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Abstract

In this thesis, we obtain new results for convolution operators on homogeneous

spaces and give applications to the Laplacian on a homogeneous graph. Some of

these results have been published in joint papers [13, 14] with my supervisor.

Let Ω be a homogeneous space of a locally compact group G and let Tσ :

Lp(Ω) → Lp(Ω) be a convolution operator induced by a measure σ on G, where

1 ≤ p <∞. When σ is symmetric and absolutely continuous, we describe the L2-

spectrum of Tσ in terms of the Fourier transform of σ. An operator T is said to be

hypercyclic if there is a vector x ∈ Lp(Ω) such that the orbit {x, Tx, . . . , T nx, . . .}

is dense in Lp(Ω). Given a positive weight w on Ω, we consider the weighted con-

volution operator Tσ,w(f) = wTσ(f) on Lp(Ω) and study hypercyclic properties

of Tσ,w. For a unit point mass σ, we show that Tσ,w is hypercyclic under some

condition on the weight w. This condition is also necessary in the discrete case,

and is equivalent to hereditary hypercyclicity of the operator. The condition can

be strengthened to characterise topologically mixing weighted translation opera-

tors on discrete spaces.

A weighted homogeneous graph is a homogeneous space Ω of a discrete group

G and the Laplacian L on Ω can be viewed as a convolution operator. We can

therefore apply the above result on L2-spectrum to describe the spectrum of L in

terms of irreducible representations of G. We compare the eigenvalues of L with

eigenvalues of the Laplacian on a regular tree, and obtain a Dirichlet eigenvalue

comparison theorem. We also prove a version of the Harnack inequality for a

Schrödinger operator on an invariant homogeneous graph.
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Chapter 1

Introduction

Let G be a locally compact group and 1 ≤ p < ∞. Given a compact subgroup

H of G, there is a G-invariant measure ν on the homogeneous space G/H and

one can form the Lebesgue space Lp(G/H) with respect to ν. In this thesis, we

study convolution operators on the Lp(G/H) spaces and their applications.

Convolution operators play an important role in harmonic analysis which,

according to [31], is a study of unitary representations of locally compact groups,

and the analysis of functions on such groups and their homogeneous spaces. We

introduce convolution operators as well as some basic results and notation to

begin Chapter 2. Let σ be a complex Borel measure on a locally compact group

G. The convolution operator Tσ : Lp(G/H)→ Lp(G/H) is defined by

Tσ(f) = f ∗ σ (f ∈ Lp(G/H))

where the convolution

f ∗ σ(Hx) =

∫
G

f(Hxy−1)dσ(y)

exists ν-almost everywhere and is defined to be 0 otherwise. The main result in

Chapter 2 is Theorem 2.2.7 where the L2-spectrum of Tσ is completely determined
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in terms of irreducible representations of G, when σ is symmetric and absolutely

continuous. Let Ĝ be the dual space of G and let σ̂ be the Fourier transform of

σ defined by

σ̂(π) =

∫
G

π(x−1)dσ(x) (π ∈ Ĝ, x ∈ G).

Then the L2-spectrum of Tσ is given by

Spec(Tσ) ∪ {0} =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr, kerπ ⊃ ker ρ

H
} ∪ {0}

where Ĝr is the reduced dual and ρ
H

is the regular representation induced by

H. In particular, Spec(Tσ) ∪ {0} =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr} ∪ {0} if the

compact subgroup H of G is the identity group {e}. If G is discrete, then

Spec(Tσ) =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr, kerπ ⊃ ker ρ

H
}.

In Chapter 3, we study the question of hypercyclicity of convolution operators.

Let X be a Banach space. An operator T : X → X is said to be hypercyclic if

there is a vector x ∈ X such that the orbit {x, Tx, . . . , T nx, . . .} is dense in X, in

which case, x is called a hypercyclic vector for T . Hypercyclicity arises from the

invariant subset problem. Indeed, each non-zero vector of X is hypercyclic for T

if, and only if, T has no non-trivial closed invariant subset in X. Hypercyclicity

is also equivalent to topological transitivity on X, which is one of the ingredients

for chaotic dynamic systems. In the last two decades, hypercyclicity has been

studied intensively. Following the recent study in [19], it is natural to ask when

a convolution operator Tσ is hypercyclic. We note that Tσ is never hypercyclic

if ‖σ‖=1. However, a weighted convolution operator can be hypercyclic. Given

a positive weight w on G/H, we consider the weighted convolution operator

Tσ,w(f) = wTσ(f) on Lp(G/H) and study hypercyclicity of Tσ,w. For a unit point

mass σ = δa (a ∈ G), we write Ta,w for Tδa,w and show that Ta,w is hypercyclic

under some condition on the weight w. If the group is discrete, this condition is
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also necessary, and is equivalent to hereditary hypercyclicity of the operator. In

Theorem 3.2.8, we prove the following result.

Let a ∈ G which is not a torsion element. Let w ∈ `∞(G) and 1 ≤ p <∞. Then

the following conditions are equivalent.

(i) Ta,w is hypercyclic.

(ii) Ta,w is hereditarily hypercyclic.

(iii) Both sequences (depending on a)

wn =
n∏
s=1

w ∗ δsa−1 and wn =

(
n−1∏
s=0

w ∗ δsa

)−1

admit subsequences (wnk) and (wnk) which converge to 0 pointwise in G.

By strengthening condition (iii) above and analogous arguments, we describe

topologically mixing weighted convolution operators in Theorem 3.2.14: the fol-

lowing conditions are equivalent.

(i) Ta,w is topologically mixing.

(ii) Both sequences (depending on a)

wn =
n∏
s=1

w ∗ δsa−1 and wn =

(
n−1∏
s=0

w ∗ δsa

)−1

converge to 0 pointwise in G.

We also obtain a characterization of supercyclic weighted convolution operators

in a similar way.

These results extend works in [25, 42, 47] for bilateral weighted shifts on `p(Z).

We also give a sufficient condition for a bilateral weighted shift on `p(Z) to be
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frequently hypercyclic, and an example of a quasi-nilpotent hypercyclic operator.

We apply our results to the Laplacian L, in Chapter 4, on a weighted homo-

geneous graph (V,K), where V is the vertex set and K is the edge generating set.

In this case, V is represented as a coset space G/H of G by a finite subgroup H.

Let the weight w be given by a measure µ on G which is symmetric and constant

on each set xHy (x, y ∈ G). Then, in Section 4.1, we describe the spectrum of L

in terms of irreducible representations of G in Corollary 4.1.1:

Spec(L) = 1−
⋃{

Spec

(∑
a∈K

µ(a)|K|−1π(a)

)
: π ∈ Ĝr, kerπ ⊃ ker ρ

H

}
.

We prove an eigenvalue comparison theorem in Section 4.2 which extends a result

in [50]. Let Td be a regular tree. Choose v0 ∈ V and x0 ∈ Td. Let λ1 and ν1 be

the first eigenvalues of the Laplacians with Dirichlet boundaries on balls B(v0, R)

and B(x0, R) respectively. Then we prove in Theorem 4.2.7 that

(i) condition A implies

λ1(B(v0, R)) ≤ ν1(B(x0, R));

(ii) condition B implies

λ1(B(v0, R)) ≥ ν1(B(x0, R)).

By this comparison theorem, one can estimate the spectrum Spec(L) of L for an

infinite graph (V,K). In Section 4.3, we characterise the invariance of a connected

homogeneous graph in terms of group structures, and show that all positive L-

harmonic functions on an invariant connected homogeneous graph are constant.

In Theorem 4.3.3, we prove a version of Harnack inequality for a Schrödinger

operator which is stated below.

Let (V,K) be a possibly infinite invariant homogeneous graph. Let ϕ ≥ 0 be a
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function on V and let f be a real function on V satisfying

Lf + ϕf = λf (λ > 0).

Then on any finite subgraph with vertex set S satisfying SK ⊂ S, we have∑
a∈K

wa[f(v)− f(va)]2 + αλf 2(v) ≤
(
α2λ

α− 2
+

4

(α− 2)λ
sup
S
ϕ

)
sup
S
f 2

for v ∈ S and α > 2.

The above inequality for L + ϕ extends a Harnack inequality for L in [23].

This inequality can be applied to derive a lower bound for the first eigenvalue of

L on a finite weighted invariant graph (V,K). Indeed, we show that

λ1 ≥
k

8D2

where D is the diameter of (V,K) and k is a constant depending on K and the

weight. Finally we conclude with a version of Harnack inequality for Dirichlet

eigenfunctions on a finite convex subgraph of an invariant homogeneous graph

(V,K), extending the result of [24].
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Chapter 2

Convolution operators on

homogeneous spaces

In this chapter, we study some properties of convolution operators on homoge-

neous spaces of locally compact groups G. Given a measure σ on G, we define

a convolution operator Tσ on Lp(G/H) for 1 ≤ p ≤ ∞. For an absolutely con-

tinuous symmetric measure σ, we develop a device to study the L2-spectrum of

Tσ by identifying Tσ as an element in a quotient of the group C∗-algebra C∗(G).

This enables us to describe the spectrum of Tσ in terms of the Fourier transform

of the measure σ. This result will be used later to describe the spectrum of a

discrete Laplacian on a weighted homogeneous graph.

2.1 Locally compact groups

We first recall in this section some basic definitions and results in locally compact

groups and homogeneous spaces for future reference.

Let G be a group. We denote by e the identity of G throughout. A group G
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is called a topological group if it is a topological space and satisfies the following

continuity properties:

(i) the map (x, y) 7→ xy from G×G to G is continuous;

(ii) the map x 7→ x−1 from G to G is continuous.

A topological group G is called a locally compact group if its topology is Hausdorff

and each point x ∈ G has a relatively compact neighbourhood. For example, ev-

ery discrete group and the Euclidean space Rd with coordinatewise addition and

the usual topology are locally compact.

A locally compact group G is second countable if its topology has a countable

base in which case G is metrizable and separable. We refer to [36, p.125] for a

proof.

In this thesis, we study operators on homogeneous spaces of locally compact

groups G. Given a closed subgroup H of G, the right coset space

G/H = {Hx : x ∈ G}

is a prototype of a homogeneous space of G. To introduce the concept of a ho-

mogeneous space of a locally compact group G, we first define an action of G on

a topological space.

Let Ω be a locally compact Hausdorff space. A continuous map

(v, x) ∈ Ω×G 7→ vx ∈ Ω

is called a (right) action of G on Ω if

(i) v 7→ vx is a homeomorphism of Ω for each x ∈ G;
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(ii) (vx)y = v(xy) for all x, y ∈ G and v ∈ Ω.

We say that G acts transitively on Ω, or the action is transitive, if for every

u, v ∈ Ω, there exists x ∈ G such that vx = u. For instance, G acts on the coset

space G/H transitively by right multiplication. We call Ω a transitive G-space if

G acts transitively on Ω in which case, for any fixed v0 ∈ Ω, the subgroup

H = {x ∈ G : v0x = v0}

is closed, called an isotropy subgroup of G, and there exists a continuous bijection

Ψ : G/H → Ω defined by

Ψ(Hx) = v0x (x ∈ G).

In general, Ω need not be homeomorphic to G/H (cf. [31]). If Ω is homeomorphic

to G/H, we call Ω a homogeneous space of G. In particular, G/H is a homoge-

neous space of G. Actually, a transitive G-space is a homogeneous space if G is

σ-compact. The proof of the following result can be found in [31, Proposition

2.44].

Proposition 2.1.1 Let G be σ-compact and act transitively on a locally compact

Hausdorff space Ω. Then Ω is homeomorphic to, and hence identifies with, G/H.

Let G be a locally compact group and let B be the σ-algebra of Borel subsets

of G. A measure on B is called a Borel measure on G. Let x ∈ G. The right

translation µx of a Borel measure µ on G by x is defined by

µx(E) = µ(Ex) for every Borel set E ⊂ G.

A right invariant measure on G is a Borel measure satisfying µ(Ex) = µ(E) for

every Borel set E ⊂ G and every x ∈ G. Similarly a left invariant measure on G

is a Borel measure such that µ(xE) = µ(E) for every Borel set E ⊂ G and every
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x ∈ G.

A right Haar measure is a nonzero right invariant Borel measure µ on a lo-

cally compact group G. For instance, the measure dx
|x| on the multiplicative group

R \ {0} and the counting measure on a discrete group are both right and left

invariant.

We note that each right Haar measure µ is associated to a left invariant

measure σ defined by σ(E) = µ(E−1) for every Borel set E ⊂ G, where we have

σ(xE) = µ(E−1x−1) = µ(E−1) = σ(E) (x ∈ G).

The existence of a Haar measure on a locally compact group is of fundamental

importance in harmonic analysis.

Theorem 2.1.2 Every locally compact group G possesses a right Haar measure

which is unique up to a positive constant multiple.

Proof. See, for example, [31, Theorem 2.10, 2.20]. �

Throughout the thesis, we will denote by λ a right Haar measure on a locally

compact group G, and assume that λ is σ-finite. A right Haar measure λ need not

be left invariant, however, G admits a function ∆G : G→ (0,∞), called the mod-

ular function, which is a continuous homomorphism from G to the multiplicative

group of positive real numbers such that

dλ(yx) = ∆G(y)dλ(x),

dλ(x−1) = ∆G(x)dλ(x).

The group G is called unimodular if ∆G ≡ 1, that is, if a right Haar measure

is also a left invariant. We note that all compact groups, abelian groups and
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discrete groups are unimodular. For a discrete group, we choose λ to be the

counting measure.

Example 2.1.3 Let

G =


x y

0 1

 : (x, y) ∈ (0,∞)× R


be the affine group of R. We denote an element in G by (x, y). A right Haar

measure of G is given by dxdy
x

which is not left invariant. Therefore G is not

unimodular. Indeed, given f(x, y) = x exp(−x)
1+y2

, we have∫ ∞
−∞

∫ ∞
0

f(x, y)
dxdy

x
=

∫ ∞
−∞

dy

1 + y2

∫ ∞
0

exp(−x)dx = π

=

∫ ∞
−∞

∫ ∞
0

f((x, y)(2, 0))
dxdy

x

which is not equal to∫ ∞
−∞

∫ ∞
0

f((2, 0)(x, y))
dxdy

x
=

∫ ∞
−∞

dy

1 + 4y2

∫ ∞
0

2 exp(−2x)dx =
π

2
.

Henceforth we fix a right Haar measure λ on G. Given a subgroup H of G,

we will always denote by q : G→ G/H the quotient map in the sequel. Let H be

a compact subgroup of G. Let Cc(G/H) be the space of continuous functions on

G/H with compact support. The Borel measure ν on G/H defined by ν = λ◦q−1

[31, p.58] satisfies∫
G

fdλ =

∫
G/H

Qfdν =

∫
G/H

∫
H

f(ξx)dξdν(Hx) (f ∈ Cc(G))

where Q : Cc(G) → Cc(G/H) is defined by (Qf)(Hx) =
∫
H
f(ξx)dξ, dξ being

normalized Haar measure on H. For 1 ≤ p ≤ ∞, let Lp(G/H) be the complex

Lebesgue space of G/H with respect to ν, and write Lp(G) when H = {e}, also

`p(G) for a discrete group G. We note that L1(G) has an involution

f ∗(x) = f(x−1)∆G(x−1) (x ∈ G).
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Let C0(G) be the Banach space of complex continuous functions on G van-

ishing at infinity. The dual C0(G)∗ identifies with the space M(G) of complex

regular Borel measures on G. Each σ ∈ M(G) has a finite total variation |σ|

and M(G) is a Banach algebra in the total variation norm and the convolution

product:

‖σ‖ = |σ|(G),

∫
G

fd(σ ∗ µ) =

∫
G

∫
G

f(xy)dσ(x)dµ(y)

for σ, µ ∈M(G) and all f ∈ C0(G). We have∣∣∣∣∫
G

∫
G

f(xy)dσ(x)dµ(y)

∣∣∣∣ ≤ ‖f‖∞‖σ‖‖µ‖
and

‖σ ∗ µ‖ ≤ ‖σ‖‖µ‖.

Given Borel functions f and g on G, we define their convolution, whenever it

exists, by

(f ∗ g)(x) =

∫
G

f(xy−1)g(y)dλ(y).

We also define

(f ∗ σ)(x) =

∫
G

f(xy−1)dσ(y),

(σ ∗ f)(x) =

∫
G

f(y−1x)∆G(y−1)dσ(y)

whenever they exist. We note that f ∈ Lp(G) and σ ∈M(G) imply f ∗σ ∈ Lp(G)

(1 ≤ p ≤ ∞).

A measure σ ∈ M(G) is called absolutely continuous if its total variation |σ|

is absolutely continuous with respect to the Haar measure λ, in which case σ has

a density f ∈ L1(G) so that σ = f · λ. We call σ symmetric if dσ(x) = dσ(x−1).

For each a ∈ G, we denote by δa the point mass at a and by σn the n-fold

convolution σ ∗ · · · ∗ σ. The n-fold convolution f ∗ · · · ∗ f is denoted by fn. We

define σ0 = δe. The unit mass δe is the identity in the Banach algebra M(G).
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2.2 Convolution operators on Lp spaces

In this section, we give a description of the L2-spectrum of a convolution opera-

tor on the homogeneous space G/H of a locally compact group G by a compact

subgroup H. The description of the spectrum of Tσ : L2(G/H) → L2(G/H) in

Theorem 2.2.7 has appeared in [13].

We note that locally compact groups often have a good supply of compact

subgroups. Indeed, every finite subgroup is trivially compact. The circle group

T = {z ∈ C : |z| = 1} is a compact subgroup of the multiplicative group C \ {0}.

Following [19, p.76], we define two natural continuous linear maps J : Lp(G/H)→

Lp(G) and Q : Lp(G)→ Lp(G/H), where 1 ≤ p ≤ ∞, by

J(f) = f ◦ q, Qg(Hx) =

∫
H

g(ξx)dξ (f ∈ Lp(G/H), g ∈ Lp(G))

with dξ being the normalized Haar measure on the compact group H. For 1 ≤

p <∞, the map J is an isomeric embedding by the change-of-variable formula∫
G/H

|f(y)|pdν(y) =

∫
G

|f ◦ q(x)|pdλ(x)

and Q is a contraction because Jensen’s inequality gives

‖Q(g)‖pp =

∫
G/H

|Qg(Hx)|pdν(Hx)

=

∫
G

∣∣∣∣∫
H

g(ξx)dξ

∣∣∣∣p dλ(x)

≤
∫
G

∫
H

|g(ξx)|pdξdλ(x)

=

∫
H

∫
G

|g(x)|p∆G(ξ−1)dλ(x)dξ = ‖g‖pp

since ∫
H

∆G(ξ−1)dξ =

∫
H

∆G|H (ξ−1)dξ =

∫
H

1dξ = 1.
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We also have ‖f‖∞ = ‖J(f)‖∞ and ‖Q(g)‖∞ ≤ ‖g‖∞. Further, Q is surjective

since we have

(QJ)f(Hx) =

∫
H

(f ◦ q)(ξx)dξ =

∫
H

f(Hx)dξ = f(Hx)

for all f ∈ Lp(G/H). Let P := JQ on Lp(G). Then P is a norm-one projection

given by

(Pf)(x) =

∫
H

f(ξx)dξ.

