Technical Report No. 719

: Depqrtmenfof” B

Computer Science

Queen Mary and Westfield College

A note on
processes for
plan-execution
and
powerdomains
for plan-
comparison

David Pym
Louise Pryor
David Murphy

1996

BN

A note on processes for plan-execution and
~ powerdomains for plan-comparison

David Pym
Queen Mary & Westfield College
University of London

Abstract

This paper proposes a representation for plans and
actions based on the algebraic theory of processes. It
is argued that the requirements of plan-execution are
better met by representing actions through the pro-
cesses by which changes occur than by the more widely
used state-change representation. A simple algebra of
plans, based on process-combinators, is described and
shown to be adequate for a wide variety of plans. The
implications of this type of plan-representation are dis-
cussed and its advantages for meta-reasoning (includ-
ing plan-comparison) outlined. This paper presents
the theory of processes from the point of view of plan-
ning and describes a novel method of plan-comparison
which draws upon ideas in domain theory.

1 Introduction

The execution of plans in unpredictable environments
is fraught with difficulty: actions may not have the
expected results, the environment may change in un-
expected ways, and there may be unforeseen oppor-
tunities. Classical theories of planning, in which it is
assurned that the world changes only as a result of the
planner’s deterministic actions, are inadequate in such
circumstances. Classical theories of plan-representation
are motivated by the requirements of plan construc-
tion: how to represent plans in order to facilitate rea-
soning about them. In this paper, ignoring for the mo-
ment the issue of how to construct plans, we concen-
trate on the requirements placed on the representation
. of plans by their execution, and on the comparison of
pians that have non-deterministic outcomes.
Historically, there have been two main approaches
to representing plans: the situation calculus [22] and
sTRIPS add-and-delete lists [8]. Both these approaches,
and others that derive from them, are based on the
notion of action as a transition between states [27].
However, instead of asking what actions are required
to bring about a given change of state, it is possible
to ask what changes have been brought about by a
given action. We believe that the latter perspective
has many advantages over the former, especially when
considering plan-execution, and therefore propose an
approach based on the algebraic theory of processes,
shifting attention from changes of state to the pro-

Louise Pryor
Department of Artificial Intelligence
University of Edinburgh

Pavid Murphy
Securities & Futures Authority
London

cesses by which transitions occur. We contend that
a process-based analysis is more powerful and more
expressive than those based on state-transitions.

Plan-comparison has traditionally been considered
in one of two ways. In classical theories of planning,
plans will either succeed or fail, and their outcome is
predictable in advance. However, in an unpredictable
environment it is impossible to guarantee that a plan
will succeed; moreover, there may be gradations of
success and failure. These problems have generally
been addressed by invoking decision-theoretic notions:
a utility value is assigned to each possible outcome
of a plan, and the expected utility of the plan then
calculated. We propose a generalized notion of plan-
comparison that accounts for decision-theoretic results,
but is not himited to situations in which utility values
can be assigned. Instead of imposing a total order on
plan ocutcomes via their utility values, our analysis,
which uses the process-based plan representation we
propose, requires only a partial order. Our analysis ex-
ploits the powerdomain semantics of process-evolution
[15, 29] and Abramsky’s ideas about “domain theory
in logical form” [2].

In this paper we present the beginnings of a process-
theoretic analysis of plan-representation, plan-exécution
and plan-comparison. Our language of processes will
be the algebraic/logical theory due to Milner [25, 15].}
In § 2, we discuss the advantages that a process-based
representation has over a purely state-based represen-
tation, based on the relationship between the agent
executing a plan and its environment and the require-
ments that plan-execution places on plan representa-
tions. In § 3, we define an algebra of processes, pre-
senting and illustrating a number of combinators that
allow us to construct complex plans from simpler ones.
In § 4, we describe a method of comparing pians rep-
resented in our process algebra.

The use of the process theory to represent plans
is not new. It was first suggested by McCarthy and
Hayes [22]; more recently, both the Procedural Rea-
soning System (PRS) of Georgeff and Lansky [11} and
Lyons and Hendriks's RS {20, 21] are based on process
theory. Lansky [18] introduces the notion of action-

!Some of the ideas were discussed in [34]. References [17]
and [19] in [34] should be taken to refer to the present paper.
Reference [18] in {34] should be taken to refer to {33} in the
present paper.

based planning for usein logistical planning domains.
Firby’s RAPS system [9, 10} and McDermott's RPL {24]
are both essentially based on actions. Little attention
has, however, been paid to the advantages of using the
established results of process theory. For much more
discussion see: J. Logic Computat. 4(5), 1994,

2 Executing plans

Theories of Al planning have in general concentrated
on issues of plan construction and reasoning about
plans. They have been able to do ignore issues of plan
execution because they assume that the world is pre-
dictable: that it is possible to foresee accurately and
in detail all the circumstances that will arise and the
results of all actions. If this is so, plan execution is sim-
ple: the specified actions are performed in the correct
order; the unexpected cannot occur and nothing can
go wrong. Unfortunately, the real world is not like this.
Consider, for example, a robot collecting aluminium
cans for recycling in an office building. It cannot know
in advance where all the cans are: indeed, the people
in the office building will put out new ones while the
collection is in progress. People may move items of
furniture and open and close doors, thus complicating
the its navigation task. Moreover, the robot’s gripper
will not always grasp the cans effectively: sometimes
it may knock one over instead of picking it up. Many
environments are, like the robot’s office bulding, un-
predictable. Agents operating in them cannot foresee
the results of their actions or what circumstances will
obtain in the future. In particular, many environments
are complex (it is impossible for an agent to maintain
or even acquire a faithful representation of the environ-
merit), dynamic (the environment changes as a result
of the actions of other agents and of exogenous influ-
ences) and nondeterministic {(the situation in which
an action is performed may not fully determine its ef-
fects).

