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ABSTRACT 

 

 The study of the immune system has provided insight in the 

mechanism of protection induced by vaccination; primarily that most 

clinically protective vaccines are potent in generating neutralizing antibody 

responses. Nonetheless, vaccination fails to protect against a wide range of 

acquired chronic infections caused by viruses, such as HIV and HCV, other 

intracellular pathogens, and cancer. Attempts to combat these diseases are 

thought to require the induction of the cellular arm of the immune response, in 

which dendritic cells (DCs) play a key role. Thus, DCs are now considered a 

promising target/tool when designing new-generation vaccines. 

Although mature DCs have the capacity to induce effective primary 

and secondary immune responses in vivo, their use in vaccination strategies is 

associated with several difficulties; for example, there are limitations involved 

in the loading of antigen, and in the appropriate maturation of DC in vitro.  

In this study, we have explored the hypothesis that the use of ER-

enriched microsomes isolated from professional antigen presenting cells, such 

as DCs, can represent an alternative vaccination strategy to those using live 

DCs. 

Endoplasmic reticulum-enriched microsomal membranes 

(microsomes) isolated from DCs contained high levels of peptide-receptive 

major histocompatibility complex (MHC) and co-stimulatory molecules. After 

loading with defined antigenic peptides, injected microsomes mediated MHC 

class I- and MHC class II-restricted T cell responses.  

 The microsomal vaccine described and discussed in this thesis protects 

from a viral infection and was shown to regress an established murine tumor. 

Therefore, it could represent an exciting new alternative to currently available 

vaccine strategies. 
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INTRODUCTION 

In 430 BC, a disease struck the city of Athens. Thucydides, who himself had 

suffered and survived the infection, recorded his observation that people who 

had recovered from a previous bout of disease could then go on to nurse the 

sick without contracting the illness for a second time themselves (Figure 1). 

 

 

 The Greek historian left all speculation as to its origin and its causes to 

other writers and he concentrated on the description of the symptoms. Based 

on those descriptions, he recognised the difference between resistance and 

acquired immunity. His open-minded approach of gathering evidence and 

analysing it in terms of cause and effect without reference to intervention by 

the gods was the foundation for the development of Medicine.  

Figure 1  Plague of Athens (430BC). 
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Figure 2  Dr Edward Jenner. 
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 Hundreds of years later, in 1796, Dr Edward Jenner (Figure 2) 

discovered that inoculating healthy individuals with vaccinia (Figure 3) 

induced protection against human smallpox, until then an often deadly 

disease. He didn’t have any knowledge of the existence of pathogens, yet his 

experiments were the introduction to our Vaccines and the basis of 

Immunology. 

 

 Numerous scientists followed up Jenner’s work, but it wasn’t until the 

late 19th century that Robert Koch showed that specific diseases were caused 

by specific pathogens. Taken together, Jenner’s experiments and the 

knowledge generated by Koch and others provided a foundation for Luis 

Pasteur, who, in the 1880s prepared a vaccine against rabies to treat a boy 

bitten by a rabid dog. Luis Pasteur knew that what Thucydides and Jenner had 

previously observed was a mechanism of protection, which he successfully 

exploited against rabies; the search to understand this mechanism gave birth to 

Immunology. 

Figure 3  The discovery of vaccination. 
 
 Dr Jenner discovered that milkmaids who came into contact with 
cowpox seemed to be immune from contracting smallpox. He inoculated 
patients with discharge of the virus (vaccinia) from cows (in Latin cow = vacca, 
hence the term vaccination) to generate an immune response which cross-
reacted and offered protection against smallpox. 
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From Jenner to this work. 

 From the time when Jenner introduced the first vaccine, the study of 

the immune system has provided insight into the mechanisms of protection 

induced by vaccination. Vaccines aim to provide life-long protection by 

inducing a prolonged state of immunological readiness, which, normally, can 

only be reached by engaging pathogen in a full-blown infectious setting 

(Pennington 2009- in print). 

 The miracle of the immune system is that it consists by cells that are 

made to recognise every possible antigen before they encounter it. Since there 

are millions of antigens, we have cells with millions different receptors, which 

means that for every given antigen only a few numbers of cells have receptors 

that will recognise it.  Upon pathogen recognition, the immune system instucts 

those cells to multiply and respond so as to provide protection against this 

pathogen. Following an infectious episode, the immune system has the ability 

to preserve an increased frequency of protective pathogen-specific cells that 

upon re-infection are induced to respond rapidly and efficiently (Kaech, 

Wherry et al. 2002). However, a major weakness of the immune system is the 

time required between pathogen recognition and the acquirement of protective 

immune responses. Vaccination capitalises on the specificity and inducibility 

of immunity and attempts to mimic the interactions between the infectious 

agent and the immune system. The goal of vaccination is to prepare the 

immune system in advance to respond faster and better to infectious agents, 

but in the absence of the very great dangers of disease. 

 Successful vaccines are now used to control the spread of naturally-

occurring diseases such as smallpox, polio, measles, mumps, rubella, 

influenza, chickenpox, diphtheria, tetanus, pertussis and rabies. Clinically 

protective vaccines are potent in the induction of neutralizing antibody 

responses and the importance of protective antibodies is reflected in 

successful vaccination against certain viruses in childhood. Nonetheless, 

despite concerted efforts, vaccines remain unavailable for tuberculosis, 

leprosy, malaria, hepatitis C, leishmania, dengue fever, HIV/AIDS and cancer.  
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 Compelling evidence suggests that attempts to combat these diseases 

also require the induction of the cellular arm of the immune response. Indeed, 

T-cell mediated immunity is thought to be essential for eradicating virally 

infected or malignantly transformed cells. However, all current vaccines that 

are clinically protective are dependent on neutralizing antibody responses 

(Letvin 2007), but not exclusively on T cell-mediated immunity (Zinkernagel 

and Hengartner 2006). Such responses are not sufficient to induce protection 

against pathogens that cause chronic infections. 

 Individuals infected with such pathogens not only act as a reservoir for 

spread of the infectious agent, but chronic infections and cancer in general 

also increase the risk of subsequent diseases and secondary infections with 

other pathogens. The inadequacy of our existing vaccines to protect against 

these diseases underscores the necessity for a new generation of vaccines that 

aid cell-mediated acquired immunity in addition to humoral immunity. The 

rationale behind developing those vaccines is based on the concept that during 

chronic infections or cancer, the critical antigens that induce protection are not 

appropriately presented to the immune system (Ha, West et al. 2008); a 

vaccine that provides the right antigen in an immunogenic form to suitably 

activate the immune system may overcome this deficiency. 

 The understanding of the function of cell-mediated immune responses 

has led to exploration of novel vaccines with the use of antigen-armed antigen 

presenting cells (APCs) against infectious diseases and cancer. Dendritic cells 

(DCs), the most potent APCs, have been used to elicit protective T cell 

immune responses to viral infections and cancer in mice and humans with 

defined antigens (Banchereau and Steinman 1998). Although some initial 

promising results were reported, clinical applications have been limited. This 

is largely because of difficulties in the quality control of DC differentiation 

that led to immunogenic heterogeneity of matured DCs in induction versus 

suppression of T cell responses, compromising the desired immunological 

outcome. 
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 This study attempts to investigate the optimal reconstitution of the 

immune properties of the antigen presenting cell on endoplasmic reticulum 

derived membranes, namely microsomes. The aim is to overcome the 

deficiencies of current vaccination approaches and create a vaccine that will 

promote appropriate and specific combinations of immune responses targeted 

to particular pathogens, especially those against which the more basic 

approaches of vaccination have so far failed. 

 This introduction to this research begins by outlining the structure, the 

components and the function of the immune system. Next, it concentrates on 

the characteristics of T cells and their functional specialization during the 

immune response. Subsequently, it identifies the immune effector mechanisms 

responsible for protection against acute resolving infections and compares 

them with the immuno-compromised environment generated during chronic 

viral infections and cancers. From this, it is possible to infer the major cause 

of failure of current vaccination to protect from persistent diseases, and 

propose the required elements of a successful vaccine. The development of 

new generation vaccines, with particular focus on dendritic cell-based 

vaccination, is reviewed and the described systems are evaluated. Based on 

the observations a novel vaccination strategy is proposed. 

 This thesis describes an alternative approach to current vaccination 

strategies for both protective and therapeutic applications. 
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1. The immune system.  

 The immune system consists of tissues, organs, cells and molecules 

that work together to facilitate host defence. It detects, distinguishes and 

eliminates harmful pathogens by orchestrated mechanisms that are 

collectively called the Immune Response.  

1.1 The cellular mediators of the immune system.  

 All the cells of the immune system originate from pluripotent 

hematopoietic stem cells in the bone marrow. These highly undifferentiated 

progenitor cells divide to produce two different types of stem cells with less 

differentiating plasticity, the common myeloid progenitor and the common 

lymphoid progenitor, from which all the functional cells of the immune 

system will develop (Figure 4). The myeloid progenitor differentiates into 

platelets, erythrocytes (red blood cells), granulocytes, macrophages and 

myeloid dendritic cells (DC). The lymphoid progenitor differentiates into the 

T cells, B cells and NK cells. 

 Granulocytes, which owe their name to their dense granular 

cytoplasm, are characterised by a short life span and are detected in increased 

numbers during immune responses. Mainly involved in the initial stage of the 

immune response, their role is principally secretory, although neutrophils are 

also very potent phagocytic cells, together with macrophages and dendritic 

cells. The latter two, in addition to their phagocytic function, have the 

capacity to present antigens to T cells and together with B cells they represent 

the professional antigen presenting cells (APC) of the immune system. 

 Mature T and B cells circulate between the blood and the peripheral 

lymphoid tissues and they are very specific with respect to the antigen they 

can recognise; this feature makes them the principal mediators of an organised 

adaptive immune response launched against a specific pathogen. In contrast, 

NK cells lack this specificity and are thought to recognise a ‘missing self’ 

state through sets of activating and inhibitory receptors. 
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Figure 4  Origin of cells of the immune system. 
 
 All the cells of the immune system originate from a common pluripotent 
hematopoietic progenitor of the bone marrow. These highly undifferentiated cells 
divide to produce a common lymphoid progenitor that gives rise to NK cells, B 
and T lymphocytes, and a common myeloid progenitor that gives rise to 
erythrocytes (red blood cells), granulocytes (polymorphonuclear leukocytes), 
megakaryotes (cells that produce platelets) and macropages. Dendrtic cells derive 
from a common myeloid progenitor, although some dendritic cell subsets derive 
from a monocyte intermediate or from a lymphoid common progenitor. 
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1.2 Other mediators of the immune system. 

 Antibodies or immunoglobulins are proteins that can recognise and 

bind to whole antigens. They are produced by naïve B cells and activated 

plasma cells, and they are of generally similar structure, but have unique 

specificity for antigen. They have the capacity to induce pathogen 

neutralization, which is the process of inhibiting the infectivity or toxicity of 

the pathogenic agent, while they also provide specific signals and precise 

targets to appropriately direct other components of the immune response. 

 Cytokines are secreted proteins that influence the behaviour of cells 

via binding to specific receptors on the plasma membrane. Chemokines are 

proteins with chemoattractant properties that stimulate the directed migration 

of cells. Cytokines and chemokines create a certain environment at the site of 

infection that informs the immune response; this environment helps target 

antigens to the appropriate antigen presenting cells, it initiates APC 

maturation, it triggers cell migration to the peripheral lymphoid organs and it 

regulates T cell effector differentiation and antibody mediated immunity.  

1.3 The structure of the immune system. 

 The lymphoid organs are structured tissues containing large numbers 

of immune cells in a framework of non-lymphoid cells. They can be generally 

divided into the central (or primary) lymphoid organs, where lymphocytes are 

generated, and the peripheral (or secondary) lymphoid organs, where adaptive 

immune responses are initiated and lymphocytes are maintained. Central 

lymphoid organs are the bone marrow and the thymus in which B cells and T 

cells develop, respectively. The secondary lymphoid organs are the spleen, the 

lymph nodes and the lymphoid tissues associated with mucosa, which are 

found in various locations in the body such as the gastrointestinal tract, 

thyroid, breast, lung, salivary glands, eye and skin. The lymphoid organs are 

interconnected and link with the blood via the lymphatic system. Peripheral 

lymphoid tissues are dynamic structures highly involved in the immune 

response and their appearance and function is finely coordinated. 
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1.4 The immune response. 

 The mammalian immune response comprises of two phases known as 

the innate and adaptive immunity.  

1.4.1 Innate immune response. 

 Innate immunity is the first line of host defence against pathogens. It is 

based on mechanisms that are not antigen-specific (interferons, complement, 

natural killer cells, activated phagocytes), which compose an important part of 

host defence (Zinkernagel 2003). The innate immune system has the ability to 

functionally distinguish harmless self from infectious non-self agents through 

pattern recognition mechanisms. Innate immunity relies on receptors such as 

Toll-like receptors (TLR) that evolved to recognize conserved patterns on 

different classes of pathogens to trigger an inflammatory response that limits 

pathogen invasion (Janeway and Medzhitov 2002; Akira, Uematsu et al. 2006; 

Cooper and Alder 2006). Recognition of a conserved pattern, whether in 

soluble form or as cell surface ligands, provokes activation of these receptors, 

signalling the presence of ‘danger’ in the body. In response, macrophages and 

dendritic cells are triggered to take up, process and present antigens locally or 

after migrating to nearby lymph nodes where they activate naïve and memory 

cells. Thus, antigen presentation bridges innate and adaptive immune 

responses (Figure 5). 

 Innate immunity employs mechanical, chemical, microbial and cellular 

means to guard against pathogens. It is an inherent immune strategy that aims 

to prevent the establishment of infection; even when failing to clear an 

infection the innate immune response provides information that regulates the 

ensuing adaptive immune response. 
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1.4.2 Adaptive immune response. 

 Adaptive immunity is involved in the elimination of pathogens based 

on recognition of antigens, which are specific molecules that elicit an immune 

response, and includes the generation of immunological memory (Akira, 

Uematsu et al. 2006). Initiated in the peripheral lymphoid organs, the adaptive 

immune response involves two ‘arms’ of protection, the cell-mediated 

response and the humoral response. The cell-mediated response involves T 

cells instructing largely cellular components of the immune system, such as 

cytotoxic T cells (CTLs), while the humoral response involves T cell help to B 

cells that boosts Ab-mediated immune responses (Figure 6).  
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Figure 5  Innate immunity is critical to adaptive immune response. 
 

  Innate immunity is based on the recognition of invariable pathogen-
associated molecular patterns (PAMPs) by Toll-like receptors, and on 
phagocytosis. If the innate response fails to eliminate the pathogen, activated 
antigen presenting cells bearing this antigen trigger an adaptive immune response; 
they travel to the secondary lymphoid tissues where they deliver antigenic 
peptides and co-stimulatory signals to naïve T cells. In an inflammatory 
environment, a naïve T cell that has recognised an antigen differentiates into 
effector cell that can eliminate the pathogen. 
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 T cells are divided into two major subtypes; they are cytotoxic T cells 

and helper T cells, which are recognised by the expression of CD8 and CD4 

cell-surface proteins, respectively. CD8(+) T cells recognize antigen presented 

by MHC class I and respond by elucidating cytolytic function against the 

antigen-bearing target cells. CD4(+) T cells recognize antigen presented by 

MHC class II; upon activation they differentiate into various subgroups 

including those essential for B cell function and expansion of CD8(+) T cells. 

Their differentiation is determined by the presence of certain cytokines, when 

activated in the secondary lymphoid organs by DCs.  

 Humoral immune responses are initiated by the direct interaction of 

antigens with receptors on B cells, which leads to B cell differentiation and, in 

the presence of appropriate T cell help leads to the production of high affinity 

specific antibodies. Antibody-binding to pathogen and pathogen-derived 

proteins represents a major mechanism of immune protection. 

Figure 6  Adaptive immune response. 
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 Collectively the immune system provides protection from harmful 

agents, while permitting tolerance to self-proteins and innocuous antigens, 

such as food. It is a specialized, continuously evolving mechanism of defence 

with the capacity to tailor an adaptive immune response appropriate to the 

pathogen in question, allowing the establishment of life-long protection 

against that pathogen. 
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2. Cell-mediated immunity. 

Part I- Antigen recognition. 

2.1 The major histocompatibility molecules (MHC). 

 MHC molecules are proteins involved in antigen presentation to T 

cells by delivering and displaying antigenic peptides on the surface of cell 

membranes. There are two types of MHC molecules that differ in structure, 

expression pattern and the source of antigenic peptides which they display. 

MHC class I molecules are expressed in all nucleated cells. By contrast, MHC 

class II expression is restricted in the professional antigen presenting cells, 

namely B cells, macrophages and dendritic cells. To compete with rapidly 

evolving pathogens the MHC is highly polygenic and polymorphic. These are 

important features as they allow the immune system the ability to present a 

wide array of peptides, preventing one disease wiping out the entire species. 

Much is known about MHC-peptide complexes through x-ray crystallography, 

from peptide binding studies, and by MHC biosynthesis and antigen 

processing analysis. 

2.2 MHC polymorphism. 

 Each MHC gene exists as many different alleles that can be co-

dominantly expressed in a certain individual. In human they are known as 

human leukocyte antigens (HLA) and as the H-2 genes in mouse. The 

organisation of the MHC genes is similar in both species; there are three main 

class I loci, which are called HLA-A, HLA-B and HLA–C in humans and H2-

K, -D and –L in the mouse. There are also three class II loci in humans, which 

are called HLA-DR, -DP and –DQ, and two class II loci in the mouse, which 

are called I-A and I–E.   

 The presence of several different alleles, as well as of various related 

genes that encode for proteins of similar function, ensures diversity of MHC 

molecules within an individual and within the population as a whole. In 
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contrast to MHC-I molecules that are made up by only one heavy chain, the 

MHC-II consists of two heavy (alpha and ß) chains, increasing its diversity 

further. The capacity of the MHC to present a wide range of different peptides 

is a consequence of the high degree of polymorphism. 

2.3 The structure of MHC molecules. 

 Despite substantial sequence diversity, MHC proteins have common 

structural features. For both MHC-I and MHC-II, the two paired protein 

domains nearest to the membrane show homology with immunoglobulin 

domains, whereas the two domains furthest away from the membrane fold 

together to form a long groove, which is the site where a peptide binds. 

2.4 MHC class I molecule. 

  Mature MHC class I molecules 

consist of three components: the 

polymorphic heavy chain (HC), β-

2microglobulin (β2m,) and the antigenic 

peptide, all of which are essential for the 

formation and stability of a functional MHC 

class I complex. The heavy chain (43kDa), a 

transmembrane glycoprotein, is organised 

into three different structural domains (α-1, 

α-2, α-3), a transmembrane segment and a 

cytoplasmic tail (Figure 7). The relatively 

conserved α-3 domain is proximal to the 

membrane, and is non-covalently associated 

with the similarly folded β2m, a soluble, 

non-polymorphic, non-MHC encoded 

protein (12kDa). However, the remarkable 

feature of MHC class I molecules is the 

distinct structure of the membrane-distal 

domains, α-1 and α-2, which form the 

Figure 7 MHC-I.  
 
 Scematic re-
presentation shows the 
MHC-I molecule is a 
heterodimer of a 
transmembrane α chain 
bound non-covalently to β2-
microglobulin, which does 
not span the membrane. The 
α1 and α2 segments of the 
heavy chain fold together to 
create the peptide-binding 
site. Image reproduced from 
Immunobiology 6th edition. 
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peptide-binding site; together with the peptide, this highly polymorphic MHC-

I region determines T-cell antigen recognition. 

 The MHC-I peptide-binding groove can bind a wide variety of 

peptides (8-10 amino acids long) with high affinity, giving each MHC class I 

molecule its broad peptide-binding specificity. Differences between allelic 

MHC variants are reflected by different amino acid sequences in key peptide-

interaction sites of the peptide-binding groove. Consequently, different MHC 

variants preferentially bind different peptides with the same or very similar 

amino acid residues at two or three particular positions, called anchor 

residues, along the peptide sequence. The amino acid side chains at these 

positions insert into pockets of the MHC class I molecule that are lined by 

polymorphic residues of the heavy chain. Additional amino acid positions, 

called secondary anchors, can also influence MHC binding.  

2.5 MHC class II molecule. 

 The MHC class II molecule consists of a 

non-covalently-bound complex of two 

transmembrane glycoprotein chains, the α-chain 

(34kDa) and β-chain (29kDa) (Figure 8), which 

are both encoded within the MHC region of the 

genome. Each chain has two domains and 

together they form a four-domain compact 

structure, similar to that of the MHC class I 

molecule. The major difference between the two 

molecules is that for MHC-II the membrane 

distal domains are not joined by covalent bonds, 

thus forming a peptide-binding groove that is 

open at both ends. As a result, the peptide ends 

are not bound into pockets, but instead the 

peptide lies in an extended conformation 

between the two chains and binds by 

interactions along the length of the binding 

Figure 8  MHC-II. 
 
 Schematic re-
presentation shows MHC-II 
is formed by two 
transmembrane glycoprotein 
chains, which are not 
covalently bound. Thus, the 
peptide binding site that is 
formed is open at both ends. 
Image reproduced from 
Immunobiology 6th edition. 
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groove. Because the peptide is bound by its backbone and allowed to emerge 

from both ends of the binding groove, the length of the peptides that bind to 

MHC class II molecules is longer than of those that bind to MHC class I 

molecules, in most cases between 13-17 amino acids long. Similarly to MHC 

class I molecules, the sites of major polymorphism in the MHC class II 

molecule that determine T-cell antigen recognition are located in the peptide 

binding cleft; different allelic variants of MHC class II molecules bind 

different peptides. However, the more open structure of the MHC class II 

peptide-binding site and the greater length of the peptides bound in it allow 

greater flexibility in peptide binding. 

2.6 Peptide/MHC complex.  

 An important feature of the peptide/MHC complex is that the bound 

peptide is a necessary and integral part of a stable MHC molecule structure; 

this serves to prevent random peptide exchanges at the cell surface, thus 

making the peptide/MHC complex a reliable indicator of infection or of 

uptake of a specific antigen.  

 Newly synthesized MHC class I molecules are held in the ER until 

they form stable peptide/MHC I complexes. The antigenic fragments derive 

from proteins found in the cytosol and they are formed by degradation of 

larger proteins by the proteasome before they enter the ER through the 

transporters associated with antigen processing (TAP). In the ER, every step 

of the assembly and forming of the MHC-I molecule undergoes extensive 

quality control by a wide array of chaperones and specific proteins. Initially, 

partly folded MHC-I α chains bind to a chaperone protein, calnexin, and form 

a complex that binds to β2m. The MHC class I α:β2m dimer is then released 

from calnexin to become associated with the loading complex, which consists 

of the chaperone molecules calreticulin and Erp57, the transporters associated 

with antigen processing (TAP1 and TAP2) and tapasin. Tapasin bridges TAP 

and MHC-I to facilitate the delivery of suitable TAP-associated peptides and 

their loading on the MHC-I. A stable peptide/MHC class I complex is then 

allowed to travel to the cell surface. 
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 Conversely, MHC class II molecule is transported from the ER to the 

lysosome associated with an invariant chain, which protects the peptide 

binding site and targets delivery of MHC-II molecules to the acidic endosomal 

compartment. Here, the MHC class II will form stable complexes with 

antigenic peptides derived from extracellular proteins before it is allowed to 

reach the cell surface. After transport into the acidified vesicle, acid proteases 

such as cathepsin S sequentially cleave the invariant chain leaving only the 

short fragment (CLIP) that blocks the MHC-II α:β peptide binding groove. 

The class II-associated invariant chain peptide (CLIP) remains bound to the 

MHC-II molecule until it encounters suitable peptides; upon peptide 

competition it is dissociated or displaced to allow peptide binding to MHC-II. 

Stable peptide/MHC-II complexes travel to the cell membrane where they are 

presented to T cells. 

 Beyond the two well-defined pathways of peptide loading, peptides 

generated from processing of extracellular proteins can also be presented on 

MHC class I, by a mechanism known as cross-presentation. 

2.7 T cell receptor (TCR). 

 Antigen recognition is mediated through the T-cell receptor (TCR) on 

the plasma membrane of T cells that recognise peptide/MHC combinations on 

antigen presenting cells. T-cell receptors are formed by two transmembrane 

glycoprotein chains, α and β, which contain highly variable antigen-

recognition sites (Figure 9), and they are expressed at the cell surface as a 

multiprotein complex with the invariant CD3 chains. The rearrangement of 

antigen-recognition segments in TCR genes results in highly diversified TCR 

pool sufficient to recognise a plethora of antigens potentially encountered 

through life time. 



 19 

α chain β chain

+
+ +

carbohydrate

cytoplasmic tail

transmembrane 
region

variable
region (V)

constant
region (C)

hinge (H)

disulfide bond

Structure of the T-cell receptor

α chain β chain

+
+ +

carbohydrate

cytoplasmic tail

transmembrane 
region

variable
region (V)

constant
region (C)

hinge (H)

disulfide bond

Structure of the T-cell receptor

  

 The α:β chains form extracellular disulfide-linked heterodimers responsible 

for MHC/antigen recognition. The TCR complex is formed with various other 

components that are required for initiating signalling when the TCR complex 

binds to peptide/MHC. These components include various CD3 molecules that 

are; CD3ε, CD3γ and CD3δ. CD3ε can form a dimer with either CD3γ or 

CD3δ. In addition, the TCR ζ chain also forms a homodimer that is included 

in the TCR complex. This too is an invariant chain and is critical for TCR 

signalling. 

 TCR activation of most TCRαβ(+) T cells is assisted by the CD4 and 

CD8 co-receptors that bind to MHC class II and MHC class I molecules 

respectively. 

2.8 Co-stimulatory molecules.  

 Although antigen recognition by the TCR determines the specificity of 

T cell responses, full activation of T cells requires co-stimulatory signals. 

Specific signalling through the TCR in the absence of co-stimulatory signals 

leads to T cell non-responsiveness or ‘anergy’. Co-stimulatory signals are 

delivered by costimulatory molecules on APCs via their cognate receptors on 

T cells. Different co-stimulatory signalling pathways differentially regulate T 

Figure 9  T cell 
receptor. 

 
 Schematic re-
presentation shows that the 
T cell receptor is formed 
by two transmembrane 
glycoprotein chains, the α 
and β. The extracellular 
portion of the chains 
consists of a constant 
region and a viariable 
region, which is the site of 
peptide/MHC recognition. 
Image reproduced from 
Immunobiology 6th edition. 
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cell activation or suppression; for example B7 on an APC, interacting with 

CD28 on a T cell provides an activation signal, which is sustained or modified 

by binding of CD40 ligand on T cell to CD40 on antigen presenting cells, 

while a CTLA4-B7 interaction inhibits T cell activation. An appropriate 

combination of co-stimulatory signals is important to induce proper, but not 

excessive immune responses. 

 Professional APCs manifest high co-stimulatory capacity during 

antigen presentation to provide optimal conditions for antigen delivery and for 

functional activation of naïve T cells. Expression of co-stimulatory molecules 

on the membrane of APC is a consequence of pattern recognition receptor 

(PRR) activation in response to pathogen-associated molecular patterns 

(PAMPs). These act as signals to the immune system that ‘danger’ is present. 

These ‘danger’ signals result in up-regulation of co-stimulatory molecules that 

leads to activation of naïve T cells. 

2.9 The immunological synapse. 

 The immunological synapse is the name used to describe the 

specialized communication between an APC and a T cell that consists of the 

peptide/MHC-TCR interaction as well as other critically important accessory 

ligands. Advances in live 2-photon-microscopy have revealed that the 

immunological synapse is an active and dynamic structure that allows T cells 

to recognise and respond to antigenic molecules on the surface of APCs. The 

formation of the immunological synapse is thought to take place in three 

general steps; first, an interaction occurs between the accessory ligands on the 

T cell, e.g LFA-1, and those on the APC, e.g. ICAM-1. This contact provides 

a stable structure which allows the T cell to stop and ‘sample’ the available 

peptide/MHC complexes through its TCR. Subsequently, if the TCR 

recognises and binds to the peptide/MHC complex, the entire 

TCR/peptide/MHC structure is transported and becomes the centre of the 

synapse during which time signalling occurs. 
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 The immunological synapse requires hours of stable interaction 

between a T cell and an APC to result in effective T cell activation (Celli, 

Garcia et al. 2008). Once synapse formation is underway, the size and stability 

of the assembled cluster are determinants of the signal initiation which 

triggers T cell activation. Thus, the molecules involved in the cluster define 

the fate of T cells following their engagement with APC. 

 

Part II- Functional specialization of T cells. 

2.10 Naïve T cells recognise specific peptide/MHC 

combinations on the surface of APCs and become activated to 

produce armed effector T cells. 

 Naïve T cells that have never encountered their cognate antigen 

recognize peptide/MHC complexes on APCs (Figure 10) in secondary 

lymphoid organs, which triggers T cell clonal expansion and specialised 

differentiation. 

 This differentiation of naïve T cells into specialized effector T cells is 

associated with their enhanced functional potential to orchestrate pathogen 

clearance, largely under the regulation of cytokines produced by cells of the 

innate immune system that have been activated in the presence of infection. 

The activation of naïve T cells in response to antigen and their subsequent 

proliferation and differentiation constitutes a primary cell-mediated immune 

response, which not only provides a specialized ‘army’ of effector T cells, but 

also generates a state of immunological readiness for protection from 

subsequent challenge by the same pathogen. 
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 Once a professional APC has taken up an antigen at the site of 

infection it migrates to the local lymphoid tissue and undergoes maturation to 

become a potent activator of naïve T cells. Subsequently, the activated T cells 

secrete IL-2, which drives them to proliferate and differentiate into armed 

effector T cells. 

 Effector T cells fall into two main functional categories that detect 

peptide antigens derived from different types of pathogen, the cytotoxic 

CD8(+) T cells and the helper CD4(+) T cells. Circulating effector CD8(+) T 

cells are able to view antigens derived from intracellular pathogens in the 

context of peptide/MHC I complexes on the APC surface and they respond by 

initiating a cytotoxic response towards the antigen presenting cell that 

synthesized the antigenic peptides. Effector CD4(+) T cells are able to view 

Figure 10  The recognition of antigens by T cells is MHC restricted. 
 
 Naïve T cells recognise specific complexes of peptide/MHC. For 
example, a T cell that has a TCR that can recognise antigen x on MHCα would 
not recognise the same antigen on a different MHC (e.g. antigen x on MHCβ), or 
a different antigen on the same MHC (e.g. antigen y on MHCα). Image 
reproduced from Immunobiology 6th edition. 
 

MHC restriction

T cell T cell T cell

Recognition No recognition No recognition

antigen-presenting cell antigen-presenting cell antigen-presenting cell

TCR TCR TCR

MHCα MHCα MHCβ

x y x

MHC restriction

T cell T cell T cell

Recognition No recognition No recognition

antigen-presenting cell antigen-presenting cell antigen-presenting cell

TCR TCR TCR

MHCα MHCα MHCβ

x y x



 23 

antigens derived from pathogens replicating in intracellular vesicles, as well 

as extracellular bacteria and toxins, in the context of peptide/MHC II 

complexes on the APC; in response, they differentiate to produce distinct 

effector helper or regulatory cell populations.

 The naive CD4(+) T cell is a multipotential precursor with defined 

antigen recognition specificity, but substantial plasticity for development. It 

has the ability to differentiate into several different subtypes of effector T cells 

in response to specific cytokine environment. 

 In early studies, two classes of CD4(+) T cells were described; TH1 and 

TH2 (Coffman and Carty 1986; Mosmann, Cherwinski et al. 1986). 

Intracellular bacterial infections tend to stimulate the development of TH1 

cells, which differentiate in the presence of IL-12 and are defined on the basis 

of their production of IL-2, IFNγ and lymphotoxin (Hsieh, Macatonia et al. 

1993; Scharton and Scott 1993). TH1 cells have the capacity to trigger an 

inflammatory response and support macrophage activation and migration, the 

generation of cytotoxic T cells and the induction of B cells for the production 

of opsonizing antibodies.  

 Conversely, extracellular antigens tend to stimulate the differentiation 

of TH2 cells, which develop in the presence of IL-4. The TH2 cells make IL-4, 

IL-5, IL-13 and other cytokines that help B cell activation, production of 

neutralizing antibodies, control of allergic reactions and expulsion of 

extracellular parasites (Shinkai, Mohrs et al. 2002; Min, Prout et al. 2004). 

Each subset promotes its own development and inhibits the development of 

the other subset via their secreted cytokines (Fernandez-Botran, Sanders et al. 

1988; Gajewski and Fitch 1988), such that in that particular environment the 

induction of one type of response suppresses the induction of the other 

(Mosmann and Coffman 1989). 

 Recently an IL-17-producing subset, known as TH17 cells (Harrington, 

Hatton et al. 2005), has been described. TH17 cell differentiation is driven by 

TGFβ in combination with the pro-inflammatory cytokines IL-6, IL-21, and 
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IL-23 (Zhou, Lopes et al. 2008), and it is antagonised by products of the TH1 

(e.g. IFNγ) and TH2 (e.g. IL-4) lineages (McGeachy and Cua 2008). In 

addition to IL-17, TH17 cells are characterised by their ability to produce IL-

22 and IL-17F (Louten, Boniface et al. 2009). TH17 cells are thought to be an 

evolved arm of the adaptive immune response specialized for enhanced host 

protection against extracellular bacteria and some fungi (Infante-Duarte, 

Horton et al. 2000; Fedele, Stefanelli et al. 2005; Mangan, Harrington et al. 

2006) particularly at mucosal surfaces (Monteleone, Pallone et al. 2009). They 

are thought to contribute to homeostatic maintenance of mucosal tissues such 

as the gut (Ahern, Izcue et al. 2008), and emerging information suggests that 

TH17 cells may also be involved in antiviral immune responses by protecting 

the host against secondary infections involving gastrointestinal microbes 

(Brenchley and Douek 2008). 

 Besides armed effector cells, CD4(+) T cells can also differentiate into 

distinct regulatory subsets (Treg cells), which, by suppressing the proliferation 

and differentiation of TH or cytotoxic T cells serve to limit potential 

immunopathology and autoimmunity that may be caused by an over-

exuberant immune response (Sakaguchi 2000). Treg cells are defined by the 

expression of a forkhead transcription factor, Foxp3, which is essential for 

programming their regulatory effector function. Regulatory T cells can be 

further divided in two categories, the naturally occurring CD4(+)CD25(+) 

subset that develops in the thymus (nTregs) and the TGFβ-induced 

CD4(+)CD25(-) subset that differentiates in the periphery (iTregs) (Curotto de 

Lafaille and Lafaille 2009; Josefowicz and Rudensky 2009). Generally, both 

types exert regulatory function by suppressing immune responses via the 

secretion of specific cytokines, for example by producing IL-10 and TGFβ 

they inhibit T cell proliferation. 

 Inter-linking mechanisms for CD4(+) T cell effector and regulatory 

lineage specification have been described (Veldhoen and Stockinger 2006); 

for example TH17 differentiation depends on the pleiotropic cytokine TGFβ, 

which is also linked to regulatory T cell development and function. Low 

concentrations of TGFβ drive TH17 cell differentiation, while high 
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concentrations of TGFβ inhibit TH17 cell development and induce 

differentiation of regulatory T cells. Even after differentiation a helper T cell 

of a specific lineage can convert to another helper phenotype, within a certain 

cytokine environment. For example, iTregs can become IL-17 producing cells 

in the presence of IL-6 and IL-21, TH17 cells can switch to IFNγ producing 

TH1 cells in the presence of IL-12 or, in the presence of IL-4, to IL-4 

producing TH2 cells. 

