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Abstract

Groupware applications involve multiple participants collaborating through shared
data in order that they can tackle a common task more productively than if there
was no computer-supported interaction between them. Many such tasks have
security requiremnents. Measures for securing communication and controlling
access to the shared data could be added by the application programmer, however
this is burdensome and can result in inconsistencies in the levels of security
enforced. This thesis presents the design and implementation of system software
for secure group communication and access control specifically targeted at the
groupware application programmer.

Group Communication facilitates the fast interactive response times that are
essential for productive groupworking. However, Secure Group Communication
for Groupware is more complex than simply securing the group from the hostile
actions of those outside, which is the approach taken by most existing secure
group systems. Group tasks typically involve the multiple participants acting with
different rights, i.e. different levels of trust. This is recognition that corrupt
activity can also originate from inside the group. The group communication
system for groupware presented here recognises and deals with this threat whilst
maintaining the speed of other systems.

Although important for efficient groupworking, group communication does not
present the most appropriate level of abstraction to the programmer. A shared
object abstraction is far more convenient. For secure groupware, shared objects
can be protected at the level of their methods by associating with each of them an
Access Control List (ACL). However conventional ACLs are relatively static,
whereas the security policies of group tasks are far more dynamic. This thesis
introduces two techniques for specifying and enforcing dynamic policies. Firstly
State-Dependent Access Control allows rights to reflect the current state of the
group task. Additionally, the notion of consent is often a feature of group security
policies. Secondly therefore, the concept of Backing is introduced as an attempt to



mechanise the collection and proof of consent from some group of other
participants.

The complete body of work allows secure and efficient groupware to be more
easily built. The resulting application instances can collectively support complex
security polices and can communicate both safely and efficiently.
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Glossary

" Access Control List A list of principals associated with methods of an object
that describes who can invoke each of the methods.

Backing Support from one or more principal(s) for another to perform
some action, i.e. A gives his ‘Backing’ for B to do C.

Backing Certificate A digitally signed certificate containing a single principal’s
consent to back another. This can then be presented as proof (or
part proof) of Backing.

Digital Signature  An electronic version of a handwritten signature used to
verify the identity of the originator of a sequence of bytes such
as a network message or certificate. A signature is an encrypted
hash of the message and appended to it.

Distributor A uniquely trusted member of a secure group with the special
responsibility for distributing multicasts to the other members.

Groupware Software designed to facilitate interaction and collaboration
between groups of computer users.

Group Encryption Key A symmetric encryption key used for ensuring
secrecy of multicasts in the Group Communication System for
Groupware.

Guard Object that protects a Shared Object by intercepting attempts to
invoke its methods. Typically the Guard consults an access
control list and either accepts or rejects the attempts accordingly.

Individual Member Key A symmetric key used by the Group
Communication System for Groupware which authenticates
members to the trusted Distributor {and vice versa).



Model of Trust A set of assumptions about the behaviour and misbehaviour of
components forming part of a secure distributed computer
system.

Qutstanding Backing Object (OBO) A repository for requests for backing
and any certificates that result. The OBO is a Secure Shared
Obiject and is assumed to be persistent whilst requesters and
backers go on and off line.

Participant A principal that contributes to some group activity.

Practical Groupware Model of Trust A model of trust appropriate for
Groupware applications. One member of the group is trusted
above the others to maintain the security of the group.

Role A generalisation about a principal’s organisational purpose.
Rights are assigned to generic roles instead of individuals for
convenience.

Secure Shared Object An object conceptually shared by the applications

run on behalf of principals participating in a secure group
activity. The Shared Object is the means of communication
between them and is protected through fine-grained access
control that is applied to its methods.

Security Policy A high-level description of the rights of individuals.

Security Shell The means by which the user can interact with the security
functions of the Secure Shared Object layer, e.g. for changing
the access control rights, delegating rights or granting backing.

State-Dependent Access Control Enforcement of rights where those rights do
not just depend upon the principal’s identity and the action being
attempted, but where rights depend also on the current state of
the system.

Vector Signature A variant of a digital signature used to sign a message that
is intended to be verified by multiple participants, but yet still
make use of fast asymmetric key cryptographic techniques.
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Introduction

Some collaborative tasks have security considerations. There are many examples
of such tasks that do not involve computer collaboration, for example: the
collective preparation of a secret document. There are however not many
examples of secure groupware (that is computerised group tasks with security
concerns) although quite clearly these tasks too could benefit from computer aided
collaboration. There is a lack of system software support for secure groupware
and consequently the applications do not exist because the risk of running them on
unsecured systems is too great.

1.1 Research Motivation

The security risks of conducting a secure collaborative task on an insecure
distributed computer system are two-fold. Firstly wide-area computer networks
are fundamentally insecure because of the lack of any centralised control.
Communication can pass through many different areas of jurisdiction, some may
be trusted by the source and the destination of the communication but some may
not. Even if the networks along the way were trusted to securely play their part in
passing on the communication, if the message is passed over a broadcast network
then all the machines and their users must be trusted not to examine the contents
of the messages. Such trust is just not appropriate for the Internet.

Implementations of secure communication abstractions have been developed for
the Internet. Typically these employ strong encryption to guarantee the secrecy
and authenticity of data. However such ‘one-to-one” communication abstractions
are not appropriate for group communication which is typically used at the heart
of a distributed group activity for replicating data.

10



Introduction

Secondly, complex group tasks often require complex security policies to be
enforced, Secure communication will keep the task safe from the malicious
activities of non-participants, however generally a secure task will involve
participants that are trusted to different extents and so are perceived to pose a risk.
A security policy exists outside the computing environment and is often devised
without reference to the computerised version of the application. In fact in many
cases where computerisation is being introduced to aid an existing task, the policy
actually predates the computer application altogether. However once
computerised, the policy must be accurately represented so that it can be enforced
by the system. '

Access control lists hold a form of security policy. However they are limited in
the policies that they can describe. They were not devised with collaborative
group tasks in mind and do not therefore reflect the dynamic nature of rights in
such applications.

In short, the lack of secure group communication and a means of representing and
enforcing complex policies are preventing secure group tasks from benefiting
from computerisation.

1.2 Research Contribution

Each of the two areas of secure group communication and access control have
been studied in the context of groupware applications. Therefore there are two
areas of contribution:

. Secure Group Communication for Groupware (with a Model of Trust
for Groupware)

The trust afforded to both participants and non-participants in a group
activity can be complex and varied. Through studies of group tasks and
security policies a model of trust for groupware systems has been
developed. This forms the foundation for the design of a secure group
communication system for groupware, which unlike previous secure
communication systems does not rely upon the total trust of all parties
involved for its correct functioning.

Good system performance is essential for group applications to effectively
exploit collaboration. The secure group communication system for

11



Introduction

groupware has been implemented and timed tests conducted which prove
that the groupware model of trust can be applied efficiently.

. Access Control for Groupware

Extensions to conventional access control lists are proposed. The extensions
reflect the dynamic nature of trust and hence rights within a group task.
Many security policies are examined and shown to be expressible using the
augmented access control lists. Whilst it is impossible to demonstrate that
every policy could be expressed we argue that many policies include
common security concepts and that the new techniques cater for these.

1.3 Thesis Qutline

The thesis continues in the next chapter with a brief examination of what
requirements group applications make of the underlying system in order that they
can be both productive and secure. Chapter 3 then continues with a thorough
review of existing systems and aims to show that none absolutely meet the
requirements that were derived in the chapter 2.

‘The main body of the thesis is divided into two broad sections concentrating on
the two broad areas of deficiency in existing systems: Group Communication and
Access Control. Chapters 4 through to 6 present and evaluate the proposed Group
Communication System for Groupware and Chapter 7 links this in with Access
Control. Chapters 8 and 9 actually present the new ideas for Access Control for
Groupware. Finally the conclusions summarise the work and its evaluation and
point towards possible further areas for research.

The thesis contains three appendices which allow some of the surplus detail to be
removed from the main text. Each is referred to in the appropriate place.

12



2

Groupware Application Requirements

By looking at a brief but varied array of application types, the aim of this chapter
is to establish two key points regarding secure groupware applications. Firstly in
Section 2.1, we show that no matter what the nature of any specific application,
generally for a collaborative task to be productive then the interactive response
time that a user observes needs to be quick. In other words, the time between a
user action and the results of that action being observed by the initiator and any
other users that it affects must be low.

The aim of Section 2.2 is to introduce the dynamic nature of access rights within a
security sensitive group task. Security policies taken mainly from collaborative
activities that exist outside the realm of computing are observed. This is
necessitated by a lack of secure groupware case studies, this in turn being due to a
lack of mechanisms for appropriately securing computer aided collaboration.
Providing new mechanisms which cater for dynamic rights will enable secure
group tasks too to benefit from computerisation,

The two observations taken together (speed with accurate enforcement of security
policy) form the two overriding principles which guided the direction of this
research and form the basis of its evaluation.

2.1 Distributed Groupware Applications

Complex organisational tasks nearly always require co-operation and
collaboration in order to maximise efficiency. However this is not often aided by
any computer application involved in the task, which usually is built on a system
that will shield the user from the need to know about the presence of other
concurrent activity. This typically leaves any co-ordination of collaboration
outside the realm of the application and is to the detriment of task productivity.

13



Groupware Application Requirements

Groupware turns this around by making participants aware of the concurrent
activity of others.

Ellis, Gibbs and Rein [EGR91] define groupware as:

“Computer-based systems that support groups of people engaged in a
common task (or goal) and that provide an interface to a shared
environment.”

The shared environment (no matter how it is implemented) is the focus of
collaboration and is the means of communication between the participants. The
purpose of this section is to demonstrate that any user activity that affects this
shared environment must be quickly observed by the user and the other
participants in order for collaboration to be best exploited.

This case is promoted by looking at three example applications taken from
different literature sources.

. Shared Document Editing

A group editor was studied by Ellis, Gibbs and Rein [EGR91] which
permitted the simultaneous authoring of a shared document. The editor was
used over a period of time by up to six participants in any one concurrent
session. The experiences of the users were summarised in the paper and
generalisations of key design issues were drawn from the results. Key
amongst these results is that synchronous groupware should be sufficiently
responsive.

This need is particularly well itlustrated when the editor was used for group
brain-storming sessions. It was clear that such sessions relied for their
effectiveness upon thoughts being quickly communicated to all participants,
i.e. updates to the shared environment must be visible everywhere with low
latency.

It is not only updates that need to be quick. Reading the state of the shared
environment must be also. In fact quick reading of the data can be
considered even more important than quick updating since typically it is
done more often. Users of a shared editor will often scroli up and down the
page reading different areas of the document. The smallest of delays would
render the application unusable.

14




Groupware Application Requirements

. Real-Time Conferencing

Grief and Sarin [GS86] looked at real-time conferencing. Although the
transmission of the audio and video data streams does not affect any shared
environment, the session management does. In order to keep the conference
under control, only one person at a time was permitted to speak, whose
identity was chosen by the chairperson. Additionally, real-time voting was
used to make decisions.

The whole value of co-locating (or virtually co-locating) people for a
discussion is in the immediacy of their contribution. In a virtual conference
the session management too must keep up with the pace of the discussion.
Excessive delays between speakers and votes would likely cause the
participants’ concentration to wane.

. Group Decision Making

Tatar, Foster and Bobrow [TFB91] discuss their experiences with a tool
designed to assist remote people agree upon a plan. The system brought
together video-conferencing with other shared tools such as editors and
work surfaces. Their investigations were aimed at distilling the key
implications for the design of groupware.

One of these was of course response time. They observed that delays and in
particular large changes in delays caused actions to become uncoordinated.
Just one example arose when a participant was speaking whilst typing into a
shared editor, The delay in transmitting the text caused the descriptions of
what he typed to become unsynchronised with the text. This caused
considerable confusion and frustration. Reducing the delay would of course
solve the problem and the authors chose to alter the design of their system to
this effect.

There are of course many other examples of synchronous groupware in the
literature that could have been used as examples, such as: shared white-boards,
meeting rooms [VDN91], shared spread-sheet production [NM91] shared diary or
calendar support [GS86] and real-time chat systems. For virtually all examples it
is clear that the advantages of distributed collaboration only apply if the system
supporting the collaboration is sufficiently responsive.

Indeed this observation is true for any interactive system, not just a distributed or
collaborative one. However if the application is distributed the solution is less
obvious than just writing more efficient code or obtaining a faster processor. As

15
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Chapter 3 will make clear, the designers of such a system will typically have to
consider replicating the shared data.

2.2 Security Policies of Secure Group Activities

Group activities should not be excluded from all the benefits that computerisation
brings just because the applications are being used to aid a security sensitive
activity. However, this is indeed what happens.

New systems are not introduced because of the increased perceived threat that
computerisation together with distribution brings. This is certainly not without
reason. A computer offers more discreet access to the shared data (remoteness
hides) and adequate security mechanisms do not exist that enable accurate
reflection of policy. Any of the example applications from Section 2.1 could be
used to aid security sensitive collaboration, but typically they are not.

This section will briefly examine security policy and group activity from both the
medical and financial fields. These two areas currently rely on collaboration for
productive work to take place, but do not currently support this using distributed
groupware.

It will be shown that security policies are often very dynamic in nature. The rights
of the principals involved change according to many factors including the state
that the task is currently in, the time of day and the changing opinions of other
principals involved.

The dynamic nature of rights is usually an attempt by the desiguers of the policy
to ensure that the attempt to do something is in the context of a legitimate activity.
At one point in a task it is acceptable to do that something, but at another point it
becomes unacceptable. Take for example a doctor who needs to look up details
from a patient’s medical record. This is permitted if the patient is currently
undergoing treatment, otherwise it is strictly forbidden. In other words rights are
dependent upon the context in which the access is attempted. Surgeries often have
paper records stored in clear view of other staff and this reduces the likelihood of
an attempt to make an illegal access. However computerisation more effectively
hides the access attempt and makes extra protection necessary. Distribution makes
the risk greater still by hiding the perpetrators.

Obviously this investigation of policy cannot be exhaustive, but it does
concentrate on some important texts. It is hoped that it is clear that these types of
policy are common across a wide range of fields.

16



Groupware Application Requirements

. Security of Personal Medical Information

Access to personal information must be controlled strictly. However there
are great benefits in having it widely and easily available because treatment
is often not confined to one place and to one clinician. Hence groupware
could help by bringing remote specialists together.

Guidelines for the security of computerised medical information are
published in a report by Anderson [AND96] in the form of a suggested
security policy. The policy has dynamic elements. For example, the report
states that some rights should be granted to groups of people and “the group
might be any clinical staff on duty in the same ward as the patient”. This
type of policy could possibly be used to protect against the corrupt
prescribing of drugs. Here a clinician’s rights are not static, they will change
according to the duty rota. If groupware is to be exploited for medical
applications then such policies must be applied.

Draper [DRA96] looks at the collaborative process of mental health care. As
a safeguard against corruption, group decisions are always taken in
situations where the patient is unable to give consent for treatment. This is
another example of a dynamic right since a clinician’s right to treat the
patient (by updating the patient’s treatment instructions) cannot be
determined in advance. The group’s opinion might change and hence should
be re-sought periodically and in any case for every new treatment.

. Security of Financial Information

Protection against corrupt employees is extremely important in securing
financial systems. In all fields of financial security the principle of
‘segregation of duty’ (or ‘separation of duty’) is used to protect against
malicious individuals. The concept demands that the responsibility for an
action is shared between one or more other principals. Hence it would take
the corruption and collusion of more than one employee to cause an
irregularity. The principle of segregation of duty is described by Gray and
Manson [GM89] as it is used in financial auditing.

Kusner’s lengthy descriptions of banking procedures [KA81] naturaily
cover security policies extensively and give many examples of splitting
responsibility. Just one example states that a bank teller must seek
permission to adjust a special-purpose bank account for reconciling
differences between the actual amount of money taken over the counter and
the recorded amount (should a discrepancy occur).

17



Groupware Application Requirements

The above texts were written without specific reference to computer
systems, but it is obviously necessary that the principle should apply in this
setting also. Many financial systems are designed according to Clarke and
Wilson’s [CW87] model for security. They claim that there are two
mechanisms at the heart of fraud and error controk: the “well formed
transaction” and “separation of duties”. An object-oriented system with
scope for the enforcement of sufficiently dynamic policies could ensure that
both of these mechanisms are achieved.

Anderson [AND96] points out that in a study of medical systems only a very
small proportion of corrupt accesses came from external attacks and that all other
breaches of confidentiality were from corrupt employees that have legitimate
access to the information systems as part of their work. This shows that typically
protection against internal corruption using good access control is critical to a
secure system that has multiple users.

Access controls that ensure that a principal really is accessing information in the
context of a legitimate activity are required. The brief examples above show the
two common types of policy that are designed to ensure this.

First, the context of the activity is defined by the state of the task at the time of the
attempted access. The state of the task is represented by the state of the very
objects that are being protected. For example, the right to update the treatment
record of a patient depends upon the state of the duty rota, where both the
treatment log and the duty rota are necessarily protected objects. The context is
also represented by the exact parameters of the attempted access. For example,
even if the clinician is on duty in the ward of a patient it may be a desirable policy
to restrict the quantities of a drug that is being prescribed.

The second type of policy is used to protect against corruption when it is
impossible or unreasonable to deduce the context from some state. It is only going
to be possible to automatically deduce if the context is legitimate from the data
that is held within the system. However, often the context is not represented
internally. To tackle this, security policies often require that the principal seek the
involvement of another. This provides extra protection on the assumption that the
corruption of two conspiring parties is far more unlikely.

The prescribing drug policy might more reasonably be stated using a combination
of the two types. For example by stating that a clinician can only prescribe on a
ward where they are on duty up to a specified maximum. To prescribe over the
maximum, the clinician must seek the agreement of another clinician.

18



Groupware Application Requirements

Chapter 8 will conduct a more thorough analysis including many more examples
of dynamic access policies before introducing more flexible access control
mechanisms.

2.3 Summary of Requirements

This section has introduced the two main themes of this thesis. Secure groupware
needs:

1. Fast access to shared data.

2. Accurate representation and enforcement of security policies through dynamic
access control.

The review of literature in the next chapter will show from experience of other
research that providing sufficient performance when accessing shared data
typically means that the data should be replicated. However maintaining
replicated data means that the communications involving updates must be secured
from the malicious behaviour of those external to the task, but who otherwise have
potential access to the network.

In order to protect against internal corruption, many real security policies try to
ensure that a principal’s attempt to do something really is in the context of a
legitimate activity. This leads to very dynamic rights since the context can change
with every access attempt. This chapter has shown that some policies express the
context in terms of the state of the system and the parameters of the attempt.
However where this is not possible or reasonable, policies require that the
principal seek the involvement of another principal or principals to exclude the
possibility of one corrupt individual alone causing damage. It will also be shown
in the next chapter that established methods of specifying access rights have little
scope for the expression of dynamic policies.

19



3

Background

This chapter will examine the underlying implementation of secure distributed
groupware systems. This will be analysed in the light of the two requirements that
were demonstrated in the previous chapter, namely performance and adequate
representation and enforcement of policies. It will examine many existing systems
and show that although none adequately meets both of the requirements, there are
lessons to be learnt about how each can be met separately.

In Section 3.2 it will be demonstrated that where performance is a key issue in a
distributed system the problem is usually addressed by locating data close to
where it is needed. If the data is needed by multiple parties then this means
replication of the data. This however leads to complex problems regarding the
maintenance of the data, but fortunately group communication abstractions can
ease the burden. It will also be shown that where security and performance are
issues then this just adds to the complexity of any solution, but again secure group
abstractions do exist.

Security policies exist outside the computing realm and in many cases were
enforced before computerisation of a task was even an option. Access control
mechanisms are the means by which these policies are represented and enforced
inside the system. Section 3.3 will start by looking at Lampson’s established
mechanisms for access control for distributed systems [LABW92]. Many existing
systems build on this work to some extent. The section will go on to look at some
of these systems and assess how well dynamic policies of the type introduced in
the previous chapter could be expressed. If the mechanisms can merely represent a
compromise of the exact policy then this can only be to the detriment of the
security of a task.

First however, the next section will put the mechanisms of group communication
(for performance) and access control (for adequate representation of policies) into
context by examining an established architecture of secure distributed
applications. Everything presented in this thesis will fit in with this architecture.

20




Background

3.1 Architecture of Secure Distributed Systems

This section builds up to an outline for an architecture for secure distributed
groupware. The outline is given in terms of the layers of abstraction from which a
groupware system is constructed. The description first introduces the notion of a
system being built out of multiple abstractions, each forming one layer in a stack.
It goes on to introduce secure abstractions and replication.

Layers of abstraction eliminate difficulties of implementing reliable
communication in distributed systems. A simple concept such as connected
sockets makes applications easier to construct by removing worries about message
dropping and uncertain orderings from the programmer’s concerns.

“ Abstractions are built on other abstractions. TCP/IP [POS81a] [POS81b] is built
" on the Internet Protocol (IP) as its name suggests. Each layer removes some
concems from the layer above.

An abstraction such as TCP/IP relies on certain assumptions holding true. For
example the guarantees of TCP/IP could not be met if messages were tampered
with en route. To cope with malicious misbehaviour in addition to benign failures
a secure version of an abstraction is needed. Secure versions very often offer the
same view of the abstraction to the layer above as the non-secure counterpart,
however fewer assumptions about the behaviour of the system are made. Secure
versions of the TCP/IP socket layer do exist, most notably Netscape’s Secure
Socket Layer (SSL) [INT95]. Figure 3.1 shows an example stack of layers and its
secure equivalent from the network layer up.

e.4. Netscape 3 . 4 e.g. Netscape

e.g. $5L

I
e.g. TCP/IP

eq.IP ¢ 2.4. 1P

Non-Secure Stack Secure Stack

Figure 3.1 Abstractions offer guarantees to the levels above but are based
upon assumptions about the behaviour of the system. Secure versions of
abstractions rely on fewer assumptions about malicious behaviour.

At each layer of a secure stack the security guarantees are given appropriately for
that layer, i.e. in terms of the abstraction. The socket layer is concerned with
sending messages between two processes and hence the security guarantees of
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Background

secure sockets are given in terms of messages and processes, for example:
messages are guaranteed to have originated from a process run by a named
principal.

Some application programmers use a remote procedure call abstraction which sits
in between the application and the socket layer, for example Sun RPC [SUN90].
This is useful because it hides the communication altogether. More recently
objected-oriented systems have an equivalent Shared Object layer, for example
Sun’s Java RMI [SUN96]. Conceptually an object is shared between multiple
parties, any of which can invoke its methods. Complexities about locating the
object and concurrent attempts to invoke its methods are hidden. Other more
sophisticated systems that present this abstraction include Argus [LCIS87] and
Arjuna [PSWLO5] [SDP91]. This provides the abstraction of a single object
shared by many processes. Each can independently invoke its methods as if it was
a local object, but any changes to the state are visible to all. As above, security can
be introduced at this layer too. This is illustrated in Figure 3.2.

a.4. JAVARML 1

e.9. TCPAIP &

i
e o
& e

eg. [P

Non-Secure Stack Secure Stack

Figure 3.2 A Shared Object abstraction can hide communication (and
associated complexities) from the programmer altogether. Secure Shared
Object systems also exist.

