a functoB — D, but initiality does not give an enrichment. In the motivating examples,
it is known that these functors do enrich so one might simply strengthen the notion of algebraic
completeness for enriched categories by asking for an enrichment of each delivery functor. Al-
ternatively, it has been observed that in the motivating examples the given invariants satisfy a
strengthened form of initiality that does give an enrichment. This suggests a strengthening of the
notion of algebraic completeness for enriched categories by asking for invariants with strength-
ened initiality. When it is observed that the strengthened initiality follows from plain initiality

12 Chapter 1. Introduction

when the enrichment @ has cotensors, which it does in the motivating examples, this provides
a workable notion of algebraic completeness for enriched categories [10].

A more sophisticated account of this solution has been developed using indexed and internal
category theory [34]. Itis observed that with mild conditions on the enriching category, which are
satisfied in the motivating examples, enriched categories, functors and transformations give rise
to indexed categories, functors and transformations which can be viewed as internal categories,
functors and transformations. The strengthened form of initiality is then seen to be the external-
ization of plain internal initiality. Again, it is observed that internal initiality follows from plain,
external initiality when the original enrichment has cotensors and so in the motivating examples
the whole issue disappears.

When algebraically compact, and hence complete, categories of domains, are actually con-
structed they tend to come out enriched and compact in the strengthened sense described above.
Either the construction starts with an enriched category or, as demonstrated in Axiomatic Domain
Theory, an enrichment may be derived. Given a recursive type theory, however, we would like
to describe compact models directly in terms of the structure used to interpret the type theory.
From the enriched point of view, we do this using the cotensors that simplify the enriched theory
of completeness.

The action of cotensors can be described without reference to enrichment, in which case they
are called costructural actions. Functors and transformations that respect costructural actions
are then called costructural. We observe that in the motivating examples enriched endofunctors
correspond to costructural endofunctors and so we have an initial invariant for every costruc-
tural endofunctor. Initiality allows us to extend the delivery function to a functor, but it also
gives us transformations making the functor costructural. Unlike the enriched setting, then, the
costructural setting supports the basic theory of algebraic completeness.

Actually, we base our theory on the dual notions of tensor, structural action, final invariant
and cocompleteness because structural actions are covariant in both arguments and because struc-
tural actions may be viewed as a mechanism for representing parameterized maps. Lemma 4.1.4
says that the delivery of final coalgerbas for structural endofunctors extends to a structural func-
tor.

1.2.3 Adjoint Types and Free Distributor Representations

Benton decomposes the bang of Linear Logic into a sequence of two type constructors, U and L
[3]. We see this as a nod towards domain models which have a lift operation: bang is LU and lift
is UL. With L left adjoint to U, LU is a comonad and UL is a monad.

Syntactically, Benton’s approach uses two forms of sequent, linear and non-linear. Semanti-
cally, these correspond to two categoridsandC. The constructor U corresponds to a functor
D — C with a left adjoint corresponding to L. The categd@ys monoidal closed; is cartesian
closed and the adjunction is monoidal. We call such adjunctions LNL structures. It can be shown
that Benton’s two-sequent calculus LNL generates the free LNL structure (over a graph of basic
types) and that the category of LNL theories is equivalent to the category of LNL structures.

We observe that, despite their conceptual origin as factors of LU or UL, U and L can be
treated individually, both syntactically, which is easy, and semantically, which is less obvious.
Our aim is to make the theory of adjoint types easier to understand conceptually and easier to use
technically.

Categorically, our analysis is based on distributors (formerly known as profunctors). We
appeal to a simple picture of free distributors lifted from the paths-in-a-directed-graph picture of
free categories (see Appendix A). Distributors may be represented by functors—hence the term
profunctor—in two ways, fore and aft. An adjunction is a pair of functors representing the same
distributor in two ways. Proposition 7.2.3 says that when Benton’s calculus is restricted to just
U, it generates the free distributor with an aft-representation. Restricted to L, it generates the

1.3. Additional Contributions 13

free profunctor with a fore-representation. Together, therefore, the rules for U and L generate an
adjunction, but this is an artifact of the double representation.

1.2.4 Quotient Relations

One of the principle motives behind the use of categorical structure is the prospect of precise
definitions capturing intuitions about uniformity. In models of LNL terms are interpreted by
transformations. The notion of transformation itself requires very little structure. Transforma-
tions, in general, are given by collections of ed§as— Gain one graph indexed by the nodes

a of another. This includes domain and codomain node functiomasadG. A given transfor-
mation, or class of transformations, often carries extra structure that allows us to express some
notion of uniformity. Identifying a good notion of uniformity for some class of transformations

is important because it allows us to abstract from particular transformations to any uniform trans-
formation.

In many mathematical transformations the node functions lift to functors and the transfor-
mations are natural, but in some transformations interpreting terms in a type theory the node
functions simply don't lift to functors and we must look beyond naturality. Here we consider
a similar but more general notion of uniformity known as binary relational parametricity. The
definitions we use can be found in Appendix C. Abstractly, binary relational parametricity is
based on the observation that the node functions for term transformations, which interpret type
constructions, lift to operators on graph categories, which are typically given by categories of
binary relations. When a transformation lifts to a graph operator transformation we say it is
parametricor, when the graph operators have been diagonalidipdrametric In models of
type theories, diparametricity accomodates the mixed variance of some type constructors, which
breaks functorality and, hence, naturality.

Given such an abstract categorical framework for parametricity, we are expected to provide
our own category of binary relations or some method of constructing such categories to obtain
a useful notion of parametricity. We show that the uniformity that characterizes fixed point
operators induced by fixed point objects corresponds to a form of relational (di)parametricity
obtained from a particular category of relations we call ‘quotient relations’.

Parametricity with respect to quotient relations is defined using pull-backs so any functor
that preserves pull-backs lifts to quotient relations. Corollary 9.1.9 shows that function spaces
automatically lift to quotient relations even though they generally don’t preserve pull-backs

1.3 Additional Contributions

This dissertation also contains a number of conceptual and technical innovations. These are
manifest in various original definitions that either convey the author’s personal view of the subject
or are useful in organising the mathematics.

1.3.1 Minimal Coherence

In addition to their stronger uses, universal properties often ensure that the equalities we least
want to mention take care of themselves. Category theory has been very useful in helping to
express and identify universal properties and category theory has also helped identify the next
best thing to universal properties: coherence. Like universal properties, coherence provides the
equalities that allow us to be glib. Unlike universal properties, coherence requires a small lan-
guage of its own which involves a choice of primitives. One method of choosing these primitives
is to borrow from an adjacent universal property. For example, when monoidal coherence was
discovered the coherence conditions were borrowed from products. Later it was observed that
the conditions can be simplified.

14 Chapter 1. Introduction

This use of coherence, as a means of ellipsis, requires a coherence theorem: from minimal
conditions, maximum coherence. The point we would like to make here is that the choice of
primitives and coherence conditions may begin and end with a specific application and be useful
even without a coherence theorem. In Chapter 3 we sketch a 2-categorical picture of coherence
conditions and their immediate application to the preservation of internal structures. When an
internal structure is externalized as 2-cells, it is not hard to see what coherence, in the form of 2-
cells, is required for a given 1-cell (functor) to preserve the given internal structure. We illustrate
the procedure with lax left monoid structure. To our surprise this leads straight to the simplified
monoidal coherence conditions, although the 2-categorical picture does not appear to suggest the
coherence theorem that follows from these conditions.

For the notion of structural action, we use this 2-categorical perspective to identify the ap-
propriate coherence conditions and to obtain a fine analysis of the canonical structural action on
a monoidal category.

1.3.2 Fixed Poaint Algebras

An important consequence of algebraic compactness, which Freyd demonstrates in [14], is the
fixed point operation it induces in the compact category and, more importantly, in related cat-
egories. Not only does this guarantee the existence of fixed points but it provides a canonical
choice of fixed points analogous to least fixed points in categories of partial orders. In our ax-
iomatics, the compact categdbyis related to a catego@ by an adjunctioi. HU : D — C. In
Chapter 6 we use the compactnes®ab construct a family of maps fix (Ud — Ud) — Ud

in C that internalizes a fixed point operation for endomaps on objects of thelfarniVe show,
following Freyd, that in categories of domains the resulting fixed point operation is characterized
by a uniformity property analogous to Plotkin’s Axiom for least fixed points.

A very similar account has appeared in [31]. We work with an adjunction instead of a
comonad and provide details where [31] refers the reader to Freyd [14]. In particular, we in-
troduce a notion of fixed point algebra that includes both Freyd algebras and fixed point objects
and prove a transposition theorem that includes the transposition of Freyd algebras to fixed point
objects and to parameterized fixed point objects.

A fixed point algebra induces a family of recursive morphisms. Given certain conditions,
this is the unique uniform family of recursive morphisms. In the case of a Freyd algebra for the
identity endofunctor o, we obtain a family of maps analogous to bottom maps. In the case of
a fixed point algebra for the identity endofunctor@nve obtain a family of maps analogous to
least fixed points.

1.3.3 Exponential Structure

Our emphasis on structural actions plays down the role of enrichment because we concentrate
on the structure used to model type constructions. However there is one aspect of enrichment
that is important from this point of view as it is closely connected with the construction of struc-
tural actions in a monoidal adjunction. That is the enrichment of the monoidal catedgorne
cartesian categorg via the monoidal functot : D — C. The important property of this en-
richment is that the underlying category@fenriched in itself, via the function spa¢e— d),
is isomorphic to the underlying category Bfenriched inC, via the function spacl (e — d).
From the structrual point of view, the operatidife — d) provides an alternative representation
of parameterized maps .

We therefore introduce a notion ekponentiathat abstracts from this operation and from
the hom objects of enriched structure generally. This leads to a pleasantly symmetrical definitons
describing the structure on Kleisli adunctions, which don’t carry the full monoidal structure but
still give models of recursive types.

1.4. Overview 15

1.3.4 Oblique Types

The calculus shown in Figure 8.4 matches a fragment of Levy’s Call-By-Push-Value with re-
cursive computation types and we use Levy’s syntax to emphasise the match. Likewise, the
translations given in Section 8.2.2 correspond to the call-by-name and call-by-value translations
Levy studies in [23]. Levy’s carefully motivated operational semantics, however, is wasted on
the models we consider. Our models abstract from adjunctions given by the lift functor on cate-
gories of partial orders and lift can be viewed as a model of nontermination, but, as computational
effects go, nontermination is extremely degenerate.

The point we would want to make here is that, independently of Levy’'s operational analysis,
the importance of the oblique function space is indicated categorically by the notion of costruc-
tural action and type theoretically by the idioms used to type fixed point combinators. The latter
point alone is enough to motivate a type theory with oblique function spaces in which fixed point
combinators are more succinctly derived. We extend the minimal calculus that matches CBPV
to a calculus with types modelled by structural actions and exponentials.

1.3.5 Directors

In our analysis of adjoint types we use various notions of free distributor. This views distributors
not as 1-cells in bicategories generalizing categories of sets and relations, but as objects with
structure that is respected by distributor morphisms. The idea of a free distributor then requires
a forgetful functor includes distributors among objects with less structure.

We therefore use a notion director which is a distributor without any composition. The
situation is directly analogous to categories and directed graphs. Indeed the free distributor con-
struction is given by a free category construction. The usefulness of these definitions results from
the two different ways functors (or directed graph morphisms) induce distributors (or directors).

1.4 Overview

The idea of the thesis is to extend LNL with recursive types and to look at the interpretation of
fixed point combinators in algebraically compact models. This is a fairly mundane undertaking
and the bulk of the thesis concerns interesting things that turn up along the way. The majority
of these things, those presented in Chapters 2, 3, 4, 5, and 6, are essentially categorical. Chap-
ters 7 and 8 present some findings in type theory and Chapter 9 brings the two subjects closest
with results about categorical models of types. Chapters 4 and 6 are an amplification of [14].
Chapter 3 can—and perhaps, given the mathematical tone of the thesis, should—be replaced by
Appendix B. Personally, my favourite bits are Chapter 2 and Appendix A.

1.4.1 Category Theory

As LNL models are adjunctions, we want to say that an algebraically compact model is a an
adjunction in which the one category is algebraically compact. For our definition of algebraically
compact category, we use categories with structural actions. The notions of structural action
and of structural endofunctor include natural transformations that must satisfy certain coherence
conditions. We have therefore developed a general picture of coherence which is described in
Chapter 3. Since we look at coherence conditions as polyhedra that may be pasted together, we
use explicit 2-categorical language in that chapter, albeit in a very elementary way. The chapter
includes a very condensed account of structural actions and the indexed category construction,
but the 2-categorical picture suggests a more general and complicated notion of structural functor
than we need for our theory of algebraic compactness. We therefore include an elementary
account of structural actions and functors in Appendix B. The real interest of Chapter 3 is the
integrated picture of internal and external structure that emerges.

16 Chapter 1. Introduction

In Chapter 4 we lift the theory of algebraic compactness from ordinary categories to cat-
egories with structural actions. Here we play down the 2-categorical perspective because the
elementary theory is quite pretty. Also, the actions are directly meaningful as a mechanism for
representing parameterized maps. We include some examples of compact categories from do-
main theory, but these are best viewed in the context of an adjuntion as described in Chapter 5.
Although we are keen to show here that nothing more than the structural settiegdedor a
precise description of compact categories, the more traditional enriched and internal settings are
very closely related.

Equipped with a theory of compactness that says ‘look for structural actions’, it is interest-
ing to revisit traditional descriptions of domain theoretic models. In Chapter 5 we first revisit
monoidal adjunctions and then consider purely structural descriptions. We are encouraged in
this by the Kleisli models which are missing parts of the monoidal structure but carry all the
necessary structural actions. By the end of Chapter 5, we can say what an algebraically compact
model is and are in a position to interpret an extended LNL.

An interpretation of LNL with recursive types is going to include fixed point operations so,
before we consider such interpretations, we look at the native fixed point operations. We expect
to have fixed points because the luff subcategory in which Freyd constructs fixed points is a
special case of our adjunction. In Chapter 6 we dissassemble Freyd’s construction and adapt it
to the adjunctions we consider. We give an abstract description that includes fixed points for
parameterized maps, and here the structural actions fit in very nicely, but the really interesting
thing to come out of our analysis is actually used very weakly in the fixed point construction
itself. That is a result concerning recursive morphisms.

Chapter 2 describes this result and gives an application to ordinary (non domain-theoretic)
recursion theory. As recursive morphisms relate objects in one category to objects in an other,
it is well to view them in terms of distributors. Because distributors also appear in our analysis
of LNL, we have included in Appendix A a brief introduction to the aspects of distributors we
employ.

Once we have described an extended LNL and played a little with the resulting type theory,
we look at its interpretation in algebraically compact models. In the first section of Chapter 9
we develop a theory of uniform transformations that corresponds directly to the uniformity char-
acterizing the fixed point operation derived in Chapter 6. The theory is presented in terms of
a categorical framework for relational parametricity but without mention of the logical content
usually associated with relational parametricy. The framework, or at least the part we use, is
described in Appendix C. In the second section of Chapter 9 we apply the theory to the interpre-
tation of fixed point combinators. This requires added conditions on our notion of algebraically
compact model, but when these conditions are satisfied, as in concrete domain-theoretic adjunc-
tions, the interpretation of any fixed point combinator is uniform and hence must coincide with
the canonical fixed point operation. The coincidence result is somewhat contrived and it more
the notion of quotient parametricity and its relation to fixed point uniformity we would like to
emphasise.

1.4.2 Type Theory

In algebraically compact adjunctions it is the functors modelling linear types that have invariants,
so in Chapter 7 we extend LNL with recursive linear types. Then, in Chapter 8, we find recursive
linear types that allow us to type fixed point combinators.

In Chapter 7 we also take a close look at the main feature of LNL: mixed derivations of two
kinds of sequent. Two special type constructors L and U are used to pass between the two kinds
of sequent within a derivation. On the face of it, the constructors L and U are modelled by, and
generate, adjoint functors. We show that these adjoint constructors can be understood separately
if the term model for the calculus is viewed as a distributor. The concepts and terminology we

1.4. Overview 17

use are developed in Appendix A.

In Chapter 8 we pause to consider what sort of calculus might be useful in place of LNL.
We have already seen in Chapter 5 that the monoidal adjunctions that motivated LNL are better
viewed as structural adjunctions in the case of algebraically compact models. Moreover, The
derivations of fixed point combinators use an idiom that corresponds to the construction of the
costructural action in the structrual adjunction. We therefore propose a calculus motivated by
structural adjunctions. This calculus is tentative and, as we observe in Chapter 10, other type
idioms and categorical structure suggest variant forms of recursive type.

18

Chapter 2

Recursive Morphisms

Given an endofunctdf : C — C, it is now commonplace to consider the categoryRAlyf alge-

bras and algebra morphisms feror the category Cdaof coalgebras and coalgebra morphisms
[17]. In both cases, morphisms are given by maps that commute with ‘constructors’ or ‘destruc-
tors’ on objects o€. Here we investigate the analogous notion of morphism from the objects of
Cod- to the objects of Al§ .

Definition 2.0.3 Given a coalgebra p for F and an algebra s for Frecursive morphisnfrom
p to sis given by a map f such thatfsoFf o p.

b——a

We call such maps ‘recursive’ because the equatiensoF f o p allows f to be rewritten in
terms of itself. For certain choices pfF ands, we recover familiar recursive function equations.
If we take, for examplef: f = ¢+ f ands = (g, h), we obtain the recursive equation

~ [g(uy when p(x) =inl(u) out
Ho= { h(f(y)) when p(x) =inr(y) c+b——=c+a
pT l<g,h>
f

b———a
and, ifc =1, so thafg is just an element ad, andp is given by the predecessor on the naturals,
we obtain the equation for primitive recursion.

f(n)_{ g whenn=0 14N 14f 1+a

h(f(m)) whenn=m+1
predT l(g,h)
f

N———a

By taking power-set functors fdf, more general forms of recursion can be obtained. This
approach to recursion has been developed by Taylor [42, Section 6.3] and we apply some of our
results to Taylor’s framework in Section 2.2.9.

2.1. Oblique Adjunctions for Free19

Originally, however, we came upon recursive morphisms as fixed points. If we take the
identity on 1 forp, so thatf is just an element cd, andF f = f we obtain the simple fixed point

equation forf.

f=s(f) 1—-a

o | i

l1—a
If we takeF f = cx f andp = (id, id¢), we obtain a parameterized fixed point equationffor

f(u) =s(u, f(u)) cxcLexa

(id,id)T is
f

C———a

This is the sort of recursive morphism we actually use in our analysis of fixed point objects
in Chapter 6. The broader importance of recursive morphisms is suggested in Section 2.2.5
where Freyd’s diagram chase proof of the Square Theorem is reconstructed in terms of recursive
morphisms and also by the simplicity of Lemma 2.1.4 in Section 2.1.2.

Mathematically, the important result is Lemma 2.1.4. In Section 2.2.3, we show how the
(object level) dinaturality of initial algebra delivery can be understood in terms of the (object
level) dinaturality of recursive coalgebra delivery which follows directly from the Lemma. In
Section 2.2.9, we show how the Lemma applies to the transposition of recursive coalgebras and
corecursive algebras. Recursive coalgebras feature prominently in Taylor’s framework for recur-
sion. Our use of corecursive algebras in Chapter 6 is fairly weak but a stronger use has recently
turned up in work by Simpson and Escardo characterizing the real interval [38].

2.1 Oblique Adjunctions for Free

While it is known that adjunctions lift to categories of algebras and coalgebras for certain pairs
of endofunctors including the pair given by the adjunction [16, Section 2.5], for recursive mor-
phisms we obtain a form of adjunction even if the underlying functors are not adjoint.

2.1.1 The Distributor of Recursive Morphisms

Recursive morphisms do not form a category. Coalgebras are distinct from algebras, and so
we have no identity recursive morphisms and no composable pairs on which to define composi-
tion of recursive morphisms. However, recursive morphisms do compose in the usual way with
coalgebra morphisms on the one side and with algebra morphisms on the other.

F Ff F(hofog
Fb —>Fb—>Fa— "> Fa/ Py — 9
T - LT
b/ 9 b f a h a/ b/%a/

This gives a bimodular action
Coap', p) x (p,s)recx Alg(s,s') — (p',s)rec

where(s, p)rec is the set of recursive morphismstoom p. In other words, recursive morphisms
give the oblique arrows of a distributor from Algdown to Co& (see Appendix A).

Coda < fec Alg F

20 Chapter 2. Recursive Morphisms

Both Cod& and Alg- include the category Iriv of F invariants, which has mutually inverse
coalgebra-algebra pairs for objects and coalgebra/algebra morphisms for arrows. When the dis-
tributor rec, is restricted to I, it coincides with the hom distributor on IRv Both the hom
distributors on In¥ and rec lie over the hom distributor @h

Ff
Fb——Fa
f
< — — —1 1 ot
InvF < - —InvF ((s ,s),(p,mp) InvF b a
Ff
Fb——Fa
pT is
f
Codk <5~ AlgF (s, p)rec b—>a
|
under under
Y | f
C- “hom C (37 b)C b——a

2.1.2 Two Oblique Adjunctions

Suppose we have a natural transformatijorE = F from one endofunctor to another. Compo-
sition withn gives functorg o (-) : CoeE — CodF and(-)on : AlgF — AIgE. By the naturality

of 1 we havef =so(Ffon)opiff f=so(noEf)op, which meansf is a morphism from
noptosiff fisa morphism fromp to son. With respect to recursive morphisms, we have
something of an adjunction

Proposition 2.1.3 Given a coalgebra p for E, an algebra s for F and a natural transformation
n : E = F, there is a bijection, natural in the choice of p and s, between morphismsifrom
to s and morphisms from p t®g).

nop-.->s

p>807m

The proposition gives an oblique adjunction (see Section A.6).

Cod: <I’EC_ AIgF
no(:) n (-)on
CoeE <5~ AlgE

Here is another one. Suppose we have a funGtoB — A that we compose with functors
H : A — Bto obtain pairs of endofunctoGH andHG.

(AA) GH
7
(AG)
e /
(A.B) H
AN \
(G,B)
AN
(B,B) HG

2.1. Obligue Adjunctions for Free21

The functorG lifts to algebras: it carries algebras #diG to algebras fofGH and carries algebra
morphisms forHG to algebra morphisms fagH. The functorsH lift in the same way, taking
algebras folGH to algebras foHG. The functorss andH also lift to coalgebras.

CoaGH AlgGH
P P
under under
; /
CodHG A AlgHG A
or S ber S
u%er f u%er ’
B B

It turns out that an oblique adjunction exists betw€eon coalgebras and on algebras, even if
G andH are not themselves adjoint.

CoaGH <.~ AlgGH

GT4LH

CoaHG <.~ AlgHG

Lemma 2.1.4 Given a coalgebra p for HG and an algebra s for GH, there is a bijection, natural
in the choice of p and s, between morphisms from Gp to s and morphisms from p to Hs.

Gp->s
p>Hs

Proof. The bijection is given by — so Ggandh— Hho p. If gis a recursive morphism from
to Hs, we see thalh = so Ggis a recursive morphism fro@ pto s by applyingG to the diagram
for g.

HGg GHGg
HGb—— HGHa GHGb—— GHGHa
PT le GpT \\\EtT& lGHs
g Gg
b——Ha Gb— GHa
\J/
s
a

Likewise by applyingH to the diagram foh, we see thaty = Hho p is a recursive morphism
from ptoHs.

GHGb HGHGDb
GpT GHh HGpT W
HGY
Gb GHa HGb HGHa
\\\E\\xl T Hh l
S p Hs
g/
a b Ha

But then
g =Hhop=H(soGg)op=HsoHGgop=g,

the morphism we started with. Similarly, = so G(Hho p) = h starting with any morphisrh
from Gptos. O

22 Chapter 2. Recursive Morphisms

The Lemma gives an isomorphism betweeno recsy and regg o H* in Dist (see Sec-
tion A.6).

CoaGH <.~ AlgGH INVGH <~ — InvGH InvGH
| | ! om ! 1\
1G. = IH* — G, I H* — Gl-|H
4 v v v Ly

CoHG <.~ AlgHG INVHG < - ~InVHG InvGH

If the isomorphism is restricted to the categoriefGhl/and In\HG of GH andH G invariants, we
obtain an isomorphism directly betwe€y andH* and hence an adjunctidd 4 H : InvGH —
InvHG (see Proposition A.6.4).

Now if we swapG andH in Lemma 2.1.4 and restrict again to invariants, we obtain a second
adjunctionH 4G : InvHG — InvGH. The unit of this adjunction dtp, p~1) is p while the counit
of G 4 H at the same invariant ip—l. Likewise, the counit oH - G is inverse to the unit of
G - H. The functorsG andH therefore lift to form an equivalence between®@i and InHG.
Freyd appeals to this equivalence for a direct proof @pteserves initial invariants [15, Section
5].

Proposition 2.1.5 The functor G takes initial invariants for HG to initial invariants for GH.
Note however that this is really a direct consequence of Lemma 2.1.4 and, using Proposition 2.2.2,

should be viewed as a special case of Corollary 2.2.4.

2.2 Recursive Coalgebras and Corecursive Algebras

Recursive coalgebras (Definition 2.2.1) occur in Taylor's treatment of recursion where they are
the coalgebras that ‘obey the recursion scheme’ [42, Section 6.3].

Definition 2.2.1 An algebrac is corecursivef for every coalgebra p there exists a unique mor-
phism 2 from p too. Dually, a coalgebrar is recursiveif there is a unique ¢ from x to every
algebra s.

F
Fb—>F¢ Fo—>Fa
PT lo nT Ls
Zp (]) » I's a

If t is a terminal object, then the unique algelia— t is a corecursive algebra. Dually, iif
is an initial object, then the unique coalgelira: Fi is a recursive coalgebra. The following
embellishment of Lambek’s Lemma [21, Lemma 2.2] provides more examples.

Proposition 2.2.2 (after Lambek) The following are equivalent:
1. pisafinal coalgebra.
2. pistheinverse of a corecursive algebra.

Dually, the following are equivalent:
1. sis aninitial algebra.

2. sisthe inverse of a recursive coalgebra.

2.2. Recursive Coalgebras and Corecursive Algebra8

However, not every corecursive algebra or recursive coalgebra has an inverse. Also, unlike final
coalgebras and initial algebras, corecursive algebras and recursive coalgebras are not unique up
to isomorphism. Ih— n— 1 is taken as a functor on the partial ord&r <), then every algebra
is corecursive (there are no coalgebras), no algebra has an inverse and no two are isomorphic.
By the recursion theorem, every well-founded binary relationorresponds to a recursive
coalgebra for the covariant power-set funcfon Set, but none of these is the inverse of an
initial algebra forP. For an account of well-foundedness and the general recursion theorem in a
categorical context, see Taylor [42, Chapter 6].

Pb—"- Pa

<Tl

b——a

2.2.3 Preservation of Recursive Coalgebras

Proposition 2.1.5 is the basis of a categorical generalisation of the dinaturality of the least fixed
point operator: Ifga and¢g are functors giving (the carriers of) initial invariants for categories

of endofunctors o\ andB, then, because initial objects are unique up to coherent isomorphism,
we get a natural isomorphism from the func®s ¢g o (G, B) to the functorga o (A,G). This is

the dinaturality hexagon fapa and¢g.

(Av A) L A
7 \
(AG)
yd
(A,B) o A
ee) %
S 0B
We now consider recursive coalgebras @mlthough, by symmetry, the same arguments
apply to recursive coalgebras fbr and, by duality, to corecursive algebras férand forH.
From the bijection of Lemma 2.1.4 we see tkgiis a recursive coalgebra wheneyeis.

Corollary 2.2.4 The functor G takes recursive coalgebras for HG to recursive coalgebras for
GH

However, because recursive coalgebras are not unique up to coherent isomorphism, the provision
of recursive coalgebra structure on the object part of a functor fia) to A does not fix the

arrow part of the functor. Similarly, even iy and¢g have been chosen to give (the carriers of)
recursive coalgebras, the fact tlabg(HG) carries recursive coalgebra structure, does not fix

a comparison witpa(GH). The uniqueness of the recursive morphism into algebras requires

a coherent choice of arrows and a coherent choice of comparisons, but then ensures that these
choices will be mutually coherent (when tested with recursive morphisms). Corollary 2.2.4 only
ensures that dinaturality of recursive coalgebra delivery cannot fail at the object level.

2.2.5 Freyd's Square for Recursive Coalgebras
A weak form of Freyd’s Square (Theorem 2.2.8 below) holds for recursive coalgebras.

Proposition 2.2.6 If a recursive coalgebrar for TT is of the form T o 7, thent is a recursive
coalgebra for T.

24 Chapter 2. Recursive Morphisms

Proof. Supposé to 1 is arecursive coalgebra forT andsis an algebra fof . If r is a morphism
fromTrottosoTs thensoisoTror, butthere is just one such morphism and sesoTro 7,
i.e.r is a morphism front to s. On the other hand, f=soTrozthenTr=TsoTTro Tt and
we haver =soTsoTTroTrort,i.e.risamorphismfronTtotrtosoTs

TTTi "L TTTa

TTt TTs

O
This proof sits inside the proof of the Square Theorem given in [14]. The following proposition
provides a sufficient condition for the premise.

Proposition 2.2.7 If a recursive coalgebrar for TT has an inverse, thenis of the form Ttot
wheret has an inverse.

Proof. Let ¢ be inverse tar and letr be the uniqgue morphism fromto T¢. The mapr 7 is then
a morphism froml'z to TTo. Now Two To is the identity onT T Tt, soTto 7 is a morphism
fromrto TTo, butz is also a morphism from to T To becausd To o T Tx is the identity on
TTr and so we must have=Tro7.

T AL TTTT
TTt V
TTT1

T TTzx||TTo
Tr||To

1 T e TTH

N P
Tt

Now we showr has an inverse. By Corollary 2.2.4 (withfor G and the identity foH), if
7 is recursive, then so i§x. Let ¢ be the unique morphism froffiz to ¢. Now the identity
is a morphism fronr to ¢ but, again becauser o T o is the identity,¢ o 7 is also a morphism
from & to o and so must be the identity. Likewise, becamses is the identity onl T1 and the
identity onTt is a morphism fronT to T o, T o ¢ must be the identity. O
Using Proposition 2.2.2, Propositions 2.2.6 and 2.2.7 combine to form an important theorem.

Theorem 2.2.8 (Freyd’s Iterated Square)Initial algebras for TT are of the forgo T ¢ where
¢ is aninitial algebra for T.

2.2.9 Transposition of Corecursive Algebras and Recursive Coalgebras
Proposition 2.1.3 has the following corollary.

2.2. Recursive Coalgebras and Corecursive Algebras

Corollary 2.2.10 If ¢ is a corecursive algebra for F, themo) is a corecursive algebra for E.

If F is of the formHG we can put Lemma 2.1.4, together with Proposition 2.1.3, to obtain
a correspondence between certain recursive morphisms into an aigelbraH and arbitrary
recursive morphisms intdso 7.

G(nop) -

nop- - >Hs
p.>=Hson

We apply this correspondence to the transposition of corecursive algebras. Given a natural
transformatiom : Id = RL, we calls= Rso 1 thetransposeof s, even ifn is not the unit of an
adjunction.

Corollary 2.2.11 If o is a corecursive algebra for LR, then its transpose,d), is a corecursive
algebra for the identity endofunctor.

Corollary 2.2.11 produces corecursive algebras for the identity endofunctor. If we also have a
natural transformation: S— Id (not necessarily the counit of a comonad), then Corollary 2.2.10,
with 1 for n, takes corecursive algebras for the identity to corecursive algebr& #lterna-
tively, we can produce corecursive algebrasSatarting with a corecursive algebrafor LSR
in which case the transformatiaris superfluous. Wit for H, LSfor G andns: S= RLSfor
n, we see that corecursive algebrasli&Rtranspose to corecursive algebrasSor

LS(nsop) >0

NsopP->Ro
P >Roons

This is so useful we make it a lemma and view Corollary 2.2.11 as the specigh cakk

Lemma 2.2.12 Given functors RD — C and L: C — D, a natural transformatiom : ld — RL
and an endofunctor SC — C, corecursive algebras for LSR transpose to corecursive algebras
for S.

The dual of Lemma 2.2.12 applies to the transposition of recursive coalgebras. Taylor’'s
version of the recursion theorem is based on a categorical formulation of well-foundedness and
says well-founded coalgebras are recursive [42, Section 6]. When the endofunctor in question
is the covariant power-set functor on Set, we recover the notion of a well-founded relation and
the theorem says recursive definitions based on well-founded relations are well-defined. This
particular endofunctor carries monad structure that factors through a variety of adjunctions [41].
The typical situation is an adjunctida U : D — C topped by a monad on D such that the
original monad, possibly th€ of another factorization, is given by the compos&if€F. We may
consider the notions of well-foundedness and recursiveness with respect to both th€ fantor
the originalUTF. The dual of Lemma 2.2.12 says that recursive coalgebrddTdt transpose
to recursive coalgebras far.