 Other CD4(+) T cells that may regulate the development and 

differentiation of the helper subtypes are the NKT cells, known as innate-like 

lymphocytes. They arise from the same lymphoid progenitor but their 

development is distinct from that of the other CD4(+) T cells, since it does not 

depend on the expression of MHC class II. Instead their activation depends on 

relatively invariant CD1 molecules (Silk, Salio et al. 2008) that are induced in 

response to infection. Together with other innate-like lymphocytes, such as 

the γδ T cells, NKT cells are thought to act as intermediates between innate 

and adaptive immunity. 

 After antigen/pathogen is cleared most effector cells die, but a few 

antigen-experienced cells remain for long-term protection. These are known 

as memory T and B cells, which guard lymphoid organs and patrol peripheral 

tissues to mount rapid responses on re-exposure to antigen (Sallusto, Lenig et 

al. 1999). Thus, a successful T cell-mediated immune response has the 

capacity to clear infection and establish a state of long-term protective 

immunity to that particular pathogen. 

2.11 T cell migration. 

 The three main effector functions of T cells, namely the capacity to 

kill, to induce inflammatory responses and to help B cells, depend on the type 

of cytokines produced, the presence of helper or lytic machinery and their 

capacity to migrate to appropriate sites of infection. Since T cells respond to 

pathogens only on direct contact with pathogen-derived antigen, their 



 26 

migration to the sites where antigen is found is essential and regulated by the 

expression of adhesion molecules. 

2.12 Factors that influence the T cell response. 

 Commitment of T cells to clonal expansion, differentiation and 

functional specialization may be regulated by the strength and duration of 

TCR signalling, which, in turn, is dependent on the context in which the T cell 

sees antigen; for example, the type of antigen presenting cell or subset of DCs, 

the density of peptide/MHC complexes on the surface of APCs, the duration 

of APC-T cell interactions, and the life span of the APC (Lanzavecchia and 

Sallusto 2001). Other signals, deriving from cytokines and co-stimulatory 

molecules or from innate immune cells, such as NK or NKT cells, may also 

influence T cell clonal expansion.  

2.13 The quality of T cell response. 

 A T cell response is fundamentally characterised by its magnitude, 

which generally refers to a quantitative measurement of the response and is 

commonly represented as the number of antigen-specific T cells generated or 

as the bulk measurement of a specific effector function. However, the lack of 

any consistent correlations between the number of antigen-specific CD8(+) T 

cells and control of either viral replication or tumour growth indicates that not 

all such T cells are equivalent in disease settings and that protective efficacy 

depends on qualitative rather than quantitative parameters (Appay, Douek et 

al. 2008). The quality of a T cell response is distinct from the quantity of 

antigen-specific T cells; it is rather determined by combinations of T cell 

functions, including their ability to proliferate or induce proliferation of other 

cells (for example through the secretion of growth factors), to organize 

immune responses (by secreting chemoattractants), and to carry out effector 

functions by directly killing infected cells through cytolytic mechanisms or 

secretion of cytokines. T cell responses with a better quality (that is, a greater 

degree of multi-functionality) have been shown to correlate with disease non-

progression and protection in some models (Seder, Darrah et al. 2008). 
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Ultimately, the functional specialization of T cells is relevant to immunity 

only if protection against disease caused by an infection is guaranteed at a 

particular time by certain immune effector molecules and/or cells 

(Zinkernagel RM, 1996). 

2.14 Immunological memory. 

 The Greek historian Thucydides notes in his records the practical 

importance of immunological memory, that is, the protection of the host to re-

infection. The observation that individuals infected with a particular virus are 

subsequently resistant against the same infection has since been confirmed in 

various natural experiments. Although the mechanisms underlying protective 

immunological memory are still not well understood, the phenomenon has 

long been recognised and applied to vaccination. 

  Long-term protective immunity either naturally derived after an 

infection or after vaccination, involves three key main factors (Rafi Ahmed 

13th Congress of Immunology): First, it provides the host with pre-existing 

neutralizing antibodies which upon re-infection mediate the initial response. 

Indeed, it is clear from the early days of immunology that antibodies 

generated by provocation with pathogen can protect from reiterated challenge 

with pathogen as elegantly demonstrated by Kitasato and Behring more than 

100 years ago (Behring, 1900), (Dorner and Radbruch 2007). Second, it 

involves long-lived antibody-secreting plasma cells (humoral memory) and 

long-lived memory B cells capable of reacting quickly to a recurrent antigenic 

challenge (reactive memory) (Ahmed and Gray 1996). The third key factor of 

immunological memory is the increased number and longevity of memory T 

cells, which have the capacity to respond quicker and better than T cells in a 

primary immune response; as a result they aid a more rapid and efficient 

elimination of the infectious agent. 

 To date, it remains to be defined how protective memory is 

maintained. Generally, there are two fundamentally differing views: One that 

describes memory maintenance as an inherent special quality of the immune 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WSP-4PPPN2N-4&_user=6303670&_coverDate=09%2F21%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000010240&_version=1&_urlVersion=0&_userid=6303670&md5=5451b709453dadd2aec1bf77bed1e05d#bib10#bib10�
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system independent of sustained antigen dependence, and another that 

illustrates immunological memory as a low-level antigen-driven protective 

immune response. 
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3. Managing immune responses to fight infections and 

tumours. 

Part I- Immunization strategies for the induction of 

protective immunity. 

3.1 Immunity is the ability of an organism to resist infection. 

 The human immune system is a complex network of cells and 

molecules capable of mounting highly specific, potent protective responses 

against a broad range of invading pathogens (Pennington 2009- in print). The 

state of resistance to a pathogen, which is called immunity, can be innate from 

inherited qualities or it can be acquired by immunization actively or passively, 

naturally or artificially. 

 Passive immunity is induced by the transfer of pre-made elements of 

the immune system from one organism to another. For example, during 

natural passive immunisation maternal antibodies are being transferred from 

mother to child via the placenta or the milk to help protection during early life 

(Zinkernagel 2001). Artificially, passive immunity is acquired by 

administering sera containing antibodies from animals or humans. This type 

of artificial immunization is useful because it induces immunity very quickly, 

but its duration is short because the transferred antibodies are essentially 

proteins that are naturally broken down. Therefore, it is applied as an 

emergency treatment to poisons such as tetanus or snake venom, or during 

outbreaks of a particular disease.  

 Active immunity, which consists of cell-mediated T cell-dependent 

responses and humoral B cell-dependent immunoglobulin production, is 

acquired naturally during an infection or artificially by vaccination. Although 

originally the term was used by Edward Jenner to describe the process of 

inoculating patients with discharge of cowpox to protect them from smallpox, 

nowadays vaccination applies to the administration of any antigenic material 
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(the vaccine) for the purpose of stimulating active immunity to a disease 

(Figure 11). 

3.2 Protective immunity can be induced by vaccination. 

 Vaccines are a major accomplishment of medicine; they have 

eradicated naturally-occurring diseases such as smallpox, whilst they 

successfully control the spread of others such as polio, typhus, measles, 

mumps, rubella, influenza, chickenpox, diphtheria, tetanus, pertussis and 

rabies. The success of protective vaccines lies in that they tackle a main 

inherent weakness of the immune system; the extended time required between 

antigen recognition and generation of protective adaptive immune responses if 

innate mechanisms fail. Vaccination helps to limit this window of 

vulnerability in which pathogens could cause death and disease; by using the 

Figure 11  Vaccination. 
 
 The term was originally used by Edward Jenner to describe the process of 
inoculating patients with discharge of cowpox to protect them from smallpox. 
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immune system’s natural specificity and inducibility it prepares it in advance 

to respond faster and better when infection strikes (Bloom and Ahmed 1998). 

However, despite concerted efforts, conventional vaccines are not effective 

for several infectious diseases that kill millions of people every year such as 

tuberculosis, leprosy, leishmania, dengue fever, malaria, hepatitis C and 

HIV/AIDS, and for cancer. 

3.3 Classic vaccines. 

 The general principle behind the invention of the safe and effective 

vaccines is the empirical observation that pathogen-specific antigens from a 

non-pathogenic form of the infectious agent can stimulate a protective 

immune response that is cross-reactive to the actual pathogen. For example, 

vaccinia is a bovine analogue of smallpox that can provide protective 

immunity against smallpox in humans without causing significant disease. 

The first vaccines developed were whole pathogen vaccines, either in live-

attenuated form or killed.  

 Live attenuated pathogens such as the vaccines used to immunize 

children against measles, mumps, and rubella retain their immunogenicity but 

with greatly decreased virulence. These preparations have the advantage of 

entering both MHC class I and MHC class II pathways of antigen 

presentation, inducing potent vaccine protection by both cell-mediated and 

humoral immunity. The infectious agent has the ability to multiply in the host 

and provide antigenic stimulation, which means that less antigenic material is 

needed in the vaccine to induce protection and that one injection is usually 

sufficient to provide long-term protection. However, attenuated viral vaccines 

carry the risk of reversion to more virulent forms as well as that of 

interference by related viruses, and they can cause lethal systemic infections 

to immunosuppressed individuals. 

 A safer approach are killed vaccines that consist of heat- or 

chemically- inactivated pathogens, such the ones used in the Salk polio 

vaccine as well as for cholera, influenza and plague. They are effective against 
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some extracellular bacteria that are well controlled by humoral responses, but 

stimulate poor cell-mediated responses due to limited MHC-I presentation. 

Since the inactivated pathogen cannot replicate, a large amount of it, 

administered in periodic boosters, is required for stimulating and maintaining 

immunity. An additional disadvantage is that killed vaccines for viruses that 

mutate rapidly, such as influenza, are not protective unless they are 

manufactured regularly to include the new antigenic specificities of the 

mutated viral strains. 

3.4 ‘Second generation’ vaccines. 

 In order to overcome these difficulties, ‘second generation’ vaccines 

were developed. Advanced technology allowed the identification and 

purification of components or products of pathogens that would be as 

effective as the whole organism, leading to the development of acellular 

vaccines, such as subunit and virus-like particle vaccines. Examples have 

included vaccines that consist of purified protein antigens such as inactivated 

bacterial toxins or toxoids (e.g. against tetanus and diphtheria), vaccines 

derived from viral particles such as capsular polysaccharides, either alone 

(e.g. against HPV) or conjugated to a protein carrier (e.g. against bacterial 

meningitis), and vaccines that use recombinant protein components such as 

the hepatitis B surface antigen (e.g. against HBV). 

 Viral particles are more immunogenic than subunit vaccines, because 

they have a more stable multi-covalent structure compared to purified proteins 

that may not retain their native conformation and, consequently, can result in 

the production of antibodies that may not recognise the pathogen. Generally, 

acellular vaccines are safer than those based on whole organisms but often fail 

to stimulate a full range of immune responses because, like killed vaccines, 

they have limited access to appropriate pathways of antigen presentation. 

Thus, they invariably require the correct choice of an immunogenic protein 

carrier or adjuvant to ensure sufficient immunogenicity. 
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3.5 Existing vaccines are good for the protection against acute 

viral infections. 

 Interestingly, all vaccines that work today and are proven to protect, 

including the classical childhood vaccines (e.g. measles, mumps, and rubella), 

are those that induce potent neutralizing antibody responses of apparently long 

duration against pathogens that cause acute infectious episodes. Acute 

infections, usually caused by highly cytopathic infectious agents, are generally 

better controlled by soluble diffusible factors including T cell–dependent 

cytokines and by specific neutralizing antibodies, while antiviral CD8(+) T cell 

responses may also play an important role (Miller, van der Most et al. 2008). 

Highly cytopathic viruses and bacteria usually exhibit various epitopes that 

induce antibodies of numerous specificities, which include neutralizing 

antibodies that are protective (Bachmann, Kalinke et al. 1997). Overall, 

protective vaccination does not necessarily prevent re-infection, but reduces 

its severity so as to prevent disease (Bloom and Ahmed 1998). This imitates 

the mechanism of protection by immunity; it doesn’t refer to sterile protection, 

but it represents a balance of optimal immunity against the various cytopathic 

infections, while avoiding excessive immunologically mediated tissue damage 

(Zinkernagel 2003). 

3.6 Existing vaccines are inefficient for protection against 

chronic infections. 

 By contrast to the success of our vaccines against acutely cytopathic 

agents, chronic infections (e.g. HIV) have been much more difficult to 

control. Although there is insufficient information on the correlates of 

protective immunity against pandemics of persistent infections such as HCV 

and HIV, facultative intracellular bacteria such as mycobacteria, and 

intracellular parasites, evidence suggests that those pathogens are usually 

controlled initially by T cells, with antibodies playing a possible but 

inconclusive role (Ciurea, Klenerman et al. 2000). Indeed, in several persistent 

infections including tuberculosis, leprosy, and perhaps HIV in some sero-
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negative AIDS-resistant patients, it has been empirically noted that T cell 

memory occasionally provides efficient protection against reinfection. 

3.7 ‘Third generation’ vaccines and therapeutic vaccination 

aim to mobilize the immune system against persistent 

infections and cancer. 

 Improved understanding of the mechanisms involved in the immunity 

against persistent infections and advances in molecular biology have 

permitted the development of ‘third generation’ vaccines, which aim to 

combat ‘resistant diseases’. Furthermore, a clearer insight of how the immune 

system functions and where is weakened during persistent diseases has led to 

the concept of therapeutic vaccination, which could control or cure chronic 

infectious diseases and cancer by rectifying and/or generating proper immune 

responses. Similar to persistent microbial and viral infections, optimizing the 

cell-mediated immune responses through vaccination is thought to be the 

major element of successful immunotherapy strategies for cancer. 

3.8 Application of recombinant DNA technology for the 

development of novel vaccines. 

 Recombinant DNA technology allows the use of bacterial, viral or 

other vectors for the production of large quantities of the desired antigen, 

which is then purified and injected as subunit vaccine; the only example of 

such vaccine licensed for use in humans is the recombinant HBV vaccine. 

Novel vaccination approaches use recombinant DNA technology for selective 

attenuation of pathogens; an application that could prove useful for viruses 

that undergo frequent antigenic shifts such as influenza, or for bacteria that 

produce pathogenic enzymes such as typhoid and salmonella. An alternative 

vaccination approach aimed to protect from multiple pathogens uses DNA-

recombinant-attenuated micro-organisms as vectors to carry antigenic 

particles from several diverse organisms. They are known as hybrid vaccines 

and examples include both bacterial vectors (e.g. attenuated strains of 
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salmonella carrying antigens from Listeria, Leishmania, Schistosoma) and 

viral vectors (e.g. vaccinia virus that express genes from HSV). 

 Overall, recombinant technology allows the selection for safe antigens 

and vectors, while proteins expressed on a live organism are more likely to 

preserve their native conformation. Recombinant vaccines induce both 

cellular and humoral immunity as they are live organisms and they can be 

engineered so as reversion to a wild type of pathogen is impossible. However, 

reliable laboratory markers of attenuation and virulence are still lacking. 

Moreover, vaccination efficiency of these novel applications depends on the 

analytical power of recombinant DNA methods, since the genes encoding for 

protective antigens must be located, cloned and successfully expressed in the 

new vector. 

3.9 Protective immunity can be induced by injecting DNA 

encoding immunogens. 

 DNA-based vaccines involve immunization with DNA vectors that 

encode for immunogens, rather than with the immunogen itself. They induce 

cell-mediated and humoral immune responses by generating antigenic proteins 

in situ by the host, in a manner similar to that seen with live-attenuated 

vaccines. However, in contrast to these original vaccines, the DNA-based 

vectors do not have the potential to cause disease and are being designed to 

deliver only the desired genetic sequences that encode for immunogenic 

antigens. Due to the immunogenicity of the DNA itself, their inherent stability 

and their low manufacturing cost, DNA vaccines have become an appealing 

tool in designing effective vaccination against diseases caused by persistent 

viruses (e.g. HIV), intracellular bacteria (e.g. tuberculosis), parasites (e.g. 

malaria) and cancer. 

 Nonetheless, the mechanisms that underlie DNA-based vaccination are 

not yet fully understood. Important questions include the method of T cell 

priming, the pathways of antigen presentation employed by APCs (e.g. direct 

through plasmid transfection, indirect through cross-presentation, or both) and 
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the duration of the antigen presentation. For example, extended immuno-

stimulation by the foreign antigen could potentially provoke chronic 

inflammation or autoantibody production, while, as with all gene therapy, the 

possibility that the vaccine’s DNA could integrate into and interfere with host 

chromosomes is an ongoing concern. 

3.10 Synthetic peptides of protective antigens can stimulate 

protective immune responses. 

 Elucidation of the crystal structure of the peptide/MHC complex 

(Stern and Wiley 1994), along with the discovery of anchor-residue sequence 

motifs that account for the binding specificity of peptides to MHC 

(Rammensee 1995), has provided the visual and mechanistic tools to help 

understand how T cells recognize antigens in the form of short peptides. The 

stability of the peptide/MHC complex allows the purification and sequence 

analysis of naturally occurring antigenic peptides, expressed by infected or 

tumour cells, that enables antigen fragment and sequence prediction and, 

subsequently, synthesis of potential vaccine candidates. Selection of peptides 

for use in vaccination can be achieved through biochemical identification, by 

genetic approaches, or with bioinformatics, and it is applied both for MHC 

class I and MHC class II peptide complexes, although the latter imposes more 

difficulties in binding prediction due to the open structure of the binding 

groove. 

 Peptide-based vaccination allows utilization of one or a cocktail of 

selected peptide fragments, which can be formulated to become more 

immunogenic by simple sequence modification. The peptide-induced immune 

response is generated solely against the selected antigen and, in contrast to 

recombinant or attenuated viral vaccines it doesn’t carry the risk of mutations 

that revert the vaccine to more virulent forms. It is a method characterized by 

simple manufacturing technology, while the peptide products are easy to 

preserve/store and their supply is broadly available. 
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 A major drawback in injecting soluble peptides is lack of 

immunogenicity, whilst in some studies such vaccination approaches have 

even been shown to induce tolerance, presumably due to peptide uptake and 

presentation by immature antigen presenting cells that fail to deliver the co-

stimulatory and cytokine signals (e.g. IL-12 and/or IFNα) required for T cell 

activation (Mescher, Agarwal et al. 2007). To counter this, the use of 

adjuvants and suitable carrier systems has proved essential in peptide-based 

vaccination; carriers provide protection for the peptides from protease 

degradation, while adjuvants support T cell activation by increasing the 

expression of co-stimulatory ligands and stimulating IL-12 and/or Type I IFN 

production by DCs through engagement of TLRs. One such system involves 

the use of immune-stimulatory complexes (ISCOMs), which are lipid carriers 

that also act as adjuvants but have minimal toxicity. By fusing with the plasma 

membrane of an antigen presenting cell, ISCOMs deliver peptides and 

proteins in the cell cytoplasm, allowing them to enter the MHC class I 

pathway for induction of CD8(+) T cell responses (Sanders, Brown et al. 2005). 

Such approaches permit the ‘indirect’ presentation of the selected peptides by 

APCs, thus overcoming restriction of accessible MHC-I molecules occupied 

by endogenous antigen and generating cytotoxic T cell (CTL) responses 

through cross-priming. 

 Nevertheless, the quality of the induced CTL response to peptides is 

hard to predict, because synthetic peptides can represent cryptic epitopes that 

would not be naturally generated. Furthermore, individual peptides can be 

useful only in patients with appropriate HLA molecules capable of presenting 

that peptide; it is therefore a necessity in peptide vaccination to manufacture 

several different epitopes to match various HLA alleles. 

 To date, several strategies have been implemented in peptide 

vaccination, both to improve immunogenicity and to steer the immune system 

toward desired types of responses. 

 



 38 

3.11 Antigen presenting cells can be used to modulate the 

immune response. 

 Another area of intense research in modern vaccine development is 

cell-based vaccination. Approaches, which are discussed in detail later, are 

mainly focused on the use of autologous dendritic cells and their derived 

particles with aim to maximise the induction of potent T and B cell responses. 

 

Part II- Different infections present different problems 

to the immune system. 

 Despite success in the lab, results of the new-generation vaccines from 

the clinic have been generally disappointing, and much effort is being divested 

into vaccine research. This thesis describes the development of a new vaccine 

strategy, using microsomes, that attempts to overcome the problems faced by 

many of the vaccines described above. These problems are discussed in more 

detail below. 

3.12 Acute resolving infections. 

 In acute viral infections, the number of infectious agents rapidly 

increases initiating an innate anti-viral immune response. This takes numerous 

forms but mainly includes interferon production and natural killer (NK) cell 

activity, which occurs early after infection and constitutes the first line of 

defence (Gregoire, Chasson et al. 2007; Ha, West et al. 2008). As the 

pathogen is retarded by the components of the innate immune system a 

concurrent adaptive immune response is triggered; professional antigen 

presenting cells, such as DCs, process virally-derived antigens, loaded onto 

MHC, that with the help of co-stimulation result in the activation and 

expansion of specific effector T cells. Four to seven days after infection, large 

numbers of activated cytotoxic T cells appear within the secondary lymphoid 

tissues. At the same time, activated CD4(+) T helper cells help B cells to 



 39 

produce specific antibody as both the cellular and humoral adaptive response 

peak. Systemic viral load is reduced during this stage. Clearance of the 

infection coincides with elevated cytotoxic T cell activity followed by T cell 

death as the antigen levels fall. The conclusion of the adaptive response is 

characterised by a dramatic fall in the numbers of antigen-specific effector T 

cells, but, also by elevated serum antibody titres that can persist for months 

and the appearance of antigen-specific memory cells. Typical examples of 

viruses that result in acute infections are smallpox and yellow fever virus 

(Miller, van der Most et al. 2008). 

 Acute resolving infections (Figure 12) leave no residual pathology 

following an effective adaptive immune response, which, ideally, clears the 

Figure 12  The course of a typical acute infection that is cleared by an 
adaptive immune response. 

 
1. Following entry of the microorganism in the body the level of the infectious 
agent increases as the pathogen replicates. 
2. An adaptive immune response is initiated when the numbers of pathogen 
exceed the threshold level of antigen required to intiate an adaptive immune 
response. 
3. Effector cells and other components of the adaptive immunity start clearing the 
pathogen. 
4. When the infection is cleared that adaptive immune responses cease 
establishing the host with immunological memory that ideally will provide lasting 
protection against re-infection with the same pathogen.  
Image reproduced from Immunobiology 6th edition. 
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infection and precludes potential disease by establishing in the host a state of 

protective immunity against reinfection with the same pathogen. 

3.13 Latent and chronic persistent infections. 

 Non-acutely cytopathic pathogens, such as cytomegalovirus, herpes 

viruses and mycobacterium tuberculosis, have evolved to coexist with their 

human hosts, thereby avoiding the generation of efficient protective immunity 

(Thomas Dörner and Andreas Radbruch, 2007). These infectious agents may 

exist within the host in a latent state (contained but not eliminated), but when 

the adaptive immune response is weakened, the pathogen can 

opportunistically reappear as a virulent systemic infection. 

 When a latent pathogen reappears as an infectious and continuously 

replicating agent it leads to chronic persistent infection which progresses 

slowly and lasts a long time. Chronic infections, such as acquired immune 

deficiency syndrome (AIDS) and hepatitis C, result from pathogens that 

escape acute immune responses because they don’t provide enough antigen or 

they don’t provide antigen at the right place to trigger adequate stimulation of 

the immune system. Using various strategies to avoid recognition by the 

immune system as well as mechanisms to suppress immune responses 

(Johnson and Desrosiers 2002; Hilleman 2004; Gale and Foy 2005) these 

pathogenic agents have evolved strategies to persist in the infected host. 

Notably, the immune response during chronic infections is altered or impaired 

through impaired DC function, induction of regulatory T cells (Tregs) and 

production of immunosuppressive cytokines (Ha, West et al. 2008). 

 Chronic persistent viruses and bacteria can interfere at various stages 

of the adaptive immune response with evasion mechanisms that either 

function independently within different immune cells or work cooperatively. 

Intracellular viral or microbial proteins can directly interfere with antigen 

presentation by altering the expression of MHC or costimulatory molecules, 

resulting in inappropriate presentation of critical antigens to the immune 

system. Furthermore, the persistent presentation of pathogen-derived antigens 
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on APCs may induce deletion of corresponding T cells or mutation of the 

antigenic epitope. Alternatively, prolonged exposure to these antigens can 

lead to a progressive exhaustion of T cells, which is characterised by the loss 

of protective cytokine production, cytotoxicity and proliferation and the 

upregulation of inhibitory molecules, such as PD1 and CTLA4 (Ha, West et 

al. 2008). As a result of their impaired function, T cells fail to further control 

the infection. Moreover, the establishment of viral persistence is supported by 

an immunosuppressive and regulatory environment, which is induced in the 

early stages of chronic infection (Brooks, Teyton et al. 2005). 

 Chronic infections are largely non- or low-cytopathic, often slow in 

kinetics, and have a tendency to persist (Zinkernagel 2003). Persistent 

pathogens do not kill the immunocompetent host rapidly, but rather tend to 

establish a balanced state of infection-immunity, where they coexist in low 

numbers together with low grade cell-mediated and humoral immune 

responses. 

 Cytotoxic T cells are crucial for the efficient control of non-cytopathic 

agents that cause extra-lymphatic infections that persist in the periphery, for 

example in neurons, epithelial cells, or granulomas. A notable exception is 

HBV, a non-cytopathic but much less variable DNA virus, against which a 

polyclonal neutralizing antibody response protects very efficiently. However, 

lessons learned from TB or leprosy suggest that T cell protective responses 

during these infections usually depend on continually-activated effector T 

cells to contain re-occurrence, spread, and expansion of infection (Zinkernagel 

2003). Non-replicating antigen preserved in the form of immune complexes 

on antigen presenting cells is perhaps sufficient to maintain CD4(+) T cell 

memory and, consequently, antibody production. However, protective CD8(+) 

T cell memory requires persistent infection that feeds T cell activation, since 

the MHC class I pathway of peptide loading is dependant on constitutive 

intracellular synthesis and generation of peptides (Yewdell and Haeryfar 

2005). 
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 Despite the protection that T cell effector mechanisms provide during 

the period of acute infection, T cell responses can also be detrimental by 

destroying inoffensive host cells. To avoid the resulting immunopathology 

that would otherwise lead to disease or death, the immune system contains 

such unbalanced cytotoxic T cell responses against too many infected host 

cells by negatively selecting these repertoires (Chisari and Ferrari 1995; 

Zinkernagel 1996). As a result, the balance between immunoprotection and 

immunopathology becomes a very fragile one, as is well-illustrated in the 

phenotypes of various persistent infections. For example, symptoms in HBV-

infected patients can range from in-apparent infection to very aggressive 

hepatitis (Zinkernagel 2003). 

 To exacerbate this complexity, persistent pathogens exploit 

mechanisms that control the balance of infection (immunopathology) versus 

immunity (immunoprotection). Their immune evasion strategies often 

preclude infection of macrophages and antigen-presenting cells and therefore 

antigen presented by MHC-I may not reach draining lymph nodes to induce 

CD8(+) T cell effector responses. Even if antigen arrives at the draining lymph 

nodes in phagocytosed form to induce CD4(+) T cell and subsequent humoral 

immunity, antibodies may not be effective in reaching the certain peripheral 

organs and often not sufficient to eradicate the infected cells. 

 The difficulties of the immune system in dealing with such strictly 

peripheral extra-lymphatic events are reflected in our failure, so far, to 

produce successful vaccination for many persistent infections (Figure 13). 
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Figure 13  Balance between immunoprotection and 
immunopathology. 
 
 Our protective vaccines imitate the mechanism of protection against 
acute resolving infections. Acute high-cytopathic infectious agents leave no 
residual pathology following an effective adaptive immune response, which, 
ideally, clears the infection and precludes potential disease by establishing in 
the host a state of protective immunity against reinfection with the same 
pathogen. 
 Persistent infections are largely non- or low-cytopathic, often slow in 
kinetics, and have a tendency to persist. Persistent pathogens will not aim to 
kill the immunocompetent host rapidly, but rather tend to establish a balanced 
state of infection-immunity, where they coexist in low numbers together with 
an active immune antibody and T cell response. Vaccines are not necessasary 
for protection. 
 When the immune system cannot balance optimal resistance against 
the infection and excessive immunologically-mediated tissue damage, is the 
actual immune response that results in immunopathology. These infections 
result in disease and necessitate vaccines, which are not yet available. 
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3.14 Cancer. 

 Cancers are caused by the progressive growth and cell division of a 

single transformed cell. The idea of a defence system recognizing cancer cells 

as foreign was first postulated by Paul Ehrlich at the beginning of the last 

century and supported by Burnet’s and Thomas’ hypothesis of tumour-

immune surveillance (Burnet FM, 1970) (Croci, Zacarias Fluck et al. 2007). 

This theory proposed that tumours appeared more frequently than are 

observed, but were eliminated efficiently by the immune system before they 

were clinically detectable. However, in spite of the presence of an effective 

immune system, tumours arise and develop from normal tissues and invade 

surrounding and distant sites. To date, the question of whether 

immunosurveillance against tumours truly exists is yet to be resolved. 

 Pathogens consist of a variety of foreign proteins many of which can 

be recognised by the immune system as ‘non-self’ and/or dangerous. In 

contrast, tumour cells are derived from host cells and differ only slightly, 

limiting the number of antigens available to trigger an immune response. 

Often, tumour antigens are not expressed on the surface of tumour cells and 

are therefore inaccessible for recognition by antibodies. Moreover, the tumour 

environment doesn’t induce efficient DC maturation. Consequently, antigen 

presentation at the tumour site or tumour-associated draining lymph nodes of 

potential tumour antigens by immature DCs that lack costimulatory molecules 

(Figure 14) leads to anergy and tolerance of the corresponding tumour-primed 

T cells, hampering the exquisite specificity of the immune system to attack 

cancer. Even if effector T cells are efficiently primed, cancerous lesions 

promote growth and angiogenesis, producing an abnormal tumour vasculature 

that prevents the smooth entry of tumour-specific effector cells into 

vascularized cancer nodules (Melief 2008). 
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 Malignant cells demonstrate multiple strategies that evade the immune 

response to promote tumour survival. Oncongenic protein expression in 

tumour cells leads to over-expression of STAT3, production of inflammatory 

chemokines (e.g. CCL2, CCL5, CXC) and expression of various 

immunosuppressive cytokines (e.g. IL-10 or TGFβ) (Melief 2008). 

Chemokines support tumour growth by promoting the migration and invasion 

of tumour cells (Soria and Ben-Baruch 2008), while also mediate recruitment 

of immunosuppressive leukocyte infiltrates such as myeloid derived 

suppressor sells (MDSCs), tumour-associated macrophages and immature 

dendritic cells into the tumour stroma. STAT3 upregulation further induces 

expression of immunosuppressive cytokines, drives suppression of TH1 cell 

immune responses and causes impairment of antigen presentation by tumour-

associated DCs by reducing their expression of costimulatory and MHC class 

II molecules (Kortylewski and Yu 2008). Cross-presentation of tumour 

Figure 14  Priming of effector T cells requires three signals. 
 
 The outcome of specific antigen recognition by T cells (signal 1) is 
determined by co-stimulation (signal 2) delivered by fully activated APCs and 
the presence of inflammatory cytokines (signal 3). Activation of naïve T cell 
in the presence of all three signals leads to full effector function. By contrast, 
in the absence of all three signals activation of T cell leads to anergy or 
tolerance. Image inspired by Dr. D.Pennington’s lectures. 
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antigens by insufficiently activated DCs induces anergic T cells or deletion of 

tumour-responding effector T cells, and the expansion of regulatory T cells in 

tumour-draining lymph nodes (Ghiringhelli, Puig et al. 2005) instead of 

tumour immunity. 

 Indeed, the requirement and differentiation of sub-optimally functional 

dendritic cells in the tumour microenvironment are among the main factors 

that account for tumour escape. 

 

Part III- The elements of a successful vaccine. 

3.15 Requirements for a successful vaccine. 

 Taking these observations into account, a successful vaccine against 

diseases caused by persistent infections and cancers must aim to provide T 

cell–mediated memory and protection; maintain long term immunity, without 

causing disease. A good vaccine should allow periodical or continuous 

generation of MHC class I–presented peptides in secondary lymphoid tissues 

to activate CD8(+) T cells against peripherally located intracellular infections 

(Yewdell and Haeryfar 2005). Moreover, it should provide sufficient antigens 

and in appropriate form to be taken up by APCs and macrophages in order to 

activate T cells to produce macrophage activating soluble mediators such as 

IFN, TNF, and other interleukins such as IL-12 (Zinkernagel 2003; Yewdell 

and Haeryfar 2005). 

 The antigen used for vaccination should be carefully selected taking 

into consideration that persisting viruses are highly variable (Davenport, Price 

et al. 2007). Moreover, naturally immunodominant antigens may not represent 

the optimal targets for effective immunity (Friedrich, Valentine et al. 2007). 

Indeed, reported evidence suggests that vaccine-induced T cells generally 

recognize native antigen less efficiently (Appay, Speiser et al. 2006) and are 

therefore less effective in the face of their real targets (Stuge, Holmes et al. 

2004). Nonetheless, the robust generation and maintenance of highly specific 
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CD8(+) T cells is not as straight forward as the simple administration of 

relevant antigen at the right doses. Other variables, including the timing and 

intensity of the antigen delivery schedule, the local environment at the site of 

inoculation and the choice of appropriate vectors are also required to produce 

an optimised response (Appay, Douek et al. 2008). 

 Although induction of CD4(+) T cells is important to support initiation 

of CD8(+) T cell responses, issues related to specific pathological contexts 

should be carefully evaluated when developing novel vaccine candidates. For 

example, CD4(+) T cells can serve as preferential targets for some viruses, 

such as HIV, thus their activation may promote rather than control viral load 

(Douek, Brenchley et al. 2002), (Pennington 2009- in print). Additionally, 

CD4(+) T cell can be stimulated to generate regulatory CD4(+) T cell 

populations, thus compromising a cytotoxic immune response against virally 

infected or oncogenic cells (Appay, Douek et al. 2008). 

 Clearly, the concept of therapeutic vaccination implies that the host 

immune system is still competent for eliciting an immune response after 

vaccination. Exhausted T cells surrounded by an immunosuppressive 

environment are likely to be unresponsive to antigen provided by therapeutic 

vaccine, except if this is combined to alleviate inhibitory and suppressive 

factors. Therefore, successful immunotherapy should not only have the 

capacity to produce amplifying immune responses against the corresponding 

pathogens but, also must involve mechanisms that are able to break antigen-

specific tolerance if this has occurred. 

 Ultimately, an efficient vaccination strategy against the diseases which 

we don’t have vaccines for should establish: long-lived, antigen-specific 

plasma cells that produce neutralizing antibody, persisting CD4(+) and CD8(+) 

T cells, and effective migration of pathogen-specific T and B cells to sites of 

infection, especially mucosal sites (Pulendran and Ahmed 2006). This, in turn, 

should provide long-lived immunological protection in order to prevent 

disease, or reduce the severity of symptoms. 
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3.16 Additional requirements for cancer vaccines. 

