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Abstract. This paper describes a compositional analysis algorithm for
statically detecting leaks in Java programs. The algorithm is based on
separation logic and exploits the concept of bi-abductive inference for
identifying the objects which are reachable but no longer used by the
program.

1 Introduction

In garbage collected languages like Java the unused memory is claimed by the
garbage collector, thus relieving the programmer of the burden of managing
explicitly the use of dynamic memory. This claim is only partially correct: tech-
nically, the garbage collector reclaims only allocated portions of memory which
have become unreachable from program variables, and often, this memory does
not entirely correspond to the unused memory of the system. For instance, it is
quite common that memory is allocated, used for a while, and then no longer
needed nor used by the program. However, some of this memory cannot be freed
by the garbage collector and will remain in the state of the program for longer
than it needs to be, as there are still references to it from some program vari-
ables. Even though this phenomenon, typical of Java and other garbage collected
languages like Python, defines a different form of “memory leakage” than in tra-
ditional languages like C, its results are equally catastrofic. If an application
leaks memory, it first slows down the system in which it is running and even-
tually causes the system to run out of memory. Many memory-leak bugs have
been reported (e.g., bug #4177795 in the Java Developer’s Connection[12]) and
experiments have shown that on average 39% of space could be saved by freeing
reachable but unneeded objects [24, 22].

There are two main sources of memory leaks in Java code [20, 13, 17]:

– Unknown or unwanted object references. As commented above, this happens
when some object is not used anymore, however the garbage collector cannot
remove it because it is pointed to by some other object.

– Long-living (static) objects. These are objects that are allocated for the entire
execution of the program.

These two possibilities appear in different forms. For example, a common
simple error, such as forgetting to assign null to a live variable pointing to the
object not needed anymore, leads to a memory leak. Such a leak can have serious



consequences if the memory associated to it is substantial in size. Some more
sophisticated examples discussed in literature are:

– Singleton pattern, static references and Unbounded caches. The Singleton
pattern, one of the most used object-oriented design patterns [7], ensures
that a class has only one instance and provides a global access point to it.
Once the singleton class is instantiated it remains in the program’s memory
until it is finished with its execution. However, the garbage collector will not
be able to collect any of its referants, even though they might have a shorter
lifetime than the singleton class [17]. Most caches are implemented using the
Singleton pattern involving a static reference to a top level Cache class.

– Lapsed listener methods. Listeners are commonly used in Java programs in
the Observer pattern [7]. Sometimes an object is added to the list of listeners,
but it is not removed once it is no longer needed [20]. Here, the collection
of listeners may grow unboundedly. The danger with such listener lists is
that they may grow unboundendly causing the program to slow down since
events are propagated to continuously growing set of listeners. Swing and
AWT are very prone to this kind of problems.

– Limbo. Memory problems can arise also from objects that are not necessarily
long-living but that occupy a consistent amount of memory. The problem
occurs when the object is referenced by a long running method but it is not
used. Until the method is completed, the garbage collector is not able to
detect that the actual memory occupied by the object can be freed [6].

In this paper we propose a static analysis algorithm able to detect, at partic-
ular program points, the objects that are reachable from program variables but
not further used by the program. This allows the possibility to free the unneces-
sary occupied memory. Our technique is based on the concept of footprint: that
is, the part of memory that is actually used by a part of the program. Calculating
the footprint of a piece of code singles out those allocated objects that are really
needed from those that are not. The synthetization is done using bi-abduction [2],
a recent static analysis technique which has been shown useful for calculating
the footprint of large systems. Because it is based on bi-abduction our analysis
is compositional (and therefore it has potential to scale for realistic size pro-
grams as shown in [2]) and it allows to reason about leaks for incomplete piece
of code (e.g., a class or a method in isolation from others). This paper shows
how bi-abduction is a valuable notion also in the context of garbage collection.

Throughout the paper we consider a running example given in Figure 1. The
program uses a bag of integers and two observers for each bag, that register
when an object is added to or removed from the bag, and consequently perform
certain actions. The leaks here are due to live variables not being assigned null
when they are no longer needed. Also, with the Observer pattern, a common
mistake is not to remove the observers when they are no longer used. This is
also illustrated by the example.