Given a linear operator T : Lp(G)→ Lp(G), we can define an induced operator

Φ(T ) : Lp(G/H)→ Lp(G/H) by the following commutative diagram:

Lp(G)
T−→ Lp(G)

J
x yQ

Lp(G/H)
Φ(T )−→ Lp(G/H)

where

Φ(T ) = Q ◦ T ◦ J.

For a Banach space X, we will denote by B(X) be the Banach algebra of

bounded linear operators on X. The above construction gives a linear map

Φ : B(Lp(G))→ B(Lp(G/H)). (2.1)

Let σ ∈M(G) and, let g ∈ Lp(G) where 1 ≤ p <∞. The convolution

g ∗ σ(x) =

∫
G

g(xy−1)dσ(y)

exists λ-almost everywhere in G and is defined to be 0 otherwise. For p = ∞,

g ∗ σ exists outside a λ-null set N and we define g ∗ σ = 0 on N . We have
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g ∗ σ ∈ L∞(G) with ‖g ∗ σ‖∞ ≤ ‖g‖∞‖σ‖, whenever g ∈ L∞(G). For 1 ≤ p <∞,

we have(∫
G

|g ∗ σ(x)|pdλ(x)

)1/p

=

(∫
G

∣∣∣∣∫
G

g(xy−1)dσ(y)

∣∣∣∣p dλ(x)

)1/p

≤
(∫

G

(∫
G

|g(xy−1)| d|σ|(y)

)p
dλ(x)

)1/p

≤
∫
G

(∫
G

|g(xy−1)|pdλ(x)

)1/p

d|σ|(y).

The last inequality above can be obtained by the computation below. Let H(x) =∫
G
|g(xy−1)| d|σ|(y). Then∫
G

Hp(x)dλ(x) =

∫
G

(∫
G

|g(xy−1)| d|σ|(y)

)
Hp−1(x)dλ(x)

=

∫
G

(∫
G

|g(xy−1)|Hp−1(x)dλ(x)

)
d|σ|(y)

≤
∫
G

(∫
G

|g(xy−1)|pdλ(x)

) 1
p
(∫

G

Hp(x)dλ(x)

) p−1
p

d|σ|(y).

Therefore we have g ∗ σ ∈ Lp(G) and ‖g ∗ σ‖p ≤ ‖g‖p‖σ‖.

Given σ ∈ M(G), we can define, by the above remarks, the convolution

operator Tσ : Lp(G) −→ Lp(G) by

Tσ(g) = g ∗ σ (g ∈ Lp(G)).

We note that Tσ induces the operator Φ(Tσ) = Q ◦ Tσ ◦ J on Lp(G/H), where

Φ(Tσ)f(Hx) =

∫
G

f(Hxy−1)dσ(y) (f ∈ Lp(G/H)). (2.2)

If confusion is unlikely, we will also write Tσ for Φ(Tσ) and call it a convolution

operator on Lp(G/H) defined by σ ∈ M(G). We also write f ∗ σ when f ∈

Lp(G/H) to mean Φ(Tσ)f . We note that Tσn = T nσ for the n-fold convolution σn.

This follows from the associativity of convolution.
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Lemma 2.2.1 The norm-one projection P = JQ commutes with all the convo-

lution operators Tσ (σ ∈M(G)). Moreover, Φ(Tσ)Q = QTσ and JΦ(Tσ) = TσJ .

Proof.

P (Tσf)(x) =

∫
H

Tσf(ξx)dξ =

∫
H

∫
G

f(ξxy−1)dσ(y)dξ

=

∫
G

∫
H

f(ξxy−1)dξdσ(y) =

∫
G

Pf(xy−1)dσ(y) = Tσ(Pf)(x).

Hence we have Φ(Tσ)Q = QTσP = QPTσ = QTσ and JΦ(Tσ) = PTσJ = TσPJ =

TσJ . �

When considering the convolution operator Tσ : Lp(G) → Lp(G), we denote

by Spec(Tσ, L
p(G)) the spectrum of Tσ and by Λ(Tσ, L

p(G)) the set of eigenvalues

of Tσ respectively. If p is understood, we write Spec(Tσ) for Spec(Tσ, L
p(G)) and

Λ(Tσ) for Λ(Tσ, L
p(G)). Using the equalities in Lemma 2.2.1, we can compare

the spectrum of Tσ with the spectrum of Φ(Tσ) as in [19, Lemma 3.4.4].

Lemma 2.2.2 Let σ ∈ M(G) and Tσ : Lp(G) → Lp(G) be the induced convolu-

tion operator. Then

(i) Spec(Φ(Tσ)) ⊂ Spec(Tσ);

(ii) Λ(Φ(Tσ)) ⊂ Λ(Tσ).

Proof. Let S ∈ B(Lp(G)) and µ ∈ M(G). If TµS = I then Φ(Tµ)(QSJ) =

QTµSJ = QJ = I. Similarly, (QSJ)Φ(Tµ) = QSTµ = QJ = I if STµ = I. If

Φ(Tµ)f = 0 (f 6= 0), then 0 = JΦ(Tµ) = Tµ(Jf). Let µ = σ−αδe (α ∈ C). Then

Tµ = Tσ − αI which implies (i) and (ii). �

Following convention, we always denote the conjugate exponent p
p−1

of p ∈

[1,∞] by q. The confusion of notation with the quotient map q : G → G/H is

unlikely. Let

〈·, ·〉 : Lp(G/H)× Lq(G/H) −→ C
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be the duality. Let σ̃ be the measure dσ̃(x) = dσ(x−1). For f ∈ Lp(G/H) (1 ≤

p <∞) and g ∈ Lq(G/H), we have

〈Tσf, g〉 =

∫
G/H

(Tσf)(Hx)g(Hx)dν(Hx)

=

∫
G/H

∫
G

f(Hxy)g(Hx)dσ(y−1)dν(Hx)

=

∫
G/H

f(Ht)

∫
G

g(Hty−1)dσ(y−1)dν(Ht)

=

∫
G/H

f(Ht)Tσ̃g(Ht)dν(Ht) = 〈f, Tσ̃(g)〉.

Therefore the dual map T ∗σ : Lq(G/H) −→ Lq(G/H) (1 < q ≤ ∞) is given by

T ∗σ (g) = Tσ̃(g) for g ∈ Lq(G/H).

Our objective is to describe the spectrum of Tσ : L2(G/H) → L2(G/H) for

an absolutely continuous symmetric measure σ. For this, we develop a device to

identify Tσ as an element in a quotient of the group C*-algebra C∗(G) which then

enables us to use spectral theory of C*-algebras to achieve the task.

We first recall a representation π of an involutive Banach algebra A on a

Hilbert space Hπ is a ∗-algebra homomorphism π : A→ B(Hπ), in other words,

π is a linear map from A into B(Hπ) satisfying

π(ab) = π(a)π(b) and π(a∗) = π(a)∗

for all a, b ∈ A. We note that π is continuous and contractive: ‖π(a)‖ ≤ ‖a‖ for

all a ∈ A [29, 1.3.7].

For the remaining of this section, we let A be a C*-algebra. Two representa-

tions π : A→ B(Hπ) and τ : A→ B(Hτ ) are said to be (unitarily) equivalent, in

symbols: π ' τ , if there is a surjective linear isometry u : Hπ → Hτ such that
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uπ(a) = τ(a)u (a ∈ A). We denote by [π] the equivalent class of π with respect

to the unitary equivalence.

Let π : A → B(Hπ) be a representation of A. A closed subspace E ⊂ Hπ is

called invariant under π(A) if π(A)(E) ⊂ E. A representation π : A → B(Hπ)

is said to be irreducible if π(A) has no invariant subspace other than {0} and Hπ.

Let Â be the space of all equivalence classes of irreducible representations

π : A −→ B(Hπ) of A [29, 3.1.5]. We call Â the spectrum of the C*-algebra A.

As usual, we write π for [π] ∈ Â if no confusion is likely.

For a locally compact group G, a continuous unitary representation of G is a

homomorphism π from G into the group U(Hπ) of unitary operators on a Hilbert

space Hπ and π is continuous with respect to the strong operator topology of

B(Hπ). In other words, a continuous unitary representation is a map π : G →

U(Hπ) such that for all x, y ∈ G,

π(xy) = π(x)π(y), π(x−1) = π(x)−1 = π(x)∗

and the mapping x 7→ π(x)h is continuous from G to Hπ for every h ∈ Hπ. An

irreducible representation of a locally compact group G can be defined in a similar

way as that of a C*-algebra A above.

We recall that the group C∗-algebra C∗(G) of G is the completion of L1(G)

with respect to the norm

‖f‖c = sup
π
{‖π(f)‖}

where the supremum is taken over all representations π : L1(G) −→ B(Hπ). If

G is discrete, then C∗(G) contains an identity.
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Let ρ : C∗(G) → B(L2(G)) be the right regular representation given by

(continuous extension of)

ρ(f)h = h ∗ f (f ∈ L1(G), h ∈ L2(G)) (2.3)

which is an extension of the right regular representation a ∈ G 7→ ρ(a) ∈

B(L2(G)) of G, where ρ(a)h = h ∗ δa. The reduced group C*-algebra C∗r (G)

is the norm closure ρ(L1(G)) = ρ(C∗(G)) of ρ(L1(G)) in B(L2(G)).

We define a unitary representation τ : G→ B(L2(G/H)) by right translation:

τ(a)h(Hx) = h(Hxa−1) (a, x ∈ G, h ∈ L2(G/H)).

We can extend τ to a representation ρ
H

: C∗(G) → B(L2(G/H)) in the usual

way (cf. [43, p.229]), that is, τ induces a representation of L1(G) by integration:

ρ
H

(f) =

∫
G

f(x)τ(x)dλ(x) (x ∈ G, f ∈ L1(G) ⊂ C∗(G)).

We interpret this operator-valued integral in the week sense [31, p.73]. That is,

for any h ∈ L2(G/H), we define ρ
H

(f)h by specifying its inner product with an

arbitrary g ∈ L2(G/H), and the letter is given by

〈ρ
H

(f)h, g〉 =

∫
G

f(x)〈τ(x)h, g〉dλ(x).

Lemma 2.2.3 Let ρ : C∗(G) → B(L2(G)) be the right regular representation

defined in (2.3) and let Φ : B(L2(G))→ B(L2(G/H)) be the mapping defined in

(2.1) for p = 2. Then, the diagram

C∗(G)
ρ
H−→ B(L2(G/H))

ρ↘ ↗ Φ

B(L2(G))

is commutative.
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Proof. For f ∈ L1(G) and g ∈ L2(G/H), we have

Φ(ρf)(g) = Q(ρf)J(g) = Q(ρf(g ◦ q)) = Q((g ◦ q) ∗ f)

and

Q((g ◦ q) ∗ f)(Hx) =

∫
H

(g ◦ q) ∗ f(ξx)dξ

=

∫
H

∫
G

(g ◦ q)(ξxy−1)f(y)dλ(y)dξ

=

∫
H

∫
G

g(Hxy−1)f(y)dλ(y)dξ

=

∫
G

g(Hxy−1)f(y)dλ(y)

= ρ
H

(f)(g)(Hx).

Hence Φ(ρf) = ρ
H

(f). �

The surjective contraction Φ factors the representation ρH through the right

regular representation of the group C*-algebra C∗(G).

Lemma 2.2.4 Let σ ∈ M(G) be absolutely continuous with σ = f · λ and f ∈

L1(G). Then ρ
H

(f) = Tσ ∈ B(L2(G/H)).

Proof. We have

ρ
H

(f)h =

∫
G

(h ∗ δx)f(x)dλ(x) ∈ L2(G/H) (h ∈ L2(G/H))

and

ρ
H

(f)h(Hy) =

∫
G

(h ∗ δx)(Hy)f(x)dλ(x)

=

∫
G

h(Hyx−1)f(x)dλ(x)

= (h ∗ f)(Hy) = Tσ(h)(Hy).
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Let Ĝ be the dual space of G, consisting of (equivalence classes of) continuous

irreducible unitary representations of G. If G is abelian, then Ĝ is the character

group of G.

The spectrum Ĉ∗(G) identifies with Ĝ [29, 13.9.3] where each π ∈ Ĝ is iden-

tified as the irreducible representation of C∗(G) satisfying

π(f) =

∫
G

f(x)π(x)dλ(x) (f ∈ L1(G) ⊂ C∗(G)).

The spectrum Ĉ∗r (G) identifies with the following closed subset of Ĝ, the reduced

dual of G :

Ĝr = {π ∈ Ĝ : kerπ ⊃ ker ρ}

(cf. [29, 18.3]). We note that Ĝr = Ĝ if G is abelian or compact.

We define the Fourier transform σ̂ of a measure σ ∈M(G) by

σ̂(π) =

∫
G

π(x−1)dσ(x) ∈ B(Hπ) (π ∈ Ĝ)

with its spectrum denoted by Spec(σ̂(π)).

The spectrum Spec(a) of a self-adjoint element a in a C*-algebra A with

identity is given by

Spec(a) =
⋃
π∈Â

Spec(π(a))

where Spec(π(a)) is the spectrum of π(a) in B(Hπ) (cf. [29, 3.3.5]). In fact, the

above equality holds in the following situation.

Lemma 2.2.5 Let A be a C*-algebra with identity, and let a ∈ A satisfy

α ∈ Spec(a)⇔ a− α1 has no left inverse in A. (2.4)
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Then

Spec(a) =
⋃
π∈Â

Spec(π(a)).

Proof. Let a− α1 be invertible. Then

π(a− α1)π((a− α1)−1) = π(1) = I

for all π ∈ Â. Hence π(a)− αI is invertible in π(A). This implies

Spec(a) ⊃
⋃
π∈Â

Spec(π(a)).

Conversely, let α ∈ Spec(a). Then a−α1 has no left inverse in A. This implies

A(a− α1) is a proper left ideal in A and is therefore contained in a maximal left

ideal L in A. By [29, 2.9.5], there exists a pure state ϕ such that

L = Nϕ := {a ∈ A : ϕ(a∗a) = 0}.

Let πϕ : A → B(Hϕ) be the GNS-representation induced by ϕ. Suppose πϕ(a −

α1) is invertible in πϕ(A). Then there exists some x ∈ A such that

I = πϕ(1) = πϕ(x)πϕ(a− α1) = πϕ(x(a− α1)).

Since a−α1 ∈ L = Nϕ, we have x(a−α1) ∈ Nϕ and therefore πϕ(x(a−α1)) 6= I

which is a contradiction. Hence πϕ(a− α1) is not invertible in πϕ(A) which im-

plies α ∈ Spec(πϕ(a)) with πϕ ∈ Â. �

If A is without identity, we adjoin an identity to A as usual to obtain A1 =

A⊕C, then we have the identification Â1 = Â∪{ω} where ω is the one-dimensional

irreducible representation of A1 annihilating A (cf. [29, 3.2.4]). In this case, for

a ∈ A satisfying (2.4) in A1, we have the quasi-spectrum

Spec′(a) = SpecA1
(a) =

⋃
π∈Â1

Spec(π(a)) =
⋃
π∈Â

Spec(π(a)) ∪ {0}.
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Given σ ∈ M(G), the Hilbert space adjoint of Tσ : L2(G/H) → L2(G/H) is

the operator Tσ̃ where σ is the complex conjugate of σ. Hence, if σ is symmetric

and real-valued, then Tσ is self-adjoint. If σ ∈ M(G) is only symmetric, then

the convolution operator Tσ satisfies (2.4) which has been shown in [19, Lemma

3.3.38], as stated below.

Lemma 2.2.6 Let σ ∈ M(G) be symmetric. Then for α ∈ C, we have α ∈

Spec(Tσ) if, and only if, Tσ − αI has no left inverse in B(L2(G/H)).

Theorem 2.2.7 Let σ ∈ M(G) be symmetric and absolutely continuous and

let Spec(Tσ) be the spectrum of the convolution operator Tσ : L2(G/H) −→

L2(G/H). Then we have

Spec(Tσ) ∪ {0} =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr, kerπ ⊃ ker ρ

H
} ∪ {0}.

In particular, Spec(Tσ) ∪ {0} =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr} ∪ {0} if H = {e}. If G

is discrete, then Spec(Tσ) =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr, kerπ ⊃ ker ρ

H
}.

Proof. Let σ = f · λ with f ∈ L1(G). By Lemma 2.2.4, we have Tσ = ρ
H

(f) ∈

ρ
H

(C∗(G)) ∼= C∗(G)/ ker ρ
H

. We consider the quasi-spectrum Spec′(ρ
H

(f)) of

ρ
H

(f) in ρ
H

(C∗(G)) which may not have an identity.

Let Spec′(Tσ) be the quasi-spectrum of the convolution operator Tσ inB(L2(G/H))

which satisfies (2.4) by Lemma 2.2.6. Then we have

Spec(Tσ) ∪ {0} = Spec′(Tσ) = Spec′(ρ
H

(f)) = Spec′(f + ker ρ
H

)

=
⋃
{Spec(π(f + ker ρ

H
)) : π ∈ ̂C∗(G)/ ker ρ

H
} ∪ {0}

=
⋃
{Spec(π(f)) : π ∈ Ĉ∗(G), kerπ ⊃ ker ρ

H
} ∪ {0}

=
⋃
{Spec(π(f)) : π ∈ Ĝ, kerπ ⊃ ker ρ

H
} ∪ {0}

=
⋃
{Spec(π(f)) : π ∈ Ĝr, kerπ ⊃ ker ρ

H
} ∪ {0}

27



where, by Lemma 2.2.3, ker ρ
H
⊃ ker ρ which gives the last equality, and

π(f) =

∫
G

π(x)f(x)dλ(x) =

∫
G

π(x)dσ(x) = σ̂(π)

by symmetry of σ. This proves the first assertion.

If G is discrete, then C∗(G) has an identity and one can dispense with the

quasi-spectrum and remove {0}. �

Corollary 2.2.8 If H is a normal subgroup of G in Theorem 2.2.7, then

Spec(Tσ) ∪ {0} =
⋃
{Spec(σ̂(π)) : π ∈ Ĝr, π(H) = π{e}} ∪ {0}.

