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Abstract: Within the context of recursive least-squares, the implementation of a
Householder algorithm for block updating the QR decomposition, on a massively
parallel SIMD system, is considered. Initially, two implementations based on differ-
ent mapping strategies for distributing the data matrices on the processing elements
of the parallel computer are investigated. Timing models show that neither of these
implementations is superior in all cases. In order to increase computational speed,
a hybrid implementation uses performance models to partition the problem into
two subproblems which are then solved by the first and second implementation,

respectively.
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1 Introduction

It is frequently required to obtain updated least-squares solutions of a re-
gression model where a block of data is repeatedly added. The updating can
be computed by recursive formulae which have as a basic component the
recalculation of the QR decomposition (QRD) [3,5,7,9,10,14]. The recursive
least-squares (RLS) problem may be formulated as

a’rgr%ig}'”Atmtmyt”Z; t= 1:27"'# y (1)

where || o || denotes Euclidean length, A; is an m; x (n — 1) full column rank
matrix (my > n), y. € R™ is the response vector, 7, is the unknown vector of
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n — 1 coefficients and
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the LS estimator of z; is derived from the solution of Rix; = u;, where R,
is an upper triangular non-singular matrix and ¢, is an m; X m, orthogonal
matrix. By computing the orthogonal factorization

5 A Ry
o (B Y (Reay [ THT T A
w1l 4 = 0 = Sttt | (4)
t+1 0 0
the updated LS estimator of z,.; may be obtained by solving
Rttlmt+1 = Uti, (5)

where Q1 is an (n + Muqy) X (1 + M) orthogonal matrix and R, €
R*** ig upper triangular. Thus, after computing the QRD of Ay, the recursive
formulae {4) and (5) may be used to derive the updated LS estimator of @44
fort =1,2,...,. Observe that the orthogonal matrix Qf;l in the QRD of f-itﬂ
is given by '
Qf, O PO 0o
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Householder reflections and Givens rotations are the main numerically sta-
ble methods used to compute the factorization in (4) {4-10,16,17,19]. Givens
method is found to be superior in speed to Householder method only when
the blocks of new observations A, comprise a small number of rows compared
with the number of regressors [7,10]. Under the assumption that My > n,
parallel algorithms based on Householder transformations are considered be-
low for computing the factorization (4) on a massively parallel SIMD machine.
The orthogonal matrix Qtﬂ will not be explicitly constructed and the trivial
solution of the triangular system (5) will not be discussed.

2 SIMD Implementation

The orthogonal matrix QT in (4) may be defined as a product of Householder
reflectors, where the ith reflector reduces to zero the sth column of fi’“,l by
preserving the upper triangular structure of K;. Figure 1 shows the steps in
applying the Householder transformations in a data-parallel mode, where Ry is
overwritten by I?iHl, For notational convenience we let m = 1 and denote
the matrices R and A..; by R and A, respectively.



The Householder algorithm has been implemented in MasPar-Fortran on the
MasPar MP-1208 [15]. This SIMD system has 8192 Processing Elements (PEs)
arranged in a 2D-array of size ey x ey, where ¢, = 128 and e; = 64. The
“main  mapping layouts for-distributing the m % n matrix A over the PEs
are the (default) cyclic, column and row layouts, which use [m/e;][n/es],
n[m/ ey ey] and m[n/ e e;] layers of memory, respectively [1]. The memory
layers have dimension e; x e; and are assumed to be arranged in an M x N
grid G, where M and N depend on the chosen layout. Under the cyclic-
layout, the ith row of A, A, ., resides in the jth column of layers Gy ., where
J=(({—1)mode)+1 k=[i/e], M = [m/ey] and N = [n/e;]. In the
columm-layout the ith column of A, A.;, resides in G.;, where M = [m/e; e;]
and N = n, while in the row-layout A;. resides in G;., where M = m and
N =[n/e;e].

A mapping layout is chosen so that the maximum number of PEs remains
active during the computations without, however, increasing the communi-
cation overheads between the PEs. Since m > n, the row-layout will be in-
efficient compared with the column-layout. Consequently, the performances
of the Householder algorithm using cyclic and column layouts are consid-
ered. The computational details of the implementations on the MasPar are
not shown. However, a pseudo code version is given in Fig. 1. Similar imple-
mentations have been previously considered for computing the QRD under
the assumption that the dimensions of the matrices are exact multiples of the
corresponding dimensions of the array processor and that none of their dimen-
sions exceed €; €5 [2,11,12].Here the only constraint imposed on the dimensions
of the matrices is that m > n.

1 fori=1,2,...,ndo

2 s = sqrt (R7 + [|Al?)

