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Abstract

Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized
secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by
proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer
membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the
molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the
crystal structure of the pilotin of the T2SS that comprises an arrangement of four a-helices profoundly different from
previously solved pilotins from the T3SS and T4P and known four a-helix bundles. The architecture can be described as
the insertion of one a-helical hairpin into a second open a-helical hairpin with bent final helix. NMR, CD and
fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin.
These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of
the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of
these C-terminal residues in vivo.
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Introduction

The secretins are an important group of bacterial membrane

proteins whose function is to facilitate the transport of secreted

proteins and macromolecular complexes across the outer

membrane [1].They are essential components of the type II

and type III secretion systems (T2SS and T3SS respectively) and

play a key role in the assembly of type IV pili (T4P) and release

of filamentous bacteriophages. Determination of the structure of

secretins has been confined to low-resolution transmission

electron microscopy and cryo EM studies [2–5] which show

membrane penetrating ring structures with 12–14 fold rotational

symmetry. A specialized class of small lipoprotein pilotins bind

their cognate secretins and facilitate oligomerization, insertion

and proper assembly in the outer bacterial membrane. In this

paper we explore the structure and function of the pilotin from

D. dadantii (OutS), several other pilot proteins have been

described [6–12]. Pilotins whose structures have been deter-

mined are MxiM (PDB code: 1Y9L) of the T3SS of Shigella

flexneri and PilW/PilF (PDB codes: 2VQ2)/2FI7 and 2HO1) of

the T4P of Neisseria meningitidis or Pseudomonas aeruginosa [13,14].

The cracked b-barrel structure of MxiM has been solved in

complex with an 18 residue peptide from the cognate secretin

MxiD (PDB code: 2JW1) and the authors propose a model for

the way MxiM assists MxiD assembly [10,15]. The other known

pilot structure, PilW/PilF, appears to perform a broadly similar

function to MxiM, ensuring multimerization of the secretin PilQ

into the outer membrane, but has a different architecture

comprising six serial a-helical tetratricopeptide repeats [9,12]. A

third auxiliary secretin-binding protein has been characterised

structurally, PilP, which is also involved in the assembly or

stability of the secretin PilQ of Pseudomonas aeruginosa [16], the

structure comprises a sandwich of two sheets each with three

anti-parallel b-strands.

The type II secretion system spans both the inner and outer

bacterial membranes [17,18]. It consists of an inner membrane

subcomplex, periplasmic pseudopilins and the outer membrane

secretin [19]. There have been considerable recent advances in

our understanding of the T2SS secretin. First the structure of the

N-terminal periplasmic domains N0, N1, and N2 in complex with

a nanobody [20] was elucidated (PDB code 3EZJ) and secondly a

cryo EM reconstruction of the secretin itself has been described

[3]. In the absence of pilotin the D. dadantii secretin (OutD)

mislocates to the inner membrane [21]. The pilotin possesses at its

N-terminus the characteristic lipoprotein signal sequence (LAAC),

with the signal peptidase LspA cleaving site just before the cysteine

to which the lipid is covalently attached. The pilotin (OutS) binds

to the C-terminal 62 residues of the secretin (OutD) [11,19]. Here

we elucidate the structure of the T2SS pilotin and show that it

binds tightly to 18 residues close to the C-terminus of the secretin

subunit causing this unstructured region to become helical on

forming the complex.
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Results/Discussion

Structure of the T2ss Pilotin
To ensure authentic folding and production of soluble Dickeya