As was the case with the Secure Socket Layer, the level at which security is
presented to the user of the Shared Object layer must be appropriate to the level of
abstraction. At the level of shared objects it is appropriate to specify security in
terms of which principals can invoke which methods (method-level access
control) -there is no notion of secure messages at this level. Examples of systems
that protect shared objects at method level include PerDiS [CDKR97] and IBM’s
CACL [RSC92]. All the authors agree that access control is best suited at this
layer because the layers below are too far away from the user’s view of the
system, whereas incorporating access control in the application potentially leads
to inconsistencies in enforced policies if different applications share the objects.
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Just as each layer relies on the communication guarantees of the layer below in
order to maintain its own abstraction, so too each secure layer relies on the
security guarantees of the layer below. For example, despite the fact that the level
above is not aware of messages being sent, method-level access control can only
be enforced if the messages containing the remote invocations are protected from
tampering and replay. These are two of the guarantees of the Secure Socket Layer
below (in Figure 3.2).

As will be shown later in this chapter, the key to good performance in groupware

is replication of data. If data can be copied into the same address space as the
-application that uses it then access will be as fast as possible. However
“maintaining replicated data is complex.

-For interactive groupware, updates made by one participant must be quickly

- communicated to the other replicas. Many systems use replication for other
reasons (fault-tolerance or disconnected operation for example) and not all give
much emphasis to communicating updates quickly. The gossip architecture
[LLSG92] for example is used to enhance the availability of services. Updates are
sent occasionally in batches. This simplifies the implementation and reduces the
network load, but such an architecture would be unsuitable for interactive

_groupware.

The immediacy of communication needed by groupware can be supplied by
multicasting updates to the replicas every time some participant initiates a change
to the shared state. These updates are sometimes referred to as ‘eager updates’.
However updates to the state from multiple and potentially simultaneous sources
must be consistently applied to the replicas.

Again an appropriate abstraction can remove these concerns from the
programmer. A Group Communication layer (See Figure 3.3) can replace the
point-to-point socket layer. Typically such a layer will offer the layer above a
process group abstraction and mechanisms for consistently multicasting updates to
the members. Additionally it might deal with processes joining and leaving the
group and copying replicated state to new members. Notable examples include
ISIS [BJ87] [BSS91] [BIR93] and Horus [RHB94] [RBFHK95].
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Figure 3.3 A Process Group abstraction can relieve the programmer of
concerns about maintaining replicated data. Secure versions do exist.

A shared object layer can still make sense above a Group Communication layer.
The concept as perceived by the application programmer is precisely the same, the
difference being only in the underlying implementation. Now state can be locally
replicated and hence access to it can be fast. This is a preferable solution for many
reasons. Not only does replication lead to enhanced performance, but also such a
system is more lightweight because there is no need for a server to maintain the
object. This in turn means such a system is a more scalable system. Replication
also allows for Fault-Tolerance. Examples of systems that provide a shared object
abstraction with an underlying replicated architecture include Electra [MAF94]
and Shared Objects [AK94] and these will be studied later on in this chapter.
Likewise a secure shared object system could be implemented which provides
method-level access control.

If existing applications are to be reused then security might not be present in the
application layer at all. However, as long as it is built on top of secure layers then
security policies, such as the ability to invoke methods upon objects, can be
enforced at these lower levels of abstraction. In a well-designed application the
top-level application objects and methods will mirror the real life counterparts that
are referred to by any security policy. There must of course be a way of bypassing
the application layer in order to inform the lower levels of security policy. A
mechanism for this (a Security Shell) will be discussed in Section 3.3.2.

However there is no reason for security not to be built into an application from the
outset if this is intuitive. For example the application could provide options to the
user that ultimately change the underlying protection of methods and objects.

The two main themes of this thesis: providing fast secure groupware and
providing dynamic access control are dealt with by the middle two layers of
Figure 3.3 which are, as depicted in the diagram, notably void of examples.
Initially the speed issue is tackled with group communication for quick
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multicasting of updates to replicated state. Then dynamic access control is handled
at the level of controlling access to the methods of shared objects.

3.2 Secure Replication for Groupware

Replicating data locally at the machines of participants involved in a group task is
the key to getting the desired level of performance for groupware. However if the
.group application is being used to aid a task that is security sensitive then it is
<important that any group communication software that is being used to implement
the application is sufficiently secure. For example, updates to the data must be
communicated in a secure manner that may involve encryption and authentication
techniques being applied.

Replicating data is also used to provide fault-tolerance and it is with this goal in
mind that most of the group communication systems (such as ISIS [BIR93] for
example) are designed. So it is not surprising that the secure group
communication systems that do exist were not designed with concern for
groupware. This is a problem because the type of security that is needed for
groupware is more complicated than simply protecting a replica group as a whole
from outside malicious efforts.

Typically the participants in a group application have different rights from each
other. This is necessitated by the different levels of trust that each holds. For
example, security policy typically states that only certain participants can update
the replicated state that represents the application. The exact nature of this
Groupware Model of Trust will be studied in Chapter 4. For now however it is
sufficient to bear in mind that communication (multicasts) that could contain
updates to shared state must be identifiable as coming from a particular participant
in order to be suitable for a secure group application.

Therefore secure groupware needs three things: replication, security and a design
aimed at the groupware trust model. Unfortunately not many such systems exist.
This section will review existing systems that meet at least two out of the three
requirements and conclude that although there is much to be learnt from studying
them, none of them as they stand is suitable for highly interactive secure
groupware.
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3.2.1  Replication and Groupware

Data can be replicated for three reasons:

1. Availability: A replicated service for example provides a choice if some
should be slow or faulty.

2. Fault-Tolerance: Distributed systems with replication can cope with the loss
of replicas as well as Byzantine type failure. The remaining correctly
functioning replicas can continue to operate.

3. Performance: It is often not desirable to wait for data to be transferred from
a remote location. If the data is replicated locally, obviously access will be
faster.

It is performance that is the reason of interest for groupware. This section gives
some examples of systems specifically aimed at groupware applications. The
designers of these systems have all recognised that replication is the way to
deliver the required levels of interactive performance. All examples provide the
single shared object abstraction to the software layers above, whereas in reality
the object is replicated locally at each participant’s machine.

Shared Objects [AK94]

The Shared Objects system provides the groupware application programmer with
the convenient abstraction of using a single object that is shared by all the
participants in the group activity. In reality what the programmer instantiates and
treats as the Shared Object is a proxy to a replica group.

Invocations that inquire the state of the Shared Object can be satisfied entirely
locally through the Jocal replica. Invocations that update the state (which are
assumed to be far less frequent in applications of this type) must of course be
communicated to all the other replicas in the group.

The system is built on top of the group communication system Horus [RHB94]
[RBFHK95] that provides the necessary ordering to the updates as they are
received. Many applications require an expensive total ordering of updates if it is
essential that every participant is to observe the Shared Object progressing
through exactly the same series of states. However some applications do not have
such strong and hence expensive requirements. Take a shared phone book object
for example, it is clearly not necessary for the participants to see new entries
appearing in the same order. It is only important that all entries do eventually
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appear. A shared diary on the other hand might have a stronger ordering
requirement.

Additionally the group communication system facilitates the transfer of state to
new participants so that they may form their own replicas. Joining the group also
involves communicating the new members’ identity to all existing members in
case this is important for the application, as it is with a group conferencing system
for example.

Javanaise [HL97]

" Hagimont and Louvegnies also recognise in their Javanaise implementation that
groupware benefits from local replication of data and also that the groupware
programmer’s task is made easier if that replication is hidden behind the
convenient shared object abstraction.

The objects are kept persistent on a Javanaise server. The application code that
uses them is also stored on the server and both are transferred as Java mobile code
and state to a participant’s machine when required. Shared objects are grouped
into clusters for efficiency and so are replicated at that granularity. Replication is
in the form of a cluster cache that is maintained on each participant’s machine.

This approach means that updates to shared object state initiating from an instance
of an application are not necessarily communicated immediately to other replicas.
Rather, replicas of caches are invalidated when an update occurs and only when
an application instance spots this is a new consistent version fetched from the
server. Javanaise would therefore benefit from group communication and thus
eager updates. This would then make it more suitable for more interactive group
applications.

Groupkit [RG97] [GR96]

Greenburg and Roseman’s Groupkit toolkit is an extension to Tcl/Tk that allows
real-time distributed groupware to be rapidly developed. The toolkit provides
many common elements of groupware applications, most important amongst these
being the ‘shared environment’.

A shared environment is essentially a collection of objects that can be shared
amongst the mulitiple participants of a groupware session. The shared environment
can be centralised or replicated locally at the machines of the participants. The
toolkit follows the Model-View-Controller paradigm of Smalltalk and so
essentially the shared environment is the model, with each application instance
having its own view and controllers.
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Updates to a replicated shared environment are immediately communicated to all
other replicas and so, unlike Javanaise, the toolkit would well support highly
interactive distributed groupware such as shared whiteboards for example.

There are other examples of systems that provide the shared object abstraction: the
Electra toolkit [MAF94], Mushroom [KIN96] and Orca [BTK90] all support
replication. However, none of the examples mentioned in this section as yet
provide any security options and so would not be suitable for use with a security
sensitive task.

3.2.2  Security and Replication

Section 3.2.1 was introduced with three reasons for replicating data in a
distributed system. Performance is a major benefit to groupware and all the
systems outlined in the previous section took advantage of this. Fault-tolerance,
although obviously important to distributed systems, is not a key issue to be dealt
with here, however it is interesting to think about the parallels between fault-
tolerance and security. Turn and Habibi [TH86] as well as Meadows [MEA] say
that providing security is just coping with another class of failure. Fault-tolerant
systems are designed with a model of failure in mind: that is assumptions about
the behaviour and misbehaviour of the system. A security model of trust is the
same idea but with fewer assumptions. Now it is assumed that components that
are external to the system can exhibit misbehaviour also and with both internal
and external components the failure can be Byzantine, i.e. malicious.

Replicated data can be easily maintained with group communication systems such
as ISIS [BIR93] [BJ87] [BSS91]. Secure applications need secure group
communication and so in this section two examples are studied: first a proposal
for a secure extension to ISIS and second a system that uses a significantly
different trust model. It will be shown that providing an appropriate trust model at
the same time as maintaining performance is not straightforward. Both systems
outlined here facilitate replication with fault-tolerance in mind and so together
with security they provide for highly robust applications.

Secure Replicated Services [RBG92] [RB92a] [REI93]

As with both examples in this section, Reiter and Birman’s studies into designing
a secure extension to ISIS were aimed at providing replication for secure and
available fault-tolerant services rather than for providing performance. The trust
model employed is that of a set of trusted servers, i.e. a ‘trusted island’ of
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processes providing their service despite the malicious efforts of other external
processes (which could include clients).

The architecture concerned is that of a set of component servers containing
replicas of data. The service provided to one particular client is not provided
however by one of the components alone. A single interaction with the service
that does not change any state will involve contacting many components and
comparing the results. This allows a proportion of components that have failed
benignly to be tolerated. However use of replication in this way conflicts with
local replication for performance reasons.

The secure group system gives the following guarantees as regards authentication:
g Group Multicasts are authenticated as coming from a group member.

. The group can authenticate new members. Permission to join must be
granted by one existing group member.

. New members are able to authenticate the group.

Note that multicasts are authenticated as coming from a group member and not
from any member in particular. This is achieved by signing communication with a
group key possessed by all members and known by no parties outside the group.

Because of the potentially different rights of participants in a secure group task,
authentication of communication for secure groupware however must guaraniee
that the source is a particular principal and not just a participant in general and this
renders this system unsuitable for such uses.

This work carried out at Comell was derived from work at Cambridge [GON89]
directed at providing a secure and available authentication service. Independently,
Kerberos [KNT911, a widely used authentication service, introduced replication of
client key information to improve fault-tolerance. Since authentication is
something that must occur at least at the start of every secure session then it is
evident that the availability of the service is of paramount importance. It is clear
that communication between components of the service must be secure since they
contain security keys.

Rampart and Distributed Trust [REI94a] [REI94b] [REI94c] [REI96]

Rampart was also designed and implemented by Reiter. However Rampart utilises
a more complex trust mode] than the previous work. Components of the replicated
service are now no longer assumed to be incorruptible. The group communication
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system however is designed to allow the service to operate normally despite the
corruption and hence Byzantine behaviour of less than a third of its components.

In particular the authentication guarantees are as follows:
. Group multicasts are authenticated as coming from a particular member.

. The group can authenticate new members. Permission to join must be
granted by a proportion of existing group members.

. New members are able to authenticate the group.

This trust model and the authentication guarantees are appropriate for groupware,
however allowing for a proportion of corrupt group members is expensive in
terms of messages. A multicast is delivered to the application only after several
rounds of messages have been sent to the whole group. This is to ensure that the
same update message was sent to every member, since no assumptions can be
made about the behaviour of the source. Additionally each of these messages
must be authenticated with expensive public key signatures.

Rampart gives a multicast latency of about 73ms (on a SPARC 10) for a reliable
multicast with a rather small 300 bit (modulus) RSA key. No figures are given in
the literature for atomic multicast that is a likely requirement for many groupware
applications. Nevertheless, at the very least an atomic multicast will take twice as
long as a reliable multicast and in reality is likely to be greater still because
ordering information for sets of multicasts are sent out only periodically.
Unfortunately such long latencies are likely to render Rampart unsuitable for
groupware.

Other systems that tackle the issue of security of group communication include
Transis [DM96], SCOM [COO09%6] (a communication security layer for Horus),
LSGC [MHP98] (whose main contribution is to performance by multiplexing
groups) and Caelum [ACDK97]. However none of these systems offer anything
other than the ‘trusted island’ model of trust.

3.2.3  Security and Groupware

All of the systems studied here provide security of network communication
specifically with the needs of groupware in mind. However none are absolutely
suited to the needs of highly interactive groupware where the participants act with
different rights.
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Secure Network Objects [DABW95]

The Secure Network Objects system provides secure communication of remote
method invocations and results. Objects are created and maintained by processes
run by the object’s ‘owner’. Specifically the guarantees of method invocation
provide:

. Authentication of objects by clients.
. Authentication of clients by object server {owner).
. Protection of communication from eavesdropping, tampering and replay.

Clients and owners authenticate each other through trusted authentication agents
that run on each machine. The agents set up a shared key that is used by both
parties to sign method invocations (and the results returned) in order to prevent
tampering. The possibility of replay is removed by including with each invocation
message a unique sequence number that is returned by the owner with the resulis.
If secrecy is required then the whole message is encrypted using the same key.

Just as the remote access is transparent, so too are the security mechanisms that
are completely hidden from clients by the setting of a proxy in the clients’ address
space (here called a ‘surrogate’).

Lotus Notes [LOT] [HUT]

Lotus Notes is a groupware system in that it facilitates shared information for the
purposes of collaboration. In fact Notes offers mechanisms for communicating
with groups and coordinating group activities. At the heart is a document database
that is held in servers. Documents are shared by clients and can be updated
simuitaneously by others.

A Notes system can employ replication in two forms:

. Server-to-Server: Notes is designed to be used across wide area networks
and hence multiple copies of the document databases can increase access
times as well as the availability of the data. It is possible to control the
frequency that updates are sent to other replicas and so reasonably
synchronous interaction can be supported.

. Client-to-Server: This is intended for disconnected operation, for example a
salesperson who pays frequent visits to customers can take a copy of part or
all of a database and access it whilst away. When she returns, updates made
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to her copy are applied to the server copies and vice-versa. Notes flags any
conflicting updates for manual resolution.

Neither of these forms of replication would be very useful for highly interactive
groupware though. In fact the document structure of the data within databases
renders interactive applications (such as shared whiteboards for example) difficult.
Although fields within documents can contain structured objects, Notes only
permits sharing down to the field level, i.e. two users cannot simultaneously edit
an object within a field.

Notes also provides security of communication across networks. This of course
includes the securing of all internal messages sent regarding the maintenance of
replicated data. Messages are authenticated and made tamper proof through digital
signatures and their contents can also be encrypted. Users and servers initially
authenticate themselves to each other using RSA public key encryption supported
with X.509 certificates [ISO88].

Persistent Distributed Store (PerDiS) [SKR97] [CDKR97] [CDR98a]
[CDR98b] [CD94b]

The PerDiS system is currently under joint development by a consortium of
European research and commercial institutions. The system is aimed at supporting
group applications particularly but not exclusively in the CAD domain. For
example the system might be used to support a group application for collaborative
architectural design. The project aims to tackle a number of areas such as
persistence, distribution, concurrency, fault-tolerance and security in a transparent
and scalable way.

The system presents a shared memory abstraction to the application programmer.
'This is a broader idea than the shared object abstraction that enabled a wider range
of existing applications to be easily converted for use over PerDiS.

For availability, fault-tolerance and performance, it is necessary to replicate data
that is currently bemg worked on by some participant. This results in the familiar
problems of maintaining replicated data that have been demonstrated by other
systems in this chapter. Replication in PerDiS is local to the clients, i.e. on their
machines, however the replicas are not updated after every update applied by
other users. Only the local updates are reflected immediately. Occasionally the
new state of a segment of memory is brought up to date, not by distributing
updates, but by distributing a new version of the segment.

Security of communication is also implemented. When data is copied to form a
new replica, the data can be authenticated as coming from a legitimate source.
Optionally the data can be encrypted for its passage across the network. When
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updates are made to the state, they too must be authenticated and optionally.
encrypted by the source of the change. Other participants currently working on the
same shared memory data then only apply the new version to their replicas if the
source is a legitimate participant and not some malicious party attempting to apply
false updates to the secure state.

PerDiS can also control access to the shared memory. Section 3.3.2 will return to
this system again in order to study its more fine-grained access control
mechanisms.

Enclaves [GON96]

The Enclaves group communication system developed by Gong at Javasoft
provides a secure group abstraction intended for use by groupware applications.
An Bnclave is a ‘protected virtual subnet’, or in other words a ‘trusted island” of
participant processes.

Groups are initiated and maintained by a group leader. This leader is responsible
for authenticating prospective new members and for communicating their arrival
to the rest of the group. The leader in fact communicates all ‘essential’ group
information to the others such as keys and the initial state. However this does not
include multicasts to updates to the state, which come from the members
themselves and are authenticated with a shared group key. Consequently there is
no basis for building on access control as it is impossible to securely establish
from whom within the ‘group an update originated.

The Caelum [ACDK97] gfﬁqp communication system is another example that
uses this model for groupware. As already stated, the “trusted island’ model of
trust is not suitable for secure groupware where the participants have different
rights“."‘-‘-\l}é_lonethcless access control is important for many secure tasks.

3.3 Access Control for Groupware

The groupware performance requirement discussed in the previous section is
provided for primarily at the communication layer. This section concentrates upon
the next layer up, which in an object-oriented system is the Shared Object layer
(see Figure 3.3).

This is the level at which access control is naturally implemented. There is no
notion of fine-grained operations at the communication level below and it is
desirable to alleviate the application programmer from the burden of
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implementing access control mechanisms. Indeed, if existing applications are to
be reused and made secure then separating access control is essential.

As with the communication layer, security at the Shared Object layer is presented
at a level consistent with the communication abstraction. Hence access control is
expressed in terms of the ability to invoke methods upon objects.

First Section 3.3.1 explores the conventional methods of specifying rights as
defined by Lampson. Many secure distributed systems use these techniques as
their foundation. In the following section some systems that have more
sophisticated methods of specifying rights are examined. However despite their
various innovative features, none of them offer total support for the kind of
dynamic policy introduced in Chapter 2.

3.3.1  Established Methods for Specifying Rights

Lampson originally set out his ‘access control model’ in 1974 [LLAM74]. Since
then, the ideas have been widely adopted in many systems, Later in 1992 the ideas
were updated in order to be more relevant in a distributed context [LABW92], but
the overall concepts remain unaltered.

"The access control model for distributed systems embodies the following entities:

Principal: The source of actions and the unit of trust. Principals
can be people or system components such as
services.

Process: Principals are represented in the system by
processes. Generally a process acts on behalf of one
principal.

Request: An attempt (originating from a principal) to perform
' some action. o -

Protected Object: ‘The resource under protection, for example: files,
devices and services.

Access Control List: (ACL) The form in which the security policy is
represented in the system. It is a list of principals
associated with each operation of an object.

Guard: The component that enforces access control.
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The model encompasses the notion of a trusted computing base (TCB). This is a
set of processes that are assumed always to operate according to their
specification. As will become clear, all systems must be built with a trusted
computing base since it is impossible to build trust out of nothing. In general
however, making it as small as possible minimises the risk of the incorruptibility
assumption breaking. Figure 3.4 illustrates how the entities of Lampson’s model
are applied to a secure object-oriented server.

Client Protess {runhing on behaif of Principal X} Server Process (part of TCB}

Request to Server

Guard Protected

Application
Object

Chject

Figure 3.4 The Guard intercepts requests from clients. It consults the Access
Control List before handing on the request to the protected object.

The specification of access rights could be a laborious task if the number of
principals and objects is large (as is typically the case in distributed collaborative
applications). Lampson’s updated model introduces methods of simplifying the
task of specifying rights.

Simplification of rights specification is accomplished by allowing generalisations
about principals. Principals can be grouped according to the role that they play in
some task and then rights are assigned to the group. For example all doctors could
be given the same right to access a medical record. Later it will be shown that
other schemes have simplified rights specification further by allowing for
generalisations to be made about objects.

The security policy can only be expressed as accurately as the access control list
permits. A simple list of principals or roles can only describe very static policies
such as “Principal X can do Operation Y”. As Chapter 2 made clear, policies are
often more dynamic. Lampson’s model does include the notion of delegation. This
allows one principal to empower another with some or all of their rights
dynamically, without intervention from some authority.
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Most multi-user operating systems use the access control model to some extent.
The UNIX file system for example, although not allowing the specification of
access rights on an individual basis, allows rights to be granted on a group basis.
Lotus Notes studied in Section 3.2.4 uses a combination of system-defined roles
and access control lists specifying rights to invoke generic document oriented
operations (read, write, delete and compose).

The TAOS operating system [WABL94] implements the entire model. The system
provides an API that can be used by the programmer of a service for example, to
check the authenticity of a principal and verify rights claimed through delegation
or role membership. Principals must be provided by the application with a way of
delegating and specifying role membership and access rights. This does mean that
the system could not easily be introduced into an existing application. The
following section will introduce a solution to this problem also.

Rights are packaged with the necessary proof (signed certificates) into credentials
which are a data type used as arguments in the security API. Access control lists
are also represented as data types with functions for checking a principal’s
presence on the list and of course for modifying them. These functions allow the
implementation of principal naming to be kept hidden and to allow the procedures
of authentication and checking of access rights to be transparent to the user of the
application. All communication between machines running TAOS is authenticated
through the use of secure channels implemented using shared keys to sign digital
signatures [NS78].

3.3.2  New Access Control Techniques for Groupware

Lampson’s access control model offers little if the policies are dynamic in any
way, that is rights cannot easily be changed without intervention as some
collaborative task proceeds (delegation is the exception). Changes in rights will
require a change to be made to the access control list and this is only achieved
through the intervention of some authority. This is inconvenient and probably far
from immediate and consequently not ideal for interactive groupware which relies
upon fast responses to actions for its productivity.

