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Abstract

Ranklets are a family of non-parametric rank features designed in close
analogy with Haar wavelets. With these they share the same pattern
of orientation selectivity, the multiscale nature and a suitable notion of
completeness. Ranklets are defined based on the Wilcoxon statistics, are
computationally efficient and admit an interpretation in terms of pairwise
pixel comparisons.

In this report we review the definition of ranklets and their geomet-
ric properties. We then introduce a notion of completeness applicable to
rank features and give proofs for one and two dimensional ranklets. Fi-
nally, we present a few considerations on the algorithmic complexity of
the representation and its memory efficiency.

1 Introduction

Ranklets are a family of multiscale rank features characterized by a strong
analogy to Haar wavelets. This extends to the orientation selectivity of the
features, their multiscale nature and, according to a result we introduce in this
report, to completeness.

In Section 2 we review the definition of ranklets, which is based on the
Wilcoxon statistics, along with their geometric properties and their interpreta-
tion in terms of pairwise comparisons of pixel values.

Since rank features operate on the relative order of pixel intensities rather
than on the intensity values proper, any “completeness” result must be preceded
by the introduction of a suitable definition of completeness itself. It would seem
reasonable to say that a set of rank features is complete if, by knowing the
feature values over a given image, the ranking of all the pixels in the image
can be unambiguously deduced. In other words, the computation of a complete
set of features should be equivalent to a sorting of the image. Note how this
constitutes a “maximal” requirement, since by definition only order information
is accessible to rank features. This notion of completeness is formalized in
Section 3, where proofs are also given for one and two-dimensional ranklets.

Finally, efficiency considerations along with a discussion of the compactness
of the representation are presented in Section 4.
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Figure 1: The three two-dimensional Haar wavelets hi (&), ho(%) and hz(Z)
(from left to right). Letters in parentheses refer to “treatment” and “control”
pixel sets (see Sect. 2.2).

2 Ranklets: a Family of Wavelet-style Rank Fea-
tures

As all other rank features, ranklets are computed starting from a ranking of
the N samples representing (a suitable part of) a digitized signal, i.e. from a
permutation 7 of the integers from 1 to IV expressing the relative order of the
sample values.

In the next section we recall the definition of a classic non-parametric hy-
pothesis test from which ranklets are derived, namely the Wilcoxon rank-sum
test.

2.1 The Wilcoxon Rank-sum Test

The Wilcoxon rank-sum test (also known as the Mann-Whitney U-test) is a
hypothesis test designed for the comparison of two treatments [3]. Suppose that
N quantities are split in two groups of n “treatment” observations {z;} and m
“control” observations {y;} (according to the standard terminology). We ask
whether the treatment observations are significantly higher than the controls.
To this end, we rank the observations in increasing order and define the Wilcoxon
statistics W, as the sum of the treatment ranks: W, = Y, w(x;), where
indicates the ranking. The logic behind this definition is that high values of the
treatment observations relative to the controls will result in a large value of W;.

After an experiment is performed, the treatment values are judged to be
significantly higher than the controls if W, is above a critical value 7. The
threshold 7 determines the confidence level of the test.

In the next Section, we compute the Wilcoxon statistics over the samples
from one or two-dimensional signals, with the aim of describing intensity vari-
ations between groups of samples. We will use the term “pixels” instead of
the more generic “samples” wherever the considerations presented refer more
directly or exclusively to two or higher dimensional signals.

2.2 Definition of Ranklets

Given a (one or two-dimensional) signal I, we indicate with 7(I"V(Z)) the rank
of the sample I(#) among those in a suitably sized window W, with # € W.
To simplify matters, we assume that no two samples have the same value (for
practical purposes, ties can often be broken at random when they occur; for a
more rigorous discussion see Section 3.5).

The Wilcoxon test can be used to determine intensity variations among
conveniently chosen subsets of the samples in W. Ranklets are obtained by



splitting the N samples (pixels) in W in two subsets of N/2 elements each,
thus assigning half of the samples to the “treatment” group and half to the
“control” group. This introduces a new degree of freedom, namely the geometric
arrangement of the two subsets in W. In the case of two-dimensional (or indeed
higher dimensional) signals, this can be exploited to obtain orientation selective
features.

