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Abstract

This paper describes an efficient method for manipulating deformable B-spline surfaces, based on min-
imizing an energy functionel. The major benefit of the proposed new fuirness norm is thet it preserves
the natural representation of the B-spline surface control points (a two dimensional array) which has
an efficiency advantage over other methods. The designer uses forces as o main sculpting tool and is
free to specify o single force, a set of isolated forces, forces situated on a line or curve or area of the
deformable surface. The user is allowed to modify several parameters and in this way to change the

physical properties of the object.
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1. Introduction

A necessary feature of a modern CAD system is the fa-
cility for interactive free-form design, i.e. to supply the
user with tools and techniques for interactive manipu-
lation of the shape of an object. The simplest approach
is to allow the user to manipulate the control points
of the designed object (curve, surface or volume} and
in this way to change its shape. Although this is the
easiest and fastest way from a mathematical point of
view, it does not prove to be very appesling for de-
signers. The main reason is that when the portion of
the object that is to be deformed includes many con-
trol points, the task of the user becomes tedious and
in some cases even impossible. For a more detailed
description of other drawbacks see Hsu et al.!

The main objective of the work presented in this pa-
per is to develop a method for interactive sculpting of a
B-spline surface (or curve), using direct manipulation
on the object, rather than its controls. The technique
has to preserve the two dimensionality of the array of
the control points and to allow a real time sculpting
even when a large portion of the object is deformed.

One of the approaches for direct manipulation, de-
scribed in the literature!- 2 8. 4 5 is to use mathemat-
ical means to compute the new position of the control
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points. Hsu, Hughes and Kaufman® give the user the
freedom to move a single point or a set of points on
the object to a new position. They use a least squares
method to solve the under-determined system for the
new control points. The method is local because for
cubic B-spline curves when a single point is moved
only the closest four control points are affected. This
drawback was removed by Finkelstein and Salesin? ap-
plying multiresolution analysis. The method of Fowler
and Bartels® ¢ concerns not only points but also tan-
gents and the twist vector. A length-minimum solu-
tion is applied to the under-determined system. The
scheme proposed by Rappoport et al.5 uses Kalman
filtering to compute the new control points. Its main
advantage is that the constraints are not exact but
probabilistic.

A completely different approach to these methods
is so called “physical modelling”. Here the designed
object is enriched with a behaviour governed by phys-
ical laws. Due to this fact physics-based techniques
possess a much higher degree of flexibility and free-
dom than the pure mathematical solutions. A lot of
research has been done recently in this field. Bloor
and Wilson® obtained a B-spline surface as an approx-
imate numerical solution to partial differential equa-
tions. Thingvold and Coken” suggested a deformable
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B-spline surface, whose control points were represen-
ted as mass points connected with elastic springs and
hinges. Celniker and Gossard® suggested an interest-
ing energy functionat for free-form shape design, based
on minimizing the finite-slement stretching and bend-
ing energy terms. They used a Hermite polynomial
basis for representing curves and triangular patches
for surfaces. Later Celniker and Welch?® extended the
idea for point and curve constraints on a B-spline sur-
face. The method of minimization of curvaturel® or
of the thin plate and the membrane energy*® 2. 13, 14
has also been widely used.

A common drawback of almost all existing methods
for minimizing an energy functional in the context of
B-spline surfacess 9 11. 12, 13 jg that the natural rep-
resentation of the control points (two dimensional az-
ray) is not preserved. They are rearranged in a column
vector which, as proved by Farin%, is more time con-
suming. In general, if we have to compute a subarray
of (n X n) control points and if they are rearranged in
a vector, the number of computations is O(r°). It can
be reduced to O(n*) if we keep the points organized
in a two dimensional array?®.

This paper describes a method for interact-
ive sculpting of a nonuniform B-spline surface us-
ing a physics-based modelling approach. The en-
ergy functional is similar to those described in the
literature® ¥ 12. 13 put it preserves the two dimen-
sional array representation of the control points. Due
o this fact and other details in the norm, the num-
ber of the compuiations is reduced to O{n®). Since
the application of forces rather that new positions is
the main sculpting tool, the technique possesses the
softness typical of the method of Rappoport et al.®

The rest of the paper is organized as follows. In
section 2 we describe a deformable B-spline curve, in-
cluding evaluation of the fairness norm and the forcing
vector, solving for a single force and set of forces and
moving a single point of the curve to a new position.
Section 3 extends the scheme for B-spline surfaces. In
section 4 an approach for solving the integrais for the
ponupiform case js described. Section 5 presents the
results and section 6 concludes the paper.

