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Abstract

This thesis investigates issues related to gender inequalities and scarring effects in

school to work transitions.

The first chapter analyses the gender earnings gap among Italian college graduates at

the beginning of their careers. Thanks to the richness of the dataset used I am able

to control for a large set of variables related to individuals’ educational and family

background, as well as personality traits. The main finding is that the content of

the college degree course is the most significant variable in explaining the earnings

gender differentials of young workers. In particular I show that female sorting in

college majors characterised by a low maths content explains between 13 and 16% of

the earnings gender gap.

Motivated by this result, in Chapter 2 I investigate the determinants of gender gaps

in STEM (science, technology, engineering and mathematics) graduation rates, with

an emphasis on family, cultural and school influences. I show that half of the gap is

attributed to the gender difference in maths and science content of the high school

curriculum. The results indicate that in Italy the issue of the gender gap in STEM

graduation has its roots in a gendered choice that originates many years before.

The final chapter analyses the extent to which the mismatch of demand and supply

of skills that young workers face when they enter the labour market upon completing

education affects their careers. Regression results show that there is a long lasting

negative effect of these initial conditions on labour market outcomes. The evidence

is suggestive of a ‘trickle down unemployment’ phenomenon, namely that high-skill

workers try to escape strong competition from their high-skill peers by taking jobs for

which a lower level of education is required, moving down the occupational ladder.
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Chapter 1

The Gender Earnings Gap

Among Young Italian Graduates

1.1 Introduction

Last century has been characterised by a striking increase in women’s participation to

the economy. However, gender differentials in the labour market are still significant

and persistent: important gaps remain in earnings and hours worked, and women are

under-represented in high-status/high-income occupations. In 2016 the gender wage

gap across OECD countries was 14.07% and the labour force participation of women

was only 51.9% as opposed to 69% for men.1

Several studies have tried to investigate the determinants of the remaining gaps.

The explanations explored are related to: (i) differences in maths ability and human

capital; (ii) children and home production (workforce interruptions for motherhood,

unequal division of housework and care responsibilities); (iii) occupational segrega-

tion; (iv) pay discrimination; (v) differences in preferences and psychological traits.

In this study I investigate the gender earnings gap among recent Italian col-

lege graduates at the beginning of their careers, with an emphasis on explanations

related to the sorting of females and males into different fields of study and to gen-

der differences in psychological traits. In Italy the gender pay difference in 2014

was approximately 5.6% of males median annual earnings, and women’s employment

1Source: OECD (2015a). The gender wage gap is defined as the difference between median annual
earnings of men and women relative to median annual earnings of men.

1



Chapter 1 2

rate was 17.1 percentage points lower than the one of men. Figure 1.1 plots the

employment and pay gap of the EU-14 countries in 2014 obtained from the OECD

(2015a): the relatively lower wage gap in Italy is related to the sizeable selection into

employment of women, as indicated by the relatively higher employment gap.

Many studies from the economics literature document large differences in labour

market outcomes across college majors. Altonji et al. (2012) review the literature on

the returns to college curriculum and show that the evidence on the heterogeneity

of returns across majors has remained remarkably consistent over time, with some

majors such as engineering commanding a high premium and others including hu-

manities, social sciences and education further behind.

The sorting of women in less remunerative fields has been investigated as one

of the factors accounting for the gender gap in earnings. Flabbi (2012) examines the

impact of educational choices of females and males on their respective labour market

outcomes for 14 OECD countries, and demonstrates that, when not controlling for

job characteristics, gender differences in the field of study explain approximately 16%

of the gender gap in earnings. Moreover, he shows that the returns to the field of

study are different between females and males and that this difference is the most

important component of the overall unexplained part of the earnings gap.2 Card and

Payne (2017) focus on differences in graduation rates in STEM (science, technology,

engineering and mathematics) fields and illustrate that these explain between 1/5

and 1/10 of the wage gender gap among Canadian full time workers.

The evidence on the role of the field of study in explaining the gender earnings

gap of Italian workers is mixed: Anelli and Peri (2015a) analyse a sample of indi-

viduals from high quality college preparatory high schools in a large city in northern

Italy and find that up to one third of the gender gap in earnings is attributable to

the choice of major. Their evidence is contrasted by results from Piazzalunga (2018),

illustrating that in a sample consisting of one cohort of Italian college graduates at

the beginning of their careers, the inclusion of academic variables (including field

of study) in the wage equation does not reduce the magnitude of the gender gap

2He finds that, for males, choosing any field which is not humanities increases the wage of a
significant amount, while, for females, only graduating from social sciences significantly increases
the wage relative to humanities.
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coefficient remarkably.

I contribute to this literature by extending the analysis to a bigger sample, which

covers 65% of the entire population of college graduates from the cohorts 2010 to 2012.

More importantly, thanks to the richness of the dataset used that I complement with

administrative data on the supply of higher education from the Italian Ministry of

Education (MIUR), I am able to characterise precisely the content of the specific

degree course from which students in the sample graduated.

Furthermore, I add an important element to the analysis of the gender earnings

differences, by being able to investigate the role of aspects related to individuals’

personal traits. Recent studies have started analysing the difference in psychological

traits and preferences between females and males. The findings from these studies

indicate that women are more risk averse and less willing to compete, more so-

cially minded and more altruistic (see Booth and Nolen (2009), Gneezy et al. (2003),

Niederle et al. (2013), Andreoni and Vesterlund (2001), Eckel and Grossman (1998)).

Most of the evidence on the gender differences in personal traits comes from exper-

imental settings, while the evidence on their impact on labour market outcomes is

less rich. One example is Fortin (2008), who investigates the impact of non-cognitive

traits – including the importance of money/work and the importance of people/family

– on wages and on the gender wage gap among young workers and finds that these

traits have a significant, although modest, role in accounting for the gender wage

gap. I contribute to this scarce literature by investigating the role of psychological

traits in accounting for gender differences in labour market outcomes. I am able to

extract information on workers’ personal traits through answers to questions related

to preferences for different aspects of a job.

I estimate a wage equation including a rich set of variables: demographic vari-

ables; variables measuring human capital accumulated through education, from high

school to college; measures of the socio-economic background; and measures of per-

sonality traits. The raw gender gap in the average monthly wages in my final sample

is 25.7%, going down to 14.6% when restricting to full-time workers. The results of

my analysis show that the variables related to the content of the degree course play

the biggest role in accounting for the gender difference in earnings conditional on
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full-time status. Approximately one fourth of the gender gap in monthly wages three

years after graduation is explained by gender differences in the field of study at col-

lege. Most interestingly, I find that this result can be attributed to a specific feature

of the university courses that females are less likely to choose, which is the maths

content. Females sort into degree courses with a lower maths content, which are also

the highly remunerative ones. Furthermore, I find that differences in psychological

traits have a modest but significant role in explaining the gender gap in earnings.

On the other hand, the results indicate a negligible role of family characteristics and

high school choices, over and above effect they can already have on the major choice.

The remainder of the chapter is organised as follows. Section 1.2 presents the

uniquely rich dataset on college graduates used for the analysis, and gives details on

the characteristics of the final sample. The empirical methodology used for analysing

the gender earnings gap is described in Section 1.3. Section 1.4 presents and discusses

the results from the wage equation estimation and the Oaxaca decomposition of the

female-male earnings differential. Section 1.5 concludes the chapter.

1.2 Data and Final Sample

1.2.1 The AlmaLaurea dataset

In order to analyse the determinants of the gender earnings gap among recent college

graduates, I exploit a uniquely rich and largely unexplored dataset provided by Al-

maLaurea, an inter-university consortium collecting data on students who graduate

from the universities that are part of the consortium.

AlmaLaurea’s original institutional objectives are twofold: first, to provide mem-

ber academic institutions with reliable information on their students by managing a

database that collects information on graduates; second, it aims at facilitating the

graduates’ labour market transition by managing a service that gives firms electronic

access to graduates’ curriculum vitae.

Data on graduates are drawn from two different sources: first, academic institu-

tions provide official data on students’ demographic information and on their univer-

sity careers. The administrative variables originated from this source are: students’
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date of birth, municipality of birth and of residence at time of university enrolment,

high school attended and final grade, year and course of enrolment in university,

university GPA, date of discussion of the dissertation and graduation grade. Second,

upon graduation students complete a survey providing several pieces of information,

among which: family characteristics, satisfaction from the university experience, level

of other skills including language and IT skills, study experiences abroad, other train-

ing experiences, intention to continue studies, and aspirations about the future career.

All these variables form the dataset referred to as Graduates’ Profile. The historical

series of this survey contains data on graduates’ cohorts from 2004 to 2015.

With the goal of monitoring graduates’ access to the labour market, AlmaLaurea

follows graduates one, three and five years after graduation. The survey is entitled

Graduates’ Employment Conditions and provides information on: graduates’ employ-

ment status, time span between graduation and first job, effectiveness of the degree

for finding a job, characteristics of the current job including salary, type and loca-

tion of job, and satisfaction with the job. Graduates with an undergraduate degree

are interviewed only one year after graduation, and, in case they pursue a master’s

degree, again at graduation and 1, 3 and 5 years after graduation.

Participation in the survey from universities is voluntary: it implies the payment

of a one-off membership fee and a yearly payment proportional to the total number of

graduates, in exchange for the services provided by the consortium. Throughout the

years more universities progressively took part in the survey. I will focus on students

who graduated from 2010 to 2012 from the 56 universities surveyed every year in the

period considered. The Italian higher education system in this period was composed

of 89 institutions3, including 11 long-distance-learning institutions, 3 universities

for foreigners and 75 traditional universities, both public and private. Figure 1.2

illustrates the geographical distribution of the Italian universities (excluding the long-

distance-learning institutions) highlighting those that are in the AlmaLaurea sample.

Some important institutions are not part of the sample in the period considered:

namely, the two most important state universities, the technical university and the

two major private universities in a major city in the north-east of the country (Milan);

3Excluding one institution accredited in 2011.
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the biggest university in a major city in southern Italy (Naples); and a very important

university in Sicily. In table 1.1 I report the distribution of the universities in the

population and in the AlmaLaurea sample across various dimensions. It can be

noticed that there are no significant differences in terms of size of the universities

or field of study of the courses offered by the institutions. The AlmaLaurea sample

contains no long-distance-learning institutions, while public universities are more

represented.

Overall across all cohorts the AlmaLaurea sample covers approximately 65% of

the population of the Italian college graduates; table 1.2 reports the distribution of

students across fields of study by gender in the population and in the sample, and

demonstrates that the two distributions are very close.

Once a university takes part in the consortium, it provides administrative in-

formation on the universe of its graduates. Response rate to the questionnaire at

graduation is very high: between 91 and 93% of students complete the survey each

year. Three years after graduation the response rate is still remarkably high, ranging

between 74 and 80%. In table 1.3 I report the response rate at graduation and three

years after, by graduation cohort and type of degree.

For the purpose of my analysis I use administrative and survey data from Al-

maLaurea Graduates’ Profile on master and single-cycle college graduates from co-

horts 2010-2012, combined with data on employment status and earnings three years

after graduation from the Almalaurea Graduates’ Employment Conditions. From

the administrative variables I take demographic information – i.e., gender, year and

municipality of birth – and information on the educational path, from high school

– i.e., high school track4, institution attended and final grade – to college – i.e.,

university attended, degree course, performance measured by GPA, final graduation

grade, and experiences of study abroad. From students’ answers to the questionnaire

I extract other variables, namely: other skills including number and level of knowl-

edge of foreign languages and number of IT tools in which they are skilful; family

4In Italy, the secondary education system is organized in several different study paths. Students
can choose among: a ‘scientific’ high school offering students a maths- and science-intensive cur-
riculum; humanities-intensive high schools including ‘classics’, ‘education’, ‘languages’ and ‘artistic’
tracks; ‘technical’ high schools offering specialisation in technological subjects, either with a focus
on business, tourism or agriculture (non-STEM) or with a focus on industrial construction and
preparation for surveyors (STEM).
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characteristics, i.e., the level of education of father and mother and their last occupa-

tion; students’ preferences for the future work career, through answers to questions

about how much they value aspects of the job such as salary and career prospects,

adherence to cultural interests, stability of the job position and availability of free

time; their employment status three years after graduation and, if employed, their

full/part time status, monthly wage and the location of the job (Italian province).

1.2.2 Final sample: selection and summary statistics

The overall number of masters’ and single-cycle college graduates from 2010-2012

cohorts is approximately 220,000, of which 71% are interviewed both at graduation

and 3 years later. I focus on individuals born in Italy and residing in Italy upon

graduation and who graduated between 23 and 31 years old, excluding 8% of the

observations. 66% of these individuals are employed three years after graduation.

The final sample is made by 71,220 employed workers for whom there is information

on all the variables of interest, of which 76% (53,851) are full time workers.

Table A1 in the appendix summarises the effects of sample selection on the

characteristics of the final sample. The first important selection is based on the

response to the surveys, both upon graduation and three years after. Administrative

variables – i.e., gender, age, university and high school career variables – are available

for the entire population of college graduates from the 56 universities surveyed by

AlmaLaurea (column (1)). Females are the majority of the population of college

graduates (60%). Respondents to the surveys (column (2)) do not appear to be

selected according to any of these variables. The sample of interviewed students

selected based on place of birth and residence and age (column (3)) is not significantly

different from the initial population in any of the administrative variables, and from

the sample of respondents in any of the survey variables – i.e., measures of skills,

family characteristics and preferences.

The second important selection is in excluding individuals who are not em-

ployed, both the ones looking for a job and the ones not participating to the labour

market (respectively 19% and 16%).5 The characteristics of the sample of employed

5The AlmaLaurea definition of employed workers excludes individuals who are undergoing some
academic or professional training (post-graduate courses including PhDs, internships and trainee-
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individuals are presented in column (4). Females are only slightly less represented,

indicating that labour market attachment among recent college graduates is not dra-

matically different between females and males. The employment gender gap in my

sample is of 7.7 percentage points, less than half of the gender gap in employment

measured by the Italian National Institute of Statistics (ISTAT) for all levels of

education, and lower than the same measure for all individuals (not only recently

graduated) with at least a college degree (approximately 10 percentage points in the

years 2013-2015). Employed individuals are more likely to have graduated from an

engineering course, while health graduates are less represented relative to the ini-

tial sample; this last result is most likely driven by medicine graduates undergoing

residencies, who, according to the AlmaLaurea definition of employment status, are

considered as non-employed. Among employed individuals the distribution across

high school tracks is slightly changed: individuals who completed a technical high

school – in particular offering preparation in STEM fields – are more represented,

while the opposite is observed for individuals who attended the high school track

focused on classics. Employed individuals are also slightly better selected in terms of

IT skills, but negatively in terms of GPA. Finally, it seems that preferences are re-

lated to the employment status, with employed people valuing more career prospects

and less cultural interests and free time. In the sample of full-time workers (column

(5)) the selection based on gender and field of study is even stronger: females are

only 52% of this group of workers, and engineering graduates are more represented

while there are less graduates from education, humanities and social sciences.

Overall, the selection bias based on observables does not have a clear direction:

employed individuals are better selected in some characteristics, but other variables

suggest they are endowed with worse skills. It is worth noticing that characteristics

related to the preparation in science and technology, from the the high school track

to the field of study in college and the IT skills, appear to be positively correlated

with being employed.

In order to investigate whether there are strong differences in the selection into

ships, residencies for medicine graduates), even if paid, contrary to the definition of the Italian
National Institute of Statistics (ISTAT) that includes this group in the employed population. In the
AlmaLaurea sample, this group of workers represents approximately 70% of all the individuals who
are not working and not looking for a job.
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employment across genders, I look at the characteristics of employed and not em-

ployed individuals in the samples of females and males, that are presented in table

A2 in the appendix. Men are much more likely to work, and to work full time (86%

vs 68% for women). For both genders, employed individuals are more likely to come

from engineering and less from social science, science and maths; they have slightly

higher GPA in college and better IT skills and are positively selected in terms of

socio-economic background. Some differences between the two sexes emerge: (i) men

who studied humanities are less likely to be employed but this is not observed for

females; (ii) men who completed a technical STEM high school are more represented

in the sample of employed, but this is not true for females; (iii) contrary to what

expected, unemployed females have higher preferences for salary and career aspects.

The final samples are composed by employed workers or full-time only workers

for whom there is information on all the variables of interest (respectively columns

(6) and (7) of table A1). Table 1.4 presents summary statistics for both samples,

separately for females and males. At university females are more represented in

education, social sciences and humanities, while less in science, maths and especially

in engineering; at high school they are more likely to have completed humanities

rather than science-intensive and technical STEM tracks. On average, women have

better college and high school performances, they are more likely to undergo post-

graduate training and to have done experiences abroad during college (in particular in

the full-time workers sample), they speak more languages, but have lower knowledge

of IT tools. On the other hand, men have slightly better family characteristics.

Finally, females give lower importance to career prospects and higher importance to

job stability and adherence of the job to cultural interests.

Overall, it emerges that females, on average, are endowed with better skills, but

they accumulate less human capital related to science and technology, and they are

endowed with ‘soft’ skills related to lower competitiveness and higher social minded-

ness.
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1.3 Methodology

I estimate a wage equation in which wage is function of demographic variables, human

capital measures and measures of preferences, as well as family characteristics. I

estimate the following specification:

Y = Fβ1 +Xβ2 +Hβ3 + Pβ3 + Sβ4 + u [1.1]

where Y is average monthly wage of each student, F is a binary variable taking value

1 for female students, X is a vector of demographic control variables, H is a vector

of variables measuring human capital, P is a vector of variables measuring prefer-

ences and S is a vector of socio-economic background variables. All the parameters

are estimated through OLS; the parameter of interest, β1, identifies the conditional

wage differentials between men and women when controlling for other independent

variables.

In order to control for gender differences in returns to the different characteris-

tics, I perform an Oaxaca decomposition of the earnings gender gap, which decom-

poses the estimated female-male difference in earnings in a part that is ‘explained’

by group differences in characteristics and a part given by differences in the returns

to the same characteristics. The difference in the expected value of the outcome

variable Y among females and males is implemented in the following way:

E(YF )− E(YM ) = {E(ZF )− E(ZM )}′ γM + E(ZF )′(γF − γM ) [1.2]

where Z denotes a vector containing all the predictors and a constant and γ contains

the slope parameters and the intercept. The difference in characteristics is weighted

by males coefficients, while the difference in coefficients is weighted by females char-

acteristics.

1.3.1 Content of degree courses

Exploiting the richness of the AlmaLaurea dataset, I am able to control for detailed

variables related to what each student in the sample studied in college. College ma-
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jors can be classified in 26 broad fields of study according to the OECD classification

of Fields of Education and Training - Foet1999. Within each field, smaller groups

of degree courses can be distinguished, indicated as ‘classes’ of degree. Most impor-

tantly, AlmaLaurea records from the different institutions the name of the precise

degree course from which the student graduated. I complement this information

with a unique dataset made available by the Italian Ministry of Education (MIUR)

on the supply of higher education in Italy, to characterise precisely the content of the

course each student graduated from. In particular, the dataset contains a list of all

courses offered by each single university each year (since 2001), and for each of them

it provides detailed information on the content in terms of subjects studied. The

information on the content comes in form of the number of credits in the European

Credit Transfer System (ECTS) that the students have to be awarded in each of 370

different ‘disciplinary sectors’.

I use this information to characterise each degree course with an index indicating

the intensity of the maths content. This choice is motivated by the idea that difference

in returns across college majors can be attributed to difference in maths ability. Some

evidence in this direction comes from Paglin and Rufolo (2016), who show that 82%

of the variance across college majors in entry-level wages is explained by the average

GRE-maths scores by major. They show that fields with a high proportion of women

are lower paying because the human capital in these fields can be produced with “less

of an important scarce attribute (quantitative ability)”, and vice-versa.

Hence, I classify each of the 370 disciplinary sectors as maths-intensive or non

maths-intensive and I construct a maths intensity index, which is the proportion of

maths-intensive credits out of all credits for each course. This index is obtained for

more than 4,000 unique undergraduate, master and single-cycle university courses

offered by single higher education institutions each year. Figure 1.3 illustrates the

average and the standard deviation of the index across all courses offered in 2010

within each of the 26 broad FOET1999 fields of study. There is a lot of heterogeneity

across fields of study: courses in humanities and education have on average maths

content close to zero, while for courses in maths & stats, physics or engineering almost

the totality of subjects studied is maths-intensive. The standard deviations indicate
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that even within each field there is a high level of heterogeneity across different

specific degree courses.

I will merge these administrative data from the MIUR with the Almalaurea

dataset to characterise the degree course attended by each student in its maths con-

tent.

1.4 Results

Table 1.5 reports the female coefficients estimated in different specifications where

the included types of controls vary. The unadjusted gender gap in average monthly

wages is 25.7% (column (1)), which does not change considerably when controlling

for demographic variables including municipality of birth and graduation cohort and

for province of job (column (2)). This value is lower than other estimates of the

gender earnings gap in Italy: for the same period (2013 to 2015), the Global Gender

Gap reports indicate that overall in the full population of workers the gender gap

in earnings (women-men difference as ratio of men earnings) was, on average, 43%;

Anelli and Peri (2015a) find that the annual earnings of female college graduates

in their 30’s and 40’s observed between 5 and 15 years after graduation were 37%

lower than the ones of males. The difference with this evidence is driven by the fact

that my results are obtained for a very homogeneous sample of workers in terms of

educational attainment, age, and potential labour market experience. Despite this,

I still find a sizeable gender gap: highly educated female workers at the beginning

of their careers already earn considerably less than their male peers. This result is

in contrast with other evidence showing that the wage gap is small upon entrance

in the labour market and builds up later in life, especially because of lower hours

worked mainly attributable to career interruptions for childrearing (see for example

Bertrand et al. (2010) for US).6

Controlling for full-time status, as expected, makes the coefficient drop signifi-

cantly to 13.7% (column (3)).

In columns (4) and (5) high school controls – grade and curriculum – are added:

6Bertrand et al. (2010) find that MBA graduates in the US show no wage gaps upon graduation,
but large gaps build over first 10 years of labour market experience, mostly due to the presence of
children.
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the coefficient of interest drops by approximately 8%, and slightly more when high

school fixed effects are included. Because females perform better in high school with

respect to their males peers, this effect must be driven by differences in the high

school curriculum chosen. Since here we are not controlling for academic variables, it

has to be considered that part of this effect of the high school experience on earnings

could be mediated through an effect on college choice. Academic variables measuring

performance at university and level of other skills and human capital accumulated

do not account for much of the earnings gap (column (6)).

Specifications in columns (7), (8) and (9) control for the subjects studied at

college, respectively from the broad 26 fields of study to the 100 classes of degree and

finally the approximately 3,300 different specific university courses offered. Variables

related to the college major produce a significant drop in the gender gap coefficient,

from 12% up to 25% when the courses fixed effects are included. Differential sorting

of females and males in college courses is an important determinant of the gender

gap in earnings. The most interesting result is that approximately the same drop

is produced when controlling for the maths intensity of the 3,300 university-degree

courses (column (10)), suggesting that the characteristic of degree courses relevant

for explaining gender differences in earnings is its maths content.