Under these circumstances, it is impractical to ex-
pect an agent to use a monolithic, detailed plan that
specifies exactly what it should do and that is always
guaranteed to work [32]. Instead, we should accept
_ that plans can and do change during execution; that an

agent may have different plans for its different tasks,
~ that interact with each other and the environment in
unforeseen ways; and that it is important that plans
are operotionel inasmuch as they must provide ade-
quate guidance to the agent that is to execute them.

In the remainder of this section we discuss why
a process-based representation of plans is effective at
handling the interactions between an agent and its en-
vironment. The remaining issues pertaining to the
representation of plans are addressed in § 3.

2.1 Agents in environments

An important aspect of plan execution is the relation-
ship between an agent executing a plan and the envi-

.w\‘

Figure 1: An intensional agent in its environment

ronment in which it operates. The interaction between
them is two-way: the agent is affected by the environ-
ment through its perceptions and affects the environ-
ment through its actions. Moreover, the agent has
only limited knowledge of its environment. It can ob-
serve and interact with the environment locally but in
general it can prédict neither the environment’s nor its
own development. Any theory of planning must there-
fore recognize the essentially non-privileged status of
agents in the world; an agent’s own actions should be
represented in the same way as external actions.

‘We should like our plan-representations to reflect
this view of an intensional agent interacting with its
environment; in addition, as we noted above, it should
account for interactions between plans that are exe-
cuting concurrently. The algebraic theory of processes
{15, 25], which deals with the concurrent execution of
communicating processes, provides a framework that
meets these requirements. In this theory, the possible
behaviours of an agent and its environment are spec-
ified as separate but communicating processes. Com-
munication works through the synchronization of pairs
of actions and coactions across processes executing in
parallel (see § 3.4). For example, the presence in the
environment of a can on a table is recognized by the
robot as a coaction PickUp which synchronizes with
the robot's PickUp action, resulting in the transfer of
the can from the table to the robot’s gripper.

Processes evolve during their execution, the form
their evolution takes depending on their interactions
with other processes. We can specify the evolutions
of processes by giving their operational semantics (see
§ 3.2). If we represent a plan as a process, its opera-
tional semantics thus effectively gives a proof theory
of its execution. The joint behaviour of the agent in
the environment can then be inferred from those of the
individual processes and their interactions. Moreover,
the specification of a plan is fully operational: the ac-
tions to be performed and the relationships between
them, the choices to be made, and how the plan is af-
fected by external events are all explicit in the plan’s
definition. '

We therefore treat agents and environments as
two interacting autonomous processes. We visualize

an agent as an explorer, finding out about its envi-
ronment through the interactions that occur (see Fig-
ure 1). The agent can communicate with the envi-

ronment by perception and action only ab restricted
locations. All actions other than those performed by

the execution agent are represented as environment ac-
tions: these may be exogenous events, earthquakes or
fire alarms for example, or actions performed by other
agents in the world. ‘

In this view, a plan describes a collection of per-
mitted actions performed by the two processes.? The
agent performs only actions that are permitted by the
plan and realizes that the plan is inadequate when
the environment does not respond as expected. This
means that in a plan we need only specify those ac-
tions of the environment that directly affect the cur-
rent state of the plan; of course, the environment may,
and usually will, perform many other actions too, some
of which may be relevant later.

The use of process algebras to represent plans has,
we believe, several advantages. As well as having a
well-developed theory with a rich body of results to
draw on, they are more expressive than representa-
tions based purely on state-changes, a§ we discuss in
the next section.

2.2 Action representations

Traditionally, plans have been seen as combinations
(often, simple sequences) of actions. These actions,
which we shall term Al actions, are usually consid-
ered to be simple, indivisible entities, and are often
assumed to be instantaneous. They are generally de-
fined in terms of the state-changes that they produce
{see, for example, Pednault’s description of the state-
transition model of action in [27]}). Representing Al
actions in this way facilitates reasoning about them
when constructing plans. However, it is not optimal
when it comes to executing plans. A priori, a purely
state-based representation is not operational in that it
does not specify how the action should be performed.
Telling an agent what the result of an action should be
is not the same as telling it what the action is. More-
over, when an action is actually performed it may not
. have the expected results. From the point of view of
an agent executing a plan, the resuits the action was
expected to have when the plan was constructed are
not important: instead, the important issues are, for
example, how the action should be performed, when
to stop performing it, and what to do afterwards.

In our system of plan-representation, Al actions
are represented as processes built out of basic actions
and process combinators (see § 3). Basic actions are
the smallest possible building blocks of behaviours, for
example the smallest movement that can be made by
- the actuators of the robot’s arm. Al actions may thus

2For simplicity, we shall not differentiate between actions
performed by the execution agent and those performed by the
environment; it wili usually be obvious which we mean.

have internal structure, need not be instantaneous and
are defined in terms of the basic actions required to
perform them. The mathematical theory of processes
allows us to reason about how they affect the world:
we discuss one application in §4. o
_Purely state-based representations of Al actions
have two major disadvantages: (i) such representa-
tions demand that the frame problem be addressed;
(i} they do not handle interruptions to actions ade-
quately. As we shall see, these two issues are linked.

The frame problem is essentially that of determin-
ing how an action affects the world. While this is a
vital issue when reasoning about actions and plans,
it might be thought that it is not important in their
execution, thus rendering it unnecessary to represent
all possible effects of an action, However, this is not
the case. In a complex, dynamic and nondeterminis-
tic world i is impossible for plan-execution and plan-
construction to be separated entirely. Plan-execution
will necessarily involve replanning: i.e., reasoning about
what to do next. So even when considering plan plan-
execution, plan-construction cannot be ignored.