3 if (R;; < 0) then s := —s

4 n = H+s

5 c = 8%7N

6 .ZT = (?7 * R’i,i: 4 AT,,, A;,i:)/c
7 Higoi= Ry — 1 % z"

8 A;!z'; = A:,i; - A;’;.; ZT

9 end-do

Fig. 1. The pseudo data-parallel Householder algorithm.

2.1 Performance Models

Statistical methods are employed to construct performance models for the
Householder implementations. These models can realistically evaluate the ex-
ecution speed of the algorithms for various values of m and n. The order of



complexity of the algorithms will be the same if other 2D SIMD array proces-
sors are used.

- Using a eyclic-layout to map the matrices A € R™™ and R € R™™ onto

the PE array, the time (sec x1073) required to apply the ith Householder

transformation is found to be

®y{m,n, i) = 1065[(n+1—14)/e] +1.66[(n+1—14)/ey][m/e]

+4.72[m/el] +0.03(n +1—14)[m/ e ]. (6)

The explanatory factors of the above timing model have been derived by

considering the number of layers involved in the arithmetic computations and

the number of times layers are replicated or reduced. Regression analysis is

then employed to find the least squares estimators of the coefficients in the

model.

The total time spent in applying the Householder reflections is thus given by
Sy @1(m, n, t), which is equivalent to :

N
By(m,n) = ey > (10.65i + 1.66Mi + 4.72M) + 0.03n(n + 1) M/2

i=1

~ (Ney—n){10.65N + 1.66NM + 4.72M), (7}
where N == [n/e;] and M = [m/e,|. However, the overheads of the imple-
mentation which are mainly the passing of arguments (subarrays) to various
routines are not included in this model. Evaluating ®,(m, n), and using back-
ward stepwise regression on a sample of more than 5000 execution times, a
highly accurate timing model for the cyclic-layout Householder implementa-
tion is found to be :

Ty (m,n) = N(1391.0 + 66.8N? 4 388.2M + 115.5N M)

— (Ney—n)(17.42 + 4.53M + 2.79N? + 3.66 N M)
= N(276.12 + 98.28M ~ 118.74NM — 111.76N?)

+ n(17.42 4+ 4.53M + 2.79N? + 3.66 N M). (8)
Calculations shown that the residuals are normally distributed. Thus, the
hypothesis tests made during the selection of this model are justified [18]. The
adequacy of the latter model, measured by the coeflicient of determination, is
found to be 99.99%. Figure 2 shows the ratio between the predicted and actual
execution times using 71{m,n) and ®3(m, n). It may be observed that, overall,
the predictions given by T3 (m,n) are more accurate than those of ®3(m,n).

Using cyclic and column layouts to map respectively the matrices R and A
onto the PEs, a model for estimating the execution time of the ith Householder
reflection is :

Bs(m,n, 1) = cp +er(n+1—1) +ealn+1—14)[m/erey] +ca[n/e], (9)
where ¢g, . ..,cs are constants. Evaluating 30, ®3(m,n,¢) and using regres-
sion analysis, the execution time of the column-layout implementation is found
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Fig. 2. Ratio between predicted and actual execution times.

to be

To(m,n) = n(13.51 +2.69n +1.33(n + 1)[m/ e1 e2] + 2.98[n/ e3] ). (10)

From IPig. 3 it can be observed that neither of the implementations is supe-
rior in all cases. The efficiency of the cyclic-layout implementation improves
compared with that of the column-layout implementation, for fixed m and
increasing n. Table 1 shows that the column-layout is superior for very large

m and relatively small n.
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Fig. 3. Ratio of the execution times produce by the models of the cyclic-layout and

column-loyout implementations.

3 The Hybrid SIMID Implementation

The results above suggest that the application of the n required Householder
reflections be divided into two parts. In the first part, ny reflections are applied

. T o
Ty(m,n) [/ Bxecution Time Fg{m,n) / Executi

i3




Table 1
Execution times in seconds for m = 11264,

n Cychic  Ti{m,n) Column  Tolm,n] n_ Cyclee Ti(m,n)  Column  Th{m,n}
22 14.06 14.68 3.64 3.02 62 43.60 442,30 2179 21.80
502039 2039 5.683 | 540 708062 8007 27.90 27.82
38 27.43 26.53 8.68 8.47 78 5813 58.74 3446 3435

46 33,52 32.45 12.18 12.23 86  66.56 67.31 41.71 41.56
54 38.91 38.38 16.65 16.67 94  75.94 75.88 48.46 49.46

All timing model results have been multiplied by 10°.

to annihilate the first n; columns of A using cyclic-layout; in the second stage
the remaining ny = n — n; reflections reduce to zero the submatrix A. 41,
using column-layout, where A, ,,4+1. comprise the last ny columns of A. Let
Ty{m,n,ny) be the time required to complete the first stage. Then the total
execution time of the hybrid implementation is given by

To(myn,ny) = Ty(m,n,n) + To(m,n — ny) + Ta{m,n — ny), (11)
where

Ts(m,n —ny) = [m/ e 1(65.45[(n — ny)/ ex] + 0.62(n — ny))
is the time (sec x107%) required to remap the submatrix A. ,,41. from cyclic-
layout to column-loyout.