dadantii pilotin (OutS) in the E. coli periplasm, the PelB secretion

sequence was substituted in place of the N-terminal lipidation

sequence thereby preventing lipidation of the pilotin. This

substitution facilitated protein production and crystallization

without compromising secretin-binding [11]. Cleavage of the

secretion signal accompanies transport in to the periplasm. The

crystal structure of the pilotin was determined using the

anomalous scattering from a potassium tetrachloroplatinate

derivative and the structure refined at 1.65 Å resolution

(Table 1). The two copies of the pilotin subunit in the

asymmetric unit of the crystal are virtually identical in structure

(root mean square deviation of 94 a-carbon atoms, residues 38

to 132, is 0.243 Å). The structure is clearly defined in the

electron density map except for the N-terminal residues

preceding Val 38 which presumably form a flexible linker to

the lipidation site. The architecture of the pilotin is the

remarkable insertion of one a-helical hairpin into a second

open a-helical hairpin with bent final helix (Figure 1); this is

unlike the two other pilotin structures solved and is profoundly

different from any previously described four helix bundle. The

first helix of five turns (residues 40–60), is connected to the

second of four turns (residues 69–82) by an 8 residue loop. The

second loop of 10 residues connects to the third helix of four

turns (residues 93–106) which packs against helix one. A short

three residue loop which connects helices three and four and the

disulfide bridge, between Cys 115 in the second turn of helix

four and Cys 61 the first residue of the helix one to helix two

loop (Figure 1B), sets the scene for the packing of helix four

(residues 111–130). The pronounced bend of 65u in helix four is

important for the architecture; the helix has three large

hydrophobic residues which are at least partially buried by

interactions with hydrophobic residues on the other three

helices: Phe 118, Met 122, and Phe 125. The requirement to

pack conserved Phe 125 appears to dictate the severe bend of

this helical element. In the crystal the pilotin subunits form a

dimer, with Arg 63 and Asn 119 (Figure 1B) involved in an

electrostatic interface, between subunits, however there is

currently no evidence that dimerization occurs in solution or

in vivo.

Sequence Similarity and Structural Similarity
The majority of the 13 absolutely conserved residues in the

sequence alignment (Figure S1A) appear to be of structural rather

than of direct functional significance. The two highly conserved

cysteine residues, 61 and 115, form the disulfide bridge between

helices a1 and a4 that stabilizes the correct nested a-helical

protein fold of the pilotin is functionally relevant. When a reducing

agent was used in pull-down assays or in bacterial two-hybrid tests,

the pilotin was unable to bind the cognate secretin (Figure S6).

Presumably this is because the disulfide is reduced and the pilotin

did not fold correctly in the cytoplasm. Interestingly, the previous

mutagenesis analysis revealed several structurally or functionally

relevant residues of pilotin (OutS), notably conserved Leu 57, Arg

63 and Ser 97 [11]. Substitution each of these prevented secretin

(OutD) targeting to the outer membrane. Conserved Cys 21

covalently attaches to the lipid and this residue is essential for

targeting the pilotin to the outer membrane. Conserved Gln 46, on

the solvent exposed surface of helix 1 (Figure 1), must also be of

functional rather than structural significance and maps to the

extremity of the concave surface of the pilotin formed by helices

a1, a3 and a4; it is plausible that this concave surface is the

binding site for the secretin (Figure 1B). Conserved residues

including: Gln 46 and Leu 104 and semi-conserved Leu/Val/Ile

50, Phe/Leu 118 are also in this region. Residues 49, 52 and 53 on

the solvent exposed surface of helix a1 are Ser/Ala for the former

two and Ala/Gly for the latter, respectively (Figure S1A). This

conservation of small residues at these positions is consistent with

this region being important in binding as there is no structural

reason why larger residues could not be accommodated at these

sites unless the secretin binds tight up against the first helix

(Figure 1). A DaliLite database search revealed that P40

nucleoprotein has a similar arrangement of a-helices to that of

the pilotin. The Dali score was 6.0 and sequence identity 5%. The

P40 nucleoprotein domain architecture is however substantially

more complex with seven helices instead of the pilotin’s four. The

concave surface of the corresponding helices of P40 nucleoprotein

is occupied by a helix supporting the view that this is the binding

site for an a-helix. Mutations of the pilotin binding surface confirm

the importance for binding of some of the residues decorating the

concave surface (Table S1). Mutating Ser 49 to Arg has a

profound effect on binding and the mutants Leu 96 Ala, Leu 100

Ala and Gln 114 Ala have a substantial effect on binding as

expected if this is the binding surface (Figure 1B).

Secretin-Binding to the Pilotin in Solution
It had previously been shown that the C-terminal 62 residues of

the secretin bound to the pilotin [11]. This secretin peptide was

produced with 15N-label as a fusion to GST and then released with

PreScision protease. The backbone amide protons were poorly

dispersed in the 1H-15N HSQC spectra revealing the C-terminal

62 residues are unstructured in solution (Figure S4). NMR cross-

titration studies revealed that only peaks corresponding to residues

691–708 of the secretin peptide were shifted on addition of

unlabelled pilotin (Figure S2; with assignment of secretin peptide

shown in Figure S3). When the pilotin was 15N-labelled, good

dispersion of the backbone amides protons was observed as

expected given its folded structure (Figure 2). Titration of the

unlabelled 62 residue secretin peptide into the 15N-labelled pilotin

produced a large number of peak shifts (Figure 2A). Shift

perturbations are extremely sensitive indicators of structural

changes and the extent of the changes observed is compatible

with the secretin peptide decorating the surface of the pilotin and

causing subtle structural rearrangements, perhaps in packing

interactions in the hydrophobic core, reflected in chemical shift

Author Summary

Pathogenic bacteria deliver toxins and virulence proteins
into host cells and tissues using specialised secretion
systems such as the type II and type III secretion systems.
These secretion systems have a pore formed by secretin
protein subunits through which the disease causing
protein effectors and toxins pass. The secretin must be
targeted to and assembled in the outer-membrane and a
pilotin protein facilitates this process. In the absence of the
pilotin the secretin is degraded or mislocates to the inner-
membrane, in either case the secretion system in non-
functional and the bacterium cannot cause disease. Here
we show how the pilotin and the secretin of the type II
secretion system interact, these insights may be useful for
the development of antibacterial compounds to interfere
with secretin targeting and assembly and defeat patho-
genic bacteria such as Vibrio cholerae and enterotoxigenic
E. coli which infect man and Dickeya dadantii which
threatens food security.