2. Deformable B-spline Curve

Let w(w) = [x(w}, y(u), ()] be a space curve paramet-
erized by u and let f{u) denote the applied sculpting
forces on it. Celniker and Gossard® suggested the fol-
lowing energy functional for curves

E = f oo (1) + B9 (u) — 26(w)w(u) du, (1)

cUTUE

where W(u} and %(u) are the first and second deriv-
atives in respect to the parameter u. The energy E in
{1) can be subdivided in two parts B = Ey-Ea:

E, = f[av‘v{u) + B {u}] du (2)

curve

By =12 ff(u)w(u) du. (3)

E; represents the energy of the curve itself and its
natural resistance to deformations while E» is the en-
ergy due to the applied forces. The curve energy is ex-
pressed as a weighted sum of its stretching and bend-
ing terms, where o and § are freely selected coeffi-
cients. First we shall try to evaluate (2) and (3) for a
single B-spline segment and then by application of the
finite element method the global energy can be found
through summation.

2.1. Evaluating the fairness norm

A single cubic B-spline segment can be written as
ws{z) = VIB,, where V, is the column vector of
control points and B, is a column vector of the B-
spline basis functions. Evaluating the integral (2) for
the function w, will result in the following quadratic
form

Fio = VIK,V, (4)

where K is a (4x4) symmetric matrix, whose entries
are calculated by solving the integral (2). By is called
a “local fairness norm” and K is the “local stiffness
matrix” for the segment w, (). K, can be represented
as & weighted sum of its stretching and bending terms,
ie.

K; = oK + ;QKZS' (5)

In case of a uniform knot distribution and by using
de Boor’s formula'® one can easily find the entries of
the matrices in (5) directly solving

U1 uy
Kio = [ BiBTan, K= [B8Ta ®
ug ug
The exact values of Ky, and Kis are given by
Vassilevl?.

Now, after we have expressed the local fairness norm
By, for a single segment, the global fairness norm F)
for a B-spline curve can be found as a sum of the local
fairness norms over each of the B-spline polynomial
segments. The expression for By can be written as

Ey = VIKV (K = oK1+ 8Ka), )
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Figure 1: A force acting on a single B-spline segment
iz o linear interpolation of forces applied at the ends.

where V is the vector of control points for the spline
curve and K is a quadratic symmetric band matrix
obtained from the local stiffness matrices.

2.2. Evaluating the forcing vector

In order to calculate (3) first an analytical expression
for the force vector f{u) should be available. To sim~
plify the model we assume that f is a linear interpola-
tion of the forces applied at the ends of the polynomial
segment (see Figure 1)

Uy — U
Hw) = 2

%~ Up L aT
— g 0 - ’U.1-—U{)f1 =8 Fsr (8)

where 8 is a vector of interpolating scaling functions
and F? = [fy fi].

After computing the integral (3) using the formula
(8) one can derive the following result for the local
segment forcing energy

Fag = 2V§CSF3, (9)

where V, is the local vector of control points and Cs; is
a (4% 2) coefficient matrix whose entries are calculated

from
Uy

C, = f B,S7 du. (10)
wo

Solving (10) for the uniform case gives

41
1 |33 22

Co=125122 33 (11)
1 4

The product U,F; is also called a “local forcing vec-
tor”.

After we have an expression for the local forcing
vector, applying the finite element principal, the global
forcing energy becomes

Es = 2VTCF, (12)

where V is the vector of control points with length
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Figure 2: A force acting on o B-spline segment is
replaced by two other applied at the ends.

n, F is the global forces vector with length (n-2) and
C is a [nx(n2)] matrix derived through summation
from the local coeflicient matrices.