 A successful cancer vaccine should first identify tumour antigen 

targets that discriminate cancer cells from normal cells. Several tumour-

associated antigens (TTAs) that are presented by MHC to T cells and induce 

anti-tumour immune responses have been identified and are classified in six 

categories: These are strictly tumour-specific antigens (e.g. CDK-4 gene in 

melanoma) that result during oncogenesis from mutations in a particular gene 

that is associated with the tumour, testis-specific antigens (e.g. MEGE-1 gene 

in melanoma), tissue-specific antigens (e.g. tyrosinase enzyme in melanoma), 

strongly over-expressed antigens (e.g. HER-2/ neu in breast carcinoma), 

molecules that display abnormal post-translational modifications (e.g. MUC-1 

in breast carcinoma) and viral proteins that cause cancer (E6 & E7 of human 

papilloma virus in cervical carcinoma). Tumour-associated antigens are able 

to activate tumour-specific T cells and are therefore promising targets for use 

in immunotherapy. 

 Second, the form in which antigen is administered should be 

considered (i.e. peptide, protein, DNA, or RNA), with the aim of efficiently 

delivering these tumour antigens to the secondary lymphoid organs in 

appropriate amounts and within a specific time frame. Third, the selection of 

appropriate adjuvants that imitate optimal conditions for immune stimulation 

is vital. These adjuvants condition the microenvironment (of both lymphoid 

tissue and the tumour) to alleviate DC suppression and licence them to 

generate effector T cells, while facilitating recruitment and activation of 

innate immune mediators. 

 In summary, to achieve eradication of the tumour we need to develop 

methods sufficient to break self-tolerance to many tumour antigens, while 

overcoming mechanisms by which tumours evade the host immune response. 
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3.17 The route of vaccine administration is an important 

determinant of success. 

 The route of immunization can influence the compartmentalization and 

the nature of the induced immune response, due to the presence of distinct 

antigen-presenting cells at different inoculation sites. Vaccines can be 

administrated through mucosal, intramuscular or intravenous inoculation. 

Rationally, mimicking the natural route of entry of the pathogen against which 

the vaccination is directed is likely to be the most effective way to stimulate 

an appropriate immune response. 

 Since many pathogenic agents enter the body and establish infection at 

mucosal surfaces numerous studies have focused on the mechanisms by which 

these organisms stimulate mucosal immunity. For example, mucosal-

associated lymphoid tissue is the primary site of viral entry and replication for 

HIV; thus, delivering vaccines to this compartment should target early viral 

dissemination. An example of a vaccine that is administered via the 

pathogen’s normal route of entry is the oral polio vaccine, which protects at 

the site of entry by stimulating mucosal immunity and, subsequently, the 

production of neutralizing antibodies. 

 A desirable feature of vaccine-induced immunity influenced by the 

route of administration is the subsequent localization of effector T cells to the 

site of likely pathogen exposure. Mucosal immunizations appear to lead to the 

induction of T cells with higher antigen sensitivities compared with 

subcutaneous vaccination in animal models (Belyakov, Isakov et al. 2007). 

Indeed, recent research has associated the presence of poly-functional CD8(+) 

T cells in the mucosal-associated lymphoid tissue with slow HIV disease 

progression (Critchfield, Lemongello et al. 2007). Likewise, to arrest the 

growth of solid tumours, it is necessary to induce the effective migration of 

tumour antigen-specific T cells to the tumour site. The induction of highly 

antigen-sensitive T cells in specific compartments may also compensate for 

local regulatory mechanisms that compromise the full potential of antigen-

specific cellular immunity (Appay, Douek et al. 2008). In addition to the 
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efficiency of the immune response, the route of delivery has been shown to 

also affect the nature of the immune response. For example gene-gun 

intradermal delivery favours TH2 responses, while intramuscular 

administration tends to induce more TH1 differentiation (Torres, Iwasaki et al. 

1997). 

 Finally, a critical consideration when choosing the administration 

route for a vaccine is the smooth delivery of the antigen to the targeted antigen 

presenting cells and, subsequently, the efficient uptake of intact vaccine into 

the antigen processing pathways. The importance of this issue is reflected in 

that the majority of the current vaccines are administered by injection rather 

than via the oral route, in order to avoid vaccine digestion in the gut and 

preserve the structure of the antigen from proteolytic degradation on its way to 

the antigen presenting cell. 

 

Part IV- Current attempts to make better vaccines. 

 Generally, new generation vaccines are being designed to generate 

immunity beyond that induced by pathogens themselves, especially against 

persistent viral infections. An improved understanding of developing immune 

responses has led to the identification of key intervention points in the design 

of novel experimental vaccines. For example many new strategies attempt to 

induce the cell-mediated arm of the adaptive immune response. Thus, they are 

targeted to several components of cellular immunity. There are many 

considerations relevant to the design of these vaccines; these will be discussed 

here. 

3.18 Improvement of immune responses through 

selection/enhancement of optimal epitopes for T cell activation. 

 Classical vaccination strategies that use live attenuated viruses are 

often not protective for viruses that cause persistent chronic infections, 
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because they have evolved under the selective pressure of the host immune 

system and, as a result, are unlikely to carry optimal antigenic epitopes. 

Similarly, tumours thrive once T cells specific for the most immunogenic 

epitopes of the tumour cells are deleted due to tolerizing mechanisms. Thus, 

the above observations suggest that epitope enhancement, the process of 

altering the sequences of certain viral or tumour epitopes to improve their 

immunogenicity, would be beneficial for vaccine design. 

 One way of enhancing the immunogenicity of an epitope is by 

increasing the peptide binding affinity for MHC molecules. This can be 

achieved by artificially improving the anchor residues of the peptide or by 

screening peptide libraries for peptide sequences that best bind to MHC. 

Converting a subdominant peptide into a dominant one makes it more 

competitive for the available MHC molecules and potentially increases the 

level of stable peptide/MHC complexes on the surface of an antigen 

presenting cell, which is crucial in improving the potency of a vaccine. 

Alternatively, epitope enhancement can involve the modification of amino 

acid sequences that would improve the affinity of the peptide/MHC complex 

for the TCR, in order to effectively activate ‘low-avidity’ CTLs that are less 

sensitive in antigen recognition. This is beneficial in cases where ‘high-

avidity’ TCRs have been deleted due to self-tolerance mechanisms. Finally, 

epitope enhancement can be achieved by constructing chimeric peptide 

sequences to elicit more broadly cross-reactive T cells. 

 Epitope enhancement is advantageous as it can be used to improve the 

immunogenicity not only in peptide vaccination, but also in any form of 

vaccine in which such T cell epitopes occur, including DNA, recombinant 

protein, viral vector and attenuated viral vaccines. 

3.19 Selection of protective CTLs can improve the biological 

outcome of immune response. 

 Compelling evidence showing that CD8(+) T cells are critically 

important in the host response to viral infections and cancers, resulted in them 
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becoming a significant target for vaccine design. Detailed attempts to identify 

protective T cells have highlighted ‘functional avidity’ as a crucial 

determinant of T cell efficacy. In those studies, ‘functional avidity’, which is 

also defined as ‘antigen sensitivity’, is dependent on the biological functional 

outcome instead of the antigen binding affinity at the cellular level (Appay, 

Douek et al. 2008). 

 The antigen-sensitivity of T cells generated in vitro has been shown to 

depend on the quantity of antigen used for stimulation, with low peptide 

densities resulting in the generation of highly responsive cells (Alexander-

Miller, Leggatt et al. 1996; Walter, Herrgen et al. 2003). Similarly, the antigen 

sensitivity of memory T cells in mice has been shown to correlate inversely 

with the peptide density used for dendritic cell labelling and in vivo priming 

(Bullock, Mullins et al. 2003). 

 CD8(+) T cells with high levels of antigen sensitivity can effectively 

respond to low densities of cognate peptide/MHC I on the target cell surface. 

Consequently, effector functions are triggered more readily, which 

corresponds with rapid and effective target cell elimination (Bennett, Ng et al. 

2007). Highly sensitive CD8(+) T cells are associated with superior control of 

persistent viruses (Belyakov, Kuznetsov et al. 2006) and viral replication 

(Almeida, Price et al. 2007), they exert greater selection pressure on variable 

viruses such as the simian-human immunodeficiency virus (O'Connor, Allen 

et al. 2002), and they shown to be potent suppressors of the viral infection 

cycle in HIV infected individuals (Saez-Cirion, Lacabaratz et al. 2007). 

Moreover, T cells with high levels of antigen sensitivity have the capacity to 

efficiently eradicate tumour cells and the generation of such CTLs has been 

implemented in tumour immunotherapy (Dutoit, Rubio-Godoy et al. 2001) 

with the aim to break tolerance. 

 The selection of potent CTLs has been considered as a novel 

immunization approach. T cells of high ‘functional avidity’ can be selected 

from naturally occurring lymphocyte populations and expanded in vitro, or 
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they can be engineered by retroviral transduction of high affinity TCR genes, 

before they are adoptively transferred into the host. 

 High antigen sensitivity and polyfunctional outcomes are the basis of 

T cell efficacy and permit the successful control of tumours and viruses. 

However, the increased turnover of CD8(+) T cells that is associated with these 

properties can result in an irreversible exhaustion of vaccine-induced effective 

cytotoxic T cells through the loss of replicative capacity and induction of 

apoptosis (Monsurro, Wang et al. 2004; Narayan, Choyce et al. 2007). 

Successful vaccination must therefore seek to maintain effective T cell 

responses, while T cell proliferative capacity and survival is preserved. 

3.20 Modification of immune stimulatory environment to aid 

immunity. 

 As well as expressing immunogenic epitopes, pathogens can also 

trigger the innate immune system (through Toll-like receptors), which alerts 

the body to danger and, in a specific cytokine environment, helps guide 

adaptive immune responses. Inducing artificially a specific immune 

stimulatory environment through targeted incorporation of cytokines, 

chemokines, and co-stimulatory molecules into synthetic vaccines, potentiates 

the immune response both quantitatively and qualitatively and enhances 

effective memory responses. 

 The most broadly applicable individual cytokine seems to be GM-

CSF, which recruits dendritic cells and, subsequently, can induce a range of T 

cell responses, including differentiation of TH1, TH2 cells and CTLs, without 

skewing the response in favour of one type or another (Berzofsky, Ahlers et 

al. 2001). Other studies have shown that expression of IL-15 in vaccine 

vectors can selectively induce longer-lived memory CTLs (Oh, Berzofsky et 

al. 2003), while IL-12 has the capacity to steer the T helper cell population 

towards a TH1 response. IL-2 was also found to improve the clinical efficacy 

of a peptide-based immunotherapeutic vaccine (Rosenberg, Yang et al. 1998). 

In addition to individual cytokines, the incorporation of multiple cytokines 



 54 

such as GM-CSF and IL-12 or the two combined with TNFα has also been 

shown to result in more potent immune responses. 

 Combinations of cytokines with co-stimulatory molecules can also 

synergistically improve CTL responses and antiviral protection (Ahlers, 

Belyakov et al. 2002). For example, a triple combination of co-stimulatory 

molecules- B7, intercellular adhesion molecule 1 (ICAM-1) and lymphocyte 

function associated protein 3 (LFA-3)- expressed in recombinant viral vectors 

has been found to greatly augment CTL responses in antitumour immunity 

(Hodge, Sabzevari et al. 1999). Other costimulatory ligands, such as CD40L, 

have been shown to activate and induce maturation of dendritic cells recruited 

by GM-CSF, thus, amplifying the immune response. Moreover, chemokine-

antigen fusions encoded in a DNA vaccine against HIV have also been shown 

to enhance immunogenicity of the antigen by inducing both systemic and 

mucosal immune responses (Biragyn, Belyakov et al. 2002). Similarly, the 

inclusion of receptors that provide signalling of B7 and TNFR co-stimulatory 

signals into chimeric antigen receptors (TCRzeta) could trigger self-sufficient 

clonal expansion and improved the induction of effector functions in resting 

human T cells (Finney, Akbar et al. 2004). 

3.21 Relief of negative regulatory mechanisms for the recovery 

of anti-viral and anti-tumour immune responses. 

 Negative regulation of the immune system may contribute to the 

failure of various immune mediators to eradicate viral infections and tumour. 

Hence, it has been suggested that relief of negative regulatory mechanisms 

may maximize vaccine-induced immunogenicity. 

 Regulatory mechanisms of the immune system include CD4(+)CD25(+) 

regulatory T cells, IL-13 producing NK cells, γδ cells and NKT cells. Indeed, 

targeted deletion of CD4(+)CD25(+) regulatory T cells can improve immune 

responsiveness (Sutmuller, van Duivenvoorde et al. 2001), while elimination 

of CD4(+) NKT cells can amplify vaccine-induced CTL responses and induce 

protection against an HIV-surrogate virus in a murine model (Ahlers, 
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Belyakov et al. 2002). Agents that block factors secreted or induced by 

regulatory T cells, such as IL-13 and TGFβ, can also synergize with other 

strategies to allow the CTL response to reach its full potential. Finally, 

blockade of the inhibitory co-stimulatory T cell receptor CTLA4 with 

antibodies can prevent inhibition of T cell activation and, subsequently, 

improve vaccine responses (Egen, Kuhns et al. 2002). 
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4. Dendritic cells and the quest for novel 

Immunotherapies. 

Part I-The role of dendritic cells in immune responses. 

 The analysis of DC function in T cell-mediated immunity involves 

three paths of research: the uptake, processing and presentation of antigens, 

cytokine production and surface molecules that control the quality and 

quantity of the T cell response, and the properties required for the distribution 

and mobilization of DCs in vivo. 

4.1 The biology of the dendritic cell. 

 Dendritic cells, the most potent antigen presenting cells of the immune 

system, possess a specialised ability to capture antigens, to process them to 

presentable peptides and to present these processed peptides in the peptide 

binding grooves of major histocompatibility complex (MHC) molecules for 

recognition by T cells. 

4.1.1 Morphology. 

 Dendritic cells demonstrate a great plasticity in their morphology, 

which complements the corresponding task that the cell undertakes at certain 

stages of its development. DCs are dendritic when immature, morphology that 

allows enhanced antigen uptake. They become veiled when traveling to 

enhance movement, and they are dendritic in the lymph nodes to provide 

increased presentation surface. 

4.1.2 Antigen capture. 

 Dendritic cells contain an effective endocytic system, specialized for 

antigen capture, especially at the immature stage of their life. They can take 

up antigens in the form of solutes during fluid phase phagocytosis, as ligands 

for specific endocytic receptors, and as particles. The efficiency of dendritic 
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cell antigen uptake is increased by the utilization of uptake receptors that 

deliver antigen to processing compartments. 

4.1.3 Antigen processing. 

 Antigen presenting cells and especially dendritic cells are unusually 

effective, compared to other cells, in processing a wide range of complex 

entities, such as infectious agents and dying cells, to peptides that can be 

subsequently presented on both MHC class I and MHC class II. 

 When a dendritic cell becomes infected, viral proteins synthesized in 

the cytosol are source of peptides that, associated with MHC class I 

molecules, are presented to CD8(+) T cells. Degradation of cellular proteins 

occurs in large multi-subunit protease complexes, the proteasomes, by 

ubiquitin-mediated proteolysis. Professional antigen presenting cells, of which 

dendritic cells are known to be the most potent, are equipped with a modified 

proteasome, namely the immunoproteasome. Conversely to the proteasome of 

normal cells, in immunoproteasome certain subunits are substituted by more 

active ones to favour optimal recognition and unfolding of ubiquinated 

proteins so as to promote the generation of peptides presented by MHC class I 

molecules. Following protein degradation, peptides with a size of 8-10 amino 

acids are translocated from the immunoproteasome into the endoplasmic 

reticulum on a specialized transporter associated with antigen processing 

(TAP), entering a multi-protein assembly, the peptide loading complex 

(Figure 15). Tapasin, a central component of the loading complex required for 

MHC I loading, links TAP to MHC class I heavy-chain/β2-microglobulin 

dimers to facilitate peptide loading onto MHC-I (Li, Paulsson et al. 2000). 

Other constituents of the loading complex, such as chaperones calreticulin and 

ERp57, also aid the peptide-loading process by ensuring the correct folding 

and assembly of the MHC-I with the peptide. 
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 Endocytosed protein antigens are proteolytically processed for the 

generation of peptides that are presented to CD4(+) T cells in the context of 

MHC class II. MHC-II molecules are also formed in the ER however they 

remain protected from peptide loading by the invariant chain and cytosolic 

adapter molecules until recruited in the endocytotic pathway (Hammerling 

and Moreno 1990). Once they are exposed to the lysosomal acidic 

environment, the invariant chain is cleaved leaving a small fragment called 

CLIP (class II-associated invariant chain peptide) that is associated with the 

binding groove of the class II a:β dimer. The pool of conventional lysosomal 

proteases, supplemented by a specific protease called cathepsin S, generates 

peptides that replace CLIP and bind to the class II molecules. The selection of 

optimal peptides with maximum binding affinities is catalyzed by the 

heterodimeric transmembrane glycoprotein HLA-DM in humans, a 

specialized component of the MHC-II loading complex. 

 

Figure 15  Peptide/MHC class I loading in APCs. 

 Schematic representation of peptide loading mechanism on MHC class I 
molecules. Peptides generated by the immunoproteasome are transported through 
the ER membrane by TAP. Tapasin links TAP to MHC class I heavy-chain/β2-
microglobulin dimers to facilitate peptide loading onto MHC-I. Other components 
of the loading complex, such as calreticulin (Crt) and ERp57, ensure correct 
folding and assembly of the MHC-I with the peptide. Image inspired by Dr. 
D.Pennington’s lectures. 
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 In addition to classical pathways of antigen presentation, dendritic 

cells also use an alternative mechanism, which involves cross-presenting of 

exogenous antigens to elicit CD8(+) CTLs. During cross-presentation, protein 

antigens are internalized and gain access to peptide processing pathways for 

presentation on MHC class I (Bevan 2006), allowing dendritic cells to induce 

CD8(+) T cell responses to immune complexes, non-replicating forms of 

microbes and vaccines, and dying cells. This unusual capacity is critical for 

priming CD8(+) T cell responses to viruses and other pathogenic organisms 

that do not directly infect antigen presenting cells. Furthermore, it is thought 

to be a way of preserving useful information from ingested particles that 

otherwise would be destroyed and, hence, constituting a delicate bridge from 

innate immunity to a specific adaptive immune response (Savina and 

Amigorena 2007). 

 It appears that different types of dendritic cells favour different 

pathways of antigen processing to compliment their specialized function. 

4.1.4 Secretory products. 

 Dendritic cells secrete a number of mediators that depend on 

environmental signals and the maturation state of the cells. They produce 

various cytokines and chemokines, which influence the quality of the immune 

response. For example immature dendritic cells contribute to T cell and NKT 

cell responses by IL-2 production, IL-12 producing dendritic cells have the 

capacity to elicit TH1/TH2 helper differentiation and IL-10 production elicits 

antigen-specific regulatory T cells. 

 Furthermore, dendritic cells produce non-cytokine growth and 

suppressive factors, such as thiols and indoleamine 2, 3 dioxygenase (IDO), 

respectively. IDO is a tryptophan-degrading intracellular enzyme which is 

implicated in the suppression of T cell responses and the induction of 

tolerance. It is expressed by some DCs, although it is not clear which signals 

determine the differentiation of IDO-expressing DC subtypes. However, if the 

DC expresses IDO this expression can be upregulated by tolerogenic signals 
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such as binding of B7 (CD80/CD86) by CTLA-4 on regulatory cells, or 

downregulated by pro-inflammatory maturation signals such as CD40 ligation 

(Mellor and Munn 2004) (Figure 16). IDO-dependant T-cell 

immunosuppression is crucial in regulating T cell responses during a variety 

of chronic infections such as AIDS-HIV, malaria and hepatitis C, and in 

tumours. The mechanisms of IDO-dependent DC-suppression of T cells are 

still under investigation, but generally they are thought to involve both direct 

inhibition of T cell responses through tryptophan deletion and toxic 

metabolites, and indirect inhibition by altering the APC function (Mellor and 

Munn 2004). 

 Of particular interest is the ability of DCs to secrete exosomes, small 

vesicles that carry MHC and co-stimulatory molecules. Exosomes have been 
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Figure 16  Functional plasticity of IDO competent DCs. 
 
 In the presence of pro-inflammatory maturation signals, such as CD40 
ligation, functional IDO expression by DCs is downregulated. By contrast, 
tolerogenic signals, such as ligation of CD80/CD86 by cytotoxic T lymphocyte 
antigen 4 (CTLA4) on regulatory T cells result in differentiation of mature 
IDO(+) regulatory DCs that actively suppress T-cell responses. Image reproduced 
from (Mellor and Munn 2004). 
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used extensively in dendritic cell based but cell-free vaccination, as described 

later. 

4.2 Dendritic cells have the ability to move about the body in a 

directed way. 

 The ability of dendritic cells (DCs) to initiate and orchestrate immune 

responses is a consequence of their initial localization within tissues and their 

specialized capacity for mobilization. The inherent migratory capacity and 

specialization for homing efficiently to the T cell zones of lymphoid organs 

for optimal interactions with T lymphocytes distinguishes dendritic cells from 

the other antigen presenting cells, such as macrophages (Randolph, Ochando 

et al. 2008). The pathways and mechanisms that govern DC migration to 

lymphoid and non-lymphoid tissues shape the immune response and the 

notably different migratory routes that distinct dendritic cell subsets undertake 

affects their specialized role in immune responses. 

 Dendritic cell mobility is apparent from the early stages of their 

differentiation when DC precursors travel from the bone marrow via the blood 

stream to reside in peripheral tissues. In the absence of apparent microbial 

stimuli dendritic cells in the steady state emigrate from the periphery to the 

lymph nodes through afferent lymphatics constitutively (Randolph, Sanchez-

Schmitz et al. 2005) carrying self-antigens which they present to T cells to 

establish and maintain peripheral tolerance to self (Hawiger, Inaba et al. 

2001). Microbial or inflammatory stimuli trigger dendritic cell maturation that 

is accompanied by upregulation of the chemokine receptor required for DC 

trafficking to lymph nodes, CCR7 (Sallusto, Palermo et al. 1999). Migration 

further induces maturation so that the DCs arriving within the LN express 

upregulated surface ligands, for example MHC and co-stimulatory molecules, 

necessary for optimal communication with naive T cells. Recruitment of 

monocytes and DC precursors from the blood to the site of infection or 

vaccination is also augmented by a chemokine-driven process; within the 

inflammatory environment dendritic cell precursors rapidly differentiate into 

immature DCs and replenish the depletion of mature DCs from that site 
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(Banchereau, Briere et al. 2000). Finally, circulating DC precursors may also 

be capable of travelling into secondary lymphoid organs directly from the 

blood stream to form part of a resident network of cells (Bonasio and von 

Andrian 2006). 

 Trafficking via afferent lymph allows DCs to encounter and acquire 

antigen within peripheral organs that would otherwise be unable to travel 

freely through lymph to reach the T cell zone of lymph nodes for optimal 

interactions with T cells (Randolph, Ochando et al. 2008). Pioneering static 

imaging studies revealed that the delivery of soluble antigen from the 

periphery via afferent lymphatic vessels into the lymph node occurs in at least 

two successive waves (Itano, McSorley et al. 2003). First, soluble antigen 

arrives and is rapidly conveyed within reticular conduits (Sixt, Kanazawa et 

al. 2005), before being taken up, processed, and displayed as peptide/MHC 

complexes by resident DCs. A second wave of antigen, borne by DCs in the 

periphery, subsequently arrives a few hours later, while during the ongoing 

immune response, more waves of antigen-bearing dendritic cells also arrive in 

the lymph nodes. Because T cells have the capacity to re-interact with 

antigen-bearing DCs in vivo, and subsequently, integrate sequential signals 

from multiple APC encounters even at late stages in their differentiation 

program, the number of antigen-bearing DCs that reaches the draining lymph 

node may act as an important parameter by dictating the number of antigen-

specific T cells that is recruited into the immune response, and by 

qualitatively modulating the activation program of T cells through APC re-

encounter (Celli, Garcia et al. 2005). 

4.3 Dendritic cell biogenesis and subtypes. 

 The several dendritic cell subtypes that have been identified appear to 

be distinct entities of separate origin. They generally differ in their surface 

phenotype, their genetic programme, their anatomical location, in their 

expression of receptors for pathogen-associated-molecular patterns, and their 

ability to influence T cell fate (Naik 2008). Generally, dendritic cells can be 

divided into two main categories; the conventional DCs (cDCs) that develop 
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from a common myeloid progenitor and the plasmacytoid DCs (pDCs) that 

develop from a lymphoid progenitor. Conventional DCs include migratory 

DCs, resident DCs and monocyte-derived DCs (Masson, Mount et al. 2008). 

4.3.1 Migratory DCs. 

 Migratory DCs develop in peripheral tissues, such as skin and mucosa, 

and migrate into the regional lymph nodes, where they transport the antigens 

they encounter in the periphery. Their origin, function and properties are not 

clear. Langerhan cells are an example of migratory dendritic cells, found in 

the epidermis. In mice, Langerhan cells were shown to derive from blood 

(Ginhoux, Tacke et al. 2006), as well as from skin-resident precursors. They 

are long-lived in the epidermis, but can constitutively migrate from the skin to 

the draining lymph nodes. Once they encounter and take up antigen at 

peripheral tissues, migratory DCs travel to the draining lymph nodes via the 

lymphatics. In the lymph nodes, they accumulate at the paracortex in the 

vicinity of high endothelial venules (HEV) (Katakai, Hara et al. 2004) and 

present the processed antigens that they carry. Depending on the antigen they 

have encountered at the site of infection, migratory DCs mediate appropriate 

TH responses by direct presentation of the antigen in the context of MHC-II, 

but, also, contribute to CD8(+) CTL cross-priming by transferring their antigen 

for presentation by lymphoid-tissue-resident DCs (Diebold 2008). Studies 

have shown that, in the absence of infection, peripheral dendritic cells (e.g. in 

the epidermis) are important for the induction of peripheral tolerance to skin 

antigens and commensal bacteria (Steinman, Hawiger et al. 2003; Waithman, 

Allan et al. 2007). Therefore, migratory dendritic cells provide flow of 

antigenic information from the periphery, both during immune homeostasis 

and infectious episodes (Masson, Mount et al. 2008). 

4.3.2 Resident DCs. 

 Resident DCs live their entire life within the lymphoid organs. They 

originate from bone marrow precursors (Naik, Sathe et al. 2007) that enter 

lymphoid organs via the blood and they reside near the LN conduits where 
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they can access, take up and present soluble antigen that arrives via the lymph 

(Sixt, Kanazawa et al. 2005). All the lymphoid organs contain resident DCs, 

which represent half of the dendritic population in the lymph nodes and 

almost the entire dendritic cell population of the thymus and the spleen 

(Shortman and Naik 2007). By contrast to migratory DCs, which arrive to the 

lymph nodes in a mature state, resident DCs are phenotypically immature and 

active in antigen uptake and processing (Wilson, El-Sukkari et al. 2003). In 

mice, lymphoid-resident DCs can be divided in two categories based on their 

expression of the CD8 and CD4 surface markers. These are the CD8α DCs 

(CD8(+) CD4(-)) and the non-CD8α DCs (CD8(-) CD4(+) and CD8(-) CD4(-)), 

which differ in their cytokine production and their presentation of antigens on 

MHC molecules. 

4.3.3 Monocyte-derived DCs. 

 Monocyte-derived DCs belong to the myeloid lineage and develop 

from the same myeloid precursor that gives rise to conventional DCs, but 

following a different differentiation pathway that includes a monocyte 

intermediate. Monocytes are found in the bone marrow, blood and the spleen. 

They conventionally give rise to macrophages, however, under inflammatory 

conditions they can differentiate into different subtypes of myeloid dendritic 

cells which differ in terms of their location, the expression of surface markers 

and their functions. There are two main classes of monocytes; the CD115(+) 

Gr1(+) and the CD115(+) Gr1(-). Dendritic cells develop from CD115(+) Gr1(+) 

monocytes upon inflammation, and they are shown to have 

immunostimulatory function in infected mice or immunosuppressive role in 

tumour-bearing mice (Geissmann, Auffray et al. 2008). The best defined 

monocyte-derived inflammatory-DC subset are the stimulatory TipDCs, 

which are characterised by their tumour necrosis factor-a (TNFa) and nitric 

oxide (NO) production (Diebold 2008). Inflammatory DCs migrate from 

peripheral tissues to lymphoid organs transferring antigen, but also act as 

replacements for migrated DCs, such as Langerhans, in peripheral tissues 

during inflammation (Ginhoux, Tacke et al. 2006). 
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4.3.4 Plasmacytoid DCs. 

 Plasmacytoid dendritic cells, named after their similarities to antibody-

producing plasma cells, are dendritic cell precursors found in the blood, 

thymus, bone marrow, liver and the secondary lymphoid organs (Liu, 

Waskow et al. 2007). They are recognised by their ability to produce type I 

IFNs in response to pathogen recognition (Masson, Mount et al. 2008). 

Plasmacytoid DCs constantly screen for viruses, bacteria, certain types of 

TLR agonists and for other danger signals, such as inflammatory chemokines 

and altered concentrations of cytokines. Upon viral infection, the 

plasmocytoid precursors are recruited to the inflamed draining lymph nodes 

where they develop to dendritic cells with an immature phenotype (Liu 2005); 

they express low levels of MHC and co-stimulatory molecules and are weak 

stimulators of naïve T cells (Hochrein and O'Keeffe 2008). Plasmacytoid DCs 

are thought to contribute to antiviral immune responses by secreting large 

amounts of type I IFNs (Masson, Mount et al. 2008), which supports TH1 cell 

activation and promotes cross-priming of CTLs (Diebold 2008). 

 The existence of multiple subsets of DCs reflects their functional 

specialisation to promote distinct immune responses (Pulendran, Tang et al. 

2008) that aid tolerance maintenance or the generation of immunity. For 

example, in mice the balance between CD8α(+) and CD8α(-) DC subsets can 

differentially influence the TH1/TH2 balance of differentiated primed effector 

T cells. Stimulation of naive CD8(+) T cells depends on CD8α DCs and 

lymphoid-tissue-resident-CD8α(+) DC subsets are particularly efficient for the 

cross-presentation of antigens on MHC-I (Lin, Zhan et al. 2008), whereas 

CD8(-) DCs are more efficient in processing antigens for presentation on 

MHC-II (Dudziak, Kamphorst et al. 2007). Conversely, a specialized mucosal 

CD103(+) DC subset can induce differentiation of Foxp3(+) regulatory T cells 

(Coombes, Siddiqui et al. 2007). Collectively, the different DC populations 

seem to be coordinated and probably operate in combination to provide a net 

response of tolerance or immunity as required. 
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4.4 Dendritic cell maturation and differentiation. 

 A key characteristic of dendritic cell biology is that the cells 

differentiate or mature in distinct ways in response to a spectrum of 

environmental and endogenous stimuli. For example, DCs respond to 

microbial ligands for pattern recognition receptors (e.g. pathogen-associated 

molecular patterns recognised by Toll-like receptors), T cell ligands (e.g 

CD40 ligand), innate lymphocytes (e.g. NK cells), inflammatory cytokines 

(e.g. TNFα) and upon cell contacts with other DCs. 

 In the absence of specific maturation stimuli dendritic cells may 

differentiate by ‘default’ and can induce tolerance when they capture self or 

harmless environmental antigens (Hawiger, Masilamani et al. 2004). 

Generally, induction of tolerance is a consequence of antigen presentation to T 

cells by phenotypically immature dendritic cells that lack co-stimulatory 

signals and it can be described as T cell deletion, T cell anergy or the 

induction of Tregs (Steinman, Hawiger et al. 2003). 

 By contrast, in response to infection and inflammation dendritic cells 

differentiate rapidly to a mature state. During maturation antigen uptake is 

reduced (Garrett, Chen et al. 2000), while antigen processing is upregulated 

by lowering of the pH in endocytic vacuoles, activated lysosomal proteolysis 

and increased transport of peptide/MHC II complexes to the cell surface 

(Trombetta and Mellman 2005). Importantly, the maturing dendritic cell 

membrane undergoes remodelling, dendrites are formed and membrane-

associated co-stimulatory molecules are expressed. 

 The nature of DC maturation, which is regulated by the nature of the 

stimuli received through pattern recognition receptors, and is also dependant 

on the type of DC that is responding to these signals, has a major influence on 

both DC function and subsequent activation of naïve T cells. For example, 

depending on the type of infection maturing dendritic cells selectively polarise 

CD4(+) T cell differentiation towards TH1 cells to help resist viruses and 

tumours, or towards TH2 cells in response to extracellular bacteria and fungi. 
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Part II- Dendritic cell-based Immunotherapies. 

 Dendritic cells orchestrate a repertoire of immune responses that result 

in either resistance to infection or tolerance to self; thus, they play an 

important role in medicine, both in understanding how disease develops and in 

designing new treatments (Steinman and Banchereau 2007). Indeed, in the 

effort to combat various diseases, dendritic cells have attracted significant 

interest and they are now considered a promising target/tool in 

immunotherapy; particularly, when designing new-generation vaccines. 

 One approach for the control of chronic infections and cancer is a 

strategy that could stimulate a patient’s own immune responses against a 

persisting virus or tumour that the immune system is already fighting; that is 

described as therapeutic vaccination. However, during chronic viral infections 

potentially useful anti-viral T cells often become functionally exhausted and 

do not respond properly to therapeutic vaccination (Ha, West et al. 2008). 

Thus, dendritic cell vaccines aimed at clearing a persistent infection have to 

either reverse this functional deficiency or induce new anti-viral effector T 

cells, in addition to inducing a humoral response. Unlike infectious pathogens, 

tumours do not induce a robust innate inflammatory response and, as a result, 

the ensuing adaptive response is often weak and ineffective. In this case, the 

purpose of vaccinating individuals with cancer is to prime naïve T cells to 

generate functional tumour-specific effector T cells, which may be achieved 

by channelling tumour antigens into DCs. 

4.5 Mediating the immune response by dendritic cell based 

vaccination. 

 An improved understanding of the underlying mechanisms that 

dendritic cells employ in antigen processing, immune presentation and 

regulation of immune responses, has allowed the development of novel 

methods of dendritic-cell immunotherapy. Dendritic-cell based vaccination 

strategies are designed to overcome the mechanisms by which viruses and 

cancers evade the immune response and aim to induce antigen-specific 
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effector and memory cells. What makes dendritic cells a particularly useful 

tool in new-generation vaccines is that as well as being able to process antigen 

in the MHC class I pathway and to induce CTLs, they can also present 

antigens via the MHC class II pathway to stimulate T-helper cells, which 

regulate B cell responses; thus, mediating both the cellular and humoral arm 

of the immune response. 

 Dendritic cells were originally used in immunization strategies as 

adjuvants. Since then, various approaches have been reported including 

pulsing the cells with peptides, loading them with whole proteins and 

transfecting them with RNA encoding specific antigens. Furthermore, DC-

derived exosomes have also been used for vaccination purposes. 

 In more recent dendritic cell vaccination studies, induction of an 

antigen-specific immune response was achieved either by direct targeting of 

antigen to DC surface receptors in vivo or by inducing maturation of dendritic 

cells that can then be loaded ex vivo with tumour or microbial antigens. 