Proof. By composing with the quotient map q : G −→ G/H, the dual space Ĝ/H

identifies with {π ∈ Ĝ : π(H) = π{e}}, and also ρ
H

= ρ
G/H
◦ q where ρ

G/H
is the

right regular representation of the group G/H. It follows that the reduced dual

Ĝ/Hr identifies with {π ∈ Ĝr : π(H) = π{e}}. �

Remark 2.2.9 It is known that if G is abelian and σ is absolutely continuous,

then the Lp-spectrum of Tσ : Lp(G)→ Lp(G) is given by

Spec(Tσ, L
p(G)) = σ̂(Ĝ).

For p = 2, the result can be deduced directly from the Plancherel theorem without

absolute continuity of σ (see, for instance, [19]). Without absolute continuity, the

result is false for p 6= 2 (see, for example, [52]). Theorem 2.2.7 gives a description

of Spec(Tσ, L
2(G)) for non-abelian groups G.

We will make use of the results in Theorem 2.2.7 to describe the spectrum of

a discrete Laplacian on a homogeneous graph in Chapter 4. We first give some

examples below.
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Example 2.2.10 Let G = R which is an abelian group, and let

dσ(x) =
1√
2π
e−

x2

2 dλ(x).

Then R̂ = {χt : x 7→ eitx, t ∈ R} and

σ̂(χt) =

∫
R

1√
2π
e−itx−

x2

2 dx = e−
t2

2 .

Hence, for 1 ≤ p ≤ ∞, we have

Spec(Tσ, L
p(R)) = σ̂(R̂) =

{
e−

t2

2 : t ∈ R
}

= [0, 1].

Example 2.2.11 Let

G =




1 x z

0 1 y

0 0 1

 : x, y, z ∈ R


be the Heisenberg group which is neither abelian nor compact. For convenience,

an element in G is written as (x, y, z). By [31, 6.51], we have

Ĝr = {πa,b : a, b ∈ R} ∪ {πt : t ∈ R \ {0}}

where

πa,b : (x, y, z) ∈ G 7→ e2πi(ax+by) ∈ T = {z ∈ C : |z| = 1}

is a character and

πt : G→ B(L2(R))

is given by

πt(x, y, z)f(w) = e2πit(yw+z)f(w + x) (f ∈ L2(R)).

Let

dσ(x, y, z) =
1

(2π)
3
2

exp−1

2

(
x2 + y2 + (z − xy

2
)2
)
dλ(x, y, z).
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Then

σ̂(πa,b) =

∫
G

πa,b(−x,−y, xy − z)dσ(x, y, z)

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1

(2π)
3
2

e−
x2+y2+(z−xy2 )2

2 e2πi(−ax−by)dxdydz

= e−2π2(a2+b2) (a, b ∈ R)

which implies ⋃
a,b∈R

Spec σ̂(πa,b) = {e−2π2(a2+b2) : a, b ∈ R} = (0, 1].

We note that σ is symmetric since

dσ(x, y, z) = dσ(−x,−y, xy − z).

Hence we have

(0, 1] ⊂ Spec(Tσ, L
2(G)) ⊂ [−1, 1]

by applying Theorem 2.2.7 and ‖Tσ‖ ≤ 1.

Example 2.2.12 Let

SU(2) =


a −b
b a

 : a, b ∈ C, |a|2 + |b|2 = 1


be the group of unitary transformations of C2 with determinant 1 which is a

compact group. For any unit mass δt on SU(2), it is easy to see that 1 is an

eigenvalue of the convolution operator Tδt . Indeed, let f : SU(2) → C be the

constant function f ≡ α ∈ C. Then f ∈ Lp(G) and

f ∗ δt(x) =

∫
SU(2)

f(xy−1)dδt(y) = α = f(x).

The group SU(2) has a one-parameter subgroup

F (θ) =

eiθ 0

0 e−iθ

 (θ ∈ R)
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and ŜU(2) = {πm : m ∈ N ∪ {0}} (cf.[31, p.142]) where

πm(F (θ))(zjwm−j) = ei(2j−m)θzjwm−j (z, w ∈ C, 0 ≤ j ≤ m)

where zjwm−j is an orthogonal basis of the space of homogeneous polynomials of

degree m:

Pm(z, w) =
m∑
0

cjz
jwm−j.

Let σ be the unit mass δF (π). Then we have −1 ∈ Spec(Tσ, L
p(G)) since

δ̂F (π)(π5) = e−i(2j−5)π = −1 (0 ≤ j ≤ 5)

by letting m = 5 and [19, Proposition 3.3.43].

We will study iteration of a convolution operator Tσ : Lp(G/H) → Lp(G/H)

in Chapter 3. For the n-th iterate T nσ : L2(G/H)→ L2(G/H), we can apply the

results in Theorem 2.2.7 to describe its spectrum by the fact that T nσ = Tσn and

the following corollary.

Lemma 2.2.13 If σ = f ·λ and τ = g ·λ for f, g ∈ L1(G), then σ∗τ = (f ∗g) ·λ.

Further, for σ, τ ∈M(G), we have σ̃ ∗ τ = τ̃ ∗ σ̃ where σ̃(x) = σ(x−1) (x ∈ G).

Proof. Let φ ∈ C0(G). Then∫
G

φ(x)d(σ ∗ τ)(x) =

∫
G

∫
G

φ(xy)dσ(x)dτ(y)

=

∫
G

∫
G

φ(xy)f(x)g(y)dλ(x)dλ(y)

=

∫
G

∫
G

φ(z)f(zy−1)g(y)dλ(y)dλ(z)

=

∫
G

φ(z)(f ∗ g)(z)dλ(z).
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This implies σ ∗ τ = (f ∗ g) · λ. Besides, we have∫
G

φ(x)dσ̃ ∗ τ(x) =

∫
G

φ(x−1)dσ ∗ τ(x)

=

∫
G

∫
G

φ(y−1x−1)dσ(x)dτ(y)

=

∫
G

∫
G

φ(y−1x−1)dτ̃(y−1)dσ̃(x−1)

=

∫
G

φ(x)dτ̃ ∗ σ̃(x).

�

By Lemma 2.2.13, we have the following simple consequence.

Corollary 2.2.14 Let σ ∈M(G) and let n ∈ N.

(i) If σ = f · λ with f ∈ L1(G), then σn = fn · λ.

(ii) If σ is symmetric, then σn is symmetric.
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Chapter 3

Hypercyclicity of convolution

operators

In this chapter, we study hypercyclicity of convolution operators on homogeneous

spaces. For 1 ≤ p < ∞, let Ta,w : Lp(G/H) → Lp(G/H) be a weighted transla-

tion operator defined by the unit point mass δa and a weight w on G/H. We will

characterise hypercyclic weighted translation operators in terms of their weights.

Indeed, we give a sufficient condition for a weighted translation operator Ta,w to

be hypercyclic, in terms of w. This condition is also necessary if G is discrete. By

strengthening the condition and using analogous arguments, we characterise topo-

logically mixing weighted translation operators Ta,w on Lp(G/H). Supercyclic

weighted translation operators on homogeneous spaces are also characterised in

a similar way. We derive a sufficient condition for bilateral weighted shifts to

be frequently hypercyclic. We conclude this chapter with some hypercyclicity

results on scalar multiples of weighted translation operators. Some results in this

chapter have been published in [14].

Hypercyclic operators have been studied by many authors since the seminal
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work of Birkhoff [10] and MacLane [39]. We refer to [34, 35] for recent surveys and

to [8, 15] for some recent works on hypercyclicity of sequences of operators. The

related theory of topologically mixing, supercyclic, frequent hypercyclic operators

and hypercyclic semigroups have been developed in [4, 6, 12, 25, 27, 28, 42]. In

Section 3.1, we recall some relevant results on hypercyclicity for bounded linear

operators on Banach spaces. The main results on hypercyclic weighted translation

operators will be discussed in Section 3.2.

3.1 Hypercyclic criterion

We begin with some definitions and a discussion of the hypercyclic criterion. Al-

though hypercyclic phenomena have been studied in Fréchet spaces, we restrict

our attention to complex Banach spaces in this thesis.

Let Z and N denote the sets of integers and positive integers respectively, and

let N0 = N∪{0}. Given a bounded linear self-map T on a complex Banach space

X, we denote its iterates by

T 0 = I, . . . , T n+1 = T n ◦ T, . . . (n = 0, 1, . . .).

The operator T is said to be hypercyclic if there is a vector x ∈ X such that the

orbit {x, Tx, . . . , T nx, . . .} is dense in X in which case x is called a hypercyclic

vector for T . By definition, hypercyclicity can only occur in separable spaces.

Indeed, a Banach space admits a hypercyclic operator if, and only if, it is sep-

arable and infinite-dimensional [1, 7]. We record a simple, but useful result for

hypercyclic vectors from [32].

Proposition 3.1.1 Let T be a bounded linear self-map on a Banach space X. If

T has a hypercyclic vector, then it has a dense Gδ set of hypercyclic vectors.
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Proof. Fix a countable dense subset {yk} of X. For positive integers N, j and k,

let

F (N, j, k) = {x ∈ X : ‖T nx− yj‖ <
1

k
for some n ≥ N}.

Each of these sets is open by the continuity of T . Moreover, each F (N, j, k) is

dense in X since, if x is a hypercyclic vector, then so is every member of the dense

orbit {T nx : n ≥ 0}. The set of hypercyclic vectors for T is the intersection of

these sets. It is therefore a dense Gδ subset of X. This completes the proof. �

To characterise hypercyclic convolution operators, we will make use of the

following form of the hypercyclic criterion in [9], derived from the original one

due to Kitai [37], Gethner and Shapiro [32] independently.

Theorem 3.1.2 Let T be a bounded linear self-map on a Banach space X. Then

T is hypercyclic if it satisfies the following criterion: (T n) admits a subsequence

(T nk) such that

(i) (T nk) converges to zero pointwise on a dense subset of X;

(ii) there is a dense subset Y of X, and a sequence of maps Snk : Y → X such

that (Snk) tends to zero pointwise on Y and (T nkSnk) tends to the identity

pointwise on Y .

In the above criterion, if nk = k, then T is said to satisfy the hypercyclic

criterion for the full sequence. This criterion has led to the following question.

Question 1: Does every hypercyclic operator satisfy the above hypercyclic

criterion? In other words, is the hypercyclic criterion also a necessary condition

for hypercyclicity?
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The next question arises from the fact that there are hypercyclic operators T1

and T2 on a Hilbert space H such that the direct sum T1 ⊕ T2 on H ⊕H is not

hypercyclic [46].

Question 2: Let T be a hypercyclic operator. Does it follow that the operator

T ⊕ T is hypercyclic?

Bès and Peris [9] have settled Question 2 and showed that Question 1 and

Question 2 are equivalent. We recall that an operator T hereditarily hypercyclic

with respect to some sequence (nk) if every subsequence (Tmk) of (T nk) admits a

vector x ∈ X for which the orbit {Tmkx}∞k=1 is dense in X. It turns out that the

two questions are equivalent to the problem whether every hypercyclic operator is

hereditarily hypercyclic with respect to some (nk). We give a precise formulation

below.

Theorem 3.1.3 Let T be a bounded linear operator on a Banach space X. Then

the following conditions are equivalent:

(i) T satisfies the hypercyclic criterion;

(ii) T ⊕ T is hypercyclic;

(iii) T is hereditarily hypercyclic with respect to some sequence (nk).

Proof. See [9, Theorem 2.3]. �

Recently, negative answers to Question 1 have been given in [5, 26]. There

exist hypercyclic operators on Banach spaces which fail the hypercyclic criterion.

An operator T on a Banach space X is called chaotic if T is hypercyclic and has

a dense set of periodic points in X, where a point x ∈ X is periodic if T nx = x
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for some n ∈ N [33]. Using the above theorem, it has been shown in [9] that every

chaotic operator on X satisfies the hypercyclic criterion.

Besides the sufficient conditions for hypercyclicity in Theorem 3.1.3, it is

known that [34] T is hypercyclic if and only if T is topologically transitive, that is,

given any nonempty open sets U, V ⊂ X, there exists n ∈ N such that T n(U) ∩

V 6= ∅. A topologically mixing operator T satisfies a stronger condition: there

exists N ∈ N such that T n(U) ∩ V 6= ∅ for all n > N . We have the following

simple results motivated by hypercyclicity.

Lemma 3.1.4 Let T : X → X and S : Y → Y be two bounded operators on

Banach spaces X and Y respectively.

(i) Let T be invertible. Then T is topologically mixing if, and only if, T−1 is

topologically mixing.

(ii) Both T and S are topologically mixing if, and only if, T ⊕S is topologically

mixing.

(iii) Let T be topologically mixing. Then T satisfies the hypercyclic criterion.

Proof. (i) Let U and V be nonempty open subsets of X. Then for all n ∈ N, we

have

T n(U) ∩ V 6= ∅ ⇔ U ∩ T−n(V ) 6= ∅.

(ii) Let both T and S be topologically mixing. Let U1, V1 be nonempty open

subsets of X, and let U2, V2 be nonempty open subsets of Y . Then there exist

N1, N2 ∈ N such that

T n(U1) ∩ V1 6= ∅ and Sm(U2) ∩ V2 6= ∅
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for all n > N1 and m > N2. Choose some N > N1, N2. Then for all n > N ,

T n(U1) ∩ V1 6= ∅ and Sn(U2) ∩ V2 6= ∅

which implies T ⊕ S is topologically mixing. The converse is obvious.

(iii) Let Y = X and S = T in (ii). Then T is topologically mixing if, and only

if, T ⊕ T is topologically mixing which implies that T satisfies the hypercyclic

criterion by Theorem 3.1.3. �

We note that (iii) above has been obtained by another approach in [15, The-

orem 2.7]. The converse of (iii) holds if the sequence (nk) in the hypercyclic

criterion satisfies the syndetic condition, that is, supk{nk+1 − nk} < ∞, which

has been proved in [25, Theorem 1.1] and the result is stated below.

Theorem 3.1.5 Let an operator T satisfy the hypercyclic criterion for a syndetic

sequence. Then T is topologically mixing.

We note that an operator satisfies the hypercyclic criterion for a syndetic se-

quence if, and only if, it does so for the full sequence. We refer to [15, Corollary

2.8] for a proof.

Hypercyclicity was motivated by the concept of cyclicity in operator theory.

A vector x ∈ X is called cyclic if the linear span of its orbit {x, Tx, . . . , T nx, . . .}

is dense in X. Accordingly, x is called supercyclic if the set

{tT nx : t ∈ C, n ∈ N0} =
⋃
n∈N0

CT nx

is dense in X in which case T also has a dense set of supercyclic vectors [42].

However, supercyclic and hypercyclic operators have a much richer structure

than cyclic operators. For instance, we recall a result of [1] which asserts that
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if T is supercyclic, then so is T n for every n ≥ 1. This is not true for cyclic

operators in general; for example, any power n ≥ 2 of the forward shift on `p(N0)

is not cyclic. Indeed, let the forward shift T : `p(N0) → `p(N0) be defined by

Ten = en+1 (n ≥ 0) for the canonical basis {en : n ∈ N0}. We have

{e0, T e0, . . . , T
ne0, . . .} = {en : n ∈ N0}

whose linear span is dense in `p(N0). In contrast, for any j ∈ N0, the linear span

of

{ej, T 2ej, . . . , T
2nej, . . .} = {e2n+j : n ∈ N0}

is not dense. A sufficient condition, a supercyclic criterion, for supercyclicity has

been given in [42, Theorem 2.2], which is stated below.

Theorem 3.1.6 Let (αn) be a sequence of nonzero complex numbers. Let T be a

bounded linear self-map on a Banach space X and satisfy the following criterion:

(i) (αnT
n) admits a subsequence (αnkT

nk) converging to zero pointwise on a

dense subset of X;

(ii) there is a dense subset Y of X, and a map S : Y → Y such that ( 1
αnk

Snk)

tends to zero pointwise on Y and TS is the identity on Y .

Then T is supercyclic and there is a supercyclic vector x ∈ X such that {αnkT nkx}k≥1

is dense in X.

In the above criterion, if there is a supercyclic vector x ∈ X such that

{αnkT nkx}k≥1 is dense in X, then there is a dense subset D of supercyclic vec-

tors satisfying {αnkT nkx}k≥1 is dense in X for all x ∈ D [42]. If an operator T

satisfies this criterion, we will say that T satisfies the supercyclic criterion for

the sequence (αnk) or say that T is supercyclic with respect to (αnk). Hypercyclic

criterion can be seen as a special case if we take αn = 1 for each n although in
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general, supercyclic operators need not be hypercyclic. The criterion will be used

to study supercyclic convolution operators in the next section.

Recently, frequent hypercyclicity has been introduced in [4]. A vector x in

a Banach space X is a hypercyclic vector for an operator T ∈ B(X) if its orbit

meets every nonempty open subset U of X. Bayart and Grivaux [4] call a vector

x ∈ X frequently hypercyclic if its orbit meets every such set U ‘often’ in the sense

of positive lower density. A strictly increasing sequence (nk) of positive integers

is of positive lower density if

sup
k≥1

nk
k
<∞.

A vector x ∈ X is frequently hypercyclic for an operator T on a Banach space X

if for every nonempty open subset U of X, there is a strictly increasing sequence

(nk) of positive integers and some C > 0 such that

nk ≤ Ck and T nkx ∈ U for all k ∈ N.

The following frequently hypercyclic criterion has been proved in [4, Theorem

2.1].

Theorem 3.1.7 Let T be a bounded operator on a Banach space X. Let there

be a dense subset X0 of X and a mapping S : X0 → X0 such that

(i) the series
∑

n ‖T nx‖ converges for all x ∈ X0;

(ii) the series
∑

n ‖Snx‖ converges for all x ∈ X0;

(iii) TSx = x for all x ∈ X0.

Then T is frequently hypercyclic.

The above criterion is stronger than the hypercyclic criterion. Indeed, if an op-

erator T satisfies the frequently hypercyclic criterion, then T nx→ 0 and Snx→ 0
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for all x ∈ X0. This implies that T is topologically mixing by Theorem 3.1.5. In

fact, by [12, Remark 2.2], T is also chaotic.

We now give some well-known examples of hypercyclic operators in Banach

spaces. Let B : `p(N0) → `p(N0) (1 ≤ p < ∞) be the unilateral backward shift

defined by B(x0, x1, . . .) = (x1, x2, . . .). Rolewicz [45] was the first to study hyper-

cyclic operators on Banach spaces and showed that a scalar multiple λB is hyper-

cyclic for any complex number λ with |λ| > 1. In fact, λB satisfies the hypercyclic

criterion. If we define S : `p(N0)→ `p(N0) by S(x0, x1, . . .) = (0, x0, x1, . . .), then

λB satisfies the hypercyclic criterion for the full sequence with respect to the

sequence ( 1
λn
Sn). Moreover, λB is frequently hypercyclic [4]. We note that B

itself is supercyclic but not hypercyclic.