Corollary 2.2.13 If w is a recursive coalgebra for UTF then its transpose, &=, is a recursive
coalgebra for T.

Corollary 2.2.13 uses the natural transfomatiar-U =- Id that comes with the adjunction
F 4 U to transpose coalgebras fOiT F into coalgebras foff. In the case of the power-set-
like endofunctors studied in [41] there is another natural transformatioh = T FU that can
be used to transform coalgebras fbrinto coalgebras folJ TF: composep : b — Tb with
kK :Th— TFUband applyU to obtain a coalgebrd (xo p) : Ub — UTFUb. With TF for H,

26 Chapter 2. Recursive Morphisms

U for G andx for 11, we see that recursive coalgebrasTaransform to recursive coalgebras for
UTF.
U(kom) --->$S

kom -~ =TFs
m - >TFsok

Corollary 2.2.14 If & is a recursive coalgebra for T then(# o x). is a recursive coalgebra for
UTF.

Note that the preservation of recursive coalgebras results from the mere existerazedaf and

not from the laws of the adjunction. However, with power-set-like endofunctors, much more is
true. The above transform reflects recursive coalgebras and both the transform and transposition
preserve and reflect well-founded coalgebras [41].

27

Chapter 3

Monoidal Categories and Structural Actions

In Section 3.1 we illustrate our approach to coherence conditions using a notion of lax left
monoid. We set up a unified account of monoids and monoidal structure which serves as ba-
sis for an account of comonoids and comonoidal structure. Our lax 2-categorical setting requires
careful attention to the exact forms of duality relating monoidal and comonoidal structures. We
show how comonoids in lax monoid categories are preserved by oplax monoidal functors. In
Section 3.2 we describe how, despite our very weak approach to coherence, Kelly’s simplified
coherence conditions for monoidal categories may be derived from the notion of lax monoid.

In Section 3.3 we indicate how the theory of structural actions fits into our picture of coher-
ence and the preservation of comonoids. As in our derivation of monoidal coherence conditions,
the conditions for structural actions correspond to structure on the transpose of the action. For an
elementary account of structural actions see Appendix B.

3.1 Lax Monoids and Comonoids

In a categoryC with products, the notion of a monoid object can be given either by a product
theory or directly in terms of various commutative diagrams. In the later case we don't use the
universal properties of products so much as the structure induced by some choice of products.
This amounts to monoidal structure which replaces the universal properties of products with the
coherent isomorphisms those properties would induce were the monoidal multiplication actually
to give products.

3.1.1 Lax Monoid 0-Cells

Given a monoidal 2-categoiy (with monoidal structure written as product structure), we can
replace the commutative diagrams in the definition of monoid structure with 2-cells. We look at
a diagram

Cx(CxC) <% cxe

asso

(CxC)xC ®

okc

CxC “ C

as giving a 1-cel[C x C) x C — C that decomposes both@s (® x C) and asx o (C x ®) oassoc
for some 1-cellz. In a 2-category, this is to say the domain of the identity 2-cell on this 1-cell is

28 Chapter 3. Monoidal Categories and Structural Actions

given as® o (® x C) and the codomain as o (C x ®) o assoc for some 1-ceh. Our definition
of lax monoid structure allows, in place of the identity some 1-g@lk C) x C — C, any 2-cell
with the same domain and codomain.

Definition 3.1.2 Lax monoid structuren a 0-cell C of a monoidal 2-categofy, is given by
2-cellsA, p, a and B whose domains and codomains are given by 1-cell$ + C and® :
C x C — C assembled as shown.

Cx(CxC) <& cxe

assl

[0

1xC C (CxC)xC = ®
I><‘C l:> ®>‘<C
® ¢ ®
CxC—2-C CxC C
CxC)xC S cxe
cx1 ™ ¢ cx(cx0) g, ®
CLI p:> C>‘<®
® ¢ ®
cxC—2-C CxC C

We distinguish between left-hand and right-hand associativity because we are not assuming the
monoidal structure on the ambient 2-category is symmetric and we don’t want to rely on inverses
to assl and assr. Much of this Chapter goes through without, say, #imel 3, but this leads to
categories without right identities in the indexed category construction in Section 3.3.6.

Definition 3.1.2 does not include coherence conditions. A lax monoid in the monoidal 2-
category of categories is therefore not necessarily a monoidal category évyen it andf3 are
all natural isomorphisms. Likewise, a lax monoid in the monoidal 2-category of 2-categories is
not necessarily a monoidal 2-category. Note however that Definition 3.1.2 only uses the monoidal
structure orC as lax monoid structure. So given a lax mon@ith the monoidal 2-category of
2-categories, we can recycle Definition 3.1.2 as a definition of lax monold iRlere we are
only interested in the simpler case where we have a lax mahaidhe monoidal 2-category of
categories. We mak@ into a 2-category by adding identity 2-cells and apply Definition 3.1.2
which now gives a definition of monoid i@. BecauseC is a degenerate 2-category whose only
2-cells are identities, we drop the ‘lax’ and the 2-cell diagrams of Definition 3.1.2 amount to
commutative diagrams i@. When the lax monoid structure @his given by monoidal structure,
assl and assr are mutual inverses, the associativity diagrams imply one another and we recover
the usual definition of monoid object in a monoidal category.

3.1.3 Lax Monoid 1-Cells

Say we have lax monoid structure on 0-c€landC’ of a monoidal 2-categor¢ and we want

a definition of compatible structure on 1-cells fr@@nto C'. Rather than thinking in terms of
morphisms that lax commute with the operations of our lax monoids, we obtain our definition by
viewing a 1-cell fromC to C’ as a O-cell in an arrow 2-category constructed dvand applying
Definition 3.1.2 to this 0-cell.

Definition 3.1.4 Thelax arrow 2-category AL is constructed over a 2-categofy by taking
1-cells F: Cy — C; of C for the O-cells ofArrC, pairs of 1-cells G: Co — Cjand G : C; — C}

3.1. Lax Monoids and Comonoid9

together with a 2-celiys : G1 o F = F’ o Gg for the 1-cells ofArrC and pairs of 2-cellsxy and
oy such that(F’ o o) - W = W - (i o F) (see Figure 3.1) for the 2-cells irrC.

Interpreted in Ar€, Definition 3.1.2 gives our definition of monoidal structure on 1-cells of the
original 2-categoryC. Monoidal structure oK lifts to monoidal structure on A€rin the obvious

way. Multiplication in ArrC is given by multiplying the corresponding diagram<irthe identity

on 1inC becomes the unit for Afr, and the naturality squares @for the transformations left,

right, assl and assr become the components of the corresponding natural transformations for
ArrC. Clearly, structure on Af lifted in this way fromC is strictly preserved by the domain

and codomain projections back @ Any lax monoid in ArC defined with respect to monoidal
structure lifted fromC therefore projects to a pair of lax monotda C and so we can take lax
monoid structure on a 1-ceéfl between two lax monoidS andC’ to be given by any lifting of

the pair of lax monoids to a lax monokd: C — C’ in ArrC.

Definition 3.1.5 Lax monoid structur®n a 1-cell F: C — C’ in a 2-categoryC is given by lax
monoid structure on F taken as a O0-cell in the 2-categimC.

In ArrC, the four 2-cell diagrams in Definition 3.1.2 become four prisn&.ifigures 3.5 and 3.6
show the prisms for left identity and left associativity. These are drawn as cubes underlying lax
squares in A€ with each cube split into two hemi-cubes to match the compatibility cube shown
in Figure 3.2. By stacking such prisms it is clear that lax monoid 1-cells compose to form
composite lax monoid 1-cells. Lax monoids@rthus form a category over (the plain category
part of) the 2-categor¢.

Definition 3.1.6 The categoryMonC has lax monoid O-cells ii€ for 0-cells and lax monoid
1-cells for 1-cells.

The compatibility conditions on 2-cells in ACrresult in coherence conditions between the struc-
ture 2-cell for a lax monoid 1-celr : C; — C; and the structure 2-cells for the lax monoid
structures oty andC;. Concretely, inCat, lax monoid structure on a functérrequires natural
transformationsyg, andy; making the following diagrams commute.

F
Flo®oc) 22~ Fc

=

Flo®iFc Fc

MglFC /

A
@1 Fc—= Fc

These are the standard coherence conditions on a monoidal functor in the theory of monoidal
categories (which normally associates the natural transformagignand y; with the functor
F). So while Definition 3.1.2 does not give a definition of monoidal category when interpreted
in Cat, Definition 3.1.5 does give the familiar definition of monoidal functor.

Just as Definition 3.1.2 can be recycled to give a definition of monoid in a cat€gbit is
itself a lax monoid inCat, Definition 3.1.5 can be recycled to give a definition of monoid map in
C. The arrow 2-category A@,—again treatin@C as a degenerate 2-category whose only 2-cells
are the identities—is the degenerate 2-category obtained from the familiar arrow ca@egory
Just as monoidal structure lifts to the arrow category, the lax monoid struct@diftsmto ArrC

INot to be confused with a lax monoid fhx C. Definition 3.1.2 requires monoidal structure but we
have not assumed the monoidal structureCois symmetric and so the usual construction of monoidal
structure orC x C is not available.

30 Chapter 3. Monoidal Categories and Structural Actions

O-cell

1-cell 2-cell
F F - F
AN N N
F’ F/ F/
Co Co Co
F G F G 5
LZe] > ‘I/G:>
G F C F F
\i X
Ci Ci Ci
Co Co
Gy
F F G
‘I/G/:>
Ci Ci F/
Y\ (04} Gg.
Ci Ci

’ F/(Xo 1~/
F/'Goc —2 F/Gc
[Z¢] WG’T

GiFc -5 GiFc

Figure 3.1: The arrow 2-category AroverC.

3.1. Lax Monoids and Comonoids31

F o H o > F//
.G o R
RN N
Fl U H/ > F///
Ho /1
Co ct
ﬁ o, G
Hl
= C6 0 C///
Ve N
R LN
*
Hl
Cl 1 C///
Ho 1/
Co ct
Go
F YH Ly E C(,),,
Yo
°=
C/’ =2

\cl—\:

Figure 3.2: A lax square in A€r.

C/I/

32 Chapter 3. Monoidal Categories and Structural Actions

1% Cy left Co
\onco N \
N ®o0
1xF Cox Cg Go
-
Yo
1xC FxF = F
11 xCq
C]_ X C]_ 9 Cl
1% CO left CO
]IF E CO
\|1><C1 211:> \
AN

C1><C1®1—>C1

Figure 3.3: Compatibility with left identity.

Cox®o

(Co x Co) x Co —22% Co x (Co x Co) 22 Gy x Co

oo LN
T~ ®o

(FxF)xF CoxCy Co
'I/®X:';
(C1xC) xCy FxF = F
®1xCq
C]_XC]_ 9 C1
Cox®
(Co x Co) x Co —% Cg x (Co x Co) =2 Co x Co
S
(FxF)xF Ex(Fxp) Yo FxF Co
| | |
(C1><C1)xClisLClx(CGCl)ClﬁiCGCl F
\®1><Cl aé> &
\ 1
C1><C1 C1

Figure 3.4: Compatibility with left associativity.

3.1. Lax Monoids and Comonoids33

and we can apply Definitions 3.1.5 and 3.1.6 to obtain the categorCMathen the lax monoid
structure orC is given by monoidal structure, this is the usual category of internal mofids

As with monoidal structure, it is not necessary to preserve lax monoid structure strictly in
order to carry internal structure from to one lax monoid to another.

Proposition 3.1.7 Lax monoid functors lift to internal monoids.

MonCo M2"5 MonC;
| |
forget forget
Co C
Proof. The functor Mot takes a monoid
lo—>>¢ c®oc -2 ¢
in Cg to the monoid
Foo F
I — % Ee FcoiFc - Fe

in C;. To see this, think of as a 1-cell 1= Cy. Thenois a 2-cell

uniq
(o]
\LC
[
1—2-Cy
andmis a 2-cell
Ixl=———1

diag
icxc% iC
Cox Co 22~ Cy

and the diagrams that make these a monoi@jrare given by four prisms (two of which are
shown in Figures 3.5 and 3.6). For example, the prism shown in Figure 3.5 gives the diagram

>

C®opC c

Otgoc /
| Ao

lo®0C—=C

c——¢C

which is
) ®0CL> C

0XoC

c®oC—"scC

When these four prisms are stacked on the four prisms mdkiadgax monoid functor (two of
which are shown in Figures 3.5 and 3.6), the four resulting prisms (one of which is shown in
Figure 3.7) give the diagrams making

I, — Flo -2 Fe Fcwr Fe—2- F(c®oc) ™~ Fc

34 Chapter 3. Monoidal Categories and Structural Actions

a monoid inC;. For example, the stack shown in Figure 3.7 gives the diagram

=
Fm
)/’

F(c®ocC

P

Fc®iFc Fc

c—Fc

Fo®1Fc
Flo®1Fc

yi®1FC

M

lh®1Fc Fc

which is
A
Iy ®1Fc=—Fc

|
(Fooyi)®1Fc

Fmo
Fco,Fe—" Fe

Monoid mapsf : ¢ — ¢’ in Cy become monoid magsf : Fc — Fc’ in C; by the naturality ofy;
andyg, and the funtorality of-.

Vi Fo Ve

I — S Flg—2s F¢ Fc®iFc F(c®oc) I Fc
J{Ff J{Ff@lFf F(f®of) lFf

I, 2> Flg 2 pe Fo @, Fd 2 F(d @oc) ™~ Fo

3.1.8 Lax Comonoids

In a monoidal categor€, comonoid structure on an objecis defined as monoid structure on
taken as an object of the opposite cateddi¥. A little more care is required for the definition of
comonoid maps which are the opposites of monoid maps in the opposite category: the category
of comonoids inC is given by(MonC°P)°P. In terms of arrow categories, comonoid maps are
monoid objects in the opposite of the arrow category @R8r This has arrows for objects and
op-squares

Co~——cp

|

C1<7C€L

for arrows.

In a monoidal 2-category everything is more delicate. In a 2-category we can take opposites
of either the 1-cells, the 2-cells or both and this leads to even more possibilities in the construction
of arrow categories.

Definition 3.1.9 Given a 2-category, we writeOpC for the 2-category with op-2-cells (oppo-
site hom categories).

Taking the opposite of a category is therefore a 2-fungt@P : Cat — OpCat.

3.1. Lax Monoids and Comonoids35

1x1 — 1
miqxl \
N
1xc 1x1 . 1
l diag
0XC,
1xCy cxe ., c
b |
\ X0
CoxCo Co
1x1 - 1
left \
Tc [1
1x Gy left Co c
\|0><Co M=> \
S ®o
CoxCo o

Figure 3.5: Internal left identity.

(Ix1)xl=——1x(1x1)=——1x1

\:ﬂssrl 1x dlag
iagx 1
g ~ M

(cxc)xc 1x1 . 1
diag
mg
(Co x Cp) xCp cxc LN c
®0xCy
0 \ l ®o
CoxCo Co
(1><1)><1<W1><(1><1) Txdiag x 1
(cxc)xc cx(cxc) me:> cxce 1
| | =
(Co x Co) x Co —25- Co x (Co x Co) X%y x G c

Figure 3.6: Internal left associativity.

36 Chapter 3. Monoidal Categories and Structural Actions

1x1 1
left—1
unigx 1 \\\\\\
1xc 1x1 . 1
diag
0XC
1xCy cxc m, c
e,
\\\ &0
1xF Cox Cg Go
yi xXF
1xC FxF Ve, F
|1><C;|_
C]_ X C]_ 9 Cl
1x1 1
left—1 \\\\\\
1xc c 1
1xCo left Co c
1xF E CO
\|1><C1 ll:> \
\

(:1><(:1‘4444£§£“““>'(:1

Figure 3.7: Internal left identity.

3.2. Monoidal Categories 37

3.1.10 Preservation of Internal Comonoids

Lax monoid functor$- : Co — C; from one lax monoid category to another do not necessarily lift

to carry comonoids i€y to comonoids inC;. Taken as 2-cells, the counit and comultiplication

of a comonoid are not confluent with tlgein Arr so, although the identity and associativity dia-
grams for comonoid structure still give four prisms, these cannot be stacked on the correponding
prisms for lax monoid structure da. If we want to lift F to internal comonoids, we require
oplax monoid structure oF.

Definition 3.1.11 Oplax monoid structuren a 1-cell F is given by lax monoid structure on F
taken as a O-cell if©OpArrOpC.

The 2-category OpArrOpC is ArrC with the structure 2-celiseversed. The hemi-cubes in
Figure 3.1 must be taken as a complete cube to remain meaningful; witp theersed, the
cube falls into a different pair of confluent pasting diagrams. Note thatghend o; are not
reversed in OpArrOp so oplax structure oR : Cy — C; projects tdax structure orCy andC;.
These projections are given by Opdom and Opcod from OpAtr@pOpOC, which isC, and
preserve monoidal structure lifted fro With the y reversed our prisms stack and we can lift
F to internal comonoids.

Proposition 3.1.12 Oplax monoid functors lift to comonoids.

CoMorCo®M°F coMorc,

forget forget

Co C

3.2 Monoidal Categories

Interpreted inCat, Definition 3.1.2 does not give a definition of monoidal category because it
does not include coherence conditions relating the 2-gellsando. Definition 3.1.5, however,

does give the usual definition of monoidal functor including the usual coherence conditions and
we can use this ‘local coherence’ to recover the familiar coherence conditions for monoidal
categories. A monoidal category is a lax monoid whose multiplicatio@ x C — C is monoidal

when transposed to a functér: C — [C,C].

3.2.1 The Monoidal Category of Endofunctors

Each categoryC,C]| of endofunctors and natural transformations carries two monoidal struc-
tures given by composition (carried out left-to-right or right-to-left). In symmetric monoidal 2-
categories such &t these are inter-derivable, but here we take the left closed structure which
fits our definition of lax monoid.

comp

1— % c.q [C,C] x [C,C] —————[C,C]

ide (g1} go f

38 Chapter 3. Monoidal Categories and Structural Actions

3.2.2 The Transpose of Lax Monoid Structure

In a left closed monoidal 2-category such(s, the left identity and left associativity 2-cells of
Definition 3.1.2 transpose to 2-cells with domain and codomain as shown.

c.cx(Cx0) e cxe

assl

1" cc] (€cxC)
| ;
C

C—=[C.C]
In Cat the codomains can be rewritten.

a

7

&>
I
0

1 1 cxCc 2% c.cx[C,C]
ll A:> \Lident l@ % icomp
c—21[C,C] c—2 -[cC

These diagrams can be viewed as unit and multiplication 1-cells in the arrow category OfQairOp
lying over the unit and multiplication 1-cells of the lax mono@and[C,C] in Cat.

1— ¢ cxc—2 .¢
ﬁl & ®$® ¢a ®
1—%c,cl c,c x [c,c] 22 [c,¢]

Lax monoid structure on a categaythus transposes to give potential oplax monoid structure
on®. The natural transformatioh transposes to a potentiad, and the natural transformation
o to a potentiahy; .

3.2.3 Coherent Lax Monoids and Monoidal Categories

Given a lax monoid irCat, the left transposed natural transformations constitute oplax monoid
structure on® exactly when the following diagrams commute[@ C]. Double lines indicate
equalities in[C,C] which would be isomorphisms we€a bicategory.

(cohe() X2 ca()

(ce())o(®()) ce ()

co@od)e() — L (cad)ad) ()
(ce(-))o((cac)®() (cac)®()o(c"x ()
(e (e /co(d/x(-))/

(ce())o((@e())o(c"®())) == (ca())o(Ca()))o(c"®())

3.3. Structural Actions 39

These commute ifC,C] exactly when the following diagrams commuteQrior all ¢’ andc”.

cohed 2% coe

5

co(l®d) cad

\
o -
(co(@ac) e L2 (cad)ad)ad”

/ ia

co((decd)oc” (ced)® (" xd")

C%a /
cR((de(d"®d) —cx((de(d"od)))

When A, p, a and 8 are natural isomorphismg is ! and we have the usual coherence
diagrams for a monoidal category.

Definition 3.2.4 A lax monoid in a left closed monoidal 2-categorylest coherentf the left
transpose of multiplication is monoidal.

For coherent lax monoids then, the funcfoiis oplax monoidal and so lifts to the categories of
comonoids irC and[C,C].

Proposition 3.2.5 The 2-category of monoidal categories, monoidal functors and monoidal nat-
ural transformations is the sub-2-category@tfMonCat given by the coherent strong monoids.

3.3 Structural Actions

Structural actions may be presented in ‘curried form’ as indexed comonads. [ACAINs the
category of comonads of then structural actions @& on A correspond to functors fro@ to

ComA A]. This point of view simplifies the construction of the associated indexed category:
the Kleisli construction gives a functor from CofA] to Cat which can be composed with any
structural action o€ on A to obtain aC-indexed category. Note that this account of structural
actions and their associated indexed categories relies on the closed structure of the 2-category
Cat.

Structural actions may also be presented in ‘uncurried form’ as actions with extra structure.
Given an actiorp : C x A — A, we ask for a natural transformation with componehts. c®
a— co (c@a) which we call pseudo-diagonals, and a natural transformation with components
lca . C@a— a, which we call pseudo-terminals. These transformations must make the action
of each object irC a comonad. The Kleisli categoA for the action of an objeat is then the
fibre overc in the associate@-indexed category. We think & as the categonA with maps
parameterized bg. Note that the action may be viewed as an endofunctok parameterized
by C.

Structural actions may also be presented in terms of the canonical structural meta-action on
Cat. The motivating example of a structural action is (the self-action of) cartesian multiplication:
multiplication by an objecC carries canonical comonad structure. The 2-cate@atyis carte-
sian and the Kleisli construction for multiplication by a categ@riifts to 2-cells, so we may
construct the 2-categoatc. A structural action is a comonad @atc.

40 Chapter 3. Monoidal Categories and Structural Actions

Definition 3.3.1 Given a category C, the 2-categd#C has structural actions for 0-cells, (con-
stant) structural functors for 1-cells and structural natural transformations for 2-cells.

Definition 3.3.2 Given a structural action C on a 2-categoy the 2-categonptrC has comon-
ads inKc for 0-cells, (constant) comonad functorsHig for 1-cells and comonad transforma-
tions inKcfor 2-cells.

A comonad is a comonoid in the functor categ¢y D], but can be defined without con-
structing[D, D].

3.3.3 Diagonal Structure

In the proof of Proposition 3.1.12, coherence is only used on the diago@at @f. This appears
in the orientation of the arrow 4> 1 x 1: the necessary diagramsGrare indexed by singletons.
In that proof, lax squares of the form

O<~—X
O<~—<

-
=
_—

=

are pasted vertically onto lax squares of the form

C——D

| < |

Cl > D/

to obtain a lax square of the first form. When viewed as a horizontal arrow this first form can be
interpreted as a 1-cell with pointing structure: the top arrow allows us to défbeesed points
I(R(y)) — c in C which the bottom arrow carries ®IR(y) — Fc and the 2-cell restores to a

Y based poiny — FIR(y) — Fcin D. Now the structure we obtained by externalizing internal
commutative comonoid structure can be generalized to commutative lax monoid structure in a
2-category of cells with pointing structure.

Definition 3.3.4 Thelax pointing2-categoryPC is constructed over the 2-categotyby taking
1-cells F: C — C’ of C for the 0-cells ofArrC, pairs of 1-cells H:D - Cand H :C' — D’
together with a 2-cellyy : G= H’oF oH for the 1-cells ofArrC and pairs of compatible 2-cells
o and o’ for the 2-cells ofArrC.

Commutative lax monoid structure in a 2-category of the fortiRduces internal diagonal
structure on its second projection.

Definition 3.3.5 Diagonal structurées commutative lax monoid structure on a 0-cell in the 2-
categoryPCat.

Inside a category with commutative lax monoid structure, ‘diagonal structure’ refers to internal
commutative comonoid structure that is coherent with respect to the monoid structure of the
category.

3.3.6 The Indexed Category Construction

Diagonal structure o€ — [A, A] determines a functor fror@ to the category of comonoids in
[A,A], otherwise known as the category of comonadsApand hence gives a sort of indexed
comonad ormA. The Kleisli construction takes a comon@don A to a category on the objects
of A with arrows fromato @ given by mapsfa— & in A. The construction is contravariantly

3.3. Structural Actions 41

functorial and so composed with the functor fr@rgives an indexed category @ Writing
co (-) for the comonad over an objecof C, the arrows in the category overre given by maps
coa— a. Change of fibre over a mapfrom ¢’ to c in C°P is the identity on objects and takes
an arrong: ¢ @a— & overc to the arrongo (f ®a) : coa— & overc.

Diagonal structure ofA, A] can be described independently of closed structure on the ambi-
ent 2-category. B

Writing @ for the transposa of A, we transpose the unit and multiplication 1-cells i©aP
that makeA a lax monoid in Eat to obtain the diagrams below.

Cx(CxA)%CxA

assl

1x A A (CxC)x A % o
terr¢1><Al_ﬂ dia¢><A

| %) ? %)
CxA——A CxA C

These correspond to the counit and comultiplication 2-cells for a comonad &-céll~ A on
the O-cellA in the 2-categoryatc of C indexed functors, which is the 2-category o@ein the
simple 2-fibration ofCat over itself, meaning thab is given by a functop : C x A— A.

~~

o

)
Sl
=
> <~

If we would like to takeA : C — [A Al andA’ : C — [A, A'] for O-cells in some 2-category, this
correspondence suggests a natural notion of structure preserving 1-cell tmii: any 1-cell
F : A~ A'in Catc that is a comonad 1-cell with respect to the comonadsd’ corresponding
to A andd'.

r S OF
¢ Y

A~ N
(Lax) comonad 1-cell irCatc means comonad O-cell in Atatc. Blute, Cockett and Seely [6]
refer to a comonad : A~ A as a ‘structural action’ and to a functér: A — A’ as ‘strong
structural’ functor when

Cx AL plet APy

gives a comonad 1-cell.

Note that the natural 1-cells from: C — [A Al to A’ : C' — [A',A’] taken as a lax monoid
0O-cells in FCat are lax or oplax monoid 1-cells in(at, which are lax monoid 0-cells in ArEat
or OpArrOpRat,

42 Chapter 3. Monoidal Categories and Structural Actions

but the transpose of the comonad squard=fgives a pentagon.

C C
\LA % J{A’
[AF]
[A7 A] [A7 A,] [FvA/] [A/’ A/}

There should be a natural 2-category containing both sorts of 1-cell, but we do not pursue this
here.

43

Chapter 4

Structural Algebraic Compactness

The motivating examples of algebraically compact categories are not algebraically compact.
Indeed Freyd warns in [15] that the notion of algebraic compactness ‘should be understood in
a 2-category setting’. To simplify the exposition, Freyd develops a theory of ordinary algebraic
compactness, which requires a Freyd algebraf@ryendofunctor, even though domain theory
constructs Freyd algebras only for endofunctors carrying certain extra structure. To admit the
domain theoretic categories that motivate the theory, we are expected to replace the 2-category
Cat of ordinary categories with a 2-category of categories carrying certain extra structure. The
2-categories that jump to mind derive from enriched and internal category theory, but we have
found an interesting alternative.

Although our elementary presentation does not mention the ambient 2-category, we develop
a theory of algebraic compactness in the 2-categ&tesnd Bis of structural and bistructural
actions. Structural actions provide an account of maps parameterized by objects in the acting cat-
egoryC and, as it happens, the structural theory of algebraic compactness admits the motivating
examples. With a category of predomains@rour setting includes the enriched setting where
the established theory is conducted [43, 39]. W@eas the the unit category, we recover Freyd’s
attractive theory of ordinary algebraic compactness. For a broad perspective on the notion of
structural action see Chapter 3 or, for an elementary account, see Appendix B.

Lemma 4.1.4 reveals the real strength of the structural setting. It allows us to work with a
naive definition of structurally algebraically compact category.

Definition 4.0.7 A structural category D istructurally algebraically compadtit has a Freyd
algebra for every structural endofunctor.

In general, definitions that treat the existence of extra structure as a property are not good practice.
The definition above ignores the possibility that an endofunctor may be structural in more than
one way, so we appear to be losing information. We get away with this here because Lemma 4.1.4
produces the extra structure when it is needed. Otherwise, we would have to ask explicitly for
parameterized invariants as in [10] (see Section 4.2.8).

Over ordinary categories, every delivery of Freyd algebras extends to a f@aet@r, D) —
D which, using the closed structure Gét, gives us a family of functorgg : Cat(B x D,D) —
Cat(B,D) that interpret parameterized recursive types. In the structural setting, a delivery of
ordinary Freyd algebras for the functorsSir(D, D) doesn’t necessarily lift to a structural functor
Str(D,D) — D but does give us a family of functogss : Str(B x D,D) — Str(B,D). So, despite
our strengthened notion of functor, there is no need to strengthen the notion of Freyd algebra.
In fact, the construction afi only uses the final coalgebra property of Freyd algebras. This is a
striking feature of the structural setting.

44 Chapter 4. Structural Algebraic Compactness

In the structural setting, however, one must take care with opposites. Over ordinary cate-
gories, the definition of free invariant Freyd uses in [14] is visibly self-dual: The algebra part
of an invariant forF is a Freyd algebra if and only if the coalgebra part is a Freyd algebra for
FOP. In the structural setting, we cannot, in general, construct opposite categories and functors.
However, we can if the action dd has a right adjoint, in which case we say that the action is
bistructural. For bistructural actions we obtain the dualities of algebraic compactness: A cate-
gory D is compact if and only if the opposite categ@$® is compact if and only if the doubled
categoryD®P x D is compact.

Our account of structural compactness makes no explicit use of enriched, internal or indexed
category theory. However, these more sophisticated perspectives are important conceptually and
technically. The indexed perspective abstracts from both the structural and enriched settings and
guides our understanding of many constructions. Technically, enriched categories have domi-
nated abstract domain theory ever since Wand introduced the use of O-categories [43]. Recent
work by Fiore [10, 11, 12], in which compact categories are actually constructed, is motivated
by questions of enrichment. So before we consider examples in Section 4.3, we explain how to
set up a correspondence between the enriched and structural settings in Section 4.2.

Terminology In this chapter, all use of the terms ‘compact’, ‘complete’ and ‘cocomplete’ is
in the algebraic sense.

4.1 Algebraic Compactness in the Structural Setting

Our basic result, Lemma 4.1.4, actually applies to structural cocompleteness.

Definition 4.1.1 A structural category D istructurally cocompleti it has a final coalgebra for
every structural endofunctor.

We use the Lemma to show that structural cocompleteness implies structural parameterized co-
completeness.

Definition 4.1.2 A structural category D isstructurally parameterized cocompletet has a
structural parameterized final coalgebra for every structural parameterized endofunctor. Given a
structural parameterized endofunctor. B x D — D, astructural parameterized final coalgelsra

a structural functor : B— D together with a transformation whose componentsgb — Fbob

are final coalgebras.

To handle compactness properly, we require opposites, but opposites are not a natural feature
of the purely structural setting. Therefore, in Section 4.1.12, we strengthen the notion of struc-
tural action to that of bistructural action and check that the dualities of ordinary compactness lift
to the (bi)structural setting. The whole thing works out very nicely.

4.1.3 The structurality of delivery functors.

The universal properties of final coalgebras allow us to build both a delivery functor and a natural
transformation that makes the delivery functor structural.

Lemma 4.1.4 Given a structural functor F B x D — D and a final coalgebrarb : ¢b — Fb¢b
for each endofunctor FbD — D, final coalgebra delivery lifts to a structural functgr: B — D.

4.1. Algebraic Compactness in the Structural Settirdp

Proof. Using the final coalgebra property, the functor part of the structural endofuRateter-
mines the functor part af while the transformatio®- determines the transformati@y.

b
Foold T2 Foob F(cob)(coob) — 2% . F(cob)p(cob)
Ffd)b’T GFT
Fb'ob’ b coFbob (cob)
nb’T c@an
. of 0
ot —°" b codb o(cob)

The functorality of¢ and the naturality and coherence @f follow from the uniqueness of
induced maps. Take, for example, the coherend® afith respect to the. The components of
the composité o 6, and the components ofgive coalgebra morphisms which must both equal
the unique morphism induced by the final coalgebra.