There are two common approaches to the frame
problem in purely state-based approaches: (i} that
used in the situation calculus of specifying explicitly
(via frame axioms) the propositions that are not af-
fected by the action; (ii} the use of the STRIPS as-
sumption to assume that no effects occur that are not
explicitly specified. While we do not claim that the
use of a process-based representation will solve the
frame problem, we do believe that the issue need not
be addressed: it is possible to represent actions and
to reason about their effects without being forced to
accept the constraints of these two approaches. We
substantiate these points in a specific example below.

The second disadvantage of purely state-based ac-
tion representations is that they treat all actions as
being instantaneous. They define actions in terms of
a transition between the state in which they are exe-
cuted (the initial state) and the state resulting from
their execution (the final state). Purely state-based
representations have nothing to say about intermedi-
ate states. Although they are based on the results
of actions, they ignore the effects that an action has
while it is being executed. This causes problems when
an action is interrupted during execution, and replan-
ning has to occur in an unforeseen situation. These
disadvantages are also discussed in [6}.

Of course, there have been several developments of
purely state-based ideas that address these issues. For
example, the need for frame axioms can be alleviated
by introducing systeins of non-monotonic reasoning,
such as in [14); Lin and Shoham [19] have considered
concurrent actions in the situation calculus. Alterna-
tively, the event calculus [17] considers the interplay
between events (actions) and time. Full discussion of
the strengths of these approaches is beyond the scope
of this extended abstract, but we contend that they
amount to moves towards basing planning on a theory

of processes. Several very useful papers along these
lines, too many to discuss in detail here, appeared in:
Journal of Logic and Computation 4(5), 1994, Special
Issue: Actions and Processes. Of particular relevance
is the paper by J. van Bentham, J. van Eijck and V.
Stebletsova. We propose going all the way to the use
of an algebraic theory of processes and exploiting its
elegant and substantial theoretical results.

To illustrate the problems of an approach based
purely on state-changes, consider cur can-collecting
robot. Suppose that in addition to collecting alu-
minium cans, it also fills the office drinking fountain.
The drinking fountain consists of a reservoir with a fil-
ter, and has a tap at the bottom which enables people
to fill their drinking glasses. The robot fills the reser-
voir from a jug. People may use the drinking fountain
while it is performing the action of filling the reservoir.
The robot’s plan is to keep filling the reservoir until it
is full. For simplicity, we assume that the jug contains
as much water as necessary.

Note that the level of water in the reservoir varies
continuously during the action of pouring from the jug.
However, the exact course the level follows depends on
the people filling their glasses and is not predictable in
advance. If the robot interrupts the pouring action for
any reason (a fire alarm, say) the water in the reservoir
may be at any level between empty and full. Replan-
ning must then take place: the plan that is chosen will
depend on the exact circumstances, but one possibil-
ity is to try again to fill the reservoir (possibly it was
3 false alarm).

It is easy to construct a process-based plan us-
ing recursion: “pour water into the reservoir until it
is full” (see § 3.3). Constructing a plan is, however,
more difficult in a purely state-based representation.
It is clearly impossible to define a pouring action in
terms of how much water is added to the reservoir: it
* must be defined in terms of how much water leaves the
jug. When replanning, then, the required amount of
water must be determined. It is conceivable (though
unlikely) that it would be possible to use perception
to determine the amount required under the assump-
tion that none is removed during the filling operation.
However, this assumption is unreasonable: during the
. time it takes to fill the reservoir, it is likely that some-
one will want a drink. In these circumstances, it is
impossible to construct a successful plan from pouring
actions defined simply in terms of the amount of water
to be transferred from the jug. Moreover, a pouring
action defined purely in terms of state-changes is not
operational: the motor controls of the robot may well
be such that it is impossible to specify the exact move-
ments that should be performed in order to result in
a given amount of water moving from the jug to the
reservoir.)

An obvious solution is to construct a plan that
involves adding small fixed amounts of water until
the reservoir is full, and indeed this would be pos-
sible. A plan of this kind amounts, essentially, to

anr implementation of the process-theoretic solution
(see § 3.3}, without the benefit of the direct appli-
cability of the theory of processes. Roughly speaking,
solutions of this kind are produced by developments
of purely state-based approaches such as those repre-
sented by the event calculus and non-monotonic logics
{for many relevant discussions see J. Logic Computat.
4(5), 1994).

Finaily, note that we are not advocating an ap-
proach that does away with reasoning about states
altogether: our point is that expressing Al actions in
terms of processes is more expressive and enables the
use of powerful analytic techniques (see § 4). More-
over, we conjecture that non-monotonic reasoning wiil
play an important réle in a process-based theory of
plan-construction. However, such considerations are
beyond the scope of this extended abstract.

3 A process theory of plans

We have seen that the representation of actions as pro-
cesses has significant advantages over their traditional
representation as state-changes; we now consider how
hasic actions can be combined to form plans. We
present a basic syntax of process-combinators that al-
low us to construct complex plans from actions and
simpler plans. We present the operational semantics
of the combinators and show, by considering a variety
of examples, that our algebra is sufficiently expressive
to describe a wide variety of plans.®

Plans are represented by processes built up from
members of the set of basic actions, Act, using a set
of process combinators. The basic machinery we shall
use is that of fransition relations: we write transitions
of the form P -2+ P’ to indicate that the process
P (representing a plan) is capable of performing the
action ¢ and, in so doing, becoming the process P'.

3.1 Syntax of processes

We introduce the syntax of processes in four stages,
according to the grammar (1) and its progressive ex-
tensions (2) ~ (4) below. We discuss their meaning
and use in the sequel. The basic syntax is given in
(1). This language consists of the empty plan (re-
turning outcome r}, action prefix, external choice and
internal choice. '

P:=NiL(r)|a-P|P+P|P&P (1)

Here the basic actions o are taken from the set Act
and outcomes r are taken from a given set Qut. For
now we need make no further assumptions about the
set Qut. Later on, in § 4, we shall require it to carry
the structure of an algebraic bounded-complete do-
main.