Shift operators and their generalizations have remained a main source of ex-

amples of hypercyclic operators. Hypercyclicity of generalized backward shifts

on Banach spaces have been considered in [33, Theorem 3.6]. One of the most

useful examples is bilateral weighted shifts. Given a positive bounded weight

sequence (an)n∈Z and the canonical basis {en : n ∈ Z} for `p(Z), hypercyclicity

of a bilateral weighted shift T : `p(Z)→ `p(Z) (1 ≤ p <∞) defined by

Ten = anen+1 (an > 0) (3.1)

has been characterised by Salas [47, Theorem 2.1] in terms of the weight (an).

Theorem 3.1.8 Let T be a bilateral weighted shift defined by the weight (an).

Then T is hypercyclic if and only if given ε > 0 and q ∈ N, there exists an

arbitrarily large n such that for all |j| ≤ q

n−1∏
s=0

aj+s < ε and
n∏
s=1

aj−s >
1

ε
.
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The above weight condition has been modified in [42] to characterise super-

cyclic bilateral weighted shifts. Costakis and Samarino [25, Theorem 1.2] have

used Theorem 3.1.5 to characterise topologically mixing bilateral weighted shifts,

with a stronger weight condition.

Another classic example is unilateral weighted backward shifts. Given a pos-

itive bounded weight sequence (wn)n∈N0 and the canonical basis {en : n ∈ N0} of

`p(N0), the unilateral weighted backward shift Bw : `p(N0)→ `p(N0) is given by

Bwen = wnen−1 for n ≥ 1 and Bwe0 = 0. (3.2)

A characterization of hypercyclic unilateral weighted backward shifts in terms

of (wn) has also been given in [47, Theorem 2.8]. For frequently hypercyclic

unilateral weighted backward shifts, Bayart and Grivaux [4] have shown that if

the series ∑
n≥1

1

(w1w2 . . . wn)p

is convergent, then Bw is frequently hypercyclic. We will give a similar result for

frequently hypercyclic bilateral weighted shifts.

Motivated by the above examples and following a recent study of convolution

operators on groups and homogeneous spaces in [19], it is natural to consider

the question of hypercyclicity for these operators. Hypercyclicity of convolution

operators on spaces of ultradifferentiable functions has been studied in [11]. Al-

though Birkhoff’s seminal result [10] shows the hypercyclicity of the translation

operator on the space of entire functions, in contrast, a translation operator, or a

convolution operator by a measure of unit mass, on Lp spaces of locally compact

groups is never hypercyclic.
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In the next section, we give a sufficient condition for a weighted translation

operator on the Lp space of a homogeneous space to be hypercyclic. This con-

dition is also necessary in the discrete case which subsumes the result of Salas

in Theorem 3.1.8, and further, it is equivalent to hereditary hypercyclicity of the

weighted translation operator. By strengthening the condition and analogous ar-

guments, we also characterise topologically mixing weighted translation operators

which extends the result in [25, Theorem 1.2]. Supercyclic weighted translation

operators on discrete homogeneous spaces can be described completely as well in

terms of their weights.

3.2 Weighted translation operators

We now study hypercyclicity of a weighted convolution operator Ta,w, defined by

a unit point mass δa with a ∈ G and a weight w, on a homogeneous space of a

group G. A convolution operator Tδa defined by δa is just a translation operator

by a.

In the sequel, G will be a locally compact second countable group with identity

e and a right invariant Haar measure λ which is the counting measure if G is

discrete. We note that G is a union of a nested sequence

G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · ·

of compact sets with Gn contained in the interior of Gn+1. Let H be a compact

subgroup of G. We consider the right coset space G/H and the Lebesgue spaces

Lp(G/H) (1 ≤ p < ∞) with respect to the G-invariant measure ν = λ ◦ q−1 on

G/H, as in Section 2.2. Given σ ∈M(G), as in (2.2) and below, we consider the
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convolution operator Tσ : Lp(G/H) −→ Lp(G/H) given by

(Tσf)(Hx) = (f ∗ σ)(Hx) =

∫
G

f(Hxy−1)dσ(y) (f ∈ Lp(G/H))

ν-almost everywhere. As in Section 2.2, we have ‖Tσ‖ ≤ ‖σ‖ and hence Tσ is not

hypercyclic if ‖σ‖ ≤ 1.

A continuous function w : G→ (0,∞) is called a weight for G/H if it satisfies

w(hx) = w(x) (x ∈ G, h ∈ H) (3.3)

so that w′(Hx) := w(x) is a well-defined function on G/H. If such a weight w is

in L∞(G), we can define a weighted convolution operator

Tσ,w : f ∈ Lp(G/H) 7→ Tσ,wf ∈ Lp(G/H)

where

Tσ,wf(Hx) = w(x)(f ∗ σ)(Hx) (f ∈ Lp(G/H)).

Thus Tσ,w = Mw′Tσ where Mw′ is the multiplication by w′. The operator Tσ,w is

not hypercyclic if ‖σ‖‖w‖∞ ≤ 1. One can also consider the weighted convolution

operator T̃σ,w : Lp(G) −→ Lp(G) with T̃σ,wf = w(f ∗ σ). It is a ‘lift’ of Tσ,w in

the following commutative diagram:

Lp(G)
T̃σ,w−→ Lp(G)

J
x yQ

Lp(G/H)
Tσ,w−→ Lp(G/H).

We have Tσ,w = Q◦ T̃σ,w ◦J and Tσ,wQ = QT̃σ,w as in Section 2.2. These equalities

enable us to prove the following simple lemma.

Lemma 3.2.1 Let 1 ≤ p <∞ and let T̃σ,w and Tσ,w be the weighted convolution

operators on Lp(G) and Lp(G/H) respectively.
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(i) If T̃σ,w is (frequently) hypercyclic, then Tσ,w is (frequently) hypercyclic.

(ii) If T̃σ,w is chaotic, then Tσ,w is chaotic.

(iii) If T̃σ,w is topologically mixing, then Tσ,w is topologically mixing.

Proof. Since Q is surjective, each h ∈ Lp(G/H) equals Qf for some f ∈ Lp(G).

(i) If T̃σ,w possesses a (frequently) hypercyclic vector g ∈ Lp(G), then Qg is a

(frequently) hypercyclic vector for Tσ,w on Lp(G/H). This follows from ‖Q‖ ≤ 1

and the fact that for all n ∈ N, we have

‖T nσ,w(Qg)− h‖ = ‖QT̃ nσ,wg −Qf‖ = ‖Q(T̃ nσ,wg − f)‖ 6 ‖T̃ nσ,wg − f‖.

(ii) Let P̃ and P be the sets of periodic points for T̃σ,w and Tσ,w respectively. If

g ∈ P̃ , then Qg ∈ P by

Qg = Q(T̃ nσ,wg) = T nσ,w(Qg)

for some n ∈ N. Let T̃σ,w be chaotic. Then Tσ,w is chaotic since for any h ∈

Lp(G/H) with h = Qf and ε > 0, there exists g ∈ P̃ such that

‖Qg − h‖ = ‖Qg −Qf‖ ≤ ‖g − f‖ < ε.

(iii) Let T̃σ,w be topologically mixing. Then for two any non-empty open sets

U ′, V ′ ⊂ Lp(G/H), there exist two non-empty open sets U, V ⊂ Lp(G), a sequence

(gn) in Lp(G) and N ∈ N such that

U ′ = QU, V ′ = QV and gn ∈ T̃ nσ,wU ∩ V

for all n > N . This implies

Qgn ∈ Q(T̃ nσ,wU) = T nσ,w(QU) and Qgn ∈ QV.

Hence we have T nσ,wU
′ ∩ V ′ 6= ∅ for all n > N . �
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Given a weight w ∈ L∞(G) for G/H, the weighted convolution operator Tδa,w

is written simply Ta,w which is a weighted translation operator. If we also have

w−1 ∈ L∞(G), then the weighted convolution operator Ta−1,w−1∗δa−1
is the inverse

of Ta,w. We write Sa,w for Ta−1,w−1∗δa−1
to simplify notation. Thus, for each

f ∈ Lp(G/H), we have

Ta,wf(Hx) = w(x)f(Hxa−1),

Sa,wf(Hx) =
1

w(xa)
f(Hxa).

Without the assumption of w−1 ∈ L∞(G), one can still define the operator Sa,w

on the subspace Cc(G/H) ⊂ Lp(G/H) and we will use the same notation for this

map since no confusion is likely. The same remark applies to Ta,w if w /∈ L∞(G).

By a similar computation as in (2.3), the dual map T ∗σ,w : Lq(G/H) −→

Lq(G/H) is given by T ∗σ,w(g) = Tσ̃(wg) for g ∈ Lq(G/H). In particular, if σ = δa,

we have

T ∗a,w(g) = Tδa−1 (wg) = Ta−1,w∗δa−1
(g) (g ∈ Lq(G/H))

and T ∗a,w is a weighted convolution operator on Lq(G/H).

We note that the translation operator Ta is not hypercyclic. However if one

considers the weighted translation operator Ta,w, then hypercyclicity can occur

for certain weights. Indeed, we are going to describe these weights for the homo-

geneous space G/H, and show, for a discrete group G, these are the only weights

making Ta,w hereditarily hypercyclic.

Proposition 3.2.2 Let G be a locally compact second countable group with a ∈

G. Let w : G → (0,∞) be a weight for G/H satisfying w ∈ L∞(G). Let

1 ≤ p < ∞ and Ta,w be the weighted convolution operator on Lp(G/H) defined

above. Then condition (ii) below implies (i).
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(i) Ta,w is hereditarily hypercyclic.

(ii) Both sequences (depending on a)

wn :=
n∏
s=1

w ∗ δsa−1 and wn :=

(
n−1∏
s=0

w ∗ δsa

)−1

admit respectively subsequences (wnk) and (wnk) which converge pointwise

to 0 λ-a.e. and are uniformly bounded on each non-null compact subset K

of G.

Proof. Let (wnk) and (wnk) be subsequences of (wn) and (wn) respectively, satis-

fying (ii). We show Ta,w satisfies the hypercyclic criterion.

We make use of the sequence of maps Snka,w : Cc(G/H) −→ Lp(G/H). Let

f ∈ Cc(G/H)\{0} with compact support supp f . Then we have T nka,w(Snka,wf) = f .

We show that ‖T nka,wf‖p → 0 as nk → ∞. There exists a compact set K ⊂ G

with q(K) = supp f (see, for instance, [31, 2.46]). It follows that q−1(supp f) =

q−1(q(K)) = HK which is compact and non-null. Let (wnk) be bounded on HK

by M say. Let ε > 0 and choose, by Egoroff’s theorem, a Borel set E ⊂ HK

such that λ(HK \E) < ε
Mp‖f‖p∞

and (wpnk) converges to 0 uniformly on E. There

exists N ∈ N such that wpnk <
ε
‖f‖pp

on E for nk > N . We have, by change of

variables,

‖T nka,wf‖pp =

∫
G/H

|T nka,wf(Hx)|pdν(Hx)

=

∫
(supp f)ank

|w(x)w(xa−1) · · · w(xa−(nk−1))|p|f(Hxa−nk)|pdν(Hx)

=

∫
HKank

|w(x)w(xa−1) · · · w(xa−(nk−1))|p|f(Hxa−nk)|pdλ(x)

=

∫
HK

|w(xank)w(xank−1) · · · w(xa)|p|f(Hx)|pdλ(x)

=

∫
E

wnk(x)p|f(Hx)|pdλ(x) +

∫
HK\E

wnk(x)p|f(Hx)|pdλ(x)

≤ ε

‖f‖pp
‖f‖pp +Mp‖f‖p∞λ(HK \ E) < 2ε
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for nk > N . Similar arguments using the sequence (wnk) yield

‖Snka,wf‖pp =

∫
HKa−nk

1

|w(xa)w(xa2) · · · w(xank)|p
|f(Hxank)|pdλ(x) −→ 0.

Hence T nka,w satisfies the hypercyclic criterion in Theorem 3.1.2 since Cc(G/H) is

dense in Lp(G/H). Therefore Ta,w is hereditarily hypercyclic by Theorem 3.1.3. �

Remark 3.2.3 If we have w−1 ∈ L∞(G) instead of w ∈ L∞(G), then condition

(ii) implies that Sa,w is hereditarily hypercyclic on Lp(G/H), by switching the

role of Ta,w and Sa,w in the above proof.

We note that, if a = e, then condition (ii) in Proposition 3.2.2 fails and in

fact, we have wn = w−1
n = w−n in this case. Also, a pointwise convergence se-

quence of continuous functions need not be uniformly bounded on a compact set.

For example, the sequence wn(x) = 2n2xe−n
2x2

is not uniformly bounded on [0, 1].

There are examples of hypercyclic operators with hypercyclic dual [44, 46].

The following result shows that Ta,w and its dual T ∗a,w can both be hypercyclic

for certain weights w.

Corollary 3.2.4 The dual T ∗a,w of a weighted translation operator Ta,w : Lp(G/H) −→

Lp(G/H) is hypercyclic if the weight w∗δa−1 satisfies condition (ii) of Proposition

3.2.2 with a−1 in place of a.

Example 3.2.5 Fix t ∈ (0, 1). We define a weight w : R→ (0,∞) for (R,+) by

w(x) =


t if 1 ≤ x

tx if − 1 ≤ x ≤ 1

1
t

if x ≤ −1.
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Then w and w−1 are bounded and continuous on R, with w satisfying condition

(ii) in Proposition 3.2.2 if a > 0. Indeed, let K = [b, c] say. Pick n0 ∈ N such

that b+ n0a > 1. Since w is decreasing, we have

0 < wn(x) = w(x+ a)w(x+ 2a) · · · w(x+ na)

≤ w(b+ a)w(b+ 2a) · · · w(b+ na)

≤ w(b+ a)w(b+ 2a) · · · w(b+ n0a) (x ∈ K, n ≥ n0).

It follows that (wn) is uniformly bounded on K by some constant M . For each

x ∈ [b, c], we have w(x+ s) = t for all s ≥ n0a. This implies, for n > n0,

wn(x) = w(x+ a)w(x+ 2a) · · · w(x+ n0a)w(x+ (n0 + 1)a) · · · w(x+ na)

≤ Mtn−n0 → 0 as n→∞.

Hence (wn) converges to 0 uniformly on [b, c]. For the sequence (wn), we have

wn(x) =
1

w(x)w(x− a) · · · w(x− (n− 1)a)

≤ 1

w(c)w(c− a) · · · w(c− (n− 1)a)

≤ 1

w(c)w(c− a) · · · w(c− (n1 − 1)a)
(x ∈ K, n ≥ n1)

where n1 is chosen so that c− (n1−1)a < −1. It follows that (wn)→ 0 uniformly

on [b, c] too.

In fact, the above example is a special case of the following lemma.

Lemma 3.2.6 Let w be a weight for a locally compact second countable group G.

Let a ∈ G, and let (wn), (wn) be as in Proposition 3.2.2. The following conditions

are equivalent.

(i) Given ε > 0, a compact set D ⊂ G and N ∈ N, there exists m > N

satisfying wm(x) < ε and wm(x) < ε for all x ∈ D.
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(ii) Both sequences (wn) and (wn) admit subsequences (wnk) and (wnk) which

converge uniformly to 0 on each compact subset K of G.

If G is discrete, D can be replaced by a singleton.

Proof. We show (i) ⇒ (ii). Since G is a union
⋃∞
k=1Gk of nested compact sets

Gk with Gk contained in the interior of Gk+1, it suffices to prove convergence on

Gj for each j ∈ N.

Let ε = 1
2

and D = G1. Then there exists n1 such that wn1(x) < 1
2

and

wn1(x) < 1
2

for all x ∈ G1. Inductively, for each k > 1, there exists nk > nk−1

such that wnk(x) < 1
2k

and wnk(x) < 1
2k

for all x ∈ Gk.

Now let ε > 0 and choose k0 ∈ N with k0 > j and 1
2k0

< ε. Then, for all

k > k0, we have

wnk(x) <
1

2k
<

1

2k0
< ε and wnk(x) < ε

on Gk ⊃ Gj. Hence (wnk) and (wnk) converge uniformly to 0 on Gj. �

We now consider discrete groups and derive necessary and sufficient conditions

for a weighted translation operator to be hypercyclic. A torsion element of a group

G is an element of finite order.

Lemma 3.2.7 Let G be a discrete group and a ∈ G. Then a is not a torsion

element if, and only if, for any finite subset D ⊂ G, there exists N ∈ N such that

D ∩Da±n = ∅ for n > N .

Proof. Given that a is not a torsion element, we observe that, for every d ∈ D,

there exists Nd such that dan 6∈ D for n > Nd. Otherwise, there is some d ∈ D

such that danj ∈ D for a strictly increasing sequence (nj) in N. Since D is finite,

we must have danj = dank for some nj 6= nk which contradicts the fact that a
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is not a torsion element. Let N = max{Nd : d ∈ D}. Then D ∩ Dan = ∅ for

n > N . The condition D ∩Da−n = ∅ can be proved similarly.

On the other hand, if a ∈ G is a torsion element with order m, then for any

finite subset D ⊂ G, there exist infinitely many n’s such that D ∩ Dan 6= ∅.

Indeed, D ∩Dan = D 6= ∅ for n ∈ mZ. �

Theorem 3.2.8 Let G be a discrete group and H a finite subgroup. Let a ∈ G

which is not a torsion element. Let w : G → (0,∞) be a weight for G/H such

that w ∈ `∞(G). Let 1 ≤ p < ∞ and Ta,w be the weighted convolution operator

on `p(G/H) defined by a and w. The following conditions are equivalent.

(i) Ta,w is hypercyclic.

(ii) Ta,w is hereditarily hypercyclic.

(iii) Both sequences (depending on a)

wn =
n∏
s=1

w ∗ δsa−1 and wn =

(
n−1∏
s=0

w ∗ δsa

)−1

admit subsequences (wnk) and (wnk) which converge to 0 pointwise in G.

In particular, if G is torsion free, then the above conditions are equivalent for all

a ∈ G \ {e}.

Proof. By Proposition 3.2.2, (iii) implies (ii) since a compact subset of a discrete

group is finite. Since (ii) implies (i), we only need to show (i) implies (iii).

Let Ta,w be hypercyclic. Let ε > 0 and z ∈ G. Fix N ∈ N. Let χz ∈ `p(G/H)

be the characteristic function

χz(Hx) =

 1 if x ∈ Hz

0 otherwise.
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Choose 0 < δ < ε
1+ε

. Since the set of hypercyclic vectors for Ta,w is dense, there

exist a hypercyclic vector f ∈ `p(G/H) for Ta,w and some m > N such that

‖f − χz‖p < δ and ‖Tma,wf − χz‖p < δ.