The Pilot-Secretin Complex of the T2SS
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changes across much of the structure. The secretin peptide binds

to the pilotin in a 1:1 stoichiometric ratio as determined from the

NMR titration where the intensity of the shifted peaks of the

complex saturate at an equimolar ratio of OutD to OutS. Since

only residues 691–708 of the secretin were affected by interaction

with pilotin (Figure S2), a synthetic 18 residue peptide corre-

sponding in sequence to these residues was assessed. The pattern

of shifts in 1H-15N HSQC pilotin spectrum observed using this

synthetic 18 residue peptide was identical to that using the 62

residue secretin peptide (Figure 2B, C) confirming that it is these

18 residues that are those principally involved in binding to the

pilotin. Circular dichroism measurements also showed the

unstructured nature of the secretin peptide and provided evidence

that the peptide becomes helical on binding (Figure 3A). The

signal saturates at a stoichiometric ratio of secretin peptide to

pilotin. The CD spectra of the pilotin and secretin peptide together

correspond to more helical structure than the spectra of the pilotin

and secretin peptide summed. The additional helical content can

be quantified as 12 residues assuming all secretin and pilotin

molecules are in complex, a reasonable assumption given the high

affinity of complex formation (see below). The most plausible

explanation for this is that 12 residues of the secretin peptide

become helical on binding to the pilotin. The helical propensity of

the 18 residue secretin peptide was apparent from secondary

structure predictions (Jpred [22] and shown on Figure S1B). To

estimate the binding affinity of pilotin for the secretin peptide,

fluorescence spectroscopy was used. Since the 18 residue secretin

peptide has no tryptophan residues, quenching of the fluorescence

signal from the single tryptophan residue in the pilotin on addition

of the secretin peptide, was used to determine the affinity of

binding. The 1:1 stoichiometric binding ratio can be seen from the

saturation of the fluorescence quenching of OutS by an equimolar

quantity of the secretin peptide (Figure 3B). The binding of the 18

residue peptide is tight with Kd of 55620 nM (Figure 3B) and is

comparable to that of the T3SS pilotin-secretin complex [10,15].

3JHNHA spectra of the complex showed peaks coupled by less

than 5 Hz (Figure S5) confirming that at least four residues of the

secretin peptide become helical on binding to the pilotin, there

may be more, but they are hidden by overlapping peaks.

Model of the Pilotin/Secretin Peptide Complex
Crystals of the pilotin/secretin complex were grown, they

belong to space group P65 but are twinned (Table S2) and have

solvent channels with disordered density within. Nevertheless four

Table 1. Crystallographic data and refinement statistics for pilotin.

Data Collection Native Tetrachloroplatinate derivative

Space group P212121 P212121

Cell parameters (Å) a = 49.7, b = 53.1, c = 98.7 a = 49.8, b = 51.8, b = 97.9

Molecules per asymmetric unit 2 2

Platinum sites/au 0 4

Wavelength (Å) 1.0718 1.0718

Resolution (Å) 46.78–1.65 (1.71–1.65)a 52.81–2.90 (3.06–2.90)a

Number of unique reflections 32440 (4652)a 6121 (873)a

Multiplicity 7.8 (6.8)a 12.6 (13.4)a

Completeness (%) 100.0 (99.9)a 99.9 (100.0)a

Rmerge (%)b 0.200 (0.336)a 0.103 (0.214)a

Mean I/sigma (I) 6.9 (2.6)a 19.2 (12.3)a

Rpim (%)c 0.063 (0.140)a 0.033 (0.062)a

MSANd - 1.20

Wilson B-factor (Å2) 21.4 60.1

Refinement

Resolution limits (Å) 46.8–1.65

Reflections (work/test) 30555/1578

R-factor/R-freee (%) 0.197/0.249

rmsd bond(Å)/angle (u) 0.006/0.918

Number of protein (solvent) atoms 1465 (195)

Average B-factor protein (solvent) (Å2) 30.9 (46.0)