3Here we shall use the terms “agent” and “plan” initerchange-
ably to denote the behaviour of an agent executing a plan.

Practical applications of this theory require a richer
collection of combinators, including recursion,

Pu=pg(X = B(X)),

@

where E notes a vector of expressions; parallel com-
position,

P:=P|P (3)
and sequential composition,
Pu=P;P. (4)

This basic syntax of processes can be extended in
a number of ways to deal with specific types of situa-
tions. For example, information about timing,* loca-

tion, causal relationships between basic actions, prob-

abilities and utilities can be incorporated into the cal-
culus without significantly complicating the metathe-
ory. See, for example, [3, 12].

3.2 Operational semantics

We begin by considering the basic combinators given
by equation (1}. We give their operational seman-
tics in the usual natural deduction style [30, 31]. The
meaning of a combinator is determined by the rule of
inference that introduces it. All rules are of the form

PREMISS] ... PREMISSm,
CONCLUSION

v

with the combinator being defined by the rule oecur-

ring only in the conclusion. Axioms are the special

case in which the set of premisses is empty.
We discuss the sorts of plans that they can define,
which include finite contingent and partially ordered

plans. We then consider the extension to the language

of plans given in equations (2), (3) and (4), allowing
us to express recursive and reactive plans. Here many
choices of meaning are possible within the definitional
capability of operational semantics.

3.2.1 The empty plan

NiL(r) is the plan that does nothing and returns the
outcome r. No transition is possible from the empty
plan. Formally, the meaning of this plan is defined by
its operational semantics:

7 € Out
NiL(r) A=

Often, r denotes either success {T) or failure (L); the
notion of plan-outcome can, however, be much more
general (see § 4).

Nil

4Note, for example, that our assumption of an interleaving
ontolegy of parallelism yields one notion of simultaneity whereas
a non-interfeaving assumption would yield another.

Figure 2: Sussman’s anomaly

3.2.2 Action prefix

Our first combinator is the simple sequence or action
prefiz combinator. If @ € Act, then a- P is the plan
that first performs an action ¢ and then executes the
plan P. The meaning of this combinator is given by:

ct

Pref _E_E.AGL
a-P— P

With this combinator we can describe all plans

that consist of a totally ordered sequence of actions.

For example, the well-known plan that solves Suss-

man’s anomaly {shown in Figure 2) is:

Putdown{C) - Move(B,C) Move(A, B) - NIL(T)

Strictly speaking, every plan ends with the empty plan
N1 returning a result; we shall usually omit this when
the result is T,

So far, we have limited ourselves to plans with no
alternative courses of action; they have been noncon-
tingent plans, However, plans for use in unpredictable
environmerts often branch: there may be several al-
ternative courses of action; the one to be pursued is
dictated by the conditions obtaining at the time of ex-
ecution, For example, a plan to paint a chair the same
colour as the table depends on the colour of the table
[7]. In order to represent this plan we must be able
to represent the environment; we argued above that
this should be done by representing it as an agent on
the same terms as the planner. In particular, we rep-
resent the results of the planner's perceptory actions
as actions performed by the environment; the plan to
paint the chair is Observe(Table) - Colour{Table, Col) -
PAINT{Chair, Col}.

3.2.83 External choice

In the plan to paint the chair we can represent different
branches simply through the arguments of the actions.
Often, however, different branches of the plan consist
of completely different actions. To see this, consider
how our can-collecting robot should pick up a can:
upright cans should be grasped directly, but a can on
its side should be rolled against a fixed object and then

"grasped. A plan to pick up a can thus depends on the

can’s orientation, which is decided by the envirotnment.
The robot must be prepared for both alternatives. For

SNote that our theory permits actions to have arguinents

the agent (the robot), this is an ezternal choice (not
under its control).

This notion of external choice is captured by the
combinator +. If P and @ are plans, then P+ is the
plan that makes an external choice between plans P
and @. The meaning of + is defined by its operational
sernantics:

P54 p
Q+P -5 P

PP
Py@Q- P

CL

Using this combinator the robot’s plan to pick up a
can can be written Look- (Upright- GRASP + OnSide -
ROLLANDGRASP].

A more complex plan using this combinator is that
produced by CNLP to solve the problem of getting to
a ski resort [28]. This is discussed in detail in [33].

3.2.4 Internal choiee

The combinator @ allows the represention of plans
that make internal choices without reference to the
environment. If P and @ are plans, then P @ @ is the
plan that makes an internal choice between plans P
and ¢}. As usual, the meaning of this combinator is
defined by its operational semantics:

L—.. e —————————
M re0aPr oePoP

where R >+ R' denotes that R undergoes an internal
transformation into R'. For example, if we were indif-
ferent as to which door our robot uses to enter a room,
we could represent its plan as Doogl & DoOOR2.

The notions of external and internal choice arein a

sense duals. When the planner sees an external choice,
the environment sees an internal choice and vice versa.
For example, suppose the robot tosses a coin to decide
which door to use. We represent the robot’s plan us-
ing the combinator for external choice:
(Heads DOOR1) + (Tails- DOOR2). A description of
the environment, in contrast, models the fact that it
is it, rather than the robot, that decides how the coin
lands, making the choice without reference to external
factors. We therefore represent the process that mod-
els the environment using the combinator for internal
« choice: (Heads - N11) @ (Tails - NIL).

These examples show that the evolutions of envi-
ronments and agents within them cannot be consid-
ered independently of one another. We must instead
analyse the mutual interactions of processes and envi-
ronments in order to determine their joint behaviour.

3.3 Recursion

Recursive definitions are an essential aspect of plan-
ning. For example, the robot’s action of filling the
drinking fountain can be described as “continue pour-
ing until the reservoir is full”. In process algebra,
recursive definitions are achieved via the fired point
combinator, pg(X = E(X)). This should be read as

Y

“the process X such that X = E(X)". Formally, its
meaning is given by its operational semantics:

Blus (X = BRO)/E] 5 B

Rec s e =
px(X = B(X)) — &

In the premiss, pz(X = E(X)) is substituted for X,
where X is such that X = pg(X = E(X)).