There are some systems that offer more flexible access control however and this
section will explore some of them, namely: Legion, CARDS, Intermezzo and
PerDiS. In particular these systems are aimed at group applications that cater for a
greater degree of dynamic policies to be expressed.
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Legion [LG95}

Like some of the systems studied in the previous section, the Legion system also
offers the application programmer a shared object abstraction. However Legion is
intended to be a fully functioning and practical system rather than merely a
research project. Consequently issues such as scalability, object location, object
naming, persistence, fault-tolerance and access control all feature to some extent
in the implementation.

When not in use by any application, Legion objects exist in persistent storage
somewhere. An application wishing to access the object must obtain a reference
that the Legion communication layer can use to locate a host that maintains the
object. Once a connection has been established, communication of remote method
invocations and results can start.

Access control is specified consistently with the shared object abstraction, i.e.
rights are specified in terms of the ability to invoke the methods of shared objects.
Legion takes a very simple and open approach to rights specification by ensuring
only that a specific boolean method (called ‘MayI’) of a shared object is called
before access is granted. The application programmer implements these methods
and it is their retwrned value that determines whether the attempt to invoke a
method succeeds or not.

This approach means that the potential policies that can be specified are wide and
rights can obviously be more dynamic since the ‘MayI’ method can refer to such a
variety of criteria including system state. The down side of the Legion approach
however is two-fold. First it places more burden on the application prograrmmer
because he is probably forced to implement an access control list himself.
Secondly and more seriously, a change in security policy or even possibly an
individual’s change in rights will result in application code having to be altered
and rebuilt. The flexibility of Legion access control is good, however not having it
tied in with application code would result in a more maintainable system.

Context Authentication Service for Role Based Access Control in Distributed
Systems (CARDS) [HT95]

Most secure systems give more assistance to the programmer and supply the
implementation of access control. The CARDS system is an authentication service
and not a layer as such in a secure system. Applications can invoke the service on
behalf of a principal and gain signed statements of their rights. These statements
can then be presented across the network (to a service for example) in order to
gain access to some resource. The rights obtained are not static however as they
would be if they were read directly from a static access control list, i.e. successive
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claims from CARDS could result in different rights being returned. The rights
returned to clients can reflect the current state of a collaborative task and therefore
can more accurately express need-to-know policies by more concisely restricting
the circumstances under which a principal can do something.

Tasks are divided into phases and separate rights can be assigned to principals in
each of these phases. Assigning a principal’s roles to a specific phase and then
only permitting the principal to take on this role during that phase facilitates this.

Intermezzo [EDW96]

Edwards presents a specification language for defining policies using a system
called Intermezzo. These policies are more flexible than simple access control lists
because they are evaluated at run-time. This means that what users can do changes
dynamically as the collaborative task evolves.

Intermezzo is not designed to be a highly secure system, rather, Edwards is just
one of many authors that recognises that collaboration needs to be controlled in
order to be effective. He gives the example of a shared drawing tool -the scope for
interference is great and if interaction is not constrained in some sense then users
will be “overwhelmed by the task of baby-sitting the environment rather than
getting work done”.

Amongst others, the following two policies are given as examples:

“Don’t let anyone bother me when I'm working on my thesis. Unless it’s
my advisor of course.”

“I need to share my workspace with others during demo days.”

These both represent policies that couldn’t be expressed in a conventional access
control list since both refer the current state of an activity, i.e. what is currently
being worked on and whether it’s a demo day or not. These policies can only be
evaluated dynamically. Policies are expressed in a language that allows the state
-of objects to be consulted. Object methods can be called directly and the results
returned used in the evaluation of rights.

Access to objects cannot however be controlled on a per-method basis. Access is
granted only to the generic operations Read, Write and Exist (to test if an object
exists). This is perhaps strange in a system whose contribution is to widen the
range of policies that can be expressed.,
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It is easy to see that the specification language could be useful in a secure system.
The example policies could easily be security policy if in the second example, the
workspace contained private information at times other than demo days.

There are many other systems that use roles and policies to control potentially
destructive collaboration, such as Suite [SD92], MPCAIL {GS86] and PREP
[NKCM90]. Also there are other systems that recognise that for accurate
enforcement of security policies, the state of the system must be taken into
account when evaluating a principal’s rights. Apart from CARDS and Intermezzo,
such systems include Schumann Security Software’s SAM [HIL97] and work by
Moffett and Sloman {MS91]. Additionally work by Hayton on the Oasis system
[HAY96] also recognises that rights are dynamic. As well as introducing a
language that allows state dependent control of rights, the system also extends the
notion of delegation to recognise that the concept is broader than just the transfer
of existing rights, but that new rights can also be created as they are in elections
for example.

Persistent Bistributed Store (PerDiS) [SKR97] [CDKR97] [CD9%4b]

The PerDiS system (ah‘éady studied in the previous section) doesn’t offer
anything beyond Lampson’s access control model in terms of ability to specify
and enforce more dynamic security policies. However it is interesting because it is
aimed specifically at groupware applications and it offers a very immediate way in
which participants of a group activity can change rights.

The layers in a secure system offer security at a particular level of abstraction and
offer an appropriate interface to their security functions to the layer above. For
example a secure communications layer offers security in terms of secure
messages. A layer above uses this to offer its secure abstraction that will typically
offer a completely different model of security to the layer above it, for example
protection of shared object methods. Finally the application layer will offer its
own view of security to the users which might be completely different again.

This presents a problem with securing existing applications that do not currently
offer any security functionality. They cannot easily be rebuilt on top of the secure
equivalents of the underlying layers because new functionality will need to be
built into the application code in order to be able to control the security features.

The PerDiS system was specifically designed with existing non-secure CAD
applications in mind and offers a solution to the above problem. The system
includes the notion of a security shell that is a means of bridging the gap between
the secure shared object layer and the user and thus bypassing the application
which can therefore remain security ignorant, but secure nevertheless. All security
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commands such as changes to access control lists, delegations and role-taking are
dealt with by the security shell. See Figure 3.5.

e.q. Security ignorant
CAD Appiication

Secure Stack

Figure 3.5 The Security Shell of PerDiS relieves the application from supplying
an interface to security features, thus allowing existing ‘unsecured’
applications to be reused with minimal modification.

It does mean of course that the user has to deal with security and specify rights at
the level of shared objects, i.e. controlling access to methods. However a well
designed application should have intuitive objects names that mirror those of the
real-life counterparts and the object methods are assigned to generic categories
that have user-understandable names such as ‘read’, ‘write’ and ‘edit’.

PerDis also includes the notion of ‘tasks’ that are used to partition the scope of
access control rights and objects in order to make the system more scalable and
ease the complexity of assigning many rights to many people for many objects.
The task concept is drawn upon by the work presented in this thesis in Chapter 9,
Section 9.4.2 and is described in further detail there.

3.4 Summary of Groupware Security

This chapter has attempted to demonstrate that although many systems exist that
address security and groupware issues, there is none that entirely addresses all the
needs of highly interactive secure groupware, particularly where participants act
with varying rights.

Replication and eager updates can address the speed needed for effective
collaboration and the systems studied in Section 3.2.1 (Shared Objects, Javanaise
and Groupkit) proved that this can be achieved whilst hiding the replication from
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the application programmer behind a convenient shared object abstraction,
However none of them addressed security as an issue.

Secure replication has been addressed by other systems, two of which were
covered in Section 3.2.2 (Secure Replicated Services and Rampart). However
neither of those were specifically aimed at interactive groupware and so were
inappropriate in the trust model they assumed, which is a little more complex for
groupware (Chapter 4 will explore a model of trust for groupware further).

The four systems outlined in Section 3.2.3 did address security for groupware
specifically, however each of those too was inappropriate in some way. Secure
Network Objects didn’t use replication, Lotus Notes and PerDiS didn’t use
replication appropriately for highly interactive applications and Enclaves again
assumed an unsuitable trust model.

At a higher level, access control mechanisms have existed for a Jong time and
have been adapted for distributed systems. However the range of policies that it is
possible to express using an access control list is limited. Some schemes have
been proposed for making access controls more dynamic and thus allow for a
greater range of policies. Section 3.3 examined some of these (Legion, CARDS
and Intermezzo). However none of these were aimed at the specific needs of
groupware.

These gaps will be filled in the remainder of this thesis. Chapters 4 through to 6
will deal with providing secure group communication for groupware and Chapters
7 to 9 will deal with dynamic access control for groupware.
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Secure Group Communication for Groupware
- Design

The previous chapter showed that the group application programmer’s task can be
made easier by using system software that provides a shared object abstraction.
Several examples of secure abstractions were given such as Secure Network
Objects [DABW95]. However none of them took advantage of replication in order’
to make them fast enough for really interactive group applications. The chapter
continued by demonstrating that locality of data and hence replication of data is at
the heart of performance.

The facilitation of replication and hence the shared object abstraction can be far
more easily implemented with the help of a group communication system. Some
secure group communication systems that facilitate replication have been
discussed but it was argued that none absolutely suited the needs of groupware.
Some systems made inappropriate assumptions about the nature of trust within a
group of participants (for example Secure Replicated Services [RBG92]) whilst
other approaches were simply too slow for groupware (such as Rampart [REI96]).

This chapter offers a solution to the problem of making secure interactive
groupware fast enough for constructive work to be done. It presents the design for
a secure group communication system that is intended for secure groupware
applications. The intention is that this system could be used to provide replicated
state to a group of participants and facilitate the immediate communication of any
updates to that state to the replicas, the updates being securely multicast to the
group member processes.

Section 4.1 starts with the observation that all secure systems are founded upon
some trust assumptions holding true. No system can operate in the absence of all
trust. This trust takes the form of processes that are assumed always to operate
according to their specification, in other words they never become corrupted.
These processes form the trusted computing base [LABW92].
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Replication in groupware is different from other types of replication because data
is replicated upon the machines of ordinary users, i.e. the participants in a group
application, rather than replication in servers. This in turn means that a group
communication system is being used in a different trust environment. The secure
group communication systems that were studied in the previous chapter are
intended for the implementation of secure services, where the replicated data
remains safely under the control of trusted processes that provide the service.
Placing data under the custody of ordinary participants’ machines means that the
trust assumptions made by the above group communication systems are no longer
valid.

Section 4.1 is concerned with discovering what are appropriate trust assumptions.
It will be shown that there are compromises to be made since the ideal is actually
impossible to implement.

Section 4.2 will make concrete exactly what is the full set of requirements from a
secure group communication system for groupware. Most obviously there are
communication requirements. These shape the abstraction that is presented to the
application. There is no reason why this should be any different from the process
group abstraction of existing systems that have been shown to effectively support
the implementation of distributed systems that replicate data. Then there are some
security requirements such as authentication of updates to replicated data and of
course it is required that the abstraction remain intact despite some potential
malicious activities. Finally there is the all important performance requirement.

4.1 A Model of Trust for Groupware

When designing a secure system it is important to be clear about exactly what type
of malicious behaviour the system will withstand. This is in line with the approach
used by designers of a fault-tolerant system. For fault-tolerance, assumptions are
made about which processes in a system will adhere to their specification and
which can deviate from their specification and in precisely what way.

These entities and assumptions form a model that can be reasoned about. A
system is designed and implemented according to the model. It will function as
expected in any situation in which the assumptions of the model are valid. The
same approach can be used to design a secure system. The basic entities of the
access control model (processes, principals, requests, etc.) are taken and
assumptions about their behaviour are made. For example “Guards always
function correctly”. These form what will be referred to here as a Model of Trust.
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There is a difference between a failure model for fault-tolerance and a model of
trust however, In a model of trust it is essential to include every principal that can
have any potentially malicious effect on the system. This includes principals
whose processes aren’t even part of the system. This is a vast number if the
system is to be implemented over a wide area network such as the Internet. In
practice the assumptions will be blanket statements covering many principals such
as “all those involved in the system are assumed to behave according to their
specification” and “all those not involved are not assumed to behave in any way”.

When considering whether a process can be trusted (assumed always to execute
according to its specification) it is necessary to recognise that a process will
possibly be running software from many different sources. In fact even the
hardware could be exposed to sabotage. Trusting a process and any
communication from it is not merely trusting the principal upon whose behalf it is
running, it is trusting all the software and hardware as well. The level of trust
given to a process must take all these factors into account. Typically the level of
trust afforded would be the lowest common denominator.

Thankfully the least trusted component is typically the user and so for the models
of trust described here a process is afforded the same level of trust as the principal
on whose behalf it is running,

Finally it is important to realise that trust is always from someone’s point of view,
It is not something that can always be applied to a system from above. This is
especially true of groupware systems that could involve cross-organisational
collaboration. Participants in one organisation might trust each other completely
and the others not at all. Whereas those in another organisation trust themselves
but not the first group. Hence the assumptions must make clear where the trust is
coming from.

4.1.1  Exampie Models of Trust

Most existing secure systems are designed to very simple models of trust. For this
reason the model is not often explicit in the literature. For example the model that
the Secure Socket Layer is designed in assumes that the two communicating
processes trust each other, i.e. each assumes the other is uncorrupted (see Figure
4.1). All other processes are not trusted at all, with the possible exception of a
certification authority. This mistrust includes all the processes involved in
transmitting the message such as gateways and bridges. Any system that employs
secure channels is adopting this model.
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Figure 4.1 The Secure Channel Model of Trust. The two communicating
processes trust each other but no other process. The communication
abstraction is maintained despite the potential corruption of the other
processes in the network.

Of course just as with fault-tolerance, if the assumptions become invalid then the
guarantees of the system are likely to fail. If the Secure Socket Layer software
becomes corrupt then messages may not be transmitted securely.

Chapter 3 introduced some secure group communication systems that maintained
a group abstraction securely, even in the presence of some malicious behaviour.
These examples employed different models of trust. The Secure Replicated
Services system [RBG92] employed the simplest model of trust, This was a
simple extension to a group, of the model used by the Secure Socket Layer. In this
‘trusted island’” model all processes that are members are trusted equally and
totally by each other (see Figure 4.2) and all other processes are not trusted at all.

Ungorrupt Process

o

Trusted Island of Processes T ———
Corrupt Process

Figure 4.2 The Trusted Island Model of Trust. All member processes trust each
other, but do not trust any other processes that are assumed to be potentially
corrupt.

If just one group member becomes corrupt then the abstraction can fall apart for
all members. All other external processes can misbehave in any way (by for
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example attempting to masquerade as legitimate members) but cannot disrupt the
group abstraction.

4.1.2  An Ideal Model of Trust for Groupware

It is straightforward to implement a secure group communication system in the
simple ‘trusted island’ model of trust introduced above. All that is needed is for
communication between group members to be authenticated. As long as a
recipient believes that a message does originate from another member then the
message (an update to replicated state for example) can be acted upon without
further checks, because all other members are assumed to be trustworthy.

This model is probably appropriate for groups of servers that run on machines that
don’t host user sessions directly. These machines can bar interactive logins from
all but trusted administrative staff and they can be physically located in locked
rooms. Other similar measures can increase the probability of the assumptions
holding and therefore the processes forming the group remaining uncorrupted.

It is not necessarily that simple for a group application. For a start the processes
that are group members are located on users’ workstations. This is necessary to
get replicated data located in the same address space as the application and hence
achieve the maximum performance gain. These processes will obviously be more
open to corruption than the server processes mentioned above. This ‘trusted
island’ model seems unacceptable when bearing in mind that it takes just one
member to become corrupt in order to destroy the whole abstraction for the others.

Secondly and more fundamentally, the principals of a secure group application are
likely to be acting with different authorities. Several studies analysing secure
group tasks (both computerised and non-computerised) have shown this to be the
case [SD92] [CD94a] [EGR91] [GS86]. Very often in situations where it is
important to adhere to some policy, some people are given more rights than
others. Just a few of many examples are: the chairman and the board of directors;
the manager and other staff; consultants and junior doctors; lecturers and students.

Applying a general mode] of trust to the infinitely diverse array of different levels
of trust afforded to members in a diversity of possible applications can be difficult
or rather restricting. It is not possible to assume that any member is totally trusted,
i.e. has all rights. So the best that can be done that is generally applicable to all
possible convolutions of trust is to make no assumptions about trust at all. This is
what will be referred to as the ‘ideal’ model of trust for groupware and is depicted
in Figure 4.3 below.
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Figure 4.3 The Ideal Model of Trust for Groupware. No assumptions about
trust of group members are made. It is considered possible that some group
members will become corrupt.

If no assumptions about any processes’ behaviour are made then the possibility of
all the member processes becoming corrupt must be catered for. Clearly it is
impossible to maintain any sort of abstraction under these circumstances. In fact
the situation of providing reliable multicasts in the presence of arbitrary behaviour
is an incarnation of the Byzantine Generals problem [LSP82]. Lamport et al. have
proved that this is impossible if a third or more processes become corrupt. Hence
the ideal model of trust for groupware makes it impossible to implement the
system.

4.1.3 A Practical Model of Trust for Groupware

Clearly if the ideal model makes the system impossible to implement then it will
have to be compromised in some way if the goal of replication for groupware is to
be realised. Some group member or members must be assumed trustworthy. There
are two clear ways forward.

The Rampart [REI96] secure group communication system introduced in Chapter
3 takes one possible approach. This is to assume that at least two-thirds of the
group members are uncorrupted and functioning according to their specifications.
Under these circumstances it is possible to maintain the group abstraction to these
trusted processes.

Rampart like the other group communication systems studied previously was
designed for the implementation of a replicated service and not for groupware
specifically. For this reason, the performance of the system was not an overriding
issue.
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Rampart implements reliable multicasts in the described model of trust through
‘echo multicasts’, each of which involves three sets of messages. First the data
intended for distribution to the group is sent to everyone by the originating source.
Following this everyone echoes the message with a digital signature back to the
source. When the source receives enough echoes it sends all the signatures back to
everyone. This proves to all that everyone else got the same multicast and the
source didn’t try to disrupt the consistency of replicated data by sending different
updates to different members. This is a distinct possibility since the source of
multicasts (the group members) is not trusted. At least two-thirds are trusted, but
it’s not known which ones these are.

The implementation in this model of trust makes Rampart very slow. The high
numbers of messages together with the need to digitally sign each with slow
asymmetric keys makes Rampart unsuitable for interactive groupware. In fact the
description above is only for the reliable multicast implementation. Totally
ordering them is even more complex and doubtless slower still although no timing
figures for totally ordered multicasts are given by the author, Reliable multicasts
take in the region of 73ms to be delivered to the application (this is for a 1KB
multicast). A totally ordered (atomic) multicast would take much longer than this
(at least double) since the sequencer type architecture means that separate
ordering multicasts (themselves reliable) are sent out.

The group communication system for groupware applications presented here takes
a different approach and employs a new more practical model of trust. Rampart is
expensive because the source of a multicast cannot be trusted to send the same
message to everyone. If however the source can be trusted then this problem is
eliminated. If a multicast can be authenticated as coming from a trusted source
then all group members will maintain their replicas consistently.

This does not necessarily mean trusting the ordinary group members. An ordinary
group member wishing to initiate a multicast can first forward the data to the
trusted member of the group. This member actually emits the multicast which will
be (under the practical model of trust for groupware) correctly formed and
emitted. This is shown in Figure 4.4 below.
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Flgure 4.4 The chosen Practical Model of Trust for Groupware. A specific group
member is assumed always to remain uncorrupted.

Obvibusly the model is weaker than the ideal, since the corruption of the one
trusted process could result in the collapse of the abstraction. Therefore it is vitally
important that this member is protected from corruption. Since all malicious
corruption ultimately stems from human interaction then this process could run on
a machine that does not allow interactive logins. It would be a group member that
maintains replicated data in the same manner as its untrusted counterparts, but it
wouldn’t interact with a user directly. Additional physical steps could be taken to
further reduce the possibility of the incorruptibility assumption breaking.

The model is stronger than the ‘trusted island’ model because a system
implemented under those assumptions could not withstand the corruption of even
a single process, no matter which one. Also as will be demonstrated, a system
implemented in the practical groupware model of trust would be fast and
appropriate for data replication at users’ workstations and hence appropriate for
interactive groupware.,

4.2 Requirements of Group Communication

This section deals with the communication, security and performance
requirements that secure groupware demands from a group communication
system. Another set of requirements that would ordinarily be necessary for a
practical groupware system would be for fault-tolerance. Given that the group
members in the system are processes running on users’ workstations it should be
deemed likely that member processes will fail. However this research is directed
at assessing whether the security requirements can be met in a sufficiently speedy
implementation, as a consequence benign process failure is not addressed. Secure
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group communication systems such as the Secure Replicated Services system
[RBG92] use communication time-outs to determine when a process has failed.
Such implementations prove that fault-tolerance can be built into the abstraction.
Further these implementations show that, with the exception of Rampart, fault-
tolerance does not impact severely on the performance of the system when it runs
normally. Only when a process fails is there a performance degradation. Even
faster implementations of group communication do exist, however such systems
do not typically offer the same levels of fault-tolerance. Amoeba [KT91] is one
such example.

4.2.1  Communication Requirements

The communication abstractions offered by most group communication systems
are very similar. Most offer means of joining and leaving groups, receiving a
replica of state from an existing member and of updating the state by multicasting
to the group. '

However the details of the communication guarantees do differ subtly, particularly
in relation to the order that multicasts are delivered to an application. A network
does not generally provide any guarantees that the order in which multicasts are
made is the same as the order in which they are delivered. Indeed two processes
on the Internet could emit a multicast containing an update to replicated state at
exactly the same point in time. A distributed application may require that these
updates be applied to the replicas in the same order everywhere. Such a guarantee
is not necessarily cheap and if the application is dealing with secure data then
security measures may slow the implementation down further.

One of the most widely used group communication systems is ISIS [BI87]
[BSS91] {BIR93]. This system offers a choice of abstraction. Each choice differs
according to the ordering guarantees that it provides, the intention being that the
programmer chooses the cheapest one that satisfies the needs of a particular
application. '

The most expensive of the ISIS abstractions is known as Close Synchrony. This
provides an approximation of an actually synchronous system where group
multicasts and membership changes happen atomically and are observed in the
same order everywhere. It is a simple execution model for the programmer, but
providing the total ordering of multicasts and membership changes is expensive.
ISIS Virtual Synchrony is similar but does not guarantee the total ordering of
events. Instead a cheaper causal ordering is implemented.
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ISIS has been shown to be widely useful for the implementation of distributed
systems and as a consequence the group communication system for groupware
gives guarantees similar to ISIS Close Synchrony. The communication guarantees
are therefore as follows:

Cl.  When a process joins a group it receives state and the current membership
list.

C2. Following this it receives updates to the state that are consistent with the
original state and are totally and causally ordered with respect to the
updates received by all the other members. All correct processes receive all
updates.

C3.  When a process receives notification of another process joining or leaving
the group, this is consistent with the notification received by the other
processes, i.e. notification of membership changes are also totally and
causally ordered with respect to the multicasts in between.

ISIS would also guarantee that the failure of a process is also communicated to the
group. However as already stated, this fault-tolerance is not the key purpose of
this implementation and so process failure will not be catered for. The
implementation will however cope with communication anomalies such as
dropped or repeated messages.