Let us consider, for definiteness, the case of two-dimensional ranklets. We
construct the “treatment” and “control” sets starting from the Haar wavelets
h;(£),j = 1,2,3 displayed in Figure 1 (see [1]). To start with, we identify
the local neighbourhood W with the support of the hj. We then define the
set of “treatment” pixels T; as the counter-image of {+1} under h;: T; =
hj_1 ({+1}), and the set of “control” pixels C; as the counter-image of {—1}:
G = hj_1 ({—1}). For each of the three resulting partitions of W, W = T; UC;,
we compute the Wilcoxon statistics as

wi= 3 =(I"(@) 1)

ZEeT;

(the simpler construction for the one-dimensional case involves only one parti-
tion of W induced by the one-dimensional Haar “mother wavelet”).
We can conveniently replace W with the equivalent Mann-Whitney statis-
tics '
Wi = Wi — (N/2 + )N/4, (@)

which has an immediate interpretation in terms of pixel comparisons. As can
be easily shown [3], Wi, 5 is equal to the number of pixel pairs (Z;,¥,) with
Zp € T; and g, € C; such that I(Zp) > I(y,). Its possible values therefore
range from 0 to the number of pairs (&, %) € T; x C;, which is N?/4. For this
reason, ranklets are conveniently defined as

Wix
N2/4

RI =2 1. (3)

Thus the value of R/ will be 1 if and only if, for all the possible pairs of one
pixel in T; and one pixel in C;, the first pixel is brighter than the second. If the
opposite is true, R7 will equal —1.

2.3 Multiscale Ranklets

Due to the close correspondence between Haar wavelets and ranklets, the mul-
tiscale nature of the former directly extends to the latter. To each translation
and scaling of the h; specified by the parameters (Zp, s) we associate the sets of
treatment and control pixels defined by

Tji(z0,s) = {Z | h; (F — o) /5) = +1}, (4)
Cj;(fo,s) = {‘,E| h‘]((:ﬁ_ fO)/s) = _1} .

We can then compute the value of R{N over the local neighbourhood Wz, s =
Tj U C]’, With N = #W(fo,s)-
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Figure 2: Graphic notation for one-dimensional ranklets. The upper and lower
line identify the T and C sets respectively. Sample numbers are indicated in
italics.

2.4 Geometric Interpretation

The geometric interpretation of the ranklets R7 is straightforward given the
properties of WY,y and of the Haar wavelets h;. Consider for instance R' and
suppose that the local neighbourhood W straddles a vertical edge, with the
darker side on the left (where C; is located) and the brighter side on the right
(corresponding to T1). Then R! will be close to +1, as many pixels in T; have a
higher intensity than those in C;. Conversely, R! will be close to —1 if the dark
and bright sides of the edge are reversed. Horizontal edges and other patterns
with no definite left-right variation of intensity will give a value close to zero.
Therefore, R' responds to vertical edges in the images. By a similar argument
R? is tuned to horizontal edges, while R? is sensitive to corners formed by
horizontal and vertical lines (as well as to 45° and 135° edges). These response
patterns closely match those of the corresponding Haar wavelets h;.

Note that there is a large arbitrariness involved in our way of partitioning
W into a “treatment” and a “control” set. A different choice would lead, for
instance, to the rank transform of Zabih and Woodfill [8] (the authors, however,
fail to clarify the relation between their transform and the Wilcoxon test; for a
discussion of this topic, see [5]).

3 Completeness

In this Section we introduce a notion of completeness suitable for rank features.
These features are defined in terms of the relative order of the sample values
(or of a subset thereof); since the values themselves are disregarded, signal
reconstruction is evidently beyond reach (however, see [4] for the description of
an approximate image reconstruction based on statistical assumptions on the
sample values). The most that can be achieved is a reconstruction of the global
ranking of all the samples, which clearly exhausts all the information available.
The notion of completeness we propose is in this spirit: a set of rank features
is complete if their value is sufficient to unambiguously specify the order of the
sample values.

Formally, let (1,2,...,N) be the set of the sampling points. For our pur-
poses, we can conveniently identify a signal with the order of its sample values,
i.e. with an element of the symmetric group Sy on the sampling points. Let
now C = {Wy,W,,...,W,,} be a covering of (1,2,...,NN); we define the ranklet
decomposition R as the map

R:Sy - R™ (5)



Figure 3: Two ways to deal with border problems for finite signals. In Ry, the
missing samples in C' are assumed to have an infinite value. We call this con-
tinuation “infinity padding”. Ranklet R is computed assuming a wraparound
topology.

that sends a permutation 7 € Sy into the vector R(w) = (’R{,\,J )vi,vj obtained
by computing each admissible ranklet R? (depending on the dimensionality of
the signal) on every window W; € C. We can now state the following:

Definition 1 The decomposition R is complete if it is invertible over its range,
i.e. if it is one-to-one.