Fb(c ¢b) —— - Fby(cob) =~ Fbgb Fb(ce gb) 2 Fbgb
Fi(cagb) F1¢(cob) Fi(coeb)
F(cob)(coob) — '~ F(cob)g(cob) F(cob)(co ¢b)™— Fbeb
OF 7b 0r
coFbeb w(cob) coFbgb—"— Fbgb
conb cotb .
co¢b % o(cob) — ob copb—— ¢b
U

If we have a final coalgebra for every structural endofunctdDptinen we have one for every
endofunctor of the fornir b, whereF is a structural functor oB x D. Therefore, in the structural
setting, we get parameterized cocompleteness for free.

Corollary 4.1.5 Every structurally cocomplete category is structurally parameterized cocom-
plete.

Given a structurally cocomplete categ@ywe build a family of functors fronStr(B x D, D)
to Str(B, D) indexed byB, the structural category of parameters.

Theorem 4.1.6 For structurally cocomplete D, parameterized final coalgebra delivery gives a
family of functors
ug : Str(Bx D,D) — Str(B,D)

that is natural in B up to a canonical isomorphism.

Note that, although we do have a functor Str(D,D) — D, we are not simply composing this
with the transpose of to obtain a functolY o F because this does not tell us how to make
the composite structural. The categ&ty(D,D) and the functor§ andY are not, in general,
structural.

Using Lemma 4.1.4 and the same square root construction Freyd uses in [14], it can be
shown that the product of structurally cocomplete categories is structurally cocomplete. If the
product is structurally cocomplete, the factors are structurally cocomplete, and so the structurally
cocompleteness of the product is equivalent to the structurally cocompleteness of the factors.

46 Chapter 4. Structural Algebraic Compactness

Theorem 4.1.7 Structural categories A and B are structurally cocomplete if and only if their
product is structurally cocomplete.

Every Freyd algebra has an associated final coalgebra, so Lemma 4.1.4 specializes to Freyd
algebra delivery.

Corollary 4.1.8 Given a structural functor EB x D — D and a Freyd algebrab: Fb¢b — ¢b
for each endofunctor Fb, Freyd algebra delivery lifts to a structural fungtoB — D.

The results for cocompleteness specialize to results for compactness.

Theorem 4.1.91f D is structurally compact then it is structurally parameterized compact and
parameterized Freyd algebra delivery gives a family of functors

ug : Str(Bx D,D) — Str(B,D)
natural in B up to a canonical isomorphism.

Theorem 4.1.10 Structural categories A and B are structurally compact if and only if their prod-
uct is structurally compact.

The dual of Lemma 4.1.4 applies to the parameterized initial algebra construction, but pro-
duces a costructural delivery functor from a costructural parameterized endofunctor.

Corollary 4.1.11 Given a costructural functor FB x D — D and a initial algebracb: Fbwb —
b for each endofunctor FbD — D, then initial algebra delivery lifts to a costructural functor
o:B—D.

Given a functo- : Bx D — D and a Freyd algebrab : Fbpb — ¢b for each endofunctor
Fb:D — D, we are spoiled for choice: we can build a delivery functor using either the initial
algebra construction or the final coalgebra construction. But the first lifts to the costructural
setting while the second lifts to the structural setting, and the two settings are distinct. A structural
action onD does not, in general, give a structural action on the opposite catB§bry

4.1.12 The structural compactness of opposites and doubles.

However, if the action part of a structural action Brhas a right adjoint, then there is a corre-
sponding structural action dp°P.

Definition 4.1.13 Anadjunction of parameterized functdretweerp : C x A — B and—: C°P x
B — A is given by a natural bijection 8@ a,b) — A(a,c — b). Thecounite :co(c—b) — Db
at c and b corresponds to the identity or-d.

For our purposesh = B = D and we work in terms of the action®: C x D°P — D°P. We
therefore use the corresponding bijection

r:D(cod,d) — D%®(c-°°d,d).

An adjunction between actions then sets up a correspondence between structurality and costruc-
turality.

Proposition 4.1.14 Given adjoint actions» -—, transformations andé that make» structural
correspond to transformations and r(e o (c@ €) o §) that make-°P structural.

This allows us to make the following definition.

Definition 4.1.15 Abistructural actiofis a structural action together with a right adjoint costruc-
tural action with corresponding transformations.

4.2. Compactness in Various Setting$7

A similar correspondence exists at the level of functors.

Proposition 4.1.16 Given bistructural actions on A and B each transformatébthat makes a
functor F: A — B structural corresponds to a transformatioffe o 6) that makes the opposite
functor F°P structural.

Definition 4.1.17 A bistructural functoris a functor between bistructural categories equipped
with a transformation making it structural together with a corresponding transformation making
it costructural.

For bistructuraD, structural cocompleteness, completeness and compactness are equivalent
to costructural cocompleteness, completeness and compactness.

Corollary 4.1.18 A bistructural category D is structurally (co)complete (compact) if and only if
it is costructurally (co)complete (compact).

This allows the following definition.

Definition 4.1.19 A bistructural category isistructurally (co)complete (compadf)it has a
(final)initial (co)algebra (Freyd algebra) for every bistructural endofunctor.

Bistructural categories have bistructural opposites, bistructural cocompleteness is dual to bistruc-
tural completeness and bistructural compactness is self-dual.

Corollary 4.1.20 A bistructural category D is bistructurally cocomplete (compact) if and only if
the corresponding B is bistructurally complete (compact).

Here we must be careful. As we mentioned at the end of the previous section, there are two
ways to construct the delivery functor for Freyd algebras. At the level of ordinary categories,
they give the same functor, but here we must also check that the double delivery is bistructural.

Proposition 4.1.21 Given a bistructurally compact category D, the structural final coalgebra
and the costructural initial algebra constructions produce corresponding delivery functors.

With this sanity check out of the way, we are free to use the doubling trick.

Corollary 4.1.22 A bistructural category D is structurally compact if and only ik D is
structurally compact.

4.2 Compactness in Various Settings

The indexed setting provides a useful perspective on both the structural and the enriched settings.
An indexed category associates a catedayyo each object in C. Arrowsd’ — d in D, corre-

spond to arrows @ d’ — d in the structural setting and to arrows— D(d’,d) in the enriched
setting. We think of the indexed setting as neutral and view the structural and enriched settings
as parameterized and curried, respectively. For the notion of indexed category see [18].

4.2.1 Indexed Compactness

The 2-categorynd of C-indexed categories replaces the individual categories and furiciors

with families of categories and functors indexed by the objec. dfroducts and opposites lift
componentwise froriat. The notion of algebraic compactness also lifts. The indexed definition
requires a Freyd algebra in each component of the indexed category. These must be preserved by
the reindexing functors, which lift to algebras and coalgebras via their commutativity with the
components of the indexed endofunctor.

48 Chapter 4. Structural Algebraic Compactness

Definition 4.2.2 An indexed categor is indexedly compadif, for every indexed endofunctor
F: DD — D, each component of F has a Freyd algebra and reindexing preserves Freyd algebras.

The delivery construction also lifts, so indexedly compact categories are indexedly parameterized
compact and we obtain a family of functors

ug : Ind(B x D,D) — Ind(B, D).

While Definition 4.2.2 is the natural notion of compactness in the indexed setting, a weaker,
technical definition is sufficient to obtain structural compactness from enriched compactness.

Definition 4.2.3 An indexed categor is compact at if, for every indexed endofunctdt:
D — D, the componerif; has a Freyd algebra.

4.2.4 Structural Compactness and Indexed Compactness

As described in Chapter 3 (and in Appendix B), given a structural actioB ere may con-
struct an indexed categoly. Locally, the construction gives functorsStr(B,D) — Ind(B, D).
Globally, we have a 2-functar: Str — Ind. We would like to findD in Str for whichi reflects
compactness. For our purposes, the existence of (what we will call) a unit will suffice.

Definition 4.2.5 A structural action on D has unit u if the mapsu@ d — d are isomorphisms.

WhenD has unitu, D is isomorphic tdD, and the isomorphism matches each structural endo-
functorF on D with the endofunctoF, onD,,.

Proposition 4.2.6 If D has unit u andD is compact at u, then D is structurally compact.
Corollary 4.2.7 If D has a unit andD is indexedly compact, then D is structurally compact.

Note that we are being somewhat glib. The universal properties of Freyd algebras and Corol-
lary 4.1.8 ensure that the details take care of themselves.
The 2-functorii preserves products. so, locally, we have functors

ig:Str(Bx D,D) — Ind(B x D, D)
and, wherD has a unit and is indexedly compact, thecommute with ther (up to a canonical
isomorphism).
Str(Bx D,D) —=~ Str(B, D)
is [
]
Ind(B x D,D) —— Ind(B, D)
Similar results hold for bistructural compactness. Also, the restrictioriabistructural ac-

tions preserves opposites and so, for indexed categories corresponding to bistructural categories,
we can play any games we like with opposites and doubles.

4.2.8 Enriched Compactness and Indexed Compactness

In the enriched setting, we cannot base a theory of compactness on the sdxteod@f@nition
we use in the structural setting. Take, for example, @edefinition of enrichedly complete
category.

A V-categoryA is V-algebraically completd for every V-functorF, the underlying
functory on Ap has an initial algebra. [10, Definition 6.1.4]

4.2. Compactness in Various Setting49

Because the delivery of initial algebras does not, in general, enrich, it is necessary to either
strengthen the definition of initial algebra [34, Condition 2.3] or ask explicitly for an enrichment.

LetV be cartesian. A’-categoryB is parameterised’-algebraically completdf it

is V-algebraically complete and for evelfunctorF : A x B — B and every in-
dexed family{lg0 "F(A, FOTA) — FOTA}A€|A| of initial Fy(A, —)-algebras, the induced
functorFOTA: Ao — Bp V-enriches. [10, Definition 6.1.7]

The problem revolves around the underlying category construction. It helps to observe that
the underlying category is just one component of an indexed category [37, 34]. Briefly, to con-
struct an indexed categoiy from a V-enriched categor, the maps — D(d’,d) in V are
collected to form the arrowd’ — d of ;. We define composition and identities lin. using
composition and identities iD together with maps — c® candc — 1.

c®cC (ll‘ I <7(|3
l | |
N \i
D(d',d) ® D(d",d") — D(d", d) | —D(d,d)

If these maps make a comonoid, we obtain a category. Because the comonoid structure on
affects the behaviour of arrows iy, we must distinguish between the categories produced with
different structures. In general then, we obtain a category indexed ovey Qb category of
comonoids inY. WhenV has a good category of comonoids, the indexed category retains much
of the information in the enriched category.

The monoidal category always has at least one comonoid, the canonical comonoid on the
unit . The ordinary underlying category, rather unfortunately dendtgds the componerib,
of the associated indexed categd@yand so the functor part of enriched endofunctorsiois
the component at of the associated indexed endofunctor. Thévealefinition of enrichedly
compact category thus amounts to compactneks at

Definition 4.2.9 An enriched categor® is enrichedly compadf, for every enriched endofunc-
tor F, the underlying endofunctdfy onDg has a Freyd algebra.

Proposition 4.2.10 An enriched categor® is enrichedly compact if the indexed categfrys
compactat I.

When the monoidal structure on gives products, the forgetful functor from Cohto vV
has an inverse. So whéhis cartesian each object carries a canonical comonoid structure which
can be used in the above construction to obtaiv-imdexed category. Globally this gives a
2-functor j : Enr — Ind from the 2-category o¥-enriched categories to the 2-categorylof
indexed categories. Moreover, withcartesian, every indexed functor frdinto D is obtained
from an enriched functor froréi to D.

Proposition 4.2.11 If the enriching category’ is cartesian andD is enrichedly compact then
theV-indexed categor is compact afl.

Remark In the indexed category construction, the comormwis being used as a enriched
cocategory. Given &°P-enriched categoryg with the same objects a3 (so B andD together
form aC°P x C-enriched category), we tak®s(d’,d) = C(B(d’,d),D(d’,d)) and define compo-
sition and identities using the cocategory structure on the hom objeBts of

B(d',d) ® B(d",d") <—— B(d",d) | < B(d,d)

| i ’

\
D(d',d) ® D(d",d") —= D(d”, d) | — D(d,d)

50 Chapter 4. Structural Algebraic Compactness

4.2.12 Structural Compactness Meets Enriched Compactness

The established notions of tensors and cotensors for enriched categories (see [7, Section 6.5])
provide a connection with structural and costructrual actions.

Proposition 4.2.13 Given aV’ enriched categonD, V tensors give a structural action on the
underlying category B= Dy andV cotensors give a costructural action.

WhenV is cartesian, the structural action has unit 1 and gives the same indexed c@itegory
as the enriched category. So, wheis cartesian, we can apply Propositions 4.2.11 and 4.2.6.

Theorem 4.2.141f V is cartesian and> has) tensors and is enrichedly compact, theaLDg
is structurally compact.

To return from the structural or costructural action to the enriched category, we might intro-
duce a notion o¥’ exponential.

Definition 4.2.15 V exponentialdor a structural (or costructural) action on D consist of a func-
tor A : D x D°P — Y together with a natural isomorphism(B2 e,d) = V(c,d A e) (or a natural
isomorphism De,c — d) = V(c,d Ae)).

Note however that in gener&l exponentials do not give anything like/aenriched category.

It has been observed that forenriched categories withi cotensorsy-algebraic complete-
ness implies parameterisédalgebraic completeness [10]. We understand this in terms of the
corresponding costructural action, for which costructural completeness implies parameterized
costructural completeness.

4.3 Structurally Algebraically Compact Categories of Domains

The notion of Freyd algebra was motivated by the properties of invariants constructed in domain
theory. We therefore expect to find compact categories among the naturally occuring categories
of domain theory. These categories are either given concretely as categories of partial orders or
abstractly as (categories constructed from) categories satisfiying certain axioms. The concrete
categories are then viewed as (categories constructed from) the abstract categories.

It is generally accepted that the language of abstract domain theory should be based on the
monad structure carried by the lift functor. However, different perspectives on the monad struc-
ture have emerged. One account observes that, in the concrete examples, the category of monad
algebras represents the category of strict maps. The lift functor is then viewed as the signature of
a theory of domains (in a categorical theory of algebraic theories). Another account observes that
the Kliesli category represents the category of partial maps which suggests that the lift functor is
connected with the representation of partiality.

The notion of compactness does not clarify the role of the monad. In both the concrete
and abstract cases, both the categories of strict and of partial maps are compact. Compactness
provides a common axiomatics for the interpretation of recursive types in a variety of domain
theoretic models.

In the abstract examples below, accessibility and local presentability are size conditions
which ensure that the base category internalizes certain constructions from the ambient set theory
(or topos). The canonical actions of the base category are described in Section 5.3 of Chapter 5.

4.3.1 Categories of Pointed Objects

Let CPO be the category @giredomainsand continuous mapsObjects are partial orders with
colimits of o chains. Arrows are maps that preserve colimitgoathains. Let CPPQ, be the
category ofdomainsandstrict maps Objects are pointed predomains with all elements strictly
greater than the point. Arrows are continuous maps that preserve the point. The motivating
example of an algebraically compact category is CPPI3].

4.3. Structurally Algebraically Compact Categories of Domairtsl

Fact 4.3.2 The categorfCPPQ is not algebraically compact.

The usual fix is based on the canonical CPO-enrichment of GPRit& category CPPQOhas

Freyd algebras for all CPO-enriched endofunctors. Because CPO is cartesian and k&PO
CPO tensors and cotensors, the enrichment corresponds to a bistructural action of CPO on
CPPQO. and structural, indexed and enriched compactness are all equivalent. Concretely, the
structural action of ond is the quotient ot x d that identifies pairs containing the least element

of d and the corresponding costructural action is just the function spaeed.

Example 4.3.3 The categonlCPPQ is bistructurally algebraically compact with respect to the
bistructural action ofCPQ

The lift functor may be viewed abstractly as a monad with extra structure. Ei@leise the
following definition. Adomain-theoretic commutative monad commutative strong mondd
on a cartesian closed categ@ywith an initial object 0 and an inductive fixed point object. For
the details see [12, Section 1]. A fixed point object is inductive if it is the colimit of the chain

b Th

0—2>T0">~TTO>TTTO 2 ..

The lift functor is a domain-theoretic commutative monad on CPO. The object of vertical natural
numbers is the inductive fixed point object. The category of monad algebras for the lift monad is
isomorphic to the category CPR®f domains and strict maps, so Example 4.3.3 may be viewed
as an instance of the following.

Example 4.3.4 The category € of monad algebras for a domain-theoretic commutative monad
T on C is bistructurally algebraically compact with respect to the canonical action of C (assum-
ing C is locally presentable and T is accessible).

4.3.5 Categories of Partial Maps

Let pCPO be the category pfedomainsandcontinuous partial mapsObjects are partial orders
with colimits of w chains. Arrows are partial maps, defined on sets that contain colimits of
chains, that preserve colimits afchains. The category pCPO carries a structural action of CPO
and is structurally isomorphic to the category CAP®@he action ot ond is simply the product

¢ x d and the corresponding costructrual action is simply the predomain of functiong freh

Example 4.3.6 The categorypCPOis bistructurally algebraically compact with respect to the
bistructural action ofCPQ

Again the lift functor may be viewed abstractly, this time as a means of representing partiality.
Pull-backs are used to set up a correspondence between certain partial maps and maps in the
Kliesli category. Fioreet al use the following definition. Aifting monadis a commutative
strong monad on a catego@ywith a terminal object, such that the umjtis cartesianC has all
pull-backs ofn1 andn classifies partial maps with domains given by pull-backgof12]. See
[12, Appendix A] for details. The lift functor is a lifting monad on CPO and the Kliesli category
for this monad is isomorphic to pCPO, so Example 4.3.6 may be viewed as a instance of the
following.

Example 4.3.7 The Kliesli category € for a domain-theoretic lifting monad T on C is bistruc-
turally algebraically compact with respect to the canonical action of C (assuming C is locally
presentable and T is accessible).

52

Chapter 5

Structural Adjunctions

Algebraically compact categories do not exist in a vacuum. They typically participate in an
adjunction and enrich in a category with fixed points. The precise status of these structures is
still the subject of active research [11, 12]. Here we show how known categories of domains may
be presented in terms of the structural setting. This allows us to apply the theory of structural
compactness developed in Chapter 4. The structural setting, which allows us to present the
structure of categories of domains with no mention of enrichment, reduces the technical overhead
associated with the use of algebraic compactness.

In Section 5.1, we examine monoidal structures from the perspective of the structural set-
ting. To apply our theory of structural compactness, it is enough to show that monoidal adjunc-
tions may always be viewed as structural adjunctions. Additional structure—closed, symmetric,
cartesian—however, can also be viewed in terms of structural actions. Symmetric structure, for
example, makes the monoidal structure structural. This allows the monoidal structure to partici-
pate in endofunctors with invariants given by structural compactness.

Kleisli categories of domains, which represent categories of partial maps, have costructural
actions (known as Kleisli exponentials) without having the closed structure that would give us
the costructural action in a monoidal adjunction. Therefore, in Section 5.2, we give definitions
that describe categories of domains directly in terms of structural actions.

Eilenberg-Moore categories of domains, which represent categories of pointed objects, then
provide our standard examples of monoidal adjunctions with all the trimmings, while Kleisli
categories of domains provide examples of (more) purely structural adjunctions.

5.1 Monoidal Adjunctions as Structural Adjunctions

A monoidal adjunctionis an adjunction given by monoidal functors and monoidal transforma-
tions between monoidal categories. Likewisstractural adjunctioris given by structural func-

tors and structural transformations between categories with structural actions (of some fixed cate-
gory). If we ignore the functors and transformations that make the adjoints monoidal or structural
we obtain theaunderlying adjunction

Theorem 5.1.1 For every monoidal adjunction there is a canonical structural adjunction with
the same underlying adjunction and acting categGont.

Proof. Given a monoidal adjunctiobh #U : D — C, a general theorem of 2-algebraic struc-
ture [19] (established by Day in the special case of monoidal structure) constructs inverses to
the transformations that make the left adjoinmonoidal. For example, the transpose of the
transformationc — U (Ip) gives an inverse to the transformatitn— L(Ic). Using this op-
monoidal structurel lifts to comonoids (by Proposition 3.1.12) and so precomposition with

5.1. Monoidal Adjunctions as Structural Adjunction§3

L carries the canonical structural action of ddron D to a structural action of CoBion D
given byco d = Lc® d, where herec is a comonoid irC. In more detail, the transformation
Y :colLd =Lc®plLd — L(c®cc) that maked monoidal also makes it structural, and the
transformationyy that make&) monoidal gives us a transformatig o (n ®cUd) : cocUd —
U(Lc®pd) =U(cod) that makedJ structural. It can be checked that the unit and counit are
then structural tranformations. O

We view monoidal adjunctions as structural adjunctions so that we can ask for structural
compactness.

Definition 5.1.2 Acocomplete (compact) monoidal adjunctis monoidal adjunction in which
D is structurally cocomplete (compact) with respect to the canonical structural actiGowt.

The notion of compact monoidal adjunction captures enough of the structure of categories of
domains to proceed directly to a discussion of canonical fixed points (see Section 6.3.1), but our
full theory of canonical fixed points makes use of additional structure.

5.1.3 Closed Structure

Given a monoidal closed adjunction, we could construct a bistructural adjunction, but parts of a
monoidal closed adjunction can be dropped and we are left with structures that still look sensible
from the structural perspective.

Monoidal structure iglosedif its multiplication, viewed as a parameterized endofunctor, has
a right adjoint (Definition 4.1.13).

Definition 5.1.4 Asemiclosed monoidal adjunctigsma monoidal adjunction in which the monoidal
structure on D is closed.

With D closed monoidal, the canonical structural actiorDohas a right adjoint and the corre-
sponding costructural action d@nis given byc — d = Lc — d. This make®D bistructural.

Definition 5.1.5 A(co)complete (compact) semiclosed monoidal adjundéi@semiclosed monoidal
adjunction in which D is bistructurally (co)complete (compact).

Closed structure can also be described independently of monoidal structure. A closed cate-
gory D has an object and an operatior-: D° x D — D together with natural transformations
satisfying coherence laws.

Definition 5.1.6 A semimonoidal closed adjunctias a closed adjunction HU : D — C in
which the closed structure on C is adjoint to monoidal structure.

We ask for monoidal structure @hso that the closed adjunction can be viewed as a costructural
adjunction with acting category Cdn

Definition 5.1.7 Acomplete (compact) semimonoidal closed adjunas@nsemiclosed monoidal
adjunction in which D is costructurally complete (compact).

5.1.8 Cartesian Structure
Monoidal structure igartesianif its multiplication gives products and its unit is final.

Definition 5.1.9 Amonoidal/cartesian adjunctié®ma monoidal adjunction in which the monoidal
structure on C is cartesian.

The properties of products induce a symmetry on the multiplication and commutative comonoid
structure on objects. Given a symmetric monoidal cateGome write CCong for the full sub-
category of Cor@ spanned by the commutative comonoids (the symmetry is used to express the
commutativity of a comonoid).

54 Chapter 5. Structural Adjunctions

Proposition 5.1.10 (after Fox [13]) Cartesian monoidal structure carries a unique symmetry
and the forgetful functoiorget : CCon€ — C has a unique sectiacom :C — CContC (meaning
forgetocom= Idc).

The inclusion forget : CCofft — ConT restricts the cononical structural action of Gomn C

to a structural action of CCothand, when the monoidal structure is cartesian, precomposition
with com :C — CConC carries this to a structural action ©f but this action is just the original
multiplication onC, so the multiplication of a cartesian monoidal cated®iyg a structural action

of C on itself. Similarly, the canonical action of C&@ron D is carried to an action & on D
given bycod = Lc® d, wherec is now an object o€. By Theorem 5.1.1

Corollary 5.1.11 For every monoidal/cartesian adjunction there is a canonical structural ad-
junction with the same underlying adjunction and acting category C.

Definition 5.1.12 Acocomplete (compact) monoidal/cartesain adjunas@monoidal/cartesian
adjunction in which D is structurally cocomplete (compact) with respect to the canonical struc-
tural action of C.

5.1.13 Symmetric Structure

In a monoidal adjunction, the adjunction is structural. In a symmetric monoidal adjunction, ev-
erything in sight is structural, the adjunction, the multiplications, the actions and all the natural
transformations, and in a symmetric closed monoidal adjunction, everything in sight is bistruc-
tural.

In more detail, suppose the monoidal structur€€as symmetric, as in a monoidal/cartesian
adjunction. We can use the symmefry c® b — b® c to produce a transformatio},, with
components® (b®a) — b® (c®a). This transformation satisfies the laws for the structurality
of the action ob. Note that these laws involv#y and the transformations that make the action of
c structural and are independent of any transformations that may make the adti@ca@ionad.

WhenC is symmetric closed monoidal, the opposite of the function space gives a structural
action onC°? and the symmetry, which makes the actiorb@in C a structural endofunctor, also
makes the corresponding action ©fP a structural endofunctor. It can also be checked that the
adjunction between these endofunctors has structural unit and counit.

Definition 5.1.14 A symmetric monoidal/cartesian closed adjunci®ia semiclosed monoidal
adjunction in which D is symmetric and C is cartesian closed.

Remark. Given a symmetry for the structure By semiclosed monoidal adjunctions have duals.
Choose an objeat in D, and observe that, via the symmetry, the functarD° — D given

by —-d = d —o r is right adjoint to its own opposite®’. The self adjunction is monoidal and,
composed with the adjunctidn- U, produces a second semiclosed monoidal adjun¢tiSho
L)< (Uo—): DO —C.

5.2 Structural Adjunctions Proper

Since we view a monoidal adjunction, as a structural adjunction, we could simply ask for a
compact structural adjunction and proceed directly to a discussion of canonical fixed points (see
Section 6.3.1).

Definition 5.2.1 A compact structural adjunctida a structural adjunction IHU : D — C with
D structurally compact.

However, our theory of fixed points makes use of additional structure and, as we saw in Sec-
tion 5.1, the additional structure can be described directly in terms of structural actions.

5.2. Structural Adjunctions Proper55

5.2.2 Structurality and Balance

As we observed in Section 5.1.13, when a structural adjunction is given by a monoidal adjunction
the structurality of the actions, taken as functors, can be derived from a symmetry. If we do not
ask for monoidal structure, we must ask for the structurality of the actions directly. For example,
our account of parameterized fixed points requires the structurality of the actibaroitself.

In the case of a self-action, structurality is like a cross between symmetry and associativity.
If we ask for structurality at one poittt of a self-actionn, we are asking for a transformation
6p with componentsin (bina) — b (cga), which we think of as a form of (lax) symmetry
onC. If we ask for structurality of the whole action, we are asking for a transform#&owith
components (bna) — (cab) 1 (ckna). Given8, we obtain a8, for eachb by composition
with A 1 (cna). On the other hand, by composition witbinb) 1 A we obtain ano, with
componentsy, : ca (bna) — (cb) @ a, which is a lax associativity.

To avoid the expression ‘structural structural action’, we use the word ‘balance’.

Definition 5.2.3 A structural action or structural functor ibalancedf the functors and trans-
formations that make it structural are themselves structural.

As it stands, this definition is a bit slippery. For our purposes, we will assume that structural
actions on products are given by products of structural actions and that the acting c&egory
carries a fixed self-actiom. A balanced structural actiop : C x D — D therefore includes a
natural transformatiof,, with componente® (b@d) — (cmb)@ (cod).

A balanced adjunctioris given by balanced functors and natural transformations between
categories with balanced actions. For example, symmetric monoidal adjunctions give balanced
adjunctions, balanced monoidal adjunctions in fact. For parameterized fixed points, however
it is really the balancedelf-action ofC that is most useful. We therefore make the following
definition.

Definition 5.2.4 A suitable structural adjunctida a structural adjunction I4U : D — C where
C is the acting category and the action on C is balanced.

For example, a monoidal/cartesian adjunction gives a suitable structural adjunction. This is
enough for an account of parameterized fixed points, but to get the most out of the structural
compactness db, we can ask for everything to be balanced.

Definition 5.2.5 A suitable balanced adjunctiama balanced adjunction HU : D — C where
C is the acting category (and the balance is with respect to the action on C).

For example, a symmetric monoidal/cartesian adjunction gives a suitable balanced adjunction.

5.2.6 Exponential Structure

Suppose we view a monoidal/cartesian adjunction as a suitable structural adjunction with the
action ofC on itself given by the product and the actionBrgiven byco d = Lc® d. With D
monoidal, we havel = d® | and soLc= Lc®| =c@|. The unitl allows us to expresk in
terms ofo.

If we intend to derivel from an object, we might just ask for a structural functdrinto the
acting category.

Definition 5.2.7 A suitable structural functas a structural functor U: D — C where C is the
acting category.

Given a suitable structural functdt, we could ask for an objedt such thatl, given by
Lc=col, is left adjoint toU. Now suppose the action dhis bistructural, with adjoint action
—:C% x D — D, and consider the functd? : C — D°P given byPc= ¢ —°P|. WhenU arises

56 Chapter 5. Structural Adjunctions

from a semiclosed monoidal adjunctidhis (monoidal) left adjoint td&R : D°° — C given byRd=
U(d —). Considering thatyd may be isomorphically expressedldél — d), we generalize
fromU : D — C to an exponential- : D x D°? — C.

Definition 5.2.8 A balanced exponenti@ a balanced bistructural category D with a balanced
action on the acting category and with an exponential given by a structural fupctbrx D°P —
C and structural units and counits.

A suitable exponential is determined by a balanced structural action
e N1:CxC—C,éy:cua—c(cya),1iy:caa—a
e Oy:cn(bd) — (cmb)(cnd)
and a balanced structural action
e 0:CxD—D,d,:c0d—co(cod),1p:cod—d
e 0,:co(bod)— (ckb)o(cad)
that has a right adjoint as a functor parameterize@ py
o -:C®PxD—D,e.:co(c-d)—dn.:d—(c—(cad)
and a structural right adjoint as a functor parameterized by
e —:DxD®—-C,e:(d—e)0oe—d,n:c— ((cod)—d)
e 0_:ci(d—e) — ((cod)—(cwe))

Any categoryD has a balanced exponential with acting cate@oey 1. With respect to the
canonical actions, any semiclosed monoidal/cartesian adjurictidii has an exponential given
by d—e=U (e —o d). If the adjunction is symmetric, then the exponential is balanced.

An exponential includes isomorphisms

D(coed) =C(c,d—e) = D(e,c—d)

from which we may obtain adjunctions both frddto C and fromD°P to C. When the exponen-
tial is balanced, we obtain suitable balanced adjunctions.

Proposition 5.2.9 Given a balanced exponential on D and an object e in D, the functors defined
by Lc=c® e and Ud= d—e give a suitable balanced adjunction.

The adjoint functors in a semiclosed monoidal/cartesian adjunction are recovered from the canon-
ical exponential by taking = I.

Exponentials on bistructural categories have oppositefC,D,,—,—) is a balanced ex-
ponential, then so i€C, D%, —°P °P —9) whered—°e = e—d. If Proposition 5.2.9 is applied
to the opposite of a balanced exponential, we obtain a suitable balanced adjunction l2tveen
andC. If the exponential is built from a semiclosed monoidal/cartesian model and we take
we obtain the dual adjunction mentioned at the end of Section 5.1.13.

A cocomplete suitable exponentlasD®P x D structurally cocomplete. The opposite of a
cocomplete suitable exponential is cocomplete. Likewise for complete suitable exponentials. A
compact suitable exponentiabsD®P x D or, equivalently,D structurally compact. Compact
suitable exponentials have compact opposites.

5.3. Structural Adjunctions on Categories of Domairs7

5.3 Structural Adjunctions on Categories of Domains

The examples of compact categories given in Section 4.3 are characterized by adjunctions with
the base category. For categories of pointed objects the adjunction is monoidal closed and hence
bistructural. For categories of partial maps it is a proper bistructural adjunction.

5.3.1 Categories of Eilenberg-Moore Algebras

Given a monad on a categorg, the categor" of Eilenberg-Moore algebras fdr is charac-
terized by an adjunction wit@. WhenC is cartesian closed and has a commutative strength,
CT is symmetric monoidal closed and so is the adjunction [20].

The abstract category of pointed obje€ts in Example 4.3.4, therefore participates in a
monoidal/cartesian adjunction. From this we obtain a canonical structural acGoon@E’. Due
to the cartesian structure @y enriched endofunctors dhcorrespond to structural endofunctors
and so enriched compactnessibis equivalent to structural compactness.

Example 5.3.2 The Eilenberg-Moore adjunction constructed from a domain-theoretic commu-
tative monad is a compact symmetric monoidal/cartesian closed adjunction.

The categorie® = CPPQ_ andC = CPO carry the standard concrete example of such an
adjunction. The left adjoint is the lift functor which adds a least element and the right adjoint is
the forgetful functor which includes domains among predomains. It can be checked that CPPO
is isomorphic to CP®, whereT = forgeto lift.

Example 5.3.3 The adjunctionift 4 forget: CPPQ — CPOQis a compact symmetric monoidal/cartesian
closed adjunction.