Indeed, the identification of suitable DC-expressed cell-surface receptors that 

mediate endocytosis of bound antibodies has allowed the development of 

more direct strategies, where professional APCs are selectively targeted and 

loaded with antigen that is delivered associated with the endocytosed 

antibody. For example, targeting of a DC NK C-type lectin group receptor-1 

(DNGR-1) that is selectively expressed in mouse CD8α(+) cDCs allows 

antigen delivery in vivo to CD8α(+) DCs that results in cross-priming of CD8(+) 

T cells and, together with an adjuvant, in the induction of potent CTL 

responses that can cure mice of a transplantable tumour (Sancho, Mourao-Sa 

et al. 2008). 

 The ability of DCs to cross-present antigens has provided a major 

opportunity for in vivo targeting strategies aimed at generating effective 

cellular responses against tumours or pathogens that are inefficiently cleared 

by the humoral immune system. Although the mechanism is still not clear, 

cross-presentation efficacy has largely been attributed to phagosome–ER 

fusion during or soon after phagosome formation, allowing endosomal 
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proteins to escape proteolysis and gain access to the ER, from where they may 

be transported into the cytosol (Ackerman, Kyritsis et al. 2005). However, 

cross-presentation is not an efficient process as endocytosed soluble antigens 

seem less efficiently cross-presented when compared with phagocytosed 

particulate antigens (Carbone and Bevan 1990; Reis e Sousa and Germain 

1995; Schulz, Pennington et al. 2002). Therefore, much effort has been 

focused on enhancing endosomal escape to improve cross-presentation of 

antigens; several substances that facilitate endosomal escape and amplify 

cytoplasmic delivery have been introduced, such as biodegradable polymeric 

nanoparticles (Shen, Ackerman et al. 2006), fusogenic peptides (Laus, 

Graddis et al. 2000), cell-penetrating peptides (CPPs) and receptor-specific 

antibodies (Tacken, Joosten et al. 2008). However, most of these studies fail 

to conclude whether endosomal escape is substantially achieved. 

 Professional antigen-presenting cells such as DCs are thought to be 

very important in regulating the immune response in DNA-based vaccination 

strategies, as they can both phagocytose antigen released from any transfected 

cell and can be transfected directly by the plasmids. The use of gene-based 

dendritic cell vaccines circumvents the need for cross-presentation, since 

immunogens encoded by DNA are endogenously synthesized and access the 

classical MHC-I pathway like natural antigens. In addition, antigen-encoding 

DNA can access dendritic cells by various delivery systems, such as live 

attenuated viruses, bacteria, liposomes, polymer microparticles, bacterial 

ghosts or virosomes (Tacken, de Vries et al. 2007). A particularly promising 

approach is targeted-gene delivery to dendritic cells using adenoviral vectors 

which has the advantage that the viral DNA does not integrate into host 

chromosomal DNA (in which case it could become a latent viral infection) 

and is therefore transiently expressed. In other approaches to improve 

vaccines for tumour immunotherapy dendritic cells were transfected with 

tumour-derived RNA or fused with tumour cells to generate DC–tumour 

hybrids, achieving a wider range of tumour specific antigens for presentation. 

Finally, RNA interference (RNAi), a potent method for gene silencing that has 

developed rapidly over the last few years (Mao, Lin et al. 2007), has been 
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Figure 17 
Vaccination studies 
using autologous DCs.  
 
Monocytes or CD34(+) 
precursors are isolated 
from patient blood by 
cytopheresis. Cells are 
cultured in the presence of 
various cytokines to 
differentiate them into 
immature dendritic cells, 
which are then loaded with 
the antigen of interest 
before or following 
dendritic cell maturation. 
Mature antigen-loaded 
autologous DCs are then 
administered to patients. 

used to improve vaccine potency by modulating various functions within 

dendritic cells. For example, there are reports of RNAi-directed prolongation 

of DC life through the silencing of propaptotic genes (Peng, Kim et al. 2005) 

or RNAi-directed attenuation of immunosuppressive signals (Song, Evel-

Kabler et al. 2006). These studies have demonstrated that the use of RNAi 

technology in developing new-generation DC-based vaccines results in more 

potent antiviral and antitumour immune responses (Mao, Lin et al. 2007). 

Alternatively, RNAi has also been used to modify DC maturation, in order to 

select for a particular type of immune response to infection; for example, 

knockdown of IL-10 expression in DCs resulted in an enhanced TH1 response 

and a suppressed TH2 response (Liu, Ng et al. 2004), while RNAi-induced 

silencing of IL-12 in DCs induced the opposite effect (Hill, Ichim et al. 2003). 

 Dendritic cell vaccines that are currently being investigated in clinical 

trials consist of autologous DCs that are matured and antigen-loaded ex vivo 

(Figure 17). In these studies, dendritic cells derive from monocytes or CD34(+) 

precursors that are isolated from patient blood by cytopheresis. Cells are 

cultured in the presence of various cytokines to differentiate them into 

immature dendritic cells, which are then loaded with the antigen of interest 

before or following dendritic cell maturation. These mature antigen-loaded 

autologous DCs are administered to patients with the intention of inducing 

antigen-specific T and B cell responses.  
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 In addition, several clinical trials tested combinations of a DC-based 

therapy with other therapies, such as depletion of regulatory T cells (Dannull, 

Su et al. 2005), chemotherapy (Melief 2008) or administration of cytokines 

(Redman, Chang et al. 2008). Other studies have evaluated the use of TLR-

ligand-activated DCs, the use of various DC subsets, and the use of DC-based 

therapy in combination with strategies that target co-stimulatory molecules, 

such as CTLA4, OX40, 4-1BB or PD1 (Tacken, de Vries et al. 2007). 

4.6 Challenges and limitations in dendritic cell 

Immunotherapies. 

 To date, numerous clinical trials have demonstrated that DC 

vaccination can induce immunological responses in many of patients. 

Importantly, they have proved that these therapies are safe and well-tolerated 

with only minor side effects constrained to induration of the skin at the 

injection site and mild fever. However, dendritic cell vaccines have generally 

been evaluated in patients with late-stage cancer with a poor prognosis. These 

patients are likely to be less immunocompetent as a result of a large tumour 

burden and prior radiation therapy or chemotherapy. This might explain why, 

to date, clinical responses have only been observed in a minority of patients. 

 Immunotherapies based on strategies that target antigens to dendritic 

cells in vivo have the major advantage that the targeted DCs are naturally-

occurring DC subsets and that the vaccines can be produced in bulk. However, 

compelling evidence from these targeting studies suggest that their efficacy 

depends on numerous factors, such as the expression pattern and biological 

properties of the targeting receptor and the maturation or activation status of 

the DC. Indeed, differences in the expression pattern of receptors on separate 

DC subsets, the intracellular signalling cascades they induce, and the 

intracellular processing pathways that the antigens follow can affect the 

immunological outcome of in vivo DC therapy. Furthermore, most of the 

receptors employed for in vivo DC-targeting strategies are also expressed by 

other cells, which may also affect targeting efficiency. On the other hand, ex 

vivo culture conditions can be controlled more carefully compared to the in 
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vivo environment and the dendritic cell quality can be better assessed before 

the cells are administered to the patient. Nevertheless, therapies based on ex 

vivo antigen loading require vaccines to be tailor-made for each individual and 

involve artificial maturation of cells in culture which can lead to heterogeneity 

in their immunological properties. Additional difficulties in both strategies 

include the duration of antigen presentation and the stability of the vaccine 

following administration. 

 Research in dendritic cell therapies has emphasized the importance of 

dendritic cell quality in achieving the desired immunological outcome. 

Maturation status, and the timing and route of maturation stimuli (in relation 

to antigen loading) can both influence antigen capture, processing and 

presentation. This is reflected in early DC-based studies that observed 

tolerance instead of immunity, resulting in a switch to the use of mature DCs. 

Still, the maturation protocols have a major effect on the type of 

differentiation that occurs; for example, applying stimuli too long before or 

too long after the antigen can impair antigen cross-presentation (Wilson, 

Behrens et al. 2006), while certain DC receptors, such as CD205, seem to lose 

their endocytic capacity on full DC maturation (Butler, Morel et al. 2007), 

abolishing uptake of targeted antigens. The migratory capacities of dendritic 

cells can also influence their ability to induce effective T cell responses as 

highlighted in clinical trials where only a small percentage of injected 

dendritic cells actually migrate form the injection site to the draining lymph 

node to present antigens to T cells. Furthermore, the ways antigens are 

handled, processed and presented by distinct dendritic cells may have an 

impact on the resulting immune response. 
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Part III- Dendritic cell-based, but cell-free vaccination 

approaches. 

 To overcome the difficulties of DC therapy, cell free antigen-

presenting systems have been reported, including membrane vesicles derived 

from APCs, such as exosomes, which are secreted from endosomal 

compartments of APCs, and microvesicles derived from plasma membranes of 

APCs after sonication (Kim, Latouche et al. 2004; Kovar, Boyman et al. 

2006). 

4.7 Dendritic cell-derived exosomes can stimulate immunity. 

 Exosomes are small membrane vesicles, between 30 and 100 nm in 

diameter, originating from late endosomes and secreted by most cells in 

culture. Exosomal vesicles can be purified from cell culture supernatants 

subjected through a series of high speed centrifugations, following separation 

by sucrose gradient floatation; the resulting exosome pellet is relatively free of 

dead cells, protein aggregates or nucleosomal fragments. Interest in exosomes 

intensified after their description in antigen-presenting cells and the 

observation that they can stimulate immune responses in vivo. 

4.7.1 Exosome biogenesis. 

 Protein composition analysis of exosomes has shown that they are 

secreted by living cells and they are distinct from microvesicles produced by 

apoptotic cells. All of the exosomal proteins that have been identified are 

found in the cytosol, in the membrane of endocytic compartments or at the 

plasma membrane (Thery, Zitvogel et al. 2002). However, they are not simply 

fragments of the plasma membrane, as they lack some abundant cell-surface 

proteins, such as Fc receptors in DC derived exosomes, while they contain 

other endocytic or cytosolic protein markers absent from the plasma 

membrane. 
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4.7.2 The molecular profile of exosomes. 

 Analysis of dendritic cell-derived exosome preparations has revealed 

the presence of known cellular proteins, which are potentially involved in 

exosome biogenesis, exosome targeting/docking/fusing with other cells and 

exosome putative immunological function (Thery, Regnault et al. 1999; 

Thery, Boussac et al. 2001). Examples include cytoskeletal components such 

as actin, actin-binding proteins and tubulin, as well as other cytosolic proteins 

involved in intracellular membrane transport and fusion (e.g. annexins, small 

GTPase family members or related proteins: rab7, rab11, rap1B, and rab GDP 

dissociation inhibitor) (Thery et al, 2001). In DC-derived exosomes, cytosolic 

proteins involved in signal transduction (e.g. Gi2α, syntenin, and 14-3-3) are 

also present, as well as metabolic enzymes (e.g. thioredoxine peroxidase) 

(Thery, Boussac et al. 2001), and heat-shock proteins (such as constitutive 

isoforms of HSP70, HSP73 and HSP90) (Thery, Regnault et al. 1999). Heat-

shock proteins (HSPs) are ubiquitous proteins that are involved in antigen 

presentation, as they interact with antigenic peptides and contribute to peptide 

loading onto MHC molecules (Srivastava 2002). Exosomes are highly 

enriched for a family of proteins called tetraspanins (e.g. CD9 and CD63), 

which are thought to be involved in the organization of large molecular 

complexes and membrane sub-domains as they interact with many protein 

partners, including MHC molecules and integrins (Thery, Zitvogel et al. 

2002). MHC class I molecules are present in exosomes derived from most cell 

types. Several proteins are exposed at the surface of exosomes and bind 

ligands on other membranes. Some of these proteins are believed to have a 

role in ‘addressing’ exosomes to their cellular targets in vivo, for example 

MFG-E8/lactadherin, which is a major exosomal component that binds 

integrins expressed at the surface of DCs and macrophages, is thought to be 

involved in targeting DC-derived exosomes to other APCs (Thery, Regnault et 

al. 1999). Indeed, exosomes from antigen presenting cells have been 

extensively analysed and several proteins that may be involved in the 

biological function of exosomes have been identified. For example, exosomes 

from cells rich in MHC class II molecules have abundant MHC- II (Zitvogel, 
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Regnault et al. 1998). Furthermore, DC-derived exosomes contain T cell co-

stimulatory molecules, such as CD86, as well as a series of other 

transmembrane proteins, such as integrins (e.g. αMβ2) (Thery, Regnault et al. 

1999) and immunoglobulin-family members, such as intra-cellular adhesion 

molecule 1 (ICAM-1) (Clayton, Court et al. 2001). 

 The presence of these molecules indicates that exosomes may 

represent a way of communication, i.e., exchange of antigenic information, 

between cells of the immune system. More recent research has shown that 

exosomes contain both mRNAs and microRNAs that can be delivered to other 

cells and can be functional at this new location (Valadi, Ekstrom et al. 2007). 

This indicates that exosomes may also play a role in intercellular genetic 

exchange. 

4.7.3 Exosome function. 

 Once released, exosomes can fuse with membranes of neighbouring 

cells, establishing membrane, protein, and genetic exchange, in the absence of 

direct cell-cell contact. Although the properties of exosomes can be 

characterized through their molecular composition, which usually reflects the 

specialized function of their original cells, the physiological relevance of 

exosomes remains unclear. Early studies suggested that exosomes may 

function as an alternative to lysosomal degradation (Pan and Johnstone 1983), 

while others proposed that exosomes are involved in antigen presentation 

through transfer of peptide/MHC complexes, antigens or HSP-associated 

peptides. One hypothesis is that exosomes could be produced in peripheral 

tissues by immature dendritic cells that have encountered antigen and before 

their migration to lymph nodes in order to sensitize other DCs in the 

periphery, which have not encountered antigens themselves for T cell 

stimulation (Thery, Regnault et al. 1999). Certainly, exosome-mediated 

information exchange may occur in numerous physiological events. For 

example, exosomes secreted from CD8(+) CTLs may assist the delivery of 

lytic substances (e.g. perforin and granzymes) to the target cell, while other 

proposed functions of exosomes include their participation in the induction of 
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immunological tolerance, enhancement of sperm motility and in tissue 

development (Stoorvogel, Kleijmeer et al. 2002). Nonetheless, despite these 

studies it is still unclear to what extent, and for what purpose, exosomes are 

produced physiologically in vivo. 

4.7.4 Exosomes as therapeutic tools. 

 Even though the physiological purpose of exosomes remains unclear, 

the presence of molecules involved in antigen presentation has made APC-

derived exosomes an appealing tool for use in immunotherapy. Indeed, DC-

derived exosomes express MHC class I and MHC class II, as well as co-

stimulatory molecules, and have been shown to promote T cell–dependent 

anti-tumour immune responses in vivo (Zitvogel, Regnault et al. 1998). In the 

presence of APCs, exosomes efficiently mediate the induction of MHC class 

I-restricted CD8(+) T cell expansion and differentiation in vitro and in vivo, 

leading to tumour rejection. Exosome-mediated elimination of tumour was 

tumour-peptide specific, and the observed long-term protection was also 

tumour specific. Moreover, other studies demonstrated that melanoma-cell-

line-derived exosomes were a source of ‘shared’ tumour-rejection antigens 

and they could mediate protection against allogeneic tumours in mice, 

possibly by stimulating protective CTLs via cross-priming (Wolfers, Lozier et 

al. 2001). 

 Exosome vaccine preparations are preferable to those of whole cell 

cultures for several reasons. For example, quality control parameters are easier 

to define as MHC content can be measured and calibrated. In addition, 

exosome production and purification procedures are more reliable and 

reproducible, while exosomal membranes are more stable than DC cultures, 

and can be stored for long periods. 

 As well as a therapeutical vaccine vector, exosomes released from 

tumour cells have been used in immunotherapy for the identification of the 

immunogenic properties of the tumour. Tumour cells secrete exosomes that 

carry tumour antigens associated with MHC-I, as well as cytosolic candidate 
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tumour antigens (Thery, Zitvogel et al. 2002). Tumour-derived exosomes bear 

antigens specific to the individual’s cancer and can be loaded on DCs that are 

then used to induce T cell responses, allowing the generation of tumour-

specific MHC class I-restricted CTL clones in vitro. This could be particularly 

helpful in cancer immunotherapy because tumour derived exosomes are also 

produced in vivo and can be isolated from malignant effusions of cancer 

patients who have non-immunogenic tumours (Andre, Schartz et al. 2002). 

4.7.5 Limitations of exosome immunotherapy. 

 Exosome production is a feature of immature dendritic cells, when 

multivesicular bodies still form in the cytosol. However, immature dendritic 

cells express low levels of MHC and co-stimulatory molecules and 

consequently exosomes derived from these cells do not efficiently activate 

naïve T cells. For this reason, exosome vaccination requires antigen/exosome 

uptake and exosome-derived antigen-presentation by mature host dendritic 

cells for efficient T cell activation in vitro and in vivo. Consequently, an 

efficient exosome-based vaccine necessitates an adjuvant that activates 

dendritic cells in vivo.  

 When designing an exosomal vaccine it is also important to address 

the possible risks of spreading infectious particles that may reside in exosome-

producing cells. This is best described in the ‘Trojan exosome’ hypothesis, 

which, based on the fact that retroviral particles and exosomes contain a 

similar array of host cell lipids and proteins, and use the same proteins for cell 

targeting and vesicle biogenesis, predicts that exosomes may support 

transmission of retroviruses. Indeed it is reported that HIV trans infection may 

also occur by viral association with dendritic cell-derived exosomes (Hladik, 

Lentz et al. 1999), which possibly increase the infectivity of the virions that 

are coupled to them (Hladik and McElrath 2008). In addition to viruses, 

exosomes may act as vehicles for prion spread between cells (Fevrier, Vilette 

et al. 2004). 
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 Safe exosome-based vaccines should be of autologous origin, being 

derived from dendritic cells from a patient’s blood. However, blood from a 

single individual doesn’t yield enough exosomes for an individual vaccine 

(Chaput, Taieb et al. 2005). Thus, methods for improving exosome isolation 

need to be improved if this strategy is to become a realistic vaccine option. 

 Thus far, exosomes have been described in experimental settings that 

have resulted in T-cell priming. However, care must be taken in selecting the 

most appropriate cells for exosome isolation, as it is possible that T-cell 

stimulation by exosomes might also induce tolerance (Karlsson, Lundin et al. 

2001). Moreover, it is also possible that exosomes may have an 

immunosuppressive nature. For example, melanoma cells secrete Fas-Ligand-

bearing exosome-like vesicles that have pro-apoptotic activity on T cells 

(Andreola, Rivoltini et al. 2002), thus the use of exosomes may have counter-

productive effects when trying to induce potent effector T cell responses. 

4.8 Dendritic cell-derived plasma membrane fragments can 

induce immune responses. 

 As an alternative to injecting intact dendritic cells or exosomal 

vaccines, dendritic cell-derived plasma membrane fragments have been 

investigated (Kovar, Boyman et al. 2006). This material is prepared by 

ultracentrifugation after sonication of IFNγ-matured dendritic cell lines. These 

vesicles closely resemble exosomes and activate naïve T cells well both in 

vitro and in vivo (Kovar, Boyman et al. 2006). The sonicated membrane 

vesicles were shown to express functional MHC-I and T cell co-stimulatory 

molecules, such as ICAM-1 (CD54), B7.1 (CD80) and B7.2 (CD86), which 

presumably explains their direct immunogenicity in the absence of antigen 

presenting cells in vitro. Their ability to activate naïve T cells, like exosomes, 

is strictly peptide-specific, but requires the presence of soluble peptide at high 

concentrations during T cell stimulation. Nevertheless, a great advantage of 

sonicated membranes is that they are obtainable in much greater quantities 

than exosomes. 
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5. Proposed system and thesis aims. 

 This study attempts to reconstitute the optimal antigen presentation 

properties of dendritic cells using endoplasmic reticulum derived membranes, 

known as ‘microsomes’. The aim is to overcome the limitations of current 

vaccination approaches and create a vaccine that will promote protective 

immune responses targeted to particular pathogens, especially those against 

which the more basic approaches of vaccination have so far failed. 

 The dendritic cell-based but cell-free systems described to date, and 

reviewed above, contain MHC-I, MHC-II and co-stimulatory molecules, and 

can induce naïve T cell responses in vivo when mixed with or pre-loaded with 

defined peptides (Zitvogel, Regnault et al. 1998; Kovar, Boyman et al. 2006). 

However, because it is not known how peptide/MHC is processed in these 

membrane vesicles, both the quality and the quantity of peptide/MHC are 

difficult to control in the preparation. The MHC molecules on the surface of 

APCs are pre-processed; therefore the desired vaccine peptides must be added 

in competition with endogenous pre-bound peptides. Thus obtaining a high 

concentration of the required peptide/MHC may be problematic, especially 

when these peptides are of medium or low affinity (Yewdell and Haeryfar 

2005). 

 Here, a new form of APC-based, but cell-free vaccine is described 

using ER-enriched microsomes derived from mature DCs or other APCs. All 

eukaryotic cells have an endoplasmic reticulum (ER) (Porter 1953), which is a 

highly complex single membrane network that extends throughout the 

cytoplasm. The ER plays a central role in cell biosynthesis, as it is the starting 

point for the synthesis of transmembrane and secreted proteins, including the 

components of the immunological synapse; MHC-I and MHC-II, along with 

co-stimulatory molecules such as B7. Although the ER is interleaved 

extensively with other intracellular elements, it is possible to isolate ER 

membranes from other components of the cell (Dallner 1974). Upon cell 

homogenization the ER is fragmented into small (~100nm diameter) closed 

vesicles, known as microsomes, which can be easily purified. 
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 Microsomes have been used extensively as a tool for studies of the 

functional and biochemical properties of the endoplasmic reticulum. These 

include studies of the interaction between peptides and the different 

components of the peptide-loading complex (e.g. TAP, tapasin and MHC-I) 

during the peptide-loading process (Wang, Gyllner et al. 1996; Li, Paulsson et 

al. 2000). This research revealed the presence in the microsomes of peptide-

receptive MHC-I molecules that bind to peptides in a highly peptide-specific 

process.  

 In this thesis I investigate the hypothesis that microsomes derived from 

APCs, and filled with defined peptides, directly interact with peptide-specific 

T cells to stimulate their functional activation in vitro and in vivo (Figure 18).  

 To test this hypothesis the antigen presenting properties of antigen 

presenting cells are first established. Microsomes are extracted from antigen 

presenting cells and they are characterized for components of the immune 

synapse and their ability to bind peptides. Subsequently, induction of T cell 

responses by peptide-loaded microsomes is analysed in vitro and in vivo. 

Finally, the ability of the microsomal vaccine to induce protective immunity 

against an acute viral infection and established murine tumours is 

investigated.  

 When these microsomal vaccines were injected intravenously into 

mice they induced peptide-specific immune responses, which were able to 

protect these animals from acute viral infection and eradicated specific-

peptide-carrying tumours. 

 We propose that peptide/MHC-armed microsomes from DCs can be an 

important alternative to DC-based vaccines both for protection from viral 

infection and for the treatment of cancer. 
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Figure 18  Thesis proposal. 
 
 In this thesis I investigate the hypothesis that microsomes derived from APCs, 
and filled with defined peptides, directly interact with peptide-specific T cells to 
stimulate their functional activation in vitro and in vivo. 
 
 ER- enriched microsomes were extracted from antigen presenting cells (1); 
they were inverted so as the luminal surface is exposed (2); endogenous peptides and 
CLIP were removed by acid stripping (3); antigenic peptides of interest were loaded 
on peptide-receptive microsome-associated MHC molecules (4); and, microsomes 
presented peptide/MHC and co-stimulatory signals to T cells for the induction of 
effector T cell responses (5). 
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MATERIALS AND METHODS 

1. Experimental tools and conditions. 

1.1 Animals. 

 C57Bl/6 mice (H-2Kb) were purchased from Harlan UK Ltd, (Oxon, 

England). OT-I transgenic mice on the C57Bl/6 background expressing a TCR 

specific to the H2-Kb-SIINFEKL peptide complex were kindly provided by 

Professor Dimitris Kioussis, MRC National Institute for Medical Research, 

London. All animals were maintained in specific pathogen-free facilities at 

Queen Mary and Brunel University. 

1.2 Cell lines. 

 Jaws-II, RMA-S and RAW309Cr.1 cell lines were obtained from 

American Type Culture Collection (ATCC). LC 721.221/HLA-A2 cell lines 

were kindly provided by T. Elliott. DC2.4 line was kindly provided by Dr. 

Mann D. Southampton, UK. 

 Jaws-II were cultured in Alpha DMEM supplemented with 20% FBS, 

1% P/S and 5ng/ml GM-CSF. Cultures were maintained by transferring 

floating cells to a centrifuge tube. Attached cells were sub-cultured using 

0.25% trypsin-0.03% EDTA. Adherent and cells in suspension were pooled 

and centrifuged at 250 x g for 10min; the pellet was then resuspended in fresh 

medium and dispensed into new flasks. The growth medium was changed 

once per week. All other cell lines were cultured in RPMI 1640 or DMEM 

supplemented with 10% FBS and 1% P/S. They were prepared by gentle 

scraping. Briefly, the old medium was removed, and then the cells were 

dislodged and dispensed into new flasks. Cells were sub-cultured in a ratio of 

1:4, twice a week or as appropriate. 

 All running cultures were maintained in a humidified incubator at 37° 

in 5% CO2. All cell stocks were stored in freezing medium at >106cells/ml in 

liquid nitrogen vapour phase. 
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1.3 Reagents and antibodies. 

 Mouse recombinant granulocyte–macrophage colony-stimulating 

factor (GM-CSF) and interleukin-4 (IL-4) were purchased from PeproTech, 

Inc. (Rocky Hill, NJ). Chicken egg albumin (ovalbumin; OVA) and LPS were 

obtained from Sigma (St Louis, MO). All cell culture reagents were from 

Invitrogen Ltd. (Gibco-BRL, Rockville, MD). Ficoll-Paque was from 

Amersham (Amersham Biosciences UK Limited, Little Chalfont). ELISA 

(OptEIA, mouse IL-2 ELISA Set) and ELISpot (BD ELISPOT set mIFNγ) 

were obtained from BD Biosciences. 

 Fluorescein isothiocyanate (FITC)-conjugated antibodies to CD54, 

CD80, CD86, 25-D1.16 and FITC-conjugated Streptavidin; phycoerythrin 

(PE)-conjugated antibodies to H2-I-A and Y3 were from BD Biosciences. The 

anti-mouse tapasin antiserum was generated by immunization with a peptide 

(CATAASLTIPRNSKKSQ) derived from the C terminus of mouse tapasin, as 

described before (Li et al, 1999). Kb-SIINFEKL specific Pentamer was from 

Proimmune Ltd. CD4(+) and CD8(+) microbeads (Miltenyi Biotec) were used 

for isolation of CD4(+) or CD8(+) T cells from spleen according to 

manufacturer’s protocol. 

1.4 Peptides. 

 Peptides were synthesized by Invitrogen and purified to more than 

95% purity. Peptides were reconstituted following the manufacturer's 

instructions by calculating the hydrophobic and hydrophilic amino acids and 

accordingly dilute in recommended medium. Specifically, OVA257–264 

(SIINFEKL) and OVA324-340 were reconstituted in 1% DMSO in PBS under 

sterile conditions. Stock concentrations of matrix influenza MP peptide 

(GILGFVFTL), HIV GAG peptide (ATLYGVHQKI) and nuclear influenza 

KTR peptide (SAYWAIRTK) had been previously reconstituted in PBS in the 

lab. HCMV pp65 peptide (NLVPMVATV) was diluted in cell culture medium 

at high stock concentration. Working concentrations of all peptides were 

prepared in the appropriate cell culture medium. 
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2. Peptide modifications. 

2.1 Peptide biotinylation. 

 OVA324-340 was biotinylated using the NHS-LC-Biotin reagent (Pierce 

Chemical). 1mg of Sulfo-NHS-LC-Biotin was dissolved in 90μl of pure H2O 

to give a concentration of 10mM Biotin solution in 100mM sodium phosphate 

buffer, pH 7.5, immediately before use. The reaction was initiated by adding 

90μl of 1mM peptides diluted in PBS in the biotin solution. The mixture was 

allowed to react for 2 hours at room temperature by continuous agitation. 

When the reaction was completed 1.8μl of 1M TRIS-HCL pH 7.4 was added 

to a final concentration of 10mM. The mixture was incubated at room 

temperature for 5min to utilize the remaining free NHS-LC-biotin and prevent 

the reagent to react with other proteins on the microsomes. Biotinylated 

peptides were aliquoted at 1000µg/ml and stored at -80°C until use.  

2.2 Peptide iodination. 

 Modification: The -amino group of lysine in the H2-Kb-specific 

SIINFEKL peptide was covalently modified by a photo reactive cross-linker 

and labelled by iodination as previously described (Wang, Raynoschek et al. 

1996). Specifically, The H-2Kb-binding OVA peptide (residues 257–264, 

SIINFEKL) was modified by coupling a phenyl azide with a nitro group to the 

e-amino group of lysine (position 7) to allow for photo-activation and by 

substitution of the isoleucine at position 3 with tyrosine to allow for 

iodination. Modification of the OVA peptide by ANB-NOS was performed by 

mixing 0.5mg of ANB-NOS dissolved in 200ml of dimethyl sulfoxide, 100mg 

of peptide dissolved in 100ml of phosphate-buffered saline, and 50ml of 0.5M 

CAPS (pH 10). The reaction was allowed to proceed for 30min on ice. To 

remove excess ANB-NOS and ions, the mixture was purified by gel filtration 

on a Sephadex G-10 column and subsequently by HPLC. An aliquot (1µg) of 

the peptide was labelled by chloramine T-catalyzed iodination (125I) and used 

for measuring the peptide binding of H2-Kb. 



 85 

 Labelling: All steps were performed in a well-ventilated hood. A 

Chloramine-T (CAT) solution and a Sodium Metabisulfite (SMBS) solution 

were prepared in PBS, each at concentration of 1mg/ml of the respective 

chemical. 10μl of 1mg/ml SIINFEKL peptide solution was added in the 

reaction vial containing 125I solution. The labelling reaction was initiated by 

the addition of 10μl CAT solution to the reaction vial. After 1min of thorough 

mixing, the labelling reaction was terminated with the addition of 20μl of 

SMBS solution. At this stage, the radioactivity of the reaction vial was 

measured using a Nal detector and the distance corresponding to 1000cps was 

marked. The prepared sample was diluted with PBS to a volume of 200μl, 

before applied on a NAP-5 (G10) column. The first fraction was collected, 

more PBS was added (200μl) and subsequent fraction was collected; the 

process was repeated so as to collect a total of 15 fractions. The relative 

radioactivity of each fraction was measured using the Nal-detector before the 

iodinated peptide was pooled in one vial. 

 Cross-linking: The cross-linking of the peptide on microsomal 

membranes was performed in low lighting conditions. 125I-labeled and ANB-

NOS-modified peptide was mixed with 10µl of microsomes (concentration of 

OD 60 A280/ml) to a final concentration of 100nM in RM buffer and 

incubated for 15min at room temperature. The microsomal suspension was 

processed by repeated freeze-thaw cycles, before subjected under irradiation 

UV at 366 nm for 5min at room temperature. Microsomes were washed with 

PBS and centrifuged at 20 000 x g for 10min at 4°C. The resulting pellet was 

spontaneously frozen in liquid nitrogen and stored at -80°C overnight. Cross-

linked microsomal proteins were analyzed by SDS–PAGE. 
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3. Protein analysis. 

3.1 Protein purification. 

 Total cell or microsome protein extracts were generated using RIPA 

buffer with protease cocktail tablets (Complete TM Roche Diagnostics) or 1% 

NP40, 5% PMSF lysis buffer. The samples were placed on rotator for 1 hour 

at 4ºC. Whole cell or microsome lysates were clarified by centrifugation for 

15min at 20 000 x g, 4ºC and the supernatants were collected and stored in -

20ºC until assayed for protein. 

3.2 Protein quantization.  

 Protein determination was performed using the Bicinchoninic Acid 

Protein Assay Kit (SIGMA) adjusted to 96 Well Plate Assay. Standard protein 

concentrations of 0, 20, 40, 60, 80 and 100μg/ml were prepared using a 

2mg/ml stock of non acetylated BSA in lysis buffer. Briefly, 5μl of standard, 

sample or blank (corresponding lysis buffer in RM buffer) were added per 

well. 8 parts of the BCA working reagent were mixed well with 1 part of the 

protein sample. The protein assay containers were sealed and the samples 

were incubated for 30min at 37 ºC, before colour absorbance was measured at 

570nm using a plate reader equipped with the appropriate filters. A standard 

curve of net absorbance versus protein sample concentration was produced 

from the assay data. The actual concentration of the protein present in the 

unknown sample was calculated as follows: 

(μg of unknown protein samples) times (dilution factor) 

A separate standard curve was determined for each assay. 

 Alternatively, for rough estimation of protein content in the microsome 

preparations following their extraction, protein was measured on 

spectrophotometer at a wavelength of OD280nm. Microsome preparations 

were normalized and stored in RM buffer at OD280nm: 60, which was about 

4mg/ml. 
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3.3 Western blot analysis of protein. 

 Gels were cast and run using the Bio-Rad Western apparatus. The 

plates were cleaned, the spacers were introduced and the plates clamped in 

place. The resolving gel was poured first. A 10ml preparation of 10% consists 

of 2.4ml purified water, 3.35ml 30% acrylamide, 3.75ml 1M Tris pH 8.8, 

100μl 10% SDS, 100μl 10% APS and 4μl TEMED. After pouring the gel was 

covered with isopropanol (~0.5ml) to ensure a level surface to the top of the 

gel and to aid polymerization. Once set isopropanol was removed and the 

plates were dried. The stacking gel was then poured and the comb was fitted. 

A 2.5ml preparation of 5% stacking gel consists of 1.7ml of purified water, 

415μl 30% acrylamide, 315μl 1M Tris pH 6.8, 25μl 10% SDS, 25μl 10% APS 

and 5μl TEMED. The protein samples and the molecular weight markers are 

diluted (1:4) in 4 x Western sample buffer, boiled for 5 minutes, pulse 

centrifuged and chilled on ice. 2-20μg of protein is then run per lane. The gel 

is run at 200V/cm until the bottom dye reaches the bottom of the gel. After 

running the top plate is removed and the stacking gel is cut away. The gel is 

then submerged in Western transfer buffer, onto a piece of pre-wet Hybond C 

Exta. The transfer apparatus is then assembled. A pre-wet scotch-brite pad is 

covered with 2 sheets of 3MM paper, then the membrane and gel, 2 more 

sheets of 3MM paper and a second pre-wet scotch-brite pad. The sandwich is 

then placed into the transfer tank with approximately 4 litres of Western 

transfer buffer. The transfer of protein to the membrane for 16 hours at 20mA 

was then performed at 4°C, with continuous circulation of the buffer. 