Another more subtle difference between the communication guarantees of the
system presented here and that of ISIS close synchrony is the impossibility of
ensuring that a process delivers and acts upon all the messages that it should. ISIS
would guarantee that a member process either successfully delivers a multicast or
its failure is reported back to the group. This is necessary for applications that use
the group to distribute work to member processes for example. Since in the system
presented here it is not assumed that an ordinary member is functioning correctly,
it is not possible to say whether it processed a message or not. However for
applications that use group communication merely to distribute updates to
replicated state (as is the case for groupware) then this guarantee is not important,
i.e. if a member chooses to ignore or incorrectly process updates to state then this
behaviour can only affect itself.

4.2.2  Security Requirements

The practical model of trust for groupware has shown that the participants in a
groupware system are not generally completely trusted. The group application
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might be enforcing some access control policy and this in turn implies that the
participants are afforded different levels of trust. In order to be generally
applicable therefore the group communication system should not make any trust
assumptions about the participants. In other words the correct functioning of the
system should not rely upon the correct functioning of an individual participant’s
process.

This gives rise to two types of security requirements. Firstly, one that ensures that
the group abstraction remains intact despite the malicious behaviour of ordinary
member processes (excluding the trusted member). Secondly those requirements
that the layers above the group communication system need to enforce some
access control policy.

The first security requirement is simply:

S1.  The communication model (C1 - C3) will remain intact at all member
processes that are uncorrupted.

It is obviously impossible to make such a guarantee to a process that has become
corrupt, for example one that is running a corrupt version of the software
providing the abstraction. However this is not a concern. It is only desirable that
the correctly functioning processes (i.e. those that adhere to their specifications
and hence adhere to the group communication protocol) see a view of the group
that is consistent with the other non-corrupt processes.

Requirement S1 obviously implies that certain steps be taken in the
implementation in order to prevent a malicious process from disrupting the group
abstraction. These steps are in addition to ensuring that one group member always
functions correctly. Such mechanisms include preventing group messages from
being replayed or tampered with and manifest themselves in the implementation
as digital signatures attached to messages. The implementation is described in full
in the following chapter. The remaining requirements described in this section are
to support any attempt by an application to enforce access control.

Different participants may have different rights. It is therefore necessary to be able
to identify the exact source of a communication to the group. This is in contrast to
group communication systems that are built according to the ‘trusted island’
model of trust in which it is only necessary to identify a communication as coming
from a group member in general. Hence S2:

S2.  Multicasts can be authenticated, i.e. not tampered with or replays of earlier
communication and identifiable as coming from a particular group
member.
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1t is further necessary to give guarantees to the new member regarding the
authenticity of the group that it is joining. Additionally the group must be aware
of who is joining.

S3. A prospective member can authenticate the group that it wishes to join.
S4. A group can authenticate a prospective member and refuse admission.

Requirement S3 ensures that the new member really joins the group that it is
intending to join and not some malicious party’s attempt to masquerade as the
group. $4 provides the same assurance to the group so that admission can be
refused. First thoughts may deem this unnecessary since S1 requires that no matter
who gets into the group they cannot disrupt the view of the other correct members.
However group members receive state and this state might be secret such as
personal medical or financial information.

Admission policy is application dependent and so we assume that the group
communication system can obtain details of which new members are permitted to
join a group from the level above. A secure shared object layer for example might
be able to make a decision of whether or not to allow admission based upon an
access control list. It would be sensible to disallow admission if the participant did
not have rights to invoke all the methods that inquire state, since a successful join
would result in state being transferred to the participant’s machine.

Given that applications can enforce access control then it is possible for rights to
change. Hence a current member of a group may lose its right to be a participant
so it follows that there should also be a means by which a member can be
excluded. Hence the next security requirement.

S5. A group can evict an existing member.

In our system there should be no assumptions made about the processes that run
on behalf of principals outside the group. In practice using existing broadcast
network technology it is infeasible to prevent any machine from viewing an
update message. If collaboration is taking place across the Internet then machines
such as gateways that are involved in the transmission of messages are typically
outside the jurisdiction of an organisation. If malicious these could glean secret
information from a message. This must be prevented, hence the secrecy
requirement S6.

S6. Al state transfer and multicasts are useful only to members (i.e.
encrypted).
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This secrecy requirement may not always be necessary for every application and
therefore will be an option in order to avoid the expense of unnecessary
encryption.

4.2.3  Performance Requirements

Performance is why the group communication system is used in the first place.
Consequently the performance requirement is the most fundamental and needs the
least additional explanation. Chapter 2 has already covered the reasoning behind
this requirement. However for completeness:

P1.  Group communication must be sufficiently efficient for interactive
groupware.

4.3 Summary

This chapter has presented a practical model of trust for secure groupware
systems, together with communication, security and performance requirements.
The group communication system for groupware must be implemented in the
groupware model of trust. Hence all of the requirements must be met in a
potentially malicious environment and one in which no assumptions are made
about the behaviour of ordinary participants. The next chapter explains how the
requirements are realised in the implementation.
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Secure Group Communication for Groupware
- Implementation

The previous chapter introduced the practical model of trust for groupware. It was
a compromise of the ideal model because that was impossible to implement,
however it does allow for a fast implementation. Every group has a trusted '
member process. As long as this one member remains uncorrupted the
implementation described in this chapter will consistently present the group
abstraction to all of the correctly functioning (non-failed, non-corrupt) members.
This is despite the potential corruption and Byzantine behaviour of any proportion
of them. Because of the role of the trusted member process in distributing
multicasts, this member will be referred to in this description of implementation as
the Distributor.

In this implementation, every principal is initially authenticated to others using an
asymmetric key pair [RSA78]. It is assumed that there is some authority (or
authorities) that principals trust to create certificates for these keys. These
certificates could for example be X.509 certificates [ISO88] or of the Simple
Public Key Infrastructure (SPKI) of Lampson et al [LYRFET98].

The members of the group are processes. It was stated in the previous chapter as
part of the requirements that every member must know the identity of the other
members (requirement C1 from Section 4.2.1). This implies that members must be
uniquely identified. Other group communication systems use operating system
process identifiers coupled with the machine name to uniquely identify the
members. Whilst this is also the case in this system, recipients of group
communication need also to be able to identify the source of the multicast in terms
of the principal that sent it (requirement S2 from Section 4.2.2). It is not desirable
to exclude the possibility that a principal have two or more member processes in a
group, consequently a principal’s identity alone will not uniquely distinguish the
member, Hence the group members are processes that are identified by a process
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identifier, a machine identifier and the identity of the principal on whose behalf
the process is running.

In Section 5.1, secure multicasts are examined and individually-identifiable
multicasts (II-Mcasts) are introduced. These are used as the basis of group
communication and are in turn used to implement secure group membership.

Section 5.2 discusses some of the details of ensuring secure group membership,
particularly the authentication of the new member and the group it wishes to join.
The prospective member can easily be identified using conventional asymmetric
cryptographic authentication techniques. How to authenticate the group however
is less obvious, but can be achieved using group authentication certificates.
Additionally because of the secure nature of the applications that the system will
be used to implement, there has to be a way of restricting group members to those
who are entitled to work on the collaborative project. How decisions are made
regarding who to admit into the group is a topic discussed in Section 5.2.2.

Finally the last section shows how the system is divided into layers in order to
make the various semantics optional. This keeps the functionality of a group to the
minimum required by an application that it supports, thus making it as light-
weight and hence as fast as possible.

5.1 Secure Multicasts

The security requirement S2 (Section 4.2.2) states that a multicast must be
identifiable as coming from a particular named principal. This is in contrast to
most other group communication systems that merely identify the source as being
a group member in general. This requirement is in tune with the practical model of
trust for groupware.

This section will describe the implementation of Individually-Identifiable
Multicasts (II-Mcasts). Despite the potential corruption of the source of the
multicast and other group members (apart from the Distributor), the multicast will
come with guarantees of:

Authenticity: Its Stated Source will be proved using strong encryption (S2).

Reliability: All correctly functioning (i.e. non-corrupt, non-failed)
processes will eventually receive the multicast (C2).

Total Ordering: Multicasts will be delivered to the application in the same
order to all correctly functioning processes (C2).
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Optional Secrecy: The data contained within the multicast will be encrypted
(S6).

Obviously it is impossible to make any guarantee that a corrupt member will
deliver the multicast. This isn’t a matter of concern however, for as long as the
sub-group of correct members all observe the same multicasts in the same order
then they can all see their shared data progress through the same states.

The reliability guarantee means that this implementation will deal with
communication failures, i.e. dropped messages, but not process failures (most
notably the benign failure of the Distributor). Although as stated in the previous
chapter, the existence of other group communication systems such as ISIS prove
the ‘viability of recovering from a group member failure.

51.1 The Distributor

An II-Mcast consists of two messages. All multicasts are initially unicast to the
Distributor. The Distributor then IP Multicasts the information to the rest of the
group. This ensures that every group member receives the same message. This is
ensured because the Distributor is trusted by all the other group members to do its
job properly.

The Distributor also caches every multicast that it forwards. This means that it can
re-send the data to any member that did not receive it because of a communication

failure.

Every communication (both unicasts and multicasis) contains a sequence number
which serves three purposes:

1. Sequence numbers serve to order the messages. In this way the method of
ordering is similar to that used by Kaashoek for the Amoeba system [KT91].
Rampart [REI94c] and ISIS [BIR93] also use sequence numbers for totally
ordering messages, however this is achieved in slightly different ways.

2. Sequence numbers allow for the detection of dropped and repeated messages
due to network anomalies.

3. Sequence numbers allow for the detection of maliciously replayed messages.
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1. UDP Unicast from
the multicast source

o the Distributor.

\ 2. IP Multicast from
the Distributor to

the whole group.

Figure 5.1 An II-Mcast consists of two messages. It is initiated by the source
with a UDP Unicast to the Distributor (D). This is then forwarded in an IP
Multicast from the Distributor to the rest of the group {(and back to the
source).

The Distributor includes the identity of the original source of the II-Mcast in the
message (message 2 in Figure 5.1). The rest of the group will only accept and
deliver multicasts that come from the Distributor, i.e. only ones that form part of a
valid I{-Mcast. In order for the recipients to believe the original source and that
the II-Mcast really comes from the Distributor, both unicasts and multicasts are
authenticated. The mechanisms for authentication are discussed in the following
two sections.

5.1.2  Authenticating Unicasts

Unicasts are simply authenticated using a symmetric shared key that will be
referred to as an Individual Member Key. Every member establishes a different
Individual Member Key with the Distributor as part of the group join protocol
The protocol for this is described in detail in Section 5.2 Group communication
through IT-Mcasts are far more frequent than group membership changes. Hence
using symmetric key encryption for authentication of multicasts is far preferable
to slow asymmetric key encryption. The Individual Member Key is used to
digitally sign the multicast initiation message (message 1 in Figure 5.1).

Periodically it is wise to refresh the key in an attempt to reduce the possibility of a
successful cryptographic attack. A new key can be invented by a member and this
is piggybacked (but incorporated into the signed body) in a multicast initiation
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message to the Distributor. This suggestion for the new key is itself encrypted in
the Distributor’s public key for privacy.

5.1.3  Authenticating Multicasts

Individual Member Keys are established between the Distributor and every other
process in the group. This effectively establishes n - 1 secure channels where n is
the number of processes in the group. These channels are also used by the
Distributor to forward the multicast the group.

Perhaps it would be more obvious to authenticate the multicast (message 2 in
Figure 5.1) using a signature signed by the Distributor’s private key. This however
would slow the II-Mcast down unnecessarily. Faster symmetric key encryption
can be employed if the Individual Member Key is used for authentication. This
doesn’t necessarily mean that multiple messages must be sent out to the group
members. Instead of attaching signatures to individual messages signed with the
Individual Member Keys, all of the signatures can be attached to one multicast
message. This will be referred to as a Vector Signature.

l Message Data | @E;S

Vector Signature

Figure 5.2 A Vector Signature consists of n - 1 components. Each component is
a conventional message digest encrypted with one of the Individual Member
Keys.

The Vector Signature (see Figure 5.2) has n -1 components (where n is the
number of members in the group), each of which is a standard encrypted message
digest of the message data. Each component is encrypted by the Distributor using
one of the Individual Member Keys and attached in turn to the message. The
whole message is then sent in one IP multicast to the group. Each recipient then
extracts the component signature that was signed using the key that it shares with
the Distributor. It verifies this signature using the key and ignores the other
components of the Vector Signature.

Timed tests were conducted on this scheme to prove how much faster than
conventional asymmetric key authentication the Vector Signature scheme really
is. These tests established that the expense of asymmetric key encryption was out-
weighed by the smaller expense of multiple symmetric key encryptions and longer
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messages in the Vector Time Stamp scheme for group sizes of up to
approximately 1800 members. Group sizes of this magnitude are unlikely for
groupware applications that use one group for every shared object. Chapter 6 has
full details of this and other timed tests conducted on the system.

5.1.4  Encrypting Muiticasts

Requirement S6 (from Section 4.1.2) stated that multicasts must be encrypted if
required by the application. The Individual Member Keys cannot be used for this
purpose since they are not known by all of the members and neither should they
be as this would defeat their purpose. Hence a different key is used for
encryption. This will be referred to as the Group Encryption Key.

The key encrypts the whole message except for the Vector Signature. The Group
Encryption Key is also established as part of the group join protocol which is
described in Section 5.2.

5.1.5 Multicast Protocol

This section describes the exact content of the two messages comprising an II-
Mocast (depicted in Figure 5.3). Each process in a group is assumed to run on
behalf of one named principal and so the members are referred to in the
descriptions by that principal. The descriptions use the following notation:

Members

M1, M2, M3, etc.  Ordinary Group Members,

D The Distributor,
Keys
PuMI, PrMl The Public and Private Key Pair of M1.
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Ml <D The Individual Member Key Shared Between M1 and D.
GEK The Group Encryption Key.
Messages
Ml —-D:M M1 sends Message M to D,
D—-GM D sends Message M to the Group.
{MIK Message M is Encrypted with Key K.
[IMIK Message M is Digitally Signed with Key K.
IMID& G Message M is Vector Signed with all the Individual Member Keys that D
shares with the members of Group G.
SN A Sequence Number.
1 2
Initiator (M1)
\ Distributor
Crdinary Member
& Ordinary Member

Figure 5.3 Two messages comprise the group II-Mcast. One from the initiator
of the group communication (M1) to the Distributor and one a multicast from
the Distributor to the group.

II-Mcast 1: M1 — D: [ { IIMCAST1, M1, data, SN } GEK ]MI «> D

Some group member (in this case M1) initiates the II-Mcast with a message sent
to the Distributor (D). This message contains a sequence number in order that
replays can be detected. Replays from a previous period of M1’s membership are
not possible because a new key M1 > D is established at every join.
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I-Mcast 2:D — G: [ { IMCAST2, M1, data, SNI1GEK |1 D & G

The data is then relayed to the group (G) by the Distributor (D). It is authenticated
using the attached Vector Signature.

The sequence numbers in [I-Mcast 1 and TI-Mcast 2 are different since every
source maintains individual counters for communication to a particular
destination. In addition the Distributor maintains a separate counter for multicast
messages to the group. A new member obtains the current value of the multicast
sequence number from the Distributor as part of the group join process. This is
explained in the next section.

5.2 Secure Group Membership

Individually Identifiable multicasts only account for some of the communication
and security requirements from Section 4.2. Additionally there must be a method
for securely joining a group, receiving state and informing the existing members
of the new addition. This is all achieved with the secure group membership
protocol that is described in this section.

5.2.1  Group and Prospective Member Authentication

When a process joins a group it is important for that process to be able to
authenticate the group in order that some malicious party could not dupe the
process into joining some spoof group. In the practical model of trust for
groupware the Distributor is always trusted. Hence authenticating the group
amounts to no more than identifying the Distributor. In the first message of the
group join protocol, the new member effectively challenges the Distributor to
authenticate itself by signing the return message with its private key.

This just leaves the problem of tying the Distributor’s public key with a group
identity. This is achieved by the certificate depicted in Figure 5.4. This is very
similar to a public key certificate, the main difference being that the group
certificate contains additional details about the group as well as the public key of
the Distributor and the group name. The group details allow the new member to

be sure of the correct configuration and semantics of the group that it is joining.
This is discussed further in Section 5.3 as it relates to the layered structure of the

62




Secure Group Communication - Implementation

group system. The name of the group can be any string that uniquely identifies the
group to the members.

| Group Name ' 1P Multicast Address i Group Details | Public Key ! Sigitature |

Figure 5.4 A Group Certificate contains the group’s identity, its associated IP
multicast address, details of the group’s structure, the public key of the
Distributor all signed with an authority’s private key.

When a group is first created the authority that initiated it designates a Distributor
and produces the certificate (note that a single process can act as a Distributor for
many groups). It signs the certificate with the authority’s private key and
distributes the certificate or makes it available in some way to all who might need
it. It could for example be placed in a certification service.

Authentication of the new member is achieved by the Distributor checking that the
prospective member has possession of the private key of the principal that it
claims to be. The second message that the new member sends in the group join
protocol contains a signature.

Every group must have its own IP multicast address so that group communication
can be confined only to interested parties. The group’s IP multicast address is
included in the group certificate to enable a new member to locate the group.
Before the prospective member has any initial contact with the group it cannot
possibly know the location of any of the current members. Hence the IP address
extracted from the certificate enables the first contact to be made.

5.2.2  Joining and Leaving the Group

A new member that is permitted to join the group becomes party to information
that is only available to group members such as the Group Encryption Key and
any state that is transferred. There must therefore be a mechanism in place for
restricting membership of the group. These decisions are based upon any security
policy that is in force and hence cannot be made by the group communication
system because access control does not belong at this level. The decision is
deferred up to the software layer above that is closer to the application and hence
closer to the level at which security policy is specified. Additionally security -
policy might change. This means that the instruction to evict a member must also
be passed down from the layer above.
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However the question remains of which group member should make these
decisions. Secure Replicated Services [RBG92] for example allows any existing
member to admit another, whilst Rampart ensures that over two-thirds of existing
members all agree before the new member is admitted. These requirements are
different because of the different models of trust that each system is built to exist
in. The obvious correct answer for the practical groupware model of trust is that
the Distributor should make the decision to admit the member. However this
decision does deserve some further explanation.

Every member already in the group has a version of the group state. They could
potentially give it away to anyone at any point. Given that becoming a member of
a group only gives the new member state and not necessarily any ability to update
it, then why shouldn’t any member be able to admit another? Part of the task of
admitting the new member is informing the rest of the group of the new member’s
arrival (requirement C3) and this is a crucial part of maintaining the abstraction
and therefore should not be under the control of ordinary members. The whole
group join protocol is described in the following section.

5.2.3  Group Join Protocol

The join protocol consists of four messages. Upon completion the new member
has received the current membership of the group, any replicated state, has
authenticated the group and is ready to start receiving multicasts. The group in
turn is aware of the new member and has authenticated it. Figure 5.5 captures the
four messages that comprise a group join.

New Member
\_f \ Distributor
h Ordinary Member

& Ordinary Member

Figure 5.5 Four messages comprise the group join protocol. Three messages
are exchanged between the new member and the Distributor resulting in
message 4 which is a multicast to the group informing the other members of
the new member’s arrival.
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JOIN1: A -—D: JOINI, A, Nonce

The first message of the join protocol of course comes from the prospective
member and is directed to the Distributor. The nonce is a randomly generated
number that will prevent some malicious party from replaying the join messages
from the Distributor and hence duping the prospective member into thinking it has
joined the group when in reality it hasn’t even communicated successfully with it.

JOIN 2a: D—>A: [{JOIN2a, Nonce, SN, M’ship, State, A & D, GEK } PuA ] PrD

The second message is the Distributor’s response to the join request. It contains all
the information that the new member needs in order to start receiving multicasts.
This:includes the sequence number of the next multicast, the current membership
list, the Group Member Key (A «> D) that is invented by the Distributor and
known only by the two parties. All this is encrypted in the new member’s public
key so that it can only be usefully interpreted by the intended recipient A. The
message is authenticated by the inclusion of a signature signed with the
Distributor’s private key. The group membership key is changed after any
member leaves the group. In fact it must also be changed as a new member joins
(see NEWKEY message below), in order to stop that member from decrypting
previous group communication exchanged before it became a member. That
member’s rights could have been different then and information could have been
exchanged that was never intended to be seen by the member.

JOIN2b: D— A: [JOIN2b, Nonce ] PrD

If the Distributor has to reject the request to join, then the authenticated rejection
above is sent as an alternative to 2a.

JOIN3: A-»D: [{JOIN3, A, A« D}PuD]PrA

The third message is an acknowledgement of the shared key proposed in the
previous message. This message is necessary in order for the Distributor to
believe that the prospective member has received the key. It is also the message
that authenticates the new member to the Distributor since JOIN 1 is not actually
signed at all.
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JOIN4: D-—G: [{JOIN4,A,SN}GEK D& G

Finally the Distributor informs the group of the new member and includes the new
member’s identity in the message. The message must be totally ordered with
respect to multicasts and so has the same format as the II-MCAST 2 message, i.e.
vector signed with a sequence number. The existing members include the new
member in their views of the group from this point onwards and the new member
will receive all future multicasts.

NEWEKEY:D — G: [ NEWKEY, { newGEK } A & D, { newGEK } B D, ete,, SNI D& G

As part of integrating the new member the Distributor must inform the group of
the new Group Encryption Key. The format of the New Key message is shown
above although when the key is being installed as part of the group join procedure
this message can be piggy-backed onto JOIN 4. The key is included in the
message several times, once for each member, each encrypted with the
appropriate Individual Member Key. Upon receiving this message, members will
discard the old key and start decrypting future multicasts with the new key.

LEAVE1l: A—D: [LEAVELA,SN]JA&D

When a member decides to leave the group, it informs the Distributor with a leave
message. This has the same basic form as the II-MCAST 1 message.

LEAVE2: D-»G [LEAVE2,A,SN]A &G

The Distributor informs the group with a vector signed multicast. LEAVE 2 also
has a NEWKEY message piggy-backed onto it. As in JOIN 4 and NEWKEY, this
message has the same format as the II-MCAST 2 and hence the sequence number
in the LEAVE 2 message comes from the same counter as the Distributor’s
multicast sequence number (as does the sequence number in EVICT below).
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EVICT: D—G [EVICT,A,SN]JAG

An eviction message is identical to the LEAVE 2 message, where in the case
shown, A is the member being evicted. This is also how the evicted mermber
learns of its fate. Of course EVICT has a NEWKEY message piggy-backed onto it
which does not contain an element for A.

An analysis of this protocol using the logic of authentication devised by Burrows,
Abadi and Needham [BAN90] is included in Appendix A. This proves that the
group join protocol meets the authentication goals that were set out in Section
4.2.2 on system Security Requirements.

53 A Flexible Group Communication System

All of the member processes run the same code, the only difference with the
Distributor member is that the code runs on a more trusted machine in a more
trusted environment. The code has been implemented in layers, with each layer
adding part of the total semantics of the group. This follows the approach of the
Horus group communication system [RHB94] and is used in order to make the
system more lightweight. The intention is that only the communication semantics
that are needed by the application are included. This is extended in the secure
group communication system for groupware by allowing the application layer to
choose only the security layers that are required by the application. This is
achieved by removing or adding different layers, which allows the practical model
of trust to be changed from the groupware model to a cheaper alternative (such as
a ‘trusted island’ model) if this is appropriate for the setting in which an
application is being run.