In the two final columns I add respectively controls for family characteristics

and variables measuring preferences: with the former, which proxy for socio-economic

status, the coefficient of the gap barely changes, indicating a small role of the family

influence on earnings over and above the impact it can already have on high school

and college choices. Preferences have a modest impact on the gender gap coefficient;

this result may suggest that the effect of these ‘soft skills’ on labour market outcomes

goes through their impact on educational choices, while the effect on earnings on top

of the educational choices is small.

Results from the same estimations implemented for the sample of full-time work-

ers lead to the same conclusions (table 1.6).

Taking into consideration that controlling for high school fixed effects, as well as

for degree courses fixed effects, does not make the coefficient of interest significantly

change, my preferred specifications include high school curriculum in 8 categories,
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and subjects studied at college respectively as 100 classes of degrees or as maths

content index. Consequently, I will perform an Oaxaca decomposition of the female

coefficient estimated in these two specifications, both for the full sample and the

full-time workers sample.

Results from the Oaxaca decomposition are reported in table 1.7. For both spec-

ifications in both samples, the gender earnings gap is accounted for in approximately

the same proportion by differences in characteristics and differences in coefficients.

Columns (1) and (3) indicate that the variables related to the subjects studied at col-

lege and the preferences constitute the bigger portion of the part of the gap explained

by differences in characteristics. Females sort in degree courses with lower returns

on the labour market, and have preferences for aspects of the job that are negatively

associated to higher earnings. In particular, the results from the Oaxaca decomposi-

tion performed on the specification that includes the maths content of degree courses

(columns (2) and (4)) indicate that the female-male difference in maths intensity of

the college course attended accounts for approximately 15% of the earnings gap, up

to 27% in the full-time workers sample. When looking at the coefficients terms, the

results indicate that the only relevant factor is the difference in returns to the maths

content of the courses: even conditional on the maths intensity of the degree course

chosen, females have much lower returns on the labour market.

The results of my analysis indicate that, even in a sample of workers relatively

homogeneous in terms of potential work experience, age and human capital, I am able

to explain a considerable part of the remaining gender gap in earnings. I am able

to control for detailed variables not available in common surveys measuring factors

that other studies failed to take into account, in particular detailed human capital

variables generated very early in life – from high school choices made at age 14 to

college major choices made at 18 years old – and variables related to personality

traits.

1.5 Concluding Remarks

This study analyses the gender gap in earnings among Italian recent college graduates

who are at the beginning of their career, controlling for a rich set of variables measur-
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ing students’ educational experience, their socio-economic background and aspects

of their personalities.

Findings indicate that in Italy there is a significant gender gap in monthly

wages among college graduates already three years after graduation, despite the fact

that among this highly educated group women do not show a significantly lower

attachment to labour market relative to men. Moreover, these workers are at the

beginning of their careers, and explanations as career interruptions due to childrearing

do not apply yet.

Thanks to the richness of the dataset used, I am able to control for a set of

variables that are not available in common surveys and were before omitted from

wage equation estimations, in particular related to the content of the college degree

course and aspects related to personality.

The study shows that women are better endowed in terms of human capital,

i.e., they perform better both in high school and college and tend to have higher

level of other skills, but this does not translate in an advantage in the labour market.

On the other hand, females have characteristics negatively associated to wages. In

particular, they graduate less from maths-intensive high remunerative fields and are

characterised by personal traits negatively associated with future wages. Even con-

ditional on graduating from a degree course with high maths content, women have

much lower returns to this choice.

By showing that college major is the most significant variable in explaining

gender earnings gap, my results suggest the importance of investigating more in

depth the forces driving differences in educational choices in college between female

and male students.
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Figures and Tables

Figure 1.1: Gender pay and employment gap across EU-14 countries

Notes: The figure plots the employment gender gap and gender wage gap for 14 OECD countries.

The gender wage gap is unadjusted and is defined as the difference between median annual earnings

of men and women relative to median annual earnings of men. Data refer to full-time employees and

self-employed. Source: OECD (2015a).
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Figure 1.2: Map of the Italian higher education system

Notes: The figure plots the 78 (non long-distance-learning) Italian higher education institutions

existing in 2015, by geographical location and distinguishing those not surveyed by AlmaLaurea.



Chapter 1 18

Figure 1.3: Fields of study and their maths content

Notes: Average maths content index across all degree courses within each of the 26 FOET1999 fields

of study. Standard deviations are reported in parentheses.
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Table 1.1: AlmaLaurea Sample: Universities

Distribution of Universities (% over total)

AlmaLaurea sample All Universities

Size (n. students)

<10000 41.07 43.82

10000-20000 21.43 22.47

20000-40000 25 21.35

>40000 12.5 12.36

Type

Long-Distance-Learning 0 12.4

Private 8.93 11.2

Public 91.07 76.41

Courses offered by field

Education 9.6 9.86

Humanities and Arts 14.9 14.08

Social sciences, business and law 16.56 18.08

Science, Maths and Computing 13.58 12.44

Engineering, Manufacturing 12.91 12.68

Agriculture 7.28 7.28

Health and Welfare 13.25 13.15

Services 11.92 12.44

Notes: Data on the population of Italian universities and number of graduates are taken from the

Office of Statistics of the Italian Ministry of Education.
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Table 1.2: AlmaLaurea Sample: Students

Distribution of students by gender and field of study (% over total)

Field of study AlmaLaurea sample All Universities

Males Females All Males Females All

Education 0.8 6.0 3.9 0.8 5.8 3.7

Humanities and Arts 9.5 20.3 16.0 8.3 19.2 14.7

Social sciences, business and law 32.2 34.7 33.7 34.9 35.8 35.4

Science, Maths and Computing 10.2 7.7 8.7 9.4 7.9 8.5

Engineering and Manufacturing 29.2 9.9 17.6 29.3 10.4 18.3

Agriculture 2.7 1.6 2.0 2.6 1.6 2.0

Health and welfare 11.8 17.4 15.1 10.6 16.7 14.1

Services 3.7 2.5 3.0 4.0 2.6 3.2

Notes: Data on the population of Italian graduates are taken from the Office of Statistics of the

Italian Ministry of Education.
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Table 1.3: Response Rate by Graduation Cohort and Type of Degree

Panel A: Response rate at graduation (%)

Year of graduation Type of degree

Undergraduate Single cycle Master Total

2010 92 90 91 91

2011 94 91 92 93

2012 93 91 90 92

Total 93 91 91 92

Panel B: Response rate three years after graduation (%)

Year of graduation Type of degree

Undergraduate Single cycle Master Total

2010 - 78 80 80

2011 - 76 76 76

2012 - 74 75 74

Total - 76 77 77

Notes: The sample consists of all college graduates from the 56 universities surveyed by AlmaLaurea

every year from 2010.
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Table 1.4: Summary Statistics

(1) (2) (3) (4)

VARIABLES Males Females FT Males FT Females

Age 29.43 29.14 29.39 29.04

(1.786) (1.713) (1.764) (1.673)

Full time 0.859 0.684

(0.348) (0.465)

Monthly wage 1,312 1,042 1,402 1,213

(555.2) (490.3) (514.0) (438.9)

Field of Study

Education 0.00282 0.0300 0.00218 0.0202

(0.0531) (0.170) (0.0466) (0.141)

Humanities and Arts 0.0665 0.186 0.0487 0.162

(0.249) (0.389) (0.215) (0.368)

Social sciences, business and law 0.335 0.417 0.336 0.421

(0.472) (0.493) (0.472) (0.494)

Science, Maths and Computing 0.0856 0.0708 0.0855 0.0734

(0.280) (0.256) (0.280) (0.261)

Engineering and Manufacturing 0.385 0.141 0.421 0.173

(0.487) (0.348) (0.494) (0.378)

Agriculture 0.0294 0.0232 0.0290 0.0252

(0.169) (0.151) (0.168) (0.157)

Health and Welfare 0.0778 0.119 0.0649 0.113

(0.268) (0.324) (0.246) (0.317)

Services 0.0178 0.0135 0.0134 0.0114

(0.132) (0.115) (0.115) (0.106)

Academic variables:

Graduation grade 106.5 108.0 106.4 107.9

(6.656) (5.940) (6.659) (5.997)

Late degree (index) 0.269 0.233 0.268 0.223

(0.382) (0.362) (0.381) (0.356)

GPA 18-26 0.422 0.309 0.428 0.321

(0.494) (0.462) (0.495) (0.467)

GPA 27-29 0.443 0.486 0.448 0.488

(0.497) (0.500) (0.497) (0.500)

GPA 29-30 0.135 0.204 0.124 0.191

(0.341) (0.403) (0.330) (0.393)

Other training ongoing 0.101 0.138 0.0670 0.0808

(0.302) (0.345) (0.250) (0.272)

Other training completed 0.522 0.562 0.538 0.603

(0.500) (0.496) (0.499) (0.489)

Number of foreign languages:

0 0.273 0.257 0.270 0.245

(0.446) (0.437) (0.444) (0.430)

1 0.538 0.422 0.548 0.424

(0.499) (0.494) (0.498) (0.494)

2 0.167 0.259 0.162 0.267

(0.373) (0.438) (0.368) (0.443)

3 0.0204 0.0589 0.0188 0.0599

(0.142) (0.235) (0.136) (0.237)

4 0.00143 0.00328 0.00119 0.00381

(0.0378) (0.0571) (0.0344) (0.0616)

IT skills (number of IT tools):

0 0.0160 0.0292 0.0142 0.0253

(0.126) (0.168) (0.118) (0.157)

1-2 0.0807 0.149 0.0722 0.137

(0.272) (0.356) (0.259) (0.344)

3-4 0.276 0.383 0.272 0.387

(0.447) (0.486) (0.445) (0.487)

5 or more 0.627 0.439 0.641 0.451

(0.484) (0.496) (0.480) (0.498)

Period abroad: Erasmus 0.142 0.143 0.144 0.156

(0.349) (0.350) (0.351) (0.362)

(1) (2) (3) (4)

VARIABLES Males Females FT Males FT Females

High School:

Final grade 60-84 0.508 0.379 0.499 0.363

(0.500) (0.485) (0.500) (0.481)

Final grade 84-95 0.235 0.263 0.240 0.262

(0.424) (0.440) (0.427) (0.440)

Final grade 95-100 0.257 0.358 0.261 0.376

(0.437) (0.480) (0.439) (0.484)

Curriculum:

Classics 0.107 0.197 0.0972 0.186

(0.309) (0.397) (0.296) (0.389)

Education 0.00677 0.0883 0.00554 0.0671

(0.0820) (0.284) (0.0743) (0.250)

Languages 0.0177 0.113 0.0157 0.113

(0.132) (0.317) (0.124) (0.316)

Art 0.00810 0.0180 0.00737 0.0163

(0.0896) (0.133) (0.0855) (0.127)

Technical non-STEM 0.116 0.145 0.117 0.159

(0.320) (0.352) (0.322) (0.366)

Technical STEM 0.205 0.0226 0.215 0.0252

(0.404) (0.149) (0.411) (0.157)

Scientific 0.526 0.405 0.528 0.423

(0.499) (0.491) (0.499) (0.494)

Professional 0.0138 0.0108 0.0136 0.0101

(0.117) (0.104) (0.116) (0.0998)

Family characteristics:

Father education:

Less than high school 0.300 0.353 0.301 0.344

(0.458) (0.478) (0.459) (0.475)

High school 0.443 0.437 0.446 0.441

(0.497) (0.496) (0.497) (0.496)

College degree 0.171 0.140 0.166 0.141

(0.377) (0.347) (0.372) (0.348)

College degree science and engineering 0.0861 0.0697 0.0873 0.0745

(0.281) (0.255) (0.282) (0.263)

Mother education:

Less than high school 0.302 0.340 0.304 0.332

(0.459) (0.474) (0.460) (0.471)

High school 0.479 0.473 0.481 0.477

(0.500) (0.499) (0.500) (0.499)

College degree 0.177 0.152 0.173 0.154

(0.382) (0.359) (0.378) (0.361)

College degree science and engineering 0.0415 0.0355 0.0417 0.0374

(0.200) (0.185) (0.200) (0.190)

Social class:

Managerial and professional workers 0.271 0.235 0.272 0.244

(0.445) (0.424) (0.445) (0.430)

Intermediate occupations 0.319 0.317 0.319 0.317

(0.466) (0.465) (0.466) (0.465)

Non professional self employed 0.192 0.222 0.193 0.226

(0.394) (0.416) (0.394) (0.418)

Routine work 0.217 0.226 0.216 0.212

(0.413) (0.418) (0.412) (0.409)

Preferences:

Importance salary 0.546 0.530 0.555 0.537

(0.498) (0.499) (0.497) (0.499)

Importance career prospects 0.681 0.587 0.701 0.612

(0.466) (0.492) (0.458) (0.487)

Importance job stability 0.581 0.692 0.577 0.685

(0.493) (0.462) (0.494) (0.464)

Importance culture 0.368 0.458 0.349 0.436

(0.482) (0.498) (0.477) (0.496)

Importance free time 0.213 0.219 0.203 0.207

(0.409) (0.414) (0.402) (0.405)

Observations 29,399 41,821 25,251 28,600

Notes: The sample consists of masters’ and single-cycle college graduates from 2010-2012 cohorts, born in Italy and residing

in Italy upon graduation, who graduated between 23 and 31 years old, and who are employed three years after graduation.

Columns (3) and (4) refer to full time workers only.
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Table 1.7: Oaxaca Decomposition of the Gender Earnings Gap

All workers Full time sample

Specification (1) (2) (3) (4)

Estimated gender gap -0.257*** -0.146***

(0.00465) (0.00400)

Endowments:

Overall -0.120*** -0.127*** -0.0699*** -0.0645***

(0.00538) (0.00520) (0.00416) (0.00371)

Field of study -0.0396*** -0.0380*** -0.0535*** -0.0397***

(0.00350) (0.00194) (0.00318) (0.00189)

Academic variables -0.00271*** -0.00453*** 0.000685 -0.000959

(0.000985) (0.000920) (0.000790) (0.000794)

Other skills -0.00156 -0.00193 -0.00209 -0.00205

(0.00158) (0.00162) (0.00156) (0.00165)

Attitudes -0.0101*** -0.0118*** -0.00875*** -0.0103***

(0.00111) (0.00117) (0.000971) (0.00105)

HS performance 0.000819 0.00304*** 0.000839 0.00252***

(0.000656) (0.000669) (0.000634) (0.000644)

HS track 0.00655* 0.000623 -0.00686** -0.0135***

(0.00351) (0.00369) (0.00318) (0.00339)

Family characteristics 9.75e-05 -0.000320 -0.000266 -0.000556

(0.000415) (0.000444) (0.000387) (0.000414)

Full time dummy -0.0735*** -0.0745***

(0.00256) (0.00270)

Coefficients:

Overall -0.137*** -0.129*** -0.0761*** -0.0815***

(0.00698) (0.00679) (0.00502) (0.00526)

Field of study 0.0189 -0.0349*** -0.0478 -0.0281***

(0.0732) (0.00366) (0.0786) (0.00410)

Academic variables -0.00224 -0.0562* -0.0118 -0.0436

(0.0298) (0.0313) (0.0313) (0.0335)

Other skills -0.0120 -0.0127 0.00416 0.00591

(0.0313) (0.0327) (0.0347) (0.0372)

Attitudes 0.00607 0.00760 0.00151 0.00228

(0.00675) (0.00743) (0.00670) (0.00742)

HS performance 0.00121 0.00306 0.00597 0.00708

(0.00502) (0.00509) (0.00513) (0.00502)

HS track -0.00279 -0.00317 0.0106 0.0138

(0.0118) (0.0124) (0.0116) (0.0119)

Family characteristics 0.0169* 0.0152 0.0127 0.00661

(0.00981) (0.0105) (0.00994) (0.0105)

Full time dummy 0.0510*** 0.0579***

(0.0103) (0.0111)

Constant -0.214** -0.106** -0.0514 -0.0454

(0.0868) (0.0479) (0.0920) (0.0510)

Observations 71,220 53,851

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Notes: Field of study is 100 classes in specifications (1) and (3) and maths content of degree course

in specifications (2) and (4).
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Appendices

Table A1: Sample Selection

(1) (2) (3) (4) (5) (6) (7)

All 2010-2012 Interviewed Italian 23-32 Employed Full time Final sample Final sample FT

Observations 218,505 154,777 141,828 93,006 70,333 71,220 53,851

VARIABLES

Interviewed at graduation 0.91

Interviewed three years after 0.71

Female 0.60 0.61 0.61 0.58 0.52 0.59 0.53

Age 30.42 30.15 29.26 29.31 29.25 29.26 29.20

Employed 0.67 0.66

Employed full time 0.76 0.76

Average monthly wage 1154 1301

Missing wage 0.04 0.04

Field of Study

Education 0.02 0.02 0.02 0.02 0.01 0.02 0.01

Humanities&Arts 0.14 0.13 0.13 0.13 0.11 0.14 0.11

Social sciences, business and law 0.38 0.38 0.38 0.37 0.36 0.38 0.38

Science, Maths and Computing 0.08 0.08 0.09 0.07 0.07 0.08 0.08

Engineering, Manufacturing 0.20 0.21 0.22 0.27 0.32 0.24 0.29

Agriculture 0.02 0.02 0.02 0.03 0.03 0.03 0.03

Health and Welfare 0.15 0.14 0.13 0.10 0.09 0.10 0.09

Services 0.01 0.01 0.01 0.01 0.01 0.02 0.01

Academic variables:

Graduation grade 107.1 107.3 107.5 107.2 107.0 107.3 107.2

Late degree (index) 0.26 0.25 0.24 0.25 0.25 0.25 0.24

GPA 18-26 0.38 0.37 0.36 0.38 0.39 0.36 0.37

GPA 27-29 0.45 0.46 0.46 0.46 0.46 0.47 0.47

GPA 29-30 0.17 0.18 0.18 0.16 0.15 0.18 0.16

Other training 0.72 0.74 0.66 0.64 0.67 0.65

Number of foreign languages:

0 0.26 0.25 0.25 0.25 0.26 0.26

1 0.45 0.46 0.46 0.47 0.47 0.48

2 0.21 0.21 0.21 0.21 0.22 0.22

3 0.04 0.04 0.04 0.04 0.04 0.04

4 0.00 0.00 0.00 0.00 0.00 0.00

missing 0.04 0.04 0.03 0.03

IT skills (number of IT tools):

0 0.03 0.03 0.02 0.02 0.02 0.02

1-2 0.14 0.14 0.12 0.11 0.12 0.11

3-4 0.33 0.33 0.33 0.32 0.34 0.33

5 or more 0.49 0.50 0.52 0.55 0.52 0.54

Period abroad 0.20 0.21 0.22 0.23 0.22 0.23

continuing
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Table A1 continued

(1) (2) (3) (4) (5) (6) (7)

All 2010-2012 Interviewed Italian 23-32 Employed Full time Final sample Final sample FT

High School:

Final grade 60-84 0.44 0.43 0.42 0.44 0.43 0.43 0.43

Final grade 84-95 0.23 0.24 0.25 0.25 0.25 0.25 0.25

Final grade 95-100 0.30 0.32 0.34 0.31 0.32 0.32 0.32

Final grade missing 0.03 0.02 0.00 0.00 0.00

Curriculum:

Classics 0.19 0.19 0.19 0.16 0.14 0.16 0.15

Education 0.06 0.06 0.06 0.06 0.04 0.05 0.04

Languages 0.07 0.07 0.07 0.07 0.06 0.07 0.07

Art 0.02 0.01 0.01 0.02 0.01 0.01 0.01

Technical non-STEM 0.12 0.13 0.12 0.13 0.13 0.13 0.14

Technical STEM 0.08 0.09 0.08 0.10 0.12 0.10 0.11

Scientific 0.43 0.44 0.46 0.46 0.48 0.46 0.47

Professional 0.02 0.02 0.01 0.01 0.01 0.01 0.01

Foreign school 0.01 0.01 0.00 0.00 0.00

Family characteristics:

Father education:

Less than high school 0.33 0.32 0.32 0.32 0.33 0.32

High School: 0.41 0.42 0.43 0.44 0.44 0.44

College degree 0.24 0.24 0.23 0.23 0.23 0.23

missing 0.02 0.02 0.02 0.02

Mother education:

Less than high school 0.33 0.31 0.32 0.31 0.32 0.32

High School: 0.44 0.46 0.47 0.47 0.48 0.48

College degree 0.21 0.21 0.20 0.20 0.20 0.20

missing 0.02 0.02 0.02 0.02

Social class:

Managerial and professional workers 0.25 0.26 0.25 0.26 0.25 0.26

Intermediate occupations 0.31 0.32 0.31 0.32 0.32 0.32

Non professional self-employed 0.20 0.20 0.21 0.21 0.21 0.21

Routine occupations 0.22 0.22 0.22 0.21 0.22 0.21

missing 0.02 0.02 0.02 0.02

Preferences

Importance salary 0.54 0.54 0.54 0.55 0.54 0.55

Importance career prospects 0.62 0.62 0.63 0.65 0.63 0.65

Importance job stability 0.65 0.65 0.64 0.63 0.65 0.64

Importance culture 0.45 0.45 0.42 0.39 0.42 0.40

Importance free time 0.24 0.23 0.22 0.21 0.22 0.21

Notes: Summary statistics for: the overall number of masters’ and single-cycle college graduates from

2010-2012 cohorts (column (1)), who are interviewed both at graduation and 3 years later (column

(2)), born in Italy and residing in Italy upon graduation and who graduated between 23 and 31

years old (column (3)), employed three years after graduation and with all non-missing observations

(respectively columns (4) and (6) for all workers and columns (5) and (7) for full time workers only).
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Table A2: Summary Statistics by Employment Status and Gender

Males Females

Employed Unemployed Employed Unemployed

(1) (2) (3) (4)

VARIABLES

Age 29.44 29.59 29.21 29.33

Employed full time 0.86 0.68

Missing wage 0.04 0.03

Field of Study

Education 0.00 0.00 0.03 0.03

Humanities&Arts 0.06 0.12 0.18 0.18

Social sciences, business and law 0.31 0.45 0.41 0.52

Science, Maths and Computing 0.08 0.10 0.07 0.09

Engineering, Manufacturing 0.42 0.21 0.15 0.09

Agriculture 0.03 0.03 0.02 0.02

Health and Welfare 0.08 0.06 0.12 0.06

Services 0.02 0.02 0.01 0.01

Academic variables

Graduation grade 106.2 106.0 107.8 107.6

Late degree (index) 0.27 0.27 0.24 0.25

GPA 18-26 0.45 0.44 0.32 0.34

GPA 27-29 0.43 0.40 0.48 0.47

GPA 29-30 0.12 0.15 0.19 0.19

Other training 0.61 0.84 0.70 0.84

Number of foreign languages:

0 0.26 0.27 0.25 0.26

1 0.53 0.47 0.41 0.41

2 0.16 0.19 0.25 0.23

3 0.02 0.03 0.06 0.05

4 0.00 0.00 0.00 0.00

missing 0.03 0.04 0.04 0.05

IT skills (number of IT tools):

0 0.02 0.03 0.03 0.03

1-2 0.08 0.13 0.15 0.17

3-4 0.27 0.29 0.37 0.34

5 or more 0.63 0.55 0.44 0.45

Period abroad 0.21 0.19 0.22 0.16

Preferences

Importance salary 0.55 0.56 0.53 0.59

Importance career prospects 0.68 0.66 0.59 0.64

Importance job stability 0.58 0.64 0.69 0.74

Importance culture 0.36 0.43 0.46 0.50

Importance free time 0.21 0.26 0.22 0.25

Males Females

Employed Unemployed Employed Unemployed

(1) (2) (3) (4)

High School:

Final grade 60-84 0.51 0.54 0.39 0.40

Final grade 84-95 0.23 0.23 0.26 0.27

Final grade 95-100 0.26 0.23 0.35 0.34

Final grade missing 0.00 0.00 0.00 0.00

Curriculum:

Classics 0.11 0.18 0.20 0.26

Education 0.01 0.01 0.09 0.11

Languages 0.02 0.02 0.11 0.09

Art 0.01 0.01 0.02 0.02

Technical non-STEM 0.11 0.13 0.14 0.13

Technical STEM 0.21 0.15 0.02 0.02

Scientific 0.53 0.48 0.40 0.36

Professional 0.01 0.02 0.01 0.01

Father education:

Less than high school 0.29 0.30 0.35 0.36

High School: 0.43 0.41 0.43 0.42

College degree 0.26 0.26 0.21 0.19

missing 0.02 0.02 0.02 0.03

Mother education:

Less than high school 0.30 0.31 0.34 0.35

High School: 0.47 0.44 0.46 0.44

College degree 0.21 0.23 0.18 0.18

missing 0.02 0.03 0.02 0.02

Social class:

Managerial and professional workers 0.27 0.25 0.23 0.20

Intermediate occupations 0.32 0.33 0.31 0.32

Small Employers and non professional self-employed 0.19 0.17 0.22 0.20

Routine occupations 0.21 0.24 0.22 0.26

missing 0.01 0.02 0.02 0.03

Observations 39,141 8,015 53,865 18,538

Notes: Summary statistics for masters’ and single-cycle college graduates from 2010-2012 cohorts,

by employment status and gender.
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Early Influences and the Gender

Gap in STEM

2.1 Introduction

During the past 40 years there has been a striking reversal of the gender gap in

education in industrialised countries. Although women are currently more likely than

men to hold a college degree in the vast majority of OECD countries, their choices of

college major have been and persistently continue to be different from those of men.