3.4 Western blot hybridisation. 

 Membranes were blocked with 50ml of Western block buffer 

consisting of 5% w/v non-fat dry milk, 2% w/v bovine serum albumin (BSA), 

0.1% v/v Tween-20 in PBS, for 2-3 hours at room temperature, before been 

probed with the corresponding antibodies. Primary antibodies were diluted 

according to manufacturer’s instructions in blocking buffer and incubated for 

1 hour at room temperature. After 5 washes for 10min with 5ml of wash 

buffer (0.1% milk, 0.1% Tween-20 in PBS), the secondary antibodies (HRP-
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conjugated) were  diluted according to manufacture’s instructions and added 

in 5ml block solution. After 1 hour at 37°C, 5 washes for 10min in wash 

buffer were performed, with the membrane stored under 0.1% milk, 0.1% 

Tween-20 in PBS at 4°C until ECL detection. 

3.5 ECL detection. 

 The ECL detection system (Amersham) was used to visualise antibody 

binding to Western blots via horseradish peroxidase-linked secondary 

antibodies following the manufacturer’s protocol. 2ml of ECLTM solution 1 

and 2 were mixed in a small container immediately before use. The membrane 

was placed in this solution for 5min and then blotted with 3MM paper to 

remove excess liquid. It wass then covered with cling film (saran wrap) and 

placed in Kodak cassette. The membrane was exposed to Kodak XARS5 film 

for 10 seconds upwards until optimal exposure is found. 

 Rainbow molecular weight markers (range 10 000- 250 000, 

Amersham) were used to define protein size. 
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4. Preparation of microsomes from antigen presenting 

cells. 

4.1 Fractionation of cell contents. 

 Microsomes from cell lines or bone-marrow derived DCs were 

prepared and purified according to previously described protocols (Wang, 

Raynoschek et al. 1996). Specifically, cell cultures were grown to a minimal 

number of 109cells. One day before collection the culture medium was 

renewed and IFNγ was added when indicated. All the steps during the 

microsome preparation are performed on ice or at 4°C. 

 Cells were collected, centrifuged at 250 x g for 5min and washed once 

with cold PBS. The collected cell pellet was re-suspended in STKMM buffer 

supplemented with 3μl/ml 100mM PMSF (STKMM homogenisation buffer). 

The cell suspension was further centrifuged at 250 x g for 5min and the 

supernatant was removed. The resulting pellet was re-suspended in a small 

volume of purified H2O supplemented with 3μl/ml 100mM PMSF. Cells were 

homogenized using a fine glass cell Douncer. Following 40 strokes of 

homogenization, STKMM homogenization buffer was added and the 

suspension was mixed well. The homogenate was centrifuged at 10 000 x g 

for 10min at 4°C in JK-18 tubes. Supernatants were collected into new tubes 

and further centrifuged at 100 000 x g for 60min at 4°C. The resulting pellets 

were carefully washed once and resuspended in STKMM homogenization 

buffer using a small glass homogeniser. The homogenate was further 

centrifuged at 100 000 x g for 60min at 4°C. The resulting pellet of the total 

microsomal cellular fractions was re-suspended in RM buffer, simultaneously 

frozen in liquid nitrogen and stored in -80°C or the vapour phase of liquid 

nitrogen until further use. 

4.2 Purification of ER-enriched microsomal membranes. 

 Total microsomes were sub-fractionated by flotation in discontinuous 

sucrose gradient for fractionation of microsomal membranes at 0-4°C. Total 
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microsomes were layered on top of 5ml of 0.33M sucrose, layered in turn on 

top of a discontinuous sucrose gradient consisting of 2ml of 2M and 1ml 2.5M 

sucrose. Centrifugation in a TH-641 rotor for 60min at 110,000 × g yielded a 

microsome band on top of the 2M sucrose cushion. The microsome layer was 

collected by careful aspiration and resuspended in RM buffer. At this stage the 

protein concentration of the preparation was measured. An RM blank was 

inserted into the spectrophotometer and the absorbance at 280nm was set to 

zero. The absorbance of the microsome preparation was then measured at 

280nm and recorded. Microsomes were preferably diluted to a concentration 

of 4mg/ml at OD280nm: 60. Microsomes suspensions in RM buffer were 

aliquoted in sterile plastic vials; the microsome aliquots were spontaneously 

frozen in liquid nitrogen and stored in -80°C until use.  
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5. Labelling and detection of antigens in microsomes 

and cells. 

5.1 Flow cytometry. 

 Flow cytometry analysis was used to detect cell surface markers on 

cells and microsomes. Single cell suspensions were obtained from 

homogenised spleens and lymph nodes, or from PBMCs, or from cell cultures. 

Microsome preparations were re-suspended using fine surgical needles before 

flow cytometric analysis. Cells or microsomes were incubated in 200μl FACS 

media for 30min at 4°C, washed in 1ml FACS media and collected by 

centrifugation. Primary antibodies were diluted according to manufacturer’s 

instructions in FACS media and added to the cell or microsome pellet, mixed 

gently and incubated at 4°C for 1 hour. The suspension was washed once with 

1ml of cold FACS media, and pellets were collected by centrifugation. 

Secondary antibodies were diluted according to manufacturer’s instructions 

and added to the pellets, mixed gently and incubated at 4°C for 30min. The 

suspensions were washed twice with 1ml FACS media and filtered through 

nylon mesh, resuspended in 500μl FACS media and transferred to FACS 

tubes for FACS analysis. Stained cells and microsomes were analysed by flow 

cytometry. 

 A PE -Pro5TM was used for the analysis of fluorescently labelled cells 

and the mean fluorescent intensity from three experiments was presented. The 

isotype Ig was used as background controls for all the staining of both cells 

and microsomes. The setting of side-scatter and forward-scatter was same 

between cells and microsomes. Due to the uneven sizes of microsomal 

vesicles, the entire events detected in side-scatter and forward scatter were 

used for analysis on fluorescent channels. The medium fluorescent intensity 

was then compared. 
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5.2 Detection of T cell-specific release of IL-2 by ELISA  

 The detection of recombinant mouse interleukin-2 (IL-2) in the cell 

culture supernatants was achieved with the development of enzyme-linked 

immunosorbent assay (ELISA) using them OptEIA™ Set (BD Biosciences). 

This immunoassay is calibrated against purified Baculovirus-expressed 

recombinant human IL-2.  

 Briefly, the wells of a 96-well micro plate were coated with 100μl of 

capture antibody, diluted according to manufacturer’s instructions in coating 

buffer. The plates were sealed and incubated overnight at 4°C. Next day the 

wells were aspirated and washed 3 times with >300μl/well wash buffer. After 

the last wash the plates were inverted and blotted on absorbent paper to 

remove any residual buffer. Plates were then blocked with 200μl/well assay 

diluent and incubated at room temperature for 1 hour. The assay diluent was 

then aspirated and plates were washed as before. Standard and sample 

dilutions were prepared in assay diluent, and 100μl/well of each standard, 

sample and control were added in the appropriate well. The plates were sealed 

and incubated at room temperature for two hours. Subsequently, the wells 

were aspirated and washed as before, but with 5 total washes. Working 

detector was prepared according to manufacturer’s instructions (Detection 

antibody and SAv-HRP reagent) and added at 100μl/well. Plates were sealed 

and incubated at room temperature for 1 hour. Wells were aspirated and 

washed as before, but with 7 total washes. In this final step wells were soaked 

in wash buffer for at least 30sec for each wash. Substrate solution was then 

added at 100μl/well and the plates were incubated at room temperature in the 

dark for 30min. To stop the reaction, 50μl of STOP solution were added in 

each well and the absorbance was read at 450nm and 570nm immediately 

after stopping the reaction. For wavelength correction absorbance at 570nm 

was subtracted from absorbance at 450nm.  

 The mean absorbance for each standard, sample and control was 

calculated and the mean zero standard absorbance was subtracted from each. 

To determine the IL-2 concentrations of the samples, a standard curve was 



 93 

plotted based on the absorbance of the known standards. For samples that 

were diluted, IL-2 concentration was multiplied by the dilution factor. 

5. 3 Microsome labelling with chemical fluorescence.  

 For the detection of microsomes by fluorescence microscopy 

microsomes were labelled with chemical fluorescence using the FITC1 

fluoroTagtm FITC conjugation kit from Sigma FITC1-1KT, according to 

manufacturer’s instructions. For each labelling 1mg of microsomes were used. 

Microsomes were labelled before or after peptide loading. 

 Briefly, the contents of one sodium carbonatebicarbonate capsule were 

dissolved in 50ml of de-ionized water. The pH of the resulting buffer (C0688 

at 0.1M) was measured and calibrated at pH 9. Microsome suspension was 

centrifuged at 20 000 x g for 5min and the resulting pellet was re-suspended in 

200μl of the C0688 buffer. At this stage one vial of FITC was re-constituted 

in 2ml of C0688 buffer. 50μl of the FITC solution were added drop wise to 

the microsome suspension on a slow shaker. The mixture was covered in foil 

to reduce exposure to light and the reaction was allowed for 30min at room 

temperature, on a shaker. To stop the reaction 50μl of 0.2M glycine pH 8 were 

added and the experimental tube containing the mixture was stored on ice. 

The reaction was centrifuged at 20 000 x g for 5min at 4°C and the 

supernatatnt was removed. Labelled microsomes were re-suspended in 50μl of 

RM buffer and stored in -80°C and protected from dark until further use. 

5.4 Internalization assay for the detection of microsome 

phagocytosis by dendritic cells. 

 Internalization assays were performed using Jaws-II cells to detect if 

microsomes are being phagocytosed by dendritic cells. The microsomes used 

for this assay had been previously labelled with chemical fluorescent. 

 Jaws-II cells sub-cultured for 3-4 days in advance of performing the 

assay on coverslips in 24 well-microplates. For the assay the cells were 

incubated with FITC-labelled microsomes or with FITC-labelled dextran 
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beads (3pm in diameter) suspended in culture medium for 5 hours at 37oC. 

Free-microsomes or dextran beads were removed by vacuum aspiration. 

Trypan blue (Invitrogen pH 5.0) was added for 1min to quench extracellular 

FITC-conjugated beads or fluorescent microsomes. The cells were washed 

briefly with PBS and fixed with 1% paraformaldehyde. Fixed cell 

preparations were analysed by confocal microscopy. 
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6. Isolation of primary cells. 

6.1 Bone-marrow derived primary dendritic cells. 

 Immature DCs were generated from mouse bone marrow progenitors 

by culturing them in the presence of GM-CSF. Bone marrow cells were 

prepared from 10 week-old C57Bl/6 mice and red blood cells were lysed by 

RBC lysis buffer (Invitrogen). 106 cells/ml were cultured in RPMI medium, 

supplemented with 10% FBS and 100IU/ml of GM-CSF, for six days. To 

generate mature DC, the DC culture was transferred on day 6 in 1μg/ml LPS 

and cells were incubated in 5% CO2 at 37°C for 24 hours. 

6.2 Isolation of mononuclear cells from mouse secondary 

lymphoid organs. 

 Mouse spleens and lymph nodes were harvested and single cell 

suspensions were prepared. The cells were pelleted by centrifugation at 250 x 

g for 10min at 4°C and the supernatant was discarded by aspiration. The 

pellets were re-suspended in 5ml of RBC lysis buffer per spleen and incubated 

at room temperature for 4-5min with occasional shaking. The lysis reaction 

was stopped by diluting the lysis buffer with 20-30ml of 1 x PBS. The cell 

suspension was centrifuged at 250 x g for 10min at 4°C, the supernatant was 

discarded by aspiration and the resulting cell pellet was re-suspended in the 

appropriate buffer for use in the next step of subsequent experimental 

procedures.  At this stage, the cells were counted. 

6.3 Isolation of mononuclear cells from human peripheral 

blood. 

 Mononuclear cells were isolated from human peripheral venous blood, 

which was obtained by the blood bank, by density gradient centrifugation over 

Ficoll-Histopaque. Non-adherent cells (NAC) and monocytes were separated 

by adherence to plastic. 40-70ml of blood bag/Buffy coat represents 

approximately 400-500ml whole blood with plasma removed. 25ml of Ficoll-
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hypaque were aliquoted per 50ml test tube in sterile conditions and allowed to 

equilibrate to room temperature. A dilution of 1/5 of Buffy coat in PBS was 

slowly layered on top of the Ficoll-hypaque and centrifuged for 30min at 400 

x g centrifuge force in room temperature, with the centrifuge breaks off. After 

centrifugation the interface of PBMCs was collected, further diluted with PBS 

(approximately 1:2) and centrifuged at 250 x g centrifuge force for 10min at 

room temperature. The supernatants were then discarded and the remaining 

cell pellet was resuspended in complete culture medium. Erythrocytes were 

lysed by incubation with 15ml red blood cell lysing buffer per pellet for 

20min at room temperature. The cell suspension was washed with complete 

medium and centrifuged at 250 x g centrifuge force for 10min at room 

temperature. The resulting pellet was resuspended in a small volume of serum 

free medium and the cells were counted. 



 97 

7. Activation assays. 

7.1 Peptide loading of microsomes. 

 Microsomes suspended in RM buffer were first processed by freeze–

thaw (30sec in liquid nitrogen and 5min at 37oC) repeated three times, 

followed by addition of an equal amount of stripping buffer (0.26M citric 

acid, 132mM Na2HPO4, 2% BSA, pH 3) and incubation for three minutes on 

ice. The microsomal membranes were recovered by centrifugation through a 

0.5M sucrose cushion on a microcentrifuge and re-suspended in RM buffer.  

 For MHC-I loading, 20μg/ml human β2-microglobin and SIINFEKL 

peptide at indicated doses were pulsed onto 1-4μg of microsomal membranes 

by incubation for one hour in 5% CO2 at 37°C. After loading the excess 

peptides were removed by centrifugation through a 0.5M sucrose cushion on a 

microcentrifuge and the loaded microsomes were resuspended as homogenous 

population in culture medium. 

 For MHC-II, after the freeze-thaw process, microsomes in RM buffer 

were mixed with equal volume of stripping buffer and 500μg/ml OVA, or as 

indicated, for 5min at 37oC. After loading excess peptides were removed by 

centrifugation through a 0.5M sucrose cushion on a microcentrifuge and the 

loaded microsomes were resuspended as homogenous population in culture 

medium. 

7.2 Peptide loading of cells. 

 For antigen presentation assays 105, or as indicated, DCs were pulsed 

(loaded) with the relevant peptides at the indicated concentrations for 1-6 

hours in 5% CO2 at 37°C. Excess peptides were washed by centrifugation. For 

antigen presentation assays using metabolically inactive cells, following 

peptide loading APCs were fixed in suspension with ice cold filtered and 

sterile 1% Paraformaldehyde in PBS or were irradiated. 
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7.3 Activation of T cells in vitro. 

 The OT-I T cells were isolated from spleens of OT-I transgenic mice 

by positive selection using a MACS system (Miltenyi Biotec).  

 Unless otherwise indicated, a constant number 106 of the 

corresponding T cells were incubated with 105 of peptide-loaded DCs or 1 to 

4μg of peptide-loaded microsomes in 5% CO2 at 37°C for 24-72 hours. 

Antigen presentation efficacy was evaluated by quantifying IL-2 release from 

T cells in the supernatants after 24-48 hours and by T cell proliferation by 

measuring tritium incorporation after three days of culture.  
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8. Characterization of lymphocyte specificity, 

frequency and function. 

8.1 Positive isolation of CD4(+) T cells from primary 

mononuclear mouse cells of lymphoid organs. 

 The cells were washed with PBS, centrifuged at 250 x g for 10min at 

4°C and the supernatant was discarded by aspiration. The cell pellet was 

resuspended in 900μl of buffer (0.5% BSA in PBS) per 108 cells. 100μl 

MACS CD4(+) microbeads were added to 108 cells, the cell and bead 

suspension was mixed well and incubated for 15-30min at 4°C. Cells were 

washed with an amount of buffer 20x the volume of the labelling solution and 

centrifuged at 250 x g for 10min 4°C. The supernatant was removed by 

aspiration and the cell pellet was resuspended in 500μl buffer per 108 cells. A 

positive selection column was placed in the magnetic field and washed with 1-

2ml of buffer. The cell suspension was then added and the negative cells were 

allowed to pass through. The column was washed with 7ml of buffer, removed 

and placed in a container.  The positive fraction of the cells was then washed 

all through the column with 7ml of buffer. 

8.2 Detection of IFNγ producing cells by ELISpot. 

 The enzyme-linked immunospot (ELISPOT) assay (BD Biosciences) 

was used for the detection and enumeration of individual cells that secrete 

IFNγ in vitro. The plates were coated overnight at 4°C with 100μl IFNγ -

specific capture Ab diluted according to manufacturer’s instructions. The 

wells were washed once with blocking solution (complete culture medium) 

and the plates were then blocked with 200μl blocking solution for 2 hours at 

room temperature. The blocking solution was discarded and 100μl of known 

number of total splenocytes or PBMCs co-cultured with known amount of 

peptide or peptide loaded microsomes was added. The lids were replaced and 

the cultures were incubated in ELISPOT plates at 37ºC, in a 5% CO2 and 

humidified incubator for 24 hours. The cell and microsome suspension was 
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aspirated and the wells were washed twice with de-ionized water allowing 3-5 

minutes soaking at each wash step. This was followed by washing the wells 3 

times with wash buffer I. The wash buffer was aspirated, the plates blotted 

onto paper tissue and 100μl of detection antibody diluted in dilution buffer 

according to manufacturer’s instructions was added. The lids were replaced 

and the plates were incubated at room temperature for 2 hours. The detection 

antibody solution was discarded and the wells were washed 3 times with wash 

buffer I, allowing soaking for 1-2 minutes at each wash step. The enzyme 

conjugate (strepavidin-HRP) was diluted in dilution buffer according to 

manufacturer’s instructions immediately before use and 100μl were added to 

the wells for 1 hour at room temperature. The enzyme conjugate solution was 

discarded and wells were washed 4 times with wash buffer I, allowing soaking 

for 1-2 minutes in each step. Subsequently, wells were washed with wash 

buffer II twice. The plates were blotted on paper tissue and 50μl of the final 

substrate solution was added to each well. The spot development was 

monitored closely over a period of 5-60 minutes and the colorimetric substrate 

reaction was stopped at appropriate time by washing wells with de-ionized 

water. The plastic tray under the plates was removed to facilitate even drying. 

The wells were allowed to air-dry at room temperature overnight. The plates 

were then stored in sealed plastic bag in the dark, until they were analyzed. 

Spots were enumerated manually under dissecting microscope. 

8.3 Proliferation assays. 

 To determine T cell proliferation 1μCi/ml [3H] Thymidine was added 

after three days of culture with peptide loaded DCs or peptide-loaded 

microsomes. The cells were harvested after 8 hours and tritium incorporation 

into thymidine was measured. 

 For [3H] labelling the working surfaces in a radiation controlled area 

were swept with a tissue and after sweeping 1cm piece of tissue was used to 

evaluate background radiation. The labelling medium was made at a 

concentration of 1μCi/ml in RPMR1640 and the medium could be kept as a 

stock solution at 4°C for one month. Culture plates were transferred to the 
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radiation culture area after three days of activation assay. Labelling medium 

was added at 20μl/well, the micro-plate was placed in plastic container and 

kept in 5% CO2, at 37°C for 8 hours. At this stage the working surfaces were 

tested for radiation levels. Following 8 hours of incubation, the labelled 

cultures were harvested in a cell harvester or stored at -20°C until measured. 

For harvesting, the orientation of the filter was marked, it was placed with the 

plate in the harvester and harvesting was initiated. Following harvesting of 

cultures, the filters were air-dried and melted with scintillation gel. The 

processed filter was placed in a cassette and the amount of [3H] incorporated 

by thymidine was measured. Following measurements the filters were 

disposed as appropriate for disposal of radioactive material. 

8.4 Determination of T cell cytotoxicity against tumour cells. 

 Cytotoxicity assay was used for evaluation of T cell specific cytotoxic 

activity against tumour. The target cells used for this assay were the OVA-

producing thymoma cell line E.G7. Target cells (106) in 600μl were labelled 

with 300 μCi "Cr sodium chromate for 45min. After washing, 104 labelled 

targets and serial dilutions of effector cells (CD8(+) T cells from immunized 

mice) were incubated in 200μl of RP10 in round-bottomed 96-well plates. 

After 4 hours of incubation in 5% CO2, at 37°C, supernatants were collected 

and specific lysis was determined as: percent specific lysis = 100 x [(release 

by CTL – spontaneous release)/(maximum release – spontaneous release)]. 
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9. Microscopy. 

9.1 Confocal fluorescent microscopy. 

 For the detection of microsome binding to T cells, microsomes were 

prepared, loaded with peptides and co-cultured with T cells as described 

above, but on poly-D-lysine-coated multiwell slides for 1 hour. Unbound 

microsomes were washed with PBS and the slides were fixed with 1% 

paraformaldehyde for 10min before mounting. 

9.2 Electron microscopy 

 Electron micrographs were prepared from Jaws-II cells for 

microscopic analysis of the cytoplasm and its examination for the presence of 

ER membrane structures. 

 A solution of 4% low melting point agarose was prepared in distilled 

water at 42°C and maintained in liquid phase in a test tube immersed in a 

water bath at the same temperature. Jaws-II cells were washed once with PBS 

and resuspended in cell culture medium. The cell suspension was fixed in a 

solution of 0.5% glutaraldehyde in 0.1M sodium cacodylate adjusted to pH 

7.4. Fixation was allowed over a period of 45min on mild shaker. Fixed cells 

were then centrifuged at 250 x g for 5min, the fixative was removed and the 

cell pellet was rinsed twice with 0.1M sodium cacodylate buffer. A small 

amount of the warm agarose was added to the pellet of fixed cells and gently 

mixed. The gel-embedded cell pellet was allowed to cool before 70% ethanol 

was added. The sample was sealed and stored at 4°C until further processing 

for EM observations. Immediately before the analysis with transmission 

electron microscopy the embedded in agarose cell preparations were cut in 

sections and placed in the appropriate chambers. 
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10. Detection of immunity in vivo. 

10.1 Immunization. 

 Microsomes from Jaws-II cells or bone-marrow derived DCs or Jaws-

II cells or bone-marrow DCs were loaded either with SIINFEKL or OVA324-

340 as immunogens, or with a HLA-A2 restricted epitope of the influenza 

matrix protein (GILGFVFTL) as an irrelevant control peptide. 1x106 cells or 

20μg microsomes in 100μl of physiologic saline were injected into the dorsal 

tail vein of each mouse; after seven days mice were immunized with the same 

doses for boosting. 

10.2 Viral infection. 

 Mice were infected intranasally with the recombinant vaccinia virus 

encoded with chicken OVA (32-13) or matrix influenza MP in 50μl at the 

indicated doses. The mice were weighed and observed for illness daily. In vivo 

replication of vaccinia virus was examined by plaque assay on lung tissues 

which were removed, weighed and grounded with a mortar and pestle. Serial 

10-fold dilutions of clarified supernatants were used to infect sub-confluent 

monolayers of BSC40 cells in triplicate in 24-well plates. After 1 hour, the 

plates were covered in 0.75% methylcellulose in 10% MEM and incubated at 

37oC. The cells were fixed with formalin 2 days after infection and stained 

with 2% crystal violet in 40% methanol, and plaques were counted under a 

dissecting microscope. Data are presented as geometric mean log10 PFU per 

gram of lung at dilutions that produced more than five plaques per well. 

10.3 Tumour induction and measurements. 

 Tumours were established by subcutaneous injection of 2x105 EG7 

cells in 100μl of physiologic saline. Tumour cells were 100% viable as 

measured by trypan blue staining. The initial growth of tumour was evaluated 

by palpation. Tumour growth was measured at 48-hour intervals using a 
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vernier caliper. All animals were killed at a tumour size of approximately 

1.5cm3. 

10.4 Ex vivo analysis of antigen specific T cells. 

 For CD8(+) T cells, splenocytes were stained with FITC-conjugated 

anti-CD8 (BD Biosciences). After washing, cells were either stained with PE-

conjugated Kb-SIINFEKL Pentamer (Proimmune Ltd.) or isotype matched 

controls, and analyzed by flow cytometry. 

 For evaluation of CD4 T cell responses, CD4(+) T cells were purified 

from spleen and lymph nodes by CD4-coated magnetic beads (Miltenyi 

Biotec) to more than 90% as measured by PE-CD4 antibody by flow 

cytometry. 2x105 CD4(+) T cells were cultured with either 2μg of OVA324-340 

peptide-loaded microsomes from bone-marrow derived DCs or 1x105 DC 

cells pulsed with the same peptide for 48 hours before measuring IL-2 

production by ELISA (BD Bioscience) or three days before proliferation assay 

with 3H-TdR (Amersham) incorporation. 

11. Statistics. 

 Statistical comparisons were performed using Student’s t test; survival 

was plotted using Kaplan-Meier curves and statistical relevance was 

determined using log-rank comparison. Unless noted, data were presented as 

means ± SD of pooled data from four to six independent experiments. 
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12. List of Buffers. 

Alpha growth medium: -4 mM L-glutamine, 1 mM sodium pyruvate, 

5ng/ml murine GM-CSF, ribonucleosides, 

deoxyribonucleosides, 20% FBS, 1% Penicillin-

Streptomycin–L-Glutamine. 

BCA:  -50 parts of Reagent A (a solution containing 

bicinchoninic acid, sodium carbonate, sodium 

tartrate and sodium bicarbonate in 0.1N NaOH, 

pH 11.25) with 1 part of Reagent B (a 4% (w/v) 

copper (II) sulphate pentahydrate). 

Complete growth medium:  -culture medium, 10% FBS, 1% Penicillin-

Streptomycin–L-glutamine. 

ELISA: 

Coating buffer: -0.1M Sodium Carbonate, pH 9.5, 7.13g 

NaHCO3, 1.59g Na2CO3; q.s. to 1L; pH 9.5 

with 10N NaOH. 

Assay diluent: -PBS, 10% Heat Inactivated FBS, pH 7.0. 

Wash buffer:  -PBS, 0.05% Tween-20. 

Substrate:  -Tetramethylbenzidine (TMB), Hydrogen 

Peroxide. BD Pharmingen™ TMB Substrate 

Reagent Set. 

Stop solution:  -2N H2SO4. 

ELISPOT  

Coating buffer: -1× PBS. 

Blocking solution:  -complete cell culture medium. 
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Wash buffer I:  -1× PBS, 0.05% Tween-20. 

Wash Buffer II:  -1× PBS. 

Dilution Buffer:  -1× PBS, 10% FBS. 

Substrate Solution:  -BD™ AEC Substrate Reagent Set. 

Freeze medium:  -95% complete growth medium; 5% DMSO. 

FACS media: -5% BSA in PBS. 

Lysis Buffer: -1% NP40, 5% PMSF or protein tablets. 

Paraformaldehyde 1%:  -25g Paraformaldehyde powder, 250ml PBS, 

drops of 1M NaOH. 

PBS: -80.0g NaCl, 11.6g Na2HPO4, 2.0g KH2PO4, 

2.0g KCL, q.s. to 10L; pH to 7.0. 

RM buffer:  -250mM sucrose, 50mM triethanolamine-HCl, 

50mM KOAc, 2mM MgOAc2, 1mM 

dithiothreitol. 

STKMM:  -250mM Sucrose, 50mM TEA-HCl pH 7.5, 

50mM KOAc, 5mM Mg(OAc)2, 0.1% 

mercaptoethanol. 

Stripping buffer: -0.26M citric acid, 132mM Na2HPO4, 2% BSA, 

pH 3. 

Western blot: 

Stacking gel:  -10ml preparation of 10% consists of 2.4ml 

purified water, 3.35ml 30% acrylamide, 3.75ml 

1M Tris pH 8.8, 100μl 10% SDS, 100μl 10% 

APS and 4μl TEMED. 
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Resolving gel:  -2.5ml preparation of 5% stacking gel consists 

of 1.7ml of purified water, 415μl 30% 

acrylamide, 315μl 1M Tris pH 6.8, 25μl 10% 

SDS, 25μl 10% APS and 5μl TEMED. 

Sample buffer (2x):  -125mM Tris pH 6.8, 4% SDS, 20% glycerol, 

10% β mercaptoethanol, 4mg BPB/10ml. 

Running buffer (10x):  -250mM Tris pH 7.5, 192mM glycine, 0.1% 

SDS. 

Transfer buffer:  -25mM Tris base pH 8.3, 192mM glycine, 20% 

methanol. 

Blocking buffer:  -5% w/v non-fat dry milk powder, 2% w/v BSA, 

0.1% v/v Tween-20 in PBS 

Wash buffer:  -0.1% non-fat dry milk powder, 0.1% Tween-20 

in PBS 
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RESULTS 

1. Antigen presentation analysis in vitro. 

 The demonstration that different cell types can process and present 

antigens to T cells at vastly different efficiencies has led investigators to 

consider certain cells as “professional” antigen presenting cells (APCs), a 

group that typically includes B lymphocytes, macrophages (MØ), and 

especially dendritic cells (DCs) (Trombetta and Mellman 2005). Professional 

APCs engage T cells in an antigen-specific manner to induce their functional 

activation during an immune response. 

 The purpose of this thesis is to investigate the reconstitution of optimal 

presentation properties of professional APCs using ER-derived microsomes, 

for the stimulation of T cell functional activation in vitro and in vivo. Before 

we can investigate their reconstitution using microsomes, the presentation 

properties of APCs need to be established. 

 The best described professional APCs are the dendritic cells (DCs). 

The majority of DCs that naturally occur in vivo derive from bone marrow 

progenitors; therefore, bone-marrow-derived-DCs (BMDCs) would be an 

ideal tool in studies of antigen presentation. However, fresh preparations of 

BMDCs from mouse bone marrow progenitors ex vivo result in a 

heterogeneous population that is contaminated with other bone marrow-

derived cells, such as macrophages. In addition, the differentiation and 

maturation of BMDCs in vitro often results in the generation of various DC-

subtypes, including tolerogenic DCs. Furthermore, the experiments described 

in this work would require a large number of animals to be sacrificed in order 

to yield enough bone marrow progenitors for the generation of sufficient 

numbers of DCs for antigen presentation analysis and for extraction of 

microsomes for antigen presentation studies. By contrast, immortal DC lines 

that would have stable characteristics and would grow at high density could 

overcome these difficulties, and provide a system that offers consistent 

conditions and satisfies the quantitative requirements of this investigation. 
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 Therefore, my results begin with the analysis of the efficiency of 

antigen presentation using antigen presenting cell lines in vitro. Defined 

antigen presenting cell lines are loaded with antigenic peptides (Figure 19), 

which they are then allowed to present to restricted peptide/MHC-recognising 

T cell clones (Figure 20) for the induction of T cell responses. Antigen 

presentation is evaluated based on the T cell responses induced. 

 

Figure 19  Antigenic peptides used in this study. 
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Figure 20  Cell lines used in this study. 
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1.1 Analysis of the efficiency of antigen presentation using 

antigen presenting cell lines in vitro. 

 A C57.Bl/6mouse-derived immortal dendritic cell line called Jaws-II 

that has been used for studies of pathogen-specific (Otsu, Gotoh et al. 2006; 

Jiang, Shen et al. 2008), antiviral (Indrova, Reinis et al. 2004) and antitumour 

(Pajtasz-Piasecka, Rossowska et al. 2007) immunity were the APCs used 

initially. The Jaws-II line is a granulocyte-macrophage colony stimulating 

factor (GM-CSF)-dependent cell line of immature dendritic cells that mature 

in culture in the presence of GM-CSF and high concentrations (20%) of 

serum. Jaws-II are established from bone marrow cells of C57.Bl/6 origin, 

which has the ‘b’ haplotype expressing the MHC class I H-2 alleles K (H-

2Kb) and D (H-2Db) and the MHC class II allele I-A (I-Ab) (JAX Mice 

Database, The Jackson Laboratory). Antigen presentation was examined in 

the context of MHC class I or MHC class II using two well defined chicken 

ovalbumin (OVA) derived peptides; the first peptide is the ovalbumin 

fragment from amino acid 257 to amino acid 264 with amino acid sequence 

‘SIINFEKL’ (Khilko, Corr et al. 1993) which binds the mouse MHC 

molecules H2-Kb (MHC-I), and the second peptide is the ovalbumin fragment 

from amino acid 324 to amino acid 340 (OVA324-340) with amino acid 

sequence ‘ISQAVHAAHAEINEAGR’, which binds the mouse MHC 

molecules H2-I-A (MHC-II). Peptides were loaded to APCs by incubation of 

the cells with peptides (peptide-pulsing) in culture conditions for 6 hours. The 

efficiency of the antigen presentation was assessed using T cells with TCRs 

that recognise the complexes of peptide plus MHC. T cell activation was 

quantified based on the amount of soluble IL-2 that T cells produced 

following in vitro stimulation with peptide-pulsed APCs for a period of 24 or 

48 hours. 

 Figure 21A shows that Jaws-II cells loaded with the H-2Kb restricted 

peptide SIINFEKL induced antigen-dependent T cell responses when co-

cultured with the B3Z T cell line recognizing SIINFEKL-Kb complex. 

Similarly, when Jaws-II cells were loaded with an I-A restricted peptide 
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ISQAVHAAHAEINEAGR they induced the MF2.2D9 T cell line recognizing 

ISQAVHAAHAEINEAGR in the context of H2-I-A (Figure 21B). By 

contrast, Jaws-II cells that hadn’t been loaded with peptide failed to induce 

B3Z or MF2.2D9 T cell responses. T cell responses were evaluated by 

Figure 21  APCs induce peptide-specific T cell responses. 
 
 105 Jaws-II cells were pulsed with different concentrations of 
SIINFEKL or OVA324-340 peptides for 6 hours. Excess peptides were washed 
before cells were co-cultured with either 
 
A. the SIINFEKL-Kb recognising B3Z T cell line or with 
 
B. the OVA324-340-I-A recognising MF2.2D9 T cell line. 
 
 T cell activation was determined by IL-2 release 24 hours later, 
measured by ELISA. 100(-) bars represent negative control of peptide-pulsed 
APCs cultured without T cells. The data are presented as mean of 
quadruplicate cultures ±SEM and are representative of three experiments. 
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measuring IL-2 production by ELISA following 24 hours of stimulation. In 

both cases, the response was dose-dependent with respect to the peptide, as 

increasing dose of peptide concentration at loading was associated with 

increasing production of IL-2 (Figure 21). 

 To examine whether the responses were also peptide/MHC-dependent, 

the B3Z T cell line was co-cultured with increasing numbers of Jaws-II cells 

that had been loaded with a constant concentration of SIINFEKL (100μg/ml). 

Figure 22 shows that the responses were dependent on the number of antigen-

presenting cells, however declined when the number of APCs was higher than 

the number of T cells. It was observed that the optimal responses were 

induced with 1x APC: 10x T cell ratio. 

 

 
Figure 22  The level of T cell activation depends on the ratio of APCs/T cells. 
 
 Different numbers of Jaws-II cells were pulsed with 100μg/ml SIINFEKL 
peptide for 6 hours. Excess peptides were removed by washing before cells were co-
cultured with 1x106 B3Z T cells. After 24 hours, IL-2 production was measured by 
ELISA. Bar to the far right (5x104–T cells) is a negative control to represent basal IL-2 
release from 5x104 peptide-pulsed Jaws-II cells cultured without T cells. The data are 
presented as mean of quadruplicate cultures ±SEM and are representative of three 
experiments. 
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1.2 Antigen presentation does not require metabolically active 

cells. 

 It has been previously demonstrated that metabolically inactive APCs 

can present exogenously loaded antigen and induce T cell responses (Falo, 

Sullivan et al. 1985). 