Fig. 1. Running example - Driver.java

import java.io.*;
import java.util.Iterator;
import java.util.ArrayList;

public class Driver {
public static void main( String [] args ) {

1. BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
2. System.out.print("Enter the numbers, when finished enter -1 ");
3. IntegerDataBag bag = new IntegerDataBag(); //new bag is allocated
4. IntegerAdder adder = new IntegerAdder( bag ); //the observers are added
5. IntegerPrinter printer = new IntegerPrinter( bag ); //to the bag
6. Integer number = -1;
7. try{

number = Integer.parseInt(br.readLine());
} catch (IOException ioe) {

System.out.println("IO error trying to read input!");
System.exit(1);

}
8. while (number >= 0) { //reading the input

try { //and filling the bag
bag.add(number);
number = Integer.parseInt(br.readLine());

} catch (IOException ioe) {
System.out.println("IO error trying to read input!");
System.exit(1);

}
}

9. bag.printBag();
10. ArrayList rlist = new ArrayList();
11. rlist = bag.reverseList(); //after this point bag is no longer used
12. IntegerDataBag revbag = new IntegerDataBag(); //new bag
13. IntegerAdder adderr = new IntegerAdder( revbag ); //and its observers
14. IntegerPrinter printerr = new IntegerPrinter( revbag ); //but the observers
15. Iterator i = rlist.iterator(); //are not used
16. while (i.hasNext()){

revbag.add((Integer) i.next());
}

17. Integer s,m;
18. s=revbag.sum();
19. m=revbag.mult();
20. System.out.print("The sum and the product are: "+s+" "+m+"\n");

}
}



2 Informal Description of the Algorithm for Discovering
Memory Leaks

Our algorithm for memory leak detection is two-fold. It runs two shape analy-
ses1: a forward symbolic execution of the program and a backwards precondition
calculation. The memory leak at each program point is obtained by comparing
the results of the two analyses. More precisely:

1. For each method of each class (apart from the main method) we calculate
its specifications. The specifications describe the minimal state necessary to
run the method safely (i.e., without NullPointerException).

2. Using the results obtained in the previous step, we calculate the precondition
of each subprogram of the main method. Here, the subprogram is defined
with respect to the sequential composition. The calculation of the precondi-
tion of each subprogram is done in a backwards manner, starting from the
last statement in the program. The results are saved in a table as (program
location, precondition) pairs.

3. Using the forward symbolic execution, intermediate states at each program
point are calculated and added to the results table computed in step 2.

4. The corresponding states obtained in steps 2 and 3 are compared, and as
the preconditions obtained by the backwards analysis are sufficient for safe
execution of the program, any excess state that appears in the corresponding
precondition obtained by the forward analysis, is considered a memory leak.

3 Basics

In this section, we lay out some basic concepts, such as programming language,
storage model and underlying logic used in this paper.

3.1 Programming Language

The programming language we consider here is a while java-like language [4].

s ::= x = E | x.〈C : t f〉 = E | x = E.〈C : t f〉 | x = new C(v) | return E
|invoke x.〈C : t m〉(v) | x = invoke y.〈C : t m〉(v) | if B then c
| while B do c

c ::= s | c; c

Let FN,CN,TN and MN be countable sets of field, class, type and method
names respectively. A signature of an object field/method is a triple 〈C : t f〉 ∈
CN× TN× (FN ∪MN) indicating that the field f in objects of class C has type
t. We denote a set of all signatures by Sig . Here, E ∈ Pvar ∪ {nil} and Pvar is a
1 Shape analyses, introduced in [21], are program analyses that establish deep prop-

erties of the program heap such as a variable point to a cyclic/acyclic linked list.



countable set of program variables ranging over x, y, . . ., while v denotes a list
of actual parameters. Basic commands include assignement, update and lookup
of the heap, allocation, return from a method and method invocation. Programs
consist of basic commands, composed by the sequential composition.

3.2 Storage Model and Symbolic Heaps

We describe the storage model and a fragment of separation logic formulae,
suitable for symbolic execution [1, 3], which plays an important role in our work.

Let LVar (ranged over by x′, y′, z′, . . . ) be a set of logical variables, disjoint
from program variables PVar , to be used in the assertion language. Let Locs be
a countably infinite set of locations, and let Vals be a set of values that includes
Locs. The storage model is given by:

Heaps def= Locs ⇀fin Vals Stacks def= (PVar ∪ LVar) → Vals
States def= Stacks ×Heaps,

where ⇀fin denotes a finite partial map.
Program states are symbolically represented by special separation logic for-

mulae called symbolic heaps. They are defined as follows:

E ::= x | x′ | nil Expressions
Π ::= E=E | E '=E | true | p(E) | Π ∧Π Pure formulae
S ::= s(E) Basic spatial predicates
Σ ::= S | true | emp | Σ ∗Σ Spatial formulae
H ::= ∃x′. (Π ∧Σ) Symbolic heaps