Figure 2.1 illustrates the percentage of females among graduates with a bachelor

degree in 7 OECD countries in 2015, for all fields of education and separately for the

fields of science, engineering, education and humanities. In all countries but Germany

women constitute more than half of all bachelor’s degree graduates and are greatly

over-represented in education and humanities, but they represent only 20 to 30% of

engineering graduates.

Science, technology, engineering and mathematics degrees – indicated with the

acronym STEM – have been the object of increasing attention in education, economic

and policy fora. During the 2017 celebration of the International Day of Women and

Girls, the UN Assistant Secretary-General Lakshmi Puri stated that “we must ensure

that women’s participation in innovation is not the exception, but becomes the norm”.

Several initiatives aimed at encouraging female students to undertake STEM careers

have been promoted all around the world; some examples are the initiative ‘Girls in

29
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Stem’ in Turkey from the Nobel Laureate in chemistry Professor Aziz Sancar and the

‘Girls in ICT ’ from the International Telecommunication Union. In Italy, which is

the setting for the present study, the Gender Equality Department of the government

launched ‘Stem Month’ in 2016, showcasing a series of initiatives targeting female

pupils in primary and secondary schools, with the goal of encouraging their interest

in STEM subjects.

There is a widespread consensus that STEM skills are crucial to sustaining

innovation and growth (Osikominu et al., 2014). However, the share of graduates

in STEM majors across OECD countries in 2015 was only 23% (and the enrolment

share was approximately 27%). Thus, understanding the mechanisms underlying the

educational segregation of women may shed light on issues regarding the scarcity of

scientists that the European Union is concerned about.

Furthermore, several studies have provided evidence that – because STEM de-

grees typically lead to higher-paying jobs – gender gaps in college majors translate

into gender gaps in earnings later in life (Flabbi, 2012; Anelli and Peri, 2015a; Card

and Payne, 2017).

In this paper, I analyse the determinants of gender gaps in STEM graduation

rates for Italian college-leaving cohorts from 2010 to 2015, with an emphasis on family,

cultural and school influences, as well as geographic proximity in the supply of STEM

degrees. For this purpose I use data from a uniquely rich and largely unexplored

source (AlmaLaurea) that combines both administrative and survey information on

the population of Italian graduates.

I am able to characterise the students’ pre-college education in its most rele-

vant aspects. One aspect is the curriculum of the high school attended, which varies

widely in its maths components across a large number of available tracks. More-

over, a secondary school identifier allows me to capture the influence of unobservable

school characteristics, over and above differences in their official curriculum. These

administrative data are supplemented by survey-based information on students’ fam-

ily background and their attitudes and aspirations. By exploring the role of gender

preferences in shaping college major choices I contribute to the literature on the im-

pact of gender differences in personal traits – largely documented by the experimental
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literature1– on real-life choices.

I complement the data from AlmaLaurea with information on the general at-

titudes, demographic composition and political orientation of Italian municipalities.

This information is then used to characterise the elements of students’ background

that are arguably related to gender identity norms. Finally, I use administrative

data on the supply of STEM degree programmes across Italian universities in order

to relate students’ choices of majors to the geographic distribution of the supply of

STEM degrees.

I estimate an average unadjusted gender gap in STEM graduation rates of ap-

proximately 22 percentage points for 2010-2015 cohorts. The most important de-

terminant of this difference, driving approximately half of the observed gap, is the

gender difference in the maths and science content of the respective high school cur-

ricula. This difference can be traced to educational choices made at age 14, when

boys are more likely than girls to enrol into high school tracks that are more in-

tensive in maths and science. Despite differences in high school choices, girls on

average complete high school with a higher final grade than boys, regardless of track.

This result implies that if girls were under-performing relative to boys in maths- and

science-intensive high school tracks, the gender gap in major choices would be even

greater. Based on self-reported measures of students’ personal traits, the attitudes of

girls suggest lower competitiveness and higher altruism and social mindedness; how-

ever, these differences do not appear to play an important role in driving the gender

difference in major choices. On the other hand, male and female students have, on

average, very similar family and social environments – as measured by the parental

and municipality characteristics. Therefore, the gender gap in the outcome cannot

be explained by differences in these environments.

When this large set of characteristics is controlled for, half of the gap remains

unexplained. The results from an Oaxaca decomposition show that approximately

50% of the part of the gap not explained by difference in characteristics is accounted

for by a much lower probability of girls of choosing a STEM degree even conditional

on having attended one of the maths- and science-intensive high school tracks. The

1See Azmat and Petrongolo (2014) for a review of this literature.
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results also suggest that family and social background features – over and above the

influence they can already have on attitudes and previous choices – affect female and

male college choices differently, each accounting for another 20% of the unexplained

part of the STEM gap.

The remainder of the chapter is organised as follows. Section 2.2 describes the

conceptual framework and reviews the related literature; Section 2.3 describes the

background of STEM college majors in the Italian education system. A description

of the data and summary statistics are provided in Section 2.4. Section 2.5 presents

and discusses the results based on the Gelbach and Oaxaca decompositions of the

estimated gender gap in the choice of a STEM major. Section 2.6 concludes the

chapter.

2.2 The determinants of major choice

In this section I discuss the factors and mechanisms potentially shaping the gender

gap in major choices in greater detail. I focus on three sets of explanations: (i)

human capital factors, i.e., a student’s preparation and achievement at pre-collegiate

levels of education; (ii) personal factors, summarised by individuals’ attitudes and

aspirations for their future career; and (iii) parental and societal influence, which

can in turn affect both high school choices and individuals’ preferences for higher

education.

2.2.1 Pre-college education

The choice of enrolling in a STEM university course is realistically influenced by the

science and maths ability and knowledge that students would have acquired prior to

choosing their major. These ability and knowledge are in turn largely determined

by the high school track attended. In Italy, the first stage of education that offers a

range of curricular choices is the start of high school, which follows the completion of

middle school at age 14. Tracks available may be academic or vocational, and they

vary widely in maths content. Within the academic system, high schools (“licei”)

specialise in one of the following: maths and science, humanities, modern languages

or art. Within the vocational system, high schools (“istituti”) offer a wide variety of
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tracks with specialisations in IT and technical applications, business and accounting,

administration, tourism, etc. The distinction between the academic and vocational

tracks was originally conceived to prepare students for higher education and middle-

skill-level jobs, respectively. Following a law approved in 19692, students graduating

from any high school have access to higher education. An important point to note is

that in the Italian education system the choice of curriculum is made at the relatively

early age of 14, when family influences may be stronger than they are later in life.

The existing literature has investigated whether boys and girls make systemat-

ically different choices prior to college entry. For the US, Xie and Schauman (2003)

find that girls are less likely than boys to participate in science and engineering

courses in high school. For Canada, Card and Payne (2017) find instead that the

gender gap in the fraction of high school graduates who have taken STEM courses

is small and is not the main explanation for the gender gap in STEM majors. My

evidence for Italy demonstrates that girls are largely under-represented in maths-

intensive high school tracks. In my final sample of college graduates, only 53% of

girls have completed maths-intensive or technical high schools, in contrast to 83% of

boys. The extent to which this gap maps to gender gaps in college majors depends on

the explanatory power of the high school track in shaping major choices. Evidence

for both the US and the UK indicates that taking maths-intensive courses in high

school is a strong predictor of a later STEM major choice (Gottfried and Bozick,

2016; Philippis, 2017).

Secondary education may also impact major choices via specific (observable or

unobservable) high school characteristics, over and above their general track. For

example, Legewie and DiPrete (2014) find that, all else being equal, gender segre-

gation in extra-curricular activities have a discernible impact on the gender gap in

the STEM choice in US. This evidence may be consistent with the self-selection of

girls into high school with certain characteristics predictive of STEM choice, or with

a differential gender impact of such characteristics.

Finally, conditional on high school choice, performance and final grades may play

a role in STEM choice. STEM degrees are typically considered the most demanding

2Law n.910 of the 11th of December 1969.



Chapter 2 34

ones; in a sample of higher education graduates from 14 OECD countries, Flabbi

(2012) finds that science fields attracts the highest proportion of top-performing

students in secondary school in both the male and female samples. Moreover, when

looking at the perceived characteristics of the study programme, he finds that more

than 20% of men and women regard study programmes in the scientific field as

very demanding, while only approximately 10% of the respondents express the same

judgement about humanities programmes of study. I find evidence that better high

school grades are positively associated with later pursuing a STEM degree; this

observation is interesting given that girls in my sample achieve, on average, better

high school final grades than boys regardless of track.

2.2.2 Personality traits

Preferences are arguably an important factor in major choice. Wiswall and Zafar

(2015) observed that the single largest factor in determining a student’s college major

is represented by preferences and tastes – i.e., how much the individual likes the

subject and the job associated with it. This is even after randomly providing some

students with additional information, such as earnings potential associated with the

different majors.

Several recent studies have demonstrated that men and women are systemati-

cally different in some psychological attributes.3 Females are found to be more risk

averse and less willing to compete, and this could explain why they choose careers

with less risk and competition. Moreover, women are found to be more socially

minded and altruistic, which may translate into different occupational aspirations

and career preferences. Such differences could be associated with differences in ma-

jor choices, as majors in humanities and social sciences may be associated with a

larger interest in society, while maths-intensive majors such as engineering may be

associated with a more egoistic and competitive view of the world (Anelli and Peri,

2015b).

The evidence on the influence of these differences on real-life choices is not very

rich and is mainly constrained by the lack of data adequately measuring personal

3See, for example, Booth and Nolen (2009), Gneezy et al. (2003), Niederle et al. (2013), Andreoni
and Vesterlund (2001), Eckel and Grossman (1998).
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traits. With respect to gender differences in college major choices, Zafar (2013)

attributes the gender gap mostly to gender differences in preferences and tastes, par-

ticularly to men’s stronger emphasis on pecuniary outcomes and women’s stronger

emphasis on enjoying their coursework and employment in potential jobs. My evi-

dence is consistent with the following assumptions for females (compared to males):

earnings are less important while culture is more important; career prospects count

less, suggesting lower competitiveness; free time is valued more; and women are more

involved in volunteering activities, which suggests greater social mindedness and al-

truism.

2.2.3 Family and social background

The seminal work of Akerlof and Kranton (2002) introduced the idea that individ-

uals’ social identity enters into their choices, and thus social incentives may explain

why observed choices are at odds with economic incentives. Applying this idea to

the gender gap in major choice implies that certain women with high ability may

choose to exert lower effort and select less difficult majors with lower monetary re-

turns when identity enters their choices, because it is expected from them under the

prevailing gender identity norms and they internalise social expectations about their

role. External influence can originate from a close environment, such as the family,

or from broader social settings in which individuals live, such as the civic community.

A vast body of literature demonstrates positive correlations between parents

and children in terms of economic, educational, social, and behavioural outcomes.

Parents’ educational achievement is important to the extent that it proxies parents’

abilities and skills, which are strong predictors of the abilities and skills of their

children.4 Several studies emphasise that the family environment is relevant for

the transmission not only of skills but also of gender norms, and they document a

positive correlation between the gender role attitudes of parents and children.5 Cheng

et al. (2017) provide interesting evidence of maternal role modelling for daughters’

4For an extensive review of the literature on the intergenerational transmission of education and
earnings see Black and Devereux (2011).

5For example, Farré and Vella (2012) find that in a sample of US mothers and children, children’s
views about working women are affected by their mother’s attitudes, which in turn influence female
labour market decisions.
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choices: they find that having the mother employed in a STEM occupation increases

the probability of the child working in hard sciences. Thus, measuring aspects of

the family arguably related to attitudes towards females, including the education or

employment/social status of the mother relative to that of the father, is important

in studies focusing on young students’ choices.

In addition, the civic community in which individuals grow up can be important

for the transmission of gender norms. Several studies indicate a direct relationship

between attitudes towards women and the maths gender gap in a given society.

For example, Guiso et al. (2008) compare gender differences in test performance

across countries with different levels of gender equality and find that girls’ under-

performance in maths relative to boys’ performance is eliminated in more gender-

equal cultures. Moreover, González de San Román and de la Rica (2012) find that

girls perform relatively better in both maths and reading in societies where gender

equality is enhanced, and Nollenberger et al. (2016) demonstrate that the maths

gender gap for each immigrant group living in a particular host country (and exposed

to the same host country’s laws and institutions) is explained by measures of gender

equality in the parents’ country of ancestry. The influence of the social environment

can be particularly relevant in a context such as Italy, where there is a high degree

of cultural diversity even across small communities such as the municipalities.

2.3 STEM in the Italian context

The acronym STEM refers to a “group of disciplines that teach the skills required for

a high-tech economy”.6 What this means in practice, as well as how this definition

relates to specific courses in higher education institutions, is a more complex matter;

the definition varies across countries, and sometimes even among different bodies

within the same country.

In Italy, a list of the university courses that are considered STEM is provided

by the Ministry of Education (MIUR). These are the courses that correspond to

groups 04 and 05 of the classification FOET (Fields of Education and Training)

6Definition from the House of Lords 2nd Report 2012-2013 on Higher Education in STEM sub-
jects.
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1999: ‘science, mathematics and computing’ and ‘engineering, manufacturing and

construction’7. In table 2.1 I report the FOET 1999 classification in terms of both

broad fields and a finer classification based on ‘fields of education’. Within the two

STEM groups, we can distinguish 7 fields: life sciences, physical sciences, maths &

stats, engineering, manufacturing, architecture and building, and computing.

The STEM definition appears to include a fairly heterogeneous group of fields

of study. I look at administrative data on students’ enrolment in Italian universities

in 2010 – made available by the MIUR – to analyse the gender gap in enrolment by

field of study. The overall gender gap in enrolment in STEM fields in 2010 was 19

percentage points, with the average probability of enrolling in a STEM degree being

27%. When analysing the enrolment gender gap for each of the sub-fields (Figure 2.2),

I find a relevant degree of heterogeneity.8 Within STEM fields (panel (a)), the gender

gap is more pronounced in some fields including computing and engineering, physics

and earth science. By contrast, for other fields such as architecture, chemistry, and

maths & stats the gap is smaller, or even reversed, as for manufacturing and life

sciences. On the other hand, most non-STEM fields (panel (b)) are characterised by

a positive gender gap; the exceptions are business and administration and most of

the service fields.

To identify the characteristics that distinguish fields in which females are more

likely to enrol from fields that are male-dominated, I use administrative data from

the MIUR on the very detailed content of each of the approximately 2,500 unique

undergraduate or single-cycle courses offered by Italian higher education institutions

in 2010. I characterise the maths content of each course by building a maths intensity

index, which is the proportion of university ‘credits’ that students have to obtain in

maths-intensive subjects out of all the credits they need in order to graduate from

a specific course. Across all courses classified as STEM, the average index is 0.64,

while for non-STEM courses it is 0.13: STEM courses are clearly the maths-intensive

ones. Figure 2.3, which plots the index separately for each STEM and non-STEM

7Geography is classified as physical science and is in group 04, but it is excluded from the STEM
definition.

8I adopt here a further classification for the physical sciences group – namely, distinguishing
physics, chemistry, and earth sciences – and for the architecture and building field – distinguishing
architecture and town planning from building and civil engineering.
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sub-field, respectively in panel (a) and panel (b), shows that maths intensity varies

substantially across different fields. Within STEM fields, life science, chemistry and

earth science are characterised by a relatively low maths content. Within non-STEM

fields, business and administration, transport service and security service fields are

characterised by a relatively high maths content.

The analysis of course content and of enrolment patterns points to a negative

correlation between the maths intensity of a field and the gender gap in the proba-

bility of enrolling in majors in that field. Figure 2.4 plots the maths intensity and

enrolment gender gap of the different fields of study on the x-axis and the y-axis,

respectively. The majority of the STEM fields fall in the bottom right part of the

graph; i.e., they are characterised by high maths content and a negative gender gap

in enrolment. The opposite is true for most non-STEM fields. Within STEM fields,

the ones characterised by a relatively lower gender gap in enrolment are also the ones

with less maths content (for example chemistry, earth and life sciences), and the op-

posite is true within non-STEM fields (for example, business and administration and

most of service fields). The correlation between these two measures is −60%. Even

at the level of more than 2,000 unique university courses, the correlation is almost

−50%.

I will use the information obtained on course content to estimate the gender

gap in the maths intensity of the specific course of study chosen and analyse its

determinants.

2.4 Data and Variable Description

To analyse students’ choices of major, I use data from the AlmaLaurea Graduates’

Profile, a survey of the population of college graduates from most Italian universi-

ties interviewed upon graduation, which is made available by the research institution

AlmaLaurea. I focus on students from undergraduate and single-cycle courses grad-

uating from 2010 to 2015 in one of the 56 universities taking part in the survey for

the whole period considered.

Not all students enrolled in universities will obtain a degree, and in this sense,

the AlmaLaurea database represents only a selected sample of students. In particular,
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if the drop-out rate is differential between male and female students, this might result

in an over- or underestimation of the real gender gap in the choice of studying a STEM

subject. The direction of the bias is not clear a priori : female students might be

more likely to be discouraged than male students because of their different attitudes

towards competition, or women may be influenced by social pressures based on the

belief that they are less suitable than men for such careers and may thus be more

likely to drop out. It is also possible that only the most determined females enrol in

STEM, such that STEM female students are less likely than males to drop out.

Enrolment data are available from the MIUR for the years since 2003, only ag-

gregated at the university, field of study and province of residence level. I compare the

graduation rates obtained from the AlmaLaurea data with data on enrolment rates

in STEM fields by gender and year of enrolment. Figure 2.5 is a plot the obtained

graduation and enrolment rates and the gender gaps. The graph illustrates the lack

of association between the drop-out rate in STEM fields and gender, indicating that

the gender gap in graduation is a good proxy for the gender gap in the choices made

by young students at time of enrolment. Given that the outcome analysed in this

study is a rate resulting from the joint probability of enrolling in a STEM degree and

of graduating with a STEM degree, the results of the analysis should be interpreted

while noting that the impact of any factor on this outcome entails both the impact

on the decision at the time of enrolment and the impact on subsequent decisions up

to graduation.

For the purpose of my analysis, I exploit the richness of the Graduates’ Profile

survey to gain access to several pieces of information about each student’s back-

ground. I am particularly interested in three groups of variables: (i) graduates’ high

school choices and performance, (ii) their attitudes and aspirations, (iii) their family

and social background.

Administrative variables provided by each university include: high school final

grade; high school curriculum, which gives a useful measure both of students’ pref-

erences at earlier stages in life and of the type of skills they have at the moment of

enrolling in the university; and names of the specific high schools attended by each

student, which allows to control for the role of other high school characteristics over
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and above their general track.

The other variables are constructed from students’ answers to the questionnaire.

I measure students’ attitudes and aspirations through answers to questions on: the

motivation for the major choice, particularly whether professional or cultural factors

had a greater influence on the decision; the relevance of several aspects related to

their future career, including salary, career prospects, culture, stability and free time;

the engagement in volunteering activities, which can be regarded as reflecting how

altruistic and socially minded an individual is.

To characterise a student family background, I draw on answers to questions

about the level of education of both parents and their last occupation to proxy

for socio-economic status. An interesting aspect of the survey is that it collects

information on the field of study for parents with college degree. This information

helps to distinguish and evaluate the importance of whether the students’ mother

and father have a STEM degree relative to other degrees.

2.4.1 Local variables from other data sources

An important piece of information for my analysis in the AlmaLaurea survey is the

municipality of origin of each graduate. Universities provide both the municipality

of birth and the municipality of residence at the time of enrolment. I draw on

the latter to characterise a student’s sociocultural background at the time of major

choice. Secondary data sources are used to construct alternative indicators for society

progressivism at different time periods and in different municipalities. The goal is

to recover some indirect measures of women equality in Italian society along two

different dimensions: political empowerment and sexual emancipation.

To measure women’s political empowerment, I use an indicator of whether the

mayor is a female and the share of females in municipal councils, both taken from the

Census of Local and Regional Administrators made available by the Italian Ministry

of the Interior.

Following Braga and Checchi (2008), I use as proxies for women’s sexual eman-

cipation the municipality-specific fertility rate – calculated as the number of live

births divided by the number of women between ages 15 and 49 times 1,000 – and
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the share of religious marriages over the total number of marriages, both obtained

from the “Atlante Statistico dei comuni” of the Italian National Institute of Statistics

(ISTAT). As women’s control over their sexuality increases, the fertility rate should

decrease. Civil marriages are characterised by lower gender segregation and a greater

equality between partners.