Consider, for example, the following recursive pro-
cess that describes the robot filling the drinking foun-
tain:

Pt = px(X = ((Fuit- Nu) + (Pour - X))).

If the reservoir is not full, the robot will continue to
pour.® 1t is clear that the definition of this plan can
easily be modified to take account of more complex
circumstances,

Although the recursion combinator 4 ¢ is very con-
venient, for theoretical purposes there is no need to
introduce it at all: a process defined recursively can
also be described as a solution to a set of equations
not involving the combinator pg.

3.4 Parallel composition

We consider the combinator for parallel composition of
processes: P |j @ is the process in which the processes
P and ¢ proceed together, either independently or
interacting with each other via action/coaction pairs.

We begin with an example of independent evolu-
tion. In navigating around the office, our can-collecting
robot may be simuitaneously moving and updating
its representation of the office to take account of any
changes, such as relocations of furniture, that may
have occurred:

Nav = Moye-Nav || UPDATE.

The plan UPDATE can be a complex process, such as

UepaTeE = Look- AlterMemory. Nav.

Now consider interacting evolution, via action/co-
action pairs. Suppose we include in the definition of
navigation a case that describes our robot’s act of pick-
ing up a can:

NAV = (Move NAV + PickUp - Nav) || Uppate.

The evolution of the robot, described by its executing
NAv, proceeds in parallel with the evolution of the
environment, described by a process such as

Env = ...+ MoveDesk - ENV + PickUp-ENv + ...

including the coaction PickUp that describes the exis-
tence of a can which may be collected by our robot.

SOften we omit the ux, writing, in this example, just FiLL =
Fuil- NiL + Pour - FILL.

The joint evolutien of the environment and the
robot can then be described as the evolution of the
process Env || Nav. The operational semantics of ||

-can be given in- the usual way. In.this case, we.can. ..

specify the evolution of ENv || NAV in terms of the
evolutions of ENV and NAv as follows:”

Env P%Up Env Nav P—c—li} Nav

Env ff Nav - Env || Nav

Par

Here 7 is a silent or perfect action, so called because it
describes the synchronization of PickUp and PickUp,
entirely internal to the process ENV || Nav [15, 25].

Generally, the mathematical semantics of parallel
composition is a delicate matter. A number of choices
is available even if we assume an interleaving ontology
of processes, in which || is definable in terms of +. The
key idea is the ezpansion theorem [15, 25}

Theorem 1 (Milner) If P = 3 ,0:- P and @ =
2.8 Qj, then

PlQ = Y,a-(B1Q)+
2o B Qs | P)+
Za.‘:—"ﬁ; T (Pl ” Qj)s
where ¥, Ry denotes the finite external sum. (]

It can readily be seen that this theorem gives a reduc-
tion of the meaning of parallel composﬂ;mn to that of
external choice.®

3.5 Relabelling and restriction

Two further combinators are useful in practice: rela-
belling and restriction.

Relabeiling amounts to the ability to rename ac-
tions explicitly (and rename coactions consistently).
We write P{f] to denote the process P under rela-
belling f. For example, f P = o -Q +&- R and
f = {b/a}, then P{f] =b-Q[f] +5- R[f].

Restriction is more delicate. It provides a way of
internalizing specified actions. For example, the agent
(P I} @)\{a} is the agent P || @ with the action a
. internalized, This means that the only permitted syn-
chronizations between ¢ and & are those that occur
between P and Q. In other words, P || @ is prevented
from making a- or @-synchronizations with Hs envi-
ronment. Restriction is a conservative extension of
the language of basic combinators: (P || Q)\{a} can
be expressed as a solution to a set of equations not
involving restriction.

3.6 Interruptions

During the execution of a plan by an agent in an en-
vironment, the environment may perform actions that

?The general form of the rule follows a similar pattern.
8This relies upon the representability of finite processes in a
standard form [15, 25].

cause the agent to abort the current plan and exe-
cute an entirely different one. For example, if our can-
collecting robot is on its rounds in the office when the
fire alarm.sounds, then.it should stop collecting .and ..
make its escape.

It is convenient and natural, we judge, to describe
this situation by introducing the interrupt combinator,
written P < @ and pronounced “) interrupts P”. The
idea is that the plan P <1 Q behaves like P until @ does
something and then behaves like Q.

We may modify the definition of the plan Nav To
describe our robot's behaviour as follows:

({Move - NAV + PickUp - Nav)
|| UPDATE) < (Alarm - EMERGENCYEXIT).

Nav =

The operational semantics of <t can be described
in the usual way:

Q=Q
Pag-Pagq

Py P
ar —E22F 4R
Pa@— P c@

The theory of interrupt combinators can be found in
(25]. Note that interrupt cannot be defined by equa-
tions in terms of the basic combinators.

3.7 Sequential composition

The execution monitoring we saw in the last section
has much in common with the ideas of so-called “reac-
tive planning”. We have shown in [33] that our algebra
of plans is adequate to describe the traditional plans
produced by classical planning systems, including par-
tially ordered plans; it can also be used to describe
reactive plans.

Consider, for example, Agre and Chapman s Pengt
[4], which has many different reaction rules, each of
which is appropriate under different circumstances.
There is also an arbitration mechanism that decides
between rules if there are several that are applicable.
The process that describes Pengi thus takes the form

x (({Condy - Actions +
..+ Cond,, - Actiony,)
| ARBITRATION); X),

Pengt =

where the ; combinator denotes the sequential compo-
sition of processes.® Again, we have a recursive defini-
tion o represent the execution cycle of repeated rule
application.