In other words, we will say that the decomposition R is complete if there
exists a map R : R(Sy) — Sy such that for every signal (image) I

R(R(wr)) = 1, (6)

where 77 is the ranking of I. The map R is the closest analogue for rank features
of the reconstruction operator.

In the following we will prove completeness for ranklets, working our way
from the one to the two-dimensional case. Before doing so, however, we will
introduce some shorthand graphic notation in the next Section.

3.1 Graphic Notation and Data Padding

For the purpose of demonstrating the completeness of ranklets, it is convenient
to introduce a graphic notation.

In the one-dimensional case, we identify a ranklet R, its support window W
and the sets of treatment and control samples T and C using a stylized Haar
wavelet, as outlined in Figure 2.

Since we only deal with finite sets of samples, we need a convenient mecha-
nism for handling border conditions, i.e. the case that the support window W
of a ranklet partly falls outside the sampling window S of the signal or image
at hand. In the case of linear filters, the standard devices are zero padding and
wraparound.

We can easily introduce two corresponding mechanisms for ranklets. Zero
padding is conveniently replaced by “infinity padding”: we assume that the
samples in W\ 'S have an infinite value, i.e. we systematically assign to them the
highest ranks (or, alternatively, the lowest ranks). This situation is illustrated



in Figure 3 (R1), which also introduces the other option, namely wraparound
(R2). In the latter case, W is split in two connected components, to simulate
the periodic continuation of the data. Calculations are performed in the usual
way, based on the ranks of the sample values. In the rest of this work we will
chiefly make use of infinity padding.

3.2 The One-dimensional Case

Consider a one dimensional signal described by the N samples (1,2,...,N). A
set of N — 1 ranklets forming a complete decomposition is shown in Figure 4,
for the special case that N = 8 (generalization to an arbitrary finite number of
samples is straightforward).

To prove this, we proceed “ab absurdo” by assuming that the decomposition
R represented in Figure 4 is not invertible, so that for at least two permutations
71 and 7o (corresponding to two signals with different ranking)

R(m) = R(me) with m # 7. (7)

Let o be the permutation that maps 7; onto ms, i.e. M3 = om;: we will show
that ¢ = Id, which contradicts Equation 7.

With reference to Figure 4, consider Ry_1: since by Equation 7 we have
Rn-1(m1) = Rn—1(m2), o cannot move m; (N) (otherwise the value of W/ in
Equation 1 would be changed). Next, consider R x_2(1) that, by Equation 7,
must be equal to Ry_2(m2). Since 71 (N) is fixed, this implies that o does not
move 71 (N —1). By iterating over Ry_3, ..., Ra, R1 we see that o fixes all the
elements of {m(1),71(2),...,m1(N)}, or, which is the same, of (1,2,...,N).
We conclude that ¢ = Id and that 7; = 7y, which contradicts our assumption
(Equation 7) and thus proves our thesis.

3.3 Uniqueness

The decomposition shown in Figure 4 is not the only complete ranklet decom-
position possible over the sampling points (1,2,...,N). A first alternative is
straightforwardly obtained by symmetrizing the arrangement of ranklets in Fig-
ure 4 around the midpoint of the sampling window. It is also possible to swap
the “treatment” and the “control” sets T and C of one or more ranklets inde-
pendently; all the decompositions thus obtained are complete.

Interestingly, we can also find complete decompositions with a “wraparound”
topology, as exemplified in Figures 5, 6 and 7.

3.4 The Two-dimensional Case

In this section we outline how a complete decomposition can be constructed for a
two-dimensional image. We will closely follow the argument given in Section 3.2
for one-dimensional signals. For simplicity, we only discuss the case of square
images; generalization to rectangular frames is straightforward. The proof given
below requires the use of ranklets defined on rectangular neighbourhoods W;
these are easily obtained using the Haar wavelets with corresponding rectangular
support to specify the respective T and C sets, in analogy with Equation 4.
Given a square image I of size M x M = N, let us start by considering the
three ranklets R%M—l,M—l)’ R?M—I,M—l) and R?M—l,M—l) as shown in Figure 8



4 |

5 , _
6 .
7 ..

Figure 4: A complete set of ranklets for the one-dimensional case. The dashed
lines indicate that infinity padding should be performed outside the sampling
window.
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Figure 5: A complete set of ranklets for a one-dimensional 4-sample signal,
wraparound topology.