Expressions are program or logical variables x, x′ or nil. Pure formulae are con-
junctions of equalities and inequalities between expressions, and abstract pure
predicates p(E) describe properties of variables (E denotes a list of expressions).
They are not concerned with heap allocated objects. Spatial formulae specify
properties of the heap. The predicate emp holds only in the empty heap where
nothing is allocated. The formula Σ1 ∗ Σ2 uses the separating conjunction of
separation logic and holds in a heap h which can be split into two disjoint parts
H1 and H2 such that Σ1 holds in H1 and Σ2 in H2. In symbolic heaps some (not
necessarily all) logical variables are existentially quantified. The set of all sym-
bolic heaps is denoted by SH. In the following we also use a special state fault,
different from all the symbolic heaps, to denote an error state. S is a set of basic
spatial predicates. The spatial predicates can be arbitrary abstract predicates
[18]. In this paper, we mostly use the following instantiations of the abstract
predicates x.〈C : t f〉 +→E, ls(E,E) and lsn(E,E, E). The points-to predicate
x.〈C : t f〉 +→E states that the object denoted by x points to the value E by the
field f . We often use the notation x.f +→E when the class C and type t are clear
from the context. Also, if the object has only one field, we simplify notation by
writing x +→ . Predicate ls(x, y) denotes a possibly empty list segment from x to
y (not including y) and it is defined as:

ls(x, y) ⇐⇒ (x = y ∧ emp) ∨ (∃x′.x +→x′ ∗ ls(x′, y))



Predicate lsn(O, x, y) is similar to ls(x, y), but it also keeps track of all the
elements kept in the list. This is done by maintaining a set O of all the values.

lsn(O, x, y) ⇐⇒ (x = y ∧ emp ∧O = ∅) ∨
(∃x′, o′, O′.union(o′, O′) = O ∧ x +→ o′, x′ ∗ lsn(O′, x′, y))

Here union is an abstract predicate indicating the union of its arguments. In
this paper we sometimes do not write the existential quantification explicitly,
but in that case, we keep the convention that primed variables are implicitly
existentially quantified. Also, we use a field splitting model, i.e., in our model,
objects are considered to be compound entities composed by fields which can be
split by ∗2. Notice that if S1 and S2 describe the same field of an object then
S1 ∗ S2 implies false.

Here, it is worth to mention a fundamental rule which gives the bases of local
reasoning in separation logic:

{H1} C {H2}
{H1 ∗H} C {H2 ∗H} Frame Rule

where C does not assign to H’s free variables [16]. The frame rule allows us to
circumscribe the region of the heap which is touched by C, (in this case H1),
perform local surgery, and combine the result with the frame, i.e. the part of the
heap not affected by the command C (in this case H).

3.3 Bi-abduction

The notion of bi-abduction was recently introduced in [2]. It is the combination
of two dual notions that extend the entailment problem: frame inference and
abduction.

Frame inference [1] is the problem of determining a formula F (called the
frame) which we need to add to the conclusions of an entailment in order to
make it valid. More formally,

Definition 1 (Frame inference). Given two heaps H and H ′ find a frame F
such that H 0 H ′ ∗ F.

In other words, solving a frame inference problem means to find a description of
the extra parts of heap described by H and not by H ′.

Abduction is dual to frame inference. It consists of determining a formula A
(called the anti-frame) describing the pieces of heap missing in the hypothesis
and needed to make an entailment H ∗A 0 H ′ valid. Abduction was introduced
in the context of scientific process as a means to distinguish the process of
hypothesis formation from deductive and inductive inference [19]. In this paper
we use abduction in the very specific context of separation logic.

Bi-abduction is the combination of frame inference and abduction. It consists
in deriving at the same time interdependent frames and anti-frames.
2 An alternative model would consider the granularity of ∗ at the level of objects. In

that case, objects cannot be split by ∗ since they are the smallest unit in the heap.



Table 1. Algorithm 1 LeakDetectionAlgorithm(Prg)

Plocs := LabelPgm(1, P rg);
Mspecs := CompSpecs();
LocPre := ForwardAnalysis(Mspecs);
LocFp := BackwardAnalysis(Mspecs);
forall loc ∈ Plocs do

Pre := LocPre(loc);
Fp := LocFp(loc);
MLeak(loc) := {R | H1 # H2 ∗R ∧H1 ∈ Pre ∧H2 ∈ Fp}

end for

Definition 2 (Bi-Abduction). Given two heaps H and H ′ find a frame F and
an anti-frame A such that H ∗ A 0 H ′ ∗ F

Many solutions are possible for A and F. A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [2]. In this paper we
use bi-abduction to find memory leaks in Java programs.

Throughout the paper we will write the frame and anti-frame to be deter-
mined in the bi-abduction problem in “frak” fonts (e.g., A,F,B . . . ) in order to
distinguish them from the known parts of the entailment.

4 Detecting Memory Leaks

Algortihm 1 computes allocated objects that can be considered memory leaks,
at particular program points.