The operational semantics of this notion of se-
quential composition can be given simply, although
at some length, in the usual natural deduction style
iilustrated above [25]. Informally, the @ in P ; Q
can proceed as soon as P has terminated. Sequential
composition can be defined in terms of || [25].

%Hitherto, we have considered orly the case of a process fol-
lowing a basic action; here, we consider the case of a process
following another process,

4 Reasoning about plans

We have not yet considered how to reason about plans.
There are many issues that arise in this context that
are absent from plan-execution: in particular, the pos-
sible effects of actions become important.

As we discussed in § 2, one of the advantages of
our representation is that the use of processes allows us
1o ignore the potential effects of actions, which are not
required for plan-execution. Clearly, a complete the-
ory of planning cannot ignore plan-construction and
modification: they are vital capabilities for any agent
operating in an essentially unpredictable world [32].
We believe that the large body of theoretical results
provided by the use of process theory gives a sound
basis for the necessary analysis.

There are two types of reasoning about actions
and plans that must be considered: (i) as designers of
agents, we must be able to reason about the agents we
design and their interactions with their environments;
(ii) an agent must itself be able to reason about its
behaviour and that of its environment if it is to adapt
effectively to the circumstances in which it finds itself.
We restrict our attention to the former.

4.1 Executing and comparing plans

We have discussed how it is that when an agent ex-
ecutes a plan it evolves jointly with its environment.
We can describe such a joint evolution as a sequence
of the form '
(Eo, Py) =% (By, Pr) &5 - E5 (B, Po),

where at each step an action a; -~ performed either
by the agent (plan) or the environment -— occtrs.

Note that we have restricted our attention here to
the finite evolutions of terminating plans. Generaliza-
tion to the infinitary evolutions of non-terminating of
plans is possible, but would serve here only to com-
plicate our exposition. Note also that we restrict our
attention to the basic syntax of plans (1). It should
be clear from the remarks in § 3 that this is sufficient
for the theoretical purposes of this section: with the
. exception of interrupts, the other combinators can be
expressed in terms of the basic ones.!®

The interaction of plans and environments, in the
notation of the last section, is given in Figure 8. If a
silent move is possible by either party then it is possi-
ble by the composite (rules IP and IE) since internal
moves are private. Synchronizations must be agreed
upon, so as to form an action/coaction pair, by the
plan and the environment (rule Sync), reflecting the
fact that the planner can only do what the environ-
ment allows, (A form of synchronization using Hoare'’s
conjunction combinator [25] is also possible.)

10The absence of interrupts is a rather minor deficiency. Syn-
chronizations across §| wili usually suffice, given some coding
effort. ‘

- P ey P! B E>— FE
(&, P} = (E,P) (E,P) = (&', P}
plsp EZSE pPE P ESE
Syne

(B, P) = (B, P (B, P} = (E",P")

Figure 3: The operational semantics of evolution

Since our syntax of plans includes combinators for
non-deterministic choice, a model of all possible exe-
cutions of a given plan in a given environment carries
the structure of a tree, with each possible choice in an
execution being interpreted by a branch of the tree.

Definition 2° A domain of outcomes, Out, consists
in a set O that carries an algebraic bounded-complete
partial order, C, including least and greatest elements,
L (complete failure) and T (complete success), with
respect to . a

For technical reasons, we must suppose that we
can identify a set £7 x Py of environment /process pairs
that is terminal. A joint evolution of a given plan in a
given environment will terminate as an element (£, P)
of this set. The outcome of this evolution is then taken
to be an assignment of an element of OQut to (E, P).

Definition 3 Let £ x P be the set of all environ-
ment/process pairs, let £ X Pr € £ x P be a seb
of terminal environment/process pairs and let Out be
a domain of outcomes. An OQut-valued outcome pred-
icate is a partial function O : € x P - Out such
that O(E,P) | (i.e., O(E, P) is defined) just in case
(E,P) € &r x Pr. An ezecution (Eg, P) = ... =
{En, P,) is said to have outcome v if O(E,, P,) }=r.
We write R{Eqy, Py) for the set of all possible outcomes
of the plan Py in the environment Ey:
R(E{),P@) e {T l 3(En,Pn) . (E(}.,PQ) é}
coo= (E,, Py} and
O(En,Pn)-LZT} O

Note that in decision-theoretic planning Qut is
the set of possible utility values, with the outcome r
of executing a plan P from an initial state E; being
the utility U(E,,, P,) associated with the world state
(En, P,) resulting from that execution [13]. Plans are
then compared on the basis of their possible cutcomes
by weighting the utilities with the probabiiity that ex-
ecuting the plan will result in the associated state,
giving the expected utility of plan Fy with respect to
environment Fg:

EU(Eq, o) = Z

(En,Pn)efp X Pr

P((Ena PP‘I.)I(EO' PoYYU(E., Pu).

Note that this gives a totally ordered R(Ey. %),
namely a subset of the reals. With our more general
notion of outcome, we cannot use probabilities to com-
bine ocutcomes, and moreover have no total order on

Out. (We remark that probabilistic process calculi
are available, although they are beyond the scope of
this extended abstract.) Instead, we must extend our

notion of orciermg to the sets of outcomes R{Ey, Pg)

This requires a powerdomain [15, 29] on Out.’