Now we are ready to rewrite once again (1) but this
time in matrix form:

E=VTKV - 2CF. (18)

Minimizing (13) will ensure the smoothness and the
fairness of the resulting curve. The minimum can be
found simply by setting the gradient equal to zero

KV = CF. (14)

2.3. Solving for a single force

Suppose we have a static state of the curve with con-
trol vector Vo and forces Fy, i.e. KVo = CFy. The
physical meaning of the vector Fg is the set of forces
that makes the curve ocoupy a particular shape in the
space, i.e. it represents the geometric constraints. If no
forces are applied (Fo = 0) then the curve will contract
to a single point, the origin of the coordinate system
{0, 0, 0). Let us now change the force vector to a new
value Fy. Then the control points will also change fo
Vi, i.e. KV = CF:. Subtracting the equalities cor-
responding to the two states results in the following
system:

KAV = CAF, (15)

where AF represents the change in the applied forces
and AV is the change in the control points due to
these forces. The number r of the control points that
are to be changed, and in this way the breadth of
the change, can be controlled by the user. Let us now
assume that a single force f is acting on the curve
point w; = w{us). Then f can be divided info two
forces (f = f5 - 1} applied at the ends of the segment
{see Figure 2}, where

fom LUy g o W T M0 (16)

Uz — Uy Wy — UQ



4 T. Vassilev / Interactive Sculpting with Deformable Nonuniform B-gplines

Now the right hand side of (15) changes to
CAF == Cfg + Cf; = Cof + Cif = Gyt
and the system is expressed as
KAV, = Cff, (17

where K. is the system matrix with dimension (rxr),
retrieved from the global stiffness matrix, AV, is the
unknown vector of the displacement in the control
points and € is a coefficient vector corresponding
to the force f. The systems (17) does not need to be
solved for each spatial component z, y, z Ii is suffi-
cient, to find the solution V. of the system K. V=Cy
and then

AV, = V. (18)

Once the displacement vector AV has been found the
new vector of control points is V1=Vo+AYV,

2.4, Moving a curve point to a new position

Applying a force on a curve point will move the point
in a desired direction but the exact new position can-
not be predicted. However the user might want to
move the point to a specified new target. Then we
have to compute the magnitude of a force that wiil do
the desired change.

Suppose we want to move a curve point po = wlus)
to a new position p1. Then from the B-spline curve
formula one can write

BTAV = Ap, (19)

where Ap = p1 — po. Using (18}, (19) changes to
BTV.f = Ap and the expression for computing the
necessary force becomes

Ap

fo BTV,

(20)

Note that the value in the denominator is not a
vector but a scalar product of two vectors.

2.5. Solving for a set of forces

If the user specifies not only one but a set of forces
£, i=1,...,5, two different approaches are possible. The
first is to compute each displacement vector AV, due
to the force f;, and then the global displacement AV
is, due to the linearity, the sum of the separate AV,
However, if the number of forces is large {s>4} it s
more efficient to keep the equations of the type (15)
and solve three systems for the different spatial com-
ponents,

3. Deformable B-spline Surface

Let wiu,t) = [2(w,), y(uv), Auv)] be a surface para-
meterized by uand v, and let f{u,v) denote the applied
sculpting forces on it. The following energy functional
for surfaces is considered in this paper

2 2 2 2 2
B = ﬂ [C1Wu + cowy, + caWyy + CaWyy + C5Woet

surface

coWiay + CrWie + csWigy2 — 2fw]dudy,  (21)

where the suffixes mean partial derivatives in respect
to the parameters v and v

Analogously to the curve case the surface energy
can be split in two parts B = B1-Fa, E; representing
the natural surface resistance to deformations and o
the forcing energy.

3.1. Evaluating the fairness norm

As mentioned in the introduction our main goal when
calculating the fairness norm will be to preserve the
two dimensionality of the array of control points. The
equation of a tensor product B-spline surface is

w(u,v) = BL VB, (22)

where V is a (mxn) matrix of the controls points and
B, and B, are vectors containing the B-spline basis
functions for the parameters u and v respectively. Now
solving the integral (21) for B: and then finding the
gradient in respect to V leads to

VE = 2(c1K1u VEogy + caKou VKis + calzw VK +
eaK1u VEiy + csKou VEzy + K2 VE1y+

erKi1u VKay + csKay VKoo ). (23)

Here the matrices Ky, Kiv, Kou, Koy are the same
as for a B-spline curve, see (7). The suffix shows the
knot sequence (parameter) for which they are calcu-
lated. The matrices Ko, and Ko, are new and appear
only for a B-spline surface. Their entries are computed
solving

] w1
Kow = f B.BY du, Kov= f B,BY dv. (24)
uUg K]

It is quite obvicus that the expression (23} is too
complicated to be useful for any practical application.
The following approximation to (23) is suggested:

VE, = 2K, VK, (25)

where Ku e 'Y'u,KOu -+ auKlu. -+ ﬁuKZu
and Ky = %Kow + ouEiw + SoKan.