I am able to build a consistent time series for the period between 2003 and

2011. In Figure 2.6, I plot the variables for 2010. Only 10% of the municipalities

are governed by a female mayor, and panel (a) of the figure illustrates that these

municipalities are concentrated in the northern part of the country. On average

across all municipalities, the share of female councillors in local governments is only

20%, and as depicted in panel (b) the percentage is higher in northern municipalities.

The average fertility rate is approximately 39 across all municipalities, and panel

(d) shows that fertility is unexpectedly higher in northern regions than in southern

regions, although the geographical pattern is not very clear and sharp. Finally, most

marriages in Italy are celebrated with religious rituals: on average, the percentage

of total marriages is 68%, and as shown in panel (d), the rate is higher in southern

Italy.

2.4.2 Supply of STEM education

Students’ decision to enrol in a STEM degree programme is potentially also a function

of the availability of STEM courses. A student residing in a given municipality upon

finishing high school faces a distribution of university courses offered in different

locations across the country. The student’s choice of major then depends not only

on his/her preferences but also on the characteristics of this supply.

I use administrative data on higher education made available by the MIUR to

measure the different factors characterising the higher education supply in Italy, and

I summarise them in a single supply index. In particular, for each STEM and non-

STEM course available, I extract the geographical location in which it is offered, the

size of the university offering it and the availability of scholarships at the university.

An Italian student with a general high school degree can in principle choose

from all of the available tertiary education programmes and institutions. For a spe-
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cific group of majors – namely, most majors in the health group (medicine, dentistry)

plus architecture and the recently established (2008) major educational science – ac-

cess is limited and conditional on the successful performance on entry tests, which

are managed nationally by the MIUR. For other majors, each offering institution can

decide to set a limit on the number of students who can enrol each year. Unfortu-

nately, information on the exact number of places made available by each university

for each major characterised by nationally or locally managed limited access is not

available. This makes it impossible to construct a precise measure of the availability

of places supplied by each university for every field of study. By contrast, data on the

number of students enrolled yearly in each major at different universities, which are

easily accessible, give a measure of the equilibrium quantity resulting from the sup-

ply and demand for education. At best, this measure can be used as a proxy for the

quantity of supply. In particular, I use data on enrolment to classify universities into

4 categories: very large (more than 40000 students enrolled), large (between 20000

and 40000 students enrolled), medium (between 10000 and 20000 students enrolled),

and small (less than 10000 students enrolled).

The enrolment choice is also constrained by costs. Direct pecuniary costs de-

pend on tuition fees and scholarships availability. In Italy, tuition fees are relatively

low compared to international equivalent, they are similar across universities (except

for a few private ones) and vary insignificantly across majors within a university. On

the other hand, the availability of scholarships can vary substantially among differ-

ent institutions: the level of scholarships awarded to eligible students depends on the

availability of regional funds, that can vary greatly among regions. Typically, south-

ern regions are characterised by lower availability of regional funds and consequently

of scholarships relative to those available in northern regions. I draw on data on the

percentage of scholarships awarded to eligible students to construct weights that con-

fer higher relevance to universities in which the likelihood of receiving a scholarship

is higher.

Another important aspect of the cost of choosing a given course of study is

represented by the geographical proximity to the municipality where the course is

offered. I calculate the linear distance from each Italian municipality to each munic-
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ipality where a higher education course is offered. Based on the calculated distance,

I construct a geographical proximity weight. This value is always 1 if the linear dis-

tance is 0 (the course is offered in the same municipality); for other municipalities,

it is the inverse of the linear distance.

For each Italian municipality I construct an index by summing the number of

courses – both overall and of STEM fields only – offered in all Italian municipalities,

weighted by the following: the size of the university offering the course, the percentage

of scholarships awarded to eligible students at each university, and the geographical

proximity to the municipality where the course is offered.

Figure 2.7 is a plot of the resulting 2010 index for the overall supply and the

STEM supply by municipality. The supply of STEM education is clearly correlated

with the overall supply, but not perfectly. The figures show the dramatic difference

in the supply of higher education between northern and southern Italy. Students

residing in northern Italy clearly face a higher supply relative than do students com-

ing from southern regions, and this variation may account for differences in STEM

graduation rates between students from different parts of the country. Assuming

that male and female students are equally distributed across municipalities, these

differences in the supply measure should be less relevant for the gender gap. How-

ever, if female and male students respond differently to supply, then this variable

might account for part of the gender gap. For example, females might be less likely

than males to leave the family and move – because of different preferences or social

attitudes towards females’ choices. This would imply that, given the same distance

from a STEM course, females may be less likely to enrol in such a course.

2.4.3 Final Sample and Summary Statistics

The number of college graduates from 2010-2015 cohorts exiting from one of the 56

universities taking part in the AlmaLaurea survey for the entire period considered is

approximately 1.1 million.

To analyse the choice of field of study, I focus on 3-year undergraduate or 5-

year single cycle students, numbering approximately 790,000. I restrict the sample

to students who were born in Italy and residing in Italy at graduation – excluding
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4% of the observations – and who enrolled between the ages of 18 and 21 years old

in the years from 2003 to 2011 – approximately 80% of the sample – which are the

years for which I have data on the variables at the municipal level.

I merge these data with the data on municipality characteristics and the local

supply of STEM programmes. For approximately 85% of the observations I have

information on all the variables, so the final sample consists of 485,350 observations.

Table 2.2 lists summary statistics of the main variables presented separately

for male and female students in the sample. Females constitute 62% of the sample,

confirming that women are over-represented in the population of university graduates.

As expected, the outcome variable documents a large gender gap in the probability

of graduating in STEM fields, precisely 22 percentage points, which is 85% of the

overall average probability of studying STEM. When looking at maths intensity of

the course chosen, I find a gender gap that is similar in magnitude: the percentage of

maths-intensive subjects in courses chosen by females is, on average, 22 percentage

points less than that for their male peers.

The distribution of the two samples across high school study paths shows that

young girls are over-represented in the humanities track while boys mainly choose the

scientific path.9 The majority of men are tracked early on into classes with higher

exposure to science and maths, and vice versa for girls. On the other hand, females

always outperform males: they obtain a higher final high school grade on average

regardless of the track chosen.

In terms of attitudes and aspirations, some interesting differences emerge: rel-

ative to men, women are less likely to declare that they have chosen their field of

study for professional rather than cultural motivations, they are less likely to consider

career prospects to be very important for their future job, and they seem to more

strongly value aspects such as culture and stability of the job. Moreover, on average,

female students carry out more volunteering activities than their male peers.

Furthermore, compared with males, females appear to have parents who are

9The Scientific & Technical category is an indicator for having attended a ‘scientific’ high school
offering students a maths- and science-intensive curriculum or a ‘technical’ high school offering
specialisation in technological subjects such as IT, electronics or chemistry. The Humanities category
is an indicator for having attended humanities-intensive high schools including ‘classics’, ‘languages’
and ‘artistic’ tracks.
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slightly less educated and have lower-level jobs.

The final group of variables included in the analysis are those measured in the

municipality of residence in the year of enrolment at university, which are used to

characterise the social background in which a student made the choice of major upon

exiting from high school and the supply of higher education faced. Unsurprisingly,

there is no difference between females and males in these variables. Thus, if any of

these variable explains the gender gap in STEM graduation rates, this would not be

due to differences in those environments but instead would stem from how the two

sexes respond differently to similar environmental features.

2.5 Empirical Method and Results

I estimate a linear probability model for STEM major choice that takes into account

human capital and personal factors, as well as family and societal influences. The

specification estimated is given by:

yimτt = β1Fi +Xiβ2 + Zmτβ3 + γm+ δτ + ηt+ uimτt [2.1]

where yimτt is an indicator for graduation in a STEM field for student i who resides,

upon enrolment, in municipality m, enrols in year τ and graduates in year t; Fi is a

female dummy; Xi is a vector of individual and family characteristics; and Zmτ is a

vector of variables measured at the municipal level at the time of college enrolment.

I also estimate the same specification for the outcome of the maths intensity index

for the college course of study chosen by each student.

The results from the full regression estimations are reported in tables A1 and

A2 of the appendix for the probability of graduating from a STEM major and for

the maths intensity of the specific course attended, respectively. The results are very

similar for the two outcomes. From the estimations performed on the pooled sample

of females and males (columns (1) of both tables) we observe that having attended

a maths- and science-intensive high school and having obtained a higher high school

final grade are positively associated with both outcomes. Measures of personal traits

that are arguably related to a higher level of competitiveness – such as professional



Chapter 2 46

rather than cultural motivation for major choice and the high value attributed to

career prospects and salary for one’s future job – are positively associated with the

outcomes. On the other hand, personal traits suggesting lower competitiveness and

higher social mindedness and altruism – such as the high value attached to culture

and free time in one’s future job and the participation in volunteering activities –

are negatively related to the outcomes. A higher social status and a higher level

of education of the two parents are associated both with a higher probability of

graduating from a STEM major and with greater maths content of the college course.

The association is stronger for parents with a STEM college degree and stronger for

the father than for the mother. None of variables measured at the municipality of

residence upon enrolment is significant in predicting the outcomes.

Given the estimate of the gender gap in the outcome β̂1, in order to identify

and discuss the contributions of each of the five groups of variables – pre-college

education, personal traits, family characteristics, social background and the supply

of higher education – I adopt the conditional decomposition suggested by Gelbach

(2016). Given the equation of the base model:

yimτt = β̃0 + β̃1Fi + εimτt [2.2]

which gives the gender gap that we intend to decompose, Gelbach suggests a decom-

position of the difference between the coefficients in the base model and the coefficient

in the full model of equation [2.1], (
ˆ̃
β1 − β̂1), given by the omitted variable bias for-

mula: the difference is expressed as the product of the coefficient of each covariate

in the full regression and the coefficient of a regression of the covariate on the female

dummy. Thus, for each variable, we obtain a parameter measuring its contribution

in explaining the gender gap, which is the female-male gap in the variable scaled

by its STEM graduation/maths-intensity equation impact. Whether variation in a

variable increases or reduces the gap depends on whether the covariate has a positive

effect on the outcome and on whether the covariate has a higher mean for females or

for males, thus the Gelbach decomposition gives a very useful and intuitive way of

interpreting the contribution of each covariate in explaining the gender gap.

Table 2.3 reports the results from this decomposition of the coefficients both
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of the gender gap in STEM graduation and of the maths intensity of the university

course. In columns (1) and (4) – respectively for the two outcomes – I report results

from the estimation of a model where the high school curriculum is included in

two categories: technical or scientific versus humanities. The high school track here

explains approximately 18% of both outcomes. Among the other variables, differences

in attitudes and in family characteristics each account for 2 to 4% of the gender gaps,

while all the remaining variables together account for less than 1%.

In columns (2) and (5), I present results from a model in which I adopt a finer

classification of the high school curriculum, which is the variable with the highest

explanatory power. Within the humanities track, we can distinguish paths with a

focus on classics, foreign languages, education or art; within the technical path, we

can distinguish a group of tracks with a focus on business, tourism or agriculture

(non-STEM) and another with a focus on industrial construction and preparation

for surveyors (STEM). When the indicators for the 8 different high school tracks

are included, this group of variables explains almost half (48%) of the gender gap in

STEM graduation and almost 1/3 of the gap in maths intensity, while the role played

by other groups of variables remains stable.

Next, I exploit the very detailed information on the secondary education insti-

tution attended by each student. I can distinguish approximately 5,500 different high

schools attended by students in my sample. Some Italian high schools offer only one

curriculum, while other larger ones can offer many different paths; thus, in the end,

I have more than 11,000 school-track interactions. By including this information in

my model, I am able to analyse the major choices conditioning not only on having

chosen the same high school track but also on having attended the same secondary

education institution. The results are presented in columns (3) and (6). Including

the full set of school-track dummies leaves the results almost unchanged; thus, very

little is due to differences in characteristics of schools attended by females and males

other than their official curriculum.

The results from the Gelbach decomposition of the estimated gap in major

choices indicate overall that, among the observable measured characteristics, the

most important determinant of the gap is the gender difference in the maths and
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science content of students’ high school curriculum. At the age of 14, boys and

girls are already making different educational choices, with boys more likely than

girls to enrol in high school tracks that are more intensive in maths and science.

Differences in self-reported measures of students’ personal traits do not appear to

play an important role in driving the gender difference in major choice. As expected,

since male and female students come, on average, from very similar family and social

environments, differences in those environments fail to explain the gender gap in

outcomes. Approximately half of the gap remains unexplained by differences in

observed measured characteristics.

2.5.1 Oaxaca Decomposition

The analysis based on the estimation of model [2.1] assumes that the coefficients

of the covariates are the same for females and males. To account for the difference

in returns to the various characteristics, I perform an Oaxaca decomposition of the

regression results from the estimation of the model that includes the high school track

in 8 categories. The male-female difference in the outcome is decomposed in a portion

that is ‘explained’ by group differences in characteristics and the residual portion that

cannot be accounted for by such differences in the determinants of the outcome. The

decomposition method is implemented such that the difference in characteristics is

weighted by coefficients for males, while the difference in coefficients is weighted by

characteristics of females.

The results for both outcomes are presented in table 2.4; all the predictors

included in the regressions are summarised in five groups, as done above. The overall

gender gap is explained in approximately the same proportion by the difference in

coefficients and the difference in characteristics (columns (1) and (4)).

Columns (2) and (5) report the endowment terms for each group of variables:

these are equivalent to the terms of the Gelbach decomposition, with the difference

being that the female-male difference in characteristics is weighted by the male co-

efficient instead of the coefficient from the estimation on the pooled sample. The

results indicate that the group of variables that contributes the most to the portion

of the gap due to differences in endowments is the high school curriculum. Females
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are less represented in schools with higher returns to STEM/course-maths-intensity

and more represented in schools with lower returns to STEM/course-maths-intensity,

and this accounts for approximately half of the overall gender difference in outcomes.

The endowment term related to the high school performance is positive and relevant

in magnitude, indicating that if males performed as well as females in high school,

the gender gap in the outcomes would be even larger.

Columns (3) and (6) report the coefficient terms for each group of variables.

Most of the overall difference in coefficients is driven by different returns from the

high school track and final grade: females have lower returns to high school tracks

that are positively related to the choice of a STEM degree or of courses with higher

maths content, and lower returns to a higher high school final grade.

To better understand which factors within each group of variables are driving the

results of the Oaxaca decomposition, I report in table 2.5 the detailed decomposition

for each variable within the most relevant groups – namely, high school track, family

and social background for the STEM graduation rate and high school track, family

characteristics and attitudes for the maths intensity measure. For both outcomes,

most of the difference in endowments accounted for by the high school track variables

is driven by a much lower rate at which females attend a scientific and a technical

STEM high school. On the other hand, the difference in returns to the high school

track is driven only by a lower probability of choosing a STEM major conditional on

having attended a scientific high school.

The female-male difference in returns to family characteristics (columns (2) and

(4)) is mostly accounted for by the variables measuring parents’ occupation: from

the full regression results performed separately for the samples of females and males

reported in the appendix we observe that having a parent – in particular, the father

– employed in a liberal profession has a negative correlation with the probability of

choosing a STEM degree only for males. This result could be due to the fact that

the son, not the daughter, in those families is more likely to follow the profession

of the father (or of the mother) which are typically non-STEM occupations, such as

doctors or lawyers.

For the STEM graduation outcome, I look at details for the variables measuring
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students’ social background: the most significant term is the difference in the coeffi-

cients of the variable measuring the share of religious marriages. The full regression

results indicate that this variable is negatively correlated with the probability of

choosing a STEM degree for females but positively correlated for males. This result

suggests that in societies that are less gender equal – as measured by at least one of

the variables characterising attitudes towards women in a municipality – the gender

gap in the major choices is even higher.

For the maths intensity of the course, I examine details regarding the role of

attitudes in explaining the gender gap: the most relevant variables are the impor-

tance of career prospects – valued less by females – and culture – valued more by

females. Moreover, even assuming that females and males give the same value to

career prospects, I find that females have lower probability of choosing a course with

higher maths intensity.

2.5.2 Sub-sample Analysis

In this section I investigate potential heterogeneity of the results across sub-samples

defined according to the socio-economic status of the students’ family.

The variable on socio-economic status is constructed based on the answers of

students to questions regarding their parents’ last occupation10. Through this step,

three different social groups can be distinguished: low – parents in blue-collar jobs;

medium – parents who are small business owners or low-level white-collar workers;

high – parents who are directors or owners of businesses with at least 15 workers or

who are self-employed in liberal professions.

Tables 2.6 and 2.7 present results from, respectively, the Gelbach and Oaxaca de-

compositions of the gender gap in STEM graduation rates for the three sub-samples.

It emerges that the lower the socio-economic status is, the higher the raw gender

gap, ranging from 16 percentage points for students belonging to the highest social

class to 26 percentage points for students belonging to families where parents are

blue-collar workers. This result is mainly driven by the fact that females’ proba-

bility of graduating from STEM programmes increases with social status while the

10Following Schizzerotto (1994), the social class of the family refers to the highest between the
two parents.
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opposite is true for males – as shown in table 2.7 that reports the STEM graduation

rates by gender. This evidence may be consistent with the hypothesis that in families

where the parents are employed in liberal professions the male sons tend to follow

the profession of the parents, which are typically non-STEM professions.

While the gender gap in major choices declines with socio-economic status, the

role of the different groups of variables in explaining the gap does not appear to

differ significantly across the three sub-samples. Table 2.6 shows that the high school

track explains half of the gap in each sub-sample, and except for the high school

performance, the other groups of variables always have negligible roles. The results

from the Oaxaca decomposition, presented in table 2.7, are also fairly homogeneous

across the different sub-samples: most of the unexplained portion of the gender gap is

accounted for by lower returns of the high school track and performance for females.

The role of the high school experience as a main determinant of the different

college choices of males and females is remarkably stable across social classes. This

result is not completely unexpected, considering that the Italian high school system

is characterised by a completely free access, such that a high level of segregation

based on socio-economic status is not expected.

2.6 Conclusions

Despite the striking reversal of the gender gap in education in industrialised countries

in the past 40 years, women pursue STEM degrees much less than their male peers

do.

This paper assesses the relative importance of various explanations for the gen-

der gap in STEM graduation rates for Italian college graduates. The major choices

of students graduating from 2010 to 2015 are studied by exploiting a uniquely rich

dataset obtained from the inter-university consortium AlmaLaurea. This dataset

allows the measurement of students’ high school experience, their attitudes and aspi-

rations, and their family background. It is complemented with information on Italian

municipalities from which I obtain measures of a student’s sociocultural background

characteristics, and with data on the local supply of degree programmes.

I evaluate the competing role of the different groups of variables and find that
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students’ high school experience explains up to half of the gender gap in STEM

graduation rates. Most of this is related to educational choices undertaken at an

earlier stage, when young students choose between maths-intensive or humanities-

oriented high school tracks. Young girls are less likely to choose tracks with a focus

on maths and technical skills; this tends to refer, in particular, to the scientific ‘Liceo’

and the technical ‘Istituto’ with a focus on industrial construction and preparation for

surveyors, which are the fields that ensure the highest returns to STEM enrolment in

college. Even conditional on the high school track choice, a relevant role is played by

a different influence of the family and social backgrounds on the decisions of females

and males. Furthermore, my evidence demonstrates that females have attitudes

suggesting lower competitiveness and higher altruism and social mindedness, which

are negatively associated with the choice of a STEM degree, although these differences

do not play a big role in explaining the gap in major choice.

By showing that high school track choices explain a large portion of the gender

gap in STEM graduation, my results indicate that in Italy this issue has its roots

in a gendered choice that has already taken place many years before. This finding

suggests that the role of the influence of environmental factors – such as the family

– in the different educational choices of females and males is even greater than can

be estimated through this study.

These results have important policy implications. The findings indicate that

effective interventions aimed at increasing girls’ interests in science and technology

should be implemented at an early stage, even in middle school, because the decision

made by girls at 14 years of age will determine to a large extent their future education

path and, consequently, their career and wage.



Chapter 2 53

Figures and Tables

Figure 2.1: Gender differences in fields of study

Source: OECD (2015b)
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Figure 2.2: Enrolment gender gap in fields of study

(a) STEM fields

(b) non-STEM fields

Notes: The figure plots the average female-male difference in enrolment probabilities for each group

of university fields of study according to the FOET 1999 definition. Data are made available by the

MIUR and are relative to the 2010/2011 academic year.
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Figure 2.3: Maths intensity of fields of study

(a) STEM fields

(b) non-STEM fields

Notes: The maths-intensity index is calculated as the percentage of college credits related to maths-

intensive subjects out of the total credits for each field of study, averaged across all courses in a given

field. Data are relative to the courses offered in the academic year 2010/2011.