The value of ny, which may not be unique, is chosen to minimize Ty(m, n, ny ).
That is, ny is the solution of

0<n; €n
n; is integer ’ (12)
which may be easily determined by (simultaneously) computing Ty(m,n,n,)
for ny = 0,...,n and selecting the value(s} which minimize 3. Note that
Ty{m,n,n1) is a statistical timing model and includes an unpredicted random
error component. Consequently, the solution of (12} may not yield the true
value of n; which minimizes the execution time of the hybrid algorithm.

a,rgr%inﬂ(m,n,m) subject to {
1

An alternative method for estimating ny is to compare the total number of

memory layers used for different values of ny. In this case n, is the solution of
n1

argrin (Zl[m/e]_] [(n+1-1)/es] + %(n—nl)(n~n1+1) /e €] ) (13)
e
where 0 > ny; > n. This estimation method does not, however, take into
account the cost of remapping A. », +1.. Better estimates of n; might possibly
be obtained by constructing more accurate timing models than that given by
(12), or by introducing a weighting factor into (13} which will take account of
the implementation overheads.

Table 2 shows the actual execution times for the three implementations, where
the negligible time required to compute the estimates of n; is not included
and Ty (m, n,n;) has been computed as .12, @1(m, n,1). The estimates for ny
obtained using (12) and (13) are denoted by 7, and nj, respectively. In most
cases, the two estimation methods yield different values for n;. The execution
time for the hybrid implementation, using the estimation nj, is found to be
more accurate than those using f; in approximately half of the cases. In some
instances, for very small n and relatively large M, the hybrid implementation



Table 2
Execution times in seconds of the three implementations, where M = m/e;.

M f Hybrid  nf. Bybrid Cyclie Column M. n. fi1. Hybrid nj. Hybrid. Cyelic Column. ...
with #3 with ny with 7y with n3

1032 25 3582 23 281 328  5.16 10 128 121 1594 119 1547 1570 68.9]
10 64 57 6.10 55 609 633 18.05 10 160 153 21.79 151 21.56 21.80 106.17
10 96 8% 10.¥8 &7 1101 10,78 39.6] 10 192 186 2743 183 27.66 2766 151.64
20 32 18 421 13 446 562  5.63 20 128 112 27.19 1069 26.96 2766 T0.78
20 64 48 1078 45 1054 1124 19.46 20 160 144 38,20 141 3844 38.67 109.22
20 96 80 1898 77 18.99 1945 41.24 20 192 176 48,74 173 48.76 48.22 154.69
30 32 7 563 3 58 797 633 30 128 103 37.97 99 37.9Y 39.85 72.90
30 64 3% 1453 35 1407 15.94  20.39 30 160 135 54.15 131 5414 56.02 11179
30 96 71 2649 67 26.01 2813 42.80 30 192 167 60.156 163 68.9% 70.78 158.20
30 128 103 3787 99 3797 3961 T72.89 40 128 93 4820 8% 48.05 BI.79 7524
40 32 0 680 0 680 1054 679 40 160 125 69,15 121 6891 73.13 114.60
40 64 29 1716 25 16.88 21.09 21.32 40 192 157 88.83 153 88,59 92.57 161.26
40 96 61 32.57 57 3281 3679 44.29 60 128 52 6961 9 7546 7617 7946
406 128 93 47.81 8% 47.82 52.04 7524 60 160 84 100.3% 0 12000 107.35 119.29
5¢ 32 0 7Bl 0 727 1289 T.27 60 192 116 129.38 13 1i58.44 136.18 167.10
50 64 18 19.22 15 19.6% 26.02 22.28 80 128 52 02,10 89 8B60 100.54 105.03
50 96 50 38.67 G 46,18 4547 45394 80 160 84 132.42 121 12961 141.57 159.85
50 128 82 57.43 29 6563 63.98 77.58 80 192 116 170.62 153 167.356 179.30 223.83
60 32 0 78T 0 774 1523 773 100 128 26 102.65 29 103.12 12492 109.93
60 64 5 2249 5 2249 30.93 23.67 100 160 58 153.04 61 183.52 17578 165.01
60 96 20 44.99 0 47.82 5414 4758 100 192 900 20062 93 201.33 222.65 230.39
60 128 52 6938 9 7524 7618 7922 120128 O 115.08 9 112.03 149.07 114.i4
732 0 98 0 985 17.82 938 120160 O 170.85 0 170.62 210.00 170.15
70 64 14 26.72 30 2743 3562 2077 120 192 31 22829 13 230.39 265.54 236.26
70 96 46 5344 62 53.90 6257 61.87 140 128 8 137.35 35 138.05 173.90 140.62
70 128 78 79.46 94 79.69 88.36 103.59 140 160 14 206.26 67 207.65 243.98 210.23
8 32 0 1031 0 10.31 2015 10.54 140 192 46 278.44 99 274.21 300.38 202.26
80 64 5 3000 25 2883 4078 3117 32 128 101 40.55 97 39.84 42,18 73.59
80 96 206 59.77 57 59.30 71.01 63.2¢ 32 160 133 B7.16 129 B7.19 59.30 112.26
80 128 52 91.87 89 88.36 100.31 106,18 32 192 165 73.12 161 73.12 7523 158.68
11,01 0 1078 2273 10.78 32 224 197 9492 183 94.93 97.04 213.76
32.57 20 30.46 45.71 32.34 32 256 229 113.90 2250 114.14 116.26 276.10
63.29 7 6351 79.68 6515 64128 46 7242 1 8015 8110 79.93