The system when configured to run for the practical model of trust for groupware,
with all the security and communication semantics described in Section 4.2,
consists of seven layers. Figure 5.6 shows all the layers and can be considered an
expansion of Figure 3.3.
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Application
Secure Shared Obiects

! Network (IP Multicast / UDP) |

Figure 5.6 The Group Communication System for Groupware is layered (layers
shown shaded). Each layer adds something to either the communication or
security semantics of the whole.

The layers can potentially fit together in any order because all share a common
interface of down-call methods (which move down from the application end of the -
stack) and up-calls (which move up from the network end). However not all
configurations make sense. The layers form a partial order because the semantics
of some of the layers rely upon guarantees of layers below. For example the
Membership layer that delivers the membership changes to the group members
relies upon a totally ordered reliable multicast which are the guarantees of the
Total Ordering layer. Every layer relies upon the Communication layer at the
bottom that handles the group multicast address and translates the incoming
communication into up-calls and the down-calls into outgoing messages.

Each down-call has the message (as it exists at that stage) passed down to it from
the layer above. Each layer has the opportunity to add to the message. The
message constructed by the Join 2a down-call for example would have the
membership list placed in it by the Membership layer and the Group Encryption
key would be inserted by the Encryption layer. When the message reaches the
bottom of the stack the Network sends it out as either a UDP or IP Multicast
message. In a complementary fashion, after the message is received at its
destination and converted by the Communication layer into an up-call, each layer
is responsible for removing (and interpreting) from the message the elements that
were inserted by that layer at the message’s source.

Security is represented in three layers: Groupware Model of Trust, Authentication
and Encryption. The model of trust layer is responsible for diverting the multicasts
to the Distributor and hence ensuring that the same multicast is delivered to all
incorrupt members despite the potential corruption of some of the group.

68




Secure Group Communication - Implementation

Unsurprisingly the correct functioning of this layer relies upon the Authentication
layer .

The Authentication layer is responsible for maintaining the members’ public keys
and calculating and verifying message signatures. In the Distributor the
Authentication layer calculates Vector Signatures. During a group join phase, this
layer invents the Individual Member Key. In the Distributor this layer would store
all the keys that are shared with the ordinary members. In the processes of those
ordinary members there is only the one key to keep track of.

The Encryption layer is chosen if an application is dealing with sensitive
information that must be kept secret whilst being communicated. This layer in the
Distributor creates the NEWKEY message and in all members this layer responds
to this message when it is received. This layer invents the Group Encryption Key
and inserts it into the Join 2a message during a group join.

Obviously all members of the group must have the same stack of layers as every
other member of that group. For this reason the group certificate that was
introduced in Section 5.2.1 contains the sequence of layers that the group is using.
This is contained within the “Group Details” section of the certificate in Figure
54.

Further details of an implementation of this system written in Objective C over the
NeXTSTEP operating system are contained within a technical report [RD97a}.
Additionally there is a paper that was presented to the Second European Research -
Seminar on Advances in Distributed Systems [RD97b]. This whole system has
also been implemented in Java and it is this version that was used to obtain the
timing figures that are presented in the following chapter.
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Evaluation of Secure Group Communication

The security and communication requirements of the secure group communication
system for groupware have already been demonstrated in Chapters 4 and 5. Hence
the main task in evaluating the effectiveness of the system for implementing
interactive groupware applications is assessing the remaining requirement. That is
the performance of the system.

This chapter is divided into two sections. Section 6.1 will present the timing
figures for the system, measured for a range of group sizes. It will be shown that
the multicast latency is indeed of the right order for groupware. Section 6.2 will
examine more detailed timing figures that allow an evaluation into the |
effectiveness of Vector Signatures to be performed. The original set of timing
figures are compared against figures obtained from a version of the system that
was modified to use more conventional asymmetric key authentication. It is
shown that for all reasonable group sizes the Vector Signature scheme out
performs conventional public key authentication.

Finally Section 6.3 discuses two other important issues that might need to be
addressed before the system could be used in a fully practical setting, namely:
fault-tolerance and scalability.

6.1 The Speed of Multicasts

When measuring the performance of the group communication system, it is the
times for multicast latency that matter. Participants in a group task will tolerate a
small delay when joining a group. However multicasts containing updates to
replicated state are far more common and as has been shown already in the
examples discussed in Chapter 4, delays in receiving updates will damage the
productivity of collaboration.
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In this section multicast latency is measured and assessed. This is the time that
elapses between the initiation of an Individually-Identifiable Multicast (II-Mcast)
and its delivery to an application. Every II-Mcast that is generated must pass
through the Distributor, hence the multicast can be timed entirely at one machine
even though it is being delivered to as many machines as there are group
members. The clock is started when the message is handed to the group
communication system and stopped when the system delivers it back. In this time
the system will have generated and sent two network messages (I1I-Mcast 1 and 1I-
Mecast 2), one from the source to the Distributor and one IP multicast that travels
back to the original source and to the group as a whole.

Figure 6.1 presents multicast latency for a range of group sizes. Two graphs are
shown: one for a zero data size and one for 1000 byte data sizes. The data size
represents the amount of data given to the system by the layer above. The actual
message size will be longer due to the additional information that the group
communication system appends to messages (such as sequence numbers and
signatures for example). A group size of two is the lowest sensible size from
which measurements can be taken, as a singleton group will not result in any
network communication.
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Figure 6.1 Muilticast latency timing figures for zero and 1000 byte data sizes.
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The latency of multicasts does not increase dramatically over the range of group
sizes depicted, with all measurements being in the order of one tenth of a second.
This is sufficiently low for interacting group participants not to experience
noticeable delays. The maximum measurement, taken with a group size of 20 for a
1 Kbyte data size is only 150 milliseconds.

The increasing times as the group size increases are due mainly to the production
of the Vector Signature, although the increased communication time of the
message due to the longer signature does have a small effect.

The figures were obtained using 120 MHz Pentium PCs running the Windows NT
operating system and communicating over a 100 Mbit/s Ethemnet network. The
whole system is implemented in Java and for encryption the system uses the
Cryptix Java cryptographic package implementation of the IDEA symmetric key
algorithm that has a 16 byte key length. The system was run using the SUN JDK
v1.1.4 ‘just-in-time’ Java virtual machine.

The system timed was a modified version of the actual system, adapted for timing
purposes. For accuracy and reduction of fluctuations in operating system and
network performance, the figures shown are an average value of 500 I-Mcasts.
Each subsequent multicast was sent only after the previous one had been
completely delivered.

The following section contains a more thorough examination of the Vector
Signature’s contribution to the timing figures.

6.2 The Performance of Vector Signatures

The time taken from a multicast being initiated to it being delivered at another
group member process can be divided into two portions: the time taken to
construct the Vector Signature and the time taken to construct and send the
message. If the data size is constant then the proportion of the time devoted to
constructing and sending the message remains constant also.

The construction of the signature is a significant proportion because it involves
expensive encryption and decryption. In fact, in the case of Vector Signatures this
involves many such encryptions: one for each of the other group members. Hence
as the group size increases, so too does the proportion of the time spent
constructing the Vector Signature.
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This is depicted in Figure 6.2, where the increasing proportion of the time spent
on constructing and verifying vector timestamps can be clearly seen. The
proportion rises from 25 per cent of the total latency for a group size of two, to 37
per cent for a group size of 20. Obviously this proportion continues to rise as the
group size increases beyond 20. These figures were obtained with a zero data size.

The alternative to using Vector Signatures is a conventional asymmetric key
authentication mechanism. Under such a scheme latency does not increase
substantially as the group grows becuase the work involved in the production of
the signature remains constant at one asymmetric encryption of the message

digest.
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Figure 6.2 This chart shows the increasing proportion of the time that is spent
constructing the Vector Signature as the group size increases. The figures
presented were recorded with a zero byte data size.

These observations mean that inevitably there will be a point at which the Vector
Signature scheme becomes inferior to the asymmetric alternative. This point can
be approximately estimated by extrapolating the graph of timing measurements to
very large group sizes. The time to produce a vector signature is assumed to be
linear as the group size increaces. This is appropriate because the additional work
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as each new member joins is the same for each member. It consits of one extra
signature calculation (one encryption) and a fixed addition to the message length.
The resulting graph is depicted in Figure 6.3.

The crossover comes at approximately 1800 members: a figure that is far larger
than can be productive for any group.
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Figure 6.3 An extrapolation of timing figures comparing authentication using
vector timestamps and a conventional asymmetric key scheme. Both figures
were obtained using the Cryptix cryptographic package for Java. Symmetric
key encryption used the IDEA algorithm and asymmetric encryption used RSA
with a 512 bit modulus.

6.3 Other Evaluation Issues

The system was implemented in order that the speed of multicasts could be
assessed and consequently fault-tolerance was not addressed. If the system were to
be used in a practical setting then a scheme for recovering from a member failure
and in particular a Distributor failure would need to be implemented. However the
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existence of fault-tolerant group communication systems such as ISIS show that
this can be a reality.

It is important for the value of this work however to be able to dismiss the
potential types of failure as security threats. It is clear that the failure of a normal
member cannot disrupt the group in any way since these members do not have any
direct contact with the other members. The failure of the distributor of course will
inevitably mean the dermise of the group, however since group communication is
driven from the distributor, updates will merely cease to be distributed and the
group will remain secure. The members will just behave as if there are no new
updates. Updates initiated by themselves will of course be lost, but this is not a
problem from a security point of view,

Denial of service attacks against the group cannot cause a security breach either.
An attacker with malicious intentions could for example repeatedly attempt to join
a group for which it has no rights. This would result in the distributor returning the
encrypted state of the group (Join 2A) if the joiner falsely claimed that it was a
principal legitimately entitled to join. The state would be returned to the malicious
party, however it is of course encrypted in the legitimate principal’s public key
and can therefore only be decrypted by them. Any other messages either replayed
or formulated by the malicious party will be ignored because of the authentication
and anti-replay features of the protocol. The most serious result of such actions
can only be the hanging or crashing of the distributor (discounted as a threat in the
previous paragraph).

Scalability is another important issue. The centralised role of the Distributor in
maintaining the group abstraction means that the system as it stands would not
scale well as the group size increases. Again however this is an issue that can be
addressed. As the group size increases then so too does the workload of the
Distributor. Therefore if there was a mechanism for introducing replicated
Distributors then the work could be shared. This would also provide a big step
towards making the system fault-tolerant as the currently fatal failure of the
Distributor could be managed if there are others to take over the task.

However introducing multiple Distributors would mean that not all multicasts to a
group would pass through the same point and this in turn would mean that the
current implementation of a total ordering would no longer work. However this
problem is not necessarily insurmountable. It would just mean that the
Distributors would have to communicate when assigning sequence numbers for
the purposes of ordering and reliability.

The Distributors would form a group in themselves that collectively maintain
replicated data, i.e. the sequence number. However this group is different from the
whole group because the Distributors are all totally trusted and thus would be
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trusted by each other and so could communicate under the cheaper ‘trusted island’
model of trust employed by other group communication systems.

'The major lesson to be learnt from the group communication work presented here
1s that the factors that are all important for secure distributed groupware are in
contention. This system has shown that fast secure group communication is
possible, but at the expense of scalability. Catering for scalability, whilst possible,
would decrease performance. Scalability and performance can be realised
together, as several of the examples in Chapter 3 showed, but at the inevitable
expense of security, in the shape of an inappropriate trust model.

Therefore any of the apparent possible solutions is to some extent a compromise.
The best system is perhaps the most flexible that allows the balance to be tipped
towards whatever application and trust environment exists. This adds weight to
the layered implementation of the system described here and elsewhere (notably
Horus [RHB94] [RBFHK95]).
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The background chapter made it clear that replicating data close to where it is
used is the key to good interactive performance for groupware. This is widely
accepted and has been demonstrated in many systems and applications: PerDiS
[CDKR97], Caelum [ACDK97] and Javanaise [HL97] were studied in Chapter 3.
However, replicating data is complex. Fortunately group communication systems
can relieve a programmer of many of the problems associated with maintaining
replicas. Often though communicating through sending messages is not the ideal
abstraction.

An abstraction more suited to the programmer’s view is the Shared Object. The
programmer can be presented with a view of the distributed system that consists
merely of conceptually shared programming level objects. These objects can be
mapped into the address spaces of any applications that currently have users
participating in a group activity. Communication between the participants happens
transparently as Shared Objects’ methods are invoked. Some of the examples
studied in Chapter 3 offered such an abstraction, for example Javanaise {HL97].

If an application has some security requirements then the same layers of
abstraction of course remain useful, however security guarantees must be built
into each of them. Figure 7.1 below is an adaptation of Figure 3.3:
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Secure Stack

Figure 7.1 Layers of secure groupware. Access control fits in at the level of
Secure Shared Objects. Replication is dealt with at the Secure Group
Communication layer.

The security guarantees introduced at each level will only make sense to the
programmer if they are made at an appropriate level of abstraction. Hence it will
not make sense to offer guarantees of message authenticity at the level of shared
objects.

Security at the shared object level is best stated in terms of objects and the ability
to invoke their methods. Chapter 3 also gave some examples of secure shared
object abstractions: such as Secure Network Objects for example [DABW95].
However these did not make use of replication as they were server-based. Take a
group editor as an example application: if every time the user scrolled to a new
paragraph, the application had to invoke a method of the object in the remote
server, then editing would be slow and consequently less productive. Replicating
the document’s state at every application instance solves the problem.

This chapter introduces a Secure Shared Object abstraction that uses replication to
provide the necessary performance for interactive groupware, The system builds
its abstraction upon the Secure Group Communication System described in
Chapters 4 through to 6. Security guarantees are given in terms of many
principals’ abilities to invoke methods upon the Shared Objects. In other words
access control is applied at object method level.

Every Secure Shared Object can have an access control list for its methods. This is
merely a list of principals that are entitled to invoke each method. The access
control model] is entirely compatible with Lampson’s access control model
[LABW92] and so does not exclude the possibility of delegation and role
membership outlined in Chapter 3.

This chapter is intended to join the two main bodies of work of this thesis. The
essential features of the Secure Shared Object system are described. For a more
intricate description of an Objective C implementation of the system the reader is
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referred to the technical report describing the system [RD95]. The system
described is in fact a secure extension of a non-secure Shared Object system
developed by Achmatowicz [AK94].

7.1 The Programmer’s View of Shared Objects

The Shared Object system gives the programmer the illusion that there is only one
version of each Shared Object and that this single object can be mapped into the
address space of all participants. When one participant does something that causes
a method of a Shared Object to be invoked then any changes to the object state
that result are accessible to all of the participants, in that the new state is reflected
in the results of any invocations that they make.

In reality each Shared Object exists at every machine that needs to access it, i.e.
every participant has a replica. Updates to the object state that occur as a result of
a method invocation are communicated to the group. The updates are distributed
using the group communication system that ensures that they are applied in the
same order to every replica. Hence every participant’s view of the Shared Object
actually passes through the same sequence of states. Each replica is in effect a
state-machine as described by Schneider [SCH90] and used in that case to provide
fauk-tolerance.

The programmer can treat the Shared Objéct as if only one copy of it exists.
However because of the delays in network communication, the reality is that
replicas may not actually even exist in the same state at exactly the same instant in
time. However this does not affect the programmer’s view and does not have any
bearing upon the way he writes an application.

7.2 Using Proxies to Implement Shared Objects

Local replication of data and hence group communication is the key to adequate
performance for groupware. However communication abstractions are not the
ideal interface for the programmer. As stated above, the programmet’s job can be
made easier if communication is made transparent.

The Shared Object layer presented here builds upon the secure group
communication layer described in earlier chapters. Every Shared Object in effect
has its own underlying process group. The group certificates (Section 5.2.1) are
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used to name and locate objects, state transfer is used by a new member to obtain
the state of a Shared Object and group multicasts (II-Mcast: Section 5.1.5) are
used to keep members informed with updates to the state. All this communication
however is hidden from the application programmer behind the illusion of a single
Shared Object.

Proxies are the key to hiding the communication in the Shared Object abstraction.
In the programmer’s view, the proxy is the Shared Object. The programmer treats
the proxy as if it is the Shared Object. He writes code to invoke its methods, and
transparently the other participants observe any changes that the invocations cause
when they invoke methods upon their proxies.

In fact each proxy maintains a replica of the Shared Object. Upon receiving an
attempt to invoke a method from the local application, the proxy does one of two
things depending on whether the method invoked alters the state of the Shared
Object or not:

1. A Method call that does not alter the Shared Object’s state (read method) can
be handled entirely locally by invoking the method upon the replica. The
results of the call upon the replica are returned as the results of the call upon
the proxy. The caller does not need to be aware that the object that actually
services the call is not actually the Shared Object.

2. A Method call that does change state is converted into a message together with
any argument values and distributed in a multicast message to all the processes
that are maintaining a replica of this object, including itself of course. The
proxy object in that process receives this message. Upon receiving such a
message each proxy unwraps it and reconstructs the original method call
complete with arguments and applies it to its replica. In this way all of the
replicas can be made to pass through the same sequence of states.

This implementation of course relies upon the communication guarantees of the
group communication system that it is built upon. The update messages need to be
reliable and ordered for the replicas to maintain some useful consistency. For the
replicas to pass through exactly the same sequence of states, a total ordering of
update messages is needed. These requirements are of course met by the secure
group communication system described in Chapters 4 through to 6.
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Figure 7.2 The group of processes shown on the right each contain application
objects. Each application process maintains a reference to a proxy object for
each Shared Object that it needs to access. The proxy in turn maintains a

' replica.

The internal structure of the proxy is represented by Figure 7.2 and this is how it
is implemented by Achmatowicz [AK94]. The application creates the proxy when
it wishes to access the Shared Object state.

The programmer of a class that he wishes to be shared must implement certain
methods in that class. These methods enable instances of the object to be
marshaled and unmarshaled. Additionally the programmer must supply a method
that when called, distinguishes between the methods of that class that can
potentially update state and those that only read state. This method is called by the
proxy when making the decision about whether to distribute the method
invocation or not.

7.3 Naming and Locating Shared Objects

Every different Shared Object in a system has a different underlying process
group. Any application that needs to access the methods of an object must first
instantiate a proxy. This proxy then joins the appropriate group. In this way
updates to state are confined to just the set of applications that are actually using
the object.

Since every object has a unique group, then naming the object is the same as
naming the group and hence is achieved with the group certificate that was
introduced in the Chapter 5 (Section 5.2.1). Recall that the certificate also contains
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the IP multicast address of a group and hence serves as the means of locating a
group and consequently locating a Shared Object.

Once the appropriate group certificate is obtained then the group can be joined
and hence the state associated with the group obtained. This state obviously forms
the replica maintained by the proxy. Subsequently any updates caused by other
group members invoking methods that change state are multicast and applied to
replicas by the group members.

7.4 Protecting Objects with Guards

Merely building the Secure Shared Object system over the Secure Group
Communication system ensures that communication across the network is safe
from the usual threats (eavesdropping, replaying etc). This section explains how
the objects are further protected by extending the Shared Object system to include
protection of methods. This too is straightforward: simply a Guard (that is added
to the proxy) intercepts all attempts to invoke the Shared Object’s methods. The
Guard has a reference to an access control list that contains principals’ rights. The
Guard can consult the ACL and either allow or disallow the invocation to proceed.
Figure 7.3 depicts the internal structure of the proxy for Secure Shared Objects.

Proxy

Apgg;::gon Guard Replica

ACL

Figure 7.3 The Guard intercepts attempts to invoke the methods of the Shared
Object. 1t consults an ACL before allowing the invocation to succeed or not.
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7.4.1 Access Control Lists

The access control list (ACL) associated with the methods of a Secure Shared
Object is conceptually a list of principals that are entitled to invoke each method.
Each entry in the list can be a simple named principal (as defined by Lampson
[LABW92]). Chapters 8 and 9 will expand on this however and show how far
more elaborate security policies can be expressed and hence enforced.

In the implementation, the ACL is in fact an object with its own methods. Most
obviously there is a method for checking whether a principal appears on the list
for a method. Also there are methods for updating the list. Since the ACL is itself
replicated inside every proxy, then any updates that occur to it during the life of a
shared object must also be communicated to the group. These are included in
multicasts that are totally ordered with updates to the shared object.

An ACL object is not a shared object in its own right however because if it were it
would have its own ACL and an infinite recursion problem would result. Issuing
an update to an ACL must of course be controlled though. Only trusted authorities
should be able to change rights. Hence in effect the ACL has itself got a Guard
protecting it. The recursion can be resolved by having an immutable ACL
protecting the shared object ACL that allows updates to come only from an
authoritative role. The role could be called ‘SecurityManager’ for example.
Membership to this role can then be altered accordingly without the need to
distribute any updates,

7.4.2  Getting First Access to a Secure Shared Object

Joining a group results in the new member becoming party to state associated with
the group, in this case the state of the Shared Object. Hence access to the group
should be restricted. Recall from Chapter 5 (Section 5.2.2) that decisions
regarding admitting new members to the group are deferred by the group
communication layer to the layer above, which in this case is the Secure Shared
Objects layer (this only happens in the process that is acting as the Distributor). So
how is this decision made?

In this system, every group member has a complete copy of the state comprising
the Shared Object in the form of the replica maintained by the proxy, i.e. every
user has a copy of the state in the address space of a process belonging to them. It
is not therefore feasible to expect that the user cannot get access to this state.
Another way of looking at this is that every member of the group effectively has
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the right to invoke all of the methods that merely make inquiries of the object’s
state.

For this reason it makes no sense to allow a prospective member to join and gain
access to the Secured Shared Object if the principal does not have the right to
invoke all of the object’s read methods. Hence this is the criterion used (by the
process acting as the Distributor) to reach the decision allowing membership. This
seems to be quite an extreme decision, but is an inevitable consequence of the
chosen model of trust and the performance requirement (which resulted in the
decision to replicate data on the machines of participants).

Resorting to a more relaxed model (where we trust members not to trawl their
address space for unauthorised data)} would remove the problem. Alternatively
selectively controlling access to read methods could be achieved by compromising
the performance of the system. Such principals could be given access to state
through a trusted custodian process that runs on a different machine. The
custodian would hold the entire state of the protected object and pass only the
results of the permitted read methods back to the invoker. The technical report.
[RD95] elaborates on this point.

7.4.3  Invoking a Method of a Secure Shared Object

Invoking a method of a Secure Shared Object results in the following five actions
by the proxy:

1. The proxy first performs a local check against the ACL to see whether the
principal does actually have the right to perform the operation. The
security of the Shared Object does not rely on this check being performed
correctly because the practical model of trust for groupware does not make
assumptions about the behaviour of individuals. The check merely allows
useful feedback to the user if something illegal is attempted and the action
can be halted at this stage without burdening other processes.

2. If the method invocation is legal, then any arguments provided with the
call are marshaled into a message together with a description of the method
signature. This is then multicast (II-Mcast) to the group and consequently
is received by all the other proxies maintaining replicas of this object.
Recall that the group communication system will ensure secure ordering,
authentication and encryption of the message (if required), all without
making any assumptions about the behaviour of the source.
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3. Once received by the proxies, the method call and its arguments is
reconstructed by each of them.