Firstly, the program is labelled using the LabelPgm() function. The labelling
function is described in more details below. Secondly, the specs of all the methods
in the program are computed using the function CompSpecs(). Using these specs,
ForwardAnalysis() performs symbolic execution of the program (see Section 4.1).
The result of the analysis are assertions, obtained by symbolically executing the
program which represent an over-approximation of all the possible states the
program can be at each location.

These assertions, together with the program locations to which they corre-
spond, are recorded in an array LocPre. Next, BackwardAnalysis() is performed,
again using the calculated specs of the methods. At each program point an as-
sertion is obtained, that represents a preconditions for a subprogram starting at
that program location. These results are written in an array LocFp indexed by
the locations. Finally, for each program point, the results, i.e. the preconditions
obtained in these two ways are compared by solving a frame inference problem.
The solution frame corresponds to the memory leaked at that location.

Labelling program points. The program is labeled only at essential program
points. A program point is considered essential only if

– it is a basic command not enclosed within a while or if statement,



– or, if it is the outer-most while-statement or the outer-most if -statement.

This means that we do not consider essential those statements within the body
of while and if statements, either basic or compound. Function LabelPgm,

LabelPgm(i, s) = (i : s) LabelPgm(i, s; c) = (i : s);LabelPgm(i + 1, c)

takes a program and an integer, and returns a labelled program. We labelled our
running example (Figure 1) according to the labelling algorithm. Memory leaks
are sought for only at the essential program locations. The rationale behind this
choice can be understood as follows. If a new unnamed cell is assigned in each
iteration to a variable then the garbage collector can claim the object before the
iteration during the execution of the loop (if there are no references to it). For
example this is the case of the Integer.parseInt(br.readLine()) in the body
of the while loop at location 8 in Fig. 1. The other possibility is when objects
used in the body of the while-loop are potentially used in each iteration and
could become a memory leak only upon the exit from the loop; for example a
data structure is created, traversed or manipulated during the execution of the
loop. Such structure is not a leak as long as the loop is executing (for example
the bag in the body of the loop at location 8). Only if the structure is not used
anymore after the loop has terminated, but the variable holding the structure is
not set to null, then it is considered to be a leak and should be detected.

4.1 Forward and Backward Shape Analyses

Our algorithm is based on the use of two existing shape analyses [3, 2] for which
we provide brief and rather informal summary.

Forward Shape analysis. The forward shape analylsis consists of three main
steps: symbolic execution, heap abstraction and heap rearrangement. Symbolic
execution implements a function

exec : Stmts × SH → P(SH) ∪ {fault}.

It takes a statement and a heap and returns a set of resulting heaps after the
execution of the statement or the special element fault indicating that there
is a possible error. For example, the result of the execution of a statement
x.〈C: t f〉 = E2, which assigns value E2 to the field f of object x, in a heap
H ∗ x.〈C: t f〉 +→E1 is H ∗ x.〈C: t f〉 +→E2.

Abstraction is done by rewriting rules, also called abstraction rules which
implement the function

abs : SH → SH

The abstraction rules are applied after the execution of any command, which
helps to keep the state space small.

The rules of symbolic execution work at the level of the object fields which
is the most basic entity considered in the analysis. In other words, the rules



manipulate only points to predicate +→ , but they cannot be applied to com-
posite abstract predicates or inductive predicate like ls(x, y). In case the field
object that needs to be accessed by symbolic execution is hidden inside one of
these composite/inductive predicates, rearrangement is used to expose this field.
Rearrangement implements function

rearr : Heaps ×Vars × Sig → P(SH).

Forward shape analysis can be defined as the composition of rearrangement,
symbolic execution and abstraction

F = abs ◦ exec ◦ rearr.

The forward analysis is sound since it computes, at any program point, an over-
approximation of the set of all states in which the program can be in any possible
run [3]. Complete formal description of the forward shape analysis used here, as
well as the tool jStar implementing it, can be found in [3, 4].

Compositional backward shape analysis. Backward analysis is achieved us-
ing bi-abduction which allows to construct the analysis in a compositional fash-
ion. Such analysis can be seen as the attempt to build proofs for Hoare triples of a
program. More precisely, given a class composed of methods m1(x1), . . . ,mn(xn)
the proof search automatically synthesizes preconditions P1, . . . , Pn and postcon-
dition Q1, . . . , Qn such that the following are valid Hoare triples:

{P1}m1(x1) {Q1}, . . . , {Pn}mn(xn) {Qn}.