Figure 6: A complete set of ranklets for a one-dimensional 6-sample signal,
wraparound topology.

Figure 7: A complete set of ranklets for a one-dimensional 8-sample signal,
wraparound topology.
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Figure 8: Ranklets Ry, ; 5 ;) (left), RYy | 5 ) (centre) and RYy 4y
(right). Infinity padding is required on the “open” (gray) boundaries. Pixels in
the dashed area belong to the C sets, while the T sets are left white.

(in the following, the lower indexes will be omitted for brevity). Let m; and 7o
denote two distinct permutations on which these three ranklets take on the same
value, that is

Ri(m) = Ri(my) with 7y # . (8)

Again, let us write 3 = om;. We will now concentrate on pixel NV in Figure 8 and
show that the assumption that ¢ moves 71 (V) is incompatible with Equation 8.
Let § = om1(N) — w1 (N) be the rank shift of pixel N as the result of o. Since
N € Cy, the sum of the ranks in C; \ { N} must change by a corresponding —4 in
order for o to leave R' unaltered (see Equation 1). Similarly, we have N € C,,
meaning that the sum of the ranks in C; \ { N} must also change by —d for the
value of R? to remain constant. Therefore, the rank sum for C; UCy is changed
by § — 26 = —4. Since the sum of the ranks over the entire image is constant,
it follows that the sum over the pixels in T3 \ {IN} is increased by §. Thus the
rank sum for T3 is changed by 26, and Equation 8 will hold for R3 only if § = 0.
We conclude that o fixes 71 (N).

Next, we extend Equation 8 to include the two ranklets R%M72, M-1) and
R?M—Z,M—l) and consider them together with R%M—I,M—l)’ as shown in Fig-
ure 9. Remembering that 71 (V) is fixed by o, it is easy to see that o should also
fix m (N — 1) in order for Equation 8 to hold for these three ranklets. The key
consideration is again that pixel N — 1 is the only element in the intersection of
Ci, Co and T3 (as defined in Figure 9) the rank of which can be moved by o.

Following the procedure outlined in these paragraphs, we can easily construct
a complete decomposition of the image I. As in the one-dimensional case, a total
of N — 1 ranklets is required, where N = M x M is the number of pixels.

3.5 The Treatment of Ties

So far, we have assumed that no two samples (intensity values) in I are equal.
This may in fact be the case in pattern recognition applications, as long as
the size of W is small compared to the number of gray levels. In practice, the
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Figure 9: Ranklets Ry, , p, 4 (left), R?), ; 5y ;) (centre, same as in Figure 8)
and R?Mﬁ’ M-1) (right). Infinity padding is required on the “open” (gray)
boundaries. Pixels in the dashed area belong to the C sets, while the T sets are
left white. The rank of pixel N (in gray) is fixed by o (see text).

number of ties will be small and an effective strategy will be to break them at
random. However, more and more ties are bound to occur as the size of the
window W increases, so that especially in proving completeness we should be
concerned with ties.

The standard approach to tied values in rank statistics involves the use of
midranks for the computation of W,. Midranks are obtained by assigning to
each group of tied values the the average of the ranks it occupies. Consider for
instance a signal consisting of the eight sample values

I =(10,128,128,132,164,164,164,255) : 9)
the corresponding midranks are
r*(I) =(1,2.5,2.5,3,5,5,5,8). (10)

Here the midrank of the samples tied at 128, which is 2.5, is obtained by aver-
aging ranks 2 and 3.

In the case of midranks, it is no longer convenient to model an N-sample
signal as an element of Sy, since any internal permutation of a set of tied pixels
leaves the ranking of the image unaltered. Indeed, once we have established
which samples belong to each group of tied values, each of these groups behaves,
from the point of view of the ranking, as an element in its own right. We can
therefore conveniently replace Sy with the group Sy-, where N* is the number
of distinct midranks (5 in the example given above).

A ranklet decomposition can then be described as a mapping

R* :SN* — R™. (11)

With this modification, the procedures outlined in Sections 3.2 and 3.4 lead to
the construction of maps R* that are injective, and therefore represent complete
ranklet decompositions in the sense specified in Section 3.
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A possible criticism to this approach is that the domain of the decomposition
is defined “a posteriori” based on the number of tied samples in the observed
signal. However, this reflects the standard procedure for the treatment of ties
in rank statistics: the distribution of the Wilcoxon statistics W; is computed
conditionally given the number of observations tied at each value [3].