4. The proxies then perform their own access control check by consulting
their copy of the ACL. In this way everyone merely relies upon themselves
for the security of their own version of the Shared Object.

5. If a proxy deems that the invocation is legal then the method call is
invoked upon their version of the replica. In this way, every uncorrupted
proxy will see the Shared Object progress through the same series of
states.

7.5  Summary

The practical groupware model of trust derived for the Secure Group
Communication System for groupware is one in which no ordinary group
participants are trusted to do anything in maintaining the group abstraction. In
particular ordinary group members are not even trusted to run the same system as
correctly functioning members. In other words the group abstraction will remain
intact despite the corruption of some of its members.

This means that the only responsibility that a principal (and hence the code he
runs) has in maintaining the abstraction is to himself. Participants look after
themselves and do not rely on others, except of course the trusted Distributor.

This underlying model of trust is carried upwards into the Shared Object level.
Each participant runs proxy code that maintains his own version of the replica of
the Shared Object. As long as he runs the correct code and hence adheres to the
correct protocol then the version of the Shared Object that is maintained will be
consistent with the versions maintained by all the other correctly functioning
participants, i.e. they will pass through the same sequence of states.

The system as it stands can enforce only the simple security policies that
conventional static access control lists can describe. As Chapter 2 pointed out,
real-life policies tend to be more complex and dynamic, particularly those that
apply to interactive group activities. This thesis now goes on to examine this
shortcoming in greater detail and also to offer solutions. These new dynamic
access contro! ideas can be integrated with the Secure Shared Object system
described in this chapter.
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Access Control for Groupware - Design

Chapters 4 and 5 have discussed the design and implementation of a secure group
communication system designed specifically for the needs of groupware
applications. At the group level of abstraction, access is controlled to the group at
a coarse granularity. Principals are either permitted to join or they are not (this
being decided by the level above). The system allows group membership to be
controlled. However, any reasonably sophisticated security policy cannot be
expressed in these terms.

This chapter covers the subject of access control for groupware applications.
Access control does not conveniently fit in with communication abstractions.
Security policies are described in terms of real world objects such as medical
records and financial data and not often in terms of messages. Hence access
control is best built in at a higher layer. Chapter 7 showed how a shared object
layer is far more convenient for specifying access control since a well designed
object-oriented application will have models of real world objects as its highest
level programming objects. The methods of these objects represent real life
operations such as reading or writing to a medical record object.

Access control is not always associated with groupware, however in one sense
access control is only applicable to groupware. This is because access control is
only needed when the actions of multiple parties can affect each other. Multiple
parties affecting each other can be seen as a definition of groupware. This is
similar to the broad definition of groupware given by Ellis et al [EGR91] and
others [RB92b]. This notion is particularly obvious in role-based access control:
as Hilchenbach [HIL.97] points out, a role is after all essentially a group of
principals related by some rights that they share.

However conventional access control techniques only cater for a range of
groupware that is relatively unsynchronised, where participants’ concurrent
activities are shielded from each other. In these areas the access control model of
Lampson [LAM74] [LABW92] is often employed. This model was outlined in
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Chapter 3 and an implementation of the basic model (excluding delegation and
role taking) as it is used to protect shared objects was outlined in Chapter 7. The
model is built upon of a view of the system consisting of objects protected by
Guards. The Guards intercept attempts to invoke the methods of the protected
objects by principals. The Guards make the decision of whether to accept or reject
the attempts by consulting the access control list (ACL) for that method. The ACL
contains only the names of the principals that have the right to invoke the method.
The model also caters for compound principals which encompasses the concepts
of delegation of rights, conjunctions of principals and for granting rights to groups
of principals: principals who all shared a common organisational role.

Chapter 3 showed how static a conventional access control list is. Typically a
change to a principal’s rights would involve the intervention of some authority in
order to change the access control list. However, often rights are dynamic, even
when the security policy does not change. A driver’s right to pull away froma
road junction changes when the traffic lights change, but the policy remains the
same. It would be more convenient if changes to an access contro] list were
necessitated only when policy changes. In other words what is needed from the
access control system is for the expression and enforcement of security policies
and not merely rights, since policy is relatively static whereas rights are dynamic.

Other research has attempted to tackle this problem by observing that rights
change as some task changes. The Background chapter reviewed some examples.
Edwards [EDW96], Holbein [HT95], Hayton [HAY96] and Moifett [MS91] all
explored the possibility of having rights depend upon the state of objects in the
system. Section 8.2 in this chapter builds on this with the additional observations
that rights also depend upon other factors such as the exact nature of what is being
attempted and environmental factors such as the time of day.

The main emphasis of this chapter is on providing access control for more
synchronous and interactive groupware. Applications of this type offer
participants new ways of interacting and so not surprisingly there are new
requirements for controlling this interaction. Groupware can facilitate interaction
and negotiation between participants that often mimic real life interactions.
However very often in secure real life situations, access rights are one of the
topics that are being negotiated. Further, rights can be modified as a result of the
discussion and negotiation. Delegation is one example, however this chapter will
show that in groups this exchange of rights between participants without the
involvement of some authority can go further.

Section 8.3 introduces the concept of backing and explores its consequences. The
concept captures the situation where one or more participants back another
participant to do something. It is different from delegation because before the
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action of backing no one in the system necessarily had such a right. In effect the
right is distributed amongst the group of backers.

State-dependent access control and backing often go hand-in-hand and that is the
reason for them both being tackled together in this chapter. Often a security policy
makes a principal’s rights depend upon state in an attempt to very tightly control
the circumstances under which the protected action is successfully completed.
Such types of policy include ‘need-to-know” policies where an attempt is made to
define the exact situation under which a principal really needs to know (or do)
something. However tightly controlling access in this way can often be a bad thing
if there is no way around the controls. This is the case because the designers of
security policy cannot preempt every possible scenario. Hence policies often
provide for an alternative circumstance under which the principal can execute the
operation and this very often involves getting the backing of one or more other
individuals. This interrelation between state-dependent access control and backing
is also explored in Section 8.3.

In summary, the aim of this access control work is to allow access control lists to
contain descriptions of security policy and not just a list of rights. This means that
the policy descriptions which should be confined solely to the access control list
should allow for the dynamic nature of rights found in interactive groupware.

This chapter starts with a closer examination of rights within group tasks by
examining real security policies drawn from various literature sources.

8.1 Group Security Policies

This section introduces some examples of security policy that could be applied to
group activities. To the author’s knowledge, none of the actions described in the
policies have actually been accurately specified and enforced in a computer
system. This is largely because of the nature of security surrounding the data
under protection and the lack of existing mechanisms for enforcing the policies.
None of the policies listed below could be conveniently described in a
conventional access control list. Conventional access control lists can only express
policy in terms of objects, actions (requests to execute object methods) and
principals. However the policies described here depend upon a wider variety of
variables.

A conventional access control list cannot refer to the state of objects. Many
examples of policies that refer to state can be taken from the medical field. The
following policy taken from a list of dynamic security policies in Appendix B
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gives an example of an attempt to restrict the circumstances under which a
clinician can access personal medical data by restricting access to an eligible
group:

Pl. “Some extra restrictions may be needed in defining groups; for example,
the group might be any clinical staff on duty in the same ward as the
patient.”

This policy depends upon the state of a duty rota. P1 is a dynamic policy because
rights can change even though the policy stays the same. One possible way that
this policy could be expressed and enforced in an access control list would be to
add the name of the doctor to medical records of patients when a doctor changes
his duty. Alternatively there could be a unique role created and granted access to
every record of a ward and the clinician assigned to that role when they change
duty. Both these solutions are obviously impractical, particularly if the number of
factors that rights could depend on is large. This point is made by Hilchenbach
[HIL97] when considering how best to enforce a policy that gave probationary
bank tellers fewer rights than more experienced staff. Whether or not the teller
was on duty or not was just one of five factors that could effect rights and each of
these five variables had an average of five values. Consequently this lead to 5°
(3125) possible roles for bank tellers alone!

Some security policies are dependent upon more than just the state of objects.
They depend upon the state of the environment. Typically such policies refer to
the current date or time of day. P2 is taken from Anderson’s suggestions for
security of medical records [AND96]. The report contains nine principles that
were prepared on request for the British Medical Association. One of them
expresses rights in terms of the current date:

P2. “No-one shall have the ability to delete clinical information until the
appropriate time period has expired.”

Rights here depend upon the current date. Enforcement of this policy using a
conventional access control list would require a change to the list every time that
the critical time period expires for every record. This is clearly impossible to
achieve in any practical situation.

Some policies rely upon the exact nature of the operation being attempted rather
than the state of objects or the environment. Policy P3 is taken from the financial
field. Kusner and Anterpol’s lengthy explanations of banking procedures [KA81]
includes the following security policy:

P7. “Bank tellers should not be able to process transactions that involve
themselves.”
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This policy relies upon information that can only be gleaned from the parameters
of the attempted operation, in this case the identity of an account holder. A
medical example might state that clinicians could prescribe only certain quantities
of drugs.

Often security policies dictate that more than one person should be involved in an
activity. Groups are used to increase security by distributing trust. Such policies
are designed to reduce the possibility of corrupt activity by making it impossible
for one corrupt individual alone to do damage. A bank safe might have two keys
for example. Both key-holders must agree before the safe can be opened and as a
result the safe cannot be opened if just one of the key-holders had malicious
intentions. It would take the corruption and collusion of both to commit damage.

Policies of this type will be referred to here as ‘backing’ policies, because one
person is required to seek the backing of one or more individuals prior to an
attempt to do something. Financial applications provide many further examples of
these policies. Secﬁi*ity literature often refers to ‘segregation of duties’. Gray and
Manson [GM89] describe this technique in their descriptions of financial auditing.
The technique is applied to tasks and is concerned with ensuring that no one
person can complete the task without the involvement of at least one other
individual at some stage. Often work is checked by some authority and a hand
written signature is applied before the employee can continue. '

Kusner’s descriptions of banking procedures also contain examples of this kind of
policy. The following example requires that someone senior back a bank teller:

Pl4.  “Ateller must seek permission to adjust a special purpose bank account
for reconciling differences between the actual amount of money taken and
the recorded amount (should any discrepancy occur).”

Note that although simple delegation could well give the teller the necessary right
to adjust the account, it would be unwise to grant the right for any period of time.
In fact it is probably important that the teller only be able to adjust the account
once without seeking further backing,

Usually there will be more than one potential backer and these form a group. In all
the examples shown here the group is formed by all the principals entitled to take
on some organisational role. Managers for example, or Senior Clinicians. Often
the backing of more than one is required. Some policies don’t specify an exact
nurber of backers that a principal needs. Instead the required level is expressed in
terms of a proportion of a group of role members, for example the majority of the
board of directors.
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Draper [DRA96] discusses the treatment of mental health patients as being a
collaborative process. The backing of some proportion of a group is required to
support decisions. Decisions are taken collectively as a safeguard in cases where
the patient’s consent cannot be obtained. An example policy could be:

P9.  “A clinician must obtain the backing of a majority of a patient’s carers in
order to prescribe new treatment.”

In summary, security policies often refer to more than just a principal’s identity
and the action attempted. Rights can be:

1. = Dependent upon the state of objects in the system.
2. . Dependent upon environmental factors such as time.
3.  Dependent upon the parameters of the action being attempted.

Additionally, security policies can often require that a principal receive the
backing of another principal or principals. Backing can come from:

4. A specific number of individuals.
5. A proportion of a group.

This chapter continues by analysing the resulting issues that state-dependent
access control (Section 8.2) and backing (Section 8.3) raise.

8.2 State-Dependent Access Control

The previous section found that rights in a secure activity could be dependent
upon three types of state: the state of the task; the state of the environment
(usually time) and the state of any parameters of the action being attempted. The
following three sections explore the consequences and limitations of letting rights
depend upon these types of state.

8.2.1  Task State-Dependent Policies

The current state of a group task as represented inside the system is of course held
within the shared programming level objects that applications create. Hence some
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state-dependent policies must be enforced by allowing the access control system
to test the value of object state.

This is best and most obviously achieved by allowing object methods to be called
as part of a Guard’s decision process. An alternative would be to allow the Guard
access to the instance variables of objects. However this is not in-keeping with
object oriented notions of data abstraction.

In the access control model, security policy is stored in access control lists. As a
consequence it is here that object method calls must be specified. Chapter 9 will
tackle the implementation issues and the exact form that the extended access
control lists take. It will be shown that boolean expressions that include object
method calls can be evaluated as part of rights evaluation. However there are two
obvious limitations to this approach: what happens if the required state (object) is
not in the system and what if there aren’t suitable methods belonging to the
objects that are there? '

Policies that Rely upon State that does not Exist Inside the System

Policy could depend upon other state; state not held within a system, but
obviously such access could not be enforced, as the Guards cannot access
everything they need to make such a decision. In fact, very often in group
activities this is where a requirement to obtain backing is introduced. If it isn’t
possible to decide if the exact circumstances exist under which a principal can do
something, then the backing of others can be sought in order to verify that the
attempt is legitimate. The backer can then possibly check state that is external to
the system (paper records for example) as part of his decision processes. In other
words a solitary activity can be made a group activity for security reasons. The
interrelationship between backing and state-dependent access control is discussed
further in Section 8.3.

Policies that Rely upon State that is not Accessible Through Existing
Methods

If security policy refers to state that is not directly accessible through a protected
object’s existing methods, then adding new methods for access control purposes
would probably not be so inconvenjent. The main purpose of this work is to
enable access control lists to contain descriptions that are closer to security
policies and not merely a list of rights. This is in order to reduce the level of
interference necessary from authorities when rights change. Adding object
methods especially for the purpose of access control would very likely be a once-
only job that required no further intervention at the programming level. For
example, a method might be added to a medical record object that returned the
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value of a patient’s age, so that this could be used to enforce a security policy that
depended upon a patient’s age. If that policy changed so that a parent’s consent
was needed if the patient was under 16 rather than 18, this would not necessitate
any further changes to programming objects, just changes to the access control
list.

The Possibility of Covert Channels

Another possible worry about having rights depend upon object state surrounds
the possibility that covert channels may open up. This worry occurs because even
an unsuccessful attempt to invoke an operation might enable the principal to infer
something about the state of protected objects inside the system. Examining an
example policy can alleviate these worries to some extent.

Suppose that like policy P1, in order for a clinician to update a medical record, she
must be on duty in the ward that the patient is in. This policy is designed to protect
against a clinician’s malicious actions, for example making unnecessary
prescriptions. The clinician’s right depends upon the state of the duty rota. A
clinician could infer something about the state of the duty rota if she atiempted to
update a medical record even if she wasn’t on duty in the ward. However, the
clinician could only infer that she is not on duty. This is not a problem because all
‘clinicians have the right to look at the state of the duty rota anyway. In fact, even
before any computerisation of the medical record system was in place, it must
have been possible for clinicians to observe the state of the duty rota in order for
them to evaluate for themselves if they are allowed to update a record.

Another example taken from the list of security policies in Appendix B is P7. This
policy has already been introduced in Section 8.1:

P7. [KAS&1] “Bank tellers should not be able to process transactions that
involve themselves.”

In this example a bank teller attempting to conduct a transaction could only infer
that they themselves were connected with the transaction in the event of a failed

attempt at an invocation. This is something that is probably perfectly obvious to

the teller anyway.

The point is that most sensible security policies would only make a principal’s
rights depend upon something that the principal has a right to know, this has to be
so in order that a non-malicious principal can evaluate for themselves whether or
not to even attempt the action.

The worry of accidental covert channels can be further reduced by ensuring that
the system, i.e. the Guard ensures that any methods that are invoked as part of
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rights evaluation are invoked with the original principal’s authority and no more.
State dependent access control inevitably results in an unsuccessful invocation
revealing something about the state of the system. However subjecting secondary
invocations to the same checks as any other invocation means that at least this is
not information that the principal is not entitled to obtain by other means.

8.2.2  Environment-Dependent Policies

Rights often change with the time of day. As an example taken from outside the
computerised world, a manager might only have the ability to open a safe inside
office hours because it has a time lock. In the computing realm, a doctor’s right to
access medical information might depend upon whether or not he was on duty at
that moment. An example of such a policy is P2:

P2. “No-one shall have the ability to delete clinical information until the
appropriate time period has expired.”

The calculation of the predicate referring to whether the current time period has
expired relies upon the current time. Therefore, the access control system
enforcing such a policy must be able to take the time of day or date into account.
This is not of course possible for conventional access control lists.

The solution is a straightforward extension of what has already been covered in
this chapter, i.e. environmental inquiries can be made by the Guard through
normal method calls. A Guard can gain information about the current time from
the operating system and appropriate methods can be supplied as part of the
access control system. Chapter 9 deals with the implementation and how such
calls can be included in an access control list.

However this has one important security repercussion. It is important that the
means by which the operating system gets the current time is secure. If the Guard
exists on a secure machine whose clock is set by a system manager then this may
be acceptably secure, if not highly accurate. However if the clock is set using a
time service then the security of this service should be ensured. Secure time
servers have been developed because of the general havoc that a COrrupt server
could wreak upon a system [MARS84] and also because authentication protocols
often depend upon an accurate system clock for their security. Kerberos [SNSSS}
[KNT91] is a prominent example.

In all of the example policies investigated as part of this research, the current date
and time have been the only environmental factors upon which security policy
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depended. Nevertheless, other information could be gained from the computing
environment such as available disk-space, and it is conceivable that rights could
depend upon these as well.

8.2.3  Parameter-Dependent Policies

Conventional access control recognises that rights vary according to what is being
attempted, i.e. what method a principal is trying invoke. Often as has been shown
already in this chapter the security policies demand a finer granularity of
protection than can be afforded merely by guarding accesses at the object method
level: Many policies differentiate between different invocations of the same
method according to the parameters of the attempted invocation. For example, it
might be acceptable for an architect (working with others on a shared design) to
move the location of a wall by up to 30 centimeters, whereas greater movements
would require greater authorisation'. This example shows that the principal’s
ability to do something depends upon the magnitude of one of the parameters of
the operation.

Take the policy P6 as another example:
P6.  “Tellers can’t cash personal cheques”

A teller’s right to invoke the method associated with cashing cheques does not
depend only on who he is and the fact that he is attempting this particular activity,
but also upon the details of the actual cheque involved, which will presumably be
represented as the parameter to the method. Accordingly an access control system
that deals with protection at this level would need to be able to refer to the values
of parameters dynamically as methods are mvoked.

It would of course be possible to change the implementation of the protected
methods so that the test is performed by the object itself. However this would
mean that security policies are contained within the object. One aim of this work
is to have the description of policy confined to one place: the access control list.
Chapter 9 will show how such policies can be represented in access control lists
and how they can be enforced by the security system.

! This policy actually came from one of the PerDiS partners IEZ (CAD software retailers) and was
reported to the author verbally.
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8.3 Backing

Sometimes it is the case that some actions are too security sensitive to be under
the control of one person alone. Splitting the responsibility between two or more
principals, so that the consent of all or some proportion of them is required for the
action to be taken, is a common way of protecting against corruption. Security
policies that specify a need to obtain backing ensure that the collusion and
corruption of more than one principal is required before malicious damage can
occur.

At the start of this chapter, the example of a manager requiring the backing of
another in order to get into a safe was given. Also the principle of ‘segregation of
duty’ that is taken from the financial domain has been mentioned. This principle
requires that no one person sees through a security sensitive procedure from start
to finish without the intervention of another.

There are many other examples, such as P9 that requires that a clinician does not
act alone when making decisions that concern mental health patients. The consent
of other carers is important for such patients who are not always able to consent
themselves:

Po. “A clinician must obtain the backing of a majority of a patient’s carers in
order to prescribe new treatment,”

In another example taken from commercial law that restricts certain types of
decision made by partners of a company:

P11.  “Unless the agreement provides to the contrary, all partnership decisions
will be made on the basis of a simple majority.”

Backers must assess the merits of each individual request for backing. As all the
examples show, any backing given is granted for a one-off action. The
implementation must ensure that the backing from some source is used only once.

- One way of understanding the backing security concept is by considering its
parallels with fault-tolerance. In fact the concept of backing and distributing trust
amongst a group is to security what replication is to fault-tolerance. The idea is
that trust is doubled (or trebled etc.) in order to tolerate a breakdown in part of that
trust, i.e. in order to tolerate some degree of corruption.

Backing is an interactive security mechanism. It requires the negotiation of rights
between parties and hence it sits closely with collaborative applications and
groupware. The collection of backing is often, but not always a quick and largely
synchronous process. The required level of backing might however come in
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slowly over a period of hours or days. This poses a question about whether or not
the cumulative level of backing ever actually existed at one moment in time and
whether it actually matters if it did. This issue along with others is discussed in
Section 8.3.3. It is certain that in some instances backing must be collected
quickly, for example as a vote during a group conference. For this reason any
implementation must be sufficiently fast so as not to disrupt the flow of other
collaboration.

8.3.1  The Interrelationship Between State-Dependent
- Policies and Backing

Backing naturally follows on from state-dependent policies because often there is
an interrelationship between the two. Such situations are particularly well
highlighted by medical applications. State-dependent access controls are an
attempt to tightly constrain the situations under which a principal can do
something. However, often it is impossible or unreasonable to cater for every
situation under which the action is acceptable. In these circumstances the backing
of others must be sought. Hence security policies often use a combination of the
two techniques. The following example combines a parameter dependent policy
(pregnancy younger than 24 weeks) with a need to obtain backing (from two other
registered medical practitioners):

P18.  “A person shall not be guilty of an offence under the law of abortion when
termination is performed by a registered medical practitioner and two
registered medical practitioners have formed the opinion in good faith that
the continuance of the pregnancy would involve risk, greater than if the
pregnancy was terminated ... subject to the pregnancy not exceeding its
24th week.”

Additionally, this example also shows that gaining the backing of others could
well be a legal requirement. Hence if remote collaboration is being supported by a
groupware system then backing must be non-repudiative. The implementation
discussed in Chapter 9 will obviously therefore involve strong encryption and
digital signatures.

Backing is in fact a solution to many access control problems that can’t be
implemented because immediate decisions regarding rights are deferred to agents
outside the system. It means that policies that cannot be expressed conveniently
do not necessarily go unenforced.
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8.3.2  Backing and Role Membership

Most often the source of required backing in a security policy is not an individual
principal but some description of a group. Invariably the group is the group of
principals that are entitled to take on some organisation role, the familiar concept
from role-based access control, e.g. Managers, Clinicians, the Board of Directors,
etc.

Two distinct forms of backing were introduced in Section §.1: backing that comes
from a specified number of backers and backing that comes from a proportion of
the group. When proportional backing is required, the proportion is usually a
simple majority. In this particular form backing can be likened to elections,
although the whole concept of backing is wider of course.

This second type of backing where the consent comes from some proportion of a
group can cause a problem. This arises because of the period of time that elapses
whilst a principal attempts to procure backing. The problem is that whilst the
collection process is underway, the role membership might actually change.

For example, recall policy P9:

P9.  “A clinician must obtain the backing of a majority of a patient’s carers in
order to prescribe new treatment.”