Definition 4 Let Out = (0,T) be a domain of out-
comes. Three powerdomains, each with underlying set
the finite nonempty subsets of O, are deﬁned by taking
the following orderings:

1. The upper powerdomain, p.(Out): R Ty S for
each R, S € p(Q), iff, for all s € S, there exists
anr € R such that r C s (i.e., for everything in
S there is an element smaller than &t in R);

2. The lower powerdomain, p;(Out): R E; § iff,
for all r € R, there exists an s € S such thatr T
s (i.e., for everything in R there is an element
bigger then it in S);

3. The conver powerdomain, p.(Out): R Ce S iff
both conditions (1) and (2) hold. o

-

{T} {Ty=1{T. 1}
pu(2) = pi1{2) =
{1} ={T, L} (T} {1}
@c(z) = {T,J.}
{1}

Figure 4: Some powerdomains of 2

The powerdomain constructions for the two point
domain 2 are illusirated in Figure 4: it can be seen
that the upper powerdomain corresponds to a pes-
simistic view of the world (identifying the possibility
of failure {T, L} with the certainty of it {Ll}), the
lower to an optimistic view (certain success is identi-
. fied with possible success) whereas the convex power-
domain takes a more balanced view. These intuitions
broadly carry over to more complicated domains Qut.
The interested reader is referred to [29, 15, 35, 36],
where details supporting the claim that these con-
structions are “natural” are also given. We are now in
a position to compare plans.

Definition 5 Two plans, P and Q are said to be -
ordered, written P <; Q, with respect to a closs Vof
environments Env if and only if, for all E € Env,

R(E,P) E: R(E, Q)

The associated notions of eguivelence will be wriften
m; (e, Py Qifand only if P <, Q and Q <, P).

The equivalence =, induced by the conves powerdo-
main p.(Out), will play a central réle in the sequel;
it will be referred to as outcome-equivalence. {f]

Using thése definitions and the operational seman-
tics given in Figure 3, we can deduce R(E,P) di-
rectly from the syntax of E and P and the outcome-
predicate. Thus we can determine whether P <; ¢.
Finally, note that the combinators are well-behaved
with respect to plan-comparison [15].

Proposition 6 The basic plan-combinators are all com-
positional with respect to the testing preorders <;. O

4.2 A logic of plan-equivalence

It is useful for us, as designers of agents and, some-
tirnes, environments, to be able to specify features of
the behaviour of plans.

Finding the right logic with which to specify and
reason about plans is problematic; indeed, the liter-
ature is considerable, e.g., [5, 22, 23], but we shall
be concerned (i) that the logic be powerful enough to
specify the behaviour of plans in the presence of inter-
nal and external choice, (ii) that logical equivalence
(which identifies plans that model the same formulae)
coincide with outcome-equivalence, and (iii) that this
coincidence should not be accidental: it should reflect
the structure of formulae and of process terms.

One logic satisfying these requirements arises from
a consideration of the powerdomain p.(Out).!!

Consider the following BNF for a (constructive)
modal Qut-valued logic:

$ u= rlSABIV, 81 (@) [ald

and let ® denote the set of well-formed formulae deter-
mined by this grammar, The idea is that r is a basic
truth value (so if we were working with 2, we would
just have truth and falsity) and the two logical connec-
tives A (conjunction) and V/; (j-indexed disjunction)
are as usual. The interestmg formulae, then, are the
modal ones of the form (a)¢ or [a]¢. The formula {a)¢
tests whether an a change is possible next and ¢ then
holds, so the result of P = (a)¢ is certain failure, {.l.},
if P cannot do an a, and the union of the results of
P! k= ¢ for all a-derivatives P’ of P otherwise. [a]¢ is
similar, except that we succeed {T} rather than fail if
an a is not possible. It should clear that this logic is
a relative of dynamic logic.

We can recast the interaction of the process and

- the environment by replacing the environment by a

formula that describes it. The extent to which a pro-
cess models such a formula is then a measure of the

11 gfere we are really doing “domain theory in logical form™ {2,
36). A general account would involve defining a domain equation
underlying this situation and showing how the Hennessy-Milner-
like {16] result we obtain (Proposition 8} arises from solutions
to this this eguation.

£ P) = {1}~
LAY, P) = L(&P) N L%, P)
c \/qs,-,P) = |J (¢, P)

i j

Py = | L@ Py v {LiP>t P A
Pt P2 p

Lage,P) = | £eP)u(TIP>"P 4
PP

Figure 5: The relationship between the logic and out-
come powerdomains

outcome of executing P in the environment modelled
by the formula. This idea suggests defining a function

L:8xP = p{0nt)

giving the extent to which P is a model for ¢ (Fig-
ure 5).

Consider this function in more detail: if we are
just working with Out = 2, then £{, P) can be éither
{T} (P always guarantees ¢), {L} (P never guaran-
tees ¢} or {T, L} (P sometimes but not always guar-
antees ¢}. This is the logical counterpart of R: instead
of asking what outcomes are possible if weyun Pin E,
we ask what outcomes are possible of requiring that P
behave like ¢ [26].

The definition of £ given in Figure 5 matches the
given intuition for the logic above: the outcome of ask-

ing that P model r is just the (singleton) set of out-

comes {r}; that of asking that P model a conjunction
or disjunction is the corresponding conjunction or dis-
junction of cutcomes (as an operation on p.(Out)).
Of more interest are L{{a)¢, P) and L([a]¢, P): the

outcomes of asking that P do an ¢ and then behave.

like ¢ are the set of outcomes of asking that P’ can
behave like ¢ for all a-derivatives P' of P, together
with total failure (1)} if P cannot do an a; the clause
for [a]¢ is similar, except that we succeed rather than
fail if P cannot do an a. This logic can be used to
specify the properties of the plans in [33].

With £, then, we have defined a notion of “mod-
els” valued on p.(Out), rather than just 2:

[P & 6]° = £(4, P).

This notion naturally suggésts a notion of process- -

equivalence: two processes should be logically equiva-
lent if they have the same behaviour as models.

Definition 7 Processes P and Q are said to be logi-
cally equivalent wrt a class L of formulae L iff, for all

formulae € L, [P k= ¢]§£ = {Q k= ¢]§£. o

It is possible to show, by induction on the structure
of processes and propositions, that R(E, P) coincides
exactly with L(E,P). The proof (¢f. [1]} is quite

10

long and delicate and is omitted from this extended
abstract.