4 Efficiency Considerations

4.1 Computing Ranklets

As seen Sect. 2.2, WY, . equals the number of pairs (&, 7,) € T, x C; such that
the intensity at &, is larger than the intensity at 7. Since N?/4 such pairs
can be formed out of the N samples in W, it would seem that the number of
comparisons required should grow with the square of the cardinality of W.

Notice however that these pairwise comparisons are never explicitly carried
out: the value of W},  is obtained by subtracting a constant from the Wilcoxon
statistics W (see Equation 2). In turn, W/ is computed by ranking the pixels in
W, which only requires O(N log N) operations. Thus the intuitively appealing
interpretation in terms of a count of pixel pairs turns out to be a “free” by-
product of the sorting operation.

4.2 An Algorithmic Viewpoint

Although a complete ranklet decomposition is not meant to provide an efficient
way of sorting an image, it is interesting to investigate the relation between the
representation and the classical sorting algorithms.

Consider the one-dimensional covering displayed in Figure 4. It should be
evident that the only quantity required for the computation of R7 is the rank
of sample 8, that can be obtained by comparing it to all the other elements and
counting how many of them have a lower value.

Once the rank of sample 8 is established, Rg can be computed in the same
way by counting how many sample values are lower than sample 7 (note that
there is no need to compare elements 7 and 8, since the rank of the latter
is already known). Thus, the computation of the seven ranklets in Figure 4
essentially amounts to performing an enumeration sort of the pixels. The only
marginal difference occurs when the support of a ranklet is smaller than the
sampling window. In the computation of R3, for instance, the ranks of samples
5 and 6 (obtained during the computation of R4 and R5) must be modified to
account for the fact that samples 7 and 8 should no longer be considered in the
ranking. However, this can be done without additional comparisons. As shown
in [2], the complexity of the enumeration sort algorithm is O(N?).

4.3 Compactness of the Representation

We will now analyze the ranklet representation of a signal in terms of its com-
pactness. The most straightforward way of describing a permutation of N el-
ements consists in listing the elements (1,2,...,N) in the appropriate order.
Since each integer n requires Iny n bits for its representation, the total length
of the description is O(lny N!). Alternatively, one might list the N! possible
permutations in any given order, say lexicographic, and then address them in
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an optimal way through a binary tree. Interestingly, even in this case O(lny N)
bits are required.

In the case of ranklets, we must allocate enough memory to represent the
maximum possible value of each ranklet, which is obtained when the top ranks
are all occupied by the samples in T (for simplicity, we omit the normalization
and concentrate on the value of W/ as defined in Equation 1). With reference
to the one-dimensional covering in Figure 4, we see that the maximum possible
value of W:(n), corresponding to ranklet R, is given by

s(n)— Z z—— n(3n +1). (12)

i=n+1

Therefore, the number of bits required by the N — 1 ranklets in Figure 4 is

bounded by
Nt
Zln2 [— (3n+1 ] H5 n(3n +1) (13)

which again is O(In N!) (note that we could spare a few bits by discarding the
padded samples in the computation of Wi. The reason why this is possible is
that the rank of the padded pixels is exclusively linked to their position and
thus carries no information on the signal).

5 Conclusions

We have reviewed above the main properties of ranklets, a family of rank fea-
tures defined in terms of the Wilcoxon (or, equivalently, the Mann-Whitney)
statistics. Ranklets admit an intuitive interpretation in terms of pairwise pixel
comparisons, are naturally multiscale and feature an orientation selectivity pat-
tern similar to the orientation tuning of Haar wavelets.

The analogy with Haar wavelets is further developed by the proofs of com-
pleteness introduced in this report for one and two-dimensional ranklets. Com-
pleteness is intended in the sense that the computation of a ranklet decomposi-
tion should be equivalent to a ranking of the entire image.

Contrary to wavelets, exact image reconstruction is of course not an issue in
the case of rank features. Rather, we believe the significance of our completeness
result to lie in the following points: firstly, it shows that the entire information
available to rank features is effectively captured by ranklets. Secondly, it further
clarifies the analogy between ranklets and Haar wavelets. Thirdly, it is of rel-
evance for computational models of biological vision such as [4], which suggest
that temporal order coding might form a rank-based image representation in
the visual cortex.

The discussion of specific applications is beyond the scope of this report.
The use of ranklets for recognizing deformable patterns is demonstrated in [5]
and [6], where face detection applications are discussed. A generalization of
ranklets to hexagonal pixel lattices is described in [7].
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