Ramachandran plot statistics (%)

Residues in most favoured regions 98.4%

Residues in additional allowed regions 1.6%

aThe parameter values for the range 1.85–1.76 Å and 3.06–2.90 Å are given in parentheses for native and heavy metal derivative data, respectively.
bRmerge =Shkl Si|Ii2,I.|/_Shkl SIi, where Ii is the intensity of the ith observation, ,I. is the mean intensity of the reflection, and the summations extend over all unique

reflections (hkl) and all equivalents (i), respectively.
cRpim =Shkl [n/(n21)]1/2 Si|Ii(hkl)2,I(hkl).|/Shkl Si Ii(hkl), where n is the multiplicity, other variables as defined for Rmerge [46].
dMSAN is the Mid slope of Anomalous normal probability.
eR-factor =Shkl|Fo2Fc|/Shkl Fo, where Fo and Fc represent the observed and calculated structure factors, respectively. The R-Factor is calculated using 95% of the data
included in refinement and R-free the 5% excluded.

doi:10.1371/journal.ppat.1002531.t001
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pilotin subunits can be found by molecular replacement and

density for peptide can be seen occupying the concave surface of

the pilotin. The evidence that suggests residues 694 to 704 of the

secretin adopt a helical conformation in the electron density map,

a part of the simulated annealed omit map is shown in Figure 3C.

Ten residues are in helical conformation and the hydrophobic

surface of the amphipatic helix interacts with the hydrophobic

surface of the pilotin (Figure 3D, E). In this model the methyl

groups of T692 and V697 interact with L100 and L104, I701

interacts with L50 and M122; F704 (with L47, V79 and F125) and

F694 (with F118, L104 and Q114) interactions occur either side of

these central interactions. D107 is the N-terminal helix capping

residue, stabilizing the helix dipole of the bound secretin peptide.

The peptide binds tight up against Q46, S49, A52 and A53,

providing an explanation for their conservation or presence only

as small residues in the case of the latter three. Interestingly, the

same dimer as described for the non-complexed secretin is seen in

these crystals too suggesting that the interaction may have some

biological relevance. The quality of the refinement is relatively

poor because of the disordered protein and for that reason the

structure is being referred to as a model of the secretin peptide/

pilotin interaction.

Intrinsically disordered regions of proteins such as these C-

terminal residues of the secretin subunit facilitate binding by

increasing their capture radius for cognate partner, the so-called

fly-casting mechanism [23]. Initial weak binding may draw the

secretin and pilotin together and as the secretin peptide folds on

the pilotin surface the binding becomes tighter, locking the two

together.

Assessment of the Pilotin/Secretin Interaction In Vivo
A series of in vivo experiments were used to test the proposed

model of secretin binding to the pilotin. The 62 residue C-

terminus of secretin possesses three putative a-helices (Figure 4A)

[22]. If the region consisting of the first two C-terminal helices

were deleted, the truncated OutDDC1 behaves like wild type

secretin. Firstly, OutDDC1 was barely detectable in the absence

but was well produced in the presence of pilotin OutS (Figure 4B).

Secondly, with pilotin, the mutant secretin was mainly recovered

in the outer membrane fractions (Figure 4C). Consistent with the

outer membrane location, expression of OutDDC1 in the presence

of OutS results in a rather low level of pspA induction. Phage shock

protein (psp) response helps to maintain proton motive force in

cells under pmf-dissipating stress and is indicative of mislocaliza-

tion of the secretins in the inner membrane [8,11]. These results

are consistent with the NMR experiments demonstrating that it is

the 18 residue C-terminus of OutD which binds tightly to the

pilotin. Despite its outer membrane location, OutDDC1 was

unable to restore pectinase secretion in D. dadantii DoutD A3559

strain (data not shown) indicating an important functional

relevance of the deleted region. Deletion of the extreme C-

terminus of secretin resulted in partial stabilization of the

truncated OutDDC2 secretin as judged from the quantity

produced in the absence of the pilotin, but prevented its correct

targeting to the outer membrane (Figure 4B,C). In the presence of

pilotin, the amount of OutDDC2 was increased indicating that the

pilotin can still stabilize and hence interact with the truncated

secretin but is not able to target it to the outer membrane. In

agreement with this, expression of OutDDC2 strongly induced

pspA even in the presence of pilotin. Deletion of the full 62 residue

C-terminus of OutD resulted in neither stabilization nor the

correct targeting of the truncated secretin OutDDC3 as judged by

low protein content but high pspA level (Figure 4B).