Chapter 2 56

Figure 2.4: Enrolment gender gap and maths intensity by fields of education

Notes: Each observation is a field of study. The average maths intensity across all courses in a given

field is represented on the x-axis, while the y-axis shows the female-male difference in the probability

of enrolling in each field.
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Figure 2.5: Enrolment and graduation rates in STEM fields

(a)

(b)

Notes: Enrolment rates (number of students enrolled in STEM fields as a percentage of the total

number of students enrolled) are obtained from MIUR data for students enrolled in an undergraduate

or single-cycle master’s degree between 2003 and 2012 in universities taking part in the AlmaLaurea

survey from 2010. Graduation rates (number of students graduated from STEM fields as a percentage

of the total number of graduates) are obtained from AlmaLaurea data for students who graduated

from an undergraduate or single-cycle master’s degree programme between 2010 and 2015 and who

enrolled between 2003 and 2012, from universities taking part in the AlmaLaurea survey from 2010.
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Figure 2.6: Municipal variables

(a) Female Mayors (b) Share of Female Councillors

(c) Fertility Rate (d) Share of Religious Marriages

Notes: All variables are measured in 2010. Panel (a) shows in red the municipalities governed by

a female mayor, and panel (b) plots the share of female councillors in the local government at the

municipal level. Both variables are obtained from data on local administrators from the Italian

Ministry of the Interior. Panels (c) and (d) plot respectively the fertility rate – i.e., the ratio of the

number of live births to the number of females aged 15-49 (times 1,000) – and the percentage of

religious marriages, both obtained from the ISTAT Atlante Statistico dei Comuni.
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Figure 2.7: Supply index

(a) All Courses (b) STEM courses

Notes: The two panels plot the index of supply in 2010, obtained for each municipality by summing

the number of all/STEM-only courses offered in all other municipalities, weighted by the linear

distance, the size of the university offering the course and the percentage of scholarships awarded by

each university.
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Table 2.1: FOET 1999 Classification

Broad fields Fields of Education

1. Education Teacher training and education science

2. Humanities and Arts Arts

Humanities

3. Social sciences, business and law Social and behavioural science

Journalism and information

Business and administration

Law

4. Science, Mathematics and Computing Life sciences

Physical sciences

Mathematics and Statistics

Computing

5. Engineering, Manufacturing and Construction Engineering and engineering trades

Manufacturing and processing

Architecture and building

6. Agriculture Agriculture, forestry and fishery

Veterinary

7. Health and Welfare Health

Social services

8. Services Personal services

Transport services

Environmental protection

Security services

Notes: Source: Fields of Training Manual, European Centre for the Development of Vocational

Training 1999
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Table 2.2: Summary Statistics

Variables Males Females

Observations 184,293 301,057

Mean sd Mean sd

Stem 0.39 0.49 0.17 0.38

Maths intensity 0.41 0.35 0.20 0.25

High School:

Humanities 0.18 0.38 0.47 0.50

Scientific & Technical 0.83 0.38 0.53 0.50

Final grade 80.7 12.4 83.7 12

Attitudes

Enrolment motivation (professional) 0.12 0.33 0.08 0.28

Salary very important 0.57 0.50 0.57 0.50

Career prospects very important 0.66 0.47 0.61 0.49

Stability very important 0.65 0.48 0.75 0.43

Culture very important 0.38 0.49 0.46 0.50

Free time very important 0.26 0.44 0.26 0.44

Volunteering activities 0.21 0.41 0.25 0.43

Family Characteristics

Father education:

Less than HS 0.29 0.46 0.38 0.48

HS 0.46 0.50 0.44 0.50

College non STEM 0.17 0.37 0.13 0.34

College Science 0.02 0.14 0.02 0.12

College Engineering 0.06 0.23 0.04 0.20

Mother education:

Less than HS 0.27 0.45 0.35 0.48

HS 0.51 0.50 0.48 0.50

College non STEM 0.18 0.38 0.14 0.35

College Science 0.03 0.18 0.02 0.15

College Engineering 0.01 0.09 0.01 0.08

Father last occupation:

Blue collar (or never worked) 0.27 0.44 0.31 0.46

Self employed/small business owner 0.19 0.39 0.22 0.42

White collar 0.30 0.46 0.27 0.45

Liberal professions/entrepreneur 0.24 0.43 0.19 0.40

Mother last occupation:

Housewife 0.23 0.42 0.26 0.44

Blue collar 0.28 0.45 0.29 0.45

Self employed/small business owner 0.10 0.30 0.11 0.31

White collar 0.32 0.47 0.29 0.45

Liberal professions/entrepreneur 0.07 0.26 0.06 0.24

Municipality Characteristics

Fertility Rate 39.23 7.19 39.08 7.47

Religious marriages share 0.63 0.19 0.64 0.19

Female mayor 0.08 0.27 0.08 0.27

Share female councillors 0.14 0.10 0.14 0.10

Supply of STEM courses 7.8 16.0 6.9 15.0

Supply of university courses 24.5 49.7 21.7 46.6

Notes: Sample includes 3-year undergraduate or 5-year single-cycle students who enrolled between 2003 and 2011.
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Table 2.3: Gelbach Coefficient Decomposition

Outcome: STEM Maths intensity

(1) (2) (3) (4) (5) (6)

Estimated STEM gender gap -0.219*** -0.218***

(0.00333) (0.00228)

HS curriculum:

2 categories -0.0455*** -0.0411***

(0.000386) (0.000348)

8 categories -0.0982*** -0.0681***

(0.00188) (0.00128)

High school fixed effects -0.103*** -0.0753***

(0.00206) (0.00136)

HS performance 0.0116*** 0.0118*** 0.0118*** 0.00885*** 0.00870*** 0.00869***

(0.000209) (0.000212) (0.000212) (0.000160) (0.000158) (0.000158)

Attitudes -0.00373*** -0.00441*** -0.00421*** -0.0114*** -0.0115*** -0.0110***

(7.47e-05) (8.24e-05) (8.10e-05) (0.000164) (0.000165) (0.000160)

Parents -0.00414*** -0.00257*** -0.00231*** -0.00211*** -0.00238*** -0.00204***

(0.000191) (0.000175) (0.000167) (0.000119) (0.000120) (0.000113)

Municipal variables 3.30e-06 -5.87e-05*** -1.30e-05* -6.24e-05*** -8.58e-05*** -3.95e-05***

(9.43e-06) (9.75e-06) (7.47e-06) (1.91e-05) (2.03e-05) (1.53e-05)

Supply 0.00131** 0.00134** 0.00152** 0.00101** 0.00101** 0.00109**

(0.000578) (0.000592) (0.000674) (0.000447) (0.000446) (0.000480)

Cohort fe -8.83e-05*** 0.000110*** 0.000118*** 0.000827*** 0.00104*** 0.00107***

(1.40e-05) (1.49e-05) (1.47e-05) (4.29e-05) (5.35e-05) (5.48e-05)

Municipality FE -0.00281*** -0.00243*** -0.00209** -0.00303*** -0.00281*** -0.00201***

(0.000823) (0.000800) (0.000947) (0.000623) (0.000626) (0.000736)

Full regression coefficient -0.176*** -0.125*** -0.121*** -0.171*** -0.144*** -0.138***

(0.00400) (0.00239) (0.00237) (0.00253) (0.00173) (0.00170)

Observations 485,350 485,350 485,350 485,350 485,350 485,350

R squared 0.143 0.203 0.244 0.235 0.260 0.304

Notes: Decompositions of the gender gap in STEM graduation rate/maths intensity of university courses based on Gelbach

(2016). The sample consists of college graduates who enrolled between 2003 and 2010 and graduated between 2010 and 2015.

The dependent variable is a dummy equal to 1 if the individual graduated from a STEM field in columns (1)-(3) and the

maths intensity of the course of study in columns (4)-(6). Each regression includes the survey year, year of graduation and

municipality of residence fixed effects. The other variables are defined as follows. High school curriculum: 2 dummies for

scientific/technical versus humanities in columns (1) and (4); 8 dummies for classics, education, languages, arts, technical

non-STEM, technical STEM, science, and professional high school track in columns (2) and (5); more than 11,000 identifiers

for secondary institution and track attended in columns (3) and (6). High school performance: 3 dummies for the intervals

60-85, 85-95, and 95-100. Attitudes: dummy=1 if the motivation to enrol in a course of study is professional versus cultural;

dummies=1 if salary/career prospects/stability/culture/free time is very important versus slightly or not important in a future

job; dummy=1 if engaged in volunteering activities. Parent characteristics: 5 dummies for father/mother’s level of education

(less than high school, high school, college non-STEM, college STEM science, and college STEM engineering); 4 dummies for

father’s last occupation (never worked or blue collar, small business man, white collar, liberal professions); and 5 dummies for

mother’s last occupation (housewife, blue collar, small business woman, white collar, liberal professions). Municipal variables:

all variables measured in the municipality of residence in the year of university enrolment: dummy=1 if the mayor is female,

share of female councillors, fertility rate, and share of religious marriages. Supply: indexes measuring the supply of STEM or

overall university courses in the year of enrolment.
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Table 2.4: Oaxaca Decomposition

Outcome: STEM Maths intensity

(1) (2) (3) (4) (5) (6)

Overall Endowments Coefficients Overall Endowments Coefficients

Females 0.173*** 0.195***

(0.00252) (0.00189)

Males 0.392*** 0.413***

(0.00262) (0.00210)

Gender Gap -0.219*** -0.218***

(0.00269) (0.00188)

Endowments -0.0987*** -0.0853***

(0.00204) (0.00146)

Coefficients -0.121*** -0.132***

(0.00234) (0.00183)

High School Track -0.109*** -0.0477*** -0.0831*** -0.0405***

(0.00208) (0.00311) (0.00148) (0.00228)

High School performance 0.0177*** -0.0553*** 0.0128*** -0.0389***

(0.000442) (0.00131) (0.000322) (0.000922)

Attitudes -0.00594*** -0.000470 -0.0137*** 0.00981***

(0.000440) (0.00257) (0.000369) (0.00185)

Family Characteristics -0.00104*** 0.0196*** -0.00131*** 0.0107***

(0.000359) (0.00343) (0.000298) (0.00248)

Municipal Variables 4.84e-06 -0.0284* 4.87e-06 -0.00276

(8.56e-06) (0.0157) (8.51e-06) (0.0112)

Supply indexes -3.72e-05 0.00545** -3.80e-05 0.00509***

(4.58e-05) (0.00262) (4.55e-05) (0.00189)

Constant -0.0137 -0.0758***

(0.0171) (0.0121)

Observations 485,350 485,350 485,350 485,350 485,350 485,350

Notes: Oaxaca decompositions of the gender gap in STEM graduation rate/maths intensity of

university courses. The sample consists of college graduates who enrolled between 2003 and 2010 and

graduated between 2010 and 2015. The dependent variable is a dummy equal to 1 if the individual

graduated from a STEM field in columns (1)-(3) and the maths intensity of the course of study in

columns (4)-(6). Each regression includes the survey year, year of graduation and municipality of

residence fixed effects. The other variables are defined as in table 2.3.
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Table 2.5: Detailed Oaxaca Decomposition

Outcome: STEM Maths intensity

(1) (2) (3) (4)

VARIABLES Endowments Coefficients VARIABLES Endowments Coefficients

High School Track Overall -0.109*** -0.0477*** High School Track Overall -0.0831*** -0.0405***

(0.00208) (0.00311) (0.00148) (0.00228)

Education -0.00555*** -0.00178* Education -0.00408*** -0.000618

(0.000940) (0.00102) (0.000726) (0.000755)

Languages -0.00433*** -0.00166** Languages -0.00303*** 0.000279

(0.000723) (0.000844) (0.000622) (0.000693)

Arts 0.00446*** -0.00311*** Arts 0.00233*** -0.00116***

(0.000258) (0.000330) (0.000144) (0.000200)

Technical non STEM -0.000941*** -0.00115* Technical non STEM 0.00150*** -0.00121***

(0.000123) (0.000610) (0.000167) (0.000450)

Technical STEM -0.0651*** -0.00187*** Technical STEM -0.0490*** -0.00213***

(0.00276) (0.000254) (0.00207) (0.000247)

Science -0.0379*** -0.0378*** Science -0.0308*** -0.0357***

(0.00160) (0.00159) (0.00128) (0.00108)

Professional 5.08e-06 -0.000328** Professional -1.11e-05 1.13e-05

(7.61e-06) (0.000161) (8.14e-06) (0.000108)

Family Characteristics Overall -0.00104*** 0.0196*** Family Characteristics Overall -0.00131*** 0.0107***

(0.000359) (0.00343) (0.000298) (0.00248)

Parents education -0.00167*** 0.00613** Parents education -0.00153*** 0.00312

(0.000395) (0.00279) (0.000320) (0.00206)

Parents last occupation 0.000629*** 0.0134*** Parents last occupation 0.000219* 0.00762***

(0.000167) (0.00320) (0.000127) (0.00223)

Municipal Variables Overall 4.84e-06 -0.0284* Attitudes Overall -0.0137*** 0.00981***

(8.56e-06) (0.0157) (0.000369) (0.00185)

Female mayor 1.08e-06 0.000112 Enrolment motivation (professional) -0.00316*** -0.000198

(5.23e-06) (0.000753) (0.000122) (0.000245)

Share female councillors 4.72e-07 0.00235 Salary very important -9.87e-06 1.99e-05

(2.36e-06) (0.00325) (8.62e-06) (0.00137)

Fertility rate 1.35e-06 -0.00842 Career prospects very important -0.00317*** -0.0127***

(4.17e-06) (0.0115) (0.000175) (0.00134)

Share of religious marriages 1.94e-06 -0.0225** Stability very important -0.000852*** 0.00104

(4.97e-06) (0.00974) (0.000175) (0.00179)

Culture very important -0.00512*** 0.0136***

(0.000200) (0.00109)

Free time very important -7.18e-05* 0.00482***

(4.28e-05) (0.000571)

Volunteering activities -0.00129*** 0.00323***

(9.05e-05) (0.000557)

Notes: Details of the Oaxaca decomposition results presented in table 2.4. The table presents in

columns (1) and (2) the endowment and coefficient terms of the gender gap in STEM graduation for

the different variables within the groups: high school track (8 categories), family characteristics (par-

ents’ education and parents’ last occupation), and municipal variables (female mayor, share of female

councillors, fertility rate, share of religious marriages). In columns (3) and (4) the table presents

the endowment and coefficient terms of the gender gap in maths intensity of the course of study for

the different variables within the groups: high school track and family characteristics as in the other

columns, and attitudes (enrolment motivation, importance of salary/career/stability/culture/free

time for future jobs, involvement in volunteering activities.)
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Table 2.6: Gelbach Decomposition by Socio-economic Status

Socio-economic status: High Medium Low

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Estimated STEM gender gap -0.158*** -0.229*** -0.264***

(0.00416) (0.00312) (0.00337)

HS curriculum

-0.0424*** -0.0485*** -0.0469***

(0.000539) (0.000451) (0.000463)

-0.0655*** -0.102*** -0.122***

(0.00176) (0.00156) (0.00158)

-0.0661*** -0.107*** -0.130***

(0.00215) (0.00201) (0.00213)

HS performance 0.0125*** 0.0124*** 0.0123*** 0.0123*** 0.0125*** 0.0125*** 0.00771*** 0.00818*** 0.00826***

(0.000316) (0.000312) (0.000309) (0.000309) (0.000314) (0.000315) (0.000403) (0.000427) (0.000432)

Attitudes -0.00333*** -0.00370*** -0.00365*** -0.00375*** -0.00451*** -0.00433*** -0.00457*** -0.00533*** -0.00520***

(0.000137) (0.000145) (0.000148) (9.76e-05) (0.000108) (0.000106) (0.000169) (0.000187) (0.000185)

Parents -0.00265*** -0.00225*** -0.00209*** -0.00362*** -0.00238*** -0.00219*** -0.00244*** -0.00154*** -0.00136***

(0.000487) (0.000467) (0.000454) (0.000172) (0.000145) (0.000137) (0.000114) (9.17e-05) (8.49e-05)

Municipal variables -0.000105** -0.000105*** -6.45e-05 9.13e-05*** 3.33e-05** 8.54e-05*** -5.43e-06 -5.03e-05*** -2.37e-05**

(4.28e-05) (3.98e-05) (4.00e-05) (1.71e-05) (1.42e-05) (2.00e-05) (2.57e-05) (1.71e-05) (1.12e-05)

Supply 0.000589** 0.000579** 0.000621*** 0.000753** 0.000794** 0.00102** 0.000715* 0.000822* 0.000821*

(0.000244) (0.000244) (0.000236) (0.000347) (0.000367) (0.000470) (0.000378) (0.000435) (0.000435)

Cohort fe 0.00226*** 0.00253*** 0.00251*** -0.000176*** 9.70e-06 2.85e-05** -0.00188*** -0.00181*** -0.00167***

(0.000220) (0.000243) (0.000241) (2.14e-05) (1.57e-05) (1.37e-05) (0.000159) (0.000152) (0.000143)

Municipality FE -0.00161** -0.00136* -0.00166 -0.00255*** -0.00220*** -0.00145* -0.00271*** -0.00210*** -0.000272

(0.000751) (0.000729) (0.00118) (0.000642) (0.000609) (0.000862) (0.000793) (0.000778) (0.000983)

Full regression coefficient -0.123*** -0.100*** -0.0993*** -0.184*** -0.132*** -0.128*** -0.214*** -0.140*** -0.134***

(0.00515) (0.00402) (0.00406) (0.00378) (0.00256) (0.00257) (0.00367) (0.00311) (0.00332)

Observations 111,210 111,210 111,210 250,944 250,944 250,944 113,606 113,606 113,606

R squared 0.161 0.196 0.253 0.153 0.215 0.265 0.192 0.264 0.333

Notes: Decompositions of the gender gap in STEM graduation based on Gelbach (2016) for three sub-

samples defined according to the socio-economic status of the students’ family (high/medium/low).

For each sub-sample, three models with different definitions of high school tracks are estimated:

2 dummies for scientific/technical versus humanities in columns (1),(4) and (7); 8 dummies for

classics, education, languages, arts, technical non-STEM, technical STEM, science, and professional

high school track in columns (2),(5) and (8); more than 11,000 identifiers for the secondary institution

and track attended in columns (3),(6) and (9). The other variables are defined as in table 2.3.
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Table 2.7: Sub-sample Analysis: Oaxaca Decomposition

Socio-economic status: High Medium Low

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Overall Explained Unexplained Overall Explained Unexplained Overall Explained Unexplained

Females 0.200*** 0.176*** 0.146***

(0.00410) (0.00236) (0.00198)

Males 0.358*** 0.406*** 0.410***

(0.00368) (0.00252) (0.00331)

Gender Gap -0.158*** -0.229*** -0.264***

(0.00361) (0.00279) (0.00338)

Endowments -0.0590*** -0.0997*** -0.128***

(0.00224) (0.00213) (0.00337)

Coefficients -0.0986*** -0.130*** -0.136***

(0.00398) (0.00271) (0.00375)

High School Track -0.0705*** -0.0335*** -0.112*** -0.0587*** -0.131*** -0.0900***

(0.00223) (0.00400) (0.00205) (0.00469) (0.00323) (0.00820)

High School performance 0.0183*** -0.0462*** 0.0187*** -0.0584*** 0.0126*** -0.0611***

(0.000801) (0.00268) (0.000632) (0.00185) (0.000759) (0.00266)

Attitudes -0.00461*** 0.00248 -0.00549*** -0.00494 -0.00780*** 0.00498

(0.000788) (0.00486) (0.000544) (0.00368) (0.000780) (0.00562)

Family Characteristics -0.00203*** 0.00245 -0.00133*** 0.0126*** -0.00139*** -0.000640

(0.000640) (0.0142) (0.000329) (0.00322) (0.000422) (0.00280)

Municipal Variables -6.90e-06 -0.0542 1.27e-07 -0.0470** -9.15e-06 -0.0267

(2.11e-05) (0.0404) (2.08e-05) (0.0224) (4.30e-05) (0.0338)

Supply indexes -6.84e-05 0.0135* -2.00e-05 0.000599 1.34e-05 0.00944***

(5.98e-05) (0.00695) (4.61e-05) (0.00415) (4.76e-05) (0.00307)

Constant 0.0169 0.0260 0.0280

(0.0437) (0.0239) (0.0354)

Observations 111,210 111,210 111,210 250,944 250,944 250,944 113,606 113,606 113,606

Notes: Oaxaca decompositions of the gender gap in STEM graduation for three sub-samples defined

according to the socio-economic status of the students’ family (high/medium/low).
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Appendices

Table A1: Full Regressions: STEM Graduation Rate

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9)

female -0.176*** -0.125*** -0.121***

(0.00400) (0.00239) (0.00237)

High School track (humanities excluded):

Scientific/Technical 0.156*** 0.236*** 0.127***

(0.00236) (0.00329) (0.00229)

Education -0.0605*** -0.0965*** -0.0682***

(0.00324) (0.00789) (0.00311)

Languages -0.0557*** -0.0660*** -0.0614***

(0.00308) (0.00680) (0.00298)

Arts 0.249*** 0.364*** 0.218***

(0.00802) (0.0141) (0.00838)

Technical non STEM -0.0705*** -0.0526*** -0.0650***

(0.00264) (0.00476) (0.00297)

Technical STEM 0.396*** 0.434*** 0.371***

(0.00424) (0.00574) (0.00878)

Science 0.179*** 0.246*** 0.148***

(0.00226) (0.00431) (0.00247)

Professional -0.0274*** -0.00449 -0.0273***

(0.00479) (0.00918) (0.00519)

School dummies YES YES YES

High school final grade:

85-95 0.0916*** 0.156*** 0.0506*** 0.0930*** 0.152*** 0.0553*** 0.0921*** 0.152*** 0.0557***

(0.00188) (0.00321) (0.00197) (0.00190) (0.00318) (0.00195) (0.00196) (0.00329) (0.00201)

95-100 0.140*** 0.231*** 0.0863*** 0.143*** 0.228*** 0.0923*** 0.143*** 0.231*** 0.0940***

(0.00247) (0.00391) (0.00237) (0.00244) (0.00377) (0.00234) (0.00265) (0.00407) (0.00250)

Attitudes

Enrolment motivation (professional) 0.0190*** 0.0388*** -0.00121 0.0204*** 0.0373*** 0.00293 0.0196*** 0.0355*** 0.00262

(0.00234) (0.00347) (0.00264) (0.00222) (0.00336) (0.00255) (0.00224) (0.00351) (0.00254)

Salary very important 0.00394*** -0.00133 0.00734*** 0.00507*** 0.000155 0.00740*** 0.00445*** -0.00118 0.00722***

(0.00143) (0.00275) (0.00200) (0.00137) (0.00265) (0.00192) (0.00144) (0.00267) (0.00205)

Career prospects very important 0.0127*** 0.0194*** 0.00454** 0.0147*** 0.0212*** 0.00830*** 0.0148*** 0.0222*** 0.00813***

(0.00160) (0.00302) (0.00177) (0.00155) (0.00285) (0.00174) (0.00146) (0.00282) (0.00173)

Stability very important 0.00554*** 0.0161*** -0.00308 0.00623*** 0.0141*** 0.000254 0.00823*** 0.0161*** 0.00221

(0.00156) (0.00250) (0.00213) (0.00149) (0.00236) (0.00209) (0.00141) (0.00240) (0.00194)

Culture very important -0.0205*** -0.0353*** -0.0107*** -0.0277*** -0.0384*** -0.0203*** -0.0282*** -0.0403*** -0.0205***

(0.00140) (0.00289) (0.00141) (0.00138) (0.00281) (0.00138) (0.00135) (0.00286) (0.00139)

Free time very important -0.0237*** -0.0358*** -0.0159*** -0.0214*** -0.0345*** -0.0130*** -0.0195*** -0.0309*** -0.0120***

(0.00153) (0.00268) (0.00167) (0.00151) (0.00256) (0.00167) (0.00156) (0.00274) (0.00175)

Volunteering activities -0.0300*** -0.0400*** -0.0255*** -0.0304*** -0.0370*** -0.0266*** -0.0301*** -0.0369*** -0.0263***

(0.00141) (0.00277) (0.00168) (0.00136) (0.00264) (0.00162) (0.00133) (0.00263) (0.00162)

cont’d



Chapter 2 68

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Father education (less than HS excluded):

High school 0.0154*** 0.00794** 0.0192*** 0.00885*** 0.00897*** 0.00929*** 0.00779*** 0.00805** 0.00767***

(0.00158) (0.00314) (0.00165) (0.00147) (0.00296) (0.00156) (0.00152) (0.00314) (0.00161)

College non STEM -0.0264*** -0.0571*** 0.00233 -0.0319*** -0.0509*** -0.0138*** -0.0311*** -0.0499*** -0.0139***

(0.00343) (0.00524) (0.00332) (0.00321) (0.00502) (0.00321) (0.00292) (0.00491) (0.00305)

College STEM Science 0.0903*** 0.0752*** 0.102*** 0.0779*** 0.0740*** 0.0806*** 0.0740*** 0.0681*** 0.0781***

(0.00537) (0.00819) (0.00651) (0.00531) (0.00815) (0.00646) (0.00508) (0.00780) (0.00677)

College STEM Engineering 0.152*** 0.167*** 0.139*** 0.135*** 0.156*** 0.115*** 0.129*** 0.150*** 0.110***

(0.00442) (0.00627) (0.00545) (0.00471) (0.00671) (0.00547) (0.00455) (0.00726) (0.00525)

Mother education (less than HS excluded):

High school 0.00876*** -0.00488 0.0151*** 0.00362** 0.000380 0.00553*** 0.00332** 0.00129 0.00439**