If the procurement of backing took several days, it is possible that the patient
gains a new carer during this period.

The group of principals entitled to take on some role is transitory and so what
constitutes a majority (or some other requisite proportion) from the point of view
of the principal collecting it, may not be deemed sufficient by the Guard.

The possibility of the Guard rejecting what the principal believes to be a valid
attempt to invoke a method isn’t really a problem. It is the state of the role
membership at the point that the Guard evaluates the attempt that should be taken
into account. Simply, the principal must accept the Guard’s decision. In any case
it is an unlikely event, particularly where the backing is being collected over a
short period of time.
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8.3.3  Semantics of Backing

It may seem obvious what the semantics of backing are, but in fact what exactly
the backer consents to is not so straightforward. Because the backing of an
individual is going to be used to gain access to something secure, it is very
important that the backer be absolutely aware what they are backing. This section
attempts to make that clear. Hence in this section several requirements of any
implementation of backing will be presented.

.- Backing Must be Provable

Obviously it is important that the backing that one principal gives to another can
be proved to the Guard. Public keys and role membership etc. are all proved using
~ asymmetric cryptographic techniques and hence it comes as no surprise that a
backer’s intention to consent needs to be stated in a signed certificate. This is the
first requirement of the implementation.

BRI: Backing should be provable: i.e. contained within a digitally signed
statement of consent.

The details of the collection of backing will be given in the next chapter, however
it is easy to anticipate that the implementation of backing consists largely of
sending out a request for backing to all the potential backers and then waiting for
them to reply with the signed certificates. Once the requestor deems that sufficient
certificates have been collected then the method invocation can be attempted.

The Guard checks the validity of the collection of certificates and allows the
invocation to proceed if the collection constitutes the necessary proof of backing.

Backers that Change their Minds

In general there should not be any limit on the time that it takes to collect backing.
Some more synchronous applications might allow the requestor to quickly collect
the necessary consent, however there seems no reason to restrict the concept of
backing to highly interactive groupware. This results in a problem due to the
elapsed time between the first backer consenting and the final presentation to the
Guard of the backing certificates. Specifically, during this period, backers could
change their opinions resulting in the potential absence of the required level of
backing at the time of successful method invocation.

Revocation of capabilities and certificates are well-known problems. Certificates
usually contain a time-out to tackle this issue. After a certain period the certificate
must be reissued. A similar approach could be used to deal with the possibility of
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a backer’s change of opinion. However at first it seems unsatisfactory to live with
the possibility that at the moment that the requestor succeeds in invoking the
protected object method, there may not actually be the necessary consent amongst
the backers.

Perhaps a better solution can be obtained by considering more carefully exactly
what the backers take into account when they agree to consent. A backer might
have a particular view of the world when he decides to back. For example, a
Manager may agree to back a Trader’s attempt to purchase 10,000 shares because
the price was below £2. However the price may rise before the Trader collects the
rest of his required backing. Perhaps some criteria could be captured within the
certificate and checked by the Guard to reaffirm that the predicates still hold true
at the point of method invocation.

Whilst it certainly seems possible to include a summary of object or system state
within a certificate, unfortunately it seems impossible to include all possible
criteria. A backer might have consented for a potentially infinite number of
reasons, not all of which have any representation inside the system. Backing could
have been given because of a ‘gut feeling” or simply because it was a nice day!

For this reason forcing the backer to include an expiry date and time in the
certificate seems the best all-round solution. This must be made clear to the backer
when consent is being sought and the backer therefore accepts that if he has a
change of mind after granting his backing then there is nothing that can be done
about it. This sounds harsh, but is exactly what happens for delegation in other
systems. In the TAOS operating system [WABL94] for example it is impossible
to immediately revoke a delegation.

Therefore the second backing requirement is as follows:

BR2: Backing once granted, must be limited in duration to a specified period of
time.

The lifetime of the backing certificate would depend upon the exact nature of
what backing was being sought. For example backing for a bank teller to adjust
the discrepancy bank account (P14) would likely only last for a matter of minutes
or possibly hours, certainly shorter than a day. However the backing of a doctor
for sanctioning new treatment (P9) is likely to last longer. In the implementation
described in the following chapter, the period of time that backing is valid for is
limited by specifying a time-out in the backing certificate. This period therefore is
kept under the control of the backer.
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What Exactly the Backer Consents to

In all of the security policies presented, backing is sought on a one-off basis to
perform some specific named action, At the Secure Shared Object level of
abstraction this translates into invoking one named method upon a named object
once and once only. The certificate of backing therefore must reflect these
requirements:

Backing once given must only be used:

BR3: To execute some specific named method with specific arguments;
BR4 Upon some specific named object;

BR3: To execute it once only.

This does raise the question of how exactly methods and objects are uniquely
named. A method in most programming languages is uniquely defined in its class
by its signature: that is its name, the number and types of its arguments and the
type of the value it returns. This therefore needs to be captured inside the
certificate of backing.

How a particular instance of an object is uniquely referred to is individual to the
implementation of the object. In the case of Secure Shared Objects introduced in
Chapter 7, objects are given a unique string name. This corresponds to the name
of the underlying process group.

Note that backing is given for a principal to invoke a method with specific values
for the arguments (if the method takes arguments). There is a great difference
between for example, a principal asking for backing to transfer £10 as opposed to
transferring £1,000,000. A potential backer will certainly want to differentiate
between these two. Therefore a request for backing will contain proposed values
for any arguments and these are then included by the backer in the certificate.

All backing certificates when constructed by the backer are intended to be used
once only. There are no examples in the policies observed that demand otherwise,
so there must be some way that the implementation can ensure that certificates are
only used once. Further, it must be possible to ensure that distinct sub-sets of the
entire set of backings obtained are not used separately, i.e. it is not enough simply
to be able to spot that a certificate has been presented to the Guard before.

Take as an example a policy that requires that two members of a particular role
back a principal to perform some method. Suppose that there are ten possible
backers and all give consent for the method to be performed. In order to ensure
that the method is only performed once it is not sufficient just to recognise that a
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backing certificate has been used before. If this was the case, the principal could
make five repeated attempts to perform the operation with different pairs of
certificates (each from different backers). This must be prevented, i.e. once the
operation has been performed, all the backing certificates relating to the same
request must be unusable.

Making the Backer Aware of the Semantics

Asking a potential backer to make up his mind about giving consent for a
principal to invoke a method upon an object may not be realistic. This is because
method invocations upon programming objects are not in his view of the system.,
It is not really reasonable to expect the participants in the collaborative task to
make a decision about whether to grant backing in response to a request which
looks like a method call, for example:

“can Principal A perform updateRecord(“Dose”, 5)?”

This might not mean much to the person. In order for the potential backer to be
able to reach a reasoned decision he must be sure exactly what backing is being
requested for, it is necessary to bridge the gap between the shared object level of
abstraction at which objects are protected and the user’s view. Hence backing
requirement BR6:

BR6: Requests for backing when presented to a user should be consistent with
the users’ view of the system.

‘The best and most obvious way of communicating what backing is being sought is
if the potential backer is presented with a natural language statement. For
example:

“can you back Principal A’s request to update the Medical Record of
Patient X with a Dose of 5 units?”

This complicates matters however, as there now exist two descriptions of the
nature of the backing required: the natural language request as presented to the
user and the formal description of backing as described in the ACL. This means
that there must be a secure relationship between the two since it is obviously
essential that the authentic natural language request is presented to the potential
backer and not some bogus request presented maliciously. Chapter 9 will show
how this can be achieved in an implementation.
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8.4 Summary

This chapter has introduced in a more complete way two types of security policy
that are commonly found outside of the computing realm. If computer supported
security sensitive group tasks such as those dealing with medical or financial
information are to be properly protected from malicious activity then the same
level of protection needs to be applied inside the computer system as is currently
afforded outside. This means that mechanisms for state-dependent access control
and the concept of backing must be designed and implemented.

This chapter has covered some of the key issues that need to be addressed before
an implementation can be considered. Such an implementation can now be
discussed in the following chapter.
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Access Control for Groupware -
Implementation

This chapter will cover some of the more interesting points surrounding any
implementation of the new access control concepts that were introduced in
Chapter 8.

As the system runs, the access control list (ACL) is consulted when necessary by a
Guard. The Guard assesses whether principals have the right to do what is being
atternpted. Section 9.1 will show that extending the Guard’s actions to allow the
consultation of state is straightforward. Hence the implementation of state-
dependent access control does not raise many further implementation issues. The
implementation of backing is not so clear cut.

In addition to the ACL, Guards typically base access control decisions on the
results of evaluating credentials. These often take the form of signed certificates
of role membership (and possibly delegation). Assessing whether a principal has
accumulated the required degree of backing is a similar job. Consequently a
principal’s intention to back is also contained within a certificate. Section 9.3
examines in greater detail how principals can initiate requests for backing and the
exact structure of the backing certificates that are returned.

Of course it is the intention that the access control concepts described here all be
integrated with a system of protected shared objects that are in reality replicated.
Such a system was described in Chapter 7. It was implemented using the group
communication system for groupware described in Chapters 4 and 5. However the
fact that object data is replicated does not on the whole affect the implementation
of the access control concepts. This is because access control belongs at a higher
level of abstraction than the level at which replication occurs. The layers were
depicted in Figure 3.3. The relevant part of this diagram is reproduced below in
Figure 9.1:
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Secure Stack

Figure 9.1 Layers of secure groupware. Access control fits in at the level of
Secure Shared Objects. Replication is dealt with at the Secure Group
Communication Layer.

This separation of replication from access control means that the issue of
replication is largely irrelevant in this chapter. However it is important to bear in
mind that the performance requirement of groupware necessitates replication in
the underlying levels.

Another important issue is addressed in this chapter. This is the issue of making
easier the specification of the rights of large numbers of principals to access large
numbers of objects. The work here was designed to be incorporated into a task-
oriented framework for access control in groupware. The task concept limits the
scope of shared objects, access control and hence any associated communication.
Section 9.4.1 describes the task framework of the PerDiS project and Section 9.4.2
extends the concept to incorporate the ideas of state-dependence and backing.

Finally Section 9.5 attempts to evaluate the access control concepts presented by
justifying the work further with the observation that the procurement of backing
can often be a legal requirement.

9.1 A Guard’s Access to Shared Object State

In the Shared Object system, every object potentially has access to every other
Shared Object. Since Guards are themselves merely objects, then allowing them to
inquire the state of other objects is not a problem. Figure 9.2 demonstrates this.
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Figure 9.2 In the access control model, it is perfectly feasible for the Guard
object to initiate invocations of protected object methods as part of rights
evaluation,

As the following section shows, the ACLs contain the references to objects and
the method that should be called in order for the access control decision to be
made.

9.2 Expressing Dynamic Security Policies in Access
Control Lists

In order to enforce state-dependent policies and policies that require principals to
obtain backing, it must first be possible to express such policies within the system.
The mechanism explained here extends simple access control lists in order for
them to contain calls to access control methods. The Guard invokes the access
control methods whenever it consults an entry in an ACL that contains such a
method. The results returned by the method are then used in evaluating the
principal’s right to invoke the protected method.

An access control method can be any existing method of any Shared Object in the
system since security policy might rely upon any state from within the system. For
the expression of policies that require backing to be obtained, special-purpose
access control methods are introduced. A formal description of the syntax of the
access control lists described here is given in Appendix C.

Before continuing it is necessary to say something about naming, Obviously the
access control lists need to be able to refer to the objects they protect as well as
the principals and the roles that they are entitled to take on. Additionally in our
extension to the ACLs, it is necessary to be able to refer to the methods of objects
as well. No convention for naming is necessary for the functioning or
understanding of the ACLs described here. However it can be assumed that the
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protected objects are the Secure Shared Objects as described in Chapter 7 and are
uniquely referred to in the manner described in Section 7.3, i.e. with unique string
names. References to principals and roles must also obviously be unique. A
suggestion as to how this is achieved in a scalable way is discussed in Section
9.4.2. Uniquely referring to object methods is tackled by the object oriented
language that implements them. All example references to object methods given
here and the complete syntax presented in Appendix C follow the syntax of the
Java language.

9.2.1  Expressing State Dependent Policies

In this section it is shown how the syntax of ACLs can include calls to object
methods so that the results returned from those invocations can be used in the
evaluation of a principal’s rights. This in turn allows a more dynamic set of
policies to be expressed. The first step is the observation that access control lists
can be seen simply as boolean expressions. Take the following list of principals
that could be associated with some method of an object as an example:

PrincipalX, PrincipalY, PrincipalZ

This could be rewritten in a manner that resembles a boolean expression in a
programming language. P is the principal attempting to invoke some method of an
object. P is granted access if:

( P == PrincipalX ) or ( P == PrincipalY ) or ( P == PrincipalZ )

The notion of roles can be easily incorporated. The following expression captures
a requirement that principal P must be entitled to take on the role of a Doctor or a
Manager:

( P € Doctors ) or ( P € Managers)
Lampson [LABW92] also introduced the notion of conjunctions in access controk:
( P € Doctors ) and ( P € Managers)

Stipulating that the principal P attempting to invoke the method must be a Doctor
and a Manager in order to succeed.

The expressions above demonstrate the obvious parallels between a boolean
expression found in a programming language and entries in an access control list.
However specifying security policy in this format is a little verbose and lacks the
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obvious simplicity and simple semantics of a list. For that reason the list structure
is retained in the access control lists described below (formally and more
completely specified in Appendix C). Therefore a comma in the ACL is
equivalent to boolean ‘or’ and principal and role identifiers appear on their own
rather than with equality or set membership operators as above. All ACL entries
from this point on conform to the syntax specified in Appendix C.

A programmer writing a boolean expression would expect to be able to include
calls to boolean methods in any conditional statements. Here this idea is adopted
in order that ACLs can refer to methods in the same way. Hence an ACL entry
can now reflect a state-dependent policy. Hence the following example ACL entry
for a hypothetical appendNotes method:

void appendNotes(String s):
Physician and MedicalRecord. patientOverEighteen ( );

where MedicalRecord names some object which is the target of the
patientOverEighteen ( ) method call. The entry expresses the following policy that
could be used to protect some object method:

“Physicians can append notes to a medical record if the patient is over
eighteen”

Alternatively, if there is a method that returns the age of a patient, then the same
policy can be expressed as follows:

void appendNotes(String s):
Physician and ( MedicalRecord.patientAge () >= 18 );

Environmental policies can be expressed in a similar fashion because the
implementation of methods that are called have potential access to time and other
details maintained by the operating system.

How the target object of the method calls are named within an ACL is deferred to
Section 9.4. The solution integrates the new access control concepts with an
existing ‘task oriented’ approach to grouping and naming objects that form part of
a shared environment.
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9.2.2  Expressing Parameter Dependent Policies

Expressing policies that refer to the value of the parameters of an attempted
invocation can also be achieved by treating ACLs as boolean expressions. In this
way expressions involving the parameter names and boolean operators can be
incorporated.

Take the following entry for a moveWall method. It expresses the policy that was
introduced in Section 8.2.3 taken from the PerDiS designers that restricts
Engineers from moving a wall more than 5 centimeters:

void moveWall (int distance):
Engineer and (distance <= 5);

Another similar policy might state the same restriction on engineers moving walls,
however with the added addition that managers can move the wall any distance.
This would be expressed as follows:

void moveWall (int distance):
Manager, Engineer and (distance <= 3);

Note that in these ACL entries a comma has been used to represent the logical
operator ‘or’ in order to preserve the list nature of the expression. This is just
aesthetic and not an important issue. Obviously the commas have the highest
precedence of all the operators.

9.2.3  Expressing Policies that Require Backing

Two forms of backing policy were identified in the previous chapter. These were,
firstly: backing from a specific quantity of backers and secondly: backing from a
proportion of potential backers. In both cases the potential backers come from the
group associated with some organisational role.

A requirement to obtain backing can be stated with two method calls: ‘exactly’
and ‘atLeast’ representing specific quantity and proportional backing respectively.
Hence the following access control list entry for some object method:

Doctor and exactly { 2, Doctors );
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For expressing the specific quantity backing policy: ‘A doctor with the backing of
two other doctors’. Also the following entry:

Chairman and atLeast ( 1/2, Directors );

For expressing the proportional backing policy: “The chairman with the backing
of half or more of the board of Directors’. '

Obviously these are not methods that the application programmer implements.
These form part of the access control system. In fact it is not necessary to know
the target object of the method calls in order to write and understand an ACL
entry that comprises backing. Conceptually however, the methods can be thought
of as being implemented by the Guard obiject, since it is the Guard that is
responsible for verifying that the necessary level of consent has been procured.

Recall from the previous chapter that every backing statement has associated with
it a natural language description of the backing being sought. This is because the
method and object names that form the invocation that is actually being backed
are not in the user’s view of the system. This association between the method and
its natural language description must be a secure one, because the backer’s
decision to back is based upon it. The ACL therefore is the sensible place to form
this relation. For every method that could be protected with an ACL entry
requiring a principal to obtain backing there is an associated string describing the
method. Hence a complete ACL for a method for deleting a medical record might
look as follows:

void deleteRecord (String patient)
“delete the medical record of patient $patient”;
Doctor and exactly ( 1, Doctors );

The $patient placeholder will be substituted for the value of the argument when
the request is presented to a potential backer. It will appear upon the potential
backer’s screen as:

“Request from ‘Doctor X’ for backing to delete the medical record of
patient K. Jones”

This appears together with the name of the Shared Object that the method belongs
to. Appendix C contains the formal description of the syntax for ACLs.
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9.3 Proof of Backing

Being able to express a need for a principal to obtain backing is only part of the
solution. It must also be necessary for the principal to be able to collect backing
and subsequently prove it. Recall the six requirements of any implementation of
backing from the previous chapter:

BR1: Backing should be provable: i.e. contained within a digitally signed
. statement of consent;

BR2: Backing once granted must be limited in duration to a specified period of
time;

BR3: A specific instance of one principal’s backing of another must be limited
* o that it can only be used to execute some specific named method with
specific arguments...

BR4: upon some specific named object...
BR5: and to execute it once only;

BR6: Requests for backing when presented to a user should be consistent with
the users’ view of the system.

In this section each of these requirements will be addressed and exactly how each
can be satisfied by an implementation will be demonstrated. In fact this section
starts with BR6 and shows how a request for backing could be initiated and how a
user might be prompted to give consent.

9.3.1  Interacting with Potential Backers

In Chapter 3 (Section 3.3.2) the idea of the security shell was introduced as it was
used in the PerDiS system. To recap, it is a means of bridging the gap between the
user and the access control layer. This is needed when the application has no
notion of access control built into it. In the PerDiS system this provides a
mechanism for users to assign people to roles and modify access control lists.

This idea relieves the application program from the responsibility of providing
interaction between the user and the security mechanisms at the Shared Object
level. Additionally it allows existing non-secure applications to be converted for
use in a secure setting with a minimum of inconvenience. Of course new

111



Access Control for Groupware - Implementation

applications might well work best if access control is presented to the user in a
manner consistent to whatever abstraction the application presents. On the whole
though, access control can be hidden from the user, at least until the user attempts
to exceed his rights. However some access control concepts such as delegation
and backing do require direct user actions and the security shell can facilitate this.

A security shell allows the user to both make a request for backing and to give
consent to (or reject) incoming requests. Upon attempting an action that involves a
method invocation the security shell asks for confirmation for the request to be
sent out to the appropriate group of potential backers, The security shell of a
potential backer alerts the user when the request is received. If the user chooses to
consent, the security shell replies with a signed certificate. The exact construction
of backing certificates is discussed in the following section. Once the security
shell of the original request has received a sufficient quantity of positive
responses, i.e. certificates, the method invocation can be attempted. This might
result in the security shell highlighting the request or alerting the requestor in
some other way. See Figure 9.3.

Natural Language Dascription

Outstanding Retuests

Object Reference Sufficient backing obtained to

| ™~"Delete the Medical Record of
\ Patient”

K Tores,
L |

Figure 9.3 How the Security Shell may look when being used by the requestor
to display the progress of outstanding requests. The ‘Go Ahead’ button is
shown shaded because insufficient backing has been currently obtained,

112




Access Control for Groupware - Implementation

Name of Requestor

Outstanding Requests

Request from Dr, Smitf to "Delete_ |
the Medical Record of Patient” K |
Jones, e

Natural Language Description

Reference to Target Object

Figﬁre 9.4 How the Security Shell may look when being used by a potential
backer to display requests for backing. The natural language description of the
backing being sought makes the nature of the backing obvious to the backer.

The security shell must also display the natural language description of the
backing request to the potential backer, this fulfils requirement BR6 and this is
shown in Figures 9.3 and 9.4. Recall from the previous section that this
description enables the backer to properly understand what consent is being
sought, because the method and object names are not at an appropriate level for
the user’s understanding. If the method call that corresponds to the request takes
any arguments, then these are integrated into the natura} language request as
described in Appendix C and Section 9.2.3.

9.3.2  Certificates of Backing

Chapter 8 and BR1 have already shown that one principal’s backing for another
must ultimately be represented within a digitally signed certificate of consent.
However the details of what exactly is contained within the backing certificate
have not yet been discussed. The contents are a direct consequence of the final
semantics of backing that were resolved in Section 8.3.3 and resulted in
requirements BR3, 4 and 5.
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The scope of the certificate must of course be limited to one principal, but also
limited to one object and one method on that object. This can be achieved simply
by naming the principal, object and method uniquely inside the certificate?.

'The value of the arguments for the method call must also be included in the
certificate. Backers obviously don’t give their consent to invoke the method
without any set of arguments in mind. As was made clear in Section 8.2.3, the
backer when presented with a request from another to back is given the values of
any arguments that the requestor intends to use. The backer then includes these in
the signed body of the certificate and the Guard can subsequently verify that the
method is actually invoked with these values.

Finally, satisfying backing requirement BR2 demands that an expiry time be
added into the certificate, in fact this is a standard requirement for most signed
certificates. Hence the structure of the certificate is as follows:

» The object reference.

e The method signature.

¢ The values of any arguments

¢ The unique backing request number.

¢ The natural language statement of what the backing is for.

¢ The expiry date/time after which the backing statement can no longer be used.
® A signature signed with the private key of the backer.

The unique backing request number is used to ensure that BRS5 is satisfied. Recall
from Section 8.3.3 that a Guard must recognise any attempt to use backing
certificates that relate to the same request to invoke a method more than once, i.c.
only the first invocation should succeed.

The backing request identifier uniquely identifies a particular request. It is
generated by the access control system and is included in a principal’s request for
backing. Any backers then incorporate the identifier within the certificate and it is

? Unique shared object naming was discussed in Chapter 7 (Section 7.3) and uniquely naming the
method in question is a matter of stating the method signature as it appears in the ACL. Naming
principals has also been discussed previously in this chapter and Chapter 7.
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Jeft to the Guard to recognise any that have been used before. Making the
identifier an increasing sequence number (for each principal) relieves the Guard of
having to store every previously used identifier.

The natural language description is also incorporated into the certificate. This
demonstrates to anyone who validates the certificate what the action the backer
thought he was backing.