5.3.4 Categories of Kleisli Maps

Given a monad’ on a categorg, the categonyCr of Kleisli maps forT is also characterized
by an adjunction wittC. A structural monads given by a structural endofunctor and structural
transformations.

Theorem 5.3.5 Given a structural monad TA — A, the Kleisli adjunction is structural with
the canonical action of c on a map given by & — Ta in the Kleisli category € given by
Oaof:cod — T(cwa).

Proof. Because a structural action is an indexed comonad, a structural monad is a monad with an
indexed distributive law over the indexed comonad. Just as a distributive law allows one to lift a
Kleisli adjunction to a comonad adjunction (see [35]), the indexed distributive law allows us to
lift the Kleisli adjunction to an indexed comonad adjunction, which is a structural adjun€&fion.

The notion of a strong monad on a cartesian category coincides with the notion of a structural
monad with respect to the canonical structural action given by the cartesian structure.

Corollary 5.3.6 Given a cartesian category C with a strong monad T, the Kleisli adjunction is
a suitable structural adjunction with the canonical actions of C.

The abstract category of partial maps in Example 4.3.7 therefore participates in a suit-
able structural adjunction. Again, due to the cartesian structui@, dhe structural algebraic
compactness of the Kleisli category follows from its enriched compactness.

Example 5.3.7 The Kleisli adjunction constructed from a domain-theoretic commutative lifting
monad is a compact suitable structural adjunction.

58 Chapter 5. Structural Adjunctions

The categorie® = pCPO andC = CPO carry the standard concrete example of such an
adjunction. The left adjoint is the inclusion of total maps among partial maps and the right
adjoint is the lift functor that represents partial maps using the extra element. It can be checked
that pCPO is isomorphic to CRQwhereT = lift oincl.

Example 5.3.8 The adjunctionincl - lift : pPCPO — CPOQis a compact suitable structural ad-
junction.

59

Chapter 6

Canonical Fixed Points

It is observed in [14] that certain Freyd algebras correspond to fixed point objects in a related
category. The idea of a fixed point object is to generate fixed points for some class of endomaps
via some generic endomap equipped with a fixed point. By generic, we mean equipped with a
canonical endomap morphism into any endomap of the given class. When the fixed point and
canonical endomap morphisms are unique in some sense, and the generic endomap belongs to the
given class, the family of fixed points that it generates is characterized by a uniformity property.
This is what happens in categories of domains and in categories of complete partial orders the
characterization is known as Plotkin’s Axiom.

In our setting the fixed point object is given by transposition.

Theorem 6.0.9 Given an adjunction HHU : D — C, Freyd algebras for LU transpose to fixed
point objects in C (with respect to the monad UL).

This gives us a generic endomap slit®m — U o that induces ordinary fixed points. For
parameterized fixed points, we transpose a Freyd aldgbraU y;) — y; to ac-parameterized
endomap suc cx Uy, — Uyg.

In the tradition of abstract nonsense, we view saE an algebra for the endofunc®tak-
ing a to ¢ x a and introduce a notion of fixed point algebra, an artifical device that subsumes
Freyd algebras and Mulry’s notion of fixed point object. This allows us to be particularly glib
in the statement of our general transposition result. Given an adjurictidd : D — C and an
endofunctolS: C — C, fixed point algebras fdrSU transpose to fixed point algebras far

The notion of fixed point algebra, together with the transposition result, falls neatly into two
halves. The clean half is the based on the notion of corecusive algebra. Given a natural transfor-
mationn : ldc = UL and an endofunctds: C — C, corecursive algebras ftuSU transpose to
corecursive algebras f& Note that this does not use the laws of the adjunction, just one of the
natural transformations.

The dirty half depends on notions of ‘pointed’ object and ‘strict’ map and the full adjunc-
tion laws. In an effort to tease apart the exact conditions used, we work with abstract classes of
pointed objects and strict maps. In applications we adopt definitions that abstract from adjunc-
tions between categories of partial orders where these terms originated.

6.1 Corecursive Algebras and Unique Fixed Points

Algebras for the identity endofunctor are endomaps. A corecursive algebra for the identity end-
ofunctor is an endomap with a strong form of unique fixed point.

60 Chapter 6. Canonical Fixed Points

Definition 6.1.1 An endomap has gery unique fixed poinif it is a corecursive algebra for the
identity endofunctor.

If by point we mean a map from some fixed objéctan endomap with a very unique fixed
point has a unique fixed poiag.

b—25¢

is

b—2>¢
Typically b is a terminal object or a monoidal unit, but becaagexists uniquely not just for
someb but forall b, our endomap has a unique fixed point in a generalised sense.
In Section 6.1.2, we examine a natural generalization of the notion of unique fixed point, but
we also show that the notion of very unique fixed point is strictly stronger. In Sections 6.1.7
and 6.1.10, we derive definitions for uniqgue parameterized fixed points by interpreting Defini-
tion 6.1.1 in the Kleisli categories of comonads.

6.1.2 Very Unique Fixed Points and Unique Fixed Generalized Points
A b-point in ¢ is just any map fronb to ¢ and afixed b-point fors : ¢ — ¢ is ab-pointz such
thatsoz=1z

Definition 6.1.3 An endomap has a unique fixed poirit it has a unique fixed b-point,Zor
each b.

In Set,s has a unique fixed point when there is a unique elernenp such that(z) =z In
a general categorg@, the mapsz, behave as maps sending everything to one particular point, a
sort of virtual element. In terms of the Yoneda representationGfwhich represents a maip
as the transformatiof takingzto f ozin the categornfC°P, Set of presheaves o8, b-points in
¢ are elements 06 atb ands has a unique fixed point when the transformagdixes exactly
one element 05 at eachb, which is to say the equalizer af ands is isomorphic to the constant
presheaf 1.

n)
I S)y<—1p
a)

b——>2%——¢ b——2a——9¢
gb i/db
b S0Zy—> (]) b idozy —— ¢

More generally, a diagram d i@ has a unique fixed point lim d=~1in [COP Sef. When

the diagram consists of an endomap¢ — ¢ in parallel with the identity onp we recover
Definition 6.1.3. IfC has a generating object, such a one element set in Set, our general notion
of unique fixed point simplifies. If is a generating object, then

d has a unique fixed poiiff there is a unique cone on d with vertex

Another useful characterization involves the category Cdnef cones and cone morphisms
over the diagram d.

Lemma 6.1.4 The following are equivalent:
1. d has a unique fixed point.

2. The vertex projection froi@ongd) to C is an isomorphism.

6.1. Corecursive Algebras and Unique Fixed Poin&l

When d has a unigue fixed point, the inverse of the vertex projectibr-isz, and every map
f : b— ais a morphism from the corm to the conez,

or, from the point of view of the cones, precomposition with an arbitrary rhdmm b to a
carries the cong, to the conez,. Whenf is an endomap, precomposition withhas no effect at
all.

Corollary 6.1.5 If an endomap has a unique fixed point, then for any. It — a we have g=
sozgo f.

a—za>¢

)
¢ b——>9¢

In the case of a corecursive endomap, this means the mafespend solely on the carrier pf

It does not mean an endomap with a unique fixed point is a corecursive endomap. The notion of
corecursive endomap is stronger becausec p = zmay hold forz other tharg,.

Counterexample 6.1.61f s : 3 — 3 fixes one element and swaps the other two, then= id.
This givessoidos =id andsosos =s and so, ifs is taken forp, both id and can be taken for
Zp, buts #id.

More generally, ifs is a corecursive endomap and there existsuch thatsos™ = id, then
s is an identity and hence the identity on a terminal object. In particularjsfa corecursive
isomorphism, then it is the identity on a terminal object.

Limits. The relationships between limits, terminal objects and unique fixed points can get a
little confusing. The Yoneda representation preserves limits, so if d had landt is terminal,
thend has limitf andf is terminal which means d has a unique fixed point. Converses follow
from Lemma 6.1.4. When d has a unique fixed point,

t is terminaliff z is a limit cone
or, looked at another way, whé&hhas a terminal objedt
d has a unique fixed poiiff d has limitt in C.

In particular, in the presence of an endonsapith a unique fixed point, an objettis terminal
iff z equalizes ig ands or, looked at the second way, in the presence of a terminal dbjant
endomays has a unique fixed poirff t equalizes ig ands.

(o

|

|

|

|

|
\
—_
o
wn
I

oIT—o<n—

62 Chapter 6. Canonical Fixed Points

6.1.7 Comonoids and Parameterized Unique Fixed Points

Our treatment of parameterized maps is based on comonad structure. The comonads we have in
mind are given by multiplication, multiplication by any objeciGrif C has products or multipli-

cation by a comonoid object@ is monoidal. By Proposition 5.1.10, the first is a special case of

the second, so suppo€ecarries monoidal structure amdcarries comonoid structure given by

the maps

d:c—c®c and x:c—l.

If ® actually gives products) and x will be the diagonal and terminator far The functor
c® (-) carries comonad structure with comultiplication and counit given by the composite natural
transformations

0o0(0®()):c®()=cr(c®(-)) and Ao(k®(:)):cx(:)= (),

wherea and A are the associativity and left identity natural transformations for the monoidal
structure orC. We think of the Kleisli categorg. for this comonad as a category of parameter-
ized maps: arrows i@ are given by maps®@a — a in C.

For a definition of parameterized very unique fixed point we interpret our definition of very
unique fixed point in such a Kleisli category. Wheis a monoidal unitc® (-) is isomorphic to
the identity,C. is isomorphic taC and the following reduces to Definition 6.1.1.

Definition 6.1.8 A c-parameterized endomap c® y — y has ac-parameterized very unique
fixed pointif the endomap it gives in{s corecursive algebra.

Taken as an endomap @, a c-parameterized map with a very unigue fixed point has a unique
fixed point in the sense of Section 6.1. This means for each objebere is a unique fixed
b-point in the categorg. for the endomap given ky; which is to say, a uniqgue-parameterized
mapz, : c®b — a such thatf o (c® z,) o v, = X, using the definition of composition i@.
Expandingv in terms of the monoidal structure, this beconie§c® z,) o @ o (6 @ b) = z,.

co(cob) —2% coy
o
(c®c)®b s
a%b
Zy
c®b "4

Compare this with a ige definition based on the example of products in Set. If we define a
‘c-parameterized fixed point’ farto be a magz: ¢ — y such thato (c®X) o § =X

cec cOy
ST I
c—=2 -y

and ask for a unique suahwe are implicitly fixingb = | where Definition 6.1.8 quantifies over
arbitraryb. This can be seen in the following proof.

Proposition 6.1.9 A c-parameterized endomap with a c-parameterized unigue fixed point has a
unique ‘c-parameterized fixed point’.

6.1. Corecursive Algebras and Unique Fixed Poin&3

Proof. By coherence and naturality, gives a coalgebra morphism frotnto v, so we have a
‘c-parameterized fixed poings given byz o p, wherez gives the unique fixet-point for the
endomap gives inC. In a monoidal category is an isomorphism and s must be unique: a
second parameterized fixed point fovould give a second fixeldpoint.

c®z

®(cxl) cOY
cRp T
04
c®c (cec)xl s

®/c® /

6.1.10 Comonads and Parameterized Unique Fixed Points

More generally, suppos®: C — C carries comonad structure with comultiplication S=- SS
and counit : S=-1d.

Definition 6.1.11 An S-parameterized endomapSy — y has aS-parameterized very unigue
fixed pointif the endomap it gives in the Kleisli category (S a corecursive algebra.

Now the diagram irC that saysf is a morphism fromvy, to s is the same diagram that saf/s
gives a fixedb-point for the arrow given by in the Kleisli categonCs.

Sf
SSh—— Sy

Tfi

Sb——V

This means that, as endomap<ig corecursive algebras f@&have unique fixed points in the
sense of Section 6.1. Actually, they have very unique fixed points.

Proposition 6.1.12 Taken as an endomap in the Kleisli category for S, a corecursive algebra for
S has a very unique fixed point.

This is Corollary 2.2.11 with the left and right Kleisli adjoints, andKg, for L andR. In this
adjunction, the transpose of a mapSa— &’ in C is the map froma to & in Cs given bys.
Note that we do not use the fact tht is left adjoint toKg. The comonad structure is used to
build the natural transformationdd=- KrK, which is all we need. Here is another instance of
Corollary 2.2.11.

Proposition 6.1.13 Given functors R and L, a natural transformatignld — RL and a comonad
S, corecursive algebras for LSR transpose to give endomapsviitiCvery unique fixed points.

This can be seen either as Lemma 2.2.12 followed by Proposition 6.1.12 or as Corollary 2.2.11
with Lo K| andKro Rfor L andR.

R Kr
L

64 Chapter 6. Canonical Fixed Points

As we pointed out after Corollary 2.2.11, the transformatiozan also be used to obtain
corecursive algebras f@from corecursive endomaps @ When: is the counit of comonad
structure onS, this amounts to usingr to carry endomaps i€ to endomaps irCs. Using
n :ld — RL, corecursive endomaps @ican be obtained from corecursive algebras.fier We
therefore have two ways of obtaining corecursive endor@gpstarting either with a corecursive
algebra folLSRor one forLR. In applications, the second is seen to be a degenerate form of the
first, with weaker properties.

6.2 Fixed Point Algebras

In this section, each category is equipped with a class of pointed objects and a class of strict maps.
We use boldface variables to range over these maps and objesitsctAalgebra morphisns one

given by a strict maj and apointed algebras one with a pointed carriex(indicated by a dot on

the structure map when the carrier is implicit). Note that a pointed algebra does not necessarily
have a strict structure map and, although the terms ‘strict’ and ‘pointed’ suggest certain concrete
examples, the results below hold with fairly weak conditions on the choice of pointed objects and
strict maps. Note in particular that strict maps are not necessarily between pointed objects.

Definition 6.2.1 Afixed point algebras a corecursive algebra from which there is a unique strict
algebra morphism into any pointed algebra.

F Fr
Fb—>Fy—'>Fa

Note that fixed point algebras do not necessarily have strict structure maps and are not necessarily
pointed.

In the presence of a fixed point algebra, each séfpxdg of recursive morphisms contains a
canonical recursive morphisorm(p, f) =r ¢ 0z,. The existence of such morphisms also follows
from a weaker form of fixed point algebra that appears in our analysis of transposition.

Definition 6.2.2 A weak fixed point algebris a corecursive algebra equipped with a strict al-
gebra morphism into each pointed algebra.

6.2.3 Uniform Families of Recursive Morphisms

A fixed point algebra induces a well-behaved family of recursive morphisms into pointed alge-
bras. Given a coalgebmand an algebraon a pointed objeat, we composes with the unique
recursive morphismg, for s to obtain a canonical recursive morphism(qys) into s.

Definition 6.2.4 A familyR(p,s) of recursive morphisms ismiform (with respect to strict maps)
if, given any strict morphisrh between pointed algebrag and § we find thatR(p,s;) = ho

R(p, %)
S

R(pso) 7 \
“" R(psy)

P > S

In applications, strict maps are closed under composition and families of canonical recursive
morphims are uniform.

6.2. Fixed Point Algebras 65

Proposition 6.2.5 If strict maps are closed under composition, the family of recursive morphisms
induced by a fixed point algebra is uniform.

Proof. If strict maps compose, then strict endomap morphisms compose. So, given a strict
endomap morphisrn from sy to s1, horyg, is a strict endomap morphism frostio s; which must
then equal the unique strict recursive morphisgn Fromhorg, =rs we havehorg oz, =
I's, © Zp, Which mean$ ocrm(p,sp) = crm(p,s1).
r
s 2 S
z T h
erm(pso) s
p O crm(p,sy)- > §1

O
If the fixed point algebra is pointed, uniformity characterizes its family of recursive morphisms.

Proposition 6.2.6 In the presence of pointedfixed point algebra for F, any uniform family of
recursive morphisms into pointed algebras s is giveroy(p,s) = rso zp.

Proof. Let R(p,s) be a uniform family of recursive morphisms for pointed algekra3ur fixed

point algebras is pointed so this family includes a recursive morphistp,R) which must then
equal the unique recursive morphigm The algebra morphismy is strict, so uniformity gives
R(p,s) =rsoR(p,s) and hence Rp,s) = rso z, which means Rp,s) = crm(p,s).

s

7
R(ps)=2zp - re
- R(p@—crm(pk -

T s

g

Lemma 6.2.7 If strict maps are closed under composition, a pointed fixed point algebra induces
the unique uniform family of recursive morphisms (for a given endofunctor).

Applied to the identity endofunctor on categories of complete partial orders, we obtain the char-
acterization of least fixed points known as Plotkin’s Axiom.

6.2.8 Transposition of Fixed Point Algebras

Theorem 2.2.12 says corecursive algeli@8) — ¢ transpose to corecursive algeb&R) —

R¢. We want to extend this to fixed point algebras. Whereas Theorem 2.2.12 holds with no
conditions orR, L, n andS the transposition of a fixed point algebr#o a fixed point algebra

is less general. Given a pointed algebfar S, we need to show that there exists a unique strict
morphismrs froms to s. We expect to obtain this morphism from the unique strict morphiism
from s to some pointed algeb&

LsRy -5 | SRy SRy T2

S A

o ————d Rp —>a

66 Chapter 6. Canonical Fixed Points

If sis an algebra foL. SRthen its transposgis an algebra fofs, without conditions orR, L, i
andS. Also, if f gives an algebra morphism frogsto g, thenR f gives an algebra morphism
fromstos. In other words, the functdR lifts to a functorR from AlgLSRto AlgS.

LSRf SRf
LSRd—— LSRd SRd—— SRd
N
f Rf
d d’ Rd——Rd
AlgLSR- — — — - R __ ~ AlgS
under un‘der
R v
D C

Suppose the algeb&is pointed and transposes $0 SupposeR preserves strictness. Taking
rs= Rrsthen gives us a strict morphism frao s. So, if R preserves strictness andsisrjective
on pointed objectsmeaning every pointed object in Abgs the image of some pointed object
in AlgLSR thens is a weak fixed point algebra. Now R preserves strictness, then so d&es
(which does not mean strict algebras transpose to strict algebras) and this is a natural condition
to place orR. On the other hand, suppoRds surjective on pointed objects. The existencd of
with a = Rd does not ensure the existencedafuch thaD(LSRJ,d) containsSwith s= RS. But
supposeR is alsosemi right adjoint to L By this we mean a natural transformatiers given
such thatf = R(egq o Lf) o ng for any mapf into anya = Rd. This is equivalent to the triangle
law Re o 5 = ida. Now, takingSy = €4 o Lswe haves = RSo 1, = RS. Note that different choices
of d will give different&.

Proposition 6.2.9 If R preserves strictness, is surjective on pointed objects and is semi right
adjoint to L, then a fixed point algebra for LSR transposes to a weak fixed point algebra for S.

To show that the s are unique requires further conditions. Given an arbitrary strict morpitrism
fromsto s, we need to show thah = rg. This follows from the uniqueness of, if we assume
thatR is full on strict mapsmeaning every strict morphism froRsto RS is the image of some
strict morphism froms to s'. Our strict morphismm is then of the formRm, wherem is some
strict morphism frons to S, butrsis the unique such morphism go=rsandm =RmM =Rrs=rs.
When isR full on strict morphisms? It is not enough f&to be full on strict maps because
we may haven = Rm without m being a morphism fromto S. Suppose, however, thRtis full
on strict maps and is semi left adjointo R. This meansf = eoL(Rfon) forall f:Lc— d.
Now if m = Rm andRm is a morphism frons to sthenm is a morphism frons to S.

Theorem 6.2.10 If R preserves strictness, is surjective on pointed objects, full on strict maps
and right adjoint to L, then a fixed point algebra for LSR transposes to a fixed point algebra for
S.

In applications, we find ourselves with a categbBrequipped with a class of pointed objects
and a class of strict maps and are given a fun&omD — C along which we would like to
transpose fixed point algebras. What objects and ma@ssimould we take as pointed and strict
if we would like R to satisfy the conditions of Theorem 6.2.10? If we eq@ivith the class
of pointed objects given by applyirig to pointed objects i, thenR is surjective on pointed
objects by definition. If we equi with the class of strict maps given by applyiRgto strict
maps inD, R preserves strictness. However, despite being surjective on strict Rapasy not
be full on strict maps. IRdy = Rd; with dg # dp, thenm : d — dy and, henceRm : Rd — Rdy
may be strict without there being a striof : d — d; such thaRm’ = Rm. However, if we want
Rto preserve strictness, we cannot force fullness on strict maps by definiog- ¢’ to be strict

6.2. Fixed Point Algebras 67

if for all d overc andd’ overc’ there is a strict map : d — d’ overm. Fortunately, this problem
does not arise in the adjunctions we consider between concrete categories of domains. In these
adjunctionsR s injective on objects and the above definitions coincide.

6.2.11 Fixed Point Objects as Fixed Point Algebras

As we saw in Section 6.1, a recursive morphism out of an identity coalgebra for the identity endo-
functor is a fixed point and so the canonical recursive morphisms induced by a fixed point algebra
for the identity endofunctor include canonical fixed points for endomaps on pointed objects. A

fixed point algebra for the identity endofunctor therefore serves as fixed point object.

Definition 6.2.12 A (weak) fixed point objects a (weak) fixed point algebra for the identity
endofunctor.

a

lf

a

As observed in Section 6.1, such endomaps have unique fixed points in a strong sense.
Specialised to the identity endofunctor, the results of Section 6.2.3 become results about fixed

point objects and families of fixed points for endomaps on pointed objects. Fobeadixed

point object induces a well-behaved family of fixegboints. Given an endomafpon a pointed

objectc, we compose ; with the unique fixedb-point z, for s to obtain a canonical fixeokpoint

cfp(f) for f.

Zp rs
S

Zp I

—

©
o——0oT
<<, €

—_—

Definition 6.2.13 A familyF(f) of fixed b-points isiniform (with respect to strict maps) given
any strict magh such that foh = ho fp, we find that~(f1) = ho F(fp).

Corollary 6.2.14

e If strict maps are closed under composition, the family of fixed b-points induced by a fixed
point object is uniform.

¢ In the presence of pointedfixed point object, any uniform family of fixed b-points for
pointed endomaps f is given bfp(f) =r; o z,.

o If strict maps are closed under composition, a pointed fixed point object induces the unique
uniform family of fixed b-points for each b.

Note that, because a fixed point object has a very unique fixed point, the fam(lfy) ¢§palso
uniform with respect to change of Composition with any mag : bg — by takes canonical
b1-points to canonicabg-points. In the presence of a final object 1, this means the canonical
fixed b-points are determined by the canonical fixed 1-points.

Taking S= Id, Proposition 6.2.9 produces weak fixed point objects and Theorem 6.2.10
produces fixed point objects.

Corollary 6.2.15 If R preserves strictness, is surjective on pointed objects

68 Chapter 6. Canonical Fixed Points

e and is semi right adjoint to L, then a fixed point algebra for LR transposes to a weak fixed
point object.

e and is full on strict maps and right adjoint to L, then a fixed point algebra for LR transposes
to a fixed point object.

Now, suppose we have an endofunc®avith comonad structure and we construct its Kleisli
adjunctionK; 1 Kg. The right adjoinKg is the identity on objects and hence injective on objects.
It carries a mag : a— bto the map irCs given by f o1, : Sa— b. Strict maps irCs are therefore
maps of the fornh o 1 whereh is a strict map irC. Corollary 6.2.15, withK, andKg for L andR,
says fixed point algebras f&= K| o Kg transpose to fixed point objects in the Kleisli category
Cs with respect to the above definition of strict map and pointed object.inrCSection 6.1 we
only needed the natural transformatign Id = KgK_, but here we are using both triangle laws
of the adjunctiorK, o Kg. The one law gives the existencergfand, hence, the existence of a
canonical family ofc-parameterized fixeb-points inCs. The other, the uniqueness of this family
with respect to uniformity (assuming the fixed point algebraS@s pointed).

Definition 6.2.16 A parameterized fixed point objeista fixed point algebra for a comonad.

WhenSis c® (-), maps of the formf o015 : c®a — b give ‘constant’ maps in the Kleisli
categoryC.. The behaviour of composition with such maps simplifies the initiality property of
a fixed point object irC.. Being a strict morphism from an endomap givensbyc® a — &
to an endomap given by. c® a — ais equivalent to being of the forrho 15 with f an algebra
morphism froms' to s, and so the initiality property reduces, as expected, to the algebra initiality
property of the original fixed point algebra. Given any nfac @ a — a, with a pointed, a fixed
point algebra, for c® (-) induces both canonical fixdglpoints inCe, as described above, and a
‘c-parameterized fixed point’s oz o p (see Proposition 6.1.9).

cRr
c®cﬂ>c®(c®l)@>c®w¥>c®a

S R P

c cRl v a

6.2.17 Freyd Algebras as Fixed Point Algebras

The notion of free algebra introduced by Freyd in [14] is equivalent to our notion of fixed point
algebra in the special case where all objects are pointed and all maps strict.

Proposition 6.2.18 For all algebrass, the following are equivalent:
1. sisinitial and the inverse of a final coalgebra.

2. sisinitial and corecursive.

Definition 6.2.19 A Freyd algebras an algebra that is initial and corecursive.

6.3. Canonical Fixed Points in Compact Structural Adjunctior&9

Suppose that i all objects are pointed and all maps are strict. Then, with conditior on
Corollary 6.2.15 says a Freyd algebra & transposes to a fixed point objectGn

If we are also given an endofunct8ron C, Theorem 6.2.10 then says a Freyd algebra for
LSRtransposes to fixed point algebra far If S carries comonad structure, we obtain a fixed
point object inCs as described in the previous section or we can transpose the Freyd algebra for
LSRdirectly to a fixed point object i€s using Corollary 6.2.15 witlkKro RandL o K for L and
R.

6.3 Canonical Fixed Points in Compact Structural Adjunctions

Given a structurally compact categdpy we take all objects and maps ihto be pointed and
strict. If anyone asks for actual points and strictness, we can turn to the structural compactness of
D. Given any structural action dp, the identity endofuctor oB is trivially structural, so when
D is structurally compact it contains an initial/final object= ud.d. As L is initial, every object
d in D has a canonical point : 1 — d given by the uniqgue map from. As L is final, we also
obtain canonical generalized points e — d given by the unique maps that factor thoughin
this sense, every object is pointed. Moreover, by the universal properties.ofevery map in
D preserves the canonical points inducedlbgnd so, in this sense, every map is strict.
Given a functoiR, we take pointed objects and strict maps in the codomakas follows.

1. cis pointed ifc = Rd for some pointed

2. fisstrictif f = Rg for some stricg

If asked for points and strictness, we can obtain these from the dom&nasked for a point
in Rd, we applyR to a point ind. Strictness in the codomain then follows from strictness in the
domain.

With these classes of pointed object and strict map the conditions of Proposition 6.2.9 are
satisfied by the various forms of compact structural adjunction described in Chapter 5. The weak
fixed point object produced by Proposition 6.2.9 is enough to identify canonical fixed points.

On categories of domains, with conditions on the domain-theoretic monad satisfied by con-
crete monadsR is injective on objects, and the conditions of theorem 6.2.10 are satisfied. In
these adjunctions the canonical fixed points are characterized by their uniformity.

6.3.1 Ordinary Fixed Points

Given a compact structural adjunctibriU : D — C, the compositéU is structural and so we
have a Freyd algebra : LU®w — w. The mapo transposes to a weak fixed point objectdn

by Corollary 6.2.15. This weak fixed point object induces a canonical family of fixed points for
endomaps on objects of the fokdd. Likewise for a compact costructural adjunction.

In particular, every compact monoidal adjunction and every compact closed adjunction has a
canonical family of generalized fixed points, as does every compact suitable structural adjunction,
including the adjunctions derived from a balanced exponential on a compact category, in which
case we have a canonical family of fixed points for endomaps on objects of thel feem

Although the fixed point object induces fixéepoints for anyb in C, these are generated by
the fixed 1-points, where £ U L. As right adjoint,U takes the final object. in D to a final
object inC which generates the unique fixéepoints of the fixed point object. Similarly, the
canonical 1-point L : U L — Ud generates canonicatpoints inUd. It can be checked that
these are the points the fixed point object induces for the identity endomag.on

6.3.2 Parameterized Fixed Points

Given a compact structural adjunctibriU : D — C with a balanced actiom onC, the functors
takingd to L(xinUd) are structural and so we have Freyd algelarasL (X1 U yy) — yx. By

70 Chapter 6. Canonical Fixed Points

Corollary 6.2.15, they transpose to weakparameterized fixed point objects@which induce
families of parameterized fixdatpointsxz b — Ud for parameterized endomapzud — Ud
on objects of the formdd. Again, these are generated by thparameterized fixed 1-points.

In particular, every compact suitable adjunction has canonical families of parameterized
fixed pointsciz b — Ud for endomapspnUd — Ud. When the adjunction derives from a
suitable exponential on a compact category we have a canonical family of parameterized fixed
points for endomaps 1 (d—e) — (d—e). When the adjunction or exponential is given by a
monoidal/cartesian adjunction these fixepoints are generated by the family ofparameterized
fixed points’c — Ud corresponding to the-parameterized fixed 1 pointsx 1 — Ud.

The compact category of pointed obje€ts for a domain-theoretic commutative monad on
C, is characterised by a monoidal/cartesian adjunction @#hnd the compact category of partial
mapsCr for a domain-theoretic commutative lifting monad, by a suitable structural adjunction
(see Section 5.3). Either way, the categ@rhas a (parameterized) fixed point object which
induces canonical (parameterized) fixed points.

In CPO, the parameterized fixed point objebt. is an infinite c-branching tree and the
generic parameterized endomapsearries nodes up along the branch indicated by the element
of c. In particular,ys is the vertical natural numbers and sigthe successor map. The tide/
also has a point for eaahstream. In the order, each stream lies just above the path it indicates
up through the tree. Far= 1, there is the one stream above the one path, but in general there are
many. In can be checked that the fixed points induced by these fixed point objects are least fixed
points.

6.3.3 Internal Fixed Points

If the monoidal structure o in a compact suitable adjunction is closed, we can internalise
the operation that produces canonical (parameterized) fixed poiGtsWe use the existence of
parameterized fixed points. For eat D, we take the evaluation mgpd —Ud) nUd — Ud

as a(Ud — Ud)-parameterized endomap and construct (lid — Ud)-parameterized fixed
point(Ud — Ud) — Ud. These maps make up a transformation with components

cfpy: (Ud —Ud) —Ud

that internalise the canonical fixed point operation. By internalising parameterized evaluation to
obtain a mapcrUd — Ud) 1 (cmUd) — (cnUd), we may even internalise the operation
producing canonical parameterized fixed points. This produces a transformation

cfp : (brUd — Ud) — (b—Ud).

In particular, every compact monoidal/cartesian closed adjunction has an internal (parameter-
ized) fixed point operation and, if the acting category is bistructural, so does a compact suitable
adjunction. For example, CPO is cartesian closed, and hence bistructural, so the adjunctions with
pCPO and with CPPQboth induce internal (parameterized) fixed point operations.

Given a balanced exponential, without a costructural action on the acting categony
cannot internalise the fixed point operation directly, but we can construct a corresponding trans-
formation with componentd—((d—e) @ e) — (d—e) or, for parameterized fixed point;-((ca
(d—e)oe) — (d—(ciae)).

6.3.4 Uniform Fixed Points

Given a compact structural adjunctianrHU : D — C. SupposeéJ is injective on objects. The
image ofU then forms a subcategory Gf In particular, strict maps i€ are closed under com-
position and a fixed point object induces a uniform family of fixed points by Corollary 6.2.14.

6.3. Canonical Fixed Points in Compact Structural Adjunctiorrd

Moreover, because the original Freyd algebra is pointed (all objects are poird¢dind trans-
position preserves pointedness, our fixed point object is pointed and hence, by Corollary 6.2.14,
the fixed point object induces the unique uniform family of fixed point€ ifwith respect to

strict morphisms between endomaps on pointed objects).

On categories of partial orders the lift monad is injective on objects and so the the monad’s
right Kleisli adjoint, which does all the ‘object work’, is injective on objects. Also, partial or-
ders carry at most one lift monad algebra structure, which amounts to a least element, and so
the monad’s right Eilenberg-Moore adjoint is also injective on objects. In categories of partial
orders then, canonical fixed points, which coincide with least fixed points, are characterized by
uniformity.

The right Kleisli for any comonad is injective on objects, s&ifs such an adjoint, or an
injective-on-objects functdd followed by such an adjoint, a fixed point object in the codomain
of Rinduces the unique uniform family of fixed points (assuming strict maps in the dom&in of
are closed under composition).

If the comonad orC given by the action of someis a structural, then the structural com-
pactness ob gives us arx-parameterized fixed point objegy that induces the unique uniform
family of fixed points in the Kliesli categorgy.