@ The Burographice Association 1995
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Figure 3: A force acting on o single B-spline patch. is
a linear interpolation of forces applied of the ends.

The fairness norm (25) has the following interesting
properties:

o It is a good approximation of (23) (if v € &, f) and
containg all its terms.

» While the highest order of the derivatives in the
literature® 9 2. 13 jg only two, in (25) it is four
(BufBy K2, VK, ). This supposes a smoother and
fairer resulting surface.

e Most of the described functionals® 9. #2. 13 have two
parameters to control the physical properties of the
surface: o represents resistance to stretching and 3
to bending. In (25) another control parameter ap-
pears, y. As the various experiments the author con-
ducted showed, it has the meaning of hardness of the
material. The bigger the value of v the harder the
surface and consequently the narrower the deform-
ation.

o The new proposed fairness norm has two stiffness
matrices, one in direction of the parameter u and
another one for ». This gives users the opportunity
to design nonisotropic materials, i.e. with different
properties in the different directions.

o The expression is quite simple and hence suitable
for practical applications. As we shall see later it
leads to a simple system which can be solved very
fast.

3.2. BEvaluating the forcing matrix.

When calculating the forcing matrix we shall follow
the same approach as we did for curves: first evaluat-
ing for & single B-spline patch and then uniting all the
elements in a global expression. As shown in Figure 3
a force applied anywhere on the patch can be repres-
ented as a bilinear interpolation of the forces applied

& The Eurographics Association 1995

at the four ends
f(u,v) = SLF,S,, (26)

where S, and 8, are vectors with the interpolation
scaling functions in direction u and v respectively and
F, is a (2x2) matrix of the forces. Solving the forcing
part of the integral (21), substituting f with (26) and
finding the gradient in respect to the control points
gives the following matrix expression

V Fap = 2Cs, FCL,. (27)

Here Ca and Csy are the same as for a curve segment,
see {9) and (10). Applying the finite element principle
and summating the energies of the local patches one
can obtain

VE, = 2C,FCL. (28)

where F is the [(m—2) x (n—2)] forces matrix, Cu[mx
(m~ 2)] and Cy[n X (n — 2)] are the global coefficient
matrices. Using {25} and (28), we are ready to write a
system of linear equations that minimizes the energy
functional (21) and preserves the two dimensionality

of the B-spline surface control points '

K. VK, = C,FCI. (29)

3.3. Solving for a single force

Exploiting the same ideas as for curves one can easily
arrive at the following systemn describing the state of
the surface when a single force is applied

Kur AV Ko = CosCosf, (30)

where AV, is an unknown (ru X ry) displacement mat-
rix, Cay and Cyy are coefficient vectors and fis the ap-
plied force. The number of unknowns {ry Xy} is given
by the user. For simplicity when evaluating the effi-
ciency of the algorithm we shall assume that r,=ry=r.
The system (30) is of the type AXB=D described by
Forinl®, It can be solved in two passes:

1. AY=D which is in fact solving » linear systems
with r unknowns;

2. XB=Y, that is solving another set of r linear sys-
tems.

This approach requires O(r*) computations. Note
that if we rearrange the unknowns in a column vector
the number of computations will be O(r°). However,
due to its special right hand side, (30) ¢an be solved in
a much more efficient way. It is sufficient to find only
two solutiong: 'V, of the system K X=Cyuy and V,
of ¥, Y=Cy;. Then AV, is expressed

AV, = V, Vi T, (81)

Due to this fact the number of required computations
is reduced to O(r%).
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3.4. Moving a surface point to a new position

Exploiting the idea for curves and using equation (31),
the formula for computing the force which is required
to move a surface point to a desired new target be-
comes

Ap

f=grv.vis,

(32)

3.5. Solving for a set of forces

The user is free to specify a set of forces acting on a
particular area of the surface, Unlike the curve case
for surfaces only the first approach is possible. First
the displacements due to every single force should be
found and then they aze to be summed to find the
global displacement A V. The second approach is ap-
plicable only if some of the forces are applied on points
with the same parameter value (either u or v), which
is an unlikely situation.