Conclusion
The type II secretin/pilotin complex from Klebsiella oxytoca has

been imaged by cryo electron microscopy at modest resolution

[24]. The secretin subunits form a dodecameric ring with relatively

weak radial arms that the authors tentatively assign as the pilotin

or pilotin bound to the secretin C-terminus [4,24]. Comparing the

envelope of the complex with that determined by Reichow et al.

(2010) of the secretin only [3], the radial arms are located either in

the periplasm or in the inner leaflet of the outer membrane. This is

the position anticipated from the observation in this work that the

Figure 1. Structure of the pilotin. The crystal structure of Dickeya dadantii OutS consists of four a-helices, the last of which is bent. (A) a3 and
bent a4 wrap around the anti-parallel hairpin formed by a1 and a2. Conserved residues (see Figure S1 for sequence alignment) are represented as
sticks. (B) Rotated about the y-axis by 90u, this view reveals the concave surface formed between helix a1 and helices a3and a4. The disulfide can be
seen linking a1 and a4. (C) Rotated around the x-axis by 90u, a1 is surrounded by the other three helices. A52, A53, S49 and D107 are not strictly
conserved but the first three are always small and 107 is either D or E suggesting some functional constraint on this region. Q46 is absolutely
conserved and may map the other extremity of the binding site. Figure 1 and panels D and E of Figure 3 were produced using PYMOL.
doi:10.1371/journal.ppat.1002531.g001
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pilotin interacts tightly with 18 residues close to the C-terminus of

the secretin subunit, so it is entirely plausible that the radial arms

seen in the cryo-EM map correspond to the unusual four helix

bundle of the type II secretion pilotin bound to the induced C-

terminal helix of the secretin subunit.

Recent structural studies have revealed striking structural

similarities between components from distant secretion systems

and other bacterial cell machines. Besides the expected structural

homologies between several conserved components of ancestrally

related T2SS and T4P [25–27] several other remarkable structural

similarities should be mentioned. Notably, the extreme N-terminal

N0 domain is shared by secretins from the T2SS, T3SS and T4P

but is also structurally related to a domain of lipoprotein DotD

from the T4SS, a domain of VgrG from the T6SS and from a

TonB dependent receptor FpvA [20,28–30]. Similarly the N1/N2

domains of secretins show a significant structural homology with

several ring-forming proteins from the T3SS [20,31,32]. It is

therefore becoming common to attribute similar function to the

proteins or domains of a related structure. Given this background

it is remarkable then that the T2SS pilotin described here is

profoundly different in architecture to the T3SS pilotin but has

similar function. Both the T2SS and the T3SS pilotin bind the

extreme C-terminal region of their cognate secretins and this

previously unstructured part of the secretin becomes an ordered a-

helix on binding. It is therefore remarkable that the corresponding

pilotins are different in architecture, one an open b-barrel (T3SS;

MxiM) the other an unusual helical bundle (T2SS; OutS). These

striking structural differences show that in these systems the

pilotins have been evolved independently to play similar roles.

Materials and Methods

Plasmid Construction, Expression, Purification and
Protein Analysis

The pET-20b(+) plasmid expressing non-lipidated OutS

(residues 26 to 132) fused to N-terminal PelB signal peptide has

been constructed previously [11] at a manner as the sequence of

mature non-lipidated OutS after cleavage by the signal peptidase

LepB is: MDP26VKNT etc. To fuse a C-terminal 6His tag to non-

lipidated OutS, SalI site was introduced at the end of outS sequence

by using the primer (59-ctt gac gcc atg cgc acc gtc gac tga ggg gga

agc aac tgc) and the reverse complementary one (mutated bases

are underlined). Then, by SalI/XhoI digestion the sequence coding

for non-lipidated OutS was fused with that coding for 6His.

Mutants of OutS were made using Strategene QuikChange and

confirmed by sequencing.

To generate OutD truncated derivatives, an Eco47III site and

V678A substitution were introduced using the primer (59-

gcgcggcgaaggcaacggagcgctggataacaacaccctgc) and the reverse com-

plementary one. This site and naturally existing NruI and PsiI sites

were used to generate OutDDC1 (D650–678), OutDDC2 (D679–

705) and OutDDC3 (D650–705) derivatives. To fuse the C-terminal

segments of OutD to GST, the corresponding gene fragments were

subcloned from pTdB-OD plasmids expressing either OutD, or

OutDDC1, or OutDDC2, or OutDDC3 into pGEX-6P-3 or

pGEX-3X vectors in frame with the GST coding sequence.

Protein Expression, Purification and Analysis
E. coli BL21(DE3) strain (Stratagene) was used to produce non-

lipidated pilotin (OutS) and GST-secretin (OutD) derivatives.