72

Chapter 7

Recursive Linear Types

In [3], Benton studies a linear/nonlinear logic with mixed derivations of two kinds of sequent.
Various forms of the logic are presented including a natural deduction system with a calculus
of assigned terms called LNL. This calculus has models in symmetric monoidal/cartesian closed
adjunctions. The monoidal category interprets linear sequents and the cartesian category, non-
linear sequents. Examples include adjunctions constructed from models of Intuitionistic Linear
Logic and the adjunctions used in denotational semantics, which we describe in Chapter 5. In the
domain theoretic examples, the monoidal category is algebraically compact and this can be used
to model recursive types. The existence of invariant algebras for endofunctors on the monoidal
category, suggests that we allow type recursion on linear type expressions containing a free linear
type variable, which are interpreted as endofunctors on the monoidal category. With recursive
linear types, even the pure calculus, with no base types, has a rich collection of types and terms
including fixed point combinators.

In Section 7.1, we introduce our syntax for LNL, which includes derivations of types in con-
text to regulate the formation of recursive types, and discuss the linearity of its logic of derivable
sequents. We then add rules for recursive linear types. Our syntax for function types, units and
pairing is standard. Our syntax for adjoint types matches Levy's CBPV and for recursive types,
Plotkin's FPC.

In Section 7.2, we analyse adjoint types in LNL theories and their term models. The special
feature of LNL is the decomposition of bang, which controls weaking and conraction in Lin-
ear Logic, into two type constructors. We observe that the term model is naturally viewed as a
distributor and that, from this point of view, the two constructors may be understood in isola-
tion. Also, using linear and nonlinear function types, the isomorphism giving the adjunction, is
definable in the closed fragment of LNL.

7.1 A Recursive Linear/NonLinear Calculus

LNL has two kinds of sequent which, following Benton, we refer to as ‘linear’ and ‘nonlinear’.
The rules and equations for LNL are given in Figures 7.1, 7.2 and 7.3. We have added explicit
type rules and linear type contexts to control the construction of recursive linear types, but this
has no effect on the LNL rules. In addition to the beta reductions and commuting conversions
Benton gives in [3], we include eta laws and the application equation

(g)(btoxina) =5 btoxin(g)a

to obtain a full equational theory. The application equation is used in Section 7.2.5 where we
internalize the adjunction LNL generates and is required for completeness with respect to cate-

7.1. A Recursive Linear/NonLinear Calculug3

gorical models.

We use upright X for nonlinear base types, itéfi@andY for nonlinear types, upright x and
y for variables of nonlinear typé, for lists of nonlinear typings and italic, y and f for terms
of nonlinear type. We use upright A for linear type variabldpr lists of linear type variables,
italic A andB for linear types, upright a and b for variables of linear typefor lists of linear
typings and italia, b, andg for terms of linear type.

Syntactically, type contexts are lists of distinct type variables. and term contexts are lists
of variable typings with distinct term variables. Comma and the little bar, or ‘stile’, both mean
concatenation. By convention, we use the stile when joining a nonlinear list to a linear list.

For the reader familiar with [3], we note some cosmetic changes. In pladesgfdnd
‘-2 we use ‘>... F and ‘» ... ' to distinguish nonlinear and linear sequents. In place
of a semicolon, which would clash with the notation used in seperation logics, we use a stile
to divide contexts into nonlinear and linear halves. In place of Benton’s syntax for mixing, we
follow the syntax of Levy’'s CBPV [23]. This admits operational readings that can be used to
incorporate computational effects, although the only effect we have in mind is the possiblity of
nonterminating recursions. As effects go, nontermination is very degenerate which allows for
more structure on linear types than is found in CBPV. To remind ourselves of this specialization,
we use L in place of the F in CBPV.

Benton [3] here thinking

F L lift
G U underlying domain
F(X) produce(x) produce resulk
G(a) thunk(a) treataas data (address of instructios)s
letF(b)=xina btoxina bindthe result obto x and proceed with
derelictf) force(X) treatx as instructions (load program counter widh

Also, seeing as our semantics requires a list of typings and interprets exchange explicitly, our
derivations make explicit use of the exchange rules shown in Figure 7.4.

The equations we write all have implied free occurence and derivablity conditions which may
be reconstructed as described in [23]. We use arrows to remind ourselves how certain equations
are used in reduction systems, but the theory is equational.

We take the collection of nonlinear base types to be some countable infinity. In place of a
collection of base types, we may as well parameterize our calculus on a graph F with base types
for nodes and (unary) basic operations for edges. In this case we consider the calculus LNL(F)
which extends LNL with a rule and a term constructoy for each basic operation f.

>IEx:X
>IEE(X):Y

We assume that the base types of F are included in our infinite collection of base types so that
LNL and LNL(F) have the same types. Note that the categorical semantics of the above rule
costs us nothing because X and Y are not derived types. In applications, more expressive basic
operations involving derived types could be added.

We use square brackets for substitution into expressions with holes. The maximal decompos-
tion of B into an expression with holes filled with a variable A is writl8f#]. The expression
with just the holes (and no free occurence of AB[$ and the same expression with the holes
filled with some expressio@ is written B[C].

7.1.1 Linear and Nonlinear Lambda Calculi

74 Chapter 7. Recursive Linear Types

The closed fragment of LNL, shown in Figure 7.1, contains the simply typed lambda calculus
and a linear version of the same calculus.

>X ... >Y > A
>X:X,...,¥:YFY:Y »a.AFa:A
>X Y »A »B
> (X—=Y) » (A—B)
>Ix: XFy:Y »N,a:AFb:B
> EAXY: (X—=Y) »M-21ab: (A—B)

>IEx:X lFEf:(X=Y) p»NFa:A »M'+g:(A—-B)
>TE(f)x:Y »M.MN'+(ga:B

The linear calculus differs from the nonlinear calculus in the rule for variables: the context
contains just the linear variable being introduced. This exact match between linear variables in
the context and free linear variables in the term is preserved by the other linear rules, which are
multiplicative in the linear part of the context. Consequently, the collection of derivable linear
sequents admits no weakening or contraction on linear types whatsoever, while the collection of
nonlinear sequents admits all weakenings and all contractions.

7.1.2 Admissible Weakenings and Contractions
The elimination rule for L

W x:XiMFa:A W MEb:LX
Wep i NMNFbtoxina:A

uses the nonlinear part of the context. Together with the mixed version of the linear variable

introduction rule,
Y-X ... WpY YpA

Wepx:X,...,y:Yia:Ara:A

this expands the collection of derivable linear sequents to admit weakening on types of the form
LX. Given a derivation of»- I - a: A, each variable introduction

> A .] >X »A
— isreplaced with
»a.A-a:A »x:X1a:Ara:A

to obtain a derivation o» x : X 1 M F a: A. We then use the elimination rule for L.

X XiMFa:A »b:LXFb:LX
»M,b:LXFbtoxina:A

Together with the introduction rule for L,

WeTkEx:X
W I+ produce(X) : LX

7.1. A Recursive Linear/NonLinear Calculugs

the elimination rule admits contraction on types of the foné IGiven a derivation ob M,bg : LX, by : LX - a
each variable introduction

> X > X
» LX is replaced with >X:XEx:X
» b LXFDb:LX » X : X F produce(X) : LX

to obtain a derivation o# x : X 1 [1 - ajproduce(x), produce(x)] : A. We then use the elimina-
tion rule for L.

» X: X M+ alproduce(X),produce(X)]:A »b:LXFb:LX
» M,b:LX+btox in aproduce(x),produce(x)] : A

Unlike the mixed linear variable rule, the elimination rule for U and the introduction rule for
L, introduce linear sequents with purely nonlinear term context.

Note that variables in the nonlinear part of the context can appear free in terms of linear type,
but that the linear part of the context is always empty for terms of nonlinear type.

The elimination rule for the unary type constructor L uses cut-and-bind machinery: the rule
cuts to a so-called parasitic typevia a nonlinear variable x which is bound in the resulting term.
Such terms are known as let-expressions and appear in programming languages, computational
lambda calculi, linear lambda calculi and mixed calculi such as LNL [3] and CBPV [23].

Let-expressions require so-called commuting conversions, equations of the form

c[btoxina] =¢btoxinclal.

At the level of proofs, commuting conversions allow us to permute an instance of the cut-and-
bind rule with parasitic typ&\ past the introduction and elimination rules for the tyje At

least one equation is required for each type constructor that may be used to produce the type
of the parasitic formula—in this case, one for each linear type constructor. If new linear type
constructors are added, new commuting conversions must be added.

The equational theory of closed LNL is generated by the equations in Figure 7.1. It has the
usual beta and eta laws for the two kinds of function type together with beta and eta laws for U
and L. It has two commuting conversions for L elimination, one with respgetdépelimination
and one with respect to L elimination.

7.1.3 Pairing and Units

LNL has pairing and units for both nonlinear and linear types. For nonlinear types it has additive
rules and for linear types, multiplicative rules. This reflects the intended semantics in cartesian
and monoidal categories Syntactically, the multiplicative rules maintain the exact, context-term
match for linear variables.

In the logic of derivable terms, these rules give us intuitionistic conjunction and truth and
linear tensor and unit. At level of terms, both the introduction and elimination rules for nonlinear
pairing and unit can be understood in terms of basic operations, whereas the elimination rules for
linear pairing and unit use cut-and-bind machinery.

The linear pairing and unit elimination rules have their own commuting conversions as well
as commuting conversions with the other cut-and-bind rules.

7.1.4 Recursive Linear Types

76 Chapter 7. Recursive Linear Types

Notice that our LNL type expressions contain two kinds of identifier, ‘base types’ of nonlinear
type and ‘type variables’ of linear type. The terminology reflects the intended use. The collec-
tion of nonlinear base types is global and is chosen prior to type formation while the collection
of linear type variables is local and is given for each sequent. While we may indulge in substi-
tution on base types meta-syntactically, the rules for recursive linear types (Figure 7.5) only use
substitution of linear type expressions for linear type variables.

We extend LNL with a type constructor that binds one linear type variable in a linear type to
produce a new linear type. The rules and equations for the new type construction are shown in
Figure 7.5. A type of the fornpA.B is recursive in the sense that the associated introduction and
elimination rules use substitution gfA.B for A in B.

As recursive types are linear and may occur as a parasitic type, we include a commuting
conversion with respect to each of the cut-and-bind rules.

The simplest recursive linear type is the origin= pA.A. In our domain model, this is
the one point domain, which is initial and final in the category of strict maps. Perhaps the next
simplest is the vertical naturalsl = pA.LUA. In our domain model, this is< on the natural
numbers together with an element greater than every number. Generalizing the vertical naturals,
are the vertical listsX* = pA.L(XxUA). In our domain model, this is the set of finite and
infinite lists of elements oK ordered by list extension and alphabetically using the ordef.on
This set may also be viewed as a tree. Recursive types of the fgrmHA.(LUA —B) are used
to type fixed point combinators in Sections 8.1.2 and 8.1.2.

Y X

WYX Y>Y
W x:X,...,¥y:YFy:Y

Y>X YpY
Y (X—=Y)
WplIx:XFy:Y
W T EAxy: (X—=Y)

WeTEx:X WTEf:(X=Y)

7.1. A Recursive Linear/NonLinear Calculug7

W AR A

Y X YooY WrpA
Wepx:X,...,y:Yia:A-a:A

WrA YpB
W (A—B)

Wel Ma:A-b:B
We i MNEAab: (A—B)

WepliMFa:A We T i M'+-g:(A—B)

W T (f)x:Y

Ye A
W UA

Wrlta:A
W T+ thunk(a) : UA

YT Ex:UA
Wy I+ force(x): A

(Ax.f[x]

(ragld
force(thunk(a
produce(y) to X in a[X

O —
e T K

D X Q -

(g)(btoxina

=

(btoxing)a
(btoxina)toyinc

Wy M,M0+(ga:B

Y X
WYe LX

WeTkEx:X
W I+ produce(X) : LX

Weplx: X NFa:A Wpl i MEb:LX

Wl MMN'Fbtoxina:A

aly]

AX.(f)x

ra(g)a
thunk(force(X))

ato X in produce(X)
bto x in (g)a
btoxin (g)a
btoXxin (atoy inc)

Figure 7.1: Rules and equations for closed LNL.

78 Chapter 7. Recursive Linear Types

WX WY
W (XxY)

WTEx: X WplEky:Y
Wi T E(XYy): (XxY)

W TFz: (XXY) W TFz: (XXY)

YpA WpB
Y (AB)

WpliNFa:A Wl MFb:B
Wy 0,0 F(ab): (AzB)

WepiNk-c:(AzB) W» T M a:Ab:B-d:D

W Tk first(z): X W T+ second(z):Y

first((x,y))
second((X,Y))
(e.f) toaand b ind]a,]

Cc

(btoxina)tocanddine
(ctoaand bing)e
(ctoaandbind)toyine
(ctoaandbind)toeandfing

B

Wep MM +~ctoaandbind:D

X

y

dle, f]

(first(z),second(z))
Ctoaandbin (ab)

btoXxin (atocanddine)
Ctoaandbin (g)e
Ctoaandbin(dtoyine)
Ctoaandbin (dtoeandfing)

Figure 7.2: Rules and equations for pairing.

Y1

YT
WTH():1

Yyl
YT

Wep I Fx:l

Wep i MNEb:l WepliMNFa:A

We MM Fbtonixina:A

*tonixina

X

(btoxina)tonixine
(ctoaandbind)tonixine
(btonix ing)e
(btonixina)toXine
(btonixina)toeandfing

(btonix ina)tonixine

B

a

0

btoXxin (atonix ine)

Ctoaandbin (dtonix ine)

btonix in (g)e

btonixin(atoXine)

btonix in (atoeandf in Q)
(

btonix in (atonix ine)

Figure 7.3: Rules and equations for units.

7.1. A Recursive Linear/NonLinear Calculug9

W W > X WY e A
Y WX W W A

WeIr,MM=x: X WeliNMkFa:A
W' rEx:X Wi Nka:A

Figure 7.4: Exchange rules.

Y A»B
Y uA.B

Wy MFa:B[uA.B|
We I iMEfold(a): uA.B

We Tl MFa:uAB
Wy M Funfold(a): BjuA.B]

unfold(fold(a)) —p a
a =, fold(unfold(a))
unfold(btoXxina) —¢ btoXinunfold(a)
unfold(Ctoaandbind) —¢ Ctoaandbinunfold(d)
)

unfold(btonixina) —¢ Dbtonix inunfold(a)

Figure 7.5: Rules and equations for recursive linear types.

80 Chapter 7. Recursive Linear Types

7.2 Oblique Terms and Types

We analyse the term model of LNL in terms of distributors (see Appendix A). First we observe
that substitution over the terms of LNL—and this applies to other mixed calculi—can be read di-
rectly as a distributor. The adjoint type constructors L and U are shown to function independently
as representations for this term ditributor. The function types of LNL provide these representa-
tions of the term distributor with a pair of internalizations that we call the oblique function types.

7.2.1 The Term Distributor

The theory of LNL terms with one free variable forms the total category of a distributor. Objects
are type expressions which are classified as nonlinear or linear.

> X > A

Arrows are equivalence classes of derivable terms in singleton context. The equivalence is gen-
erated by the equational theory and alpha conversion. Composition is given by well-typed sub-

stitution and identities by the variable introduction rules. The arrows are classified as nonlinear,

oblique or linear.

>X:XFyX:Y »y:Ykaly]:A »a:AtDb[d:B

The nonlinear and linear arrows, together with nonlinear and linear objects, form the term cate-
goriesC andD as in an ordinary term model of LNL, while the oblique arrows give a distributor
between these categories. Oblique arrows cannot be composed with one-another but can be com-
posed with linear and nonlinear arrows to produce new oblique arrows. For example, the arrows
given by the three terms above can be composed to produce an oblique arrox fodsn

» x: X+ blay[x]]] : B

Remark. Barber’'s Dual Intuitionistic Linear Logic [1] can be translated into the logic of deriv-
able linear sequents in LNL (for details see [24]). The types appearing in the nonlinear part of
a DILL context are translated to linear LNL types according to their DILL type structure and
then to nonlinear types LNL using U so as to appear in the nonlinear part of an LNL sequent
Wp Ul MEa:A Ordinarily a translation of one type theory into another induces a functor
between the corresponding term categories, but here we have a problem with identities. What we
actually obtain from our translation is a distributor morphism. This suggests that the distributor
structure is more fundamental than either of the categories.

7.2.2 The Adjoint Fragments of LNL
Given a graph F of nonlinear basic types and operations, the term category over the rules

>X ... p>Y >IEx:X
_— and ——
>X DX:X,.LyiYRyYyY >TEf(X):Y

is the free category on F. This term category only uses the unary forms of the variable introduc-
tion rule and the operation rule,

>Y >X:XEX:X
>Yy:YFY:Y DXx:XEf(X):Y

7.2. Oblique Terms and Types31

but, if we add the rules for nonlinear pairing, units and function types, we need to use the general
forms to obtain the free cartesian closed category on F.

Given a graph G of basic linear types and operations, we could obtain the free category on
G using a linear base type rule, the linear variable rule from LNL, and a linear operation rule
analogous to the unary rule above. We could then obtain the free symmetric monoidal closed
category by adding the rules for linear pairing, units and function types. However, given both
basic nonlinear and basic linear operations, we are in a position to add basic operations from
basic nonlinear types to basic linear types.

Given a directoK from G to F (see Appendix A) and using W for basic linear operatikns,
for oblique edges from X to W angifor basic linear operations from V to W, the term distributor
over the rules

> X » W
>X ... D>Y > A
>X:X,...,¥y:YFY:Y » a ArFa:A
>IEx:X >IEx:X >l MFa:Vv
>IHE(X):Y > Ek(X):W »TiMNkg@:W

is the free distributor oK. This free distributor only uses the unary forms of the operation rules,

>z:ZFx: X >z:ZFx: X »z:ZFa:V »c:.Cha:V
>z:ZFE(X):Y »z:ZFk(X):W w»z:Ztg@:W »c:Clkga):W

but, again, we need the general forms if we want to obtain the free distributor between categories
with more structure.

When the rules and equations for U are added, the term distriBubecomes the free dis-
tributor onK with an aft representation by a functdr: D — C (see Section A.5). In particular,
Pis isomorphic taC(—,U (+)) and every (oblique) morphism from K to a distributor of the form
A(—,F(+)), factors uniquely via the canonical (oblique) morphism from Kto

The term category is the free category on G, where@ds the free category on F with a
copy of D glued viaP, which is to sayC is the total category d®.

On the other hand, when the rules and equations for L are added, the term distFbutor
becomes the free distributor with a fore representation by a fubhct@ — D, in which caseP
is isomorphic td(L(—),+). The term categorg is the free category on F, whil2 is a copy of
C glued viaP to the free category on G, which is to s8yjs the total category d.

Proposition 7.2.3 The term distributor P is isomorphic ta/&,U (+)) over LNL theories includ-
ing the rules and equations f&t and is isomorphic to @_(—),+) over LNL theories including
the rules and equations fdr.

Proof. For each objectX,B) in C°P x D, we require the components of natural isomorphims
from C(—,U(+)) andD(L(—),+) to P(—,+). Composition with any natural oblique transfor-
mation fromU to Idp gives a natural transformation fro®(—,U (+)) to P(—,ld(+)). Like-
wise, composition with a transformation fronltb L gives a transformation from@(L(—),+)

82 Chapter 7. Recursive Linear Types
to P(Id(—),+). Natural transformations are thus given by Composition with the arrows given by
the sequents

» X:UBF force(x):B and » Xx:XF produce(x):LX

which, by the substitution lemma, form an oblique transformation, give us one half of the iso-
morphism.

(id,force(x)) (ato x in b,id)
C(X,UB) P(X,B) D(LX,B)
(id,thunk(b)) (produce(Xx),id)

Inverses are given by substitution for b in the raw termisihk (b)’ and ‘ato x in b’, where x is

the free variable in the term giving an arrowR(X, B). Although these terms are not in the type
theory, and hence do not give arrows, substitution into them still produces natural transformations
and the equations that make them inverses to the representable natural transformations above are
instances of the beta and eta laws for L and U. O

If the rules for both U and L are addel,is the free distributor with both such representations,

in which case we have an adjunctibi- U.

Corollary 7.2.4 Over theories including the rules and equations for bottand L, the term
functor L is left adjoint to the term functor U.

The rules for U and L interact to produeecopies of both free categories in both term categories
and, generally, neithdr norU has a retract.

For Benton’s LNL, we tak& to be the degenerate director given by F with no oblique edges
and empty G. The free distributor &his then just the empty distributor from the free catedory
on F to the empty category. The free distributor of the f@tn,U (4)) hasU the empty functor
into C. On the other hand, the free distributor of the fdb{lL(—),+) hasD isomorphic, vial,
to C, the free category on F.

The free distributor with both representations, however, is less degenerate. The c@&tegory
containsw copies of the free category on F and, wHilstill gives an isomorphism betweé&h
andD (assuming no other linear type constructotts)s a proper inclusion.

Generally however, we see no reason not to use a director of basic operations. We will write
LNL(K) for the theory generated by the rules of LNL together with a rule for each edge in K.

7.2.5 The Oblique Function Types

In the full equational theory of closed LNL, there is a correspondence between terms (in context)
of nonlinear typg X—UB) and terms (in context) of linear tygeX —B) with no free variables

of linear type The nonlinear-to-linear direction can be expressed using substitution on a free
nonlinear variable.

>f: (X—=UB),x: X+Ff: (X—=UB) ©f:(X—-UB),x:XFx:X
>f: (X—=UB),x: XF (f)x: UB
» f: (X—UB),x: Xt force((f)x): B

> f: (X—=UB),x: XF force((f)x):B »f: (X—=UB)ib:LXFb:LX
»f: (X—=UB) i b:LXFDbtoxinforce((f)x):B
» f: (X—=UB)F Ab.bto X in force((f)x) : (LX—B)
lin[f]

7.2. Obligue Terms and Types83

In the other direction, we use substitution on a linea@tavariableg because terms of nonlinear
type cannot have free linear variables. The following typing requireggtbantain no free linear
variables: the introduction rule for U requires a purely nonlinear context.

derivation weakened with xX >Ix: XEx: X
> x:XFg:(LX—B) » I, x: X F produce(x) : LX
» [,x: X (g)produce(x) : B
> I, X : X - thunk((g)produce(X)) : UB
> I F AX.thunk((g)produce(x)) : (X—UB)

nong|

Given any nonlinear term (in context)of type (X—UB), we have

nonlin[f]] =def AX.thunk((lin[f])produce(x))
=det AX.thunk((Ab.bto X in force((f)X))produce(X))
=g AX.thunk(produce(X) to X in force((f)x))
=p AX.thunk(force((f)x))
=n AX(f)x
=, f.
The other direction is less straightforward. Given any linear term (in corgeftlype (LX—B),
we have

lin[nong]] =def Ab.bto X in force((nong))x)
=def Ab.Dto X in force((AX.thunk((g)produce(X)))X)
=g Ab.bto X in force(thunk((g)produce(x)))
=g Ab.btoXin (g)produce(X).

Here we make use of thapplication law

(g)(btoxina) =5 btoxin(g)a

with b for b andproduce(x) for a.

=n Ab.(g)(bto X in produce(X))
= Ab.(g)b
The nonlinear-to-linear direction can be abstracted to a linear combinator

» FAg.gtofinlin[f]: (L(X—-UB)—(LX—B))

linjin
or to a nonlinear combinator

» F Af.thunk(lin[f]) : (X—UB)—U(LX—B)),
lin

84 Chapter 7. Recursive Linear Types

and we have

non[lin"n] —def

—def

AX.thunk
AX.thunk
AX.thunk

linjin)produce(X))

—~~

Ag.g to f in lin[f])produce(x))
produce(X) to f in lin[f])

(
(
(
(

=p AX.thunk(lin[x])

linnon

and

lin[linnon]

=det Ab.bto X in force((linnon)X)

=p Ab.btoXx in force(thunk(lin[x]))
=g Ab.btoxinlin[X]

—def

||n||n

The nonlinear combinator has an inverse

» F Ay.nonforce(y)]: (U(LX—B)—

(X—UB)).

NOIhon

We have

—def
=B
—def

Af.(noMon) (linpon)f

AY.(linnon) (NOMhon)Y =def

=B
=def

Af.(Ay.nonforce(y)])(linnon)f
Af.nonforce((linnen)f)]
Af.nonforce((Af.thunk(lin[f]))f)]
Af.nonforce(thunk(lin[f]))]
Af.nonlin[f]]

Aff

Ay.(Af.thunk(lin[f]))(NOMon)y
Ay.thunk(lin[(NoMon)y])
Ay.thunk(lin[(Ay.nonforce(y)])y])
Ay.thunk(lin[nonforce(y)]])
Ay.thunk(force(y))

Ay.y

So, internally, the typéX—UB) is naturally isomorphic to the type(UX —B). We refer to
the ‘type’ represented byX—UB) and(LX—B) as theoblique function typen X andB.

85

Chapter 8

Recursive Types for Fixed Point Combinators

A significant feature of the untyped lambda calculus are the recursive combinators. These in-
clude divergent combinators which reduce to themselves and fixed point combMatdtsthe
property that'Y) f reduces tq f)(Y) f. Fixed point combinators are also known as ‘paradoxical
combinators’ because they provide a semantics for logical paradoxes. For example, the meaning
of the statement ‘this statement is false’ would be the fixed point of the operation that swaps
‘true’ with ‘false’.

In the untyped calculus, these combinators are part of the base theory and are inherited by
any extension and/or refinement that respects the beta-law. The simply typed lambda calculus,
however, has models without fixed points and so fixed point combinators are excluded from the
base theory. If we require a fixed point combinator of type— 7) — 7 in a simply typed
calculus, we can add a constanttogether with an equatioh(Y.(f)) = Y¢(f). The equation
saysY, must be interpreted as a fixed point operator but doesn’t say which (and some models
have more than one fixed point operator).

Recursive combinators may reappear in the base theory when recursive types are added.
The laws governing the contents of certain recursive types require that certain terms satisfy the
fixed point equation. We derive some of these in Section 8.1. In Chapter 9 we use fixed point
combinators to construct recursive maps into and out of recursive types in term models of RLNL.

Looking at the derivation of recursive combinators in RLNL we notice certain idioms involv-
ing oblique function types. This suggests a calculus with an oblique function type which would
be interpreted directly by a costructural action. This, in turn, suggests we replace L and U with
type constructors for the structural action and exponenti& @rhich we view as parameterized
versions of the adjoint types. We sketch the resulting type theory in Section 8.2.

8.1 Recursive Combinators in Recursive Types

The following three paragraphs set out the somewhat stylized treatments of divergence, the Curry
fixed point scheme and the Turing fixed point combinator which we lift to FPC in Section 8.1.1
and to RLNL in Section 8.1.2. All three are based on the same self-application scheme: in the
untyped lambda calculus we are free to apply any tetmitself.

Divergence. Abstracting, we obtain a self-application combinator which is applied to itself to
obtain a divergent combinator.

86 Chapter 8. Recursive Types for Fixed Point Combinators

X = Ax.D[X]
Q = (X)X

The termQ is of the formD|x] and beta-reduces to itself in one step.

Q =qef
(X)X =def
(AXDX)X -5 DIX]
=def (X)X
de= Q

Operationally, we have an infinite loop and this can be used to iterate the application of some
term f. Equationally, the result of such iteration gives a fixed point.of

Curry. If we apply a termf to the self-application scheme before abstracting, we obtain a fixed
point for f.

Xf] = Ax(f)DX]
Clf] = (XTHXf]

The termC|f] is of the formD|[x] and, assuming x is not free in reduces td f)C[f] in one step.

Clf] =det (X'[f])X[f]
—def
(Ax.(F)DX)X[f] =5 (F)DX[f]]
=det (F)(X'[F])X[f]

der= ()C[f]
Abstracting on this scheme, we obtain a fixed point combinator.
Y = Af.CIf]

Given some ternf, the term(Y)f beta-reduces tQ[f], which beta-reduces tof)C[f], which
beta-expands tof)(Y) f. Note that this reasoning uses beta-expansion in the argumént of

Turing. By first applying the self-application schemeftand then applyind, we can abstract
on f before abstracting the self-application to obtain a fixed point combinator of theliofm

X" = AxAf.(f)(D[x)f
Z — (X//)X//
Given some ternf, the term(Z) f beta-reduces directly tdf)(Z)f.

(Z)f —def

(X)X =def

(AxALH)(DXDHX") T =p
AL.(HDOXDHT =g (HDXNF

=der (F)((X")X")f
de= (f)(2)f

8.1. Recursive Combinators in Recursive Typ8&3

Note that the reduction requires two steps. The Turing combinator trades the beta-expansion
required to reason about the Curry combinator for an extra evaluation step.

First we lift our untyped combinators to a fragment of the metalanguage FPC. Then we lift
these to a fragment of our type theory RLNL. The fragments we use have function spaces and
recursive types. Although our primary concern is the existence of a fixed point combinator in the
equational theory of RLNL, we avoid reductions in the arguments of applications as these raise
operational questions.

8.1.1 Recursive Combinators in FPC

We use the fragment of FPC shown in Figure 8.1. This has a function §épacand a recursion
operatoru that binds one type variable. Any type may be substituted for a type variable. We use
the equivalences generated by the beta-reductions shown.

In FPC, every typ& contains a divergent combinator and every type of the f@gia~T)—T)
contains a fixed point combinator. The recursive tyf®(S—T) allows us to lift the diver-
gent combinatof to T and the Curry fixed poin€[f] to ((T—T)—T). The recursive type
uS.(S—((T—T)—T)) allows us to lift the Turing combinator tgT—T)—T).

Divergence. LetT be atype variable. We can apply terms of tiype- uS.(S—T) to themselves
by unfolding one copy to the typgM—T).

STaT
T,S0S T,50T
T,S0O(S—T)
ToOuS.(S—=T)
M

TaM
TOM TOX:MEX:M
TOX:MEX:M TOx:MbEunfold(x): (M—T)
TOx:MFE (unfold(x))x: T
D[x]

Abstracting, we obtain a combinator of typd—T).

TOX:MED[X]:T

TO FAx.D]X]: (M—T)
——
Xo

We can apply this to itself by folding one copy into tylle

TOFXo: (M=T)
TOFfold(Xe):M TOFXo: (M—=T)
TOF (Xo)fold(Xo) : T
Qo

This term beta-reduces to itself in two steps.

88 Chapter 8. Recursive Types for Fixed Point Combinators

Qo =def
(Xo)fold(Xo) =(ef
(AX.D[x])fo1d(Xo) —p D[fold(Xo)]
=def (unfold(fold(Xp)))fold(Xo)
=g (Xo)fold(Xo)
de= o
The termQg is not of the formD[X]. The self-application combinatdf acts on terms of typkl

while the self-application of self-application @y is performed on a term of typ@M—T). Note
however thaf)y reduces td[fo1d(Xp)] which is of the formD[x].

X = fold(Xo)
Q = (unfold(X))X

Now Q is of the formD[x]. and reduces to itself.

Q =def

(unfold(X))X =gef

(unfold(fold(AX.D[x])))X =g
X

(Ax.D[X]) -g D[]
=def (unfold(X))X
def= €

Here is the cycle in terms of the self-application scheme.

Q =B Qo B Q =B
D[X] =B (Ax.D[x])X —B D[X] =g
D[fold(Ax.D[x])] =p (AX.D[x])fold(Ax.D[x]) —p DI[fold(AX.D[x])] =p

Here is the cycle with expanded definitions.

Q =B Qo - B

(unfold(X))X = (Xo0)fold(Xo)]
(unfold(fold(Xp)))fold(Xp) =p (Xp)fold(Xp) —p
(unfold(fold(Ax.D[x])))fold(Ax.D[x]) =p (Ax.D[x])fo1ld(Ax.D[x]) ~p
(unfold(fold(Ax.(unfold(x))X)))fold(Ax.(unfold(x))x) =g (AX.(unfold(x))x)fold(Ax.(unfold(X))X) —p

Erasingfold() andunfold(), bothQy andQ become the untype@ and beta-equivalence be-
comes an identity.

Curry. Let f be a term variable of typ€T—T). First we weaken the context in our derivation
for self-application to include f.

ToT ToT
ToT TOT TO(T—T) TOM
TO((T—T) TOM Taf: (T—T),x:MFx:M

Taf: (T-T),x:MEFx:M Taf: (T—T),x:MFunfold(x): (M—T)
TOf: (T—T),x: MF (unfold(x))x: T
—_—
D[x]

8.1. Recursive Combinators in Recursive Typ8&98

As in the untype’, we apply f to the result of self-application before abstracting on x.