Proposition 8 Twe processes are logically equivalent
if and only if they are outcome-equivalent. 0

References

{1} S. Abramsky, Observation equivalence as a testing equiv-
alence, Theoretical Computer Science 53, 225-241, 1987,

[2] 8. Abramsky, Domain theory in logical form, Annals of
Pure and Applied Logic 51, 1-77, 1989.

‘[3 L. Aceto and). Murphy, Timing and Cousality in Process
Algebra. Acta Informatica (to appear).

[4] P. Agre and D. Chapman, An implementation of a theory
of activity, Proc. AAAL-87, 1987,

[5] J. Allen, Towards a general theory of action and time,
Artificial Intelligence 23, 123-154, 1984,

[6] J. Allen and G. Ferguson. Actions and Ewvents in Interval
Temporal Logic. J, Logic Computat 4(5}), 531-579, 1994.

[7] O. Etzioni, S. Hanks, D. Weld, I). Draper, N. Lesh, and

M. Williamson, An approach to planning with incomplete

information, Proc, 3rd Int. Conf. Knowledge Represen-

tation and Reasoning, Boston, MA, Morgan Kaufmann,

115125, 1992,

R. Fikes and N. Nilsson, STRIPS: a new approach to the

application of theerem proving to problem solving, Artifi-

cial Intelligence 2, 189-208, 1971.

R. J. Firby, Adapiive ezecution in compler dynamic

worlds, Technical Report 672, Computer Science Depart-

ment, Yale University, 1989, ’

R. J. Firby, Task networks for controlling continuous pro-

cesses, Proc. 2nd AIPS, AAAI Press, 49-54, 1994,

M. Georgeff and A. Lansky, Procedural knowledge, Proc.

IEEE 74{10), 1383-1398, 1986.

R. van Glabbeek, B. Steffen and C. Tofts, Reactive, gener-

ative and stratified models of probabilistic processes, Proc.

5th IEEE LICS Symposium, Philadelphia, USA, IEEE

Computer Society Press, 130-141, 1990.

P. Haddawy and S. Hanks, fssues in Decision-Theoretic

Planning: Symbolic Goals and Numeric Utilities, Proc,

Workshop on Innovative Approaches to Planaing, Schedul-

ing and Control, San Diege, CA, DARPA, 48-58, 1990,

5. Hanks and D. McDermott, Nonmoenotonic logic and

temporal projection. Artificial Intelligence 33(3), 379-412,

1987, ‘

M. Hennessy, An algebraic theory of processes, MIT Press,

1988.)

M. Hennessy and R. Milner, Algebraic laws for nondeter-

minism and concurrency, 3. ACM 32{1}, 137-161. 1985.

R. Kowalski and M. Sergot, A legic-based calculus of

events, New Generation Computing 4(1), 67-95, 1986.

A. Lansky, Action-based planning, Proc. 2nd AIPS,

Chicago, IL, AAAI Press, 110-115, 1994,

F. Lin and Y. Shoham. Concurrent actions in the siluation

caloulus. Proc. AAAIL-92, 530-695, 1992,

D. Lyons, Representing and analysing action plans as net-

works of concurrent processes, IEEE Trans. Rob, & Aut.

9(3), 241-256, 1993.

D. Lyons and A. Hendriks, Ezploiting patierns of inter-

action to achieve reactive behavior, Artificial Intelligence

73, 117~148, 1995,

J. McCarthy and P. Hayes, Some philosophical problems

from the standpoint of artificial intelligence, Machine In-

teiligence 4 (B. Meltzer and D. Michie, Eds.), Edinburgh

University Press, 463-502, 1969.

D. McDermott, A temporal logic for reasoning aboul pro-

cesses and plans, Cognitive Science 6(2), 101 155, [axl

D. McDermott, A reactive plan language, Techmical He-

port 864, Computer Science Dept., Yale University, 1991,

(14]

18]
(16}
(17}
18}
(19}

[20]

(21]

22]

[23]

[24]

(25]
(26}
27
(28]
(29]

30}

(31]

(32]

[33]

34]

(35]

(36]

R. Milner, Communication and concurrency, Prentice
Hail International, 1989,

D. Murphy, Testing, betting and timed true concurrency,
Proceedings of Coneur, 527, Springer-Verlag LNCS, 1991,

E:P. Do Pednault, ADL and-the state-transition model of ..

action, J. Logic Computat. 4, 467-512, 1994.

M. Peot and D. Smith, Conditional Nonlinear Planning,
Proc. Ist AIPS, Morgan Kaufmann, 189-197, 1992,

G. D. Plotkin, A powerdomein construction. SIAM I
Computing 5, 452-487, 1976.

G. D. Plotkin, A structural epproach te operational se-
mantics, Technical Report DAIMI-FN-19, Computer Sci-
ence Department, Arhus University, 1981.

D. Prawitz, Natural Deduction: A Proof-Theoretical
Study, Almqgvist & Wiksell, Stockholm, 1965.

L. Pryor, Opportunities and planning in an unpredictable
world, Technical Report 53, Institute for the Learning Sci-
ences, Northwestern University, 1994,

L. Pryor, D. Pym and D. Murphy, Processes for plan-
execution, Working Notes of the 14th Workshop of the UK
Planning and Scheduling Special Interest Group (3. Steel,
editor), University of Essex, 1995. Also available as Tech-
nical Report No. 718, Department of Computer Science,
Queen Mary and Westfield College, University of London.
D. Pym, L. Pryor and D. Murphy, Actiens as processes:
a position on planning, Proceedings of the AAAI Spring
Symposium on Extending Theories of Action: Formal
Theory and Practical Applications, Stanford University,
1995, Also available as Fechnical Report No. 696, Depart-
ment of Computer Science, Queen Mary and Westfield
College, University of London.

8. Vickers, Topology via logic, Tracts in Theoretical Com-
puter Science 5, CUP, 1989,

G. Winskel, Powerdomains and modality, Theoretical
Computer Science 34, 127-137, 1985.

I3