By Lemma 3.2.7, we may choose m sufficiently large so that Hz ∩ Hza±m = ∅.

Since

‖f − χz‖pp =
∑

Hx∈G/H

|f(Hx)− χz(Hx)|pν(Hx) =
∑
x∈G

|f(Hx)− χz(Hx)|p < δp

where ν(Hx) = λ(H), we have

|f(Hx)− χz(Hx)| < δ (x ∈ G).

This gives

|f(Hx)| > 1− δ for x ∈ Hz,

|f(Hx)| < δ for x /∈ Hz.

From ‖Tma,wf − χz‖p < δ, we also deduce that∣∣w(x)w(xa−1) · · · w(xa−(m−1))f(Hxa−m)− χz(Hx)
∣∣ < δ (x ∈ G). (3.4)

In particular,

wm(z)−1|f(Hza−m)| > 1− δ.

Since Hz ∩Hza−m = ∅, we have

wm(z) <
|f(Hza−m)|

1− δ
<

δ

1− δ
< ε.

From (3.4), we have∣∣w(xam)w(xam−1) · · · w(xa)f(Hx)− χz(Hxam)
∣∣ < δ (x ∈ G)

and hence, as Hz ∩Hzam = ∅, one obtains

wm(z)|f(Hz)| < δ.
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It follows that

wm(z) <
δ

|f(Hz)|
<

δ

1− δ
< ε.

This proves that (wn) and (wn) satisfy condition (i) in Lemma 3.2.6 for each point

z ∈ G, and hence admit subsequences (wnk) and (wnk) which converge pointwise

to 0 on G. �

Remark 3.2.9 The above result implies that if Ta,w : `p(G/H) −→ `p(G/H) is

hypercyclic for some p ∈ [1,∞), then it is so for all p ∈ [1,∞). As in Remark

3.2.3, if w−1 ∈ `∞(G), Theorem 3.2.8 applies to Sa,w.

Corollary 3.2.10 Let a ∈ G and w ∈ `∞(G) be as in Theorem 3.2.8 for the

homogeneous space G/H. Then Ta,w : `p(G/H) −→ `p(G/H) is hypercyclic if,

and only if, the lift T̃a,w : `p(G) −→ `p(G) is hypercyclic.

Proof. Let H = {e} in Theorem 3.2.8. Then T̃a,w is hypercyclic if, and only if,

the condition (iii) in Theorem 3.2.8 is satisfied. �

Example 3.2.11 The weighted shift with weight sequence (an) studied in [47] is

the weighted convolution operator Sa,w on `2(Z) with H = {0}, a = −1 ∈ Z and

the weight w(n) = a−1
n . By Remark 3.2.9 and Lemma 3.2.6, Sa,w is hypercyclic

if and only if given ε > 0 and q ∈ N, there exists an arbitrarily large n such that

for all |j| ≤ q, we have

n∏
s=1

w(j − s) = wn(j) < ε and
n−1∏
s=0

w(j + s) = wn(j)−1 >
1

ε

which is the condition in Theorem 3.1.8.

In the remaining section, we let p ∈ [1,∞) be fixed, but arbitrary. We now

consider topological mixing for translation operators. Using similar arguments

as in the proof of Theorem 3.2.8, one can also characterise topologically mixing

weighted translation operators on `p(G/H) which extends a result in [25, Theorem

1.2] for `2(Z).
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Proposition 3.2.12 Let Ta,w : Lp(G/H)→ Lp(G/H) be the operator defined in

Proposition 3.2.2. Then condition (ii) below implies (i).

(i) Ta,w is topologically mixing.

(ii) Both sequences (depending on a)

wn :=
n∏
s=1

w ∗ δsa−1 and wn :=

(
n−1∏
s=0

w ∗ δsa

)−1

converge pointwise to 0 λ-a.e. and are uniformly bounded on each non-null

compact subset K of G.

Proof. Using similar arguments as in the proof of Proposition 3.2.2, we have

that T satisfies the hypercyclic criterion for the full sequence which is syndetic.

Therefore we have (ii) implies (i) by Theorem 3.1.5. �

Corollary 3.2.13 The dual T ∗a,w of a weighted translation operator Ta,w : Lp(G/H) −→

Lp(G/H) is topologically mixing if the weight w ∗ δa−1 satisfies condition (ii) for

a−1 in Proposition 3.2.12.

We characterise topologically mixing weighted translation operators on dis-

crete groups.

Theorem 3.2.14 Let G,H, a and w be as in Theorem 3.2.8, and let Ta,w :

`p(G/H) → `p(G/H) be the operator defined in Theorem 3.2.8. Then the fol-

lowing conditions are equivalent.

(i) Ta,w is topologically mixing.

(ii) Both sequences (depending on a)

wn =
n∏
s=1

w ∗ δsa−1 and wn =

(
n−1∏
s=0

w ∗ δsa

)−1

converge to 0 pointwise in G.
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If G is torsion free, then the above conditions are equivalent for all a ∈ G \ {e}.

Proof. We see from Proposition 3.2.12 that condition (ii) implies (i). For the

converse, let ε > 0 and fix z ∈ G with the characteristic function χz ∈ `p(G/H)

as defined in the proof of Theorem 3.2.8. Choose 0 < δ < ε
1+ε

and let U = {f ∈

`p(G/H) : ‖f − χz‖ < δ}. By the topologically mixing assumption, there exists

N ∈ N such that

T na,w(U) ∩ U 6= ∅ (n > N).

We can therefore pick, for each n > N , a function fn ∈ U with T na,wfn ∈ U which

gives

‖fn − χz‖p < δ and ‖T na,wfn − χz‖p < δ.

Using this for each fn and repeating the arguments in the proof of Theorem 3.2.8,

we arrive at

wn(z) < ε and wn(z) < ε

for all n > N , proving that (wn) and (wn) converge to 0 pointwise in G. �

Corollary 3.2.15 Let a ∈ G and w ∈ `∞(G) be as in Theorem 3.2.8 for the

homogeneous space G/H. Then Ta,w : `p(G/H) −→ `p(G/H) is topologically

mixing if, and only if, the lift T̃a,w : `p(G) −→ `p(G) is topologically mixing.

Proof. By Theorem 3.2.14. �

Remark 3.2.16 The weighted translation operator Ta,w above and its dual T ∗a,w

can never be simultaneously topologically mixing since T ∗a,w = Ta−1,w∗δa−1
and for

a−1 ∈ G, the two sequences for the weight w ∗ δa−1 in condition (ii) above are

given by

(w ∗ δa−1)n =
n∏
s=1

(w ∗ δa−1) ∗ δsa = w −1
n

and (w ∗ δa−1)n = w−1
n .

55



Modifying the weight condition and using similar arguments as in the proof

of Theorem 3.2.8, one can also characterise supercyclic weighted translation op-

erators on `p(G/H) which extends a result in [42, Proposition 2.8] for `2(Z).

Proposition 3.2.17 Let Ta,w : Lp(G/H) → Lp(G/H) be the operator defined

in Proposition 3.2.2 and (αn) a sequence of nonzero complex numbers. Then

condition (ii) below implies (i).

(i) Ta,w is supercyclic with respect to (αnk).

(ii) Both sequences (depending on a)

wn := |αn|
n∏
s=1

w ∗ δsa−1 and wn :=

(
|αn|

n−1∏
s=0

w ∗ δsa

)−1

admit respectively subsequences (wnk) and (wnk) which converge pointwise

to 0 λ-a.e. and are uniformly bounded on each non-null compact subset K

of G.

Proof. Using similar arguments as in the proof of Proposition 3.2.2, we have

‖αnkT nka,wf‖p → 0 and ‖ 1
αnk

Snka,wf‖p → 0 for f ∈ Cc(G/H) \ {0}. �

Theorem 3.2.18 Let Ta,w : `p(G/H) → `p(G/H) be the operator defined in

Theorem 3.2.8 and (αn) a sequence of nonzero complex numbers. The following

conditions are equivalent.

(i) Ta,w is supercyclic with respect to (αnk).

(ii) Both sequences (depending on a)

wn = |αn|
n∏
s=1

w ∗ δsa−1 and wn =

(
|αn|

n−1∏
s=0

w ∗ δsa

)−1

admit subsequences (wnk) and (wnk) which converge to 0 pointwise in G.

56



In particular, if G is torsion free, then the above conditions are equivalent for all

a ∈ G \ {e}.

Proof. By Proposition 3.2.17, condition (ii) implies (i). For the converse, let

ε > 0 and fix z ∈ G with the characteristic function χz ∈ `p(G/H) as defined

in the proof of Theorem 3.2.8. Choose 0 < δ < ε
1+ε

. Since Ta,w satisfies the

supercyclic criterion for (αnk), there exist a supercyclic vector f ∈ `p(G/H) and

some m > N such that

‖f − χz‖p < δ and ‖αmTma,wf − χz‖p < δ.

Repeating the arguments in the proof of Theorem 3.2.8, we obtain condition (ii).

�

We now give a sufficient condition for a bilateral weighted shift to be frequently

hypercyclic. Let T : `p(Z)→ `p(Z) be defined by

Tej = ajej+1

and let Sej = 1
aj−1

ej−1, where (ej) is the canonical basis and both (aj) and ( 1
aj

)

are bounded sequences of positive real numbers.

Lemma 3.2.19 Let T, S : `p(Z)→ `p(Z) be bilateral weighted shifts with positive

bounded weight sequences (aj) and ( 1
aj

) respectively. Then T and S are frequently

hypercyclic if given q ∈ N, both series

∑
n≥1

(
n−1∏
s=0

aj+s

)
and

∑
n≥1

(
n∏
s=1

aj−s

)−1

are convergent for all |j| ≤ q.

Proof. Given q ∈ N, consider {ej : −q ≤ j ≤ q}. Then

T nej =

(
n−1∏
s=0

aj+s

)
ej+n, Snej =

(
n∏
s=1

aj−s

)−1

ej−n
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and TSej = STej = ej. These imply that

∑
n≥1

‖T nej‖ =
∑
n≥1

(
n−1∏
s=0

aj+s

)
and ∑

n≥1

‖Snej‖ =
∑
n≥1

(
n∏
s=1

aj−s

)−1

are convergent for all |j| ≤ q. Hence T and S are frequently hypercyclic by The-

orem 3.1.7. �

For weighted translation operators, we have the following result.

Lemma 3.2.20 Let Ta,w : Lp(G/H) → Lp(G/H) be the operator defined in

Proposition 3.2.2. Then condition (ii) below implies (i).

(i) Ta,w is frequently hypercyclic.

(ii) There exist constant C1, C2 and r1, r2 with 0 < r1, r2 < 1 such that both

sequences (depending on a)

wn :=
n∏
s=1

w ∗ δsa−1 < C1r
n
1 and wn :=

(
n−1∏
s=0

w ∗ δsa

)−1

< C2r
n
2

on each non-null compact subset K of G.

Proof. Let f ∈ Cc(G/H) \ {0} with compact support supp f . As in the proof of

Proposition 3.2.2, we have

‖T na,wf‖pp =

∫
HK

|w(xan)w(xan−1) · · · w(xa)|p|f(Hx)|pdλ(x) < (C1r
n
1‖f‖p)p.

Hence
∑

n ‖T na,wf‖p <
∑

nC1r
n
1‖f‖p. Similar arguments using the sequence (wn)

yield
∑

n ‖Sna,wf‖p <
∑

nC2r
n
2‖f‖p. Hence Ta,w satisfies the frequently hyper-

cyclic criterion and therefore is frequently hypercyclic. �
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Finally we conclude with a simple example of a hypercyclic operator I+T on

`2(Z) where T is quasi-nilpotent but not a weighted shift.

Example 3.2.21 Let (un)n∈Z be the canonical basis of `2(Z). Let (an)n∈N be a

positive sequence. Define a linear operator T : `2(Z)→ `2(Z) by

Tu0 = 0, Tun =

 a2n−1u1−n if n ≥ 1

a−2nu−n if n ≤ −1.

Then I +T is hereditarily hypercyclic on `2(Z) and this action may be expressed

as follows:

(I + T )



.

u−2

u−1

u0

u1

u2

.


=



. . . . . . .

. 1 0 0 0 a4 .

. 0 1 0 a2 0 .

. 0 0 1 0 0 .

. 0 0 a1 1 0 .

. 0 a3 0 0 1 .

. . . . . . .





.

u−2

u−1

u0

u1

u2

.


.

In fact, I +T is unitarily equivalent to a hereditarily hypercyclic operator I +S :

`2(N0) −→ `2(N0) where S is a positively weighted shift on `2(N0).

To see this, let (em) be the canonical basis of `2(N0) and h : Z → N0 the

bijection

h(n) =

 2n− 1 if n ≥ 1

−2n if n ≤ 0.

Then h induces a unitary operator U : `2(Z) −→ `2(N0) with U(un) = eh(n). Let

S = UTU−1. Then S is the weighted shift

Se0 = 0, Sem = amem−1 (m ≥ 1)

on `2(N0). By [47, Theorem 3.3], S is hypercyclic. In fact, S is hereditarily

hypercyclic by [9, Corollary 2.9]. It follows that I +T is hereditarily hypercyclic.
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Finally, T is quasi-nilpotent if the sequence (an) decreases to 0. Indeed, let

x = (xj) ∈ `2(Z) and ‖x‖ ≤ 1. Then

‖Skx‖
2
k =

∥∥∥∥∥
∞∑
j=0

xj(S
kej)

∥∥∥∥∥
2
k

=

∥∥∥∥∥
∞∑
j=k

xj(S
kej)

∥∥∥∥∥
2
k

=

∥∥∥∥∥
∞∑
j=k

xj(ajaj−1 · ·aj−(k−1))ej−k

∥∥∥∥∥
2
k

=

(
∞∑
j=k

x2
j(aj−(k−1)aj−(k−2) · ·aj)2

) 1
k

=
(
x2
k(a1a2 · ·ak)2 + x2

k+1(a2a3 · ·ak+1)2 + · · ·
) 1
k

≤ (a1a2 · ·ak)
2
k → 0

since ‖x‖ ≤ 1 and the sequence a1a2 ··ak, a2a3 ··ak+1, a3a4 ··ak+2, ···· is decreasing.

3.3 Rotation and scalar multiples of operators

In this section, we study complex scalar multiples of weighted translation op-

erators and determine when they are hypercyclic, topologically mixing and su-

percyclic. We show that these properties are preserved by rotations (that is, by

multiplication by unit modulus scalars). Moreover, we show that a scalar multi-

ple of a hypercyclic weighted translation operator is supercyclic.

In [38], León-Saavedra and Müller study rotations of hypercyclic operators

and show that if an operator T : X → X is hypercyclic on a Banach space

X, then βT is hypercyclic for |β| = 1. They construct a hypercyclic bilateral

weighted shift T on `2(Z) such that βT is not hypercyclic for all |β| 6= 1. This

gives a negative answer to the following question.
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Question 1: Let T : X → X be a bounded operator on a Banach space X

and β ∈ C. Does T being hypercyclic imply that βT is also hypercyclic?

Recently, Badea, Grivaux and Müller posed the following question in [2] and

gave a negative answer.

Question 2: Let T : X → X be a bounded operator on a Banach space X.

Suppose there are numbers 0 < t1 < t2 such that t1T and t2T are hypercyclic. Is

it true that tT is hypercyclic for every t ∈ [t1, t2]?

We will consider the above questions in the setting of weighted translation

operators. We study complex multiples of weighted translation operators on a

discrete group G. We note that, for βTa,w = Ta,βw to be hypercyclic, we must

have |β| > 1
‖w‖∞ , for otherwise, we have ‖βTa,w‖ ≤ |β|‖w‖∞ ≤ 1.

Since both topologically mixing and hypercyclic operators can be regarded

as special cases of supercyclic operators, we consider supercyclicity first. From

now on, let the weight w ∈ `∞(G) and β ∈ C satisfy ‖w‖∞ > 1 and |β| > 1
‖w‖∞ .

We also let 1 ≤ p < ∞ and (αn) be a sequence of nonzero complex numbers

throughout this section.

Theorem 3.3.1 Given a weighted translation operator Ta,w : `p(G/H)→ `p(G/H),

the following conditions are equivalent.

(i) βTa,w is supercyclic with respect to (αnk).

(ii) Both sequences (depending on a and (αnk) )

wn,β := |αnβn|
n∏
s=1

w ∗ δsa−1 and wn,β :=

(
|αnβn|

n−1∏
s=0

w ∗ δsa

)−1
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admit subsequences (wnk,β) and (wnk,β) which converge to 0 pointwise on G.

Proof. Repeat the same arguments as in the proof of Theorem 3.2.8, replacing

the weight w there by βw. �

Corollary 3.3.2 Let Ta,w : `p(G/H)→ `p(G/H) be a weighted translation oper-

ator and let |β| = 1. Then the following conditions are equivalent.

(i) Ta,w is supercyclic with respect to (αnk).

(ii) βTa,w is supercyclic with respect to (αnk).

Proof. Put |β| = 1 in Theorem 3.3.1. �

Letting αn = 1 in Theorem 3.3.1, we have the following result.

Corollary 3.3.3 Let Ta,w : `p(G/H)→ `p(G/H) be a weighted translation oper-

ator and β ∈ C. Then the following conditions are equivalent.

(i) Ta,w is supercyclic with respect to (βnk) for some increasing sequence (nk)

in N.

(ii) βTa,w is hypercyclic.

(iii) Both sequences (depending on a )

wn,β := |β|n
n∏
s=1

w ∗ δsa−1 and wn,β :=

(
|β|n

n−1∏
s=0

w ∗ δsa

)−1

admit subsequences (wnk,β) and (wnk,β) which converge to 0 pointwise in G.

Corollary 3.3.4 Let Ta,w : `p(G/H) → `p(G/H) be a weighted translation op-

erator, and let |β| = 1 and γ ∈ C \ {0}. Then the following conditions are

equivalent.
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(i) Ta,w is hypercyclic.

(ii) βTa,w is hypercyclic.

(iii) γTa,w is supercyclic with respect to ( 1
γnk

)

Proof. Put |β| = 1 in Corollary 3.3.3 for conditions (i) and (ii), and αn = 1
γn

in

Theorem 3.3.1 for condition (iii). �

Corollary 3.3.5 Let Ta,w : `p(G/H)→ `p(G/H) be a weighted translation oper-

ator and β ∈ C. Then the following conditions are equivalent.

(i) βTa,w is topologically mixing.

(ii) Both sequences (depending on a )

wn,β := |β|n
n∏
s=1

w ∗ δsa−1 and wn,β :=

(
|β|n

n−1∏
s=0

w ∗ δsa

)−1

converge to 0 pointwise in G.