 To examine whether antigen presenting cells can still present peptides 

efficiently during an inactive metabolic state, Jaws-II were pulsed with 

SIINFEKL peptide previous to their irradiation or their treatment with either 

1% paraformaldehyde, or 1% formaldehyde, and then allowed to present 

SIINFEKL to B3Z T cells (Figure 23). Following treatment with 1% 

paraformaldehyde (Figure 24A) or irradiation (Figure 24B), cells could induce 

T cell responses similar to those triggered by untreated SIINFEKL-loaded 

APCs. However, their presenting capacity was reduced to the basal levels seen 

with APCs that hadn’t been loaded with peptides, when the cell membranes 

were mechanically disrupted (i.e. loosely adherent cells were removed by 

scraping rather than with cold PBS wash) or treated with formaldehyde 

(Figure 24A).1

                                                 
1Paraformaldehyde (PFA), a polymerized form of formaldehyde, is an insoluble white powder 

that cannot be used as a fixative in this form. Formaledehyde, which has the same chemical 

properties with paraformaldehyde, is a gas that in aqueous solutions spontaneously 

polymerizes. However, to be useful as a fixative, a solution must contain monomeric 

formaldehyde as its major solute. For that reason, most of the commercially available 

formaldehyde solutions are in fact 37% formaldehyde in water, containing 10-15 % methanol 

as a preservative. Methanol slows down the polymerization that leads eventually to 

precipitation of paraformaldehyde. However, methanol is known to rapidly precipitate 

proteins and permeabilize cells by distorting the structure of the cell membrane. Methanol-

free formaledehyde can be obtained by hydrolysis of paraformaldehyde, by extensive heating 

of the paraformalehyde powder to 60°C in water containing the salts required to buffer the 

solution to pH 7.2 to 7.6. Fixation of the cell, using either solution, blocks the cellular 

metabolism. 

 These findings suggest that the presentation of pre-processed 

antigen does not depend on metabolically active cells; however it is crucially 

dependent on the integrity of the structure of the antigen presenting cell 

membrane. 
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Figure 23  Experimental design for antigen presentation analysis in 

metabolically inactive cells. 
 
 Jaws-II cells were pulsed with SIINFEKL peptide for 6 hours. Excess peptide 
was washed away and the peptide-loaded cells were fixed with 1% Paraformaldehyde 
prior to co-culture with SIINFEKL-Kb recognising T cells. T cell activation was 
evaluated by IL-2 production. 
 

Figure 24A  Antigen presentation does not require metabolically active APCs.  
 
 105 adherent Jaws-II cells were pulsed with 100μg/ml SIINFEKL peptide for 6 
hours and excess peptide was then washed away. Adherent cells were either scraped from 
plastic surface or removed by rinsing with cold PBS. Peptide-loaded cell suspensions were 
either fixed with 1% Paraformaldehyde or 1% Formaldehyde prior to co-culture with B3Z 
T cell line. T cell activation was evaluated by IL-2 release measured with ELISA after 24 
hours. The data are presented as mean of quadruplicate cultures ±SEM and are 
representative of three experiments. 
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Summary of Section 1 

 The results presented here show that antigen presenting cells (APCs) 

can induce activation of T cells in vitro, in the context of MHC class I and 

MHC class II. T cell responses are peptide-dependant and relative to the 

antigen concentration and the ratio of APC/T cells. Antigen presentation does 

not require metabolically active APCs, but does depend on the intact structure 

of the antigen presenting cell membrane. 

Figure 24B  Antigen presentation does not require metabolically active 
APCs. 

 
 105 Jaws-II were pulsed with serial dilutions of SIINFEKL peptide for 6 
hours before excess peptide was washed away. Cells were then either irradiated or 
remained untreated prior to co-culture with SIINFEKL-Kb recognising B3Z T cell 
line. Cells loaded with the irrelevant KTR peptide were used as a negative control. 
24 hours later T cell activation was evaluated by IL-2 release measured with 
ELISA. The data are presented as mean of quadruplicate cultures ±SEM and are 
representative of three experiments. 
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2. Microsomes- molecular characterization. 

 This chapter focuses on the molecular characterization of the ER-

enriched microsomes that can be isolated from APCs. First, the cytoplasm of 

the APC is observed and the morphology of internal membrane structures is 

examined in an effort to identify the presence of endoplasmic reticulum. 

Following the description of microsome extraction and purification from 

APCs, a series of biochemical experiments are presented, which aim to 

characterise the molecular profile of the isolated microsomes. 

 2.1 The cytoplasm of APCs is rich in endoplasmic reticulum. 

 All eukaryotic cells have an endoplasmic reticulum (ER) (Porter 

1953). It’s highly complex single membrane, which represents more than half 

of the total membrane of the single cell, is organised into a network that 

extends throughout the cytoplasm. It forms a continuous sheet enclosing the 

ER lumen, a single internal space which often occupies more than 10% of the 

total cell volume. The ER is part of the endomembrane system, which consists 

of internal membranes that divide the cells into functional and structural 

compartments, or organelles. Collectively, the membrane network provides 

not only an intracellular transport system, but also surfaces for lipid and 

protein synthesis. 

 Observation of the antigen presenting Jaws-II cells with electron 

microscopy revealed an abundance of endomembrane structures in their 

cytoplasm (Figure 25).  
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Figure 26  ER-enriched 
microsomes. 

 
 Electron micrograph of ER-
enriched microsomes prepared from 
RAW309Cr.1 cells (Scale bars: 
100nm). Arrows indicate ribosomes. 
 

 

 

2.2 Microsome isolation.  

 Although the ER is interleaved extensively with other intracellular 

elements, it is possible to isolate the ER membranes from other components of 

the cell. Upon cell homogenization the ER is fragmented into small (~100nm 

diameter) closed vesicles, known as 

the microsomes. Deriving from the 

Greek words μικρό-σώμα, which 

means small-body, microsomes is a 

word used to define the small vesicle-

like particles of fragmented ER that 

are not normally found in living cells. 

Examination of extracted microsomes 

with electron microscopy (Figure 26) 

reveals a mixture of small vesicles 

with adherent ribosomes (rough 

microsomes) that are thought to derive 

Figure 25  The cytoplasm of APCs is rich in endoplasmic reticulum as 
observed with Electron Microscopy.  

 
 Electron micrographs prepared from Jaws-II cells before microsome 
extraction. Right panel represents the area marked on the image of the left panel 
magnified to a scale 1:5. 
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from fragmented rough ER, and small vesicles that lack ribosomes (smooth 

microsomes) and are thought to derive from smooth ER. Although the 

presence of ribosomes indicates that rough microsomes are fragments of 

rough ER, the origin of smooth microsomes is more difficult to define as they 

could also include fragments of various parts of the endomembrane system 

(i.e. Golgi apparatus) (Dallner 1974). Electron micrographs of microsomes 

purified from an APC line (RAW309Cr.1) reveal that ribosomes are found on 

the outside of the microsome surface, whereas the interior enclosed area is 

biochemically equivalent to the ER lumen (Kvist and Hamann 1990). 

 To prepare microsomes from APCs (Figure 27A), cells were disrupted 

manually with a Dounce homogenizer, which is an apparatus consisting of a 

glass tube with a tight-fitting glass pestle. The nuclei, mitochondria and larger 

cell debris were removed by centrifugation at 10,000 x g. The total 

microsomes were recovered by centrifugation at 100,000 x g and sub-

fractionated by flotation in discontinuous sucrose gradients. The generated 

microsome layer on top of the 2M sucrose cushion was collected and 

resuspended in RM buffer. ER-enriched microsomes can be further purified 

by flotation in discontinuous sucrose gradients following an additional high-

speed centrifugation step (Figure 27B). The yield of microsomes is usually 

about 3-5% of the total APC cell weight (Li, Paulsson et al. 1999). 
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Figure 27  Microsome preparations. 
 
A. To prepare microsomes from APCs, an APC cell suspension in a hypertonic 
solution was placed in a douncer. Cells were sheered between a close fitting 
rotating plunger and the thick walls of a glass vessel on ice. Carefully applied 
40 strokes resulted in homogenization that left most membrane bound 
organelles intact. The nuclear, mitochondrial and larger cell debris was removed 
from the cell homogenate by centrifugation at 10,000 x g. The total microsomes 
were recovered by centrifugation at 100,000 x g and further subfractioned by 
flotation in discontinuous sucrose gradients. 
 
B. ER-enriched microsomes form a layer on top of 2M sucrose layer and can be 
further purified following flotation in discontinuous sucrose gradients. All 
procedures were carried out on ice or at 4°C. 
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2.3 Microsomes express MHC. 

 The ER plays a central role in cell biosynthesis as it is the starting 

point for the synthesis of all secreted and membrane proteins. There are two 

classes of ER proteins; transmembrane proteins that are only partly 

translocated across the ER membrane and become embedded in it, and 

membrane-free soluble proteins that are fully translocated across the ER 

membrane and are released into the lumen of the ER. The synthesis and 

assembly of both MHC-I and MHC-II occurs in the ER (Kvist and Hamann 

1990). 

 To confirm that microsomes are derived from enriched ER membranes 

we used western blot analysis of microsomes from Jaws-II cells to detect the 

presence of the ER-resident protein, tapasin (Figure 28). This analysis also 

revealed the presence of MHC-I molecules in the microsomes and their 

parental Jaws-II cells, and that 2μg of total microsomal protein measured by 

protein assay (BCA protein assay SIGMA) contained similar levels of MHC-I 

to that present in 105 APCs (Figure 29). 

 

 

Figure 28  Western blot analysis 
of ER-associated 
tapasin in Jaws-II 
cells and Jaws-II-
derived microsomes.  

 
 Immunoblotting analysis of 
10μg lysed proteins from Jaws-II cells 
or Jaws-II derived microsomal 
membranes with antibodies against 
tapasin. 

Cells Microsomes

Tapasin 48 kDa

Cells Microsomes

Tapasin 48 kDa
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2.4 Microsomes express co-stimulatory molecules. 

 In addition to antigen recognition, activation of T cells depends on co-

stimulation for initiating adaptive immune responses. Antigen presentation in 

the absence of co-stimulation leads to T cell anergy. Effective T cell responses 

require both the efficient presentation of peptide/MHC and co-stimulatory 

signals on DCs, as expression of co-stimulatory molecules signifies that 

antigen was likely to have been acquired in an environment that contained 

pathogens or ‘danger’. 

 Similar to MHC molecules, the biosynthesis and maturation of co-

stimulatory molecules occurs in the ER. Flow cytometry analysis showed that 

the surface expression of the co-stimulatory molecules B7-1 (CD80) and B7-2 

(CD86), and the adhesion molecule ICAM-1 (CD54), could be detected 

among Jaws-II-derived microsomes (Figure 30A) and their parental cells 

(Figure 30B), suggesting that the ER-enriched microsomes have the capacity 

to present co-stimulatory signals to T cells. The findings were confirmed by 

western blot analysis of co-stimulatory expression in an IFNγ-activated (He, 

Tang et al. 2007) mature dendritic cell line DC2.4 and in microsomes purified 

from activated DC2.4 cells (Figure 30C). 

Figure 29  Analysis of cellular and microsomal fractions for total 
protein and MHC.  

 
 Lysates prepared from whole Jaws-II cells or Jaws-II-derived 
microsomes were analyzed 
 
A. by MHC class I-specific western blot and 
 
B. by coomassie blue staining. 
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Figure 30  Expression of co-stimulatory molecules in microsomal 
membranes and their parental cells. 

 
A. Microsomes from Jaws-II cells and 
 
B. Jaws-II cells  
 
 were analysed for the co-stimulatory molecules B7.1, B7.2 and adhesion 
molecule ICAM-1 by flow cytometry. The isotype Ig was used as background 
control for all staining of both microsomes and cells. 
 
C. Western blot analysis of co-stimulatory molecules in 20μg of lysates from 
whole DC2.4 cells and from DC2.4 cell-derived microsomes. 
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2.5 Microsome-associated MHC can bind to antigenic peptides. 

 To explore whether the MHC molecules in ER-enriched microsomes 

from Jaws-II can present antigens to T cells, we first examined the ability of 

MHC molecules in isolated microsomal membranes to assemble with various 

peptides. 

 Since assembly of MHC molecules occurs on the luminal side of the 

ER membrane, the assembly of the MHC molecules present in microsomes 

would occur on the interior surface of the microsome vesicle, which 

represents the ER lumen (Kvist and Hamann 1990). Thus, in order to achieve 

maximum access to MHC molecules for peptide-loading we attempted to 

‘break-open’ the microsomal membrane so as to expose the luminal side of 

microsomes, by a repeated freeze-thawing procedure.  

 Detection of peptide/MHC-I complexes was achieved with the use of 

specific antibodies, as well as with a modified iodinated OVA peptide that is 

described later. The H2-Kb molecules in the processed microsomes could be 

loaded with the Kb-specific peptide SIINFEKL, as shown by staining with the 

SIINFEKL-Kb specific antibody 25-D1.16 (Figure 31A). MHC-I assembly 

with antigenic peptides takes places in the ER, however MHC-II molecules 

are protected from peptide loading by invariant chain (Ii) and CLIP until they 

reach the endocytotic compartments; there, under acidic conditions the Ii is 

degraded and exchanged with antigenic peptides (Wilson and Villadangos 

2005). To explore optimal ways of loading peptides onto microsomal MHC-II 

molecules, an I-A restricted OVA peptide [residues 324-340, amino acid 

sequence ‘ISQAVHAAHAEINEAGR’] was labelled with biotin (using the 

NHS-LC-Biotin reagent from Pierce Chemical) to enable the detection of 

peptide/MHC-II assembly (Figure 31B) in ‘inside-out’ converted microsomes. 

Despite an efficient loading of MHC-I molecules under similar conditions 

(Figure 32A middle panel), the OVA324-340 peptide could not be effectively 

loaded onto MHC-II molecules in the inside-out inverted microsomes at pH 

7.0 (Figure 32B middle panel), possibly due to the association of Ii with 

MHC-II. However, in an acidic buffer of pH 5, peptide 
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loading onto MHC-II was dramatically increased (Figure 32B lower panel). In 

addition to generating peptide receptive MHC-II molecules, the acid-stripping 

process also led to a significant increase in peptide-receptive MHC-I 

molecules (Figure 32A lower panel), which may be due to the dissociation of 

pre-processed peptides on MHC-I molecules.  

 

 
Figure 31  Flow cytometric analysis of peptide loading onto MHC 

molecules in microsomal membranes. 
 
 Microsomes from Jaws-II cells were pulsed with either SIINFEKL 
peptide, or biotinylated OVA324-340 peptide, or PBS. Excess peptides were washed 
and peptide-loaded microsomes were analyzed in comparison to microsomes that 
had not been loaded with peptides. 
 
A. Panel displays the mean fluorescence intensity of FITC-labeled 25-D1.16 
antibody specific to SIINFEKL-Kb complexes.  
 
B. Panel displays the mean fluorescence intensity of FITC-labeled streptavidin, 
specific for biotinylated OVA324-340 peptide. 
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Figure 32  Acidic treatment induces peptide-receptive MHC-II and 
enhanced peptide loading onto MHC-I molecules on 
microsomal membranes. 

 
 Expression analysis by flow cytometry of 
 

A. SIINFEKL-Kb complex detected by 25-D1.16 antibody on SIINFEKL-
loaded microsomal membranes derived from Jaws-II with or without pre-
treatment with acid-stripping and; 
 
B. Biotin-OVA324-340-Ia complexes detected by FITC-Streptavidin on peptide-
loaded microsomal membranes from Jaws-II cells under pH 7.0 or pH 5.0 
conditions. Microsomal membranes with PBS serve as a background control. 
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 The loading of peptide onto H2-Kb molecules in the processed 

microsomes was confirmed by crosslinking Kb with crosslinker modified 

SIYNFEKL peptides (Figure 33). Specifically, a cross-linker (ANB-NOS) 

was conjugated to the e-amino group of the lysine residue of SIINFEKL and 

the isoleucine at position 3 was substituted with tyrosine to allow iodination of 

the peptide (Wang, Raynoschek et al. 1996). These modifications permit the 

photo-cross-linking of the peptide to MHC-I and thus the detection of the 

assembled peptide/MHC complexes. The increased level of peptide-receptive 

MHC molecules in ER membranes following acid stripping allowed them to 

bind more peptide compared with their parental cells (Figure 33). 
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 The optimized protocol (Figure 34) for the preparation of microsomes 

with peptide-receptive MHC-I and MHC-II molecules allows effective 

loading of antigenic peptides in vitro. Furthermore, the use of crosslinker-

modified MHC-I and biotinylated MHC-II reporter peptides allows 

monitoring the level of peptide/MHC on the microsomes, which is essential in 

regulating the level of T cell responses. 

 
Figure 33  Visualization of crosslinked H2-Kb molecules with a radio-

labeled modified peptide. 
 
 2x106 RAW309Cr.1 cells or 20μg of RAW309Cr.1-derived microsomes 
were incubated with 100mM crosslinker-modified and 125I-labeled SIYNFEKL 
peptides and exposed to UV irradiation before lysis. Total lysates were 
precipitated with the Y3 antibody, specific for Kb molecules, and the precipitates 
were separated on a SDS-gel. The crosslinked Kb molecules were visualized after 
exposure to X-ray film.  The presented data are representative of two experiments. 
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Figure 34  Experimental design for loading of antigenic peptides on MHC 
class I and MHC class II. 

 
 Both MHC molecules are synthesised and matured in the lumen of the ER. 
Newly synthesized and properly folded MHC class I molecules are retained in the 
ER until they form stable peptide-MHC I complexes, while MHC class II molecules 
associate with an invariant chain and are transported from the ER to the endosome. 
The invariant chain protects the peptide binding site until it encounters peptide 
competition (mediated by HLA-DM in human) in the endosomal acidic 
environment. Peptide loading in an acidic buffer of pH 5 dramatically increased the 
peptide receptiveness of MHC-II molecules. In addition to generating peptide 
receptive MHC-II molecules, the acid stripping process also led to a significant 
increase in peptide-receptive MHC-I molecules, which may be due to dissociation 
of pre-processed peptides on MHC-I molecules. 
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Summary of Section 2 

 The observation of APCs with Electron Microscopy revealed an 

abundance of endoplasmic reticulum within their cytoplasm. Microsomes are 

isolated and purified from APCs by cell fractionation after differential density 

gradient high speed centrifugations. Microsomes contain APC components of 

the immune synapse, such as MHC-I, MHC-II and the co-stimulatory 

molecules B7.1, B7.2 and ICAM-1, and they bind antigenic peptides. Acidic 

treatment of microsomal membranes resulted in peptide-receptive MHC-II 

and enhanced peptide-receptive MHC-I molecules. 
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 3. Microsomes present peptide/MHC to murine T cells 

in vitro. 

 In this chapter it is investigated whether microsomes can effectively 

present peptides to mouse T cells in vitro. Antigen presentation by 

microsomes is analysed using defined peptides and the conditions for the 

induction of optimal T cell responses are evaluated. The interaction of 

microsomes with T cells is examined by microscopy using fluorescent-

labelled microsomal membranes. 

3.1 Inverted microsomes induce optimal T cell responses. 

 Although microsomes express plasma membrane components from 

APC that are associated with the immune synapse, and we had shown that 

MHC in microsomes can assemble with exogenous peptides, it was unclear 

whether peptide-loaded microsomes could induce naïve T cell responses. 

 As described above, the repeated freeze-thaw process is applied in 

order to disrupt the microsomal membrane, such that the luminal side of the 

membrane is exposed. MHC and co-stimulatory molecules are glycoprotein 

transmembrane proteins naturally exposed to the luminal side of the ER 

(Rodriguez Boulan, Kreibich et al. 1978; Rodriguez Boulan, Sabatini et al. 

1978), which is equivalent to the lumen of the microsomes (Kvist and 

Hamann 1990). Therefore, after ‘inversion’ of microsomes by repeated freeze-

thaw to expose the luminal microsomal surface, the MHC glycoproteins 

should also be exposed, allowing better access of soluble peptides to the 

peptide-binding site of the MHC molecule. We hypothesize that added 

peptides can access and bind more MHC molecules on microsomes that have 

been processed by freeze-thaw, and that this results in the induction of optimal 

microsome-mediated T cell immune responses (Figure 35). 
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Figure 35  Experimental design for the analysis of T cell responses 

induced by inverted microsomes. 
 
 Microsomes are processed by repeated freeze-thaw so as the luminal 
side of the microsomal membrane is exposed. Endogenous peptides and CLIP 
are dissociated from MHC I and MHC II respectively, by acid stripping, and 
peptides of interest are loaded on microsomes. Peptide loaded microsomes 
induce effector T cell responses in the context of class I and class II. 
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 To investigate this hypothesis, microsomes from Jaws-II cells were 

either processed by repeated freeze-thaw to facilitate inversion of the luminal 

side or used directly as purified, before loading with SIINFEKL peptides. 

Excess peptides were washed and peptide-loaded microsomes were incubated 

with splenic T cells isolated from OT-I TCR transgenic mice (Hogquist, 

Jameson et al. 1994), which express TCRs specific to SIINFEKL-Kb, similar 

to B3Z cells. T cells without peptide-loaded microsomes were used as a 

negative control. T cell responses were evaluated by IL-2 production 

measured with ELISA after 24 hours. Microsomes loaded with SIINFEKL 

peptides could induce OT-I T cell responses, whereas microsomes loaded with 

an irrelevant KTR peptide did not. The processing of microsomes so as to 

expose the microsomal luminal surface resulted in increased induction (3 fold) 

of T cell responses (Figure 36) compared to the responses induced by non-

processed microsomes. 

 

 
Figure 36  The exposure of the microsomal luminal surface facilitates the 

induction of optimal T cell responses in vitro.  
 
 Microsomes prepared from Jaws-II cells were either processed by 
repeated freeze-thaw to facilitate inversion of the luminal side or used directly 
following their preparation, and pulsed with SIINFEKL before co-cultured with 
OT-I T cells for 24 hours. T cell activation was assessed by IL-2 production 
using ELISA. The microsomes loaded with an irrelevant KTR peptide are a 
negative control. The data are presented as mean of quadruplicate cultures ± 
SEM and are representative of three experiments. 
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3.2 T cell activation by peptide-loaded microsomes depends on 

microsome concentration. 

 To verify that T cell responses were proportional to the surface of 

antigen-presenting membrane, serial dilutions of microsomes from Jaws-II 

cells were loaded with 100μg/ml SIINFEKL peptide. After removal of excess 

peptide, peptide-loaded microsomes were co-cultured with 106 OT-I T cells 

for 24 hours before measuring IL-2 production. T cells without peptide-loaded 

microsomes were used as a negative control. The data demonstrate that T-cell 

activation was relative to peptide-loaded microsomal membranes 

concentration (Figure 37). However, excess of peptide-loaded microsomes 

reduced T-cell activation, as induction of T cells with 4μg/ml of microsomal 

membranes resulted in less IL-2 production compared to that produced when 

T cells were induced with 2μg/ml of microsomal membranes.

Figure 37  Induction of T cell responses in vitro is relevant to 
microsomal vaccine concentrations. 

 
 Microsomes from Jaws-II cells were serially diluted before pulsed with 
100μg/ml SIINFEKL peptide. After removal of excess peptides, peptide-loaded 
microsomes were co-cultured with 1x106 OT-I T cells. IL-2 production was 
measured with ELISA after 24 hours. The data are presented as mean of 
quadruplicate cultures ± SEM and are representative of three experiments. 
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3.3 T cell activation by peptide-loaded microsomes depends on 

peptide concentration. 

 To examine whether microsomes activate T cells in a peptide-

dependent manner, 2μg of microsomes (quantified by BCA protein assay 

SIGMA) from Jaws-II cells were loaded with increasing concentrations of 

SIINFEKL peptide (10μg/ml, 100μg/ml and 1000μg/ml SIINFEKL 

concentration at loading). After removal of excess peptide, SIINFEKL-loaded 

microsomes were co-cultured with 1x106 OT-I T cells for 24 hours prior to 

measuring IL-2 production. The resulting data revealed that the induced T cell 

responses were peptide-dose-dependent (Figure 38A). Similarly, the responses 

of the OVA324-340-recognising in the context I-A MF2.2D9 T cells, induced by 

2μg of Jaws-II-derived microsomes loaded with increasing concentrations of 

OVA324-340 peptide (10μg/ml, 100μg/ml and 1000μg/ml OVA324-340 

concentration at loading), were also peptide- dose-dependent (Figure 38B). In 

both experimental settings, T cell responses were not only peptide-dose-

dependent, but also peptide-specific, since microsomes loaded with the same 

concentrations of an irrelevant peptide (MPp) could not induce T cell 

responses (Figure 38A&B lower panels). 
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Figure 38  Induction of T cell responses by peptide-loaded 
microsomes. 
 
 2μg of microsomes from Jaws-II cells were pulsed with SIINFEKL or 
OVA324-340 peptides at different concentrations as indicated for 6 hours. 
Excess peptides were washed before cells were co-cultured with either  
 
A. OT-I T cells specific for SIINFEKL-Kb or with  
 
B. MF2.2D9 T cell line specific to OVA324-340-I-A.  
 
 The production of IL-2 was measured by ELISA after culture for 24 
hours. Lower panel displays the findings in comparison to microsomes loaded 
with irrelevant MP peptides. The data are presented as mean of quadruplicate 
cultures ± SEM and are representative of three experiments. 
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3.4 T cell binding to microsomes results in T cell activation and 

depends on T cell-antigen recognition. 

 Although peptide-loaded microsomes could induce peptide-specific T 

cell responses it is unknown whether ER-derived microsomes could directly 

interact with, and bind to, T cells after assembly of MHC with exogenous 

peptides. This was examined in two separate experimental settings using 

fluorescent-labelled microsomes or microsomes engineered to express 

fluorescent proteins. 

 Microsomes were extracted from Jaws-II cells and labelled with 

FITC1 (using the Fluorotag FITC Conjugation Kit from SIGMA) prior to their 

loading with peptides. After removal of excess peptides, peptide-loaded 

microsomes were incubated with T cells and their interaction was observed 

with confocal microscopy. Fluorescent micrographs revealed that SIINFEKL-

loaded fluorescent microsomes could interact and bind to the SIINFEKL–Kb 

recognising B3Z T cells (Figure 39A right panel). By contrast, binding to B3Z 

T cells was considerably less when fluorescent microsomes were loaded with 

an irrelevant influenza peptide MPp (Figure 39A left panel). 

 FITC1 is a fluorophore which interacts with free amino acids of 

proteins to form stable conjugates. One could question whether FITC1 

binding to amino acids would interfere with peptide binding sites of MHC 

molecules in microsomal membranes, therefore influencing the interaction of 

microsomes with T cells. To confirm that this is not the case, the above 

experiment was repeated using microsomes extracted from an APC cell line, 

RMA-S, which was transfected to express green fluorescence protein (GFP) 

and a retention signal (E19K). The ER-retention signal is a C-terminal 

tetrapeptide KDEL (in mammals) (Pelham 1990), which is necessary for 

localization and maintenance of membrane proteins in the ER (Pelham 1989). 

Here, it is used to ensure the retention of the (transfected) fluorescent proteins 

in the ER and, subsequently, in the extracted microsomes. In this experiment, 

binding of microsomes to T cells was assessed following incubation of 

SIINFEKL-loaded microsomes with splenic OT-I T cells, which express 

http://en.wikipedia.org/wiki/Lysine�
http://en.wikipedia.org/wiki/Lysine�
http://en.wikipedia.org/wiki/Glutamate�
http://en.wikipedia.org/wiki/Glutamate�
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TCRs specific to SIINFEKL-Kb, similar to B3Z cells. As revealed by 

fluorescent microscopy images, fluorescent microsomes loaded with 

SIINFEKL peptides could interact and bind to SINFEKL-Kb-recognising OT-I 

T cells (Figure 39B right panel), while binding to OT-I T cells could not be 

detected when fluorescent microsomes were loaded with an irrelevant 

influenza peptide MPp (Figure 39B left panel). 

 To examine the functional consequence of this interaction, microsome-

bound T cells were cultured in normal medium for 24 hours before measuring 

IL-2 production. Both classes of SIINFEKL-loaded fluorescent microsomes, 

FITC1-stained (Figure 40A) and GFP- expressing (Figure 40B), could induce 

T cell responses similar to those induced by SIINFEKL-loaded microsomes 

that hadn’t been fluorescently labelled, suggesting that this type of membrane 

manipulation does not interfere with presentation of antigens to T cells. 

Furthermore, fluorescent microsomes that were loaded with an irrelevant 

peptide (MPp) could not induce T cell responses, indicating that peptide-

loaded fluorescent microsomes retained their peptide-specific recognition by 

T cells. Thus, fluorescent microsomes can be used for the detection of 

antigen-specific T cells and for their subsequent activation in vitro. 
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Figure 39  Peptide-loaded microsomes interact with specific T cells. 
 
A. Microsomes prepared from Jaws-II cells were labelled with FITC1 by 
conjugation before loading with SIINFEKL [microsomes+SIINFEKL] or 
irrelevant MP peptide [Microsomes +MPp]. Following wash of excess 
peptides peptide-loaded microsomes were allowed to interact with B3Z cells 
for 1 hour. Confocal images show that microsomes that had been loaded with 
SIINFEKL peptide could interact and bind better with B3Z cells. 
 
B. RMA-S cells were transfected with a green fluorescence protein tagged 
with a retention signal, so that the GFP protein can be retained in the ER. The 
microsomes from these cells were pulsed with SIINFEKL 
[microsomes+SIINFEKL] or an irrelevant MP peptide [microsomes+MPp] 
before allowed to interact with OT-I cells. Fluorescence microscopy shows 
that only microsomes that had been loaded with SIINFEKL could interact and 
bind stably to OT-I T cells. 
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Figure 40  Analysis of fluorescence interference with antigen presentation 
on microsomal membranes. 

 
A. Equal amounts of Jaws-II microsomes that had been labelled with FITC1 
were pulsed with 100μg/ml of SIINFEKL peptide for 6 hours. Excess peptides 
were washed before cells were co-cultured with B3Z T cells. B3Z T cell 
activation was determined based on IL-2 production 24 hours later and 
measured by ELISA. Peptide-loaded (+) unstained microsomes were compared 
with peptide-loaded (+) microsomes that had been labelled with several 
dilutions of FITC1 (10:1, 5:1, and 1:1). Unstained microsomes and microsomes 
stained with the maximum FITC1 dilution that had been loaded with MP 
peptide serve as negative controls. The data are presented as mean of 
quadruplicate cultures ± SEM and are representative of three experiments. 
 
B. The RMA-S cell line was transfected with a green fluorescence protein 
tagged with a retention signal, so that GFP protein could be retained in the ER. 
Equal amounts of fluorescent microsomes prepared from transfected cells were 
pulsed with 100μg/ml SIINFEKL or an irrelevant MP peptide for 6 hours. 
Excess peptides were washed before cells were co-cultured with SIINFEKL-Kb-
specific OT-I cells. T cell activation was determined based on IL-2 production 
24 hours later and measured by ELISA. Peptide-loaded microsomes from non-
transfected RMA-S cells served as positive controls. Microsomes from 
transfected or non-transfected cells loaded with irrelevant peptides served as 
negative controls. The data are presented as mean of quadruplicate cultures ± 
SEM. 
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Summary to Section 3 

 The interaction of microsomes with T cells was studied using 

fluorescent microscopy, which revealed that fluorescent microsomes could 

bind T cells in a peptide-specific manner. Fluorescent labelling did not 

interfere with T cell-antigen recognition on microsomes. T cell activation was 

dependent on microsome concentration, and processing of microsomes in an 

attempt to expose their luminal surface improved their ability to stimulate T 

cell responses in vitro. Finally, it was demonstrated that microsomes could 

induce peptide-specific T cell responses in vitro in the context of MHC I and 

MHC II antigen presentation. 
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4. Microsomes present peptides to mouse T cells in 

vivo. 

 In the previous chapters, the immunogenicity of microsomes was 

demonstrated and characterized in vitro. However, the only way of assessing a 

vaccine’s ability to induce protective immune responses is by analysing 

immunity in vivo. This chapter begins with an experiment that aims to 

evaluate whether vaccination of healthy C57.Bl/6 mice with peptide-loaded 

microsomes from cell line (Jaws-II) or autologous DCs can elicit antigen-

specific T cell responses. Subsequently, immunized animals, along with 

unimmunized controls are challenged with an infectious or lethal dose of 

OVA-expressing vaccinia virus. Animals challenged with ‘infectious’ dose 

become sick (e.g. weight loss), but typically can recover without treatment. 

By contrast, challenge with a ‘lethal dose’ of the virus results in an acute viral 

infection from which most animals fail to recover without treatment. The 

prevalence and severity of the infection in the immunized animals is assessed 

and compared to the course of disease in unimmunized control animals. At the 

end of the assays in vivo, the secondary lymphoid organs are analyzed in vitro 

to evaluate specific T cell immune responses. The efficacy of the microsomal 

vaccine in therapeutic context is also examined in vivo with an animal model 

of an antigen-bearing tumour. Finally, internalization assays which examine 

whether microsomes are being phagocytosed by antigen presenting cells are 

described, in an effort to elucidate the mechanism by which microsomes 

induce T cell responses in vivo. 

4.1 Induction of CD8(+) T cell responses in  vivo by microsomal 

vaccine. 

 The ability of peptide-loaded microsomes to induce T cell responses in 

vivo was examined in naïve C57.Bl/6 mice, which have an H2 haplotype b. In 

addition to easy breeding, this strain has a permissive background for 

expression of mutations; this allows a great availability of congenic strains 
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(e.g. OT-I mice) and of various congenic cell lines (e.g. Jaws-II cells), making 

them ideal controls and models for disease. 

 In this study, two groups of four C57.Bl/6 mice were immunized 

intravenously with either SIINFEKL peptide-loaded microsomes from Jaws-II 

cells at a dose of 20μg microsomes/ mouse, or microsomes only at the same 

dose. The mice were then boosted by repeating the same immunizations as 

before after seven days (Figure 41). One day after the boost the mice were 

sacrificed for analysis of T cell responses.  

  

Figure 41  Experimental design for the analysis of murine immune 
responses following vaccination with SIINFEKL-loaded 
microsomes. 

 
 Healthy mice were vaccinated with SIINFEKL-loaded microsomes, 
and then boosted with same immunizations after seven days. One day after 
boost total splenocytes were reactivated in vitro with free SIINFEKL 
peptides and peptide-specific responses were evaluated by IFNγ production, 
measured with ELISpot. 
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 Total splenocytes were isolated and re-activated in vitro with 

100μg/ml soluble SIINFEKL peptide for 3 days. Cells from the mice 

immunized with SIINFEKL-loaded microsomes produced more IFNγ than 

cells from the mice immunized with microsomes only, as illustrated by an 

IFNγ ELISpo t assay (Figu re 42). This is an assay adapted from the enzyme 

linked immunosorbent assay (ELISA), in which cells are cultured over 

antibodies attached to a plastic surface. Specific cell-secreted products (i.e. 

cytokines) are captured by the corresponding antibody and are then detected 

using an enzyme-coupled antibody that cleaves a colourless substrate to 

generate a localized coloured spot, each spot representing i.e. a cytokine-

producing cell. In the experiment described here, total single cell-suspensions 

purified from homogenized spleens of the immunized mice were used to allow 

uptake and presentation of free SIINFEKL peptide, that was used as a 

stimulant for re-activation of SIINFEKL-specific CD8(+) T cells in vitro, by 

antigen presenting cells naturally found in the spleen. The greater number and 

Figure 42  SIINFEKL-loaded microsomes induce CD8(+) T cell responses 
in naïve mice. 