ToT ToT
oM TOE-T)
Tox: M f: (T-=T)Ff: (T=T)
Taf: (MT-=T),x:MED[x]: T ToOf: (T=T),x:MEf: (T—T)
TOf: (T-T),x:MF (f)D[x]: T
TOf: (T—=T)F Ax.(f)D[x] : (M—T)
———
Xolf]

We can apply this term to itself by folding one copy into tyye
Tof: (T—T)FX5[f] : (M—T)
ToOf: (T—=T)Ffold(Xp[f]) : M ToOf: (T=T)F Xp[f] : (M—T)
ToOf: (T—=T)F (Xp[f))fold(Xp[f]) : T
Colf]

Now, given any ternf of type (T—T), Co|[f] is beta-equivalent t6f) Co[f].

Co[f] =der
(Xo[f])£01d(Xp[f]) =def
(Ax.(f)D[X])£01d(Xp[f]) —p (f)D[fold(Xp[f])]
=dgef (f)(unfold(fold(Xg[f])))fo1d(Xg[f])
=g (F)(Xp[f])£old(Xo[f])
der= (f)Colf]

Erasingf in Co[f] givesQq. We can avoid the beta-reduction in the argument dfy using
D[fo1d(Xp[f])] in place ofCo[f].

X'[f] = £old(Xplf])
Clf] = (unfold(X'[f]))X'[f]
The termC[f] is of the formD[x] and erasingf givesQ. Without the f, the termsQ and Qo

beta-reduce to each another, but here the rearrangement reorders the two beta-reductions with
respect to the application df

Clf] =def
(unfold(X'[f]))X'[f] =gef
(unfold(fold(Ax.(f)D[x])))X'[f] =p
(Ax.(F)DXDX[f] =g (F)DX'[f]]
=det (f)(unfold(X'[f]))X'[f]
de=(f)C[f]

Abstracting, we obtain a combinator of typ@ —T)—T).

90 Chapter 8. Recursive Types for Fixed Point Combinators

Y = ALC[f]

Given some ternf of type (T—T), the term(Y)f beta-reduces t@[f], which beta-reduces to

(f)(Y)f, which beta-expands tb(Y(f)). As in the untyped calculus, this uses beta-expansion
in the argument of .

Turing. To type the Turing combinator, we replace T witfi —T)—T) in our recursive type
M.

SToT STaT

STO(T—T) STOT
STO(T—T)—=T)
T,S0OS T,SO(T—T)—T)
T,S0(S—((T—T)—=T))
TOuS.(S~(T—T)—=T))
M’

The result of self-application is now of tygéT—T)—T).

TaT TOT
TOT TOT TO(T—T) TaoMm
TO(T=T) ToM TOf: (T=T),x: M Fx: M

Tof: (T=T),x:MEx:M Tof: (T=T),x: M Funfold(x) : (M'=((T=T)—=T))
Tof: (T—=T),x: M I (unfold(x))x: (T—=T)—=T)
D'lx]

With type ((T—T)—T), we can apply the result of self-application to our endofunction f.

o1 7ot
TaoMm W
Tox: M {1 (T=T)f: (T=T)
ToOf: (T=T),x: M Hf:(T=T) ToOf: (T=T),x: M =D'[x] : ((T—=T)—=T)
ToOf: (T=T),x:M = (D'[X)f: T

8.1. Recursive Combinators in Recursive Typ64

Now we can proceed as foff, except we abstract on f before we abstract on x.

TOT TOT
TOM TO(T=T)
Tox: M f: (T=T)-f: (T—T)
TOf: (T=T),x:M - D'X)f: T ToOf: (T=T),x: M f: (T=T)
Tof: (T=T),x:M = () (D'[x)f: T
Tox: M FALE)(D'X)f: (T—T)—T)
TO FAXAL(F)(D'[X)f: (M'=(T—=T)=T))
T0O F fold(AXAL(F)(D'[x))f) : M’
N

We apply this combinator to itself by unfolding one copy.

TORX":M
TORX":M TOFunfold(X”): (M—T)
TO F (unfold(X"))X": T
yA

Given any termf of type (T—T), (Z) f reduces directly tdf)(Z)f.

(2)f =ger
((anfold(X"))X")F =ger
((unfold(fold(Ax.Af.(f)(D'[x])f)))X")f =g
(AXALF)(D'XDHX =4

) f

ALOOXDHE =g (DX
—det (f)((unfold(X"))X")f

de= (F)(2)f
Erasing the operatior&®1d() andunfold() in the FPC combinator
Z = (unfold(fold(AX.Af.(f)((unfold(x))x)f)))fold(AX.Af.(f)((unfold(x))x)f),
we recover the untyped combinator

Z = (AXAL(F)(X)X)DAXAL () (X)X)F.

8.1.2 Recursive Combinators in RLNL

In our FPC derivations, free variables of recursive type appear twice in some expressions, whereas
in RLNL recursive types are linear and so variables of recursive type must appear exactly once.
Any typing of these combinators in RLNL will therefore pass through types of the folmliv

place of variables of recursive typex.B we use variables of type jk.B. This requires thaB

contain applications of U and L so that we can fold and unfold the terms we build into and out of

type ux.B.

92 Chapter 8. Recursive Types for Fixed Point Combinators

Divergence. Linearity prevents us from applying a variable of recursive typdirectly to itself.

We therefore start with a variabkeof type UM. The destructor for U gives us a tetiorce(x) of
typeM which we can unfold to a function type and apply to some form. &upposévl unfolds

to type(M—B). We can then applynfold(force(X)) to force(X) to obtain a term of type B.
Before we can abstract we must apply the constructor for U to obtain a term of type UB. Now
we would like to apply the resulting self-application combinator

Xo = AX.thunk((unfold(force(X)))force(X))

of type (UM —UB) to itself, but we find there is no way to fold this term into typmUHowever,
observe thafUM—UB) is an oblique function space isomorphic toLlWM—B) which suggests
thatM should unfold tqLUM—B). So takeM = ux.(LUx—B). Nowunfold(force(X)) must

be applied to a term of type L\, so, instead of the destructor for U, we apply the constructor
for L to our variablex of type UM:

D[x] = (unfold(force(X)))produce(X)

Applying the constructor for U and abstracting, we obtain the combinator

X1 = AX.thunk(D[x])

of type (UM—UB), but now this type is isomorphic to the typevlvia thunk(fold(lin[])).
and so our combinator can be applied to itselfi = (X;)thunk(fold(lin[Xy])). This term
beta-reduces tehunk(D[thunk(fold(lin[X1]))]) andD[thunk(fold(lin[X1]))] beta-reduces to
force(Q1), S0Q; is beta-equivalent tohunk(force(Q1)).

Q1 =get (X1)thunk(fold(lin[X1]))
—~p thunk(D[thunk(fold(lin[Xy]))])
=def thunk((unfold(force(thunk(fold(lin[Xj])))))produce(thunk(fold(lin[Xi]))))
=g thunk((unfold(fold(lin[Xy])))produce(thunk(fold(lin[Xs]))))
=g thunk((lin[Xy])produce(thunk(fold(lin[Xs]))))
=g thunk(produce(thunk(fold(lin[Xy]))) to X in force((X1)X))
=p thunk(force((X1)thunk(fold(lin[Xs]))))
=def thunk(force(Q1))

We can avoid the extra thunk-force, as well as the reduction under a thunk, by using the term
force(Q) of type B. This term beta-reduces to itself and, along the way, to

(lin[X1])produce(thunk(fold(lin[X1]))).
The term lirjXy] is beta-equivalent tdaato X in D[X] so, putting
X =Aaato x in D[],
force(Q;) is beta-equivalent to

Q = (X)produce(thunk(fold(X))).

8.1. Recursive Combinators in Recursive Typ€8

The derivation of this term completely avoids the tyjp#M—UB).

B,X » X
B.X>UX X,BeB
B,X»LUX B, X»B
B,X » (LUX—B)
B uX.(LUX—oB)

M
By M
By M B> UM
B UM B> x:UMFx: UM
B>x:UMFEFXx:UM By» x:UMF force(x): M

B » x: UM F produce(x) : LUM B » x: UM F unfold(force(x)) : (LUM—B)

B » x:UM F (unfold(force(X)))produce(X) : B
D[X]
Berx:UMED[X]:B Bw»;a:LUMFa:LUM
By»;a:LUMFatoxinD[x]:B
B» AaatoxinD[x]: (LUM—B)
B» Ffold(AaatoxinD[x]): M
B » F thunk(fold(Aaato X in D[X])): UM
X

B> FX:UM

B> FX:UM B» Fforce(X): M

B » + produce(X):LUM B » Funfold(force(X)): (LUM—B)

B » F (unfold(force(X)))produce(X): B

Q
This term beta-reduces to itself in four steps.

Q

(unfold(force(X)))produce(X)
(unfold(force(thunk(fold(Aaato x in D[X])))))produce(X)
(unfold(fold(Aaato x in D[x])))produce(X)

(Aaato x in D[x])produce(X)

J
produce(X) to X in D[X]

DIX] =def (unfold(force(X)))produce(X)
de= Q

=def

94 Chapter 8. Recursive Types for Fixed Point Combinators

Curry. Let f be a variable of type (LUB—B), which is isomorphic to the endofunction type
(UB—UB).

B»B
B> UB
B» LUB B»B
» (LUB—B)
N——

E
B»E B» M
B» f:UE,x:UMFD[x]:B B> UE B> UM
B f: UE,x: UM I thunk(D[x]) : UB B> f:UE,x:UMKf:UE

By f: UE,x: UM I produce(thunk(D[X])) : LUB By f:UE,x: UM force(f): E
By f:UE,x:UMF (force(f))produce(thunk(D[X])) : B
B[f,X]
By f:UE,x:UMFB[f,x]:B B»f:UE;a:LUMFa:LUM
By f:UE;a:LUM I atox in B[f,x]: B
Be» f:UEF Aaatox in B[f,X] : (LUM—B)
B» f: UEF fold(Aaato x in B[f,x]) : M
B» f: UE thunk(fold(Aaato x in B[f,X])) : UM
X

B> f:UEFX/[f]: UM
B> f: UEF X[f]: UM B f: UEF force(X'[f]) : M
B » f: UE I produce(X'[f]) : LUM B» f: UE - unfold(force(X'[f])) : (LUM—oB)
B» f: UE (unfold(force(X'[f])))produce(X'[f]) : B

C[f]
Clf] =def
(unfold(force(X'[f])))produce(X'[f]) =gef
(unfold(force(thunk(fold(Aaato x in B[f,X])))))produce(X'[f]) =g
(unfold(fold(Aaato x in B[f,x])))produce(X'[f]) =g
(Aaato x in B[f,X])produce(X'[f]) —p
produce(X'[f]) tox in B[f,x] -5 B[f,X'[f]]

B[f,X'[f]] =qet (force(f))produce(thunk(D[X'[f]]))
=def (force(f))produce(thunk((unfold(force(X'[f])))produce(X'[f])))
=gef (force(f))produce(thunk(C[f]))

By f:UEFC[f]:B Bw»x:UM;g:LUEFQ:LUE
B» x:UM;g:LUEFgtofinC[f]:B
B» HAg.gtofinC[f]: (LUE—B)
Y

8.1. Recursive Combinators in Recursive Typ€8§

Given any termf of type UE, thunk((Y)produce(f)) is a fixed point of noff) and, given
any termf of type (UB—UB), (non(Y))lin(f) is a fixed point off.

Turing. We replaceB with (LUE—B) in our recursive typ&/.

B» E
X,B » X B> UE
X, B > Ux B» LUE B»B
x,B » LUx B» (LUE—B)

X,B » (LUX—(LUE—B))
B » ux.(LUx—(LUE—B))

M/
B» M
B» M B> UM’
B> UM’ B x:UM Fx: UM
B> x:UM kx: UM’ B » x: UM’ force(x): M’

B » x: UM’ F produce(x) : LUM’ B » x: UM’k unfold(force(X)): (LUM'—(LUE—B))
B » x: UM’ (unfold(force(x)))produce(X) : (LUE—B)
D[]

Be» f: UE,x: UM I-f: UE
By f:UE,x: UM D'[x]: (LUE—B) Bw» f:UE,x: UM’} produce(f): LUE
Bw» f:UE,x: UM’ (D'[x])produce(f) : B

By»E By M
Bw» f: UE,x: UM’ I (D’[x])produce(f) : B B>UE Bp>UM
B> f: UE,x: UM’ I thunk((D’[X])produce(f)) : UB B> f:UE,x: UM f:UE

B» f: UE,x: UM’ |- produce(thunk((D’[X])produce(f))) : LUB By f: UE,x: UM force(f):E

Bw» f:UE,x: UM F (force(f))produce(thunk((D'[x])produce(f))) : B

B'[f,x]

By f:UE,x: UM B'[f,x]:B Bw»x:UM’;g: LUEFg:LUE
B» x:UM’;g:LUEFgtofinB[f,x]:B
By» x:UM' FAg.gtofinB'[f,X]: (LUE—B) By ;a:LUM Fa:LUM’
By ;a:LUM FatoxinAg.gtofinB'[f,x]: (LUE—B)
B» FAaatoxinAg.gtofinB'[f,X]: (LUM'—(LUE—B))
B» fold(Aaatox in Ag.gtofin B'[f,X]): M’

B > I thunk(fold(Aaato X in Ag.gto f in B'[f,X])) : UM’
N

X'! = thunk(fold(Aaa to X in Ag.g to f in (force(f))produce(thunk(((unfold(force(x)))produce(x))produce(f)))))

96 Chapter 8. Recursive Types for Fixed Point Combinators

B FX':UM
B> X" UM B» - force(X”): M’
B » I produce(X”) : LUM’ B » Funfold(force(X”)): (LUM'—(LUE—B))
B » I (unfold(force(X")))produce(X"): (LUE—B)

-~

VA
(Z)produce(f) =qef
((unfold(force(X")))produce(X”))produce(f) =gef
((unfold(force(thunk(fold(Aaato x in Ag.gto f in B'[f,X])))))produce(X"))produce(f) =g
((unfold(fold(Aaato x in Ag.g to f in B'[f,x])))produce(X”))produce(f) =g
((Aaatox in Ag.gtof in B'[f,X])produce(X"))produce(f) =g
(produce(X”) tox in Ag.g to f in B'[f,x])produce(f) =g
(Ag.gtof in B'[f,X"])produce(f) —p

produce(f) tofin B'[f,X"] -4
B[f,X"]

B'[f,X"] =qet (force(f))produce(thunk((D'[X"])produce(f)))

=def (force(f))produce(thunk(((unfold(force(X")))produce(X”))produce(f)))
=gef (force(f))produce(thunk((Z)produce(f)))

Given any termf of type UE, thunk((Z)produce(f)) is a fixed point of noff) and, given
any termf of type (UB—UB), (non(Z))lin(f) is a fixed point off.

8.1. Recursive Combinators in Recursive Typ63

o,TaT

eos ... ogT
OOs:S....t:THt:T

eOgS oeaT
O0O(S-T)

oOr,s:Skt: T
OOr FAst: (S—T)

OOrks:s oarkf:(s—T)
oart(f)s:T

©,SOT
OOusST

OOl Ht: T[uST]
@OT + fold(t) : uST

earkt: uST
©0rl Funfold(t) : T[uS.T]

(AX.f[X])
unfold(fold(a)

- fly
=p Ax.(f)x

=p fold(unfold(a))

D - —

Figure 8.1: Rules and equations for closed FPC

98 Chapter 8. Recursive Types for Fixed Point Combinators

Y X Yr A
Y-X ... ¥YpY Y-X ... YpY WrpA
Wex:X,...,¥y:YFY:Y Wepx:X,...,y:Yia:Ara:A
Y-X WpY YpA YpB
Y (X—=Y) Yy (A—B)
Wplx:XFy:Y Wpl Ma:A-b:B
W T EAXy: (X=Y) Wy i MEAab: (A—B)

WTEx:X WeTEf:(X=Y) WepliMFa:A Yol MFg:(A—oB)
W= (f)x:Y Wy MN,M0F(ga:B

WA B
Y uA.B

Wy MFa:B[uA.B|
Wy i MEfold(a): uA.B

Wl MFa:uAB
Wy I M Funfold(a): BjuA.B]

Yr A Y X
Y UA Yp LX
YeplFa:A WpTEx:X
W I+ thunk(a) : UA Wy I+ produce(x) : LX
Y>TEFx:UA Wep,x: X MFa:A Wi MkFb:LX
We I+ force(x):A Wp T iMNMNFbtoxina:A

Figure 8.2: Rules for closed RLNL.

8.1. Recursive Combinators in Recursive Typ69

(AX.T[X])
(Aagfa)
unfold(fold(a)
force(thunk(a)

—_ — T <

produce(y) to X in aX

D X 9 Q -

(g)(btoxina
(btoxing)c

Nl

unfold(btox in a)
(btoxina)toyinc

AX.()x

ra(g)a
fold(unfold(a))
thunk(force(X))

ato X in produce(X)
bto x in (g)a

bto x in (g)C

bto X in unfold(a)
btoxXxin (atoyinc)

Figure 8.3: Equations for closed RLNL.

100 Chapter 8. Recursive Types for Fixed Point Combinators

8.2 A Linear Fixed Point Calculus

The idioms that appear in our derivations of recursive combinators and the structural view of the
motivating models of RLNL suggest new types.

8.2.1 Fixed Point Idioms

Looking at the derivations of fixed point combinators in Section 8.1.2 we see that we have used
RLNL in a stylized way. The rules for the function space-) and the constructor L are used
only within three particular idioms.

Idiom Sugar
YT
YT WrR
Yy LT WrR _
Yy (T—R)
W (LT—R)

Wepla:THFr:R Wel,y:LTFyY:LT

WYl a:THr:R

Wely:LTFytoainr:R
Weltiar: (T—R)

Wepl-Ayytoainr: (LT—R)
WTEt:T
W T Fproduce(t):LT Wr Tk f:(LT—R)
We I+ (f)produce(t):R

YeTHt:T WelkHf: (TR
We Tk (Ht:R

Each rule shown to the right can be read as sugar for the idiom to the left. Sugared derivations
and terms are shorter than the original. Here is the sugared form of the derivafion of

A,B» A
A,Br> UA A,B» B
A,B» (UA—B)
B» uA.(UA—B)
M

By M
B> UM
By M Br>a:UMEx:UM
B> UM B» a:UMF force(a) : M
Bra:UMEx:UM B» a:UMF unfold(force(a)): (UM—B)
By» a: UM (unfold(force(a)))a: B
B » - Aa(unfold(force(a)))a: (UM—B)

A
Br» -A:(UM—B)

Bw Ffold(A): M
B> F thunk(fold(A)):UM Bw -A:(UM—B)
B » I (A)thunk(fold(A)):B
Q

8.2. A Linear Fixed Point Calculus101

Here is the sugared form of the Turing combinator.

B» E
A,Bp» A B > UE B» B
A.Br> UA B » (UE—B)

A,B » (UA—(UE—B))
B » uA.(UA—(UE—B))

M/
B» M
B> UM’
By M B>a:UM I x: UM
B> UM’ B» a:UM I force(a) : M’

Br>a: UM x: UM B» a: UM’ unfold(force(a)): (UM —(UE—B))
B» a: UM’ (unfold(force(a)))a: (UE—B)
D'lal
B f:UE,a:UM'f:UE B f:UE,a:UM - D'[g: (UE—B)
B» f:UE,a: UM (D'[d)f: B
——

C[f.d
B»E By» M
B > UE B> UM’
B» f:UE,a: UM I-C[f,d:B Br>f:UE,a:UM' | f:UE

B> f:UE,a: UM’ thunk(C[f,a]) : UB By f:UE,a: UM force(f): E
Bw» f:UE,a: UM’ (force(f))thunk(C[f,d): B
B[f, 4
B»f:UE,a:UM'-B[f,a:B
By a: UM Af.B'[f,.a : (UE—B)
B» - AaAf.B'[f,d: (UM —(UE—B))
T

B» FA": (UM —(UE—B))
B» - fold(A”): M’
B > thunk(fold(A”)): UM’ Bw» FA": (UM —(UE—B))
B » I (A”)thunk(fold(A”)) : (UE—B)
VA

The sugared derivations inhabit the calculus shown in Figure 8.4 which matches a fragment
of Levy’s Call-By-Push-Value. In the RLNL derivations of our recursive combinators the linear
part of the context is only used in the introduction idiom (and only with one variable), so we can
drop this part of the context.

102 Chapter 8. Recursive Types for Fixed Point Combinators

This calculus has rules for just the one constructor U, which Levy refers to as the jump-
ing fragment of CBPV. Following the analysis in Section 7.2, we understand the rules for this
constructor as generating the free distributor with an aft representation.

In the presence of a proper oblique function type, the isomorphism between the two represen-
tations described in Section 7.2.5 factors into two isomorphisms denoted by terms in two closed
fragments of LNL, one without linear function types, the other without nonlinear. In models
without one or the other function type, much of the expressivity is retained.

8.2.2 Translating FPC into RLNL

The untyped and FPC combinators are sensitive to the choice of operational semantics. In partic-
ular, call-by-value theories require special, new fixed point combinators because the combinators
inherited from the base theory are bottomized in call-by-value semantics. Fortunately, the struc-
ture of our models allows us to side-step the issue of call-by-wadususcall-by-name. In fact

this was one of the original reasons for choosing a mixed linear/nonlinear calculus, the intu-
ition being that if the recursive types live in the linear part of the calculus their use should be
insensitive to the evaluation sequence.

A price is paid in type complexity. We now view the situation in terms of Levy’s operational
analysis: the type theory forces us to specify, with a ‘thunk’, the points in the term where evalu-
ation is defered. This sits well with the idea of linear use. A parameter whose meaning requires
evaluation must appear in exactly one place so as to have a well defined evaluation context. Note
however that our sugared derivations don'’t require linear identifiers.

Our translations of (our fragment of) FPC into RLNL factor through (our fragment of) CBPV
with recursive computation types. The translations into CPBV match Levy’s translations of call-
by-name and call-by-value calculi (which use the rules for L). The translation of (our fragment
of) CPBV into RLNL is given by the above sugaring.

The equations we have given for FPC generate a ‘call-by-name theory’ because a call-by-
value semantics induces fewer equivalences. We translate the rules of the closed/recursive frag-
ment of FPC into CBPV derivations as shown in Figure 8.5. FPC sequents are translated into
CBPV sequents of the form

Wep a:UA,,...,,an: UAFL:B

with context types and term types translated slightly differently. This corresponds to the idea that
parameters are passed as thunks. Note that the translation carries our derivations of recursive
combinators in FPC to our (sugared) derivations in RLNL.

For a call-by-value semantics, we translate the rules of the closed/recursive fragment of FPC
into CBPV derivations as shown in Figure 8.6. We give two, simultaneous translations of types
into non-linear types and into linear types. The linear translation is used in the translation of
recursive types. FPC sequents are translated into CBPV sequents of the form

Wepa:Ag,,...,,ah - At FB.

Again we translate context types and term types slightly differently.

The fixed point combinators we have given for the lambda calculus and FPC misbehave in
a call-by-value semantics. Evaluated under call-by-value, W¢th and f(Y(f)) diverge, so
while Y (f) is a fixed point off in the sense that(Y(f)) = Y(f), itis not useful. The same
holds forZ(f). There is a work-around for this problem: Ai[f], replaceD[d with 19.D[a](g)
and, inA”, we replaceD[a(f) with Ag.D[al(f)(g). This delays the evaluation of the argument
passed td: the argument is passed as a ‘thunk’ and is only evaluated if ‘forced:’ INote that
the call-by-value image of these call-by-value fixed point combinators in RLNL is equivalent to
our RLNL combinators.

8.2. A Linear Fixed Point Calculus103

8.2.3 Parameterized Adjoint Types

The oblique function type is naturally interpreted by a costructural action and the calculus shown
in Figure 8.4 is naturally interpreted in a suitable structural functor (Definition 5.2.7), on a struc-
turally compact bistructural category. This suggests the addition of rules for a type for the struc-
tural action orD. It also suggests a linear variable introduction rule which is interpreted by the
transformation : cod — d. If a linear area is added to the other rules, this allows linear iden-
tifiers to appear in derivations but only one at a time: a multiplicatio@amould be needed to
interpret multiple linear identifiers.

Since the right Kleisli adjoint for a domain-theoretic lifting monad, which is our leading
example of a suitable structural functor, may be viewed as one component of an exponential,
we propose the calculus shown in Figure 8.7 with a type for the exponential. This calculus is
naturally interpreted by a suitable exponential on a structurally compact bistructural category.
A translation into RLNL can be derived from the construction of a suitable exponential from a
monoidal/cartesian closed adjunction.

104 Chapter 8. Recursive Types for Fixed Point Combinators

> A
>X ... >Y
>X:X,...,¥:YFyYY
>X »B
» (X—B)
» I, x:XFb:B

» - Ax.b: (A—B)

> =x:X »lFg: (X—B)
» - (g)x:B

WA»B
Yy uA.B

W ;M a:B[uA.Bl
W ;M Ffold(a): uA.B

We;MH-a: uA.B
Wy ;N Funfold(a) : B[uA.Bj

> A
> UA

»Ha:A
> I F thunk(a) : UA

> Ex:UA
» [+ force(X): A

Figure 8.4: Jumping fragment of CBPV with recursive computation types.

8.2. A Linear Fixed Point Calculus 105

o T" e T"

e"» S Q"» T"
o"x>us ... O">UuUT"
O">s":Uus, . " UT T UT"
Q" p» s :US,.. . t":UT " force(t") : T"

O"p S
O">US' O"pT"
Q" » (US'-T")

Q"p UMM " US' -t": T"
Q" UrkAs't": (US'-T")

O"p UME&: g

O"> UMk thunk(s): US' " » UMk f": (US'—T")

@"» Ur"+ (f")thunk(s") : T"

oS e TN
Q" p us"T"
Q" UrMHt": T"[usS"T"
Q" » Ur"k fold(t") : uS".T"

" UMkt us"T"
Q" » UM unfold(t") : T"[uS".T"

Figure 8.5: The call-by-name image of FPC in CBPV

106 Chapter 8. Recursive Types for Fixed Point Combinators

o\ T"» TV —
— O, TV TY
oV, TV > UTY

'S ... O'p>TY

O'>s S, VTR TY
99, ..tV T+ produce(t’) : FTY

O'>TY y y
oS o FT orT
O > (S FTY) >S9 OYmFTY
| g —
' » (S'—FTY)

@' > U(S'—FTY)
Q' p Vs S HtV:FTY
e VALY (SV—>FTV)
©' >V thunk(As'tY) : U(S'—FTY)
©Y » 'V - produce(thunk(As’.tY)) : FU(S'—FTY)

O » MVF Y FUS —FTY) @' » IV, x:8,y:U(S'—FTY)F (force(y))x: FT"

©'» I'-s':Fs ©'» IV, x:S'F Y toyin (force(y))x: FTY
©'p» I x:9Fs toxin f' toyin (force(y))x: FTY

0,8 » TV

@', T
L N
e'>Uuus. T H="

OV MVEtV:FTV[uS'.TY] @Y» IV x:UTY[uS" . TY|+ fold(force(x)): uS'.TY
©'» Nt toxin fold(force(x)): uS TV
©' » ' thunk(t' to X in fold(force(x))) : UuS'.TY
©' » 'V I produce(thunk(t’ to X in fold(force(x)))) : FUuS'.T"

Q' MVt FuS'.TV 0w IM,x:UuS . TVF unfold(force(x)): TV[uS'.TY]
©'» NFt' tox in unfold(force(x)): TV[uS".TY|
©' » IV thunk(t¥ to X in unfold(force(x))) : UTV[uS" . TV]
©' » 'V I produce(thunk(t’ to X in unfold(force(x)))) : FUTY[uS".TY]

Figure 8.6: The call-by-value image of FPC in CBPV

8.2. A Linear Fixed Point Calculus107

Y X Yrp A
Y-X ... ¥YpY Y-X ... YpY YWrpA
Wex:X,...,¥y:YFY:Y Wepx:X,...,y:Yia:AlFa:A
>X »B
» (X—B)

» I x: X MkEb:B
» I MNEAx.b: (A—B)

>IEx:X »TiMNkEg: (X—B)
» Nk (gx:B

Y A»B
Y uAB

Wy M;MN+a:BuA.B
Wy ;M fold(a): uA.B

WYe;M-a:uA.B
Wy I;M Funfold(a) : B[uA.B]

Wp A WpB Y>X WpB

Y (A-B) Y (X2B)
Wepl b:BFa:A WpTkEx: X Wel i M-b:B
W>T+Aba: (A-B) We i ME(xib): (XoB)

WeT-f:(A-B) We»TiMFb:B Wl x:Xib:Fd:D WeTiMkc:(XoB)
Wep T iNE(f)b:A Wp i M-ctoXxandbind:D

Figure 8.7: Rules for closed LFPC.

108

Chapter 9

Quotient Relations and Parametric Models

In compact models of RLNL, it is natural to compare the fixed points defined by the combinators
derived in Chapter 8 with the canonical fixed points obtained from compactness in Chapter 6.
Here we use a notion of quotient diparametricity to make this comparison. We observe that,
in the concrete categories of domains that motivate the subject, the two coincide and we derive
conditions on compact adjunctions providing an abstract form of this result. These conditions
may be seen as a typed analogue of Morris’s characterization of lambda-calculus models in which
the Park Coincidence holds [2].

9.1 Quotient Diparametricity

The type of uniformity that characterizes the canonical fixed point operation in Chapter 6 can
be viewed as a particular form of parametricity. We use the graph category framework for rela-
tional parametricity described in Appendix C together with a particular form of relation called

a ‘quotient relation’. For a theory of parametricity to apply to the interpretation of typed terms,
the operations that interpret the type constructions must lift to the structure used to define para-
metricity, in this case graphs categories of quotient relations. One way of doing this uses an
internal logic, but here we describe our liftings directly in terms of the categorical structure. This
brings out just how little structure is required in the case of quotient relations.

9.1.1 Quotient Relations

Categorically, binary relations may be represented by spans. Here we develop a theory of rela-
tions represented by cospans. We develop this theory using pull-backs, but a more general theory
could be developed using Yoneda representations. The important point is the specialized notion
of relation that results.

Definition 9.1.2 Given a category C with pull-backs, the categQ§ of cospan relationsver
C has cospans in C for objects

9.1. Quotient Diparametricity 109

and pairs of maps; such that fo foorj =rj o fyorg for arrows,
f
Co ™

SN \,
e N N
pb r
i

NS /

C1 C&

where i is a pull-back of § along rp and rj is the corresponding pull-back of ralong r;.
Composition and identities are given by composition and identitiesx#rOC

We think of a cospan : ¢; — r as relating those pairs @ x ¢; sent to the same elementrofThe
definition of arrow does not depend on the choice of pull-b&ckin fact, any weak pull-back

will do, soC need only have weak pull-backs. The properties of (weak) pull-backs ensure that
composition inC x C lifts to QC. The categorieQC andC form the edge and vertex categories

of a graph category with source and target functors &’in

c—QC
C C

There is an identity-on-objects functor fro@r to QC, and although it is not generally full or
faithful it extends the full and faithful graph embeddinggafandC' into C* to full and faithful
graph embeddings intQC.

ol Qo< ¢l

C C C

While in Appendix C we present the objects of $8bt as subobjects of products, these
correspond to equivalence classes of jointly monic spans. If we use pull-backs to cast the objects
of QSet as jointly monic spans, we obtain a full and faithful embedding®dét into SubSet.

QSet—""- SulpSet
Set Set

This means that the notion of arrow @Set matches the notion of arrow in S&et which
corresponds to the usual logical relations definition. Note, however, that not every binary relation
over Set is represented by the pull-back of a cospan. For example, no cospan relation relates

a b
y

X

without also relatingo andx. This is a generic counter-example in that a binary relation is
represented by the pull-back of a cosyifarit is zig-zag complete.

Takeyama and Tennent proposed zig-zag completeness [36] as a characterization of relations
induced between different concrete data types that represent the same abstract data type.

110 Chapter 9. Quotient Relations and Parametric Models

Definition 9.1.3 (Takeyama and Tennent)An n-ary relation r iszig-zag completd, for each
permutationc,

or(a,x) and a~b imply or(b,x),

where a~ b if there exists y such thatr (a,...,y,...) andor(b,...,y,...).

Proposition 9.1.4 OverSet an n-ary relation r is represented by the wide pull-back of an n-ary
cospaniff itis zig-zag complete.

Whenn = 2, zig-zag completeness can be described in terms of composition of binary relations.
In a categonR with an involution(-)° : R°? — R, an arrowr, is difunctional[26] if ror®or =r.
This condition is well known in the context of relations between algebras. OrdirRigythe
category of relations R€lover some regular categof. See Meisen [26] for a study of the
relationship between pull-back spans and difunctional relations over categories other than Set.