3.6. Solving for forces on an embedded curve
of the surface

Let e(£) = [u(f), ()] be a curve on the surface para-
meterized by t and let f(f) denote the forces acting
on it. The curve ¢(f) can be obtained by specifying
a set of points on the surface and then, for example,
applying a spline interpolation. Since we have math-
ematical expressions for the curve and the force, we
can compute a set of forces acting on the curve over
equal parameter distances Af Then the problem is
the same as for the previous section. Note that since
we have formula (32) for computing the necessary dis-
placement force, it is possible to move a surface curve
co{d) to a new target curve in the space e1(2).

3.7. Solving for forces on a specified area of
the surface

Suppose we have an area on the surface specified by a
closed curve. Exploiting the same ideas we can com-
pute a set of forces acting in the specified area over
equal parameter distances Au=Av. Then the problem
can be solved as in section 3.5.

4. BEvaluating the Fairness Norm and the
Forcing Vector for the Nonuniform Case

It was already mentioned that for the uniform case the
integrals (6), (10) and (24) can be computed exactly,
which will speed up the algorithm. However, when per-
forming the interactive sculpting, the user might de-
cide that for some intervals the resolution is not high
enough and might want to insert new knots in these
areas. Then the parameterization will no longer be

i

Figure 4: Sculpting o face profile

&

uniform and numerical methods must be used to solve
{6), {10) and (24).

The approach using Gaussian quadrature®® is very
efficient for polynomial integrands. Its main idea is
that

Uy N

f Fluydu =" wif(us), (38)

up

where w5 is & sequence of weights and w; is a sequence
of abscissas, whose computation is described by Press
et al.l8 The expression (33) is exact when fu) is a
polynomial of degree (2N-1) or less. In our case the
sufficient values for N are 2, 3 and 4, which makes
the evaluation fast enough. Note also that the integ-
rals need to be computed only if either of the knot
sequences is modified, Le. a new knot is inserted.

5. Implementation and Results

The algorithms were implemented on a Silicon Graph-
ics Indy workstation using the OpenGL library to
render the surfaces. The resuits are shown in Figures
4-6,

Figure 4 shows the different stages of sculpting a
face profile starting from a straight line. The change
in Figure 4a is medium broad and the force is not ap-
plied in the centre of the modified interval. Figure 4b
exhibits a broad change that affects the whole curve.
The ¢hange in Figure 4c is narrow and the force is
applied in the middle of the modified area.

Pigure 5 demonstrates the influence of the paramet-
ers o, § and . As it was mentioned before a big-
ger value for o means a surface that resists more to
stretching, a bigger value for  means a greater resist-

© The Burographics Association 1995
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C,

Figure 5: Influence of the parameters: a. a=1, =2,
ve=(1; b, a=1, f=20, y=0.1; c. ae=1, F=80, y=0.5.
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ance to bending and a bigger value for -y represents a
harder surface.

Figure 6 shows the stages of sculpting a human face
starting from a plane and using different types of ma-
nipulations on a B-spline surface:

o Figure 6a: a broad deformation that affects the
whole surface with forces applied on an area (convex
shape};

o Figure 6b: forces on a line, which magnitude changes
from zero to a certain value (nose);

o Figure 6¢: forces applied on a curve (eyebrows);

¢ Figure 6d: narrow deformation with forces applied
on a line {mouth);

 Figure Ge: forces on an area (forehead) and trim-
ming the final shape.

The response time for a particular deformation de-
pends on the breadth of the change (number of the
affected control points) and on the length of the de-
formed curve {mumber of the applied forces). When
up to five forces are applied it is in real time. The re-
sponse for each operation performed in Figure 6 took
less than five seconds.

6. Conclusions and Future Research

An efficient method for interactive sculpting of B-
sphne curves and surfaces was presented. Its main
advantage is that the proposed energy functional for
surfaces preserves the two dimensionality of the ar-
rays of control and data points which speeds up the
algorithm and allows a real time sculpting. The user
applies forces as a main sculpting tool but it is also
possible to move a point or a curve of the object to a
new position. The user interface is based on a mouse
controlled 3D cursor. An interesting further step of
research would be to allow the user to interactively
deform the surface in a virtual environment using dif-
ferent sculpting tools.
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