(0.00151) (0.00310) (0.00168) (0.00146) (0.00287) (0.00177) (0.00148) (0.00299) (0.00180)

College non STEM 0.0128*** 0.000646 0.0237*** 0.00571** 0.00587 0.00769*** 0.00465* 0.00482 0.00577**

(0.00282) (0.00535) (0.00267) (0.00262) (0.00500) (0.00262) (0.00245) (0.00487) (0.00267)

College STEM Science 0.0906*** 0.0679*** 0.107*** 0.0788*** 0.0709*** 0.0844*** 0.0739*** 0.0671*** 0.0779***

(0.00545) (0.00755) (0.00681) (0.00534) (0.00731) (0.00679) (0.00475) (0.00693) (0.00637)

College STEM Engineering 0.124*** 0.116*** 0.133*** 0.112*** 0.115*** 0.112*** 0.105*** 0.107*** 0.103***

(0.0104) (0.0146) (0.0117) (0.0104) (0.0150) (0.0116) (0.00901) (0.0140) (0.0110)

Father last occupation (blue collar or never worked excluded):

Self-employed/small businessman 0.00398** 0.000862 0.00653*** 0.00424** 0.00466 0.00448** 0.00340** 0.00333 0.00403**

(0.00179) (0.00348) (0.00188) (0.00171) (0.00330) (0.00183) (0.00167) (0.00325) (0.00188)

White collar 0.0118*** 0.00863*** 0.0128*** 0.00890*** 0.00953*** 0.00797*** 0.00792*** 0.00869*** 0.00757***

(0.00176) (0.00300) (0.00217) (0.00174) (0.00287) (0.00214) (0.00175) (0.00303) (0.00213)

Liberal professions/white collar director/entrepreneur 0.00168 -0.0158*** 0.0153*** -0.00133 -0.0131*** 0.00816*** -0.00166 -0.0141*** 0.00764***

(0.00214) (0.00375) (0.00278) (0.00212) (0.00357) (0.00274) (0.00216) (0.00360) (0.00290)

Mother last occupation (housewife excluded):

Blue collar -0.00285 -0.00662* -0.000423 -0.00507*** -0.00920*** -0.00292 -0.00659*** -0.0118*** -0.00420**

(0.00179) (0.00358) (0.00201) (0.00173) (0.00343) (0.00196) (0.00168) (0.00348) (0.00197)

Self-employed/small businessman 0.000380 -0.0160*** 0.0108*** -0.000774 -0.0128*** 0.00656** -0.000416 -0.0105** 0.00556**

(0.00247) (0.00449) (0.00285) (0.00234) (0.00420) (0.00272) (0.00235) (0.00428) (0.00275)

White collar 0.00573*** -0.00811** 0.0159*** 0.00198 -0.00949*** 0.0100*** 0.000626 -0.0106*** 0.00866***

(0.00192) (0.00384) (0.00242) (0.00185) (0.00364) (0.00238) (0.00183) (0.00362) (0.00240)

Liberal professions/white collar director/entrepreneur -0.0109*** -0.0222*** -0.000139 -0.0134*** -0.0221*** -0.00605* -0.0133*** -0.0201*** -0.00748**

(0.00286) (0.00511) (0.00351) (0.00281) (0.00487) (0.00355) (0.00268) (0.00520) (0.00337)

Municipal Variables

Female mayor 0.00519 0.00516 0.00456 0.00317 0.00361 0.00284 0.00367 0.00218 0.00496

(0.00546) (0.0105) (0.00439) (0.00527) (0.00949) (0.00434) (0.00515) (0.00887) (0.00455)

Share female councillors 0.00325 -0.00894 0.0140 0.00514 0.00182 0.0121 0.00531 0.00540 0.00940

(0.0170) (0.0250) (0.0179) (0.0165) (0.0235) (0.0175) (0.0169) (0.0246) (0.0175)

Fertility rate 0.000117 0.000371 -5.75e-06 0.000170 0.000421 8.24e-05 0.000128 0.000489* 3.49e-05

(0.000150) (0.000288) (0.000166) (0.000144) (0.000273) (0.000160) (0.000144) (0.000284) (0.000163)

Share of religious marriages 0.000826 0.0258* -0.0108 -0.00362 0.0189 -0.0142* -5.30e-05 0.0264* -0.0132

(0.00766) (0.0147) (0.00851) (0.00742) (0.0141) (0.00825) (0.00738) (0.0144) (0.00832)

Supply of STEM courses -0.00379 -0.00589*** -0.00242 -0.00410 -0.00566*** -0.00290 -0.00373 -0.00601** -0.00279

(0.00252) (0.00225) (0.00348) (0.00253) (0.00212) (0.00337) (0.00286) (0.00240) (0.00338)

Supply of university courses 0.000776 0.00127* 0.000503 0.000865 0.00123* 0.000608 0.000677 0.00132* 0.000467

(0.000744) (0.000726) (0.00109) (0.000748) (0.000668) (0.00106) (0.000820) (0.000692) (0.00106)

Observations 485,350 183,588 300,787 485,350 183,588 300,787 485,350 181,294 299,321

R-squared 0.143 0.142 0.086 0.203 0.211 0.135 0.244 0.270 0.181

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: The sample consists of college graduates who were 18 between 2003 and 2010 and who

graduated between 2010 and 2015. The dependent variable is a binary variable equal 1 if the

individual graduated from a STEM field. Each regression includes the survey year, year of graduation

and municipality of residence fixed effects.
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Table A2: Full Regressions: Maths Intensity of University Courses

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9)

female -0.171*** -0.144*** -0.138***

(0.00253) (0.00173) (0.00170)

High School track (humanities excluded):

Scientific/Technical 0.141*** 0.207*** 0.117***

(0.00150) (0.00273) (0.00141)

Education -0.0363*** -0.0710*** -0.0449***

(0.00239) (0.00593) (0.00226)

Languages -0.0257*** -0.0457*** -0.0308***

(0.00264) (0.00599) (0.00250)

Arts 0.146*** 0.191*** 0.133***

(0.00475) (0.00855) (0.00509)

Technical non STEM 0.0776*** 0.0945*** 0.0802***

(0.00262) (0.00427) (0.00286)

Technical STEM 0.286*** 0.329*** 0.242***

(0.00308) (0.00422) (0.00606)

Science 0.137*** 0.200*** 0.107***

(0.00164) (0.00323) (0.00160)

Professional 0.00632* 0.0168** 0.0130***

(0.00358) (0.00692) (0.00367)

School dummies

High school final grade:

85-95 0.0676*** 0.111*** 0.0402*** 0.0662*** 0.107*** 0.0400*** 0.0656*** 0.107*** 0.0403***

(0.00127) (0.00231) (0.00128) (0.00131) (0.00229) (0.00132) (0.00135) (0.00245) (0.00133)

95-100 0.109*** 0.168*** 0.0736*** 0.107*** 0.164*** 0.0730*** 0.107*** 0.166*** 0.0738***

(0.00169) (0.00291) (0.00160) (0.00172) (0.00287) (0.00164) (0.00190) (0.00325) (0.00171)

Attitudes

Enrolment motivation (professional) 0.0833*** 0.0834*** 0.0808*** 0.0841*** 0.0833*** 0.0818*** 0.0822*** 0.0804*** 0.0815***

(0.00190) (0.00242) (0.00237) (0.00187) (0.00237) (0.00234) (0.00184) (0.00235) (0.00234)

Salary very important 0.00396*** 0.00203 0.00473*** 0.00465*** 0.00316* 0.00459*** 0.00462*** 0.00209 0.00509***

(0.00114) (0.00183) (0.00153) (0.00112) (0.00177) (0.00152) (0.00116) (0.00179) (0.00160)

Career prospects very important 0.0452*** 0.0546*** 0.0362*** 0.0444*** 0.0538*** 0.0362*** 0.0428*** 0.0529*** 0.0343***

(0.00118) (0.00208) (0.00131) (0.00114) (0.00199) (0.00128) (0.00104) (0.00198) (0.00125)

Stability very important -0.00806*** -0.00630*** -0.00978*** -0.00840*** -0.00787*** -0.00861*** -0.00644*** -0.00548*** -0.00720***

(0.00102) (0.00177) (0.00138) (0.000976) (0.00173) (0.00133) (0.000928) (0.00168) (0.00126)

Culture very important -0.0456*** -0.0638*** -0.0336*** -0.0474*** -0.0640*** -0.0362*** -0.0462*** -0.0630*** -0.0348***

(0.000988) (0.00220) (0.000922) (0.000948) (0.00213) (0.000927) (0.000932) (0.00213) (0.000963)

Free time very important -0.0214*** -0.0311*** -0.0145*** -0.0212*** -0.0313*** -0.0139*** -0.0187*** -0.0276*** -0.0122***

(0.00103) (0.00189) (0.00116) (0.00102) (0.00186) (0.00118) (0.00104) (0.00194) (0.00121)

Volunteering activities -0.0258*** -0.0343*** -0.0216*** -0.0253*** -0.0326*** -0.0210*** -0.0247*** -0.0318*** -0.0205***

(0.00104) (0.00212) (0.00103) (0.00102) (0.00207) (0.00101) (0.00103) (0.00209) (0.00104)

cont’d
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Father education (less than HS excluded):

High school 0.0111*** 0.00884*** 0.0118*** 0.0108*** 0.0120*** 0.0100*** 0.00924*** 0.0106*** 0.00800***

(0.00113) (0.00224) (0.00115) (0.00108) (0.00217) (0.00112) (0.00111) (0.00231) (0.00115)

College non STEM -0.0206*** -0.0399*** -0.00133 -0.0174*** -0.0310*** -0.00412* -0.0184*** -0.0329*** -0.00553***

(0.00296) (0.00463) (0.00232) (0.00259) (0.00434) (0.00211) (0.00231) (0.00426) (0.00200)

College STEM Science 0.0413*** 0.0389*** 0.0440*** 0.0424*** 0.0445*** 0.0403*** 0.0387*** 0.0393*** 0.0378***

(0.00450) (0.00695) (0.00469) (0.00432) (0.00681) (0.00456) (0.00379) (0.00644) (0.00438)

College STEM Engineering 0.0985*** 0.108*** 0.0899*** 0.0972*** 0.109*** 0.0857*** 0.0916*** 0.102*** 0.0808***

(0.00331) (0.00482) (0.00368) (0.00332) (0.00506) (0.00354) (0.00307) (0.00514) (0.00343)

Mother education (less than HS excluded):

High school 0.00228** -0.00438** 0.00529*** 0.00340*** 0.00168 0.00447*** 0.00312*** 0.00283 0.00375***

(0.000989) (0.00207) (0.00105) (0.000963) (0.00199) (0.00107) (0.000974) (0.00206) (0.00108)

College non STEM 0.00425** -0.000509 0.00962*** 0.00702*** 0.00802** 0.00780*** 0.00578*** 0.00647* 0.00655***

(0.00209) (0.00377) (0.00200) (0.00182) (0.00348) (0.00189) (0.00165) (0.00336) (0.00185)

College STEM Science 0.0524*** 0.0432*** 0.0589*** 0.0552*** 0.0520*** 0.0568*** 0.0505*** 0.0471*** 0.0529***

(0.00394) (0.00523) (0.00469) (0.00370) (0.00508) (0.00446) (0.00319) (0.00470) (0.00416)

College STEM Engineering 0.0777*** 0.0792*** 0.0788*** 0.0778*** 0.0848*** 0.0744*** 0.0723*** 0.0775*** 0.0684***

(0.00637) (0.00869) (0.00749) (0.00604) (0.00863) (0.00717) (0.00514) (0.00833) (0.00655)

Father last occupation (blue collar or never worked excluded):

Self-employed/small businessman 0.0127*** 0.0111*** 0.0143*** 0.0136*** 0.0139*** 0.0138*** 0.0123*** 0.0140*** 0.0120***

(0.00127) (0.00253) (0.00129) (0.00126) (0.00245) (0.00131) (0.00126) (0.00249) (0.00133)

White collar 0.0102*** 0.0100*** 0.00939*** 0.0104*** 0.0120*** 0.00893*** 0.00932*** 0.0114*** 0.00791***

(0.00115) (0.00213) (0.00131) (0.00116) (0.00208) (0.00134) (0.00118) (0.00229) (0.00132)

Liberal professions/white collar director/entrepreneur 0.00754*** -0.00130 0.0150*** 0.00822*** 0.00220 0.0135*** 0.00727*** 0.00176 0.0120***

(0.00142) (0.00272) (0.00180) (0.00143) (0.00259) (0.00184) (0.00149) (0.00260) (0.00198)

Mother last occupation (housewife excluded):

Blue collar -0.00110 -0.00192 -0.000787 -0.00142 -0.00233 -0.00129 -0.00199* -0.00390* -0.00124

(0.00121) (0.00237) (0.00128) (0.00119) (0.00230) (0.00126) (0.00114) (0.00229) (0.00127)

Self-employed/small businessman 0.00275* -0.00890*** 0.0100*** 0.00322** -0.00594** 0.00884*** 0.00397** -0.00350 0.00846***

(0.00164) (0.00308) (0.00185) (0.00158) (0.00296) (0.00179) (0.00156) (0.00305) (0.00181)

White collar 0.000641 -0.00747*** 0.00668*** 0.000706 -0.00634** 0.00581*** 0.000520 -0.00591** 0.00521***

(0.00130) (0.00263) (0.00140) (0.00129) (0.00259) (0.00136) (0.00126) (0.00263) (0.00138)

Liberal professions/white collar director/entrepreneur -0.00758*** -0.0172*** 0.00119 -0.00731*** -0.0155*** -0.000504 -0.00778*** -0.0141*** -0.00252

(0.00213) (0.00373) (0.00245) (0.00208) (0.00369) (0.00237) (0.00204) (0.00418) (0.00226)

Municipal Variables

Female mayor 0.00888 0.0104 0.00703 0.00843 0.00964 0.00722 0.00692 0.00717 0.00704

(0.00589) (0.00903) (0.00469) (0.00574) (0.00843) (0.00482) (0.00533) (0.00789) (0.00460)

Share female councillors 0.0121 0.00555 0.0199* 0.0127 0.0103 0.0186* 0.0120 0.0141 0.0165

(0.0112) (0.0180) (0.0113) (0.0111) (0.0175) (0.0113) (0.0113) (0.0180) (0.0114)

Fertility rate 5.36e-05 8.37e-05 4.64e-05 7.57e-05 0.000101 8.70e-05 1.81e-05 0.000123 3.46e-05

(0.000101) (0.000198) (0.000111) (9.91e-05) (0.000193) (0.000109) (9.81e-05) (0.000199) (0.000109)

Share of religious marriages -0.00686 0.00319 -0.0111** -0.00860* 0.000272 -0.0123** -0.00470 0.00323 -0.00942*

(0.00517) (0.0102) (0.00549) (0.00507) (0.00992) (0.00542) (0.00502) (0.0101) (0.00545)

Supply of STEM courses -0.00422*** -0.00644*** -0.00259 -0.00408** -0.00621*** -0.00235 -0.00360* -0.00596*** -0.00211

(0.00162) (0.00142) (0.00227) (0.00169) (0.00136) (0.00230) (0.00195) (0.00159) (0.00236)

Supply of university courses 0.00102** 0.00160*** 0.000644 0.000978** 0.00155*** 0.000541 0.000792 0.00146*** 0.000417

(0.000448) (0.000467) (0.000666) (0.000465) (0.000431) (0.000672) (0.000523) (0.000463) (0.000681)

R-squared 0.143 0.142 0.086 0.203 0.211 0.135 0.244 0.270 0.181

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: The sample consists of college graduates who were 18 between 2003 and 2010 who graduated

between 2010 and 2015. The dependent variable is the maths intensity index of the course of study.

Each regression includes the survey year, year of graduation and municipality of residence fixed

effects.
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Career Effects of Educational

Mismatch

3.1 Introduction

There is increasing evidence that labour market conditions faced by young workers

upon completing education can have substantial long term effects on their careers.

The issue is of increasing relevance in light of the latest economic crisis, that made

young workers face severely adverse macroeconomic conditions upon labour market

entry. Previous research has shown that even short-lived labour market shocks can

cause persistent career losses, suggesting that the recent cohorts of graduates might

still be bearing the costs of the Great Recession.1

Exploring the mechanisms through which recessions affect labour market out-

comes is crucial to help shaping policies in support of the negatively affected cohorts.

Recessions are associated with an overall lower supply of jobs; thus, young grad-

uates can take more time to find their first job and spend more time in unemployment.

Unemployment can have long-term effects on future labour market possibilities, be-

cause of depreciation of human capital (Becker, 1994), psychological discouragement

or habituation effects (Clark et al., 2001), or employers using individuals’ unemploy-

ment as a signal of low productivity (Lockwood, 1991).

1See, for example, Oyer (2006) for an analysis of MBA college graduates and PhD economists;
Genda et al. (2010) for a comparison of US and Japanese college graduates; Oreopoulos et al. (2012),
Altonji et al. (2016) and Liu et al. (2016) for the analysis of respectively Canadian, US and Norwegian
college graduates.

71
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During recessions the wage offer distribution worsens and the literature has

also documented that the quality of jobs tends to decline, for example in terms of

opportunities for promotions and training (Gibbons and Waldman, 2006). Hence, a

poor early start could put workers in low paying/lower quality jobs. The initial shocks

can become persistent because of contracting rigidities and search frictions that make

it difficult to move to a better job. Oreopoulos et al. (2012) provide evidence that

the career losses of Canadian college graduates entering the labour market during a

recession are explained by the low quality of the first employer – measured in terms

of firm size and average earnings among employees. A similar result is obtained by

Oyer (2006), who finds that PhD economists graduating during a recession start in

lower ranked universities, and they do not move to better institutions because they

are less productive in terms of publications.

Furthermore, there is evidence that idiosyncratic match quality is affected by the

tightness of the labour market (Hagedorn and Manovskii, 2013; Frühwirth-Schnatter

et al., 2010). The evidence provided by Liu et al. (2016) suggests that the main

mechanism behind the negative effect of poor labour market conditions upon entry

on earnings is the quality of the first job in terms of match between skills of workers

and skills requirements of industries in which these workers are employed, and they

show that the effect is reduced when workers are able to switch to the right industry.

In this study I analyse the short and medium term career outcomes of Italian

individuals completing high school or university between 1993 and 2010, as a function

of the macroeconomic conditions upon entering the labour market after completion

of education. I combine individual data from the Italian Labour Force Survey with

a unique dataset on job vacancies advertised on Italian newspapers to analyse how

workers with different skills react to higher competition upon entry in the labour

market. The labour market relevant for each individual is defined by the level of ed-

ucation possessed, the geographical area and year of entry. The degree of competition

is measured with the ratio between the number of unemployed workers possessing a

given level of education and the number of job vacancies requiring the same level of

education, in a given region and year. This measure indicates the extent of the dis-

crepancy between the labour supply and labour demand according to the dimension
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of education, and I indicate it as “educational mismatch”.

I investigate the following mechanism: Barnichon and Zylberberg (2018) show

that during a recession some high-skill workers try to escape competition from their

high-skill peers by moving down the occupational ladder.2 I analyse whether work-

ers who face very high competition upon entry in the labour market compete with

workers with lower level of education, ending up overeducated and suffering wage

losses.3

My paper contributes to the recent literature trying to assess the long term

impact of entering the labour market in bad times in at least three ways. First,

I emphasise the role of the labour demand dimension by measuring labour market

conditions at entry in terms of not only the unemployment rate but also looking at

the characteristics of jobs offered. Second, I highlight the aspects of heterogeneity of

the effect and of competition across workers with different skills. Finally, I provide

evidence for Italy, a country with very persistent unemployment rate and high youth

unemployment rate, and with a high incidence of the overeducation phenomenon.

I find that both college and high school graduates who enter the labour market

when “educational mismatch” is higher have lower probabilities of being employed

and lower salaries, even many years after graduation. Moreover, these workers are

more likely to be employed in a job for which a lower level of education is required.

The evidence suggests that workers with different skills compete with each other,

and in particular some workers try to escape strong competition from their same-

skill peers by taking jobs for which a lower level of education is required.

The rest of the chapter is organised as follows: Section 3.2 presents some fea-

tures characterising the Italian labour market and describes the data used; Section

3.3 discusses the identification strategy used for the empirical analysis. Results are

presented and discussed in Section 3.4. Section 3.5 summarises the conclusions.

2The underlying assumption is that when workers with different skills compete for the same
vacancy, high-skill applicants are systematically hired over less-skilled competing applicants. In
Barnichon and Zylberberg (2018) this “ranking” mechanism is generated endogenously by the model
through the wage bargaining process.

3It is a well-established result in the empirical literature that overeducated workers get lower wages
than workers with similar education but in jobs in which their schooling equals what is required. See
Leuven and Oosterbeek (2011) for an extensive survey on the economics literature on overeducation.
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3.2 Background and Data

3.2.1 Demand and Supply of Skills in Italy

Recessions are characterised by a rising number of unemployed job seekers and falling

job opportunities, both contributing to a higher unemployment-to-vacancy ratio.

These changes might not be uniform across the skills distribution.

Sahin et al. (2014) show that in the latest recession the rise in unemployment

was partly due to the mismatch of unemployed workers and vacancies across distinct

labour markets, defined by industries, occupations or geographical locations. They

compare the actual allocation of unemployed workers across sectors to an ideal allo-

cation that would be selected by a planner who faces no impediment in moving idle

labour across sectors. They show that this optimal allocation comes from equating

efficiency-weighted vacancy-unemployment ratios across sectors and use this optimal-

ity condition to construct a “mismatch index”; this index is between 0 and 1 and

gives a measure of the fraction of hires lost every period because of job seekers mis-

allocation. Following their work, I compute an index of mismatch of vacancies and

unemployed workers across distinct labour markets defined by the level of education

– less than high school degree, high school diploma and college degree – and the geo-

graphical macroarea – north east, north west, central Italy, southern Italy, islands –

in the years between 1993 and 2010.4 The time series of this mismatch index, which

is illustrated in Figure 3.1, indicates that between 11 and 24% of hires were lost

each year in the period considered because of the misallocation of job seekers across

education groups and geographical location. The resulting index for Italy is higher

than the index obtained by Sahin et al. for US across occupations and geographical

location5, suggesting that the phenomenon of mismatch between demand and supply

across the education and geographical location is a severe issue in Italy.

One implication of this labour market feature can be that there is competition

across skills and that a phenomenon of “trickle down unemployment” takes place:

4I apply Sahin et al. (2014) formula for the mismatch index in the simplest case of absence of
heterogeneity with respect to matching efficiency, productivity and job destruction, and using as
vacancy share α = 0.5. The formula is Mt = 1 −

∑I
i

∑J
j (

vijt
vt

)α(
uijt

ut
)(1−α).

5See Figure B15 of Sahin et al. (2014) for the plot of the mismatch index across 19 2-digits
occupations and 9 US census divisions obtained for US for the period May 2005-June 2011, that
ranges from approximately 0.11 to approximately 0.16.
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some workers escape competition from their same skill peers by competing with lower

skilled workers; workers take jobs requiring a lower level of education than the one

they possess, ending up overeducated, and moving down the occupational ladder.