A regular categoryC is Malt’cev if every arrow in ReC is difunctional. For example, the
category of groups is Malt'’cev. Another example is®8¢80]. This is interesting because,
while RelSefP) uses spans in S&tto represent arrows, we are using spans iff*Setrepresent
objects in SupSet which correspond to arrows in RelSet and, either way, the arrows we get are
all difunctional. What about the category we haven't mentioned,&€fP)? The category
QSet is equivalent to its full subcategory of jointly epic cospans, and this is equivalent to the
opposite of Su(SefP).

There is nearly an isomorphism betwe@8Bet andd,;Set”, the category of cospan diagrams
with the vertex component of arrows existentially quantified. The exceptions occur with arrows
to the identity cospan on empty sets from other cospans on empty sets.

NN N\
N S S

WhenC is the category of non-empty sets or the category of pointed sets and point preserving
functions, the category of cospan relatid(s is isomorphic to the cospan categafy,C which
is equivalent to the opposite of S{{E°P).

9.1.5 Push-me-pull-you’'s

There exists a pleasantly symmetrical construcowhich is equivalent t&@Q when applied to
pull-back categories.

Definition 9.1.6 Given any category C, the categafC of push-me-pull-you'over C has, for
objects, commutative diamond# p

9.1. Quotient Diparametricity 111

such that any span;ahat commutes with the cospart pommutes with any cospan that
commutes with the sparf p

pgod = pioa and pjobo=plob; = bpoas=byoay,

Po
7 N5
ao/pg/ po\bol\

and, for arrows, pairs of maps $uch that go foo pd = g}o f0 p?.

Po—— Qo

NS

PL ————
Composition and identities are given by composition and identitiesx#rOC

The push-me-pull-you condition abstracts the property of (weak) pull-backs that ensures compo-
sition lifts fromC x C. Identities lift fromC x C because the diamonds commute. Informally, the

span generates pairs, while the cospan tests pairs. Commutativity says every pair generated must
test good. The push-me-pull-you condition says every pair that tests good must be generated.
The objects oKC include all (weak) pull-backs and (weak) push-out€inOver Set or any

C with both pull-backs and push-outs, a diamond is a push-me-puliffythe pull-back of the

cospan commutes with the push-out of the span.

Proposition 9.1.7 (Robinson)A choice of pull-backs in C gives an equivalence between the
categoriesQC andKC which is a graph equivalence over the identity on C.

Qc - ke
C C

Proof. One direction of the equivalence takes a cospa@@nto its chosen pull-back diamond
in KC and arrow pairs to themselves. The other direction takes a diamadf@ io its cospan
part inQC and arrows pairs to themselves. These two functors give the identi®Coand the
endofunctor orKC that normalizes push-me-pull-you’s to pull-back’s. Any push-me-pull-you is
isomorphic to any (weak) pull-back diamond with the same cospan. a

Proposition 9.1.8 Given a choice of pull-backs in C, closed structure on C lifts to closed struc-

ture onKC.
[~ +ke

(KC)°P x KC KC

b e |

CPxC———=C

112 Chapter 9. Quotient Relations and Parametric Models

Proof. The cospan part df-, +]kc is given by applyind—, +|c to the cospan of the covariant
argument and the span of the contravariant argument. The span part is given by the pull-back of
the cospan part.

p a = [P, dlkc
P Po qo\ [Po, Golc
p° \pg h gt o [P a'c
0 1 0
pl\ N . /ql o [p37,q1lc

The cosparip®,gl] internalizes the test on arrow pairs in the definitiork@. The pull-back

span then generates all pairs that test good. We must chedkitlygtcarries these to good pairs
according to the cospaip%,q] . Note that the spafp!,q®] does not generally generate all
the pairs in[pio,qil]*—the contravariant place in the function space does not generally preserve

pull-backs—so we cannot appeal to the diagram

[0, Go] — %L~ [pp.)
/[p(l)qu} [Pély%&
[pl7 qo] [p/o7 q/l]
N
(pt.of) [R5
\ [hl7gl] ;o /
[p1, 0] [P1, 0]

Instead, consider a pafr: pi — q; in [p% g*]*. We know this gives an arrow fromto q because
[pP,] internalises the arrow test.

/ fo

Po s

ho Po % do
ST N N
/po /po qO\ qo\
0 0 1 ql qll

p q p P
N A
Py \DE >< of ot
N hl\ f1 / 01 /
Ph P1 1 a

By the push-me-pull-you properties pf andqij, the composite pain; o fj o gi, which is[h;, gi]
applied tofj, gives an arrow fronp’ to ¢, but then this pair tests good according to the cospan
[p/°, o] which internalizes the arrow test fromito . O

Corollary 9.1.9 Given a choice of pull-backs in C, closed structure on C liftQ@

9.1.10 Componentwise Liftings

9.1. Quotient Diparametricity 113

If U :D — Cis a pull-back functor (functor preserving pull-backs between categories with pull-
backs), then it lifts componentwise to a func@u : QD — QC.

do U dO
\\ \UK
S — Us
/S/ e
dl U dl

Given an arrow paiff; in QD, we check that the imadé f; is an arrow pair irQC by taking, for
our pull-back ofU s, the image of a pull-back «f.

Udo—2° - udy
PN AN
u(s) U U
~ s'\ K
U(s") pb Us us
\U(Sé‘) US&L/ Us1/
NS o e
Ud; ud;

Taken withU, the functorQU gives a graph functor.

QD . qc
D—2=C

Definition 9.1.2 thus gives the object part of a funcr PBCat— GCat from the category

of pull-back categories to the category of graph categories. In fact, the construction extends
to functors taking pull-backs to weak pull-backs and to functors preserving weak pull-backs
between categories with weak pull-backs.

PBCat—Q— GCat
/

Qu
|
PB,Cat Qw

|/

WPBCat

TheseQ extend to 2-functors: the functo@®J act componentwise on the cospans that make up
the objects oRD, so the components of any natural transformatiaty = U’ also give a graph
transformation fronQU to QU’.

Udo U’do
}151(\\Us\ \U’so\
(Us)* Us % U’s
ESOK /Usl/ /U’sl/

Uds a U’'d,

114 Chapter 9. Quotient Relations and Parametric Models

WhenD has pull-backsD x D has pull-backs. These are computed componentwis@(Box D)
is isomorphic taQD x QD.

X

GCatx GCat GCat

e =4
PBCatx PBCat— > PBCat
Any binary operatiorM on D x D that preserves pull-backs therefore lifts componentwise to a
binary operation oD x QD.

QD x QD= Q(D x D) . qc

For example, the smash producton Cppo can be expressed as a pull-back (the image under
lifting of the product expressed as a pull-back in Cpo) and so preserves pull-backs. It therefore
lifts componentwise tQCppo, .

do d6 do®d6
\ \ ! \ !
r ro®rg
N N N
r r/ — r ® r/
rl/ ri rierg
/ /
dy d, d@d;

If pull-backs are used to emb&Cppo, into SukCppo, , thenQ® corresponds to the smash
productX [9] which is adjoint to the parametric function spdeg +|sun,cppo, -

Q®

QCppo, x QCppo; QCppo,
‘ I
pbxpb po| |pb
i

SukyCppo, x SurCppo; S SukCppo,

While Q® is equivalent to the composite p& o (pb x pb), the functorQ® is given by a natural,
componentwise definition, whilg is defined using an existential quantification and a completion
or, more abstractly, certain coequalizers in the category of lift algebras.

How might the above apply to operations of mixed variance? WhemdD°P have pull-
backs,D x D has pull-backs. IF is a pull-back functor o°P x D, we obtain a graph functor
QF on Q(D%) x QD = Q(D° x QD). The following proposition then gives us a graph functor
on (QD)°P x QD.

Proposition 9.1.11 When D and B® have pull-backsQ(D°P) is equivalent tq QD)°P.

Proof. The pull-back operations on the objects{{D°P) and(QD)°P give the equivalence.
In other words, on thosP that have both pull-backs and push-outs, the 2-fun@aom-
mutes up to an equivalence with the opposite category 2-fufgtr. Cat— Caf®.

()% o
GCat———— GCaf

oL &
‘ (.)Op ‘

PBPOCat—— PBCaf®

This is a little surprising. It mear®C is equivalent td Q(C°P))°P whenC has both pull-backs and
push-outs. BotlQC and(Q(C°P))°P have pairs of maps for arrows, but the objects are different

9.1. Quotient Diparametricity 115

and arrows are tested differently. Take for exam@eet. In comparison with the category
SubSet of all binary relations over Se)Set has the same notion of arrow but only represents
some relations (the difunctional ones), whil@(SefP))°P, having spans for objects, represents
all relations but has a more liberal notion of arrow tested using a push-out (pull-backih@et
the codomain span.

fo

Co c Co c

N Ny e W N

/ N \ / / N
r* pb r r' r r' pb r'+
r* r / // \ \ ! I+
0 1 r r o
\ / f, / \ f, AN e

C1 i C1 ¢

Note, however, that this method of lifting mixed variance functors goes all wrong when ap-
plied to closed structure. Assumi@jP has pull-backs, these are not generally preserved by the
contravariant part§—, c|c : C°? — C of a function space functdr-,+]c. However, given just
pull-backs inC, any function space functdr, +|c : C°P x C — Clifts to a reflexive graph functor
[—,+]QC: (QC)°P x QC — QC, with or without pull-backs irC°? and whether or not those &

are preserved.

9.1.12 Uniformity as Quotient Diparametricity

In [28], Mulry internalizes uniformity (for transformations of fixed point type) using a notion of
‘strong dinaturality’. A transformation is strongly dinaturalif, for all g: d — d’,

Qg

F(d,d) G(d,d)
/ \F(d,% \G(d,g)\
P pb F(d,d) G(d,d")
\ F(g,d{7 G(g,d{7
e w -
F(d',d) ¢ G(d',d)

AssumingC has pull-backs, this is parametricity with respect to certain objed@Cin

Proposition 9.1.13 Strong dinatural transformations from F to G are identical with diparamet-
ric transformations fronQF o ((17o |J) x 1) to QGo ((1To |[) x 1}).

D! Txt QG
(Dl)Opx Dl &) (DOp)T X Dl % Q(Dop) X QD Tc)) Q(DOPX D) QF; QC

Diamonds of the form

116 Chapter 9. Quotient Relations and Parametric Models

are pull-backs, This means the above funétos) can be written as! followed by a pull-back
operation fromQD)°P to Q(D°®P).

(15

(D})oP —— (QD)"p
lJr lpb
T
(D)1 —=- Q(DP)

The above functors ofD!)°P x D! therefore factor through functors ¢QD)°P x QD.
QG

(1o x DI (QD)oP x QD % (D) x QD —~ Q(DP X D) | sac

Corollary 9.1.14 A family of maps is strongly dinatural if it gives a diparametric transformation

from QF o (pbx QD) to QGo (pbx QD).

Now suppose transformatiam has the type of a fixed point operator. That is, supgése
is the function spacé—,+] of some closed categoy and G is the second projectionc on
CO°Px C. The function space lifts to a functpf, —|qc given byQ[—,+] o (pbx QC). The second
projectionzgc on (QC)°P x QC throws away its first argument and so equ@ig: o (pbx QC).
Therefore, by the Corollary, a diparametric transformation ffem-]qc to mqc gives a strong
dinatural transformation from the functéf, —| to the functormc. In this case, however, the
converse holds.

Proposition 9.1.15 A family of map$; : [c,c| — c is strongly dinaturalff it gives a diparametric
transformation fronj—, +]qc : (QC)°P x QC — QC to mgc : (QC)°P x QC — QC.

Proof. We check that the priori stronger parametricity condition is implied by strong dinatu-
rality. Strong dinaturality for these two functors says, modulo an internalisation, that we have
o(f(fo)) =f(f1), for any fo, f1 andg such thago fo = f10g.

f f(f
Co —> Co 110
lg \Lg = g
f1
CL—C Cl

Diparametricity says, modulo an internalisation, that we hg& fo)) = g1(f(f1)), for any fo,
f1 and cosparg, h) such thago foog; =ho f1ogp.

fo

Co Co
91‘/ QI/ \Jo
/ £ / AW
g g pb y g
AN AN
9% % i
"\ WO S
C1 C1
f(f
1 (fo) o
/ QI/ \\3\
= 11— ¢ pb g

\ \96 /q/
f(f) N
1 C1

9.1. Quotient Diparametricity 117

/ \ f(f*)\go\
AN / w

C1

This follows from strong dinaturality applled o, fo andg; and tof*, f; andgg, wheref* is
the unique span map froffoo g7, f1ogg) to (97, 95)- 0

We have given a direct proof, but the Proposition is just one consequence of the following
Lemma.

Lemma 9.1.161f F : C°? x C — C preserves pull-backs in it's covariant component or takes
push-outs to pull-backs in it's contravariant component, then a family of roaps$(c,c) —
G(c,c) is strong dinatural if and only if it is diparametric with respect@t.

Proof. Suppose the covariant functsr*,+) preserves pull-backs. Th&r (r*,ry),F(r*,r3))
is a pull-back of(F(r*,rg),F(r*,r1)) and we obtain a mapfrom the pull-backF(r*,r)* to
F(r*,r*). Diparametricity at; then follows from strong dinaturality at (upside-down in the
diagram below) pasted alomg- to strong dinaturality aty.

O
F (o, Co) = G(co, o)
E%CK alry o k
E(r*rq)/7 xr*,ro\) r* r/)1 }r* r\&)
F(rer) —— ='— — = F(r*,r*) pb? F(re,r) G(r*, r*) G(r*,r)
7 7
F(rerg) F(r*ry) &r* s G(r*,r1)
LA %
5("8:(:{1 rOv({
Oc
F(c1,¢1) ! G(Clacl)

On the other hand, iF (—,r) takes push-outs to pull-backs. Thén(ro,r),F(r1,r)) is a pull-
back of(F(r;,r),F(rg,r)) and we obtain a mapfrom F(r*,r)* to F(r,r). Diparametricity ar;
then follows from strong dinaturality &g and atr;.

(07
F(Co,Co) © G(co, Co)
N
F(co.ro) Gleorro)
\ \
' /F(rO,/ \F(rf,g E(ro{ \6(er
R = =2 —=F() pb? F(Mr) G G(r".1)
\F(rl,r) F(rg ,r/)1 E(rl r) G(rs ,?7)
i il
Oc.
F(c1,¢1) - G(cy,¢1)

118 Chapter 9. Quotient Relations and Parametric Models

Note that neither half of Lemma 9.1.16 uses the full bifunctoralitf-radind G. If F(id,rg) o
F(ri,id) #F(r3,id)oF(id,ro), sothat(rj,ro) is not well defined, then we can taé ((ro,r1), (So,S1))
to be the cospafF (id,ro) oF (r3,id)),F(id,r1) oF (r§,id), in which case the first half of the proof
goes though, or we can take it to (Fe(r7,id) o F(id,ro),F(rg,id) o F(id,r1)) in which case the
second half goes though.

WhenF(—.+) is the function spacg-, +] associated with some tensor productso that
F[r,+], is a right adjoint to ® () and, hence, preserves pull-backs, then, by the Lemma, strong
dinaturality from[—,+] to G(—, +) is equivalent to diparametricity with respect@€. Also, in
the case of function spaces, the oper&pr, +] is functorial.

9.2 Domain Theoretic Models of Recursive Linear Types

The addition of recursive types to LNL is motivated by the existence of invariants in domain-
theoretic adjunctions. The fact that, in these adjunctions, the invariants are actually Freyd alge-
bras allows us to interpret nested and mixed variance recursive types. However, we do not see
that the equational theory of RLNlequiresthat a recursive type be interpreted by a Freyd alge-
bra. The term model does not then form a compact adjunction and so domain-theoretic models
are special.

To get around a lack of Freyd algebras in the term model, the general notion of RLNL model
we give in Section 9.2.1 uses a technical notion of pre Freyd algebra. In Section 9.2.5 we describe
how a fixed point combinator can be used to show that the term model has pre Freyd algebras.

In the notion of uniformity defined in Chapter 6 variation is limited to strict maps. In Sec-
tion 9.2.7 we observe that this can be built into a modified notion of quotient relation, although
in RLNL models variation is already limited in this way.

This means that the transformation interpreting any fixed point combinator is uniform, so
long as the structure modeling the term derivation lifts to quotient relations. Since compact
adjunctions have canonical fixed points and these are characterized by uniformity when the right
adjoint is injective on objects, In Section 9.2.9 we give a definition of domain-theoretic adjunction
that ensures that all structure lifts to quotient relations. This ensures that fixed points defined by
combinators coincide with the canonical fixed points of the model, which, in partial order models,
coincide with least fixed points.

9.2.1 RLNL Models

The type theory LNL is interpreted in a symmetric monoidal/cartesian closed adjubctibh:

D — C. Linear types and terms in context are interpreted using objects and transformations in
the monoidal closed categoBy and linear types and terms, using functors and transformations
in the cartesian closed categ@y

Definition 9.2.2 (Benton [3]) AnLNL modelin a symmetric monoidal/cartesian closeeil :
D — C is given by a function from types in context to families of objects indexed by tuples of
objects in D that respects the equations

[[Alv"'7Ak>Ak]] = dka at(dlv"'adk)

[W> (X=Y)] = [[W>X],[¥Y>Y]]c
[W» (A—-B)] = [[W» A],[¥Y»B]lp
[WrLX] = L[¥Y>X]

[W>UA] = U[W»A]

[Wo (XxY)] = [WoX]x[¥>Y]

9.2. Domain Theoretic Models of Recursive Linear Typ&%9

[Wr (XeY)] = [WYrX]][¥rY]
W1 = 1
[Wel] = |

and a function from terms in context to transfomations that respects the equations

domWex: XF£(X): Y] = [W>X]
cod[Wr x: XH£(X):Y] [Wr>Y]
[Wr> X1 Xg,..., X0t Xn b Xn Xn] Tin = AC O Wi X] x - x [WrXa]
[Wrx1:Xg,....Xn: Xqgra:Aka:A] Ap o ((Uo Ltpwex] x--x[wox]) @ 1w ap)
[Wr> T+ thunk(a) : UA] UWeTHa:Alon
[Ww» IFforce(X):A] goL[WrT Fx:UA]
[W» I produce(x) : LX] LW T Fx:X]
[We» TN Fbtoxina:A] = [WeTx: X MFa:Afo
do (Lidpexy @ [W» T 11 +b:LX])oop

By adding interpretations for the recursive linear type construction and the rules for intro-

ducing and eliminating recursive types, we extend the definition of LNL model to a definition
of RLNL model. As we control the construction of recursive types using type contexts, our in-
terpretation of recursive types is based on an interpretation of types in context. We interpret the
nonlinear and linear type sequei¥s> X and W » A derivable in RLNL, as functors ofD|
where|D| is the discreet category of objects Bf andk is the number of type variables H.
These functors lift to functors ofD x D)X, Except for the function types, the operations used
to interpret types extend to functors on multiple®ofTo accomodate function types, we can use
functors on multiples ob°P x D. All these functors are structural with respect to the canonical
structural actions.

Proposition 9.2.3 In an LNL model, the interpretation of each type in context extends to a struc-
tural functor on a multiple of B° x D.

To interpret the introduction and elimination rules for recursive types we require an invari-
ant for the endofunctor interpreting the type construction that appears in the recursive type. As
the calculus allows recursive types to be nested, it is also necessary that the delivery of these
invariants lifts to a functor with invariants of its own. The theory of structural algebraic compact-
ness presented in Chapter 4 provides just such invariants; however, we would also like the term
category to have the structure we require for our models and although we see how to construct
canonical recursive maps to and from invariants in the term category, we do not see that these are
unique. Let us say that@re Freyd algebras an algebra with a given recursive morphism from
any coalgebra and a given algebra morphism to any algebra.

Definition 9.2.4 AnRLNL(F) modelis an LNL(F) model in whicK » b : B[uA.B[A]| F fold(b) : B[A]
is interpreted as a pre Freyd algebra for the (parameterized) functor that intergtetsy B.

9.2.5 Recursive Types in Term Models

The type theory LNL can be used to build a categorical model of itself. In the symmetric
monoidal closed categor, objects are linear type expressions and arrows are equivalence

120 Chapter 9. Quotient Relations and Parametric Models

classes of derivable terms in singleton linear context. The equivalence is generated by the equa-
tional theory and alpha conversion on the variable appearing in the context. Composition is given
by well-typed substitution of term for free variable and identities are given by the linear variable
introduction rule.

We define a functor : D x D — D by taking an arrow given by the pair of ter¥s» a :A-b: B
andW» & : A'+ b’ : B to the arrow given by

Wy c:(A®A)Fctoaand d in (bb): (BoB).

We define a functof—,+] : D°? x D — D by taking an arrow given b » b :BF a: A and
We» d :A'+b[d]: B tothe arrow given by

W g: (A—A) - Ab.b[(g)al : (B—B').

We check that these operations are functorial. A cartesian closed caeigaigfined in the same
way using nonlinear types and nonlinear sequents with singleton context, except the functor giv-
ing products takes an arrow given by the pair of tekhs x : X Fy:Y andW > x' : X' Ry 1Y’
to the arrow given b > z : (XxX’') - (first(z),second(z)) : (Y xY’).

We define a functok : C — D by applying the type constructor L to objects and taking an ar-
row given by > x: X - y[x] : Y to the arrow given by» a: LX Fato X in produce(y[x]) : LY
and we define a functdd : D — C by applying the type constructor U to objects and taking an
arrow given by » a:Al-b[d : B to the arrow given by> x : UAF thunk(b[force(X)]) : UB.
We check that these operations are functorial.

By Corollary 7.2.4] is left adjoint toU and from the proof of Proposition 7.2.3 we see that
the unit atX is given by

>> X : X - thunk(produce(X)) : ULX

and the counit aB is given by
» a:LUBFatoxin force(X):B.

In [24] it is shown that this construction gives the object part of an equivalence between a
category of LNL theories and a category of symmetric monoidal/cartesian closed adjunctions,
which means that LNL ishelanguage for such adjunctions. We do not have a similar result for
RLNL and compact adjunctions. However, in the term model of RLNL, we can use fixed point
combinators to construct the morphisms into and out of an invariant, even if this does not make
the invariant a Freyd algebra as there is nothing to say that these are the unique such morphisms.

Given a functor defined by a linear type expressiom B[A], consider the arrow given by

> b : B[uA.BA]| I- fold(b) : uA.BJA]

as the structure morphism of an algebra. First, given an apdwem C to B|C] we require a
recursive morphism given by an arrow franto pA.B[A]. Such an arrow is a fixed point of
the endofunction o®(C, uA.BJA]) given by composition witlp[c] andfold(b). Internally, this
endofunction is represented by

Af.thunk(Ac.fold((B[force(f)])pld])) : (U(C—opA.B[A])—U(C—ouA.B[A])),

whereBjf] is determined by the type expressiBfA]. Applying a fixed point combinator, we
obtain a term of type (C—uA.B[A]) which gives a term of typ@C—uA.B[A]) which uncurries

to give the desired arrow froi to uA.B[A]. We check that this gives a recursive morphism.
The arrow given byfold(b) has an inverse given nfold(a) and a similar construction gives
us a recursive morphism froonfold(a) to any algebra foB.

Proposition 9.2.6 The monoidal category of the term model for RLNL(K) has a pre Freyd alge-
bra for every endofunctor defined by a type expression in RLNL(K).

9.2. Domain Theoretic Models of Recursive Linear Typ&81

9.2.7 Uniformity in RLNL Models

For uniformity to characterize canonical fixed points, it is necessargtharty overstrict maps

only. In Mulry’s setting, the notion of strong dinaturality must be correspondingly weakened. In
that setting, strict maps are algebra morphisms and so Mulry uses the notion of strong dinatural
transformation with variation restricted to algebra morphisms [28, Def. 3.11].

Before we consider the interpretation of RLNL, we observe that a factorization system in Cat
can be used to describe the correspondingly weakened parametricity condition. Strict maps will
be those in the image of some functdr. D — C. In Mulry’s setting,U is the forgetful functor
from the category ofU-algebras.

In Cat every functoF factors as a bijective-on-objects functay, followed by a full-and-
faithful functor /. If D is the domain of, the interpolating categondF has the objects of
D for objects and has hom sets given by H®&it-), F(+)). This factorization system lifts to
graph functors, because the operatitns the object part of a functor from Fun, the category
of functors and functor squares commuting up to given natural isomorphisms, to Cat. A graph
morphism gives a graph in Fun whi¢hthen sends to a graph category. Assuntihg a pull-
back functor, we therefore obtain a gragliQU) by factoring the graph functd@@U. Note that
H(QU) is notQ(HU). Our definition of the latter requird$U to have pull-backs (which it does,
by the way, ifU creates pull-backs).

QD QC

HU
y &
D U C

WhenL U is a closed adjunction, the closed structurédifts alongUs to closed structure
onHU by defining

H(QU
|

def

[—,+hu = [LU—,+]p.
This closed structure commutes with up to a natural isomorphism: U [LU —, +]p = [U—,U+]c
which is the internalisation of transposition. Similarly, closed structur&@®@rlifts to closed
structure orH(QU) and we obtain a graph functpr, 4] qu) : H(QU)® x H(QU) — H(QU).
This is the image undeét of closed structure on the gragiy overU in Fun.

Proposition 9.2.8 A family of mapdy : [Ud,Ud] — Ud in C indexed by the objects of D is
strongly dinatural with variation restricted to If it gives a diparametric transformation from

[—,+]H(Qu) 10 TH(Qu)-

Remark. More generally, Section 6.2 uses uniformity to characterize the canonical recursive
morphisms Rp,s) induced by a fixed point algebra. When the operation that produces canonical
recursive morphisms is internalized to a collection of map§dRFb] x [Fa,a] — [b,a], this uni-
formity can also be viewed as diparametricity with respect to quotient relations. This generalizes
the situation with the canonical fixed point operations.

In an RLNL model, types are interpreted by functors on (multipledgf$o parametricity
is already with respect to quotient relations ofzer In the case of the fixed point tyg&d —
Ud) — Ud this amounts to restricting variation to strict maps.

122 Chapter 9. Quotient Relations and Parametric Models

9.2.9 Fixed Point Combinators in Domain Theoretic Models

Consider a compact symmetric monoidal/cartesian closed adjunction. The right adjoint is not
obliged to be injective on objects, so we ask for this to ensure that the canonical fixed point op-
eration is the unique uniform fixed point operation. The majority of the structure in the compact
adjunction lifts to quotient relations: products and right adjoints preserve pull-backs, the closed
structure lifts by Corollary 9.1.9, natural transformations are automatically (di)parametric and,
using identity relations, Freyd algebras for (diagonalized) endofunctors that lift also lift. This
leaves the left adjoint and monoidal multiplication. In concrete adjunctions between categories
of partial orders these preserve pull-backs, so we ask for this explicitly.

Definition 9.2.10 Adomain-theoretic monoidal adjunctigga compact symmetric monoidal/cartesian
closed adjunction whose right adjoint is injective on objects and whose left adjoint and monoidal
multiplication preserve pull-backs.

Consider an RLNL model in a compact adjunction. Although the compactness provides a model
of recursive types, we do not see that our weakened notion of RLNL model is not obliged to
follow this interpretation. We therefore ask for this explicitly. One might say that the Freyd
algebras provide the canonical interpretation of recursive types.

Definition 9.2.11 A domain-theoretic model of RLNIs a model in a domain-theoretic adjunc-
tion with recursive types interpreted by Freyd algebras.

The natural transformations that interpret RLNL are quotient diparametric and all the structure
that interprets the rules of RLNL preserves quotient diparametricity so every term is interpreted
by a quotient diparametric transformation.

Proposition 9.2.12 In a domain-theoretic model of RLNL the interpretation of any term gives a
guotient diparametric transformation.

Corollary 9.2.13 In a domain-theoretic model of RLNL the interpretation of any fixed point
combinator coincides with the canonical fixed point operator.

123

Chapter 10

Directions for Future Work

Limits on space and time have forced us to ignore, as best we could, a number of interesting
possibilities. We sketch those that seem most promising or intriguing, beginning with those we
most hope to pursue in future.

10.1 Fox’s Construction and Lemma 2.1.4

Loosely speaking Lemma 2.1.4 uses the structure maps of the algebras and coalgebas as unit and
counit maps at the level of algebra/coalgebra morphisms. Similarly, Fox’s construction uses the
structure of commutative comonoids to build the maps required by products and a final object.

Given a monoidal category with mulitplication: D x D — D, the multiplication gives prod-
ucts if ® is right adjoint to the diagonal : D — D x D. If we apply Lemma 2.1.4 to these two
functors we obtain an oblique adjunction between algebra/coalgebrassfand@A. Coalge-
bras for the latter are given by maps d — d ® d which is a step towards comonoids and parts
of the oblique adjunction are reminiscent of Fox’s construction.

This is only part of a complete picture however. While the products and final objects are
described by independent adjunctions, there is a curious symbiosis between multiplications and
units in Fox’s construction. So, for a start, it would seem that Lemma 2.1.4 would have to be
applied to a pair of functors involving both multiplication and unit.

We find the possibility of a connection particularly intriguing as we have used Lemma 2.1.4
so closely with Fox’s construction in our account of parameterized fixed point objects.

10.2 The Free Adjunction on the Distributor Classifier

The free adjunction over a director looks to be very interesting. The simplest case is that of the
free adjuntion over the director with just the one oblique edge between two kinds of object (which
happens to be the distributor classifier). This has objects of the(fotn’ L, (UL)"U T, (LU)"T
and(LU)"L_L, with n € N, and lots of maps. It appears to be some sort of vertical naturals glued
to itself upside down. Computationally, it would seem to be the free computational calculus on
one ‘tick’.

10.3 Logical Relations

We have used the graph category framework for binary relational parametricity in a very elemen-
tary way. Really we should have built a graph compact adjunction to obtain a theory of logical
relations for RLNL. Using a more sophisticated form of quotient relation it may be possible to
show thatany compact adjunction is a parametric model (with respect to the more sophisticated

124 Chapter 10. Directions for Future Work

notion of relation) and therefore interprets fixed point combinators as canonical fixed. In fact,
this was the original aim of this thesis. The sticking point seems to be the left adjoint (which is
one point of tensor multiplication d@ and so there is trouble there t00).

10.4 Other Fixed Point Transformations

As we mentioned in Section 6.3.3, in a purely exponential model we have an alternative inter-
nalization of the fixed point operator and it is not difficult to derive a fixed point combinator to
inhabit the corresponding type expression in LFPC. Because exponential models have opposites,
we also obtain a dual fixed point operator with componétesd) — d)—e — (e—d), but we do

not see the corresponding combinator (in the absence of an actio@}ype

10.5 Other Recursive Types

There is another idiom staring out at us from the fixed point derivations. The recursive types are
always used in conjuntion with the type constructor U in one of three idioms.

Idiom Sugar
W, A » B[UA]
— .Y » B[Y]
W uA.B[UA] -
— ® > uY.B[Y]
W > UuA.B[UA]

W I +a:BUuA.B[UAJ]
W I+ fold(a) : uA.BJUA]
W > T+ thunk(fold(a)) : UnA.B[UA]

®»Fa:B[uY.B[Y]]
® >+ fold(a): uY.B[Y]

W T Fx: UuA.B[UA]
We IF force(x) : uA.B[UA]
Wy I Funfold(force(x)) : BlUuA.B[UA]|
Here is the sugared form of the derivation(f

T EFx:uY.B

®» I Funfold(x): B[uY.B]

Y.B>Y Y. B» B
A,B» (Y—B)
B» uA.(UA—B)

—_——
M

B>M
B>M B>x:MEx:M
B>x:MEXx:M B » x:MFunfold(x): (M—B)
B» x:MF (unfold(x))x: B
B» F AX.(unfold(x))x: (M—B)

A
By FA:(UM—=B)
B fold(A):M B» HA:(M—B)

B» - (A)fold(A):B
Q

10.6. Parametricity and Compactnes$25

This derivation inhabits LFPC together with the rules shown in Figure 10.1.

10.6 Parametricity and Compactness

In view of Plotkin's observations on parametricity and compactness the term model of RLNL
could probably be made compact if the calculus were extended in some way that would allow
parametricity to be expressed, for example by including a type constructor that internalises the
collection of quotient relations or allows it to be internalised. Or perhaps it is enough to add
structure that ensures the left adjoint and tensor preserve pull-backs as in domain-theoretic mod-
els.

10.7 Models of closed LNL.

While closed LNL has an notion of model in symmetric closed adjunctions inherited from the
notion of LNL model in symmetric monoidal closed adjunctions, the question of term models
and, hence, categorical completeness requires other structure.