Non-lipidated OutS was released from the periplasm by osmotic

shock as described previously [33] and purified by size-exclusion

chromatography Superdex S75 10/300 GL (GE Healthcare). The

OutD peptide was purified and then released from GST-OutD

fusion as described previously [34]. For NMR spectroscopy,

uniformly 15N- and 13C-labeled pilotin and secretin peptides were

produced by growing cell cultures in M9 minimal medium that

contained 15N-ammonium chloride and 13C-D-glucose (Cambridge

Isotope Laboratories Inc.) as the sources of nitrogen and carbon,

respectively. The 18 residue synthetic secretin peptide (residues

691 to 708 inclusive) was purchased from Generon. Cell

membrane fractionation by sucrose density gradient centrifugation

was performed as described previously [11] with steady-state

cultures of E. coli NM522 (Stratagene) expressing OutD derivatives

from pTdB-OD and OutS from pACT-S plasmid. The location of

outer membrane porins was determined by staining with

Coomassie G-250. The position of inner membrane fractions

was estimated by immunoblotting with TolA antibodies and

NADH oxidase activity. E. coli MC3 strain carrying a pspA-lacZ

fusion [35] was used to estimate miss location of OutD derivatives.

To assess functionality of OutD derivatives, complementation

assays with D. dadantii DoutD A3559 strain were used as previously

described [36]. SDS-PAGE and immunoblotting were performed

Figure 2. Elucidation of secretin-pilotin interactions. Titration of
secretin peptides into 15N labelled pilotin. 1H-15N-HSQC spectra of the
pilotin in the absence of secretin (red spectra), in the presence of 62
residue secretin peptide (green) and in the presence of 18 residue
peptide (black). Protein concentration was 100 mM. (A) Pilotin in the
absence and presence of 62 residue secretin peptide. (B) Pilotin in the
absence and presence of the 18 residue secretin peptide. (C) Overlay of
the two complexes with secretin peptides showing the 18 residue
peptide is behaving in a closely similar way to the 62 residue peptide.
doi:10.1371/journal.ppat.1002531.g002

The Pilot-Secretin Complex of the T2SS
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as previously [19]. Anti-OutD rabbit serum was raised against

entire OutD purified from a recombinant E. coli strain. Anti-TolA

serum was kindly provided by J.C. Lazzaroni.

Crystallisation and Structure Determination
Hampton Research sparse matrix screen was used to search for

crystallization conditions. Crystals were grown using hanging drop

vapour equilibration using 10 mg/ml OutS and a reservoir of 2 M

ammonium sulphate, 2% PEG 400 and 0.1 M HEPES pH 7.5.

Vitrification of crystals in liquid nitrogen was achieved using the

reservoir solution with 2.1 M ammonium sulphate and augmented

with 15–25% glycerol. Data were collected at ESRF ID23-1 and

processed using MOSFLM [37] and scaled using SCALA [38].

SAD data were collected from a crystal soaked in 25 mM

potassium tetrachloroplatinate (K2PtCl4) for 4 days. The structure

was solved using PHENIX [39] and COOT [40] and refined using

the native data at 1.65 Å resolution and non-crystallographic

symmetry restraints. The final model comprises 188 amino acid

residues and 208 water molecules. DALILITE [41] was used to

search for similar structures, CLUSTALW [42] for sequence

alignment and JPRED for secondary structure predictions [22].

Crystals of the complex were grown using a 1.0:1.1 molar ratio of

pilotin: secretin peptide and crystallized using a reservoir of 2 M

ammonium sulphate, 0.1 M Tris, pH 8.5. Around 100 complex

crystals were screened before a well-diffracting reasonable ordered

crystal was found. The pilotin/secretin complex was solved by

molecular replacement using data collected at DLS I02 and

CCP4/PHENIX/COOT. These crystals appear to be P6522 but

are most likely twinned P65 with four pilotin molecules in the

asymmetric unit. The packing of the molecules is such that there

are large solvent channels running through the crystal lattice.

These solvent channels appear to have disordered protein present

the modelling of which hampers refinement. The disordered

regions do not gain clarity if the lower symmetry space group P32

is used (for more details see Table S2).