90 128 40 99.14 39 98.88 112.73 108.05 64 160 78 10601 0 121.17 11415 120.70
100 32 11.48 0 1148 25.08 11.48 64 192 110 135.71 1 168.51 144.60 168.76

33.52 15 3187 5015 33.04 64 224 142 17743 0 225.93 186.10 226.23
100 96 6679 0 66.80 8336 066.56 64 256 174 214,93 1 289.22 223.59 289.48
160 128 26 102.65 29 103.12 124.69 109.93 96 128 32 101.48 33 101.24 120.00 109.2]1

1195 0 12,19 2765 1171 96 160 64 14977 65 14977 168.76 163.35
3446 10 38,51 5555 34.45 96 192 96 19546 97 105.94 213.99 228.29
68.260 G ©68.68 0679 67.97 96 224 128 256.65 120 256.88 275.86 305.62
110 128 108.52 19 107.35 136.88 112.26 96 256 160 312.42 161 311.96 330.70 392.10
120 32 12.66 0 1242 30.00 12,318 128 128 0 11549 1 116.24 15891 116.02
120 64 0 35.85 5 34903 6046 3540 128160 0 17274 0 172.96 223.36 172.26
120 96 0 70.07 0 60.85 10547 69.51 128 192 14 234.35 1 230.29 283.35 239.30

116 32
110 64
110 96

ot
]
<
o
N
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is reduced to the column-layout implementation, that is, the estimated value
of n, is zero (see for example the case n = 32 and M = 100). With the
exception of few cases, the hybrid implementation is more efficient than both
the eyclic-layout and column-layout implementations.

4 Conclusion

The performance, on a SIMD computer, of the data-parallel Householder al-
gorithm for computing the orthogonal factorization given by (4), has been
considered. Timing models have been constructed for estimating the execu-
tion speed of the algorithm when cyclic-layout and column-layout mapping
strategies are used. These accurate timing models revealed that neither of the
data-mapping distributions is superior for all values of m and n (m > n).
A new hybrid implementation which switches from cyclic-layout to column-



layoul has been proposed. The hybrid algorithm first applies n; {0 > n; > n)
transformations under the cyclic-layout regime, and then the column-layout
implementation is employed to complete the factorization.

Two methods have been used for deriving an estimate for n,. The first method
is based on minimizing the estimated execution time provided by the timing
model for the algorithm, while the second method is based on minimizing the
total number of memory layers used. The two estimators of n; are not always
identical and are probably different from the optimum value of n,, which
minimizes the execution time of the hybrid algorithm. However, in nearly all
the experiments performed, the hybrid algorithm using both estimators of n; is
found to have the best performance of the three candidates. The improvement
in performance become significant for real-time applications in which a very
large number of data updatings are required.

For other SIMD systems, the value of ny may be best derived using the
straightforward minimization of the total number of memory layers used,
rather than minimizing the estimated time given by performance model in
(11) which requires the time consuming re-determination of the coeflicients of
the various timing models.

Similar hybrid algorithms may be used to compute the orthogonal factoriza-
tion (4), based on Givens rotations and Householder reflections, when m < n.
In this case, the efficiency of the row-layout mapping strategy should be inves-
tigated as a (possibly) more efficient alternative. The hybrid approach could
also be employed to improve the efficiency of the SIMD algorithms proposed
in [3,9-13].
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