The 2014 report on the Italian labour market from the Italian National Institute

of Statistics (ISTAT) presents some interesting evidence in this direction. In its

chapter discussing the situation of the Italian labour market during the years of the

Great Recession, the report has a focus on the characteristics of the labour force by

level of education. By distinguishing workers with high (at least bachelor degree),

medium (lower secondary and secondary education) and low (primary school) level

of education, the report highlights three facts characterising the period 2008-2013:

(i) the increase of the active population with high level of education as opposed to

the decrease in the group with a low level of education, indicating a shift in the

supply of labour towards more skilled labour; (ii) the number of workers with high

level of education who are employed increased, but the increase was mainly driven by

employment in jobs requiring medium and low skills; (iii) the number of workers with

low level of education who are employed decreased. This evidence is interpreted as

suggestive of the fact that highly educated workers might have been able to protect

themselves from the crisis by taking jobs requiring less than the level of education

possessed, pushing workers with lower level of education out of employment.

Two additional pieces of evidence point to the same direction and support this

idea. The first one is that the unemployment rate of high skill workers appears to

be less cyclical relative to the one of lower skilled workers. Figure 3.2 plots the

unemployment rate in Italy in the last twenty years by level of education and shows

that over the period considered the unemployment rate of highly educated workers

has the lowest negative correlation with the GDP growth.6 This is suggesting that

Italian high skilled workers are more sheltered from macroeconomic conditions with

respect to their low skilled counterparts.

The second piece of evidence comes from the European Community Household

Panel data, from which it is possible to obtain a measure of the overeducation phe-

nomenon across European countries. The survey asks the questions “Do you feel that

6The correlations between GDP growth and unemployment rate growth for primary, secondary
and tertiary education are respectively -0.64, -0.71 and -0.46.
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you have skills or qualification to do a more demanding job than the one you have

now?” and “Have you had formal training or education that has given you skills

needed for the current type of work?”; workers who answer yes to the first ques-

tion and no to the second one are classified as overeducated. Figure 3.3 plots the

percentage of overeducated workers averaged across the period 1994-2001 for some

European countries and shows that in Italy the overeducation incidence is 26%, the

highest among the countries considered.

3.2.2 Data on Unemployment and Job Vacancies

In order to obtain a measure of the mismatch of demand and supply of labour in a

given labour market defined by the level of education and the geographical location,

I combine two data sources: individual microdata from the Italian Labour Force

Survey (LFS) – collected and made available by the ISTAT – and microdata on job

vacancies from the Help Wanted Time Series dataset made available by ISFOL –

Istituto per lo Sviluppo della Formazione Professionale dei Lavoratori.

Following Destefanis and Fonseca (2007), I use individual data from the IS-

TAT LFS to measure stocks of unemployed workers and labour force participants by

geographical area and degree of education possessed. I compute the number of unem-

ployed workers by year (from 1993 to 2010), five macroareas (north west, north east,

central Italy, southern Italy, islands), and three levels of education (less than high

school, high school degree and college degree).7 The stock of unemployed workers is

measured in the second quarter of each year.

To measure the labour demand side, I exploit a unique micro-level dataset of

vacancies, the ISFOL-Help Wanted Time Series. It collects the vacancy advertise-

ments published on the main Italian newspapers, which have been classified and

filled throughout the years by the Centro di Statistica Aziendale (CSA) in Florence

on behalf of ISFOL.8

The collection of advertisements by CSA begun more than 30 years ago and

7I will include in the “high school” category only the unemployed workers who obtained a high
school degree that allows access to university; in Italy there is also the possibility for some secondary
education institutes (specifically the ones with technical or professional curriculum) to obtain a 3 or
4 years qualification (qualifica), that does not allow access to university afterwards: I will include
students with this type of qualification in the “less than high school” category.

8I am grateful to Michele Cuppone for making the data available.
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it continued until 2010. It started with the registration of the job offers from the

advertisement sections of the most important national newspapers; throughout the

years it expanded both in terms of newspapers covered and in terms of the information

collected for each job advert.9 These data represent a unicum in Italy and also at

the European level. Its publication has been followed by a discrete number of studies

that have used them as valid proxy of the labour demand in Italy, in particular to

study the relationship between vacancies and unemployment known as the Beveridge

curve (see for example Mocavini and Paliotta Isfol (2005), Destefanis and Fonseca

(2007)).

The database is unique because it allows to work with vacancies at a micro rather

than aggregate level: each observation is a single advertisement. Figure 3.4 provides

an example of how an advert is coded into the dataset. From each advertisement

present on the newspaper every information is extrapolated, such that in the final

dataset for each observation (job advert) there are variables on: date in which it

was posted, name of the newspaper, number of job openings per advert, and (if

specified) geographical location of work, level of education required, sector of the firm

seeking workers, description of the occupation, age range, required work experience

and required knowledge of foreign languages. To construct my measure of labour

demand, I sum the number of job openings by quarter-year of posting, macroarea of

work and level of education required; in the specific example of the figure I will have

10 vacancies in quarter 2 of 2013, in the north-east of Italy, requiring high school

education.

A comparable time series in terms of quantity and quality of variables is available

for the years from 1993 to 2010. The survey covers all the main national Italian

newspapers with their local editions, plus some local and few foreign newspapers.

Throughout the years some newspapers have been added to the survey. To ensure that

the variation in the number of vacancies from one year to another reflects fluctuations

in labour demand rather than a change in the composition of the sample, I restrict

the sample to newspapers that are present in the survey in all years. Eight existing

newspapers that were added to the survey between 2001 and 2002 are excluded for

9See Mocavini and Paliotta Isfol (2005) for an extensive survey on the measurement of job va-
cancies in Italy.
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the vacancies computation. Table A1 in the appendix reports a detailed list of the

newspapers covered by the sample with their classification as national or local.

Given the nature of this dataset, there may be issues about potential duplication

of a job advertisement in different newspapers, in the same day or after some days, or

in the same newspapers some days later, which could lead to count more than once

the same vacancy. The advertisements that are present in the same newspaper or in

a different newspaper in a window of one month since the first time it has appeared

are dropped from the sample.10

For each advertisement, if indicated, the area of job is reported at the level

of region and macroarea. Approximately 2% of the total advertisements refers to

jobs located outside Italy, which are dropped from the sample. For another 15% of

job advertisements the detail of the location within Italy is not specified. A small

percentage of these observations (30%) belongs to newspapers in which between 80

and 90% of the published ads refers to vacancies in a single macroarea, which is the

area where they have their headquarters and the highest diffusion among readers.11

For these observations, I impute the macroarea of work according to the area of

coverage of the newspaper. The other 70% of the observations with missing location

refers to jobs advertised in two newspapers that do not have a clear geographical

diffusion (namely Corriere della Sera and La Repubblica); these observations (8% of

the total number of advertisements and 12% of the total number of vacancies) are

dropped.

The firm seeking workers can indicate the level of education required for the job.

Only for 42% of the total ads is a precise level of education required indicated, that

I classify in three macro categories: college degree, high school degree, or less than

high school degree.12 If more than one type or level of education is indicated I classify

10Following Mocavini and Paliotta (Isfol, 2005) I consider as duplicates the job adverts that have
specified the same: profession, number of vacancies available, age range, level of education, geogaph-
ical location of the job, sector of the firm. See (Isfol, 2005) for a discussion of the incidence of the
duplication phenomenon in the ISFOL data.

11I look at data on newspapers circulation by geographical area from the independent agency ADS
(Accertamenti Diffusione Stampa). I thank Simonetta Zambelli of ADS for kindly providing me with
these data.

12Unlike the data on unemployed workers from ISTAT, for the high school diploma, I cannot dis-
tinguish between job vacancies requiring the full high school diploma (giving access to the university)
or only the 3 or 4 years qualification in the case of high school degree from Istituto Tecnico or Istituto
Professionale. This means I might be overestimating the vacancies in the high school category and
underestimating the ones in the less than high school category.
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the vacancy as requiring the minimum level of education among the ones reported.

For the observations with non specified level of education required, I impute the level

of education most frequently indicated for jobs referring to the same profession, if at

least 60% of the overall adverts for the same profession have non missing education.

Figures 3.5 and 3.6 show, respectively, the time series of the unemployment

rate obtained from ISTAT LFS and the number of vacancies calculated from ISFOL-

HWTS (normalised by the number of employed workers in the same quarter of the

previous year), by macroarea and level of education. Southern Italy is characterised

by overall higher unemployment rates and much lower level of vacancies for all levels

of educations. In all areas the unemployment rate is lower for the tertiary education

level, while the labour demand is higher for this group of workers.

Quality of Vacancy Data

Given the nature of the data used to measure labour demand, there may be concerns

about their quality: one may wonder whether job vacancies posted on newspapers

are a good measure of labour demand.

One concern is that there is a progressive decline in the use of newspapers as

a job advertising tool throughout the period considered, so that the variation in

vacancies reflects this rather than the actual change in labour demand. A decreasing

use of newspaper recruitment can translate in a downward trend that could artificially

exacerbate the drop in job vacancies of last recession.

By looking at some statistics about the job search process in Italy over last 20

years, reported in table A2 in the appendix, we see evidence that the importance

of newspapers as job search channel has not decreased significantly in the period

considered, despite the increased use of other sources as internet. In the top panel I

report the distribution of employed workers according to the channel through which

they found their job, obtained from different surveys in different years. The evidence

suggests that the job search process in Italy is mostly informal, with the channel

of relatives and friends being the most relevant. For the overall formal process,

newspapers advertisements are the most important channel, and its importance does

not seem to decline over time. Moreover, the informal channel includes the use
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of newspapers, as it is possible that friends or relatives refer about jobs of which

they knew through a newspaper. In the bottom panel, I report the percentage of

job seekers who declare they examined job advertisements on newspapers and on

the internet as part of their search activity, by geographical macroarea. The use of

newspapers advertisements as job search tool is higher in northern regions; in all

macroareas the probability of having examined newspapers advertisements shows a

decline over time, but this is negligible and more importantly it does not seem to be

dramatically different across areas.

To address the issue of the quality of the vacancy data, I investigate whether

they are good predictors of job finding. In particular, I analyse the relationship be-

tween the measure of vacancies in different years, geographical locations and levels of

education obtained by ISFOL and the distribution of hires along the same dimensions

obtained from the ISTAT LFS.

Following the large literature that estimates a matching function using aggregate

data on unemployment and vacancies13, I estimate the following model:

ln(Hires)qme = α+ β1ln(V acancies)qme + β2ln(UnemploymentInflow)qme+

β3ln(UnemploymentStock)(q−1)me + γq + δm + εqme

[3.1]

where the number of hires in quarter q, macroarea m and level of education e is

regressed on the flow of vacancies posted each quarter, the inflow of unemployed

workers in the same period and the stock of unemployed workers in the previous

quarter – all measured along the same dimensions – plus quarter and macroarea

fixed effects. Hires are obtained from ISTAT LFS as the number of people who

declare they started their job in the year and quarter of the interview; unfortunately

I am not able to disentangle the flow into employment from unemployment from the

flow into employment from other employment. The inflow of unemployed workers is

obtained as number of unemployed workers who declare they stopped working the

same year and quarter of the interview; in this case, I am only able to catch the flow

into unemployment from employment.

13See Petrongolo and Pissarides (2001) for an extensive survey.
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Table 3.1 reports the results of the estimation of equation [3.1] both when not

including the stock of unemployed workers in the previous quarter – columns (1) and

(2) – and when including it, in both cases respectively with and without macroarea

fixed effects. The coefficient of the number of vacancies is always significant at least

at the 5% confidence level. The results from all different specifications show that the

ISFOL vacancy data are effective in predicting job finding, and provide evidence in

support of considering ISFOL data a good measure of labour demand.

3.2.3 Individual data on Labour Market Outcomes

The three main outcomes of my analysis are the employment status, monthly earnings

and the probability of being overeducated. The outcomes are measured from individ-

ual cross-sectional quarterly data on Italian workers – the ISTAT Labour Force Surey

– which contain information on respondents’ highest educational attainment and on

the year in which they completed education. I focus on individuals with high school

degree, or with college degree and above (from undergraduate to master’s degree

and PhD, including degrees issued by art institutions that in Italy are recognised as

university degree). Employment status and overeducation are measured from 2005 to

2010.14 Worker’s monthly salary is instead observed only in 2009 and 2010, because

ISTAT started collecting data on earnings in 2009.

I construct the overeducation variable from the distribution of the education

level possessed by workers aged 18 to 35 employed in each of the 121 3-digits occu-

pations from the ISTAT 2001 classification of professions (I focus on the distribution

observed in the 2005 wave of the survey in order to reduce the risk that my measure is

influenced by the business cycle). The 121 3-digits ISTAT professions are a detailed

classification within nine broad groups: 1 - Legislators, entrepreneurs and managers;

2 - Professionals; 3 - Technicians; 4 - Clerks; 5 - Service workers and shop and mar-

ket sales workers; 6 - Craft and related trades workers and agricultural workers; 7 -

Plant and machine operators and assemblers; 8 - Elementary occupations; 9 - Armed

forces. Each worker in my sample will be classified as overeducated if the majority of

individuals employed in his same profession has a lower level of education than the

14I exclude the 2008 wave because in this year the information on the year of graduation is missing.
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one he possesses. As a result, college graduates employed in low-skills jobs (groups

from 4 to 9) and middle-skills technical jobs (group 3), plus entrepreneurs, some

managers and some professionals, are considered overeducated. In some robustness

checks I will adopt more conservative measures, namely considering as overeducated:

(i) workers who are employed in professions for which at least 60% of individuals

have a lower level of education; (ii) college graduates employed in low-skills jobs only

(groups 4 to 9) and high school graduates employed in elementary occupations only

(group 8).

The sample of individuals in the labour force observed from 2005 to 2010, whose

highest educational attainment is at least high school, is composed of approximately

670,000 individuals, of which around 200,000 attained college education. The dataset

provides the information on the year in which the highest degree was obtained. When

the information is missing, workers are asked to report the age at which they com-

pleted their education. This happens only for 8% of college graduates, but for 26% of

high school graduates. I focus on the sub-samples of individuals with non-missing year

of education. For college graduates, the distribution of individuals across years, age

and macroarea of graduation is not different from the sample with non-missing year

of graduation, and the results are unchanged when these observations are included

in the analysis. For high school graduates, the distribution of age at graduation is

significantly different; in particular it presents an abnormal spike at the age of 19

(which is the most common age at which individuals complete high school in Italy),

which I attribute to a possible recall error. For this reason, I prefer excluding this

group of observations; in the Appendix, Figure A1 illustrates the issue in greater

detail and table A8 presents results from the analysis performed on the full sample.

I then focus on college graduates aged between 22 and 32 at graduation and

high school graduates who completed high school between the age of 18 to 21, both

not enrolled in education in the years in which the outcome is observed (excluding in

this way 16% of the college graduates sample and 17% of the high school graduates

sample). Since I have data on macroeconomic conditions from 1993 to 2010, I then

restrict the samples to individuals entering the labour market in those years. The

final samples are made by 78.892 college graduates and 99.200 high school graduates.
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Table 3.2 shows some summary statistics. There are 17 cohorts of college and high

school graduates. Workers with high school degree earn on average more than 300

Euro less per month than their higher skilled counterpart; individuals with college

degree have on average higher probability of being employed but also higher probabil-

ity of being overeducated. A relatively high percentage of college graduates (slightly

more than half) is classified as overeducated when looking at the mode of educa-

tion level by profession; with the alternative measure that considers as overeducated

workers with college degree employed in low-skills professions this percentage goes

down to 20%.

3.3 Empirical Strategy

The goal of this study is to estimate the effect of macroeconomic conditions upon

entry in the labour market – measured in terms of mismatch between demand and

supply of labour in the labour market relevant for each worker – on young workers’

careers. The relevant labour market for each individual is defined by his level of

education and the year and geographical area of exit from education.

The cross-sectional nature of the data used does not allow to observe the ge-

ographical location at time of graduation: as proxy for macroarea at entry, I use

the current macroarea of residence. This introduces potential attenuation bias due

to measurement error. Namely, if young workers move after graduation to an area

where the labour market is in better shape, I am underestimating the effect of labour

market conditions upon entry. Thus, if I find an effect, this must be a lower bound.

The measurement error due to migration is attenuated by the choice of the geograph-

ical unit: even if workers move across regions and municipalities after graduation,

they are less likely to move across macroareas. Moreover, in general mobility rates

within Italy are very low. In my sample of high school and college graduates the

percentage of workers who declare to have moved from another region to start the

current job is less than 2% in all years, and among this minority still some of them

could have moved within the same macroarea. Some evidence on migration patterns

of college graduates comes from the AlmaLaurea survey on Graduates’ Employment

Conditions. Table A3 reports the distribution of workers with a college degree by
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area of work for each area of study. More than 90% of individuals graduating in

north west stay in the same area to work, and this proportion is approximately 80%

for people graduating in north east and central Italy. Migration from the south and

the islands is higher, but still more than 70% of students graduating in these areas

do not move to work.

I estimate for both samples of high school and college graduates the following

specification:

yicrt = α+ ηXicrt + β1ln(U/V )cr + β2ln(U/V )cr ∗ Y SG+

γ1ln(U/V )rt + γ2ln(U/V )rt ∗ Y SG+ φt + δc + θr + εicrt

[3.2]

The outcome variable y is employment status, salary or probability of being overe-

ducated, measured in the year of interview t for an individual i with a given level

of education, graduated in year c, who lives in region r at the time of the survey.

The main independent variable is the ratio between number of unemployed workers

with the same education level of the individual and number of vacancies requiring the

same level of education, measured at time of graduation c in region r; this term is also

interacted with the number of years since graduation to investigate how persistent

the effect is. In order to estimate the isolated temporary shock of initial labour mar-

ket conditions holding everything else constant, the model also controls for labour

market conditions at the time of interview t, that are interacted with years since

graduation to allow the effect to be different according to which stage of the career

the worker is in. As a robustness check, I estimate an alternative specification where

the U/V ratios at time of interview are not included, and a full set of interactions

between year of interview and macroarea dummies is included. X is a set of indi-

vidual control variables, including age, gender, marital status and number of years

since first entry in the labour market. Year of interview, cohort and macroarea fixed

effects are included in the model. To account for group-specific error components,

standard errors are clustered at the cohort-region level.

Hence, the main coefficient of interest β1 measures the impact of labour market

conditions upon graduation over and above impact of current conditions. The coeffi-

cient β2 measures how the impact of labour market conditions varies with the number
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of years since graduation, to check for the persistence of the effect and disentangle

the short and longer term effect.

Since the Italian labour market is characterised by a high persistence of regional

labour market conditions differentials, one may lack statistical power for identifying

the effect of interest, having controlled for both year and macroarea fixed effects.

Table A4 in the appendix shows the very high correlation of the U/V ratios time

series across macroareas. Table A5 provides evidence showing that the fraction of

the variation in the independent variable that is due to between-groups (macroarea)

variation is only between 47 and 52%. For this reason I will show the results for each

outcome both when macroarea fixed effects are included and when they are not.

3.3.1 Identification issues and challenges

The empirical strategy relies on the key identification assumption of year and macroarea

of graduation being as good as random, conditional on all else controlled for. This

ensures that the variation in the U/V ratios arises from changes in aggregate labour

demand and supply that are uncorrelated with characteristics of different graduation

cohorts. This is not the case if individuals endogenously choose when and where to

graduate.

For example individuals may choose to obtain their education in a region where

macroeconomic conditions are better relative to where they were born. Students

might also postpone their exit from education if they perceive the labour market

is extremely slack at the time they are supposed to graduate. Both issues are less

severe for high school graduates: they enrol at the age of 14 usually in a high school in

proximity of their area of residence. High school students progress automatically to

the following grade unless severe failure in meeting some performance requirements;

failure of being admitted to the following year is perceived as very negative and it is

harder to think that students would fail on purpose to postpone graduation. High

school in Italy lasts 5 years so that the age of exit is between 18 and 19 (depending

on the month of birth): 75% of the sample of high school graduates from the ISTAT-

LFS 2005-2010 exits high school at age 18 or 19. On the other hand, a bigger

concern is that college graduates choose where and when to graduate in response to
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macroeconomic conditions in the area of residence at the time they are supposed to

complete education. In order to account for the potential endogeneity of the choice

of the timing of graduation, in a robustness check I impute to all the individuals in

the sample of college graduates the year in which they were supposed to exit from

university, based on the predicted duration of the study career path. Results of this

analysis are reported in last part of the results section.

Educational choice itself may be endogenously related to labour market con-

ditions. Theoretically, two scenarios are possible: individuals decide to undertake

higher education when they perceive the labour market for their education level is

very slack because the outside option is worse; it is also true that in periods of re-

cession the incidence of the cost of higher education is bigger, and this might induce

the less motivated individuals (or the poorest ones) away from pursuing higher edu-

cation. Results from the empirical literature go in the first direction (see Dellas and

Koubi (2003) or Di Pietro (2006)).

I estimate the effect of macroeconomic conditions around time of exit from high

school on the probability of being enrolled in university. I look at high school grad-

uates aged 19 to 22 in the survey years, and who were 19 in the years from 1993 to

2010. I estimate the coefficient of macroeconomic conditions at age 19 on the proba-

bility of being enrolled in university up to 3 years after high school graduation. Table

3.3 shows the results of this analysis: I indeed find that high school graduates are

more likely to be enrolled in university if the macroeconomic conditions in their edu-

cation cell at time of high school graduation are worse, while a slacker labour market

for college graduates makes high school graduates less likely to enrol in university.

Hence, during a recession more individuals stay in education after high school, and

one may expect composition effects of such decision, i.e., (i) the average quality of

high school graduates entering the labour market may be lower and (ii) the average

quality of university enrolment may also be lower such that the college graduates I

observe later are negatively selected.

On one end, these selection effects may lead to overestimate the negative impact,

if any, of labour market conditions on the careers of high-school graduates. On the

other hand, one would expect the opposite bias in the estimated effect of labour
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market conditions on the careers of college graduates. These potential biases need to

be kept in mind while interpreting my estimated effects of interest.

3.4 Results

I estimate equation [3.2] separately for the two samples of college graduates and

high school graduates, for each of the three outcomes: (i) the probability of being

employed; (ii) monthly salary; (iii) the probability of being overeducated.

3.4.1 Outcomes for College Graduates

Table 3.4 reports the results for the sample of college graduates.

The first three columns show that the effect of worse macroeconomic conditions

at graduation – measured as ratio between the number of unemployed workers with

college degree and the number of vacancies requiring college degree in the area and

year of graduation – on the probability of being employed upon entry in the labour

market is negative and significant at the 1% confidence level. The result is robust

to the inclusion of macroarea fixed effects – column (2) – and to an alternative

specification where I do not control for contemporaneous macroeconomic conditions

but I include a full set of interactions of year and macroarea dummies – column (3)

–, although the coefficient is decreased in magnitude in both cases.