Proof. Repeat the same arguments as in the proof of Theorem 3.2.14. �

Corollary 3.3.6 Let Ta,w : `p(G/H)→ `p(G/H) be a weighted translation oper-

ator and let |β| = 1. Then the following conditions are equivalent.

(i) Ta,w is topologically mixing.

(ii) βTa,w is topologically mixing.

Proof. Put |β| = 1 in Corollary 3.3.5. �

Using the above results, we obtain the following theorem.
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Theorem 3.3.7 Let Ta,w : `p(G/H) → `p(G/H) be a weighted translation oper-

ator.

(i) If |β| = 1, then βTa,w is supercyclic with respect to (αnk) if, and only if,

Ta,w is supercyclic with respect to (αnk).

(ii) If |β| = 1, then βTa,w is hypercyclic (topologically mixing) if, and only if,

Ta,w is hypercyclic (topologically mixing).

(iii) If |β| 6= 1, then βTa,w is hypercyclic if, and only if, Ta,w is supercyclic with

respect to (βnk).

(iv) If |β| 6= 1, then βTa,w is supercyclic with respect to ( 1
βnk

) if, and only if,

Ta,w is hypercyclic.

(v) If Ta,w is hypercyclic, then βTa,w is supercyclic.

Theorem 3.3.8 Let Ta,w : `p(G/H) → `p(G/H) be a weighted translation op-

erator. If β1Ta,w and β2Ta,w are topologically mixing for some β1, β2 satisfying

|β1| < |β2|, then βTa,w is topologically mixing for every |β| ∈ [|β1|, |β2|].

Proof. If β1Ta,w and β2Ta,w are topologically mixing with |β1| < |β| < |β2|, then

wn,β1 < wn,β < wn,β2 and wn,β1 > wn,β > wn,β2

on G in Corollary 3.3.5. This implies βTa,w is topologically mixing for every

|β| ∈ [|β1|, |β2|]. �

It has been shown in [2, Theorem 1.6] that if an operator T is such that

t1T ⊕ t2T is hypercyclic for some 0 < t1 < t2, then tT is hypercyclic for every

t ∈ [t1, t2]. For weighted translation operators, we have the following result.
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Corollary 3.3.9 Let Ta,w : `p(G/H)→ `p(G/H) be a weighted translation oper-

ator and let 0 < β1 < β2. The following conditions are equivalent.

(i) β1Ta,w ⊕ β2Ta,w is hypercyclic.

(ii) For j = 1, 2, both sequences (depending on a )

wn,βj := βnj

n∏
s=1

w ∗ δsa−1 and wn,βj :=

(
βnj

n−1∏
s=0

w ∗ δsa

)−1

admit subsequences (wnk,βj) and (wnk,βj) which converge to 0 pointwise in

G.

Proof. Repeat the similar arguments as in the proof of Theorem 3.2.8. �
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Chapter 4

The discrete Laplacian

In this chapter, we study the Laplacian L on weighted homogeneous graphs. A

weighted homogeneous graph is a homogeneous space of a discrete group G. The

Laplacian L can be viewed as a convolution operator on such a homogeneous

space. Therefore Theorem 2.2.7 enables us to give a full description of the spec-

trum Spec(L) of L on a homogeneous graph in terms of irreducible representations

of the group G. We compare the eigenvalues of L with eigenvalues of the Lapla-

cian on a weighted regular tree, and obtain a Dirichlet eigenvalue comparison

theorem. For a connected homogeneous graph, we characterise its invariance in

terms of group structures and show that all positive L-harmonic functions on an

invariant connected homogeneous graph are constant. A Harnack inequality has

been proved in [23] for the Laplacian L on an invariant unweighted homogeneous

graph. We extend this Harnack inequality for a Schrödinger operator L + ϕ on

an invariant weighted homogeneous graph.

In Section 4.1, we study a homogeneous graph and describe the spectrum

Spec(L). The Dirichlet eigenvalue comparison theorem will be developed in Sec-

tion 4.2. We conclude with some properties of an invariant connected homoge-
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neous graph and a version of Harnack inequality in the last section. Results in

Section 4.1 and Section 4.3 have been published in [13].

4.1 Spectrum of a homogeneous graph

Applying Theorem 2.2.7, we now describe the spectrum Spec(L) of the Laplacian

L on a weighted homogeneous graph under some weight condition.

We denote a graph by (V,E) where V is the set of vertices and E is the

set of edges. In a weighted graph (V,E), finite or infinite, let dv and w : V ×

V −→ [0,∞) denote respectively the degree of a vertex v ∈ V and the weight

w(v, u) = w(u, v), satisfying dv =
∑

(v,u)∈E w(v, u) <∞. The Laplacian L, acting

on real or complex functions f on V , is defined by

Lf(v) = f(v)− 1

dv

∑
u

(v, u) ∈ E

f(u)w(v, u) (v ∈ V ). (4.1)

This follows from that L is represented as ∇∗∇ [30, 50] where the gradient is

given by ∇f(v, u) = f(v) − f(u) for (v, u) ∈ E. By 〈Lf, g〉dv = 〈∇f,∇g〉w with

a simple computation, we have∑
v∈V

Lf(v)g(v) dv =
∑
v∈V

∑
(v,u)∈E

(f(v)− f(u))g(v) w(v, u)

which implies (4.1).

An important problem in spectral geometry is the estimation of the spectrum

Spec(L) of L. Many results concerning Spec(L) have appeared in the literature

[21, 22, 40, 41, 48, 51]. We refer to [21] for a survey and results for finite graphs.

Let (V,E) have n vertices with weight w ≡ 1. Then the eigenvalues of L are
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arranged as follows [21]:

λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ 2.

If (V,E) is also connected, then λ1 > 0 and λ1 > 1 −
√

1− h2 where h is the

Cheeger constant of the graph [21]. Moreover, we have the so-called Cheeger

inequality h2

2
< λ1 ≤ 2h [21]. We note that the connection between a finite ho-

mogeneous graph Laplacian and group representations has been discussed in [21]

and [22]. Our result involves convolution operators and applies to infinite graphs

as well.

We call (V,E) a homogeneous graph (cf. [21]), if the vertex set V is a homo-

geneous space of a discrete group G with a graph condition, by which we mean

G acts transitively on V by a right action (v, g) ∈ V × G 7→ vg ∈ V so that V

is represented as a right coset space G/H of G by a finite subgroup H and the

edge set E is described by a finite subset K = K−1 ⊂ G in that (v, u) ∈ E if,

and only if, u = va for some a ∈ K. Henceforth we denote a homogeneous graph

by (V,K), with the edge generating set K having finite cardinality |K| . We note

that (V,K) is a Cayley graph if H reduces to the identity of G, in which case we

write (G,K) for the graph.

For a simple example, the cycle Cn on n vertices can be viewed as a homo-

geneous graph with vertex set V = Z/nZ. In fact, Cn is a Cayley graph since

Z/nZ = Zn is a group. Although one can consider a more general notion of a

homogeneous graph (G/H,K) in which the isotropy subgroup H can be infinite,

we only consider this case in the other two sections of this chapter. We refer to

[21, 22, 23] for some interesting examples of homogeneous graphs.
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The Laplacian for a weighted homogeneous graph (V,K) can be written as

Lf(v) = f(v)− 1

|K|
∑
a∈K

f(va)w(v, va)

=
1

|K|
∑
a∈K

(f(v)− f(va))w(v, va) (v ∈ V ) (4.2)

where
∑

a∈K w(v, va) = |K|. We describe the spectrum of L completely in terms

of irreducible representations of G when the weight w is given by a measure µ

on G which is symmetric (cf. Section 2.1, p.16) and constant on each set xHy

(x, y ∈ G).

Let (V,K) be a homogeneous graph with V = G/H and let µ be a positive

symmetric measure on G, supported by K (i.e.
∑

a∈K µ(a) = |K|), satisfying

µ(xcy) = µ(xy) (x, y ∈ G, c ∈ H).

We can define a weight w on V × V by

w(Hx,Hy) = µ(x−1y) = µ(y−1x).

In this case and in the sequel, w(v, va) = µ(a) and the Laplacian has the form

(Lf)(v) = f(v)− 1

|K|
∑
a∈K

f(va)µ(a) = f ∗
(
δe −

µ

|K|

)
(v) (4.3)

which is a convolution operator Tσ : `2(G/H) −→ `2(G/H) with σ = δe− µ/|K|,

where µ/|K| is a probability measure. Since µ =
∑

a∈K µ(a)δa and δ̂a(π) = π(a−1)

for each π ∈ Ĝ, we have the following description of the spectrum Spec(L) by

Theorem 2.2.7.

Corollary 4.1.1 Let (V,K) be a homogeneous graph with V = G/H and weight

w given by a measure µ as above. The spectrum of the Laplacian in (4.3) is given

by

Spec(L) = 1−
⋃{

Spec

(∑
a∈K

µ(a)|K|−1π(a)

)
: π ∈ Ĝr, kerπ ⊃ ker ρ

H

}
.
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Remark 4.1.2 In [22], a Laplacian acting on vector valued functions f : G/H −→

X has been considered and the resulting spectrum is called the vibrational spec-

trum. For the vector space X of n × n matrices, the spectrum of a convolution

operator acting on X-valued functions on a group G has been described in [19],

which yields the vibrational spectrum of a Cayley graph (G,K) in this case.

Let `2(V ) be the complex Hilbert space of square integrable functions with

respect to the normalized discrete measure on V , with the inner product:

〈f, g〉 =
∑
v∈V

f(v)g(v).

We note that 〈f, g〉 = 〈g, f〉 if f and g are real-valued, and L : `2(V ) −→ `2(V )

is a self-adjoint operator:

〈Lh, g〉 − 〈h,Lg〉

=
1

2|K|
∑
v∈V

∑
a∈K

(
h(v)g(v)− h(va)g(v) + h(va)g(va)− h(v)g(va)

)
µ(a)

− 1

2|K|
∑
v∈V

∑
a∈K

(
h(v)g(v)− h(v)g(va) + h(va)g(va)− h(va)g(v)

)
µ(a)

= 0.

In fact, L is a positive operator since the inner product

〈Lf, f〉 =
1

2|K|
∑
v∈V

∑
a∈K

|f(v)− f(va)|2µ(a) (f ∈ `2(V )) (4.4)

is nonnegative. Hence we always have Spec(L) ⊂ [0, 2] as ‖L‖ ≤ ‖δe − µ
|K|‖ ≤ 2.

Example 4.1.3 Let G = Z with K = {−1, 1}. Consider the Cayley graph

(Z, {−1, 1}). Let µ be the following measure on Z supported by {−1, 1}: µ =

δ1 + δ−1. Then

Lf(n) = f(n)− 1

2
f(n− 1)− 1

2
f(n+ 1)
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for n ∈ Z and f : Z→ R. Since Z is abelian and Ẑ = T, we have

δ̂1(α) =

∫
Z
α(x−1)dδ1(x) =

∑
n∈Z

α−nδ1{n} = α−1

and δ̂−1(α) =
∑
n∈Z

α−nδ−1{n} = α (α ∈ T).

Hence

Spec(L) =

{
1− 1

2
α− 1

2
α−1 : α ∈ T

}
= {1− cos θ : θ ∈ R} = [0, 2].

If we consider the Cayley graph (Z, {0,±1}) where loops are allowed and let

µ = 1
2
δ1 + 1

2
δ−1 + 2δ0, then

Lf(n) = f(n)− 1

6
f(n− 1)− 1

6
f(n+ 1)− 2

3
f(n).

Therefore

Spec(L) =

{
1− 1

6
α− 1

6
α−1 − 2

3
: α ∈ T

}
=

{
1

3
− 1

3
cos θ : θ ∈ R

}
=

[
0,

2

3

]
.

Example 4.1.4 Let V = Z2/(nZ×mZ) with a finite generating set K = −K ⊂

Z2. The character group Ẑ2 is the product T×T of two copies of the circle group

T. Each π ∈ Ẑ2 identifies with (π(1, 0), π(0, 1)) ∈ T× T, and π(nZ×mZ) = {1}

if, and only if, π = (e2πik/n, e2πi`/m) for (k, `) ∈ {0, . . . , n − 1} × {0, . . . ,m − 1}.

For such π, we have

π(a, b) = e2πi(ka/n+`b/m) ((a, b) ∈ K).

Hence

Spec(L) =

1−

 ∑
(a,b)∈K

µ(a, b)

|K|
cos 2π(ka/n+ `b/m)

 : (k, `) ∈ Zn × Zm

 .
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Example 4.1.5 Let G be the discrete Heisenberg group


1 m p

0 1 n

0 0 1

 : m,n, p ∈ Z


which is non-abelian. The characters of G are known (cf. [3, 31, 49]). Let R/Z

be the real numbers mod Z and denote an element of G by (m,n, p). As in [49],

Ĝr contains, among others, the one-dimensional unitary representations

{χα,β : α, β ∈ R/Z}

where

χα,β(m,n, p) = e2πi(αm+βn).

Consider the Cayley graph (G,K) with K = {(±m, 0, 0), (0,±n, 0)} and

m,n 6= 0. Let µ be the following measure on G supported by K:

µ =
1

2
δ(m,0,0) +

1

2
δ(−m,0,0) +

3

2
δ(0,n,0) +

3

2
δ(0,−n,0).

We have

Spec(L) = 1−
⋃
π∈Ĝr

Spec

(
1

4

∑
a∈K

µ(a)π(a)

)

⊃ 1−
⋃{

1

4

∑
a∈K

µ(a)χα,β(a) : α, β ∈ R/Z

}

=

{
1−

(
1

4
cos(2παm) +

3

4
cos(2πβn)

)
: α, β ∈ R/Z

}
= [0, 2].

It follows that Spec(L) = [0, 2].

4.2 Eigenvalue comparison theorems

In [50], Urakawa gave a graph theoretic analogue of Cheng’s eigenvalue com-

parison theorems for the Laplacian of complete Riemannian manifolds [16, 17].
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Urakawa compared eigenvalues of the Laplacian on unweighted connected graphs

with eigenvalues of the Laplacian on unweighted regular trees. In this section,

we extend Urakawa’s results to comparison of weighted connected homogeneous

graphs with weighted regular trees.

From now on, a graph may be finite or infinite. Let (V,K) be a connected

homogeneous graph with weight µ as defined in Section 4.1. In the remaining

chapter, the Laplacian L on (V,K) is defined by

Lf(v) = f(v)− 1

|K|
∑
a∈K

f(va)µ(a) (v ∈ V ) (4.5)

where K is the generating set with finite cardinality |K| and 0 < µ(a) = µ(a−1)

satisfying |K| =
∑

a∈K µ(a) <∞.

Lemma 4.2.1 Suppose that v ∈ V satisfies Lf(v) ≥ 0 and f(va) ≥ f(v) for all

a ∈ K. Then f(va) = f(v) for all a ∈ K.

Proof. Considering Lf(v) ≥ 0, we have

|K|f(v) ≥
∑
a∈K

f(va)µ(a).

This implies

0 ≥
∑
a∈K

(f(va)− f(v))µ(a) ≥ 0.

Hence f(v) = f(va) for all a ∈ K. �

Let dist(u, v) be the distance between two vertices u and v, i.e. the number

of edges in a shortest path in V connecting u and v. We denote by B(v0, R) the

(open) ball centred at v0 ∈ V , with radius 0 < R <∞, where

B(v0, R) = {v ∈ V : dist(v0, v) < R}.
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The boundary of B(v0, R) is denoted by

δB(v0, R) = {v ∈ V \B(v0, R) : v is adjacent to some u ∈ B(v0, R)}

= {v ∈ V : dist(v0, v) = R}.

We consider the space `2(B(v0, R)) and the Dirichlet problem on B(v0, R):

(∗)

 Lf(v) = λf(v) on B(v0, R)

f(v) = 0 on δB(v0, R)

for functions f : B(v0, R)∪ δB(v0, R)→ R, where λ ∈ [0, 2]. By a slight abuse of

notation, we denote

D∗ = {g ∈ `2(B(v0, R)) \ {0} : g(v) = 0 ∀v ∈ δB(v0, R)}.

We note that the Dirichlet problem has eigenvalues arranged as follows [21,

p.128]:

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ≤ 2

where n = |B(v0, R)| = dim `2(B(v0, R)), the cardinality of B(v0, R). Indeed, 0

is not an eigenvalue. To see this, let f ∈ D∗ satisfy Lf = 0. Then, by (4.4),

0 = 〈Lf, f〉 =
1

2|K|
∑

v∈B(v0,R)

∑
a∈K

(f(v)− f(va))2µ(a)

which implies that f(v) = f(va) for all v ∈ B(v0, R) and a ∈ K. Hence f(v) = 0

for all v ∈ B(v0, R) ∪ δB(v0, R) by connectedness and the boundary condition.

For the first eigenvalue λ1 and its eigenfunction, called the first eigenfunction

of (∗), we have the following properties (cf. [30, Lemma 1.9]).

Lemma 4.2.2 Let λ1 be the first eigenvalue of (∗). Then λ1 is simple, and there

is a positive first eigenfunction of (∗).
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Proof. Let f ∈ D∗ be a first eigenfunction of (∗). Then

λ1 = inf
g∈D∗

〈Lg, g〉
〈g, g〉

≤ 〈L|f |, |f |〉
〈|f |, |f |〉

since L = L∗ and |f | ∈ D∗. Suppose f takes both positive and negative values

in B(v0, R). Then

〈Lf, f〉 =
1

2|K|
∑

v∈B(v0,R)

∑
a∈K

(f(v)− f(va))2µ(a)

>
1

2|K|
∑

v∈B(v0,R)

∑
a∈K

(|f(v)| − |f(va)|)2µ(a)

= 〈L|f |, |f |〉.

With 〈f, f〉 = 〈|f |, |f |〉, this implies

λ1 =
〈Lf, f〉
〈f, f〉

>
〈L|f |, |f |〉
〈|f |, |f |〉

which is contradiction. By Lemma 4.2.1 and connectedness, f(v) 6= 0 for all

v ∈ B(v0, R). Hence either f(v) > 0 for all v ∈ B(v0, R) or f(v) < 0 for all

v ∈ B(v0, R). Now suppose λ1 is not simple. Let f1, f2 be two linearly indepen-

dent positive first eigenfunctions of (∗) and choose a vertex v ∈ B(v0, R). Then

there exists (c1, c2) 6= (0, 0) such that c1f1 + c2f2 is a first eigenfunction vanishing

on v which is impossible. Hence λ1 is a simple eigenvalue. �

We now prove a weighted version of the discrete Barta theorem in [50, Theo-

rem 2.1].