The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for methods which are on a
higher-level in the call-graph. To achieve that, the following rule for sequential
composition —called the Bi-Abductive Sequencing Rule— is used [2]:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1;C2 {Q2 ∗ F}

Q1 ∗ A 0 P2 ∗ F
(BA-seq)

This rule is also used to construct a proof (triple) of a method body in composi-
tional way. In that case the specifications that are used refer to commands (e.g.,
statements) or (previously proved) methods in case of a method call. BA-seq can
be used to analyze the program either composing specifications “going forward”
or “going backward”. In our case, we use it as a core rule for the definition of
our backward analysis.3 A tool implementing bi-abductive analysis exists and it
is described in [2].
3 In the special case of while-loop the rule is used in a forward way combined with the

abstraction mechanism which ensure convergence of the analysis [2].



Forward and Backward analyses in action. In this section we exemplify
forward and backward analysis by applying them to an example. Let us consider
a program consisting of three labelled commands.

1: OneFieldClass x = new OneFieldClass();
2: OneFieldClass y = new OneFieldClass();
3: x.update(val).

For succinctness, let us denote the statements above as c1, c2 and c3. The spec-
ifications of the statements are given bellow.

{emp}c1{x +→ } {emp}c2{y +→ } {x +→ }c3{x +→ val}

In forward analysis, the program is executed symbolically, starting from an
empty state. During the execution the memory is accumulated in the program
state and a post-state of each statement is a pre-state of the following statement.
Let us first consider what assertions at each program point we get by executing
the forward analysis.

{emp}c1{x +→ }c2{x +→ ∗ y +→ }c3{x +→ val ∗ y +→ }

We observe that the preconditions for the corresponding program points are as
following:

1 : emp 2 : x +→ 3 : x +→ ∗ y +→ .

Let us now consider what happens when we combine the triples using the
Bi-Abductive Sequencing Rule in a backwards manner. Firstly, the triples of the
last two labelled statements in the program are combined, and a new triple for
the subprogram consisting of these two statements is obtained. That triple is
used further to be combined with the previous statement in the program, and
so on, until the beginning of the program is reached. If we apply the rule to
specifications for c2 and c3, we get

{emp} c2 {y +→ } {x +→ } c3 {x +→ val}
{x +→ } c2; c3 {x +→ val ∗ y +→ }

y +→ ∗ x +→ 0 x +→ ∗ y +→
.

Here, A = x +→ and F = y +→ . Now, we combine the obtained triple for c2; c3

with the triple for c1.

{emp} c1 {x +→ } {x +→ } c2; c3 {x +→ val ∗ y +→ }
{emp} c1; c2; c3 {x +→ val ∗ y +→ }

emp ∗ A 0 x +→ ∗ y +→ ∗ F

Here, A = emp and F = emp. In this case, the preconditions for the corresponding
program points are

1 : emp 2 : x +→ 3 : x +→

Note that in the backward analysis state is accumulated in the postcondition.
However, this does not pose the problem as it is the precondition that describes
what state is necessary for safely running the program, while the postcondition
describes what is accumulated after the execution is finished (when starting from
the inferred precondition).



Soundness of the algorithm. We now show that our algorithm is sound in the
sense that it only classifies as leaks a subset of those parts of memory which are
allocated but not used anymore.

Let c be a command and H symbolic heap. We say that c is safe at H (written
safe(c, H)) when the following holds

safe(c, H) iff fault '∈ F(c, {H}).

Intuitively, c is safe at H when running the symbolic execution using H as
precondition does not reach the faulting state.

Theorem 1. The LeakDetectionAlgorithm only identifies real leaks.

Proof. (Sketch) Let R ∈ MLeak(loc), then there exists H1 ∈ LocPre(loc) and
H2 ∈ LocFp(loc) such that H1 0 H2 ∗R. By definition H2 is the precondition of
a Hoare triple constructed by the backwards analysis. First of all, note that the
backward analysis constructs only true triples [2]. Secondly, because of the tight
interpretation of triples in separation logic[16], we have that a triple ensures that
the program starting from the precondition cannot fault. Therefore, this implies
that H2, being a precondition of a true triple, must be safe. This in turn implies
that the program starting at loc only accesses memory cells described by H2 and
it does not access any memory defined by R (otherwise H2 could not be safe).
Hence R is a real leak. 23

5 Examples

In this section we illustrate how our algorithm works on several examples. Firstly,
we revisit our running example given in Figure 1 and show in detail how our
algorithm operates on actual code. Then, we examine two more examples that
reflect other causes of memory leaks discussed in introduction.

For the sake of succinctness, we use a special predicate ∀∗x ∈ X.p(x), which
states that property p holds for each element x of X separately. For instance, if
X = {x1, . . . , xn} then ∀∗x ∈ X.p(x) stands for p(x1) ∗ . . . ∗ p(xn).

5.1 Running example

Our algorithm first applies the two analyses to our example. The results of the
analyses is given in App. A. All the necessary specification of the underlying
classes in our example are given in App. B. Here, we compare these results and
infer which portion of the program state can be considered a memory leak.