For ease of interpretation, I will calculate the impact of an increase of 50% in

the U/V ratio, typical in a recession. Following such an increase the employment

probability upon graduation falls by between 2.2 and 5.3 percentage points, which

is between 4 and 10% of one standard deviation from the average probability of

being employed of college graduates upon exit from college. The interaction with

the potential years of experience is positive and statistically significant, indicating

that the effect fades over time, and it disappears within between 5 and 9 years from

graduation.

Columns (4) to (6) and (7) to (9) show the results respectively on the monthly

salary and on the probability of being employed in a profession for which the majority

of workers have a lower level of education. Having found a negative effect on the

employment probability, in interpreting these results it has to be considered that the
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effect is estimated on a selected sample of employed individuals. Moreover, data on

salaries are only available for a subset of years, namely 2009 and 2010, which explains

the smaller sample size. An increase of 50% in the U/V ratio is associated to a

decrease in salary of 2.3% upon graduation (column (4)) which persists many years

later, and to an increase in the probability of being overeducated upon entry in the

labour market of 1.4 percentage points – that is approximately 3% of one standard

deviation from the average probability of being overeducated of college graduates

upon exit from college – which fades approximately 7 years after graduation (column

(7)). These results however are not robust to the inclusion of macroarea dummies,

nor to the inclusion of time-area interactions.

The results on the probability of being overeducated are robust to the adoption

of the two alternative, more conservative, measures of the outcome, for which the

estimations are presented in table A6 in the appendix. The coefficients of the effect

of the macroeconomic conditions upon graduation are even higher, especially when

considering only college graduates working in low-skills jobs (column (4) to (6)) –

for example college graduates working as cashiers or sales assistants. The evidence

on the overeducation variable is suggestive of the fact that high skilled workers try

to escape higher competition by taking jobs for which a lower level of education is

required.

In order to account for potential endogeneity of the choice of the timing of

college graduation, I impute to college graduates a predicted year of graduation.

Since I do not have information on the legal duration of the degree course from

which each individual graduated, I look at the distribution of age at graduation of

individuals observed in 2005 within different levels of tertiary education that I can

distinguish15, and take the mode as theoretical year of graduation for all individuals

in the same degree type group. Hence, I estimate the reduced form model where I

analyse the effect on the three outcomes of the macroeconomic conditions measured

at the predicted year of entry in the labour market. Table 3.5 reports the result of

this analysis. The results on the employment status are robust although decreased

15Degrees issued by art institutions; university level short-cycle degrees issued by institutions
different from universities; undergraduate degrees; master’s degrees; single-cycle master’s degrees;
post-graduate specialisations;



Chapter 3 89

in magnitude, while for the other two outcomes the effect is less precisely estimated.

3.4.2 Effects for High School graduates

The findings for college graduates are confirmed when analysing the sample of high

school graduates, that are presented in table 3.6: worse macroeconomic conditions

upon exit from high school have a negative effect on employment status and salary

and a positive effect on the probability of being overeducated, with the effect on

unemployment being stronger and more robust relative to the other outcomes. All

the considerations about the inclusion of macroarea dummies and the selection of the

sample of employed workers made above apply here as well.

Relative to college graduates, the effect on employment status is slightly lower

in magnitude but more persistent: an increase of 50% in the ratio between unem-

ployed workers and job vacancies is associated to a decrease in the probability of

being unemployed from 1.5 to 4.5 percentage points upon entry in the labour market

(columns (1) to (3) of Panel A); the effect fades at a slower rate and it persists up

to 16 years after graduation. The effect on salary is smaller and more persistent but

less robust to the alternative specifications (columns (1) to (3) of Panel B). Finally,

in Panel C we see that high school workers facing higher educational mismatch upon

exit from school have higher probability of ending up overeducated – between 0.8 and

3.3 pp higher – and of staying so until at least 10 years after graduation. Table A7

in the appendix shows that the results on overeducation are robust to the alternative

measures of the outcome.

In order to investigate whether there is competition across workers with different

skills, I estimate model [3.2] adding the labour market conditions upon graduation

measured at the higher education cell (college). Results are shown in columns (4) to

(6) of each panel respectively for the three different outcomes. The macroeconomic

conditions measured at the college cell have a significant effect on all the measured

labour market outcomes for high school graduates, indicating that there is compe-

tition across skills. The effect on the probability of being employed is negative and

slightly lower than the own macroeconomic conditions effect (Panel A). For salary and

overeducation probability, once the college U/V ratios are included, the coefficient
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of the own macroeconomic conditions loses significance. This evidence is suggesting

that workers with higher skills facing bad macroeconomic conditions start competing

for with lower skilled jobs, moving down the occupational ladder. Higher educational

mismatch faced by higher skills workers upon entry in the labour market pushes lower

skilled workers into worse jobs, both in terms of salary and of skills-match, or out of

employment.

3.5 Concluding Remarks

In Italy labour demand and labour supply are mismatched in terms of level of ed-

ucation possessed by workers and level of education required for the vacant jobs

available. Furthermore, the overeducation phenomenon has a relative high incidence

when compared to other European countries.

In this paper I analyse the career effects of entering the labour market in pe-

riods of bad macroeconomic conditions for Italian young workers graduating from

high school or university in the years between 1993 and 2010. I estimate the impact

on labour market outcomes in the short and medium run of educational mismatch

– namely the degree of discrepancy between the labour supply and labour demand

according to the dimension of education possessed by the former and education re-

quired by the latter. I study the extent to which workers with different levels of

education compete in the labour market, and provide evidence of differential effects

across these type of workers.

I find that both college and high school graduates who enter the labour mar-

ket when educational mismatch is higher are less likely to be employed and have

lower salaries even several years after graduation. Differently from the findings of

the literature for North America and Northern Europe, I find the strongest effect on

employment status, which could reflect the peculiarity of the Italian labour market

characterised by rigidity of salaries. Moreover, I find that in a labour market charac-

terised by high educational mismatch, workers have higher probability of ending up

in a worse match in terms of skills (as measured by the level of education).

My results suggest that workers who complete education during bad times and

enter a labour market characterised by a higher level of educational mismatch com-
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pete with workers with lower level of education to escape from competition from their

same skill peers. The occupational ladder moves down: higher skilled workers will

be overeducated and lower skilled workers will be pushed in jobs requiring an even

lower level of education or in unemployment.
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Figures and Tables

Figure 3.1: Mismatch index

Notes: The figure plots a mismatch index across geographical location and educational level for the

period 1993-2010. The index is computed using Sahin et al. (2014) formula in the simplest case

of absence of heterogeneity with respect to matching efficiency, productivity and job destruction:

Mt = 1 −
∑I
i

∑J
j (

vijt
vt

)α(
uijt

ut
)(1−α) - where i are 3 levels of education and j 5 macroareas - and

using as vacancy share α = 0.5.
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Figure 3.2: Unemployment rates by education groups

Notes: The figure shows the time series of the GDP growth and of the unemployment rate from

1993 to 2013 by level of education (less than primary, primary and lower secondary education; upper

secondary and post-secondary non-tertiary education; short-cycle tertiary education, bachelor or

equivalent, master or equivalent and doctoral or equivalent).
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Figure 3.3: Overeducation incidence

Notes: The figure shows the average percentage of overeducated workers obtained from the European

Household Panel Survey 1994-2001 for the European countries for which the information is available

in the survey. Workers are classified as overeducated if they answered yes to the question ”Do you

feel that you have skills or qualification to do a more demanding job than the one you have now?”

and no to the question ”Have you had formal training or education that has given you skills needed

for the current type of work?”.
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Figure 3.4: Example of a newspaper job advertisement

Codification of ad in the dataset

DATA ANNO TRIM GRN

22/05/2013 2013 2 2

REG CIRC PROF QUAL

5 2 AGENTE PLURIMANDATARIO 3342

NMOF IST1 IST2 ESP

10 DIPLOMA X

AREA AZND SEDLEG NAZ

C SCODRO S.R.L. 5 I
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Figure 3.5: Unemployment rate by geographical area and level of education

The time series of the unemployment rate is obtained from ISTAT Labour Force Survey waves of

1993 to 2010.

Figure 3.6: Job vacancies by geographical area and level of education

The figure plots the number of job vacancies in each of the five macroareas in the second quarter of

the years from 1994 to 2010, normalised by the number of employed workers in the same quarter of

the previous year, obtained from ISFOL-HWTS.
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Table 3.1: The Determinants of New Hires

(1) (2) (3) (4)

VARIABLES

ln(Vacancies) 0.0914*** 0.181*** 0.152*** 0.0603**

(0.0208) (0.0318) (0.0226) (0.0271)

ln(Unempl. Inflow) 0.716*** 0.651*** 0.429*** 0.137***

(0.0250) (0.0263) (0.0456) (0.0398)

ln(Unempl. Stock lagged) 0.315*** 0.706***

(0.0425) (0.0483)

Area FE No Yes No Yes

Observations 359 359 344 344

R-squared 0.795 0.832 0.814 0.899

Notes: The number of hires, unemployed workers and vacancies are measured quarterly from 2005

to 2010. The dependent variable is the log of new hires, measured as number of employees who

started working in the same year and quarter of the interview. Robust standard errors are reported

in parentheses (* significant at 10%, ** significant at 5%, *** significant at 1%).
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Table 3.2: Summary Statistics

Panel A. College Graduates

Variable Obs Mean Std. Dev. Min Max

Age 78,892 33.31 5.04 22 49

Female 78,892 0.57 0.49 0 1

Married 78,892 0.40 0.49 0 1

YSG 78,892 7.1 4.4 0 17

Salary (2009 e) 22,793 1390 503 346 3248

Employed 78,892 0.91 0.29 0 1

Fulltime 71,498 0.86 0.35 0 1

Overeducated 71,498 0.56 0.5 0 1

Panel B. High School Graduates

Variable Obs Mean Std. Dev. Min Max

Age 99,200 27.32 4.50 18 38

Female 99,200 0.45 0.5 0 1

Married 99,200 0.22 0.42 0 1

YSG 99,200 8.4 4.48 0 17

Salary (2009 e) 30,742 1060 338 260 2100

Employed 99,200 0.87 0.34 0 1

Fulltime 86,047 0.86 0.35 0 1

Overeducated 86,047 0.32 0.47 0 1

Notes: Panel A: sample consisting of workers with tertiary education, aged between 22 and 32 at

graduation, not enrolled in education in the years in which the outcome is observed. Panel B: sample

consisting of workers with secondary education, who completed high school between the age of 18 to

22, not enrolled in education in the years in which the outcome is observed.
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Table 3.3: Choice of Level of Education

(1) (2) (3) (4)

VARIABLES

lnU/V hs 0.00521* 0.0217*** 0.0162*** 0.0261***

(0.00279) (0.00715) (0.00604) (0.00688)

lnU/V hs*YSG -0.00106 -0.0120*** -0.00133 -0.0107***

(0.00129) (0.00297) (0.00133) (0.00305)

lnU/V univ -0.0199*** -0.00139

(0.00750) (0.00139)

lnU/V univ*YSG 0.0136*** 0.0118***

(0.00362) (0.00368)

year dummies yes yes yes yes

cohort dummies yes yes yes yes

area dummies yes yes

Observations 128,271 128,271 128,271 128,271

R-squared 0.029 0.030 0.030 0.030

Notes: The dependent variable is the probability of being enrolled in university for individuals with

high school diploma aged 19 to 22 from 1993 to 2010. Controls include gender, marital status,

year and macroarea dummies. Robust standard errors are reported in parentheses (* significant

at 10%, ** significant at 5%, *** significant at 1%). Standard errors are clustered at graduation

cohort-macroarea level.
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Table 3.6: High School Graduates

Panel A. Dependent Variable: Employment Status

VARIABLES (1) (2) (3) (4) (5) (6)

UV HighSchool -0.0910*** -0.0482*** -0.0302*** -0.0553** -0.0396** -0.00958

(0.00832) (0.00808) (0.00581) (0.0238) (0.0151) (0.0125)

UV HighSchool*YSG 0.00557*** 0.00674*** 0.00434*** 0.00151 0.00590*** 0.00104

(0.000720) (0.000678) (0.000402) (0.00253) (0.00220) (0.00196)

UV univ -0.0390* -0.0289* -0.0387**

(0.0199) (0.0163) (0.0171)

UV univ*YSG 0.00502** 0.00216 0.00387*

(0.00223) (0.00198) (0.00213)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 99,200 99,200 99,200 99,200 99,200 99,200

R-squared 0.129 0.134 0.135 0.130 0.135 0.135

Panel B. Dependent Variable: Monthly Salary

VARIABLES (1) (2) (3) (4) (5) (6)

UV HighSchool -0.0608*** 0.00463 -0.00959 0.0536 0.0157 -0.0116

(0.0113) (0.0109) (0.0100) (0.0358) (0.0223) (0.0170)

UV HighSchool*YSG -0.000238 0.00108* 0.00215*** -0.0113*** -4.92e-05 0.00315*

(0.00104) (0.000608) (0.000520) (0.00367) (0.00264) (0.00186)

UV univ -0.0696** -0.00443 -0.000918

(0.0328) (0.0236) (0.0214)

UV univ*YSG 0.00679** -0.000378 -0.00127

(0.00341) (0.00233) (0.00195)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 30,742 30,742 30,742 30,742 30,742 30,742

R-squared 0.191 0.203 0.203 0.194 0.203 0.203

Panel C. Dependent Variable: Overeducation

VARIABLES (1) (2) (3) (4) (5) (6)

UV HighSchool 0.0479*** 0.0171* 0.00821 0.0188 0.0221 0.00191

(0.00736) (0.00943) (0.00981) (0.0199) (0.0141) (0.0130)

UV HighSchool*YSG -0.00159** -0.00252*** -0.00136*** 0.000961 -0.00348* -0.000223

(0.000710) (0.000670) (0.000467) (0.00226) (0.00202) (0.00161)

UV univ 0.0539*** 0.00882 0.00988

(0.0190) (0.0165) (0.0156)

UV univ*YSG -0.00388* -0.000829 -0.00138

(0.00220) (0.00204) (0.00186)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 86,047 86,047 86,047 86,047 86,047 86,047

R-squared 0.048 0.050 0.050 0.048 0.051 0.050

Notes: All U/V ratios are in logs. Each estimation includes controls for: gender, log of age, marital

status and potential years of experience. Robust standard errors are reported in parenthesis (*

significant at 10%, ** significant at 5%, *** significant at 1%). Standard errors are clustered at

graduation cohort-macroarea level.
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Appendices

Figure A1: Distribution of age upon completion of high school in two sub-samples

Notes: The figure shows the distribution of observations by age at high school graduation for:

the sub-sample of individuals who report the exact year of graduation (in yellow); the sub-sample

of individuals who report age at graduation from high school (in white). The latter presents an

abnormal spike at the age of 19 (which is the most common age at which individuals complete high

school in Italy), which I attribute to a possible recall error.
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Table A1: Newspapers in ISFOL Sample

Newspaper Circulation(Macroarea)

MESSAGGERO Italy (headquarters Central Italy)

REPUBBLICA Italy (headquarters Central Italy)

SOLE 24 ORE Italy (headquarters North West)

STAMPA Italy (headquarters North West)

ADIGE North East

ALTO ADIGE North East

GAZZETTINO North East

PICCOLO North East

RESTO CARLINO North East - Central Italy

GIORNO North West

SECOLO XIX North West

NAZIONE North West-Central Italy

TIRRENO Central Italy

TEMPO Central Italy-South

GAZZETTA MEZZOGIORNO South

GIORNALE SICILIA South

MATTINO South

GAZZETTA SUD South -Islands

NUOVA SARDEGNA Islands

SICILIA Islands

UNIONE SARDA Islands
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Table A2: Job Search Channels in Italy

Panel A Percentage of employed workers by channel through which they found the current job

ISTAT 2010 Isfol RDL PLUS 2003 Bank of Italy SHIW 1991

Relatives or friends 39.7 27.0 24.5

Self Applications 23.3 22.1 12.1

Help Wanted on the press 13.2 12.6 14.4

Working Experiences 7.1 4.1 n.a.

Training schools and centres 2.1 3.3 2.2

Recruiting personnel agencies 2.4 4.8 n.a.

Internet 0.7 0.0 0.0

Public contests n.a. 7.5 15.6

Pes 3.0 10.2 31.2

Other 8.4 8.4 0.0

Panel B Percentage of job seekers who have examined newspapers job ads in the reference week (ISTAT LFS)

macroarea Overall 2005 2010

North West 69 70 67

North East 69 71 70

Central Italy 62 64 61

South 49 50 49

Islands 52 55 46

Table A3: Internal Mobility Rates of Italian College Graduates

Area of graduation Area of work

North West North East Central Italy South Islands

North West 0.92 0.03 0.02 0.01 0.01

North East 0.11 0.81 0.05 0.03 0.01

Central Italy 0.07 0.04 0.80 0.08 0.02

South 0.12 0.05 0.10 0.72 0.01

Islands 0.13 0.04 0.05 0.06 0.72

Source: AlmaLaurea survey on Graduates’ Employment Conditions.
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Table A4: Correlations of U/V Ratios

College graduates

North West North East Central

Italy

South Islands

North West 1

North East 0.8864* 1

Central Italy 0.5340* 0.4924* 1

South 0.7818* 0.8336* 0.2058 1

Islands 0.8759* 0.6959* 0.6098* 0.6227* 1

High School grad.

North West North East Central

Italy

South Islands

North West 1

North East 0.8658* 1

Central Italy 0.3587 0.6545* 1

South 0.2431 0.4796* 0.6692* 1

Islands 0.7689* 0.6686* 0.3307* 0.0580* 1

Notes:* significant at 10%
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Table A5: U/V Ratios Variance Decomposition

(1) (2)

VARIABLES UVcollege UVhighSchool

Constant 0.383** 0.936**

(0.044) (0.099)

sigma u 0.3986 1.000

sigma e 0.419 0.9486

rho 0.4750 0.5265

Observations 90 90

# macroarea 5 5

Notes: The U/V ratios are measured for the 5 Italian macroareas in the years 1993 to 2010. sigmau

is the between groups (macroareas) variation; sigmae is the within groups variation. Rho is the

fraction of total variation due to between groups variation. * significant at 10%, ** significant at

5%, *** significant at 1%.
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Table A6: Alternative Measures of Overeducation for College Graduates

VARIABLES (1) (2) (3) (4) (5) (6)

UV univ 0.0211** 0.00563 0.00897 0.0303*** 0.0114 0.00309

(0.0102) (0.0137) (0.0100) (0.00966) (0.0110) (0.00834)

UV univ*YSG -0.00291** -0.00295** -0.00341*** -0.00208* -0.00255** -0.00149***

(0.00125) (0.00119) (0.000556) (0.00112) (0.00107) (0.000456)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 71,498 71,498 71,498 71,498 71,498 71,498

R-squared 0.047 0.048 0.049 0.020 0.021 0.021

Notes: Columns (1) to (3): outcome variable is 1 if at least 60% of workers employed in same

profession has less than college degree. Columns (4) to (6): outcome variable is 1 if the individual is

employed in low-skilled professions (groups 4 to 9 of 1-digit ISTAT professions). All U/V ratios are

in logs. Each estimation includes controls for: gender, log of age, marital status, and potential years

of experience. Robust standard errors are reported in parenthesis (* significant at 10%, ** significant

at 5%, *** significant at 1%). Standard errors are clustered at graduation cohort-macroarea level.
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Table A8: High School Graduates Full Sample

Panel A. Dependent Variable: Employment Status

VARIABLES (1) (2) (3) (4) (5) (6)

UV-HighSchool -0.0898*** -0.0480*** -0.0308*** -0.0572** -0.0407*** -0.0139

(0.00741) (0.00712) (0.00531) (0.0228) (0.0146) (0.0122)

UV HighSchool*YSG 0.00556*** 0.00673*** 0.00453*** 0.00204 0.00571*** 0.00157

(0.000626) (0.000543) (0.000343) (0.00236) (0.00204) (0.00182)

UV univ -0.0288 -0.0179 -0.0283*

(0.0191) (0.0153) (0.0161)

UV univ*YSG 0.00394* 0.00177 0.00353*

(0.00207) (0.00182) (0.00192)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 134,430 134,430 134,430 134,430 134,430 134,430

R-squared 0.117 0.122 0.122 0.118 0.122 0.122

Panel B. Dependent Variable: Monthly Salary

VARIABLES (1) (2) (3) (4) (5) (6)

UV-HighSchool -0.0707*** -0.00970 -0.0178 0.0433 -0.00296 -0.0223

(0.0111) (0.0124) (0.0107) (0.0292) (0.0185) (0.0142)

UV HighSchool*YSG 0.000618 0.00145** 0.00208*** -0.00995*** 0.000698 0.00323**

(0.000991) (0.000596) (0.000469) (0.00286) (0.00204) (0.00130)

UV univ -0.0191 0.00542 0.00287

(0.0227) (0.0160) (0.0159)

UV univ*YSG 0.00375* -0.00146 -0.00130

(0.00213) (0.00128) (0.00125)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 30,742 30,742 30,742 30,742 30,742 30,742

R-squared 0.191 0.203 0.203 0.195 0.203 0.203

Panel C. Dependent Variable: Overeducation

VARIABLES (1) (2) (3) (4) (5) (6)

UV HighSchool 0.0451*** 0.0186** 0.0102 0.0257 0.0284** 0.00993

(0.00669) (0.00917) (0.00937) (0.0186) (0.0135) (0.0122)

UV HighSchool*YSG -0.00142** -0.00210*** -0.00101** 0.000338 -0.00341* -0.000609

(0.000614) (0.000585) (0.000423) (0.00203) (0.00174) (0.00141)

UV univ 0.0354** -0.00795 -0.00200

(0.0172) (0.0148) (0.0146)

UV univ*YSG -0.00206 0.000433 -0.000539

(0.00193) (0.00169) (0.00162)

UV contemporaneous yes yes no yes yes no

macroarea FE no yes no no yes no

macroarea*year FE no no yes no no yes

Observations 117,011 117,011 117,011 117,011 117,011 117,011

R-squared 0.049 0.052 0.052 0.050 0.052 0.052

Notes: The sample is including both the sub-sample of individuals who report the exact year of graduation and the sub-sample

of individuals who report age at graduation from high school. In the presence of measurement error due to possible recall

error (which causes abnormal spike at 19 in the age of graduation) the estimates are biased towards zero and are less precise,

relative to the same analysis performed on the first sub-sample only (table 3.6). All U/V ratios are in logs. Each estimation

includes controls for: gender, log of age, marital status, and potential years of experience. Robust standard errors are reported

in parentheses (* significant at 10%, ** significant at 5%, *** significant at 1%). Standard errors are clustered at graduation

cohort-macroarea level.
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Farré, L. and Vella, F. (2012). The intergenerational transmission of gender role

attitudes and its implications for female labour force participation. Economica,

80(318):219–247.

Flabbi, L. (2012). Gender Differences in Education, Career Choices and Labor Market

Outcomes on a Sample of OECD Countries. World Development Report 2012.

Fortin, N. M. (2008). The Gender Wage Gap among Young Adults in the United

States: The Importance of Money versus People. Journal of Human Resources,

43(4):884–918.
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