Theorem 4.2.3 Let λ1 be the first eigenvalue of (∗). If g > 0 on B(v0, R) and

g = 0 on δB(v0, R), then

inf
v∈B(v0,R)

Lg(v)

g(v)
≤ λ1 ≤ sup

v∈B(v0,R)

Lg(v)

g(v)
.
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Proof. Let f be a positive first eigenfunction of (∗) and set h = f − g. Then

λ1 =
Lf
f

=
L(g + h)

g + h

=
Lg
g

+
g(Lh)− h(Lg)

g(g + h)
.

Since both g and Lh are real-valued, we have∑
v∈B(v0,R)

(g(v)Lh(v)− h(v)Lg(v)) = 〈g,Lh〉 − 〈h,Lg〉 = 0

which implies either g(Lh)−h(Lg) = 0 or g(Lh)−h(Lg) changes sign. The former

implies λ1 = Lg(v)
g(v)

. In the latter case, the sign is negative at some v ∈ B(v0, R),

so

λ1 <
Lg(v)

g(v)
≤ sup

B(v0,R)

Lg
g
.

The sign is positive at some u ∈ B(v0, R), so

inf
B(v0,R)

Lg
g
≤ Lg(u)

g(u)
< λ1.

�

We recall that a connected graph without cycle is called a tree, and a regular

tree with degree d is a tree which has d edges at each vertex. Let Td be a regular

tree with degree d and weight w. The Laplacian ∆ on Td is defined by

∆f(x) = f(x)− 1

d

∑
y

y ∼ x

f(y)w(x, y) (x ∈ Td)

where 0 ≤ w(x, y) = w(y, x) and for all x ∈ V ,
∑

(x,y)∈E w(x, y) = d.
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Let B(x0, R) = {x ∈ Td : dist(x0, x) < R} be the ball centred at x0 ∈ Td with

finite radius R > 0. We consider the Dirichlet problem on B(x0, R):

(∗∗)

 ∆f(x) = νf(x) on B(x0, R)

f(x) = 0 on δB(x0, R),

where ν ∈ [0, 2], for functions f : B(x0, R) ∪ δB(x0, R) → R. Since B(x0, R) is

finite, this problem has eigenvalues arranged as follows:

0 < ν1 ≤ ν2 ≤ ν3 ≤ · · · ≤ νm

where m = |B(x0, R)|, the cardinality of B(x0, R). Let x0 ∈ Td be fixed. For

each x ∈ Td, we define r(x) = dist(x0, x). As in the Dirichlet problem (∗) for

homogeneous graphs, we can always find a positive first eigenfunction for (∗∗).

We have the following property for a first eigenfunction of (∗∗) (cf. [50, Lemma

3.1]).

Lemma 4.2.4 There is a positive first eigenfunction f of (∗∗) such that f(x) =

f(y) whenever r(x) = r(y). Therefore, we may put f(r) = f(x) whenever r =

r(x), in which case f(r) is monotone decreasing in r.

Proof. Let g be a positive first eigenfunction of (∗∗). Define f : B(x0, R)→ R by

f(x) =

∑
z∈B(x0,r(x)+1)\B(x0,r(x)) g(z)

|B(x0, r(x) + 1) \B(x0, r(x))|
.

Then f is also a positive first eigenfunction of (∗∗) since g satisfies (∗∗) for ν1

which implies ∆f = ν1f . Moreover, if r(x) = r(y), then f(x) = f(y). Now put

f(r) = f(x) whenever r = r(x). Then for r(x) = 0,

0 ≤ ν1f(0) = ∆f(0) = f(0)− f(1)

which implies f(1) ≤ f(0). Assume f(t) ≤ f(t − 1) for r(x) = t. We show

f(t+ 1) ≤ f(t). Otherwise, we have f(t+ 1) > f(t). With

ν1f(t) = ∆f(t) = f(t)− 1

d

 ∑
r(y)=t−1

f(t− 1)w(x, y) +
∑

r(y)=t+1

f(t+ 1)w(x, y)

 ,
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we have

−dν1f(t) + df(t) =
∑

r(y)=t−1

f(t− 1)w(x, y) +
∑

r(y)=t+1

f(t+ 1)w(x, y) > df(t).

Then f(t) < 0 which gives a contradiction. �

As in [50, Lemma 3.4], we consider the following two conditions for our

weighted graphs.

Lemma 4.2.5 Let (V,K) be a connected homogeneous graph with weight µ and

Td a regular tree with weight w. Fix v0 ∈ V and x0 ∈ Td. Let r1(v) = dist(v0, v)

and r2(x) = dist(x0, x) for v ∈ V and x ∈ Td.

(i) If

(condition A) inf
v ∈ B(v0, R)

r1(v) = t

∑
r1(va)=t−1 µ(a)

|K|
≥
∑

r2(y)=t−1w(x, y)

d

for all x ∈ B(x0, R) with r2(x) = t, then∑
r1(va)=t+1 µ(a)

|K|
≤
∑

r2(y)=t+1w(x, y)

d
(v ∈ B(v0, R), x ∈ B(x0, R))

for r1(v) = r2(x) = t.

(ii) If

(condition B) (V,K) is a tree and sup
v ∈ B(v0, R)

r1(v) = t

∑
r1(va)=t−1 µ(a)

|K|
≤
∑

r2(y)=t−1w(x, y)

d

for all x ∈ B(x0, R) with r2(x) = t, then∑
r1(va)=t+1 µ(a)

|K|
≥
∑

r2(y)=t+1w(x, y)

d
(v ∈ B(v0, R), x ∈ B(x0, R))

for r1(v) = r2(x) = t.
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Proof. (i) Note that
∑

r2(y)=tw(x, y) = 0 as there does not exist y ∈ B(x0, R)

with r2(y) = t. Since |K| =
∑

a∈K µ(a) and d =
∑

y w(x, y), we have∑
r1(va)=t+1 µ(a)

|K|
=
|K| −

∑
r1(va)=t−1 µ(a)−

∑
r1(va)=t µ(a)

|K|

≤ 1−
∑

r1(va)=t−1 µ(a)

|K|
≤ 1− inf

v ∈ B(v0, R)

r1(v) = t

∑
r1(va)=t−1 µ(a)

|K|

≤ 1−
∑

r2(y)=t−1w(x, y)

d
=

∑
r2(y)=t+1 w(x, y)

d
.

(ii) If (V,K) is a tree, then
∑

r1(va)=t µ(a) = 0 as before. Hence∑
r1(va)=t+1 µ(a)

|K|
=
|K| −

∑
r1(va)=t−1 µ(a)−

∑
r1(va)=t µ(a)

|K|

= 1−
∑

r1(va)=t−1 µ(a)

|K|
≥ 1− sup

v ∈ B(v0, R)

r1(v) = t

∑
r1(va)=t−1 µ(a)

|K|

≥ 1−
∑

r2(y)=t−1w(x, y)

d
=

∑
r2(y)=t+1w(x, y)

d
.

�

Remark 4.2.6 For unweighted graphs, we have µ = w ≡ 1, and condition

A reduces to m−(v)
|K| ≥

1
d

for all v ∈ B(v0, R) where m−(v) = |{va : r1(va) =

r1(v)− 1}|. Also condition B reduces to m−(v)
|K| ≤

1
d

for all v ∈ B(v0, R), and the

above result is identical with Urakawa’s result in [50, Lemma 3.4].

Now we are ready to prove a Dirichlet eigenvalue comparison theorem for

weighted graphs which extends [50, Theorem 3.3].

Theorem 4.2.7 Let (V,K) be a connected homogeneous graph with weight µ

and Td a regular tree with weight w. Choose v0 ∈ V and x0 ∈ Td. Then the first
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Dirichlet eigenvalues of (∗) and (∗∗) are related as follows:

(i) condition A implies

λ1(B(v0, R)) ≤ ν1(B(x0, R));

(ii) condition B implies

λ1(B(v0, R)) ≥ ν1(B(x0, R)).

Proof. Fix v0 ∈ V and x0 ∈ Td. Write r1(v) = dist(v0, v) for v ∈ V and

r2(x) = dist(x0, x) for x ∈ Td. Let f be a positive first eigenfunction of (∗∗).

Define f(r) = f(v) for r = r1(v) and v ∈ B(v0, R). By Theorem 4.2.3, we have

inf
B(v0,R)

Lf
f
≤ λ1 ≤ sup

B(v0,R)

Lf
f
.

For v ∈ B(v0, R) with t = r1(v) = r2(x) < R for some x ∈ B(x0, R), we have, by

(∗),

Lf(v) = f(v)− 1

|K|
∑
a∈K

f(va)µ(a)

= f(t)− 1

|K|

 ∑
r1(va)=t

µ(a)f(t) +
∑

r1(va)=t−1

µ(a)f(t− 1) +
∑

r1(va)=t+1

µ(a)f(t+ 1)


=

∑
r1(va)=t−1 µ(a)

|K|
(f(t)− f(t− 1)) +

∑
r1(va)=t+1 µ(a)

|K|
(f(t)− f(t+ 1)).

By (∗∗), we have

∆f(x) = f(x)− 1

d

∑
y

y ∼ x

f(y)w(x, y)

= f(t)− 1

d

 ∑
r2(y)=t−1

w(x, y)f(t− 1) +
∑

r2(y)=t+1

w(x, y)f(t+ 1)


=

∑
r2(y)=t−1w(x, y)

d
(f(t)− f(t− 1)) +

∑
r2(y)=t+1w(x, y)

d
(f(t)− f(t+ 1)).
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This implies

Lf(v)−∆f(x) =

(∑
r1(va)=t−1 µ(a)

|K|
−
∑

r2(y)=t−1w(x, y)

d

)
(f(t)− (t− 1))

+

(∑
r1(va)=t+1 µ(a)

|K|
−
∑

r2(y)=t+1w(x, y)

d

)
(f(t)− (t+ 1)).

Moreover we have

Lf(v0) = f(0)− f(1) = ∆f(x0)

since r1(v0) = r2(x0) = 0,
∑

r1(voa)=1 µ(a) = |K| and
∑

r2(y)=1w(x0, y) = d.

(i) If condition A holds, we have Lf(v) ≤ ∆f(x) by Lemma 4.2.4 and Lemma

4.2.5. This implies

λ1 ≤ sup
B(v0,R)

Lf
f
≤ sup

B(x0,R)

∆f

f
= ν1.

(ii) If condition B holds, we have Lf(v) ≥ ∆f(x) by Lemma 4.2.4 and Lemma

4.2.5. This implies

λ1 ≥ inf
B(v0,R)

Lf
f
≥ inf

B(x0,R)

∆f

f
= ν1.

�

Using Theorem 4.2.7, we can estimate the bottom of the spectrum of the

discrete Laplacian L for an infinite weighted connected homogeneous graph (V,K)

(cf. [50, Corollary 3.11]). Let

λ0(V,K) = inf Spec(L)

be the bottom of the spectrum. It is known in [50] that

λ0(V,K) = lim
R→∞

λ1(B(v0, R)).

Similarly, we write

ν0(Td) = inf Spec(∆)
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for the bottom of the spectrum of the discrete Laplacian ∆ on an infinite weighted

regular tree Td with weight w.

Corollary 4.2.8 Let (V,K) be an infinite connected homogeneous graph with

weight µ and Td an infinite regular tree with weight w.

(i) If condition A holds for all R > 0, then

λ0(V,K) ≤ ν0(Td).

(ii) If condition B holds for all R > 0, then

λ0(V,K) ≥ ν0(Td).

Proof. By Theorem 4.2.7. �

Remark 4.2.9 If w ≡ 1 in Corollary 4.2.8, we have ν0(Td) = 1 − 2
√
d−1
d

by [40,

p.225], which gives λ0(V,K) ≤ 1− 2
√
d−1
d

in (i); but the reverse inequality in (ii).

As another application of Theorem 4.2.7, one can obtain some estimates of

the spectrum of L for an infinite weighted connected homogeneous graph (V,K)

(cf. [50, Theorem 5.2]).

Corollary 4.2.10 Let (V,K) be an infinite connected homogeneous graph with

weight µ and Td an infinite regular tree with weight w. If condition B holds for

all R > 0, then

Spec(L) ⊂ [ν0(Td), 2− ν0(Td)].

In particular, if w ≡ 1, then

Spec(L) ⊂
[
1− 2

√
d− 1

d
, 1 +

2
√
d− 1

d

]
.
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Proof. Since a tree is bipartite, we have, by [50],

Spec(∆) = [ν0(Td), 2− ν0(Td)].

In condition B, (V,K) is also a tree and so by [50] again, we have

Spec(L) = [λ0(V,K), 2− λ0(V,K)].

Hence

Spec(L) ⊂ [ν0(Td), 2− ν0(Td)]

by Corollary 4.2.8 (ii). �

4.3 Harnack inequality

We begin this section by showing the relationship between certain graph invari-

ance and group structures. We then prove a version of the Harnack inequality

for an invariant homogeneous graph.

In the sequel, we do not assume that the isotropy group H is finite in a homo-

geneous graph (G/H,K), instead we assume that G acts as graph automorphisms

of G/H, that is, two vertices Hx and Hy are adjacent if, and only, if Hxg and

Hyg are adjacent for all g ∈ G. A homogeneous graph (V,K) is called invariant

in [23] if the edge generating set K satisfies aK = Ka for each a ∈ K. This

condition imposes some structure on the group G acting on V . It turns out that

a connected Cayley graph (G,K) is invariant (for some edge generating set K)

if, and only if, G is an [IN0 ]-group as defined in [20]. A locally compact group

G is called an [IN0 ]-group if G =
⋃∞
n=1C

n for some compact neighbourhood C of

the identity satisfying gC = Cg for each g ∈ G.
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Proposition 4.3.1 Let V = G/H be a homogeneous space of a discrete group

G. The following conditions are equivalent.

(i) (V,K) is a connected invariant homogeneous graph for some finite set K ⊂

G.

(ii) G =
⋃∞
n=0HK

n with K0 = {e} for some finite set K = K−1 satisfying

aK = Ka and HgK = HKg for a ∈ K and g ∈ G.

In particular, (G,K) is a connected invariant Cayley graph for some finite set

K ⊂ G if, and only if, G is an [IN0 ]-group.

Proof. (i) =⇒ (ii). Denote by v ∼ u the adjacency of two points in V . We

first show G =
⋃∞
n=0 HK

n. Let g ∈ G and g 6∈ H. Then Hg 6= H. Since V is

connected, we have Hg ∼ Hg1 ∼ · · · ∼ Hgn ∼ H for some g1, . . . , gn ∈ G, and

hence Hg = (Hg1)a1 = (Hg2)a2a1 = · · · = (Hgn)an · · ·a1 = Han+1an · · ·a1 where

a1, . . . , an+1 ∈ K. So g ∈ HKn+1. This proves G = H ∪HK ∪HK2 ∪ · · ·.

Next, let a ∈ K and g ∈ G. Then H ∼ Ha which implies Hg ∼ Hag since

G acts on V as automorphisms of V . Hence Hag = Hga1 for some a1 ∈ K,

and we have HKg ⊂ HgK. Similarly, HgK ⊂ HKg using Hg ∼ Hga implies

H ∼ Hgag−1.

(ii) =⇒ (i). Define adjacency ∼ in V by K. Given v ∼ u in V with u = va

for some a ∈ K, we have, for each g ∈ G, that ug = vag = vga′ for some a′ ∈ K,

that is, ug ∼ vg. Hence (V,K) is a homogeneous graph which is clearly invariant

and connected.

Finally, if (G,K) is an invariant connected Cayley graph, then C = K ∪ {e}

is an invariant neighbourhood of the identity by (ii) and G =
⋃∞
n=1C

n is an

[IN0 ]-group.

Conversely, if G is an [IN0 ]-group with G =
⋃∞
n=1 C

n, then (G,K) is a con-

nected invariant graph with K = C ∪ C−1. �
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We note that the product O(n)×R of the orthogonal group O(n) and the ad-

ditive group R is an [IN0]-group [20]. Evidently, a homogeneous graph (G/H,K)

is invariant if G is abelian or K is a subgroup of G. We refer to [21] for more

examples of invariant homogeneous graphs.

Let L be the Laplacian on an invariant weighted homogeneous graph (V,K)

as defined in (4.5). We now prove that the positive L-harmonic functions on

(V,K), that is, the positive 0-eigenfunctions of L, are constant. Let V = G/H

and let q : G→ G/H be the quotient map. Let C = K∪{e} which is an invariant

neighbourhood of e ∈ G. The discrete subgroup

G0 =
∞⋃
n=1

Cn ⊂ G

is an [IN0 ]-group. The measure µ/|K| in the Laplacian L has support K ⊂ G0

and restricts to a probability measure µ0 on G0. A real function h on G0 is called

µ0-harmonic if h = h ∗ µ0. Given an L-harmonic function f : V −→ R, the

equation Lf = 0 gives

f(Hx) =

(
f ∗ µ

|K|

)
(Hx) =

∫
G

f(Hxy−1)
dµ

|K|
(y) =

∫
G0

f(Hxy−1)dµ0(y)

and hence f ◦ q restricts to a µ0-harmonic function on G0.

A function ϕ : G0 −→ (0,∞) is called exponential if ϕ(xy) = ϕ(x)ϕ(y) for all

x, y ∈ G0 (cf. [20]).

Proposition 4.3.2 Let (V,K) be a connected invariant homogeneous graph with

Laplacian L given by (4.5). Then all positive L-harmonic functions on V are

constant.
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Proof. Let f be a positive function on V = G/H satisfying Lf = 0. By the

above remark, the quotient map q : G → G/H lifts f to a positive µ0-harmonic

function f ◦ q on G0. Since G0 is an [IN0 ]-group and the support of µ0 generates

G0, it follows from [20, Theorem 9] that f ◦ q|G0 is an integral

f ◦ q(x) =

∫
E
h(x)dP (h) (x ∈ G0)

of (constant multiples of) exponential functions with respect to a probability mea-

sure P on E , where E consists of constant multiples αϕ of exponential functions

ϕ on G0 satisfying ∫
G0

ϕ(x−1)dµ0(x) = 1.

We show that ϕ = 1 for all such ϕ. Indeed, if ϕ(a) 6= 1 for some a ∈ K, then

ϕ(a)+ϕ(a−1) = ϕ(a)+ϕ(a)−1 > 2 and 1 =
∫
G0
ϕ(x−1)dµ0(x) =

∑
b∈K ϕ(b)µ(b)/|K|

implies

|K| = ϕ(a)µ(a) + ϕ(a)−1µ(a) +
∑

b∈K\{a,a−1}

ϕ(b)µ(b)

> 2µ(a) +
∑

b∈K\{a,a−1}

ϕ(b)µ(b)

≥
∑
b∈K

µ(b) = |K|

which is impossible. Hence ϕ = 1 on C = K ∪ {e} and therefore, on
⋃∞
n=1C

n =

G0.