Preparation of Proteins for Nmr Spectroscopy and
Acquisition of Nmr Spectra

Samples of 0.05 to 0.5 mM labelled proteins in 90% H2O, 10%
2H2O containing 20 mM Tris (pH 7.0) and 150 mM NaCl. All

Figure 3. The secretin-pilotin complex. (A) The far uv circular dichroism spectra of the 18 residue secretin peptide alone (black), pilotin alone
(pink) and a stoichiometric ratio of both pilotin (OutS) and secretin peptide (OutD691–708) together (blue). The difference between the secretin/pilotin
complex and the pilotin only is shown in red. As forming the stoichiometric ratio diluted both proteins by half, these data were multiplied by two to
compensate for the dilution factor. The concentration of both pilotin and secretin peptide were 0.55 mM. 3JHNHA evidence of helical conformation is
presented in Figure S5. (B) Measurement of the binding affinity of the pilotin OutS for the 18 residue secretin peptide determined using fluorescence
spectroscopy. 1 mM pilotin was titrated with 50 mM secretin peptide in to 1 mM pilotin so that there was no dilution of pilotin. The stoichiometry can
be seen to be 1:1 within experimental error. The Kd is 55620 nM. Details of the equation fitted can be found in Table S1. (C) Part of the simulated
annealed omit map showing the quality of the electron density map used to derive the models shown in (D) and (E). (D) Model of the secretin
peptide bound to the pilotin, D107 acts as an N-terminal helical cap. (E) Close up showing the hydrophobic nature of the complementary side chains
involved in forming the complex.
doi:10.1371/journal.ppat.1002531.g003
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Figure 4. In vivo determination of secretin interactions with pilotin. Removal of the extreme C-terminal region of the secretin results in
mislocalization of the secretin to the inner membrane (A) Sequence of the C-terminus of Dickeya dadantii secretin (OutD) along with the secondary
structure prediction for this region; the predicted three helices are marked ‘‘H’’. The sequences of the three secretin deletion mutants (OutDDC1 to
OutDDC3) and the C-terminal secretin peptides used are shown. (B) Stabilization of truncated derivatives of the secretin (OutD) by pilotin (OutS) in
vivo. E. coli MC3 cells expressing an OutD derivative (indicated above) and either OutS (+) or empty pACT3 vector (2) were grown for 12 h at 30uC in
LB medium and then analyzed by immunoblotting with OutD antibodies. In the same cultures, b-galactosidase activity was assessed to estimate
expression of pspA-lacZ. An elevated level of pspA reflects mislocalization of the corresponding secretin derivative to the inner membrane. Equivalent
amounts of cell extracts were loaded into each well and used for activity measurement. (C) Pilotin promotes the outer membrane location of the full-
length secretin OutD and truncated secretin OutDDC1 but not OutDDC2. The whole membrane fraction from E. coli NM522 cells coexpressing the
indicated secretin derivatives and pilotin was separated by flotation sucrose gradient centrifugation and analyzed by immunoblotting with OutD-
antibodies or stained with Coomassie G-250 to detect the major porins, which reflect the position of the outer membrane. Immunoblotting with
TolA-antibodies and NADH-oxydase activity indicate the position of the inner membrane fractions. OmpA is indicated by a triangle and OmpC/F by a
dot.
doi:10.1371/journal.ppat.1002531.g004
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NMR spectra were acquired at 15uC using Bruker Avance 700-

and 600-MHz spectrometers. Assignment of 1H, 15N, and 13C

resonances of the backbone was achieved by analysis of

HNCACB, CBCA (CO)NH triple resonance experiments [43].

Circular Dichroism
Far-UV CD measurements were made using a Jasco J-715

spectropolarimeter equipped with a PTC-348WI temperature

controller. Spectra were recorded in 20 mM Tris, 150 mM NaCl

(pH 7.0) at 15uC using 1 mm path length fused silica cuvettes. The

spectra are presented as differential absorbance after baseline

subtraction. Calculations employed CONTIN, SELCON, and

CDSSTR [44].

Fluorescence Spectroscopy
Fluorescence data were collected using a Jasco FP-6300

Spectrofluorometer. To avoid exciting tyrosyl side chains, an

excitation wavelength of 290 nm was used. Emission spectra were

recorded at 15uC in steps of 2 nm from 310 to 400 nm. The

fluorescence signal at 340 nm was plotted to calculate Kd. Pilotin

spectra was measured at 1 mM. 50 mM of secretin peptide

prepared in 1 mM pilotin was titrated into pilotin solution (for

more information see also Table S1 and reference [45]).

Accession codes. Coordinates and structure factor

amplitudes have been deposited in the protein databank with

the accession codes 3UTK and 3UYM. The sequences of OutS

and OutD are available in the UniProt database with accession

codes Q01567 and Q01565, respectively.

Supporting Information

Figure S1 Sequence alignment of pilotins and the C-terminal

region of their cognate secretins. The alignment of the pilotins is

shown in panel (A) and alignment of the C-terminal region of their

cognate secretins in panel (B). The position of the a-helices is

indicated by H in the secondary structure row (predicted by Jpred

for GspD). Shown are the OutS and OutD homologs of Dickeya

dadantii (Erwinia chrysanthemi 3937), Q01567 and Q01565; Pecto-

bacterium carotovorum, C6DAR0 and C6DAQ5; Escherichia coli

O157:H7, Q7BSV3 and Q9ZGU0; Klebsiella oxytoca, P20440 and

P15644; Yersinia mollaretii, C4S9G3 and C4S9F5; Serratia odorifera,

D4E1I4 and A8GJQ5. Identical residues are in red, residues

similar in character are green. Conserved residues are mapped on

to the OutS pilotin structure in Figure 1 of the main text.