At label 1 of the program, the precondition obtained in both forward and
backward analysis is emp, and so there is no memory leak before the execution
of the program has started, as expected. In fact, class Driver does not leak any
memory upto the label 9.



Let us now consider what happens at label 9 of the program. Forward analysis
finds that the symbolic state

∃O. br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag)

describes a precondition at label 9. This precondition is a result of the symbolic
execution of the program upto label 9, and so, it reflects the actual program state.
That is, this precondition contains all the memory allocated and reachable in
the execution of the program so far.

Backward analysis, on the other hand, calculates that the precondition at
this point is

bag.list +→x′ ∗ ls(x′, nil).

Backward analysis, as already discussed, pinpoints the exact memory necessary
for safe execution of the program. So the subprogram starting at label 9 needs
nothing more and nothing less than this precondition in order to execute safely
(without crashing).

Our algorithm now uses frame inference to compare these two preconditions
and concludes that the state

∃O. br +→ ∗ bag.observers +→ y′ ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o.bag +→ bag)

is not necessary for the execution of the rest of program, and hence, it is a leak.
During the execution of the program memory accumulates unless it is ex-

plicitelly freed, by say, setting certain variables to null and waiting for the
garbage collector to reclaim the objects that are no longer refered to by variables.
In our running example, no memory is freed, and the most dramatic memory leak
appears towards the end of the program. At label 18 of our program, forward
analysis produces symbolic state

∃O,O′. br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil)∗
(∀∗o ∈ O′.o.bag +→ bag).

as a precondition. However, the backward analysis finds the precondition corre-
sponding to the same label to be

revbag.list +→x′ ∗ ls(x′, nil).

This leaves a substantial ammount of memory to lie around in the program state,
while it is not needed by the program:

∃O,O′. br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil)
∗revbag.observers +→ v′ ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag).



5.2 Examples on other sources of leaks

We now point out examples that demonstrate some of the possible causes of
memory leaks discussed in the introduction.

The following example illustrates a memory leak caused by a static reference.
Here, we have a huge static object LinkedList which is allocated when the
program starts executing. Even though it is not used anymore after a certain
point in the program, because it is not explicitely set to null, the garbage collector
will not be able to reclaim its memory, as it is referenced by a static variable.

public class Myclass {
static LinkedList myContainer = new LinkedList();
public void leak(int numObjects) {
for (int i = 0; i < numObjects; ++i) {
String leakingUnit = new String("this is leaking object: " + i);
myContainer.add(leakingUnit);}

}
public static void main(String[] args) throws Exception {
{
Myclass myObj = new Myclass();
myObj.leak(100000); // One hundred thousand

}
System.gc();
// do some other computation not involving myObj}

}

Specifications of the methods are as follows.

{emp} {this.myContainer +→x′ ∗ ls(x′, nil)}
myClass(); leak(i)
{this.myContainer +→x′} {this.myContainer +→x′ ∗ ls(x′, nil)}

The forward analysis applied to the main() method, yields

{MyClass.myContainer +→x′ ∧ x′ = nil}
MyClass myObj = new Myclass();
{myObj.myContainer +→x′ ∧ x′ = nil}
myObj.leak(100000);
{MyClass.myContainer +→x′ ∗ ls(x′, nil)}
{MyClass.myContainer +→x′ ∗ ls(x′, nil)}
System.gc();
{MyClass.myContainer +→x′ ∗ ls(x′, nil)}
//do some other computation not involving myContainer
{p ∗MyClass.myContainer +→x′ ∗ ls(x′, nil)}

Here, p denotes some predicate that describes the postcondition of the program
and does not mention any memory described by MyClass.myContainer +→x′ ∗
ls(x′, nil). On the other hand, since the program does not use any memory
referenced by MyContainer upon the exit from the local block, the backward



analysis will find that MyContainer is last used inside this local block, and so
our algorithm will discover that at the end of the local block memory referenced
by MyContainer is leaked.

The last example we consider illustrates the phenomenon of Limbo, discussed
in the introduction. The program first allocates a very big list and does some
computation over the elements of the list. Then, it starts handling some input,
which might last for very long (possibly forever). At the end of the main()
method, memory referenced by the list would be garbage collected, but as the
input handling might last very long, this could lead to running out of memory.

public static voin main(String args[]){
int big_list = new LinkedList();
//populate the list
populate(big_list);
// Do something with big_list
int result=compute(big_list);
//big_list is no longer needed but it cannot be garbage collected
//we would need to set its reference to null explicitely
for (;;) handle_input(result);

}

The forward analysis of the main() returns the following assertions, assuming
that for handling input, no memory is needed.