9.3.3  Collection of Backing

The backing certificates obviously come from many places and hence must be
collected together into one place so that the requestor of backing can collect them
and present them to a Guard. As already stated, the process of requesting and
collecting backing may not be a swift one. It is not desirable that policies that
require the backing of others to be procured are limited to highly interactive
applications. It is quite conceivable for example that the final collection of the
required amount of backing might take over a day. Hence it is not possible to rely
upon synchronous communication between requestor and backer for the transfer
of a certificate. An asynchronous solution is needed, which will allow the parties
involved to go on and off-line during the procedure.

The problem is solved with the introduction of shared objects called ‘Outstanding
Backing Objects’ (OBOs). When a backer decides to go ahead and attempt to
collect backing, a new OBO is created. This would be done by the security shell if
one is being used, or by the application if that has the functionality. The OBO
contains details of the request and will act as a repository for any certificates that
are generated, Potential backers can then pick up the details of the request from
the OBO and install a certificate by invoking its methods.

Ideally when sufficient backing is collected, the initiator should cancel the
corresponding OBO. In a secure system any apportion of responsibility should be
done with care, however it is not essential to the secure running of the system that
the outstanding request is cancelled since it will naturally time-out anyway, as will
the Guard’s store of already used backing request identifiers.

Note that the OBO can be a Secured Shared Object as described in Chapter 7 and
hence can in reality be replicated amongst the current participants in a group
activity. In this case new participants receive details of outstanding requests for
backing when they begin to participate in the activity. This is facilitated through
the state transfer mechanism in the underlying secure group communication
system. In this way the functionality of OBOs can also include auditing, since
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during their existence they contain the details of every principal that gave backing
to another. There is no reason why the version of the OBO on the distributor
cannot write these details to a file before it ceases to exist. If it is necessary to
prove in the future that backing was attained then retention of the certificates
beyond the successful invocation is essential. Auditing is one way in which this
could be achieved.

The mechanism through which potential backers can find out about all existing
and relevant OBOs and hence obtain references to them is intimately linked with
the mechanism for making access control less complex and scalable. This is the
topic of the following section.

9.4 Tasks for the Management of Scalability and
Complexity

This section is included in order to relieve any concerns that the access control
system might be overly complex or that it does not scale well. The concept of
tasks is introduced as originally proposed by Coulouris and Dollimore [CDKR97]
[CDR98a] [CDR98b] [CD94b], although the concept has been discussed
elsewhere [SAN96] [TS94]. Tasks can be used to tackle the following problems
with access control for groupware:

. Complexity: It may be laborious to specify the rights of a large numbers
of principals to access a large number of objects. Hence the task concept
allows generalisations to be made about objects and principals’ rights.

. Scalability: Assigning objects and rights to particular tasks means that
their scope is limited, no matter what the proliferation of tasks.

9.4.1  The Original Task Framework

In any system that requires access control there are by its nature a number of
principals that are potentially involved. This number could be large, hence making
generalisations about the principals’ roles is an obvious way of simplifying the
construction of ACLs. This idea is part of Lampson’s access control model for
distributed systems. In an object-oriented groupware system there are not only
potentially large numbers of principals but also large numbers of objects that need

116




Access Control for Groupware - Implementation

ACLs. Generalising about the objects too can ease the complexity of rights
specification.

The task framework combines the two notions of generalisation. A generalised
task will have a set of objects and a set of roles that are common to all specific
instances of the task. Take for example a GP’s task of administering to a patient.
In general each patient will have a set of objects comprising his or her medical
record (such as notes, prescription and referral details etc.). Every patient has
these objects and the rights to access them (when expressed using generic roles)
are the same for each instance of a task. Expressing them once in a generic
Security Template is more practical than having to do it for every patient. An
extremely simple (and far from ideal -as we will go on to explain) example might
be as follows:

Task: Administering to Patient

Roles \ Objects Notes Referrals Prescriptions
Patient’s GP read/write read/write read/write
Nurse read read read
Receptionist - read read

Figure 9.5 The table shows the rights of roles within the task “Administering to
Patient” to access three types of objects used by all instances of the task.

When a task comes into existence, the details that need to be available to the
participants such as the ACLs and the roles which take the form of signed
certificates are copied from the security template into a Shared Object called the
Task Object. This is a Shared Object just like those that form part of the
application. Changes to the ACLs and the actual principals entitled to take on the
roles will be potentially available to all. The task object therefore can then satisfy
queries regarding the current membership of a role. Obviously this is important
for the implementation of backing.
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9.4.2  Tasks and Implementing State-Dependent Access
Control and Backing

The original benefits of reduced complexity and confinement of scope for
scalability are of course retained when the framework is extended to facilitate
state-dependent access control and backing policies. Additionally, the framework
can help with concerns about naming of objects and roles and finding out about
the state of outstanding requests for backing.

The access control concepts introduced in this thesis require that ACLs be able to
refer to specific objects and roles. Since every object and role forms part of some
task, they can therefore be referred to through their task (for example, the patient
notes in the specific task instance of administering to a patient X). Additionally, it
is possible for the tasks themselves to be named by universal resource locators
(URLs) as are other Internet abstractions.

Outstanding Backing Objects have already been introduced. However an
explanation of how potential backers can discover that a new request has been
issued was deferred. The Task Object provides a solution. As has already been
explained the Task Object is a repository for other information that is specific to a-
task such as ACLs and role membership. Additionally therefore placing references
to OBOs in the task object provides a way for principals to discover the existence
of a new request. When a principal decides to proceed and attempt to collect
backing for some action, the OBO is created and a method called on the Task
Object which updates it with a reference. In this way requests for backing are
confined to a task. Again note that Task Objects and Outstanding Backing can be
Secure Shared Objects and hence can be replicated at the machines of any
participant in a task. In reality therefore, the installation of a reference to an OBO
amounts to a single multicast to all current participants in the task.

9.5 Evaluation of Access Control for Groupware

The last two chapters have introduced just two techniques that enable more
accurate enforcement of security policies. State-dependent access control and the
concept of backing are techniques that are particularly applicable to secure
groupware applications because they allow more dynamic security policies to be
enforced. This work is also covered in a technical report [RD97c] and has been
presented at two conferences [RD97d] [ROWO9R].
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The examples given in the chapter together with those in the appendix show that
state-dependence and the technique of backing are both prevalent in real security
policies and this on its own is justification for this work. However it is not claimed
here that these two techniques alone will enable the enforcement of all policies,
indeed even before completion of this research other techniques such as veto for
example have been observed in the literature from which the presented policies
were drawn. Nevertheless, any techniques that allow a closer representation of
real-life policies can only be a good thing.

Evaluating this work properly would require an implementation to be used over a
period of time by multiple parties collaborating using groupware. This is
obviously beyond the means of this project. Evaluation therefore is forced to be
somewhat speculative and consist mainly of the justification and motivation for
the work that has already been covered in the early sections of Chapter 8.

One very compelling justification of the backing work comes from the field of
law. Very often it is a legal requirement for one person to procure the consent of
others, such examples are particularly numerous in the fields of medicine and
company law. Both of these areas have been drawn upon in the policy examples
contained within Appendix B.

Take as one example, the law surrounding decision-making in companies run as a
partnership. Decisions must be taken collectively and there are legal guidelines for
the level of consent amongst the partners that must be achieved before certain
types of resolutions. Ordinary resolutions for example require that there is a
majority in favour of the decision: effectively therefore the chairman is required to
obtain the backing of 50 per cent of the partners. Other types of resolutions

require different levels of backing: special and extraordinary resolutions require a
75 per cent majority and elective resolutions require unanimity.

If group applications are to facilitate the negotiation and decision making that
forms part of running a company then the digital representation of backing would
be important. Conventional message authentication techniques could, in retrospect
establish who said what in a distributed meeting for example, but in order to say
for certain if participants backed another in a specific action then the tighter proof
provided by the system outlined in this thesis would be far more convincing.
Simple messages relating to a group discussion might not be specific about the
action being backed, or they may not contain a time at which the backing expired
for example. This alone justifies the implementation of backing.

Actually backing can have justification beyond the realm of access control. In
many instances it would be useful for a principal to collect backing for an action
even though laws and regulations do not force them to do so. Being able to prove
in retrospect that a good level of consent existed at the time of an action could
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prove useful in a legal sense. Medical examples highlight this: for example a
doctor making a potentially controversial decision might collect backing from
other colleagues around the country in order to subsequently add weight to his
actions. :
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Conclusions

10.1  Summary

This thesis has presented ideas that are aimed at allowing computer aided group
work to be used for secure applications. Often security sensitive tasks are left
without the benefit of computer support because of a lack of appropriate security
mechanisms. The work has been divided into two main areas corresponding to
different levels of abstraction between the application and the network. These
were Secure Group Communication and Access Control. At both levels security
has been introduced with interactive groupworking in mind and at both levels
security is integrated appropriately with the abstraction being presented.

. Secure Group Communication for Groupware

One of the most important attributes of any groupware system whether
being used for secure applications or not is the performance that it can
deliver: a sufficiently fast system can greatly enhance the productivity of
distributed group tasks, but a slow system will only hinder its effectiveness.
In order to meet this performance demand, a distributed groupware system
can replicate data so that it is located wherever it is needed. However,
replicating and maintaining data is complex and so often the application
programmer will turn to systems software that can hide the replication
behind a convenient abstraction. Secure group communication software
provides a process group abstraction and is intended for replicating secure
data.

This thesis has introduced a secure group communication system that is
innovative because it makes appropriate assumptions about the trust
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afforded to group members. Similar existing systems that have all been
developed for fault-tolerance do not make trust assumptions that are
appropriate to groupware. The system presented here strikes an appropriate
balance between trust and performance, which makes it uniquely suited to
groupware. Timed performance tests and a logical proof of authentication
supported the system’s suitability.

. Access Control for Groupware

Many groupware application programmers use a shared object abstraction
for hiding both replication and communication. This can conveniently be
built on top of a group communication system. This thesis has presented a
secure variant of this abstraction that uses in its implementation the secure
group communication system for groupware. The system presents to the
programumer the illusion of shared objects. Any instance of an application
can map these objects into its local address space and can invoke the
objects’ methods as if they were entirely local. Any changes to an object’s
state as a resulit are transparently visible to all. Security is consistent with the
level of abstraction that the programmer sees, because the ability to invoke
shared objects’ methods can be controlled.

The access control enforced by the Secure Shared Objects system follows
the conventional access control model of Lampson et al [LABW92].
However this was not derived with groupware in mind. Computerised
groupware introduces new ways of interacting and negotiating that mimic
real-life interaction. In secure group activities, some of the things being
negotiated are rights. Hence rights in secure groupware applications are far
more dynamic than in conventional applications. This causes problems with
specification because conventional access control lists are relatively static:
changes to rights generally require some intervention.

This thesis has introduced a step towards making rights specification and
enforcement more dynamic and Lampson’s access control model is
extended accordingly. Access control lists are now able to contain
something that more closely represents security policy rather than merely a
list of rights.

First the notion of allowing rights to depend upon the state of the system has
been investigated. Rights often change in parallel with the state of the
system. Many security policies taken from secure but not necessarily
computerised activities have been listed to demonstrate this observation.
Secondly the concept of backing was introduced. Splitting responsibilities
between two or more people is a very common way of reducing the
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possibility that a corrupt individual acting alone can do harm. A method of
allowing the concepts of backing and state-dependence to be expressed in an
access control list were described together with implementation details that
would allow such policies to be enforced. The concept of backing was
further supported by the observation that obtaining support and consent for
actions is often a legal requirement.

10.2 Future work

The work surrounding group communication for groupware is relatively complete,
hence most of the future work surrounds access control. However the
implementation of the group communication system was only experimental and
hence there is room for this to be developed into a completely useable system.
Section 5.3 did explain how dividing the system into layers allowed the system to
be flexible and lightweight. The programmer is given the choice of selecting only
the layers that provide the essential semantics for the application and thus can
maximise performance. This is the same idea as that used by other group
communication systems, however in those cases layering for choice allowed the
programmer to select the minimum necessary communication semantics.
Extending this idea to the security layers was sensible. Given that the particular
mode] of trust chosen was not the only option and that in other trust situations a
different choice might be more applicable, then the design and implementation of
alternative layers for the system is appropriate.

One topic that was not explored to its end in this thesis was the possibility of
allowing methods that actually update state to be included in access control lists. It
was implicit that only state inquiries could be included in rights evaluation. This
was chiefly because none of the security policies studied as part of this work
suggested that it was necessary to include update methods. However the idea
opens up interesting new possibilities for access control. It means that an attempt
to invoke a method (both successful and unsuccessful} could result in a state
change in the system. This would be useful for security auditing for example,
since a method that records the attempt could be automatically invoked.

The TAOS operating system that was reviewed in Chapter 3 treated rights as
programming level types and these could be sent as parameters to and returned as
a result of a procedure call. Combining this notion with the concept of backing
allows easy implementation of elections. For example, a method that returns a
right which allows a principal to take on the role of chairman could be protected
with a backing policy that demanded that the principal invoking it got the consent
of the majority of the board.
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The secure group communication system tackles security for groupware at the
communication level and the access control concepts presented here offer security
for groupware at the level of shared objects. However security has not been
tackled at the level of the application. Obviously every application is different,
however the basic concepts of principals, role membership and backing etc are all
apparent at the application level. However the concept of protecting the methods
of programming level objects is not in the user’s view of the system, but it is at
this level that security policy must be specified by the construction of ACLs. This
gap in semantics was highlighted in the work presented here on backing by the
requirement for natural language statements to enable the user to have a good
understanding of what it means to back a request to invoke a method upon an
object.

The problem is therefore that security policy exists at a higher level than that at
which it must be specified. Applications may offer ad hoc solutions to this
problem, but in general shared objects may be shared by many and different
applications. Offering a general solution for bridging this gap therefore is a topic
for further research.

One possibility is the use of policy specifiers. These would most likely be natural
language descriptions of common security policy forms which could be selected
and combined with descriptions of the operations (method calls) in order to form
descriptions of the policy. These could then be automatically translated into access
control lists for the methods, possibly taking the form of the language for ACLs
presented in Appendix C.,
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Appendix A

Proof of Authentication

This appendix uses the technique of Burrows, Abadi and Needham to prove that
the authentication goals of the group join protocol are met. For a full description
of the technique the reader is referred to the BAN paper [BAN90]. The
authentication goals were originally stated in Section 4.2.2 as:

$3. A prospective member can authenticate the group that it wishes to join.
S4. A group can authenticate a prospective member and refuse admission.

$3 amounts to the new member believing that the message granting membership
(JOIN 2a) came from the trusted Distributor and no one else. This is achieved
when the new member believes that it shares a secret key with the Distributor.

S4 is achieved when the Distributor believes that it is really communicating with
the new member and not some process masquerading as that principal. This is
achieved when D believes that the new member believes that it is sharing a secret
key with D.

The first part of this proof shows that when a certificate for a principal X is
observed by some principal Y that is signed by some party CA that Y trusts to
certify public keys, then the statement inside the certificate is believed. Hence
when the public key certificate is observed, the key contained within it is believed
to belong to the stated source.

Initially, Y knows the public key of the authority CA, i.e. Y believes PuCA, also
Y believes that CA is an authority as regards to X’s public key, in other words Y
believes that CA controls PuX. Finally CA itself must believe the real public key
of X, i.e. CA believes PuX.
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Initial beliefs:

Y believes CA believes
PuCA PuX
CA controls(PuX)

Y sees the certificate and the goal is to prove that Y believes the public key of X.
The certificate is signed with the public key of the trusted certification authority
CA. The certificate is constructed as follows:

{ PuX, Expiration ] PrCA
Idealised: fresh ( PuX ), { PuX } PrCA

Applying the BAN Message Meaning rule for public/private keys:
since Y believes PuCA and Y sees { PuX } PrCA

then Y believes CA said ( PuX)
Applying the BAN Nonce‘Verification rule:
since Y believes fresh ( PuX ) and Y believes { CA said ( PuX ))
then Y believes ( CA believes { PuX }) | : |
Applying the BAN Jurisdiction rule:
since Y believes ( CA controls ( PuX ) ) and Y believes ( CA believes ( PuX ))

then ¥ believes PuX

Hence in the remainder of the proof, if some principal sees a public key certificate
then the key contained within is believed. In the following descriptions, D
represents the Distributor and A the prospective member. Therefore:

since D sees A’s certificate, from the proof above:
then D believes PuA
since A sees D’s certificate, from the proof above:

then A believes PuD

The initial beliefs of the Distributor (D) and the new member (A) are therefore as
follows:
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A believes D believes

Dcontrols A D

PuCA PuCA
CA controls (Pul)) CA controls (PuA)
PuD PuA

The join request JOIN 1 plays no part towards the beliefs of either party and so is
not included in the proof. In response to the join request D replies with JOIN 2a:

D — A: [ { JOIN2a, Nonce, SN, M’ship, State, A & D, GEK } PuA ] PrD
Idealised: fresh{A«<D),{A«<D}PD
Appl&ing the Message Meaning rule for public/private keys:
since A believes PuD and A sees { A< D } PrD
then A believes Dsaid( A< D)
Applying the Nonce Verification rule:
since A believes fresh ( A «> D) and A believes (Dsaid (A< D))
then A believes ( D believes (A <> D))
Applying the Jurisdiction rule:
since A believes ( D controls ( A < D)) and A believes { D believes (A« D))
then A believes (A <> 1))

Hence the first authentication goal is achieved. A’s response is the JOIN 3
message:

A—=D:[{JOIN3 A, Ae>D )} PuD ] PrA
Idealised: fresh(A< D), {ADIPA
Applying the Message Meaning rule for public/private keys:
since D believes PuA and Dsees { A <> D } PrA
then D believes A said { A<> D)

Applying the nonce verification rule:
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Proof of Authentication

since D believes fresh ( A & D ) and D believes ( A said (A« D))

then D believes ( A believes (A © D))
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Appendix B

Dynamic Security Policies

This appendix lists some examples of dynamic security policies with references,
some of which are referred to in the main chapters of this thesis. The list of
potential policies to support state-dependent access control and the concept of
backing is vast, however this section concentrates on interesting medical and
financial examples. The one thing that all these examples have in common is that
they cannot be conveniently or accurately expressed and enforced using
conventional access control techniques (if at all).

Security Policies that are State Dependent

Pl. [AND96] “[In access control lists] groups may be used instead of names”
... “Some extra restrictions may be needed in defining groups;
for example, the group might be any clinical staff on duty in the
same ward as the patient.”

P2. [AND96] “No-one shall have the ability to delete clinical information
until the appropriate time period has expired.”

P3. [EDW96] Anexample policy for controlling when a principal is
interrupted: “Don’t let people bother me when I'm working on
my thesis”

P4. [HHIS94] Regarding legal arrangements between partners running a
company: “The agreement may state that a particular partner
(with limited experience) only has authority to make contracts
within certain limits.”

P5. [HHLS94] Regarding the right of shareholders in a company to call an
Extraordinary General Meeting: “Members holding at least 10
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Dynamic Security Policies

per cent of the company’s shares have the right to requisition a
meeting”

P6. [KA81]  “Tellers can’t cash personal cheques”

P7. [KA81]  “Bank tellers should not be able to process transactions that
involve themselves.”

P8. [TIN90]  “A nurse under the supervision of a physician may access the
patient’s medical record for medical treatments and other
medical care activities. He or she can only access the portion of
the medical record and data which is relevant to the nurse’s
duty and functions.”

Security Policies that require Principals to Obtain Prior Backing

P9. [DRAS6] “A clinician must obtain the backing of a majority of a patient's
carers in order to prescribe new treatment.”

P10. [GS86]  Policy for installing new entries in a group calendar:
“Participants vote on the alternatives” ... “If one of the
proposals is confirmed, it is permanently installed in the
calendar.”

P1ll. [HHLS94] In a company that is a partnership: “Unless the agreement
provides to the contrary, all partnership decisions will be made
on the basis of a simple majority.”

P12. [HHLS94] Also in a company that is a partnership: “decisions on changing
the nature of the business or on introduction of a new partner
require unanimity.”

P13. [HHLS94] In a private company with shareholders: “A special resolution
requires a 75 per cent majority {of shareholders] for it to be
passed.”, “An ordinary resolution is passed with a simple

majority”, “An elective resolution is only carried if it receives
unanimous consent.”

Pl4. [KA8L]  “A teller must seck permission to adjust a special purpose bank
account for reconciling differences between the actual amount
of money taken and the recorded amount (should any
discrepancy occur).”
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Dynamic Security Policies

P15

P16

P17

P18

. [KA81]

. [MON]

. [TIN9Q]

. [MM94]

“The person opening mail and making records of received
cheques must get his records checked before the data becomes

part of the system.”

“Certain treatments can only be given with the consent of the
patient and a second opinion.”

“A consulting physician or psychiatrist can read a patient’s
record by obtaining the patient’s permission.” Note that in the
context of this paper (under Connecticut law) a patient does not
himself have the right to read their own medical record and as a
consequence this policy could not be enforced through
delegation.

From the Abortion Act 1967 (UK Law) “A person shall not be
guilty of an offence under the law of abortion when termination
is performed by a registered medical practitioner and two
registered medical practitioners have formed the opinion in
good faith that the continuance of the pregnancy would involve
risk, greater than if the pregnancy was terminated ... subject to
the pregnancy not exceeding its 24th week.”
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Appendix C

Formal Definition of Dynamic ACL Syntax

The following description uses BNF to more formally describe the syntax of the
Access Control Lists initially presented in Chapter 9. The language could be used
for example to construct ACLs such as the following:

Patient X Medical Record:
void addNotes (String s): Doctor;
String getPrescriptionHistory{): Doctor, Nurse;
void deleteNotes{int index)
“delete the medical record of patient $index”:

Doctor and exactly(l, Doctor),

void closeRecoxrd(): Noctor and (Teoday.year(}-this.coreationYear() > 80);
Design D:
void moveWall (int distance): Manager, Engineer and (distance <= 5);

The BNF notation below uses the symbol ‘| © to represent alternatives and the
curly braces * { *and ‘ } ‘ to denote zero or more repetitions of the constructs
within. Other symbols such as semicolons, commas and curved braces are part of
the language.

For brevity identifiers are not defined but can be assumed to be the same as
identifiers found in imperative programming languages, i.e. strings of characters
without spaces. Also the constructs that must be taken from the programming
language that defines the objects being protected (in this case Java) are not
defined. The reader is referred to a description of the Java language for these
details [SUNO96].
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Formal Definition of Dynamic ACL Syntax

ACL

Method-List

Entry-List
Entry

NatLang-Description
Element
Boolean-Expression
Expression
Object-Method-Identifier
Principal-Identifier

" Role-Identifier

Object-Identifier

Parameter-Identifier

Object-Identifier : Method-List

{ Java-Method-Signature : Entry-List 3 } |

{ Java-Method-Signature
NatLang-Description: Entry-List 5 }

Entry | Entry, Entry-List

Element | ( Entry ) | Entry and Entry

“ String " |

“ { String $Java-Parameter-Identifier } ”

Principal-Identifier | Role-Identifier |

Boolean-Expression

Expression Boolean-Operator Expression

Number | Object-Method-Identifier |

Parameter-Identifier |

Expression Operator Expression

Java-Method-Identifier

Object-Identifier . Java-Method-Identifier

Identifier

Identifier

Identifier

Identifier
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