(DOC)

Figure S2 Spectroscopic analyses of secretin binding to the

pilotin. 2D 1H-15N HSQC of 15N labelled secretin peptide (OutD

residues 649–685 and residues 649–710 for the major proteolytic

fragment and minor full-length peptide, respectively) in the

absence (black) and presence of pilotin (red). The concentration

of secretin and pilotin were 50 mM and 100 mM, respectively. Both

spectra were acquired using a Bruker 700 MHz at 15uC in buffer

comprising 20 mM Tris pH 7.0, 150 mM NaCl and 10% 2H2O.

(DOC)

Figure S3 Assignment of the backbone amide protons for the C-

terminal secretin peptide. The data were acquired at 15uC using

peptide in 20 mM Tris at pH 7.0, 150 mM NaCl and 10% 2H2O

and a Bruker 700 MHz.

(DOC)

Figure S4 The C-terminus of the 62 residue secretin peptide

(OutD648–710) is unstructured. 1H-15N HSQC spectra of recombi-

nantly produced 15N-labelled secretin peptide (70 mM peptide in

20 mM Tris pH 7.0 with 150 mM NaCl at 15uC) acquired using a

Bruker 700 MHz spectrophotometer. The low dispersion of the

main chain amides reveals the peptide is intrinsically unstructured.

The spectra are cleaner than those shown previously (Figure S2

and S3) because the spectra were acquired quickly. During more

lengthy experiments the 62 residue secretin peptide is slowly

cleaved degrading the quality of the spectra.

(DOC)

Figure S5 3JHNHA spectra of 15N-labelled secretin peptide

(OutD680–710) in the absence (red) and presence (black) of pilotin

(OutS). The spectra were acquired using a Bruker 700 MHz

spectrophotometer at measured at 15uC. The new peaks, arrowed,

have HN-HA coupling constants less than 5 Hz revealing that

these residues are helical when bound. The 3JHNHA coupling

constant was calculated according to measurement of the

diagonal-peak to cross-peak intensity ratio in a 3D 15N separated

quantitative J-correlation spectra. These spectra show that at least

four residues of the secretin peptide become helical on binding to

the pilot.

(DOC)

Figure S6 Reducing environment prevents interaction of OutS

with the C-terminal peptide of OutD. (A) GST pull-down assay

shows that non-lipidated OutS does not bind to the GST-

OutD649–710 in reducing conditions. Soluble cell extracts of E. coli

BL21(DE3) producing either GST alone (lane 1) or GST-

OutD649–710 (lanes 2 and 3) were combined with a periplasmic

extract containing non-lipidated OutS, then loaded on Glutathi-

one Agarose for 1 h and washed. The incubations were performed

in either TBS (lanes 1 and 2) or TBS with 5 mM DTT (lane 3).

Bound proteins were eluted with Laemmli sample buffer,

separated by Tricine-SDS-PAGE and either stained (upper panel)

or probed with OutS antibodies (lower panel). Asterisk indicates a

degradation product of GST-OutD649–710. (B) Bacterial two-

hybrid assay (Karimova et al., 1998) shows that OutS does not

interact with GST-OutD649–710 in the reducing conditions of the

bacterial cytoplasm. The region coding for mature OutS (residues

26 to 137) was fused to the C-terminus of T18 subunit of Cya

(pUT18-OutS) and the region coding for GST-OutD649–710 was

fused to the C-terminus of T25 subunit of Cya (pKT25-GST-Dct).

When pUT18-OutS and pKT25-GST-Dct were coexpressed in E.

coli DHP1 cya strain, the corresponding fusion proteins were well

produced as shown by immunoblotting with anti-OutS and anti-

GST antibodies, respectively. However, once plated on MacCon-

key-maltose agar, these bacteria generated white colonies (as did

the empty vectors) and not red colonies (as produced by the known

interacting OutC/OutC couple which was used as a positive

control). T18-OutC is indicated by a dot and T25-GST-Dct by a

triangle.

(DOC)

Table S1 Dissociation constants of secretin peptide from pilotin

and pilotin mutants determined using fluorescence spectroscopy.

(DOC)

Table S2 Crystallographic data and refinement statistics for

pilotin/secretin peptide complex.

(DOC)
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