{emp}
int big list = new LinkedList();
{big list +→x′ ∧ x′ = nil}
populate(big list);
{big list +→x′ ∗ ls(x′, nil)}
intresult = compute(big list);
{big list +→x′ ∗ ls(x′, nil)}
for(; ; )handle input(result);
{big list +→x′ ∗ ls(x′, nil)}

Our backward analysis discovers that the last point big list is used is in a
int result=compute(big list); statement, and that is where our algorithm
discovers that a program leaks memory referenced by this variable.

6 Related Work

The paper [14] introduces a backwards static analysis which tries to disprove
the assumption that the last statement has introduced a leak. If a contradiction
is found, then the original assumption of the leak was wrong. Otherwise, the
analysis reports a program trace that leads to the assumed error. Like ours, this
analysis allows to check incomplete code. However, it can only detect memory
objects that are not referenced anymore, therefore this analysis is not suitable
for detecting the kind of leaks (Java leaks) we are concerned with in this paper.



The same limitation applies to the techniques described in [11, 8]. Similarly, the
static analyses described in [5, 26] aim at detecting leaks caused by objects not
reachable from program variables. Therefore they cannot detect the kind of leaks
we aim at with our analysis.

The paper [22] introduces a static analysis for finding memory leaks in Java.
This technique is tailored for arrays of objects. On the contrary, here we have de-
fined a framework which works for different kind of data structures representable
by abstract predicates.

A static analysis for detecting unused (garbage) objects is introduced in [25].
This analysis is similar to ours in its aim. However, the two approaches are sub-
stantially different. The authors use finite state automata to encode safety prop-
erties of objects (for example “the object referenced by y can be deallocated at
line 10”). The global state of program is represented by first-order logical struc-
tures and these are augmented with the automaton state of every heap-allocated
object. This shape analysis is non compositional and works globally. Our tech-
nique instead is compositional (since based on bi-abduction) and exploits local
reasoning (since based on separation logic). Compositional shape analyses based
on bi-abduction and separation logic have a high potential to scale as demon-
strated in [2]. Moreover, their approach employs an automaton for each property
at a program point, whereas our approach simultaneously proves properties for
many objects at all essential program points in a single run of the algorithm.

Different from static approaches as the above and ours there are dynamic
techniques for memory leak detection [9, 15, 10, 23]. The main drawback with
dynamic techniques is that they cannot give guarantees. Leaks that do not occur
in the particular run which is checked will be missed and remain hidden in the
program.

7 Conclusion

Allocated but unused objects reachable from program variables cannot be re-
claimed by the garbage collector. These objects can be effectively considered
memory leaks since they often produce the same catastrophic problems that
leaks have in languages like C: applications irreversibly slow down until they
run out of memory. In this paper we have defined a static analysis algorithm
which allows the detection of such allocated and unused objects which cannot
be freed by the garbage collector. Our technique exploits the effectiveness of sep-
aration logic to reason locally about dynamic allocated data structures and the
power of bi-abductive inference to synthesize the part of allocated memory truly
accessed by a piece of code. The paper shows how separation logic based pro-
gram analyses and bi-abductive inference can be combined to reason statically
about memory leaks in garbage collected languages like Java. We have shown the
effectiveness of our algorithm on examples involving different sources of leakage
among which the Observer pattern, that is one of the most used design patterns
in real life.



All the technology for implementing this algorithm exists, so naturally, our
next step is implementing the algorithm.
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A Results of the analyses of the class Driver

In this section we present the assertions for the class Driver obtained by the for-
ward and backward analysis, respectively. The numbers correspond to the labels
in the program, and each formula specifies the precondition for a subprogram
starting at a given label.

A.1 Forward analysis

1. emp
3. br +→
4. br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(0, y′, nil)

5.
br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(adder, y′, nil)∗
adder.bag +→ bag

8.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag)

9.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag)

10.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag)

11.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil)

12.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil)

13.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(0, v′, nil)

14.
∃O.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(adderr, v′, nil) ∗ adderr +→ revbag



15.
∃O,O′.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag)

16.
∃O,O′.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, i) ∗ ls(i, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag)

18.
∃O,O′.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag)

19.
∃O,O′.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag)

20.
∃O,O′.br +→ ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag +→ bag) ∗ rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→u′∗
revbag.observers +→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag +→ bag)

A.2 Backward analysis

1. emp
3. br +→

4.
∃O1”.bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O1”, y′, nil)∗
(∀∗o ∈ O1”.o.bag +→ bag) ∗ br +→

5.
∃O1′.bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O1′, y′, nil)∗
(∀∗o ∈ O1′.o.bag +→ bag) ∗ br +→

8.
∃O1.bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O1, y′, nil)∗
(∀∗o ∈ O1.o.bag +→ bag) ∗ br +→