Without product types, there are [sigh] at least two ways to build a categorical term model
out of a simply typed lambda calculus. We can abandon the notion of types as objects and
build a cartesian closed category of contexts and simultaneous substitutions, or we can use types
as objects, but index our model with a category of contexts. In the first case we obtain a simple
category with complex objects and a contrived function space, while in the second case we obtain
an indexed category with simple objects and natural function spaces.

As the category of types acts on the category of contexts by context extension, the notion of
structural action might still be useful. For closed relevant calculi the notion of structural action
might be generalized from indexed comonad to indexed structure that models the relevant form
of context extension.

10.8 2-Categories for Types

In Chapter 3 we have a definition of lax monoid in categories with lax monoid structure. This is
an example of what Baez calls the microcosm principle: internal structure requires like external
structure. Does this apply to fixed point structure? Is there a 2-category in which the invariants
of compact categories are induced by a generic endofunctor in a 2-categorical analogue of a fixed
point object? Something like this seems to be happening in Wraith’s construction of a natural
number object in the category of bounded toposes which is then used to identify internal iterates
(which makes essential use of distributors). A starting point might be the 2-category of compact
adjunctions or, to connect with Wraith’s construction, Vicker's Geometric Domain Theory.

126 Chapter 10. Directions for Future Work

d.Y»B
®r>uY.B

®p»Ha:B[uY.B
®>TFfold(a):uY.B

dp>TEx:uY.B
® » ' - unfold(x) : B[uY.B]

unfold(fold(a)) —p a
X =p fold(unfold(X))

Figure 10.1: Rules and equations for linear recursive nonlinear types.

WA X
Y uAX

W THb:X[pAX]
We I+ fold(b): uA.X

Wep M iMkEb:uAX W x:X[uAX 1M Fa:A
Wep i MNMNFbtoxina:A

fold(y) toxinalx] =g aly]
a =, atoXxinfold(x)

Figure 10.2: Rules and equations for nonlinear recursive linear types.

127

Bibliography

[1]

(2]
(3]

[4]

[5]

[6]

[7]
(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Barber and G. Plotkin. Dual intuitionistic linear logic. Technical report ECS-LFCS-96-
347, LFCS, University of Edinburgh, 1996.

H. P. BarendrechiThe Lambda Calculus — Its Syntax and Semanhicsth-Holland, 1984.

P. Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary
report). Technical Report 352, Cambridge University, Cambridge, England, October 1994.

P. Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended
abstract). In Leszek Pacholski and Jerzy Tiuryn, edit@mmnputer Science Logigolume
933 ofLecture Notes in Computer Scienpages 121-135, Berlin, 1995. Springer Verlag.

P.N. Benton, G.M. Bierman, V.C.V. de Paiva, and J.M.E. Hyland. Term assignment for
intuitionistic linear logic. Technical Report 262, Computer Laboratory, University of Cam-
bridge, 1992.

Richard Blute, J. R. B. Cockett, and R. A. G. Seely. Categories for computation in context
and unified logic.Journal of Pure and Applied Algebrd16:49-98, 1997.

Francis BorceuxHandbook of Categorical AlgebraCambridge University Press, 1994.

Roy L. Crole and Andrew M. Pitts. New foundations for fixpoint computations: Fix-
hyperdoctrines and the fix-logitnformation and Computatiqre8(2):171-210, 1992.

Brian Dunphy. Parametricity as a Notion of Uniformity in Reflexive GraphihD thesis,
Department of Mathematics, University of Illinois, 2002.

Marcelo P. Fiore.Axiomatic Domain Theory in Categories of Partial MapBhD thesis,
University of Edinburgh, 1994.

Marcelo P. Fiore. An enrichment theorem for an axiomatisation of categories of domains
and continuous functionsMathematical Structures in Computer Scien¢és):591-618,
1997.

Marcelo P. Fiore, Gordon D. Plotkin, and A. John Power. Complete cuboidal sets in ax-
iomatic domain theory. IfProceedings of the 12th Annual IEEE Symposium on Logic in
Computer Scienggages 268—-279. IEEE Computer Society Press, 1997.

T. Fox. Coalgebras and cartesian categoriégsmmunications in Algebral(7):665-667,
1976.

Peter Freyd. Algebraically complete categories. In A. Carboni et al., edRoos, 1990
Como Category Theory Conferene®lume 1488 ot ecture Notes in Mathematicpages
95-104. Springer Verlag, 1991.

Peter J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P. T. John-
stone, and A. M. Pitts, editorgpplications of Categories in Computer Science: Proceed-
ings of the LMS Symposium, Durham, 19®dmber 177 in LMS Lecture Notes. Cambridge
University Press, 1992,

128 Bibliography

[16] Claudio Hermida and Bart Jacobs. An algebraic view of structural induction. In Leszek Pa-
cholski and Jerzy Tiuryn, editor€SL, volume 933 ofLecture Notes in Computer Science
pages 412-426. Springer Verlag, 1995.

[17] Jesse HughesA Study of Categories of Algebras and CoalgerB&D thesis, Department
of Philosophy, Carnegie Mellon University, May 2001.

[18] Bart JacobsCategorical Type TheoryPhD thesis, University of Nijmegen, 1991.

[19] G. M. Kelly. Coherence theorems for lax algebras and for distributive lhesture Notes
in Mathematics420:281-375, 1974.

[20] Anders Kock. Monads on symmetric monoidal closed categofies Math. (Basel)pages
1-10, 1970.

[21] Joachim Lambek. A fixpoint theorem for complete catgoriéath. Zeitschr.103:151-161,
1968.

[22] Saunders LaneCategories for the Working Mathematiciabumber 5 in Graduate Texts
in Mathematics. Springer Verlag, New York, New York, 1971.

[23] Paul Blain Levy. Call-by-push-value: A subsuming paradigiaCA 1999 pages 228—-242,
1999.

[24] M. Maietti, P. Maneggia, V. de Paiva, and E. Ritter. Relating categorical semantics for
intuitionistic linear logic. Technical Report CSR-01-07-2001, University of Birmingham,
2001.

[25] Guy McCusker. Games and full abstraction for fp¢CS 1996 pages 174-183, 1996.
[26] Jeanne Meisen. Relations in regular categofiesture Notes in Mathematic418, 1974.

[27] Eugenio Moggi. Computational lambda-calculus and monad€S 1989 pages 14-23,
1989.

[28] P. S. Mulry. Strong monads, algebras and fixed points. In M. P. Fourman, P. T. Johnstone,
and A. M. Pitts, editorsApplications of Categories in Computer Science: Proceedings
of the LMS Symposium, Durham, 199blume 177 ofLMS Lecture NotesCambridge
University Press, 1992.

[29] David Park. The Y-combinator in scott’s lambda-calculus models (revised version). Theory
of Computation Report 13, Department of Computer Science, University of Warwick, June
1976.

[30] M. Cristina Pedicchio. Maltsev categories and maltsev operatidaarnal of Pure and
Applied Algebra98, 1995.

[31] Gordon D. Plotkin and Alex K. Simpson. Complete axioms for categorical fixed-point
operatorsLICS 2000 pages 30-41, 2000.

[32] A. John Power and Hayo Thielecke. Closed freyd- and kappa-categd€ad.P 1999
pages 625-634, 1999.

[33] John Power and Edmund Robinson. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Scientg):453-468, 1997.

[34] John Power and Giuseppe Rosolini. Fixpoint operators for domain equalibesretical
Computer Science78:323-333, 2002.

129

[35] John Power and Hiroshi Watanabe. Combining a monad and a comdFtaebretical
Computer Scien¢80:137-162, 2002.

[36] Robert Tennent (rdt@qucis.queensu.ca). What is a data refinement relation? Electronic
mail to data-refinement@etl.go.jp, 5 January 1996.

[37] E. P. Robinson. The simple fibration. Unpublished manuscript, April 1996.

[38] Alex Simpson and Mam Escard. A universal characterization of the closed euclidean
interval (extended abstract). FProceedings of the Sixteenth Annual IEEE Symposium on
Logic in Computer Sciengpages 115125, 2001.

[39] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive
domain equationsSIAM Journal on Computind.1(4):761-783, 1982.

[40] Joseph E. StoyDenotational Semantics : the Scott-Strachey Approach to Programming
Language TheoryMIT Press, 1977.

[41] Paul Taylor. Intuitionistic sets and ordinalghe Journal of Symbolic Logi6é1(3):705-744,
1996.

[42] Paul Taylor. Practical Foundations of MathematicéNumber 59 in Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1999.

[43] Mitchell Wand. Fixed-point constructions in order-enriched categoiiégoretical Com-
puter Science8:13-30, 1979.

130

Appendix A

Distributors and Directors

Distributors—the structures formerly known as profunctors—are commonly presented as a form
of binary relation between categories with an emphasis on relational composition, but this is not
the view we describe here. Our picture of distributors is based on an elementary notion of oblique
arrow, an arrow from one kind of object to another, strictly incomparable kind of object. The two
kinds of object live in categories of their own, with plain arrows, but there are no plain arrows
between the two kinds of object. Moreover, in a single distributor, all the oblique arrows go from
the one kind of object to the other and so oblique arrows are never composed with one another.

We are being coy about the order of the two kinds because there are two ways of orienting
these structures. The way of the profunctor agrees with the orientation of the oblique arrows and
the way of the distributor disagrees. Although we focus on the oblique arrows, the 2-theory of
these structures works better the distributor way (see [7]). To help with the orientation we think
of the structure vertically: the oblique arrowp from A to B, which form a profunctoup from
Ato B, form a distributordownfrom B to A.

If composition is dropped, categories become directed graphs and distributors become, for
lack of a better worddirectors Directors have oblique edges from one kind of node up to another
kind of node. As with distributors, there are no edges back down from the other kind of node and
S0 a path in a director contains at most one oblique edge. Just as our picture of categories begins
with directed graphs, our picture of distributors begins with directors.

A.1 Distributors over Directors.

We picture a director as a collection of special edges connecting nodes in one graph to the nodes
in another. By ‘graph’ we mean ‘(small) directed graph’. As in a graph, the notion of composable
pair of edges is well defined, but no composite is given.

Definition A.1.1 A (small) directorfrom a graphG down to a graph- is a (small) collection of
oblique edges from nodes hup to nodes irG.

Definition A.1.2 A director morphisnfrom K to K’ is a pair of graph morphisms frorf to F/
and fromG to G’ together with a function from the oblique edge¥ab the oblique edges &
that is compatible with the graph morphisms on nodes.

Directors and director morphisms form a category Dir.

Definition A.1.3 Thetotal graphof a directorK from G to F is F+ G with the oblique edges of
K attached as plain edges.

A.2. Free Distributors 131

This extends to a functor Dir» Gra, where Gra is the category of graphs.

Definition A.1.4 A (small) distributorfrom a (small) category D down to a (small) category C
is a (small) collection of oblique arrows from objects in C up to objects in D that is closed under
composition with arrows in C and D.

Definition A.1.5 A morphism of distributorérom P to P is a pair of functors from C to Cand
from D to D together with a function from the oblique arrows of P to the oblique arrowg of
that commutes with compaosition.

Distributors and distributor morphisms form a category Dis, which should not be confused with
the bicategonDist of distributors where distributors are composed. Another representation of
the category Dis is obtained by pulling the underlying graph functor from Cat to Gra back along
the total graph functor.

Definition A.1.6 Thetotal categoryof a distributor P from C to D is G- D with the oblique
arrrows of P attached as plain arrows.

This extends to a functor Dis> Cat that lies over the total graph functor. The square is a pull-
back.

total

Dis —— Cat

iunder iunder

total

Dir — Gra

A.2 Free Distributors

Just as we picture an arrow in the free category on a graph F as a (possibly empty) path in
F (together with start and finish nodes), we picture an oblique arrow in the free distributor on
a director K as a (possibly empty) path in F followed by an oblique edge in K followed by a
(possibly empty) path in G. The paths@and the paths it are the arrows in the domain and
codomain of the path distributor. In both the path category and the path distributor, the empty
paths (together with their start and finish node) are the identity arrows. There are no oblique
identity arrows because a path that contains an oblique edge is not empty.

Definition A.2.1 Thepath distributorof a directorK from G to F is the director frompathGto
pathFwith each oblique edge given by a pathFHifollowed by an oblique edge K followed by
a path inG.

The path construction commutes with the total graph/category construction. Rather than
construct the oblique arrows seperately from the arrows, we can take the paths in the total graph
and pick out those containing an (ex)oblique edge as the oblique arrows.

. [
Dis o Cat

pathT pathT

. total
Dir — Gra

The path construction for directors is left adjoint to the underlying director functor from
distributors to directors and so produces the free distributor with respect to underlying director
morphisms. The adjunction gives us a path monad on Dir analogous to the path monad on Gra.

132 Appendix A. Distributors and Directors

A.3 The Distributor/Director Classifier

So far, our picture of distributors is compositive: we begin with two, distinct categories and add
certain oblique arrows to obtain a composite structure. Alternatively, we might begin with one
category and identify two kinds of object. If we then prohibit arrows down from the one kind
to the other, we can identify the arrows up from the other kind as oblique. This second point of
view is neatly expressed using the notion of a classifier.

The category of directors is equivalent to the slice category Grahere] is the graph that
has two nodes with reflexive edges and one irreflexive edge between them. Thé gragsifies
directors: the oblique edges are singled out and sent to the one irreflexive edge while the domain
and codomain graphs are sent to the two reflexive subgraphs. Note that edges back down from
the domain are prohibited by the lack of a second irreflexive edge.

Likewise, the category of distributors is equivalent to the slice categoryQaherel is now
the category with two objects and one non-identity arrow between them. Interestingly,i€at
the same as the comma categ@mder 1), where under is the underlying graph functor gnd
is the graph classifying directors. In a sense, the griapbtually classifies both directors and
distributors.

Note that a Grothendieck construction for categories gives us a functor-©@at/ T, where
Cat' is the category of functors (pointing up) and functor squares.

A.4 Locally Small Distributors

Whether we view oblique arrows as connecting two categories or as singled out by a classifying
functor, oblique arrows can only be composed with plain arrows to produce other oblique arrows.
This suggests a third point of view that allows for a more subtle treatment of size than the one-
size-fits-all approach adopted (implicitly) above.

Just as the notion of category can be expressed in terms of hom’ sets, the notion of a dis-
tributor can be expressed in terms of het' sets, where by ‘heteromorphism’ we mean ‘oblique
arrow’.

Definition A.4.1 A locally small distributorfrom a locally small category D to a locally small
category C has a sdtet(d, c) of oblique arrows for each object d in D and each object c in C
together with bimodular actions

comp : hontc’, c) x (d,c)hetx hom(d,d’) — (d’,c/)het.

Note that for het sets the covariant argument is written first and the contravariant second. Ideally
we would write one above the other, but this looks odd in print. To remind ourselves of the
reversal, we write the ‘het’ after its arguments. To distinguish between different categories and
distributors, we often write the symbol for the category or distributor in place of the ‘hom’ or
‘het’.

Given a distributoiP, the bimodular actions can be rearranged to give the local components
of a functor from the locally small categoBy x C°P to the locally small category Set.

C(X,Y)x (AY)PxD(AB) — (BX)P
C(X,Y)xD(AB) — Se((AY)P,(B,X)P)
CoP(Y,X) x D(A,B) — Sel(A,Y)P,(B,X)P)
D(A,B) xC®(Y,X) — Se((AY)P,(B,X)P)
(DxC®)((AY),(B,X)) — Se((AY)P,(B,X)P)

A.5. Fore and Aft 133

The bimodularity of the actions is equivalent to the functorality of these components. Hence the
snappy definition often found in the literature: a distributor is a functor fBormC°P to Set.

D D x CoP (d,c)
|

P lp I

v

C Set (d,c)P

Given a locally small categoi@, by reversing the arguments to the hom set<fare obtain the
het setgb,a)C = C(a,b) of a distributor fromC to itself. Note that the hom distributor uses three
copies of each arrow i@, two for the two copies df that provide the domain and codomain and
a third copy for the collection of oblique arrows.

A.5 Fore and Aft

Functors induce distributors—which explains the term ‘profunctor—and graph morphisms in-
duce directors. Given a graph morphigrfrom C up toD, we can take oblique edges fram

to d to be given by plain arrows frorsc to d. Note that we require two copies of each edge
from Gcto d. The original stays id where it may well follow other edges of the same form.

A second copy is formally detached (more precisely, one end is detachedpftorhecome an
oblique edge and follow edgesdan C. We call the resulting director tHere directorand write

G.. Given a functor, the same construction produces a distributor.

Definition A.5.1 Given a functor G from C to a locally small category D, foee distributorG,
is given by G(d,c) = D(Gc,d).

This extends to a functor Cat- Dis which is equivalent to the functor Gat- Cat/ 1 given by
a Grothendieck construction.
Given a graph morphisid from D down toC we can take the edges fracio Hd as oblique
edges front to d to obtain a directoH* which we call the aft director. This aft construction can
be expressed in terms of the fore construction using various dualities, but we prefer to continue
with elementary definitions until it is clear that one construction is more fundamental.

Definition A.5.2 Given a functor H from D to a locally small category C, thi distributorH*
is given by H(d,c) =C(c,Hd).

This extends to a functor Cat- Dis which is equivalent to the functor Gat- Cat/ | given by
another Grothendieck construction.

The categories For and Aft are the categories of distributors-with-a-fore-representation and
distributors-with-an-aft-representation. The free distributor-with-a-fore-representation over a di-
rectorK from G down toF is the distributor induced by the inclusion functor from gatlp into
pattK. The free distributor-with-an-aft-representation oiers the distributor induced by the
inclusion functor from pat® down into patiK. The requirement that the distributor be induced
by a functor generates extra objects.

A.6 Distributors and Adjunctions

If we replace categories with distributors we obtain a generalization of the notion of adjunc-
tion. Instead of a natural bijection between elements of hom sets, we ask for a natural bijection
between elements of het sets.

134 Appendix A. Distributors and Directors

Definition A.6.1 Anoblique adjunctions given by a natural isomorphism(& Gc) = Q(Hd, c),
where R and Q are distributors and G and H are functors.

Dl(E_DO
of 4 |n
C1<6—C0

Ordinary adjunctions correspond to the special case of an oblique adjunction between hom dis-
tributors.

D <h5m_ D
GT | lH

C <h3m_ C

In this case the isomorphism can be viewed as an isomorphism between the fore distributor
induced byG and the aft distributor induced by.
Proposition A.6.2 If G is left adjoint to H, then Gis isomorphic to H in Dis.

The converse fails because, in general, an isomorphism be@geandH* in Dis may include
automorphisms db andC.

Proposition A.6.3 G left adjoint to H if and only if G is isomorphic to H in Dis over identities
onDandC.

In the bicategorybist, where distributors are composed and hom distributors are identities,
the oblique adjunction isomorphism can be writ@no D = CoH*.

D|1<5—D|O
1Gx IH*
y y
- _
Ci<:-G

With identities forC andD, we obtain a characterization of ordinary adjunctions.
Proposition A.6.4 G is left adjoint to H inCat if and only if G, is isomorphic to H in Dist.

D——D
| ~ |
G IH*
y Y
cC——=C

This is a direct consequence of the definition&gfandH*, but also follows from bicategorical
properties of the inclusion of bicategori€at — Dist given by the aft construction (Propositions
7.8.5 and 7.9.1 in Borceux [7]). Proposition A.6.4 should not be confused with the following
proposition.

Proposition A.6.5 Given any functor F, the distributor.Rs left adjoint to F* in Dist.

The category Adj of adjunctions and adjunction morphisms is a category of distributors-with-
both-fore-and-aft-representations. It is equivalent to the pull-back of the projection: IEis
along the projection Aft- Dis.
Adj — For

L

Aft —— Dis
The free adjunction over a director exists but is more complex than the free distributors described
above.

135

Appendix B

Structural Actions

Here is an elementary account of structural actions and the indexed category construction. While
we developed this material independently, another, differently motivated account has appeared in
the work of Blute, Cockett and Seely [6] and we use their terminology.

In a nutshell, a structural action is an indexed comonad, and the Kleisli construction pro-
duces an indexed category. Chapter 3 develops an even more abstract perspective which views a
structural action as the transpose of a functor that preserves comonoid objects. Although such ab-
stract points of view help to get the definitions and coherence conditions right, Chapter 4, which
actually uses the definitions and conditions, can be understood on the basis of the following
elementary account.

B.1 Categories with Structural Actions

An action of a categoryC on a categonp is a functor fromC x D to D. Functors on product
categories are sometimes said to be bifunctorial, so we are taking actions to be bifunctorial. We
are interested in actions with certain extra structure.

Definition B.1.1 A structural actions an action® : C x D — D, together with natural transfor-
mationsduplicationandelimination with component§ : cod — co (cod) andi:cod —d
suchthatoé =id, (id®1)od =idanddod = (iId® 5) 0 d.

We may think of a structural action as an indexed comonad: the action of each olect in
has the structure of a comonad Drand, importantly, the transformation given by each map in
C is a comonad transformatién

Proposition B.1.2 Structural actions of C on D correspond to functors from C to the category of
comonads on D.

With this in mind, the category of comonads Brand comonad transformations has a structural
action onD, called thestandard structural actioncorresponding to the identity on the category
of comonads.

Given any functoR: C — C’ and a structural actiop : C' x D — D, the composite o (R x
Id) : C x D — D is a structural action. This is the reindexing aldR@f the indexed comonad
given by®. Taking 1 forC and the category of comonads DPrfor C’, the unit category 1 has a
structural action o for each comonad oB, which includes the identity comonad. Taking 1

1The definition of structural action in [6] overlooks this second condition, although it follows from the
naturality of the duplication and elimination transformations.

136 Appendix B. Structural Actions

for C’ with the identity action orD, reindexing along the unique functor frothto 1 gives the
constant identity structural action @n

The theory of algebraic compactness we present in Chapter 4 requires products of categories
with structural actions. Given structural actiopg and ©g on categorie$\ andB, the action
©axB atc takes(a,b) to (coaa,cogb). This gives a structural action on the productcénd
B. It can be checked that this is a product in the category of structural acti@ghsTdfe unit is
the constant identity action & on the unit category 1.

We also require a notion of costructural action which we define using the opposite of the
category acted upon.

Definition B.1.3 A costructural actiof C on D is a structural action of C on®.

This differs inessentially from [6] which uses the opposite of the action of the opposite of the
acting category: our costructural action®fs the opposite of their costructural actionGP.

B.2 The Indexed Category Construction

Suppose we have a structural actionC x D — D. We may use the action to interpret the notion
of a parameterized map with parameterizing objects taken@oWie consider a map fromo>d

to d’ as ac-parameterized map froohto d’. Each map front© d to d’ is meant to represent a
collection of maps frond to d’ indexed by the contents of

The duplication transformation allows us compose such parameterized maps. The composite
of ac-parameterized maps given gycod — d' andg’ : c@d’ — d” is given byg' o ((id @ g) o
d):cod — d”. This is Kleisli composition for the comonad given by the actiow.of

We use the elimination transformation to interpret the notion of a constant parameterized
map, one that ignores its parameter. Given a gad — d’, we think of thec-parameterized
map given bygo1:cod — d’ as constantlyg for all elements oft. The constant identities,
which are given by the components of elimination, behave as identities under composition of
parameterized maps.

Given a mapr : ¢ — ¢/, ¢/-parameterized maps, represented by maps ftomd, can be
reparameterized to-parameterized maps, represented by maps &rerd, by composition with
rod:cod— c odin D. Reparameterization commutes with composition and identities be-
cause the natural transformation from the action taf the action oft’ given by f is a comonad
transformation.

To sum up, for each objectof C there is a category afparameterized maps. This category
is the Kleisli category for the comonad given by the actioe.dfor each map : ¢ — ¢ of inC
there is a functor from the category dfparameterized maps to the categorg-qfarameterized
maps. In other words, we have an indexed category.

Proposition B.2.1 Given a structural actior» : C x D — D, the Kleisli category for the action
of an object c gives the category over c in an indexed category over C.

B.3 Structural Functors and Natural Transformations

A functor between categories with structural actions does not have to commute with the actions
in order to lift to an indexed functor between the indexed categories constructed from the actions.
All that is required is a well placed natural transformation.

Definition B.3.1 A structural functobetween categories with structural actiopsand ¢’ is a
functor F equipped with a natural transformation with componénts ' Fd — F(c@d) such
that Fto0 =1and Fdo0 =600 (id®6)od.

B.3. Structural Functors and Natural Transformation&37

If the functor part of a structural transfomation is the identitymrihen it corresponds to an
indexed comonad transformation, a natural transformation between two functor€ frorie
category of comonads dn. Just as comonad transformations lift to functors between Kleisli
categories, indexed comonad trasformations lift to indexed functors between indexed Kleisli cat-
egories. If the acting categofy is the unit category 1, so that structural actions correspond
to comonads, then a structural functor is a lax comonad functor, a functor between comonad
carriers that lifts to the Kleisli categories for those comonads by means of a coherent natural
transformation. In general then, structural functors correspond to a form of indexed comonad
transformation/functor, although this is not very helpful conceptually.

A natural transformation between structural functors lifts to an indexed natural transforma-
tion if it coheres with the transformations that make the functors structural.

Definition B.3.2 A structural natural transformatidietween structural functors F and I5 any
natural transformation with components: Fd — F’d such thaixo 6 = 6o (id ©).

Suppose we are given a structural actionC x D — D. Objects inD correspond to functors
from 1 toD and there is a unique structural actiorCafn the unit category 1, the constant identity
action, so we may ask if these pointing functors corresponding to objebtaia structural. We
are asking for a transformation with componefitc ©d — d, whered is a fixed object oD. We
observe that the elimination transformatiorc d — d, which is natural, satisfies the conditions
for a structural functor. In addition, maps Bhcorrespond to structural natural transformations
between these structural pointing functors. Note that we are exploiting the degeneracy of the
category 1.

Again using opposites, we define costructural functors and natural transformations.

Definition B.3.3 A costructural functoF is given by a structural functor ¥ and acostructural
natural transformatiois the opposite of a structural natural transformation.

138

Appendix C

Directed Graph Categories

If the notion of directed graph is interpreted in the category of categories or, equivalently, the no-
tion of category is interpreted in the category of directed graphs we obtain an abstract framework
for binary relational parametricity. Our definitions and terminology follow [9], but the ideas go
back to Reynolds and company.

C.1 Graph Categories, Functors and Transformations

A graph categoryconsists of a category of edgBgs together with asourcefunctor (-)o and a
targetfunctor(-); to a category of verticeR,.

(')ou(')l

Ry

For example, the arrow categd®y can be viewed as the edge category of a graph category with
source and target given by domain and codomain, respectively. Another example$e6tie
pull-back of the subset fibration SubSet along binary products in Set. This category has binary
relations for objects and parametric pairs of functions for arrows (meaning pairs that preserve
relatedness).

SubSet SubSet—— SubSet

| = | » |

Set Setx Set—— Set

A graph functorconsists of an edge functég and a vertex functo, such thatFes)o = R/(%)
and(Fes)1 = Ry(s1).
Fe
N Re
(Do || ()1 (')ou('h
MR,

D=—=¢

C.1. Graph Categories, Functors and Transformatioris39

For example, there is trgraphgraph functor-) from Set to SubpSet. The vertex functor is the
identity on Set and the edge functor takes a funcfida its graph(f), the set of pairgx, fx).

Set L> SubpSet
Set Set

A graph transformatiorconsists of an edge natural transformatierand a vertex natural trans-
formationoy, such that oes)o = y(sp) and(oes)1 = Oy (sy)-

Fe
SR

U/va

<

For example, given binary relatiomsandr’ over Set, each pair of functions that is parametric
with respect ta andr’ corresponds to a graph transformatibthus:

r
/""N
1 \in/? SubpSet
iR r’
|nou|nl {fo,l’l} u
T T T
1+1 \lﬁ% Set
{ror1}

A graph categonR can be viewed either as an internal directed graph in the large category
of categories, as presented above, or as an internal category in the large category of directed
graphs, in which case it has an arrow graphand an object grapR® together with graph
morphisms for domain, codomain, composition and identities. Similarly, graph functors and
graph transformations can be viewed as internal, directed graph morphisms and directed graph
transformations (replace 1-cells with 2-cells in the definition of directed graph morphism) or
as internal functors and internal natural transformations. Either way, graph categories, graph
functors and graph transformations form a large 2-category GCat.

Note that we must be careful to distinguigh from the graph categor@' with source and
target given by codomain and domain, respectively. The graph cat€josf down arrowsis
not generally isomorphic to the graph categGfyof up arrows The two are equivalent as graph
categories over the identity db iff C is a groupoid. Note that thetis a graph isomorphism
between the graph of down arrows on the opposit€ ahd opposite of the graph of up arrows
onC.

I
(cont — (Chyer
cop cop

The graph<! andC' both embed fully and faithfully int€>, the graph of cospans ov@r This
has the domain of the first cospan component for source and the domain of the second for target.

cl—cCc>=—¢!

L

C C C

140 Appendix C. Directed Graph Categories

C.2 Graph Operators and Parametric Transformations

The notion of graph category is useful because it comes apart in ways that plain categories and
plain graphs do not.

Definition C.2.1 A graph operatofrom S to R consists of an edge functiqfiem the objects
of S to the objects of Rand a vertex function,Hrom the objects of 30 the objects of Rsuch
that (Fes)o = Rv(S0) and (Fes)1 = Ru(s1).

In other words, a graph operator is a graph morphism from the object graptodahe object
graph ofR. For example, the identity oR®, the object graph oR, gives a graph operator from
R°P to R and the diagonal graph morphisht R° — R° x RO gives a graph operator froR to
R°P x R. Note that, while every graph functor restricts to a graph operator, operators such as those
above do not generally extend to graph functors.
Given graph operatos andG on S, aparametric transformatiofirom F to G is a family
of mapsay : Fd — Gd indexed by the objects @, that lifts to a family of mapsxs: Fs — Gs
indexed by the objects &, meaning(os)o = s, and(as)1 = o, for all s.

Fso— 0y ——= Gy
Fs Os Gs
Fs; —— 0y ——>Gs

For graph categories with at most one saglwe just draw gparametricity square

1Fs iGs
asl

Fs1 —=Gs

Given a construction that lifts categories and object functions to graph categories and graph
operators, we can ask when a (not necessarily natural) transformation lifts to a parametric trans-
formation. For example, the arrow graph construction leads to the notion of natural transforma-
tion.

Proposition C.2.2 Natural transformations from F to G are identical with parametric transfor-
mations from F to G'.

FSOAGSO

e

Fs; —>Gs

Within this framework of binary relational parametricity, the fundamental notions are functoral-
ity: when does an object function lift to a functor? And parametricity: When does a transforma-
tion lift to a parametric transformation? As the Proposition shows, naturality is a derived notion.
Another derived notion is that of diparametricity.

Definition C.2.3 Adiparametric transformatidmetween operators F and G oA’ S is a para-
metric transformation between the operators £and GoA on S.

A G
SVVVVVVV>SOP><S::::F:::§R

C.2. Graph Operators and Parametric Transformations41

Just as dinaturality weakens naturality, diparametricity weakens parametricity. Note, however,
that diparametricity is expressed in terms of parametricity, unlike dinaturality which cannot, in
general, be expressed in terms of naturality. Also, because diparametricity squares compose,
diparametrics compose.

0% o

iF(s,s) 16(3,5) IH (s5)
Osy (xél
F(s1,81) — G(s1,51) — H(s1,%1)

Remark. Stretching our framework, dinaturality can be expressed in terms of diparametricity.
Given a categorg, the quasi-categorlpC of diamondshas commutative diamonds for objects

and commuting pairs of maps (asK) for arrows. By ‘quasi’ we mean that composition is a
partial operation on composable pairs and the equations of category theory hold just where both
sides exist. A ‘graph quasi-category’ has a category of vertices and quasi-category of edges.
The definitions of ‘graph operator’ and ‘parametric transformation’ are unaffected because they
ignore composition. Without extra conditions (see Section 9.1.5), there is no guarantee that com-
ponentwise composition of arrows BC gives arrows irDC. On the other hand, every functor

F lifts componentwise to a quasi-functbi- which preserves what composites exist. Also, we
have an isomorphism between the graph quasi-categd@$’® and D(C°P). Dinaturality is
parametricity with respect to certain objects in the quasi-category of diamonds.

Fd,d —* - G(d,d)

/ \
F(g,d) G(d,g)

/ \
F(d',d) G(d,d")
\ //

F(d’,g) G(g,d")

A oy -

F(d',d") G(d’,d")

Proposition C.2.4 Dinatural transformations from F to G are identical with diparametric trans-
formations fromDF o ((17o |[) x 1}) to DGo ((1To |}) x 1}).

1 Tl DG
(DHoP x D! 22 (DoP)T x DL L2 D(DOP) x DD ——= D(D x D) —= DC
iso DF