It follows that f ◦q is constant on G0. Since G =
⋃∞
n=1 HC

n by connectedness

of the graph and Proposition 4.3.1, we have f(Hx) = f(H) for all x ∈ G. �

A Harnack inequality for eigenfunctions of the Laplacian on a finite un-

weighted invariant homogeneous graph has been shown in [23]. This inequality

can be proved similarly for the Laplacian in (4.5) for weighted graphs. We will

extend the idea in [23] to deduce a version of Harnack inequality for a Schrödinger
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operator L+ ϕ.

Let (V,K) be a weighted invariant homogeneous graph in which the weight is

given by a symmetric measure µ satisfying

µ(a) = µ(bab−1) > 0 (a, b ∈ K). (4.6)

Let wa = µ(a)/|K| for a ∈ K so that the Laplacian in (4.5) is written

Lf(v) =
∑
a∈K

wa(f(v)− f(va)). (4.7)

Chung and Yau [23] have proved a Harnack inequality for eigenfunctions of L

on unweighted (V,K) where µ(a) = 1 for all a ∈ K. By Proposition 4.3.2, the

positive eigenfunctions of L corresponding to the eigenvalue λ = 0 are constant.

By [18, Corollary 3.14], the `p-eigenfunctions of L for λ = 0 and 1 ≤ p < ∞

are also constant. Extending the idea in [23], we consider below eigenfunctions

corresponding to eigenvalues λ > 0 for a Schrödinger operator L + ϕ which is a

positive operator on the Hilbert space `2(V ) if ϕ ≥ 0, but may be unbounded if

V is infinite.

We note that if K is a subgroup of G in an invariant homogeneous graph

(V,K), then V is a disjoint union of connected components: V =
⋃
v∈V0

vK for

some set of vertices V0. The vertex set S of any union of these components

satisfies SK ⊂ S.

Theorem 4.3.3 Let (V,K) be an invariant homogeneous graph. Let ϕ ≥ 0 be a

function on V and let f be a real function on V satisfying

Lf + ϕf = λf (λ > 0). (4.8)

Then on any finite subgraph with vertex set S satisfying SK ⊂ S, we have∑
a∈K

wa[f(v)− f(va)]2 + αλf 2(v) ≤
(
α2λ

α− 2
+

4

(α− 2)λ
sup
S
ϕ

)
sup
S
f 2
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for v ∈ S and α > 2. In particular, the inequality holds for all v ∈ V if V is

finite, with S = V .

Proof. We extend the arguments in [23] and include the details for later reference.

Define

ρ(v) =
∑
a∈K

wa[f(v)− f(va)]2 (v ∈ S)

and let L act on the functions ρ and f 2. First consider

Lρ(v) =
∑
b∈K

wb
∑
a∈K

wa
(
[f(v)− f(va)]2 − [f(vb)− f(vba)]2

)
= −

∑
b∈K

wb
∑
a∈K

wa[f(v)− f(va)− f(vb) + f(vba)]2

+ 2
∑
b∈K

wb
∑
a∈K

wa[f(v)− f(va)− f(vb) + f(vba)][f(v)− f(va)].

Let X denote the second term above. We have

X = 2
∑
b∈K

wb
∑
a∈K

wa[f(v)− f(va)− f(vb) + f(vba)][f(v)− f(va)]

= 2
∑
a∈K

wa

(∑
b∈K

wb[f(v)− f(va)− f(vb) + f(vab)]

)
[f(v)− f(va)]

+ 2
∑
a∈K

wa

(∑
b∈K

wb[f(vba)− f(vab)]

)
[f(v)− f(va)]

= 2λ
∑
a∈K

wa[f(v)− f(va)]2 + 2
∑
a∈K

wa[ϕ(va)f(va)− ϕ(v)f(v)][f(v)− f(va)]

where ∑
b∈K

wb[f(v)− f(vb)] = λf(v)− ϕ(v)f(v),∑
b∈K

wb[f(va)− f(vab)] = λf(va)− ϕ(va)f(va)

and
∑

b∈K wb[f(vba) − f(vab)] = 0 follows from (4.6), the symmetry of µ and
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graph invariance. It follows that

Lρ(v) ≤ X

= 2λ
∑
a∈K

wa[f(v)− f(va)]2 + 2
∑
a∈K

wa[ϕ(va)f(va)− ϕ(v)f(v)][f(v)− f(va)]

≤ 2λ
∑
a∈K

wa[f(v)− f(va)]2 + 2
∑
a∈K

wa[ϕ(va)f(va)f(v) + ϕ(v)f(v)f(va)].

Next we consider

Lf 2(v) =
∑
a∈K

wa[f
2(v)− f 2(va)]

= 2
∑
a∈K

waf(v)[f(v)− f(va)]−
∑
a∈K

wa[f(v)− f(va)]2

= 2(λ− ϕ(v))f 2(v)−
∑
a∈K

wa[f(v)− f(va)]2.

Putting the last two inequalities above together, we arrive at

L(ρ(v) + αλf 2(v))

≤ 2αλ(λ− ϕ(v))f 2(v)− (α− 2)λ
∑
a∈K

wa[f(v)− f(va)]2

+2f(v)
∑
a∈K

waϕ(va)f(va) + 2ϕ(v)f(v)
∑
a∈K

waf(va).

We can find s ∈ S such that

ρ(s) + αλf 2(s) = sup{ρ(v) + αλf 2(v) : v ∈ S}.

Since SK ⊂ S, we have

0 ≤ L(ρ(s) + αλf 2(s))

≤ 2αλ(λ− ϕ(s))f 2(s)− (α− 2)λ
∑
a∈K

wa[f(s)− f(sa)]2

+2f(s)
∑
a∈K

waϕ(sa)f(sa) + 2ϕ(s)f(s)
∑
a∈K

waf(sa).
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This implies∑
a∈K

wa[f(s)− f(sa)]2

≤ 1

(α− 2)λ

(
2αλ(λ− ϕ(s))f 2(s) + 2f(s)

∑
a∈K

waϕ(sa)f(sa) + 2ϕ(s)f(s)
∑
a∈K

waf(sa)

)
.

Hence for every v ∈ S, we have∑
a∈K

wa[f(v)− f(va)]2 + αλf 2(v)

≤ 1

(α− 2)λ

(
2αλ(λ− ϕ(s))f 2(s) + 2f(s)

∑
a∈K

waϕ(sa)f(sa)

+ 2ϕ(s)f(s)
∑
a∈K

waf(sa) + αλ(α− 2)λf 2(s)

)

≤ 1

(α− 2)λ

(
α2λ2f 2(s) + 2f(s)

∑
a∈K

waϕ(sa)f(sa)

+ 2ϕ(s)f(s)
∑
a∈K

waf(sa)

)

≤ 1

(α− 2)λ

(
α2λ2f 2(s) +

∑
a∈K

waϕ(sa)(f 2(s) + f 2(sa))

+
∑
a∈K

waϕ(s)(f 2(s) + f 2(sa))

)

≤ α2λ

α− 2
sup
S
f 2 +

4

(α− 2)λ
sup
S
ϕ sup

S
f 2.

�

Remark 4.3.4 For ϕ = 0 and wa = 1
|K| in Theorem 4.3.3, the inequality there

is identical with the Harnack inequality for finite V in [23].

As mentioned in Section 4.1, an important problem in spectral geometry is to

obtain lower or upper bounds of the first positive eigenvalue λ1 of the Laplacian
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L on a finite graph (V,E) with |V | = n, where |V | is the cardinality of V . The

diameter D of a graph is defined by

D = sup{dist(u, v) : u, v ∈ V }.

Many results concerning lower or upper bounds of λ1 can be stated in terms of

D and |V |. For instance, if (V,E) is d-regular and connected, then we have

λ1 ≥
1

dnD

by [21, Lemma 1.9]. Moreover, for any connected graph (V,E), one has [21]

λ1 >
2

n4

by Cheeger inequality. Here we obtain a lower bound for λ1 of L on a finite

weighted graph in terms of its diameter using the above Harnack inequality. This

result is similar to Chung and Yau’s results in [23, 24] for Dirichlet and Neumann

first eigenvalues.

Corollary 4.3.5 Let (V,K) be a finite invariant homogeneous graph with |V | =

n. Let ϕ = 0 on V and let f be a real function on V corresponding to the first

positive eigenvalue λ1 of (4.8). Then

wa[f(v)− f(va)]2 ≤ 8λ1

for all v ∈ V and a ∈ K. Moreover, we have

λ1 ≥
k

8D2

where k = min{wa : a ∈ K} and D is the diameter of (V,K).

Proof. We have V = S in Theorem 4.3.3. We note that
∑

v∈V f(v) = 0 since f ⊥ 1

where 1 is an eigenfunction corresponding to the eigenvalue 0. By normalizing,

we can choose f such that

sup
v∈V
|f(v)| = 1 = sup

v∈V
f(v).
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Then for all v ∈ V and a ∈ K, we have

wa[f(v)− f(va)]2 ≤ 8λ1

by letting α = 4 in Theorem 4.3.3. Now let f(u) = 1 and f(s) ≤ 0 for some

u, s ∈ V . Then there exists a shortest path P in V joining u and s. Suppose

P has vertices (u = v0, v1, · · ·, vt = s) where vj+1 = vjaj with aj ∈ K for

0 ≤ j ≤ t− 1. We consider

X =
t−1∑
j=0

waj [f(vj)− f(vj+1)]2.

Then X ≤ 8tλ1 ≤ 8Dλ1. Also, we have

X · D
k
≥

(
t−1∑
j=0

waj [f(vj)− f(vj+1)]2

)(
t−1∑
j=0

1

waj

)
≥ [f(u)− f(s)]2 ≥ 1.

It follows that

λ1 ≥
k

8D2
.

�

Finally we derive a version of Harnack inequality for Dirichlet eigenfunctions

on a finite convex subgraph of an invariant homogeneous graph (V,K), extending

the result in [24]. The boundary δS of a subgraph of (V,K) with vertex set S is

defined by δS = {v ∈ V \S : v ∼ u for some u ∈ S}, where ∼ denotes adjacency.

A subgraph of (V,K) with vertex set S is called convex [24] if, for any subset

Y ⊂ δS, its neighborhood N(Y ) = {v ∈ V : v ∼ u for some u ∈ Y } satisfies the

boundary expansion property:

|N(Y ) \ (S ∪ δS)| = |{v /∈ S ∪ δS : v ∼ u for some u ∈ Y }| ≥ |Y |.

An eigenfunction f on S∪δS of a Schrödinger operator L+ϕ is said to satisfy

the Dirichlet boundary condition if f(v) = 0 for v ∈ δS. First, we give two useful

observations.
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Lemma 4.3.6 Let S be a finite convex subgraph of a homogeneous graph (V,K).

Let ϕ ≥ 0 and let f be a real function on S ∪ δS satisfying

Lf(v) + ϕ(v)f(v)

(
=
∑
a∈K

wa(f(v)− f(va)) + ϕ(v)f(v)

)
= λf(v) (λ > 0)

(4.9)

for v ∈ S and f(v) = 0 for v ∈ δS. Then f can be extended to all vertices of V

which are adjacent to some vertex in S ∪ δS such that

Lf(v) + ϕ(v)f(v) = λf(v) (λ > 0)

for v ∈ δS.

Proof. We note that δS is finite since K is finite. As in the proof of [24, Theorem

1], we consider a system of |δS| equations:∑
a∈K

wa(f(v)− f(va)) + ϕ(v)f(v) = λf(v)

for each v ∈ δS. This implies that for each v ∈ δS, we have∑
a ∈ K

va /∈ S∪δS

waf(va) = −
∑
g ∈ K

vg ∈ S

wgf(vg).

The boundary expansion property enables us to find solutions of the above equa-

tions for the value f(va), for each va /∈ S ∪ δS where a ∈ K. Hence f can be

extended to a function satisfying (4.9) on δS. �

Lemma 4.3.7 Let S be a finite convex subgraph of a homogeneous graph (V,K)

and let f be a real function on S ∪ δS satisfying (4.9). Let

φa(v) = wa[f(v)− f(va)]2 + αλf 2(v) (v ∈ S ∪ δS, a ∈ K).

Then for α > |K|/λk with k = min{wa : a ∈ K}, there exist some s ∈ S and

b ∈ K such that

φb(s) = sup{φa(v) : v ∈ S ∪ δS, a ∈ K}.
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Proof. For any v ∈ δS, a ∈ K, there exist some b ∈ K and s ∈ S with s ∼ v such

that φb(s) ≥ φa(v). This can be seen in the three cases below.

(i) If va ∈ δS, then

φa(v) = wa[0− 0]2 + αλ02 = 0.

(ii) If va ∈ S, then

φa(v) = wa[0− f(va)]2 + αλ02 = waf
2(va)

≤ waf
2(va) + αλf 2(va)

= wa−1 [f(va)− f(v)]2 + αλf 2(va)

= φa−1(va).

(iii) If va /∈ S ∪ δS, then let

waf(va) = −
∑
g ∈ K

vg ∈ S

wgf(vg)

and f(vg) = 0 for all g ∈ K \ {a}, vg /∈ S ∪ δS. Let

f 2(vh) = sup{f 2(vg) : g ∈ K, vg ∈ S}
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for some h ∈ K. Then

φh−1(vh) = wh−1f 2(vh) + αλf 2(vh) ≥ |K|
k
f 2(vh)

≥ |K|
wa

f 2(vh) ≥ 1

wa

∑
g ∈ K

vg ∈ S

f 2(vg)

≥ 1

wa

 ∑
g ∈ K

vg ∈ S

w2
g


 ∑

g ∈ K

vg ∈ S

f 2(vg)



≥ 1

wa

 ∑
g ∈ K

vg ∈ S

wgf(vg)


2

= wa


∑

g ∈ K

vg ∈ S

wgf(vg)

wa


2

= waf
2(va) = φa(v).

�

Theorem 4.3.8 Let S be a finite convex subgraph of an invariant homogeneous

graph (V,K). Let ϕ ≥ 0 and let f be a real function on S ∪ δS satisfying

Lf(v) + ϕ(v)f(v) = λf(v) (λ > 0) (4.10)

for v ∈ S and f(v) = 0 for v ∈ δS. Then we have the inequality

wa[f(v)− f(va)]2 + αλf 2(v) ≤
(
α2λ

α− 2
+

4

(α− 2)λ
sup
S
ϕ

)
sup
S
f 2

for v ∈ S, a ∈ K and α > max{2, |K|/λk} where k = min{wa : a ∈ K}.

Proof. By Lemma 4.3.6, f can be extended to a function, still denoted by f , on

all vertices of V adjacent to S ∪ δS so that equation (4.10) also holds on δS. As

in the proof of Theorem 4.3.3, one can apply similar arguments to the function

wa[f(v)− f(va)]2 + αλf 2(v) (v ∈ S, a ∈ K).

95



Define

ρa(v) = wa[f(v)− f(va)]2 (v ∈ S, a ∈ K)

and let L act on the functions ρa and f 2. First consider

Lρa(v) = wa
∑
b∈K

wb
(
[f(v)− f(va)]2 − [f(vb)− f(vba)]2

)
= −wa

∑
b∈K

wb[f(v)− f(va)− f(vb) + f(vba)]2

+ 2wa
∑
b∈K

wb[f(v)− f(va)− f(vb) + f(vba)][f(v)− f(va)].

Let X denote the second term above. We have

X = 2wa
∑
b∈K

wb[f(v)− f(va)− f(vb) + f(vba)][f(v)− f(va)]

= 2wa

(∑
b∈K

wb[f(v)− f(va)− f(vb) + f(vab)]

)
[f(v)− f(va)]

+ 2wa

(∑
b∈K

wb[f(vba)− f(vab)]

)
[f(v)− f(va)]

= 2λwa[f(v)− f(va)]2 + 2wa[ϕ(va)f(va)− ϕ(v)f(v)][f(v)− f(va)]

where ∑
b∈K

wb[f(v)− f(vb)] = λf(v)− ϕ(v)f(v),∑
b∈K

wb[f(va)− f(vab)] = λf(va)− ϕ(va)f(va)

and
∑

b∈K wb[f(vba) − f(vab)] = 0 follows from (4.6), the symmetry of µ and

graph invariance. It follows that

Lρa(v) ≤ X

= 2λwa[f(v)− f(va)]2 + 2wa[ϕ(va)f(va)− ϕ(v)f(v)][f(v)− f(va)]

≤ 2λwa[f(v)− f(va)]2 + 2wa[ϕ(va)f(va)f(v) + ϕ(v)f(v)f(va)].
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Next we consider Lf 2. As in the proof of Theorem 4.3.3, we have

Lf 2(v) = 2(λ− ϕ(v))f 2(v)−
∑
a∈K

wa[f(v)− f(va)]2

≤ 2(λ− ϕ(v))f 2(v)− wa[f(v)− f(va)]2.

Putting the last two inequalities above together, we arrive at

L(ρa(v) + αλf 2(v))

≤ 2αλ(λ− ϕ(v))f 2(v)− (α− 2)λwa[f(v)− f(va)]2

+2wa (ϕ(va)f(v)f(va) + ϕ(v)f(v)(va)) .

Given α > |K|/λk, by Lemma 4.3.7, we can find s ∈ S and b ∈ K satisfying

ρb(s) + αλf 2(s) = sup{ρa(v) + αλf 2(v) : v ∈ S ∪ δS, a ∈ K}.

Hence

0 ≤ L(ρb(s) + αλf 2(s))

≤ 2αλ(λ− ϕ(s))f 2(s)− (α− 2)λwb[f(s)− f(sb)]2

+2wb (ϕ(sb)f(s)f(sb) + ϕ(s)f(s)f(sb)) .

This implies

wb[f(s)− f(sb)]2

≤ 1

(α− 2)λ

(
2αλ(λ− ϕ(s))f 2(s) + 2wbϕ(sb)f(s)f(sb) + 2wbϕ(s)f(s)f(sb)

)
.
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Hence for every v ∈ S, we have

wa[f(v)− f(va)]2 + αλf 2(v)

≤ 1

(α− 2)λ

(
2αλ(λ− ϕ(s))f 2(s) + 2wbϕ(sb)f(s)f(sb)

+ 2wbϕ(s)f(s)f(sb) + αλ(α− 2)λf 2(s)
)

≤ 1

(α− 2)λ

(
α2λ2f 2(s) + 2wbϕ(sb)f(s)f(sb) + 2wbϕ(s)f(s)f(sb)

)
≤ 1

(α− 2)λ

(
α2λ2f 2(s) + wbϕ(sb)(f 2(s) + f 2(sb))

+ wbϕ(s)(f 2(s) + f 2(sb))
)

≤ α2λ

α− 2
sup
S
f 2 +

4

(α− 2)λ
sup
S
ϕ sup

S
f 2.

where the last inequality follows from wb ≤ 1. �
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