 
 Four C57.Bl/6 mice were injected intravenously with a dose of 
20μg/mouse SIINFEKL-loaded microsomes from Jaws-II cells and boosted 
once with the same dose after 7 days. The four mice injected with microsomes 
that hadn’t been loaded with peptide served as controls. One day after 
boosting, total splenocytes were incubated with SIINFEKL peptide at 
100μg/ml for three days. T cell responses were assessed by quantification of 
IFNγ producing cells by IFNγ ELISpot assay. Each well is representative of 
triplicate cultures for each mouse. 
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higher intensity of the ‘IFNγ-spots’ generated by splenocytes from mice 

immunized with SIINFEKL-loaded microsomes compared to the ‘IFNγ-spots’ 

generated by splenocytes from mice immunized with microsomes only, 

following re-stimulation in vitro with SIINFEKL, indicate that immunization 

of mice with SIINFEKL-loaded microsomes could trigger the activation of 

SIINFEKL-specific CD8(+) T cells in vivo. 

4.2 Protection against vaccinia virus infection in vivo by a 

microsomal vaccine that induces both CD4(+) and CD8(+) T cell 

responses. 

 The capacity of peptide-loaded microsomes to induce effective anti-

viral immune responses in vivo was assessed in a vaccinia viral infection 

model in C57.Bl/6 mice (Figure 43). Vaccinia virus causes an acute viral 

infection in mice. Although neutralizing antibodies are crucial for clearing the 

virus, protection against vaccinia infection appears to be mediated by 

functions of cellular immunity (Novembre, Raska et al. 1989; Xu, Johnson et 

al. 2004). The recombinant vaccinia virus used here carries a gene encoding 

chicken ovalbumin (Restifo, Bacik et al. 1995). 
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4.2.1 Detection of protective immunity after vaccination with microsomes 

from dendritic cell lines. 

 Four groups of C57.Bl/6 mice were immunized intravenously with 

SIINFEKL peptide-loaded microsomes from Jaws-II cells at a dose of 20μg 

microsomes/mouse, or microsomes only at the same dose, or 100μg/mouse 

soluble SIINFEKL, or PBS. The mice were then boosted by repeating the 

same immunizations as before after seven days. Ten days after boosting, the 

mice were challenged with an infectious dose 2x105 plaque forming units 

(PFU) of chicken ovalbumin-expressing vaccinia virus (OVA-VV) and 

observed for severity of infection and course of disease over eleven days. 

Mice in the control groups lost up to 20% of their weight, while the mice 

vaccinated with SIINFEKL-loaded microsomes didn’t show any evidence of 

weight loss (Figure 44A). SIINFEKL-specific CD8(+) T cells were induced 

only in mice immunised with SIINFEKL peptide-loaded microsomes, but not 

in the other three groups as indicated by tetramer staining (Figure 44B). 

Figure 43  Experimental design for the evaluation of protection induced by 
microsomal vaccine against murine viral infection. 

 
 C57.BL/6 female mice were immunized twice intravenously with 
microsomes loaded with a mixture of SIINFEKL and OVA324-340 peptides. Ten 
days after the last immunization mice were challenged with an infectious or lethal 
dose of recombinant vaccinia virus that carried the OVA-gene. T cell responses 
were analyzed in total splenocytes two days after infection; viral clearance was 
assessed in lung tissue 4 days after infection, while the clinical outcome was 
monitored over the eleven days post-infection. 
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Figure 44 Peptide loaded microsomes induce immune responses 
against acute viral infection. 

 
 C57.Bl/6 mice were injected intravenously with a dose of 
20μg/mouse SIINFEKL-loaded microsomes from Jaws-II cells 
[microsomes/ SIINFEKL]. The mice injected with a dose of 20μg/mouse 
peptide-free microsomes [microsomes], or 100μg/mouse SIINFEKL peptide 
[free SIINFEKL], or PBS [PBS], served as controls. 
 
A. Body weight after challenge with infectious dose of VV-OVA virus. 
 
B.  Two days after challenging, total splenocytes were co-stained with 
tetramer specific to SIINFEKL-Kb and CD8 antibody. 
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 The above experiment was repeated using Jaws-II-derived microsomes 

that were loaded with a mixture of SIINFEKL and OVA324-340 peptides. Mice 

were vaccinated with a dose of 20μg microsomes/mouse of microsomes 

loaded with SIINFEKL and OVA324-340 peptides [M+OVAp], or with the same 

dose of microsomes loaded with an irrelevant influenza peptide (MPp) 

[M+MPp], or with 106 Jaws-II cells loaded with a mixture of SIINFEKL and 

OVA324-340 peptides [DC+OVAp], or with 106 Jaws-II cells loaded with an 

irrelevant influenza peptide (MPp) [DC+MPp], or with a mixture of 

SIINFEKL and OVA324-340 peptides only [OVAp]. Seven days after 

vaccination the mice were boosted by repeating the same immunizations. Ten 

days after boosting the mice were challenged with either a lethal dose 5x106 

PFU of OVA-VV virus or with the same dose of a vaccinia virus expressing 

influenza matrix protein (MP-VV) (only mice that had been vaccinated with 

microsomes loaded with SIINFEKL and OVA324-340 peptides were challenged 

with MP-VV). Forty-eight hours after challenge, three of eight mice were 

randomly chosen in each group and were sacrificed for analysis of T cell 

responses, while the remaining mice were used for clinical and viral clearance 

studies. Upon re-stimulation of CD4(+) T cells in vitro with the same 

treatments that had been used for the immunizations (Figure 45), the most 

potent T cell responses were observed in mice that were vaccinated with 

mixture of SIINFEKL and OVA324-340 peptide-loaded microsomes, and 

subsequently challenged with OVA-VV virus (Figure 46 lower middle panel). 

SIINFEKL and OVA324-340 peptide-loaded Jaws-II cells induced lower CD4(+) 

T cell responses (Figure 46 upper middle panel) compared to those induced by 

SIINFEKL and OVA324-340 peptide-loaded microsomes. Mild T cell responses 

were also observed in mice vaccinated with mixture of the SIINFEKL and 

OVA324-340 peptide-loaded microsomes that were subsequently challenged 

with MP-VV virus (Figure 46 lower right panel). 

 Clinical symptoms were closely associated with the observed immune 

responses induced by vaccination in vivo (Figure 47). Indeed, although mice 

immunized with SIINFEKL and OVA324-340 peptide-loaded microsomes 

showed significant weight loss, they were protected from severe symptoms 
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and they recovered after the course of the disease (Figure 47 left panel). The 

vaccination efficacy of peptide-loaded microsomes from Jaws-II cells was 

compared with that of peptide-loaded Jaws-II cells. The results showed 

(Figure 47 left panel) that peptide-loaded DCs could also protect 75% of the 

mice from lethal dose of viral infection, but the recovery of the infected mice 

was slower than the group immunized with peptide-loaded microsomes. All 

the other mice died (due to legal regulations severe weight loss necessitated 

the sacrifice of these animals before natural death could be observed) (Figure 

47 right panel). 

 These findings collectively suggest that immunization with 

microsomal vaccine is more efficient than with DCs, and demonstrate that 

peptide-loaded microsomes are highly immunogenic and could serve as 

protective vaccines for acute viral infections. 

 

Figure 45  Experimental design for analysis of CD4(+) T cell responses in 
vitro following viral infection in mice vaccinated with microsomal 
vaccine. 

 
 Following infections of the immunized mice, CD4(+) T cells were isolated 
from total splenocytes and lymph nodes by positive selection. Purified CD4(+) T 
cells from each mice were activated with the described treatments in vitro. Two 
days later CD4(+) T cell-specific IL-2 release was measured by ELISA.. 
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Figure 46  Induction of CD4(+) T cell responses by peptide-loaded 
microsomes in vivo.  

 
 C57.Bl/6 mice were injected intravenously with a mixture of 
SIINFEKL and OVA324-340 loaded microsomes from Jaws-II [M+OVAp] at a 
dose of 20μg microsomes/mouse or 106 SIINFEKL and OVA324-340-loaded 
Jaws-II cells (DCs) [DC+OVAp]. Mice injected with a dose of 20μg /mouse 
microsomes from Jaws-II loaded with irrelevant MP peptide [M+MPp], 106 

Jaws-II cells loaded with irrelevant MP peptide [DC+MPp], mixture of 100μg 
SIINFEKL and 100μg OVA324-340 peptides [OVAp], and PBS [PBS], served 
as controls. Two days after viral challenge, CD4(+) T cells were isolated from 
splenocytes and stimulated with the indicated stimuli at 2x105 CD4(+) T cells 
per well. Two days after stimulation, IL-2 production was measured by 
ELISA. Data are presented as mean of triplicate cultures ± SD. 
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Figure 47  Mouse weight analysis after lethal dose of viral infection. 
 
 C57.Bl/6 mice were injected intravenously with Jaws-II-derived 
microsomes loaded with a mixture of SIINFEKL and OVA324-340 
[M+OVAp]at a dose of 20μg microsomes/mouse or 106 Jaws-II cells pulsed 
with a mixture of SIINFEKL and OVA324-340 peptides [DC+OVAp], 
respectively and boosted once after 7 days. Microsomes loaded with irrelevant 
MP peptide [M+MPp], a mixture of free SIINFEKL and OVA324-340 peptides 
[OVAp], or PBS [PBS], served as controls. Mice were infected with an OVA 
expressing vaccinia virus [OVA-virus], or with an influenza matrix protein 
MP expressing vaccinia virus [MP-virus]. After five days, all the mice had to 
be sacrificed due to dramatic loss of weight, except the mice that had received 
[DC+OVAp] and [M+OVAp]. Mice vaccinated with microsomes loaded with 
a mixture of SIINFEKL and OVA324-340 [M+OVAp] recovered from lethal 
dose of infectious virus. 
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4.2.2 Evaluation of protective immunity after vaccination with bone 

marrow-DC-derived microsomes. 

 To confirm the efficacy of the microsomal vaccine in protection from 

viral infection the above experiments were repeated using microsomes from 

autologous bone marrow-derived dendritic cells from C57.Bl/6mice. The main 

advantage of using microsomes from autologous dendritic cells is the direct 

relation between the vaccine and the targeted immune response, and reduced 

risk of allogenic immune responses. Autologous dendritic cells were 

differentiated in vitro from bone marrow progenitors in the presence of IL-4 

and GM-CSF. Prior to microsome extraction dendritic cell cultures were 

activated with LPS for the induction of maximum MHC and co-stimulatory 

expression. Microsomes were then extracted and loaded with peptides as 

described before. 

 Five groups of C57.Bl/6mice were immunized intravenously with 

either a mixture of SIINFEKL and OVA324-340 peptide-loaded microsomes 

isolated from bone-marrow derived DCs of C57.Bl/6 at a d o se of 20 μg 

microsomes/mouse [M+OVAp]; or microsomes loaded with irrelevant MP 

peptides at the same dose [M+MPp]; or with a mixture of SIINFEKL 

(100μg/mouse) and OVA324-340 (100μg/mouse) [OVAp]; or with 106 DCs 

pulsed with these two peptides [DC+OVAp]; or with PBS [PBS]; as controls. 

The mice were then boosted by repeating the same immunizations after seven 

days. Ten days after boosting, twenty of the 30 mice in each group were 

challenged with an infectious dose 2x105 PFU and the other ten with a lethal 

dose 5x106 PFU of OVA-VV virus. Forty-eight hours after challenge, five of 

the twenty mice involved in the infectious dose group were sacrificed for 

analysis of T cell responses and, 4 days after, another five were sacrificed for 

viral clearance study, while the remaining mice were used for clinical study. 

 Flow cytometry analysis revealed that 4.3% of CD8(+) T cells in mice 

immunized with SIINFEKL and OVA324-340 peptide-loaded microsomes were 

SIINFEKL-specific (Figure 48A middle panel), compared with 1.8% in mice 

immunized with peptide-pulsed DCs (Figure 48A bottom panel). SIINFEKL-
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specific CD8(+) T cells were not detected in the other three groups as indicated 

by tetramer staining (Figure 48A). In conjunction with induction of antigen-

specific CD8(+) T cells, the re-stimulation of CD4(+) T cells in vitro showed 

that SIINFEKL and OVA324-340 peptide-loaded microsomes [M+OVAp] 

induced stronger IL-2 production and proliferative responses from mice 

immunized with a mixture of SIINFEKL and OVA324-340 peptide-loaded 

microsomes (Figure 48B&C middle panels) than from mice immunized with 

peptide-pulsed DCs (Figure 48B&C bottom panels). These results indicate 

that an integrated immune response of both CD4(+) and CD8(+) T cells was 

induced in mice by peptide-loaded microsomes and demonstrates that, in the 

described experimental setting, the microsomes are more immunogenic than 

their parental DCs. 

 Clinical symptoms were closely correlated to the induction of immune 

responses in vivo. In mice receiving an infectious dose, a ‘degree’ of 

protection was observed in mice immunized with peptide-pulsed DCs 

[DC+OVAp]. However, only SIINFEKL and OVA324-340 peptide-loaded 

microsomes completely protected against viral infection as these mice showed 

no weight loss (Figure 49A) and no viral particles were detected in lung tissue 

unlike the other groups (Figure 49B). With a lethal dose of virus, mice 

immunized with SIINFEKL and OVA324-340 peptide-loaded microsomes 

showed weight loss but they were protected from death and recovered rapidly 

after infection (Figure 49C). Conversely, two out of ten mice immunized with 

peptide-pulsed DCs died after five days (Figure 49C). All mice in other 

groups died within six days post-infection (Figure 49C). Furthermore, the 

spleens were double the size in the protected mice immunized by OVA 

peptide-loaded microsomes (data not shown). These findings demonstrate that 

peptide-loaded microsomes are an effective vaccine in the protection against 

acute viral infection. 
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Figure 48  Vaccination with OVAp loaded microsomes induces both CD8(+) 
and CD4(+) T cell responses in mice infected by a recombinant 
vaccinia virus with insertion of OVA-gene. 

 
 CD57Bl/6 mice were injected intravenously with microsomes from 
bone-marrow-derived DCs loaded with a mixture of SIINFEKL and OVA324-340 
at a dose of 20μg/mouse [M+OVAp], or 106 bone marrow derived-DCs pulsed 
with SIINFEKL and OVA324-340 [DC+OVAp], and boosted with the same 
immunizations once after 7-days. Mice vaccinated with microsomes loaded with 
irrelevant MPp peptide [M+MPp], mixture of free SIINFEKL and OVA324-340 
peptides [OVAp], and PBS [PBS], served as controls. 
 

A. Two days after viral challenge, total splenocytes were co-stained with 
SIINFEKL-Kb specific tetramer and CD8 antibody.  
 
 For measuring CD4 T cell responses, CD4(+) T cells were isolated from 
splenocytes by positive selection and stimulated in vitro at 2x105 CD4(+) T cells 
per well with the corresponding stimuli as explained above. 
 
B. Following three days of re-stimulation, proliferation responses were detected 
by 3[H] incorporation (CPM) (mean of triplicate cultures ± SD) after exposure 
to 3[H]thymidine for 8 hours. 
 
C. Following two days of re-stimulation, IL-2 production was measured by 
ELISA. 
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Figure 49  Peptide-loaded microsomes induced immune responses against 
viral infection (VV-OVA). 

 
 To study the anti-viral response, mice were immunized with microsomes 
from bone-marrow derived DCs loaded with a mixture of SIINFEKL and OVA324-340 
twice intravenously with an interval of 7-days. Mice injected i.v. with MPp loaded 
microsomal membranes, a mixture of SIINFEKL and OVA324-340 peptides and PBS 
served as control groups, respectively. Ten days after the last immunization, all 
mice were challenged with VV-OVA virus at infectious or lethal doses as indicated.  
A. Body weight after challenge with infectious dose of VV-OVA virus and  
 
B. Viral titers in the lungs on day 4 of mice challenged with an infectious dose of 
VV-OVA virus. Data show mean ± SD of log10 PFU per gram of lung tissues.  
 
C. Survival of mice challenged with a lethal dose of VV-OVA virus. 
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4.3 Vaccination with microsomal vaccine eliminates established 

tumours in mice. 

 Most cancers express tumour-specific and tumour-associated antigens 

that can elicit anti-tumour T cell immune responses, however these responses 

are often not sufficient to control tumour growth. Cancer immunotherapy aims 

to augment the efficient stimulation of a specific anti-tumour response. Cell-

mediated immunity is thought to be crucial for the eradication of cancer cells 

and, subsequently, for the elimination of caner. 

 Having used the well characterised OVA model system to study T 

cell-priming by peptide-loaded microsomes in assays in vitro and in viral 

assays in vivo, the ability of tumour-antigen-loaded microsomes to induce an 

antigen-specific protective anti-tumour response was investigated in a similar 

system against an OVA-expressing tumour in vivo (Figure 50). The growth of 

OVA-bearing tumour cells EG.7, which are an MHC-II negative thymoma 

cell line (EL-4) (Carbone and Bevan 1989), of C57.Bl/6 origin, transfected 

with OVA cDNA, allows the analysis of the induction of OVA-specific CTL 

responses in vivo. 

 The efficiency of the microsomal vaccine for the eradication of 

established antigen-expressing tumours was investigated using Jaws-II-

derived microsomes or autologous, bone-marrow dendritic cell-derived 

microsomes for immunizations. Four groups of C57.Bl/6 mice (six mice in 

each group) were injected with 2x105 EG7 tumour cells subcutaneously. 

Initially, the presence of tumour was evaluated by palpation, thereafter tumour 

growth was measured at 48-hour intervals using a vernier calliper. When 

tumours reached 3mm3 in size, mice from one group were intravenously 

injected with 20μg of a mixture of SIINFEKL and OVA324-340 peptide-loaded 

microsomes [Microsomes+OVAp]. In the control groups, mice were 

immunized with the same dose of microsomes loaded with irrelevant MP 

peptide [Microsomes+MPp], or with a mixture of OVA peptides at 100μg 

each peptide/mouse [OVAp], or with PBS [PBS]. All mice were boosted by 

repeating the same immunizations after seven days. Three weeks after 
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boosting, tumours in control groups grew to an average of 1.5cm3 in size, 

while tumours in mice immunized with microsomes loaded with OVA 

peptides remained less than 4mm3 (1 out of six) in size or were completely 

eradicated (Figure 51A), suggesting that the microsomal vaccine induced anti-

OVA immune responses that effectively suppressed the growth of the OVA-

expressing tumour. A cytotoxicity assay in vitro showed that CD8(+) T cells 

from mice immunized with OVA peptide-loaded microsomes, but not from 

control groups, raised potent cytotoxicity to EG7 cells (Figure 51B). These 

results demonstrate that immunization of mice with OVA peptide-loaded 

microsomes could induce OVA-specific immunity and prevent OVA-

harbouring tumour development. 



 157 

 

 

21 287 140

C57.BL/6
(8-10 weeks old)

3mm3

measure 
cytotoxicity

isolate CD8+ T 
cells

remove and 
measure tumour 

size

first 
immunization

boost sacrifice

allow the tumour 
to grow

714

injection of OVA-
bearing tumour cells 

days before immunization days after immunization

21 287 140

C57.BL/6
(8-10 weeks old)

3mm3

measure 
cytotoxicity

isolate CD8+ T 
cells

remove and 
measure tumour 

size

first 
immunization

boost sacrifice

allow the tumour 
to grow

714

injection of OVA-
bearing tumour cells 

days before immunization days after immunization

Figure 50 Experimental design for the assesment of peptide-loaded 
microsomes as a therapeutic vaccine against tumours. 

 
 For assessment of microsomal vaccine-induced immune responses 
against tumours, mice were injected subcutaneously with OVA-bearing tumour 
cells. When initial growth of tumours was detected by palpation after 14 days, 
mice were vaccinated with peptide-loaded microsomes twice with a 7-day 
interval. Tumour growth was monitored and 28-days after the first 
immunization mice were sacrificed. Tumours were removed for evaluation of 
their size. To detect specific anti-tumour CTL activity, CD8(+)  T cells were 
isolated from lymph nodes and spleen and analyzed by cytotoxic assay in vitro. 
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Figure 51 Microsomal vaccine-mediated immune responses against 
OVA-bearing tumours (EG7). 

 
 For assessment of microsomal vaccine-induced immune responses 
against tumours, mice were injected subcutaneously with 2x105 EG7 tumour 
cells. When initial growth of tumours was detected by palpation after 14 days, 
mice were divided into four groups (five mice per group) and injected 
intravenously with microsomes from bone-marrow-derived DCs loaded with a 
mixture of SIINFEKL and OVA324-340 [Microsomes + OVAp], or with MP 
peptides [Microsomes + MPp], or a mixture of SIINFEKL and OVA324-340 free 
peptides [OVAp], or PBS only [PBS], twice with a 7-day interval. Tumour 
growth was monitored every second day. 21-days after the last immunization, 
mice were sacrificed and tumour size was compared across groups.  
A. Only one mouse from the group immunized with microsomal membranes 
loaded with OVA peptides had a tumour of size 4mm3, while all mice in the 
other groups had tumours with sizes about 1.5 cm3. 
B. CD8(+) T cells were isolated from spleens and used for a cytotoxicity assay 
in vitro against EG7 tumour cells. 
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4.4 Microsomes are not being phagocytosed by dendritic cells 

in vitro. 

 Immature DCs, both in peripheral tissues and in secondary lymphoid 

organs, express a large array of phagocytic receptors to efficiently 

phagocytose bacteria, cell debris, or even intact cells. By contrast to other 

professional phagocytes, dendritic cells have developed means to conserve 

antigenic peptides from the ingested particles, resulting in their increased 

presentation on MHC-I and MHC-II that serve to initiate adaptive immune 

responses (Savina and Amigorena 2007). It was therefore of interest to 

investigate the possibility that microsomes are endocytosed by APCs, in an 

effort to clarify whether the mechanism of microsome-induced T cell 

activation involved direct antigen presentation or cross-priming through 

resident DCs. 

 The potential microsome internalization by DCs was evaluated using 

assays in vitro. In physiological conditions, the most potent phagocytotic 

dendritic cells are those with an immature phenotype. Jaws-II is an immature 

DC line that matures in the presence of GM-CSF and high concentrations of 

bovine serum in culture. Consistent with previous experiments, the 

microsomes used here were extracted from mature Jaws-II (high culture 

passage, adherent cells of dendritic morphology). Internalization assays were 

performed using immature Jaws-II cells (low culture passage, non-adherent 

cells with round morphology). Microsomes from mature Jaws-II were labelled 

by conjugation to FITC1 (using Fluorotag FITC Conjugation Kit SIGMA) and 

incubated with immature Jaws-II cells for 6 hours. FITC-labelled dextran 

beads were incubated with immature Jaws-II cells as positive control. The 

cells were washed with PBS and incubated with trypan blue for 1 minute to 

quench extracellular derived fluorescent signals. Fluorescent micrographs 

revealed that although fluorescent dextran beads could be internalised and 

detected within the DCs (Figure 52A), fluorescent microsomes could not be 

detected (Figure 52B). 
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Figure 52  Internalization assay for the detection of phagocytosis of 
microsomes by dendritic cells. 

 
A. Images of Jaws-II cells incubated with fluorescence beads observed with (i) 
confocal microscopy and (ii) light microscopy. 
 
B. Images of Jaws-II cells incubated with FITC1 labelled peptide-loaded 
microsomes from Jaws-II cells observed with (i) confocal microscopy and (ii) 
light microscopy. 
 
C. Confocal images of FITC1 labelled peptide-loaded microsomes from Jaws-II 
cells. 
Data are representative of two experiments. 
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Summary to Section 4 

 The vaccination experiments presented here provide evidence that 

peptide-loaded microsomes can induce specific T cell responses in vivo that 

result in protection in mice from viral infection and eradication of established 

tumours. The findings show that protection from viral infection correlates 

with an integrated immune response that activates both CD8(+) and CD4(+) T 

cell responses. Internalization assays in vitro indicate that microsomes are not 

being internalized by dendritic cells as microsome-associated fluorescence 

could not be detected internally. However, microsomes are made of 

membranes that could become associated to dendritic cells without actually 

being internalized as an intact fluorescently-tagged vesicle. Therefore, the 

mechanism by which microsomes induce T cell responses in vivo cannot be 

ascertained, but the ability of microsomes to induce peptide-specific activation 

of T cells in vitro in the absence of DCs suggests that they can induce 

activation of T cells in vivo by direct priming. 
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5. Microsomes present peptides to human T cells in 

vitro. 

 An animal-tested/developed experimental vaccine will only be of use 

to humans if it induces similar immune responses in a human setting. Thus, to 

build upon the presented findings, which demonstrate that peptide-loaded 

microsomes protect mice from viral infection and eradicate established 

tumours, we attempted to examine the immunogenicity of microsomes in a 

human system. Microsomes from a human APC line were loaded with defined 

peptides of immunodominant cytomegalovirus epitopes and co-cultured with 

total peripheral blood mononuclear cells. T cell responses were evaluated by 

interferon γ production (Figure 53). 

 Human cytomegalovirus (HCMV), a member of the Herpesviridae, is 

widely found in humans around the world. HCMV infection is usually 

asymptomatic. Following primary infection, the virus persists in a latent state 

in cells of the myeloid lineage, with intermittent viral reactivation and 

shedding from mucosal surfaces, and containment by the host immune 

response. Several studies support important roles for B, T and NK cells in 

protection against HCMV disease, however CD8(+) T cells appear to be the 

most important effector cell for the control of the HCMV infection (Moss and 

Khan 2004). The virus exploits immune evasion strategies to prevent 

complete viral eradication by the immune system, establishing a life-long 

persistent infection within the host that can result in substantial morbidity and 

mortality, especially among immunosuppressed infected individuals. 

Increasing evidence suggests that HCMV evades the immune system by 

impairing DC function; as a result, T cell-recognition of the infected cells is 

compromised and DCs fail to prime and activate naïve T cells for the 

induction of immune responses (Rolle and Olweus 2009); thus, enabling viral 

spread. 

 Here we investigate whether microsomes can induce HCMV-specific 

T cell responses in vitro. T cell responses to HCMV can be detected by either 
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tetramer staining or ELISpot following stimulation in vitro with HCMV 

antigens. However, ELISpot is most commonly used due to that fact that 

tetramers are limited to a few well-defined peptide/MHC complexes. The 

ELISpot assay is a rapid and sensitive technique for the detection of IFNγ-

producing T cells, representing the activation of antigen-specific T-cells 

(Keane, Price et al. 2000) even when those are of very low frequency. 

 The capacity of microsomes to present peptides to corresponding 

human T cells was evaluated using microsomes from an MHC-I-deficient 

human APC line, 721.221, which is transfected to express an HLA-A2 

haplotype. Whole peripheral blood mononuclear cells (PBMCs), obtained 

from the blood bank, from HLA-A2 healthy individuals, who were tested 

negative for HIV and were serologically converted to HCMV, were co-

cultured with HLA-A2-expressing microsomes (Figure 54) loaded with an 

HCMV peptide (amino acid sequence “NLVPMVATV”). Co-cultures with 

microsomes loaded with an irrelevant GAG peptide, or with 100μg/ml soluble 

HCMV or GAG peptide, or with PBS, served as controls. The presence of 

reactivated HCMV-specific CD8(+) T cells was indirectly detected by IFNγ 

ELIspot after reactivation in vitro with the described treatments for 24 hours. 

The findings (Figure 55) demonstrate that HCMV-specific IFNγ-secreting 

cells were detected in all individuals after stimulation with HCMV peptide-

loaded microsomes [221/A2-derived microsomes + HCMV peptide]. 

Stimulation of PBMCs with soluble HCMV peptides [HCMV peptide only] 

could also result in the reactivation of HCMV-specific IFNγ-secreting cells, 

possibly due to uptake and presentation of the peptide by APCs naturally 

present in the PBMCs. However, HCMV-loaded microsomes induced better 

immune responses in terms of IFNγ secretion compared to the responses 

induced by HCMV peptide only (Figure 55B), while microsomes loaded with 

irrelevant peptides [221/A2-derived microsomes + GAG peptide] did not. 

 These data indicate that a microsomal vaccine can present peptides in 

vitro to induce specific reactivation of peripheral human cells from individuals 

who are carriers of latent viruses.
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Figure 53  Experimental design for detection of induced memory T cell 
responses in vitro in PBMCs from latently infected individuals by 
a microsomal vaccine. 

 
 The MHC-deficient 721.221 B cell line was transfected to express the 
HLA-A2. Microsomes prepared from these transfected cells were inverted, 
stripped and loaded with an A2-specific CMV peptide that has amino acid 
sequence ‘NLVPMVATV’. CMV peptide-loaded microsomes were co-cultured 
with PBMCs from HLA-A2 and CMV seropositive, but not symptomatic 
individuals. The presence of reactivated HCMV-specific CD8(+) T cells was 
analyzed by IFNγ ELISpot assay. 
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Figure 54  Detection of HLA-A2 expression on microsomes from HLA-A2 
transfected antigen presenting cells. 

 
 4μl of microsomes from 721.221 or 721.221/A2 cells were stained with PE 
labeled anti-A2 antibody MA-2.1. The free-antibodies were washed off by 
centrifugation through a 0.5M sucrose cushion. Microsomes were collected and 
resuspended in FACS buffer for flow cytometric analysis of HLA-A2. 
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Figure 55  Detection of anti-HCMV CD8(+) T cells after stimulation with 
CMV peptide-loaded microsomes in vitro. 

 
 The capacity of HLA-A2 expressing microsomes to present specific 
peptides that re-activate anti-HCMV CD8(+) T cells in vitro was evaluated using 
HLA-A2(+), HCMV sero-converted individuals, by IFNγ ELISpot. Microsomes 
were prepared from MHC-I-deficient 721.221 cell line, which are professional 
APCs (lymphoblastoid B cells) that have been transfected to express HLA-A2. 
During the ELISpot assay, PBMCs were incubated for 24 hours with 2μg HLA-
A2 expressing microsomes loaded with HCMV peptide [221/A2-derived 
microsomes + HCMV peptide], or with an irrelevant GAG peptide [221/A2-
derived microsomes + GAG peptide], or with 100μg/ml HCMV peptide [CMV 
peptide only], or 100μg/ml GAG peptide [GAG peptide only], or PBS [PBS]. 
 
A. Each spot represents an IFNγ producing cell. 
B. Each bar represents the mean spot number per treatment. The data is 
presented as mean of eight wells±SEM and is representative of eight 
individuals. 
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DISCUSSION 

 The study of the immune system has provided insight in the 

mechanism of protection induced by vaccination; primarily that most 

clinically protective vaccines are potent in generating neutralizing antibody 

responses. Nonetheless, vaccination fails to protect against a wide range of 

acquired chronic infections caused by viruses, such as HIV and HCV, other 

intracellular pathogens, and cancer. Attempts to combat these diseases are 

thought to also require the induction of the cellular arm of the immune 

response, in which dendritic cells (DCs) play a key role. Thus, DCs are now 

considered a promising target/tool when designing new-generation vaccines. 

 New-generation vaccines based on matured dendritic cells loaded with 

defined antigens appear very promising for both prophylactic vaccination and 

immune therapies (Nestle, Farkas et al. 2005; Osada, Clay et al. 2006). 

Although mature DCs have the capacity to induce effective primary and 

secondary immune responses in vivo, their use in vaccination strategies are 

associated with several difficulties. For example, there are limitations 

involved in the loading of antigen, and in the appropriate maturation of DC in 

vitro. Furthermore, the complexity of DC subsets in relation to the induction 

versus suppression of T cell activation in vivo severely limits DC- based 

vaccine applications (Steinman, Hawiger et al. 2003). Here, we have explored 

the hypothesis that the use of ER-enriched microsomes isolated from 

professional antigen presenting cells, such as DCs, can represent an alternative 

vaccination strategy to those using live DCs. 

1. The microsomal vaccine: an overview. 

 Reconstitution of antigen presenting function in isolated endoplasmic 

reticultum membranes, the microsomes, is a novel approach in vaccine 

development. In this study, we show that endoplasmic reticulum-enriched 

microsomal membranes (microsomes) isolated from DCs contain high levels 

of peptide-receptive major histocompatibility complex (MHC-I) as well as 

similar levels of co-stimulatory molecules compared with their parental 
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dendritic cells. After loading with defined antigenic peptides, microsomal 

vaccines induce MHC class I- and MHC class II-restricted T cell responses 

that correlate with protection from acute viral infection and MHC class I-

restricted T cell responses that correlate with eradication of established 

tumours in mice. Microsomal vaccines contain high levels of peptide/MHC, 

the quantity of which can be monitored in the preparation for the induction of 

optimal immune responses. The vaccine formulation is easy to make and is 

consistent across batches. The immunogenicity of microsomes can be 

maintained for more than 6 months if they are stored at -80°C or in liquid 

nitrogen making the microsomal vaccine preparation stable and cost effective. 

 This novel approach overcomes limitations of previously described 

systems using live-DCs as vaccines and raises expectations that microsomes 

may represent a new and more effective therapeutic vaccination strategy. 

2. Studying antigen presentation.  

 In order to examine the reconstitution of antigen presenting function in 

isolated microsomal membranes, it was important to establish appropriate 

experimental systems that allowed us to validate the generation of 

peptide/MHC complexes and to test their ability to efficiently present peptides 

to T cells. In this study, two defined chicken ovalbumin (OVA) epitopes in 

context with H-2Kb and I-A were employed, allowing peptide/MHC-specific 

T cell clones or transgenic T cells to be used for validation of antigen-specific 

immune responses. The utilization of congenic cell lines for the study of 

antigen presentation in vitro allowed consistent analysis of the effects of the 

various vaccines on T cell responses both in vitro and in vivo. The irrelevant 

peptides that were used as controls are non-specific either for MHC binding or 

for the TCRs described. 

 Within these experimental systems, we investigated the properties of 

microsomal vaccines prepared from different types of professional antigen 

presenting cell.  
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3. Analysis of T cell responses. 

 Naïve T cells reside as small resting cells that can live for several 

months, being maintained in a process known as homeostasis. On recognition 

of their cognate peptide/MHC ligand on the surface of an antigen presenting 

cell, the T cell is activated to proliferate and differentiate as an effector cell. 

Activation of naïve T cells induces immediate expression of mitogenic 

cytokines, such as interleukin 2 (IL-2) that stimulates the expansion of 

activated T cells. For this reason, the level of IL-2 production has been a 

widely used parameter to assess vaccine-induced protective T cell responses 

in vitro. The majority of effector T cells that are induced following 

vaccination against viral infections are CD4(+) TH1 cells or CD8(+) cytotoxic T 

cells, which express interferon gamma (IFNγ), a chemokine involved in the 

clearance of various infections. Thus, the level of production of this cytokine 

is another important parameter in assessing the effector function of responding 

T cells. 