9. bag.list +→x′ ∗ ls(x′, nil)
10. bag.list +→x′ ∗ ls(x′, nil)
11. rlist +→ z′ ∗ ls(z′, nil) ∗ bag.list +→x′ ∗ ls(x′, nil)
12. rlist +→ z′ ∗ ls(z′, nil)

13.
∃O”.rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→x′ ∗ revbag.observers +→ y′∗
ls(x′, nil) ∗ lsn(O”, y′, nil) ∗ (∀∗o ∈ O”.o.bag +→ revbag)

14.
∃O′.rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→x′ ∗ revbag.observers +→ y′∗
ls(x′, nil) ∗ lsn(O′, y′, nil) ∗ (∀∗o ∈ O′.o.bag +→ revbag)

15.
∃O.rlist +→ z′ ∗ ls(z′, nil) ∗ revbag.list +→x′ ∗ revbag.observers +→ y′∗
ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o.bag +→ revbag)

16.
∃O.ls(i, nil) ∗ revbag.list +→x′ ∗ revbag.observers +→ y′∗
ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o.bag +→ revbag)

18. revbag.list +→x′ ∗ ls(x, nil)
19. revbag.list +→x′ ∗ ls(x′, nil)



B Specification of the underlying classes in our example

B.1 Specification for the class IntegerDataBag

public class IntegerDataBag implements Subject {
private ArrayList list = new ArrayList();
private ArrayList observers = new ArrayList();

public void add(Integer i);
public Iterator iterator();
public Integer remove(int index);
public void addObserver(Observer o);
public void removeObserver(Observer o);
private void notifyObservers();
public ArrayList reverseList();
public Integer sum();
public Integer mult();
public void printBag();

}

{emp}
IntegerDataBag()
{this.list +→x′ ∗ this.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(, y′, nil)}

{∃O.this.list +→x′ ∗ this.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ this)}
add(i);
{∃O.this.list +→x′ ∗ this.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ this)}

{this.list +→x′ ∗ ls(x′, nil)}
iterator();
{this.list +→x′ ∗ ls(x′, nil)}

{∃O.this.list +→x′ ∗ this.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ this)}
remove(index);
{∃O.this.list +→x′ ∗ this.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ this)}

{∃O.this.observers +→x′ ∗ lsn(O, x′, nil) ∗Observer(o) ∗ (∀∗o ∈ O.o +→ this)}
addObserver(o);
{∃O.this.observers +→x′ ∗ lsn(o : O, x′, nil) ∗ (∀∗o′ ∈ o : O.o′ +→ this)}

{∃O.this.observers +→x′ ∗ lsn(o : O, x′, nil) ∗ (∀∗o′ ∈ o : O.o′ +→ this)}
removeObserver(o);
{∃O.this.observers +→x′ ∗ lsn(O, x′, nil) ∗ (∀∗o ∈ O.o +→ this)}

{∃O.this.observers +→x′ ∗ lsn(O, x′, nil) ∗ (∀∗o ∈ O.o +→ this)}
notifyObservers();
{∃O.this.observers +→x′ ∗ lsn(O, x′, nil) ∗ (∀∗o ∈ O.o +→ this)}



{this.list +→x′ ∗ ls(x′, nil)}
reverseList();
{this.list +→x′ ∗ ls(x′, nil) ∗ temp +→ y′ ∗ ls(y′, nil)/return(temp)}

{this.list +→x′ ∗ ls(x′, nil)}
sum();
{this.list +→x′ ∗ ls(x′, nil)}

{this.list +→x′ ∗ ls(x′, nil)}
mult();
{this.list +→x′ ∗ ls(x′, nil)}

{this.list +→x′ ∗ ls(x′, nil)}
printBag();
{this.list +→x′ ∗ ls(x′, nil)}

B.2 Specification for the class IntegerAdder

public class IntegerAdder implements Observer {
private IntegerDataBag bag;

public IntegerAdder(IntegerDataBag bag);
public void update(Subject o);

}

{∃O.bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ bag)}
IntegerAdder(bag)
{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ lsn(this : O, x′, nil) ∗ ls(y′, nil)∗
(∀∗o ∈ O.o +→ bag)}

{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o +→ bag)}
update(o)
{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o +→ bag)}

B.3 Specification of the class IntegerPrinter

public class IntegerPrinter implements Observer {
private IntegerDataBag bag;

public IntegerPrinter(IntegerDataBag bag);
public void update(Subject o);

}



{∃O.bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o +→ bag)}
IntegerPrinter(bag)
{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y ∗ ls(x′, nil) ∗ lsn(this : O, y′, nil)∗
(∀∗o ∈ O.o +→ bag)}

{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o +→ bag)}
update(o)
{∃O.this.bag +→ bag ∗ bag.list +→x′ ∗ bag.observers +→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o +→ bag)}