 Despite these useful biomarkers, the magnitude of a T cell response as 

defined by a single parameter is not a sufficient correlate of immune 

protection. A range of T cell functions together with observation of clinical 

symptoms can define more accurately the quality of a protective T cell 

response (Seder, Darrah et al. 2008). Indeed, immune responses that can be 

measured with immunology are not necessarily useful for immunity; a 

productive immune response must be appropriate to allow protection and 

survival (Zinkernagel 2007). Here, together with observations of clinical 

symptoms, we have used several indicators of a productive immune response 

to assess our vaccine candidate. These include analysis of proliferation, 

production of IL-2 measured by ELISA, antigen-specific T cell expansion in 

vivo by tetramer staining, T cell responses to re-call antigen in vitro, IFNγ 

production by ELISpot, and cytotoxicity tests for the evaluation of CTL 

responses. Collectively the combination of these factors aims to define a more 

detailed picture of vaccine-elicited antigen-specific T cell responses in vivo, 

and thus the protective efficacy of the vaccine in general. 
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4. Characterization of microsomal membranes. 

 The isolated microsomes are identified as enriched ER membranes as 

indicated by the attachment of ribosomes on the cytoplasmic side of the 

microsomal vesicles and the presence of the ER-resident protein, tapasin. The 

microsomes have limited contamination with endosomes as shown by 

immunoblotting with anti-LAMP2 antibody, an endosomal marker (Sofra, 

Mansour et al. 2009). 

 Electron microscopy and flow cytometry revealed microsomes to be 

small heterogeneous vesicles. Thus, it is not straightforward to compare them 

directly with their parental cells in flow cytometric analysis of specific 

markers. The levels of auto-fluorescence are bound to be different between 

microsomes and cells, as the size of microsomes is very variable and orders of 

magnitude smaller than that of the cells. The comparison was therefore made 

by flow cytometry using staining by specific antibody for a particular marker 

versus staining of the appropriate isotype control. The settings of side-scatter 

and forward-scatter were the same between cells and microsomes and the 

entire events detected were used for the analysis on fluorescent channels. The 

similar levels of MHC and co-stimulatory molecules in microsomes and their 

parental APCs were also confirmed with immunoblotting analysis. 

5. Measurement of immunogenicity in microsomal and cellular 

antigen presenting systems. 

 An ideal comparison of the antigen presentation capacity of 

microsomes with that of the parental cells would be based on the number of 

peptide/MHC molecules on the same area of membrane surface exposed to T 

cells. However, this is technically challenging to achieve, because microsomes 

are very heterogeneous in size. To overcome this problem microsomes and 

cells were normalized on the basis of equal MHC-I levels. 
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6. Acid stripping allows MHC-II loading and enhances the 

levels of peptide-receptive MHC-I. 

 MHC class I heavy chain-β2 microglobulin dimers are loaded with 

high affinity peptides as the last step of their ER maturation process, before 

assembled peptide/MHC-I complexes are transported to the cell membrane 

and presented to T cells (Paulsson and Wang 2004). Therefore, most of the 

MHC molecules on the surface of APCs are pre-processed with high affinity 

peptides as peptide/MHC complexes. By contrast, ER enriched microsomes 

contain abundant peptide-receptive MHC-I molecules (Li, Paulsson et al. 

1999). ‘Empty’ MHC class I molecules are retained until they form stable 

complexes with high affinity peptides by a loading quality control mechanism 

(Paulsson and Wang 2004), which serves to maintain a stable antigen 

presenting environment on the surface of the APC (Schoenhals, Krishna et al. 

1999). To further confirm the retention of peptide-receptive MHC-I in the ER, 

the levels of SIINFEKL-Kb complexes were compared between microsomes 

purified from OVA-expressing APCs (OVA/RMA-S cells) and microsomes 

purified from APCs (RMA-S cells) and loaded with SIINFEKL. Indeed, 

microsomes that had been loaded with exogenous SIINFEKL peptides in vitro 

expressed higher levels of SIINFEKL-Kb compared to microsomes from 

OVA-expressing APC, suggesting that Kb molecules assembled with 

endogenous peptides are rapidly transported to the cell surface (Sofra, 

Mansour et al. 2009). Thus, the high efficacy of ER-enriched microsomes in 

inducing T cell responses in vitro is probably due to the abundant peptide-

receptive MHC-I in ER. 

 Unlike abundant peptide-receptive MHC-I, MHC-II is protected from 

peptide loading in the ER by invariant chain (Ii). Ii provides a sorting signal 

for MHC-II to be transported to endosomal compartments where Ii is 

degraded to a small peptide called “clip” that is subsequently exchanged (by 

HLA-DM in humans) with antigenic peptides in low pH conditions 

(Hammerling and Moreno 1990). However, it is unknown whether the 

exchange of MHC II-Ii to MHC II-peptide can be achieved under acidic 
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condition in vitro. The presented data provide evidence suggesting that in 

acidic condition the MHC-II-associated Ii on microsomal membranes can 

dissociate and generate a peptide-receptive MHC-II molecule, allowing 

assembly with exogenous peptides. In addition, as demonstrated by the acid 

stripping and subsequent binding of biotinylated peptides to MHC-II on 

microsomes and the induction of effective CD4(+) T cell responses in vitro, the 

peptide/MHC-II complexes on microsomes appear stable and are able to fulfil 

the same physiological function as their counterparts in the endosomal 

compartments. Nonetheless, it is unknown whether the peptide-receptive 

MHC-II created by acid stripping can be receptive for all MHC-II-binding 

peptides or only for high affinity binding peptides, such as OVA324-340. This 

remains to be investigated with the use of several MHC-II-specific peptides 

with different binding affinities. 

 The acid treatment protocol also stripped ribosomes from microsomes 

(Sofra, Mansour et al. 2009) and, importantly, it enhanced the generation of 

peptide-receptive MHC-I possibly by stripping the endogenous pre-processed 

peptides from the peptide/MHC complexes. Thus, acid treatment improves the 

efficiency of peptide loading onto MHC molecules and limits potential side 

effects, such as anti-ribosome induced immune responses. 

7. Microsomes versus dendritic cells in vaccination strategies. 

 One of the major problems in human DC-based vaccines is the 

heterogeneity of DC maturation programmes. Different DC subsets can 

emerge from different induction protocols in vitro that will then include both 

immunogenic and tolerogenic cells. The ensuing diverse population of DC 

subsets will induce a mixture of inflammatory cytokines, such as IL-12, and 

inhibitory factors such as TGFβ, IDO and IL-10 (Szeberenyi, Rothe et al. 

2000; Munn, Sharma et al. 2002; Smits, de Jong et al. 2005), which can 

severely hamper APC efficacy in inducing effective immune responses in 

vivo. 
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 One strategy, employed to address this problem and enhance vaccine 

potency by modifying DC properties, is to target immunosuppressive proteins 

expressed by DCs using RNAi. Small interfering RNAs (siRNA) are a novel 

technology that selectively ‘knocks-down’ genes of interest. Indeed, recent 

studies have shown that siRNA-mediated silencing of the suppressor of 

cytokine signalling 1 (SOCS1) in DCs could attenuate immunosuppressive 

signals that allowed them to break a tolerogenic environment (Song, Evel-

Kabler et al. 2006). As a result, treatment of DCs with SOCS1-specific RNA 

enhanced tumour- and virus-specific adaptive immune responses in mice 

(Mao, Lin et al. 2007). Although gene silencing in vivo may eventually have 

profound applications for vaccination and immunotherapy, there are several 

limitations that have to be addressed before the technology can be 

successfully administered to human patients as a medical treatment. For 

example, problems include inefficient delivery in vivo, incomplete silencing 

of target genes, non-specific immune responses, and off-target effects (Mao, 

Lin et al. 2007). 

 By contrast to DC preparations, microsomal membranes are free of 

potentially problematic soluble factors, whilst their preparation is biologically 

reproducible and consistent in terms of peptide loading and antigenicity. 

Indeed, by contrast to the heterogeneity of different APC subsets, it has been 

observed that peptide-loaded microsomes from three different APCs lines 

(with variable antigen presenting potency) show similar levels of 

immunogenicity (Li and Wang, unpublished data); these findings suggest that 

microsomal vaccines could overcome the negative factors that limit the 

presentation efficacy of some APC-based vaccines. In addition, ER-enriched 

microsomes do not contain cytosolic or nuclear proteins that could potentially 

trigger toxic side effects. In support of this, there were no observations of anti-

microsome toxic responses in vivo (Li and Wang, unpublished data), 

indicating that ER-resident proteins are tolerated. 

 Since the ER is the site of synthesis of all transmembrane proteins of 

the cell, the presence of negative co-stimulatory molecules on microsomes 

like that seen on DCs, such as PD1 or CTLA4 ligands, cannot be excluded. 
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However, inhibition of these signals could be accomplished by treating 

microsomes with antagonistic antibodies specific for certain molecules before 

immunization. By contrast to live cells, the expression of molecules in 

microsomes is not regulated by active metabolism. Thus, treatment with 

specific antagonist antibodies may effectively inhibit negative co-stimulatory 

signals. For example, expression of a PD1 antibody in microsomes could bind 

to PD1 on T cells and, subsequently, inhibit PD1-mediated signalling; 

however this remains to be investigated. 

 MHC class I is a membrane complex that is processed in two steps; 

folding of native chain, followed by assembly with peptides in the ER. The 

peptide-assembled MHC complex is selectively regulated by export 

mechanisms, which allow it to be transported to the cell surface. By contrast, 

an ‘empty’ peptide-receptive MHC class I molecule exists in an unstable form 

and is retained in the ER by a quality control mechanism until it forms a stable 

peptide/MHC complex. The quality control of MHC class I antigen 

presentation also includes the restriction of export of unloaded MHC class I 

molecules or suboptimally loaded peptide/MHC complexes to the cell surface 

(Paulsson and Wang 2004). This mechanism provides microsomes with the 

advantage of carrying more peptide-receptive MHC molecules, compared to 

the antigen presenting cell plasma membrane; they can then be loaded in vitro 

with selected optimal peptides to form stable peptide/MHC complexes. 

8. Microsomes versus other reported cell-based but cell-free 

vaccine formulations. 

 Both exosomes and plasma membrane-derived vesicles from APCs 

have been reported to induce potent immune responses in vivo (Zitvogel, 

Regnault et al. 1998; Kovar, Boyman et al. 2006). However, it is not clear 

how peptides are processed to form peptide/MHC complexes in these vesicles.  

 Exosomes can induce antigen-specific MHC class II-restricted T cell 

responses and also have been shown to activate CD8(+) T cells (Giri and 

Schorey 2008), suggesting a potential mechanism for antigen cross-priming. 



 175 

Although their physiological role is not yet clear, available data suggest that 

exosome production during immune responses aids the increase in the number 

of dendritic cells that bear relevant peptide/MHC complexes (Thery, Zitvogel 

et al. 2002). Furthermore, exosomes secreted by DCs may mediate antigen 

presentation after peptide-bearing DCs are cleared from the system (Luketic, 

Delanghe et al. 2007). Thus, exosome-mediated antigen presentation may 

serve to amplify both the magnitude and longevity of an immune response. 

 Exosomes derive from a specialized late endocytic compartment found 

in antigen presenting cells which harbours newly synthesized MHC class II 

molecules in transit to the plasma membrane. The membranes of these 

compartments have their origin within the endocytic network and, thus, 

exosomes consist of proteins and lipids present within this network. Indeed, 

exosomes secreted from dendritic cells express high levels of functional MHC 

class I- and MHC class II- peptide complexes together with co-stimulatory 

molecules (Thery, Zitvogel et al. 2002). In addition, data suggesting that 

phagosome2

 Although MHC class I is detected on exosomes, the peptide-receptive 

state and level of expression may not be comparable to that of ER-derived-

microsomes, since endosomes are not the physiological compartments for 

MHC class I processing. Moreover, some viruses have the capacity to evade 

MHC class II-enriched compartments and can be released by exosomes 

 formation involves partial fusion of the endoplasmic reticulum 

(ER) with lysosomal compartments (Ackerman, Kyritsis et al. 2003; 

Guermonprez, Saveanu et al. 2003; Houde, Bertholet et al. 2003) provides a 

framework to explain how antigens present on exosomes can be processed 

through the MHC-I presentation pathway. Other potential mechanisms of 

cross-presentation are also under study; the latest studies describe early 

endosomal compartments where internalised antigens are cross-presented 

(Burgdorf, Scholz et al. 2008; Di Pucchio, Chatterjee et al. 2008), a model that 

could also explain antigen presentation in the context of MHC class I by 

exosomes. 

                                                 
2 Phagosome is an intracellular vesicle that is formed around phagocytosed foreign material 
by inward folding of the plasma membrane. 
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(Stoorvogel, Kleijmeer et al. 2002), which could represent a limitation in 

applications of autologous exosomes as anti-viral vaccines. The potential 

advantage of exosomes is that the peptide/MHC-II complexes may be 

enriched from antigen pre-fed DCs, since the physiological processing of 

peptide loading on MHC-II occurs in endocytotic compartments. For technical 

reasons, it is not possible to biochemically compare the quality of 

peptide/MHC-II complexes in peptide-loaded microsomes in vitro with those 

in the endosomal compartments in vivo. Nevertheless, the immunogenic 

efficiency of peptide/MHC-II complexes in microsomes is promising as 

indicated by high peptide-loading efficiency and the induction of antigen-

specific CD4(+) T cell responses in vitro. Moreover, an important advantage of 

a microsomal vaccine is the ability to present peptide/MHC and co-

stimulatory signals directly to T cells. Although exosomes contain MHC-I and 

MHC-II as well as co-stimulatory molecules that are exposed on the surface of 

the exosome membrane (Thery, Regnault et al. 1999), efficient priming of T 

cells by DC-derived exosomes requires activated or mature DCs; presumably 

reflecting a possible role of exosomes as mediators of antigenic exchange 

between DCs or APCs to promote expansion of restricted T cell responses in 

vivo (Andre, Chaput et al. 2004). The possibility that microsomes are also 

indirectly presented, for example by being endocytosed and re-processed by 

DCs in vivo, cannot be excluded. Nevertheless, the observed ability of 

microsomes to directly activate antigen-specific T cells may be important in 

microsome vaccines against chronic viral infections or cancer: conditions 

during which endogenous DCs are less able to induce protective responses. 

 After pulsing with peptides, plasma membrane-derived vesicles could 

also interact directly with T cells and induce responses in vivo (Kovar, 

Boyman et al. 2006). However, the number of peptide-receptive MHC-I 

molecules on the surface of APC is severely limited due to the presence of 

endogenously pre-processed peptide/MHC I (Paulsson and Wang 2004). 

Therefore, it may be difficult to use these vesicles for the delivery of antigenic 

peptides with medium or low binding affinity, since they would not 

successfully compete with the pre-processed endogenous peptides bound on 



 177 

MHC molecules. The nature of the sonication methods used in the preparation 

of plasma membrane-derived vesicles may also incorporate ER membrane 

fractions (Kovar, Boyman et al. 2006), which as shown in this work here, 

have abundant peptide-receptive MHC-I molecules. Importantly however, the 

preparation of a microsomal vaccine includes an ‘inside-out’ processing step 

that facilitates the exposure of the luminal side of the ER membrane, ensuring 

maximum peptide loading and efficient accessibility of co-stimulatory and 

MHC molecules to T cells. 

9. In vivo distribution of antigen-carrying microsomes. 

 Effective T cell-targeting vaccines have to deliver antigens at a 

sufficient dose to peripheral lymphoid organs for optimal stimulation of naïve 

and/or memory T cells. Antigen-loaded DCs are better distributed to 

peripheral lymph nodes (LN) if administrated subcutaneously (Mullins, 

Sheasley et al. 2003). Although activated DCs can express homing receptors, 

which guide their migration from infected tissues to draining lymph nodes, it 

has been reported that intravenously injected DCs are predominantly 

distributed to major organs, such as lung, liver and spleen (Lappin, Weiss et 

al. 1999). The induction of homing receptors depends on the presence of 

inflammatory stimuli in vivo; however, persistent viruses, such as HIV and 

HCV, and many tumours induce the production of immunosuppressive 

cytokines, such as TGFβ and IL-10. Within such an immunosuppressive 

environment, it is possible that the administered DCs are negatively regulated 

and may even be induced to die. 

 By contrast, extracted microsomes are stable fragments that are not 

regulated metabolically. Thus, they are not able to actively migrate, meaning 

that they must be administered appropriately in order to effectively reach the 

secondary lymphoid organs. If microsomal membranes contain homing 

receptors, their expression should be stable but most probably non-functional, 

as microsomes do not have the ability to move or make new gene products. 

Examination of the tissue distribution of peptide-loaded microsomes from 35S-

methonine labelled bone-marrow-derived DCs, and their parental DCs, after 
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intravenous (i.v) administration showed that 24 hours after injection, 7.4% 3

 Secondary lymphoid tissues such as the spleen, lymph nodes, and 

Peyer’s patches are sites of immune induction. Naive T cells do not travel 

through all parts of the body; they re-circulate between the different secondary 

lymphoid compartments and blood, ‘examining’ antigen-presenting cells for 

the presence of their cognate ligand (Heath, Belz et al. 2004). Therefore, 

surveillance of the entire body by naive T cells depends on the trafficking of 

antigen, either in soluble form or associated with APCs, from peripheral 

tissues via the lymphatics or blood to the secondary lymphoid organs. The 

spleen monitors blood-borne antigens, while the lymph nodes screen their 

particular local regions. In the spleen, microsomes accumulate in the 

periarteriolar lymphoid sheath (PALS) (Sofra, Mansour et al. 2009), which 

mainly consists of T cells (Alvarez, Vollmann et al. 2008). This distribution 

pattern is consistent with the potent T cell responses induced in vivo by 

peptide-loaded microsomes, observed in this study. 

 

of the bone-marrow-derived microsomes had accumulated in the spleen, and 

0.7 % were found in LNs. Importantly, after seven days, 5.6 % and 0.8 % of 

bone-marrow-derived microsomes were still in the spleen and LN, 

respectively indicating that microsomes accumulate and are retained in major 

peripheral secondary lymphoid organs. By contrast, only 2.8 % and 0.2 % of 

peptide-pulsed bone marrow-derived DCs were distributed to spleen and LN 

24 hours after i.v. injection and this reduced to 0.9 % and 0.2 % after 7 days. 

These observations (Sofra, Mansour et al. 2009) suggest that microsomes may 

have similar distribution properties compared with activated APCs and that 

they are retained in these sites as well, if not better, possibly because they are 

deficient in further migratory capacity. 

 

 

                                                 
3 The percentage of accumulated microsomes or DC was calculated as CPM/gram of the 
organ and divided by the total CPM of injected microsomes or DCs. 
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10. Mechanism of antigen presentation by microsomes. 

 Engulfment of apoptotic cells has been described as an important way 

of sampling pathogens during infection, especially for microbes that may not 

infect APCs. Thus, apoptotic cells are a source of many pathogenic antigens 

that are processed by APCs for presentation via the MHC class II pathway 

and, via cross-priming, via the MHC class I pathway (Savina and Amigorena 

2007; Lev, Takeda et al. 2008). Indeed, although processing of endogenously 

synthesized antigens by the MHC class I pathway is more efficient, 

presentation of exogenously-derived antigens in the context of MHC class I is 

essential for cytotoxic T cell responses to viruses and tumours (Kasturi and 

Pulendran 2008). 

 In addition to internalizing dead cells, DCs may also ‘sample’ non-

apoptotic cells, by “biting” pieces of live neighbouring cells (Harshyne, 

Watkins et al. 2001; Joly and Hudrisier 2003). Indeed, there is evidence that T 

cells (Hudrisier, Riond et al. 2001), B cells (Batista, Iber et al. 2001) and DCs 

(Valdez, Mah et al. 2002) ‘nibble’ live cells in this way. The transfer of cell 

fragments between live neighbouring cells has been described in several other 

systems, such as the transfer of melanin from melanocytes to keratinocytes in 

the skin (Seiberg 2001) or the capture of membrane-bound ligands in 

invertebrates (Cagan, Kramer et al. 1992; Trombetta and Mellman 2005). 

 Here we have shown that microsomes have the capacity to interact 

directly with T cells in vitro to ‘deliver’ antigenic peptides and co-stimulatory 

signals that trigger antigen-specific T cell responses. Direct interaction of 

microsomes with T cells is particularly important as administered microsomes 

accumulate in lymphoid organs (Sofra, Mansour et al. 2009), where resident 

DCs are found in a resting state (Carbone, Belz et al. 2004; Diebold 2008). 

However, if some microsomes are reprocessed by immature DCs, as shown 

for exosomes, these DCs may also present microsomal antigens to T cells. 

Thus, both direct and indirect antigen presentation mechanisms may be 

involved in the induction of T cell responses by microsomes in vivo. Although 

the data presented here seemed to suggest that was not the case and T cells 
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were directly primed by microsomes, analysis of T responses in allogenic 

mice following immunization with non-autologous microsomes could further 

elucidate this. Nevertheless, the stability and the prolonged existence of 

microsomes within the lymphoid organs could be important for amplifying the 

magnitude and sustaining the longevity of the immune response by booster 

vaccinations. 

11. From mouse to human. 

 Vaccinia is an acute infectious virus (Xu, Johnson et al. 2004). 

Although the microsomal vaccine is being developed with the aim of 

potentially protecting from chronic infections that mainly require the 

induction of the cellular arm of the immune response, the described animal 

viral assay allows a first insight into the efficacy and characteristics of the 

microsomal vaccine. For obvious reasons, vaccination experiments have to be 

first evaluated in suitable animal models, before eventually a clinical trial is 

carried out in humans. However, one has to consider certain limitations when 

assessing the potential efficacy of human vaccination in animals, as described 

below. 

 The tests available for the evaluation of T cell behavior and T cell 

function in animal models are limited and not always accurate, since the 

presence of effector T cells not always correlates with protection (Rocha and 

Tanchot 2006; Zinkernagel 2007). Often, animal models of infection are too 

sensitive, and are usually associated with remarkable expansion of antigen-

specific effector T cells that is not typical for the majority of naturally-

occurring infections in humans (Steinman 2008). Re-activation of specific T 

cells in vitro often modifies their functionality making conclusions difficult to 

reach. Furthermore assays of infections, and models of antigen-bearing 

tumors, are testing T cell responses to a single specific immunodominant 

MHC-antigen complex. In addition, antigen delivery, including the dose and 

entry of the pathogen doesn’t mimic the characteristics of natural infections. 

Moreover, key murine DC subtypes are absent from the human system, while 

peripheral dendritic cells that are not found in mice have also been described. 
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Finally, the human organism exists in a ‘dirty’ environment where the 

immune system continuously encounters a plethora of potentially harmful 

microorganisms, a situation that cannot be easily reproduced in the ‘clean’ 

environment of the laboratory animal house. This is an important issue in 

vaccine design, which may have started as an empirical activity but now relies 

on fundamental scientific challenges that immunology is attempting to address 

(Steinman 2008). These challenges include the discovery of disease-relevant 

antigens, adjuvants and protective mechanisms, and understanding how the 

various elements work and fit together to allow survival of both the individual 

and the species in natural environments. 

 Here, the immunogenicity of the microsomal preparation/vaccine is 

also tested on human cells. Stimulation of PBMCs with a soluble 

immunodominant HCMV peptide could induce re-activation of HCMV-

specific IFNγ-secreting cells. This immune response to free peptides, which 

were used as a positive control, most probably occurs via presentation of the 

peptides by APCs naturally present in the PBMSs. HCMV peptide-loaded 

microsomes, however, induced better activation of CMV-specific IFNγ-

secreting cells, while microsomes loaded with irrelevant peptides did not. The 

conclusion that peptide-loaded microsomes were better than free peptide in 

inducing IFNγ production was reached based on that the amount of the 

peptide that was used as free stimulant (100μg/ml) was the same with the 

amount of peptide that was used for the loading of microsomes. Furthermore, 

the amount of microsome-associated peptide that reached the PBMCs may 

had been even less, considering that after loading on microsomes excess 

peptides are washed away. This finding highlights the potential ability of 

microsomes to induce antigen-specific human T cell responses. 

 The microsomes used to activate human T cells were extracted from 

an MHC-I deficient, HLA-A2-transfected human antigen presenting cell line, 

the LCL 721.221. This is a mutant human lymphoblastoid B cell line, which is 

devoid of HLA-A, -B and –C expression, but in which the transfected HLA-A 

gene is expressed (Shimizu, Koller et al. 1986). Although MHC class I is 

expressed on almost all cells, MHC class II is expressed primarily on B 
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lymphocytes, macrophages and dendritic cells. The human B cell line LCL 

721.221 expresses MHC-II (Drukker, Katz et al. 2002) and other genes 

involved in antigen presentation, including costimulatory molecules 

(LeMaoult, Caumartin et al. 2007). The HLA-A2 molecules in microsomes 

from LCL 721.221 cells could bind HLA-A2-binding peptides (Li, Paulsson et 

al. 2000), providing a reliable system for the investigation of microsome-

mediated presentation of individual peptides to human cells. 

 In the system described here, the human T cell responses induced by 

microsomes were secondary re-call responses presumably of memory T cells. 

We would subsequently want to investigate if peptide-loaded microsomes can 

activate naïve human T cells. Nevertheless, the encouraging T cell response to 

non-autologous microsomes from cell lines observed here, without evidence 

of non-specific sensitivity is important for the manufacture of large scale 

vaccine preparations in advance, a factor crucial for the containment of viral 

spread in the population. Additionally, the potential of using cell lines 

transfected to express genes that represent optimal antigenic epitopes may 

provide greater flexibility for vaccine preparation, and will allow vaccines to 

be potentially tailored towards individual patients. 

12. Microsomes provide an alternative to dendritic cell and 

exosome-based vaccination. 

 The ability of DCs to capture antigens in the periphery and traffic them 

from peripheral tissues to the T cell areas of lymphoid organs to initiate 

immunity has centred DC biology at the heart of modern vaccinology 

research. Although dendritic cell subsets share certain characteristics, such as 

a specific morphology, high expression of MHC class II and potent T cell-

stimulating activity (Steinman 2008), certain markers divide DCs into distinct 

subsets (Villadangos and Young 2008). DC subsets vary in their anatomical 

location, the receptors they express and their ability to process antigen in 

certain ways. Given the importance of DC-subset diversity in determining the 

outcome of immunization, the limited knowledge and understanding of the 

intricacies of DC biology compromises the use of DCs for the control of 
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immunity (Steinman 2008). Indeed, methods for introducing appropriate 

antigens into MHC class I and II processing pathways, methods for isolating 

and activating DCs to guide desirable immune responses, and the routes of 

DC vaccine administration are still major challenges in the design and success 

of clinical trials with DC-based vaccine strategies. 

 The feasibility of dendritic cell-derived exosome production, 

especially in advanced cancer patients, together with lack of toxicity, and the 

interesting clinical observations of long-term stability, support further 

investigations into exosome-based Immunotherapies (Chaput, Taieb et al. 

2005). However, the production of exosomal vaccines is also associated with 

significant limitations. These include difficulties imposed in the quality 

control of the exosome preparations and the restrictions related to autologous 

vaccine preparations. For example, the exosome yield from one individual is 

not sufficient for the production of the vaccine, and exosomes from infected 

individuals may act as carriers of the pathogen, thus enabling further viral 

spread. Perhaps more importantly, optimal exosome vaccines depend on the 

presence of properly activated host dendritic cells, which carry similar 

limitations to those mentioned for dendritic cell-based therapies, as detailed 

above. 

 By contrast, microsomes provide an alternative to dendritic cell and 

exosome-based vaccination, lacking many of the difficulties that are 

associated with these strategies. The microsomal vaccine is comparatively 

easy to prepare, stable and the quality of preparations can be checked at any 

step during the procedure.  

 Microsomes locate to anatomic sites of T cell induction and they 

efficiently deliver selected antigens and co-stimulatory molecules to both 

CD4(+) and CD8(+) T cells for the induction of antibody- and cell-mediated 

immune responses. Importantly, microsomes are metabolically inactive, 

endowing the vaccine with the stability and control that ensures a consistent 

immunological outcome. 
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13. Future considerations/ work. 

 At the time of the writing the analysis of vaccination with peptide-

loaded microsomes is still ongoing. This should allow not only the full 

identification of the range of their effect in various infections, and in response 

to cancer, but should also provide insight into the underlying mechanisms that 

regulate their immune stimulatory functions. Ultimately, the aim is to evaluate 

the vaccine for use in humans. Briefly described below is a list of 

investigations that are to be conducted, using the results described above as a 

basis for experimental design. 

 The antigen presentation capacity of microsomes isolated from antigen 

pre-loaded-APCs will be evaluated. ‘Feeding’ whole proteins to APCs before 

extracting microsomes would allow antigens to be naturally processed and 

permit the physiological selection of optimal epitopes. Alternatively, the 

administration of multiple selected peptides to purified microsomes could 

serve to overcome restrictions associated with exhausted T cells that have 

become unresponsive to immunodominant epitopes. 

 Microsomal membranes will also be extracted from APCs that have 

been transfected to express high levels of selected cytokines or their receptors. 

The use of the E19K retention signal by genetic engineering facilitates 

retention of transmembrane proteins or receptors in the endoplasmic 

reticulum, so they are presented in the extracted microsomal membranes in 

higher concentrations than normal. This approach would be particularly useful 

for ‘skewing’ the immune response. For example, microsomes engineered 

with IL-12 would provide better activation of a TH1 response, while 

microsomes carrying IL-4 could serve to bias towards a TH2 response. 

Alternatively microsomes could also be engineered to express inhibitors that 

block suppressive molecules such as PD1 on the T cell membrane. This would 

be especially useful as it could contribute to breaking tolerance and/or 

reversing anergy, which are two of the major problems that the immune 

system faces during persistent infections. 
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 In recent years the technological advances of imaging have allowed a 

better understanding of the interactions between APCs and T cells that result 

in induction of immune responses. In order to better understand the 

mechanism of T cell activation by peptide-loaded microsomes, it will be 

interesting to examine their interaction in more detail. For example, is an 

immune synapse formed between the microsomal membranes and the T cell 

membrane? Does the T cell ‘scan’ and bind the surface of microsomes? And 

how are microsome-associated signals integrated by T cells to trigger TCR 

activation? Answers to these questions will allow the development of 

microsomal vaccines that will offer a greater degree of flexibility and potency 

in their ability to promote protective T cell-mediated responses. 

14. Conclusion. 

 The empirical observations of our ancestors led to the development of 

protective vaccines for a host of common and, at the time, devastating 

diseases- a major accomplishment of modern medicine. The discovery of 

vaccination was in turn the driving force behind the birth of Immunology, a 

discipline that investigates how the immune system deals with the myriad of 

disease-causing insults that affect us throughout our life. Immunology defines 

the basic principles that direct the immune response, and in this study, we 

have applied the knowledge of the immune system to develop an innovative 

vaccine strategy that can guide the immune system when nature fails to. 

 The findings of this research present a novel vaccine strategy based on 

cell-free microsomal membranes. This microsomal vaccine protects from a 

viral infection and was shown to regress an established murine tumour. 

Furthermore, it effectively delivers antigens to human T cells in vitro. 

Consistent with our hypothesis, peptide-loaded microsomes represent an 

exciting new alternative to currently-available vaccine strategies, that may 

offer an exciting way forward in our quest to provide effective vaccination 

against infectious disease and cancer. 
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Antigen-loaded ER microsomes from APC induce potent
immune responses against viral infection
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Although matured DC are capable of inducing effective primary and secondary immune

responses in vivo, it is difficult to control the maturation and antigen loading in vitro. In

this study, we show that ER-enriched microsomal membranes (microsomes) isolated from

DC contain more peptide-receptive MHC I and II molecules than, and a similar level of

costimulatory molecules to, their parental DC. After loading with defined antigenic

peptides, the microsomes deliver antigenic peptide–MHC complexes (pMHC) to both CD4

and CD8 T cells effectively in vivo. The peptide-loaded microsomes accumulate in

peripheral lymphoid organs and induce stronger immune responses than peptide-pulsed

DC. The microsomal vaccines protect against acute viral infection. Our data demonstrate

that peptide–MHC complexes armed microsomes from DC can be an important alternative

to DC-based vaccines for protection from viral infection.
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Introduction

Professional APC can induce powerful T-cell immune responses

by capturing antigens, processing them into peptide–MHC

complexes (pMHC) and presenting them to T cells [1]. Together

with pMHC, APC also provide cosimulatory signals to T cells,

which control the magnitude, quality and memory of the induced

immune responses [2]. The understanding of the function of APC

led to exploration of novel vaccines with the use of antigen-

armed APC against infectious diseases and cancer. In both these

cases, T-cell-mediated immunity is essential for eradicating

virally infected or malignantly transformed cells, particularly

against many of the known infectious agents such as tuberculosis,

malaria, herpes simplex, papilloma, HIV, Epstein–Barr and

hepatitis C viruses [3]. DC, the most potent APC, have been

used to elicit protective T-cell immune response to viral infections

and cancer in mice and humans with defined antigens [4].

Although some initial promising results were reported, clinical

applications have been limited due to difficulties in the quality

control of DC matured in vitro, leading to immunogenic

heterogeneity of matured DC in induction versus suppression of

T-cell responses. The suppressive function of DC subsets largely

results in the induction of T cells producing soluble negative

regulators such as IL-10, TGF-b and IDO [5–7]. To overcome the
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difficulties of DC therapy, cell-free antigen-presenting systems

have been reported, including membrane vesicles derived from

APC such as exosomes, which are secreted from endosomal

compartments of APC and microvesicles derived from plasma

membranes of APC after sonication [8, 9]. Exosomes and

microvesicles contain MHC I and II and costimulatory molecules

and could induce T-cell responses in vivo when mixed with

or pre-loaded with defined peptides [9, 10]. However, because it

is not known how the pMHCs are processed in these

membrane vesicles, both the quality and the quantity of pMHC

are difficult to control in the preparation. The MHC molecules on

the surface of APC are pre-processed; therefore, the added

peptide must compete with endogenous peptides, which

may be difficult especially when these are of medium or low

affinity [1].

We have now developed a new form of APC-based but cell-

free vaccine by using the ER-enriched microsomes derived from

mature DC or other APC. The microsomal membranes contained

more peptide-receptive MHC molecules than their parental DC.

The level of pMHC can be monitored and controlled quantita-

tively and qualitatively with reporter peptides. These pMHC I and

II armed microsomes possess a high level of costimulatory

molecules and can stimulate antigen-specific T cells. When these

microsome vaccines were injected i.v. into mice they effectively

distributed to peripheral lymphoid organs, induced potent CD4

and CD8 responses and protected from acute viral infection.

Thus, the ER-derived microsomes isolated from APC or antigen-

carrying cells appear to be an effective alternative to DC for both

protective and therapeutic applications.

Results

Abundant peptide-receptive MHC I and II and costi-
mulatory molecules in processed microsomes

Both MHC I and II molecules are synthesized and matured in the

ER. MHC I assemble with antigenic peptides in the ER, while

MHC II molecules in the ER are protected from peptide loading by

the invariant chain (Ii) until they reach the endocytotic

compartments, where the Ii is degraded and exchanged with

antigenic peptides under acidic conditions [11]. Therefore, on the

surface of APC, most of the MHC I or II molecules are pre-

processed with high-affinity peptides as pMHC. In the previous

study, we have shown that ER-enriched microsomes contain

abundant peptide-receptive MHC I molecules [12]. The micro-

somes isolated were enriched ER membranes as indicated by the

attachment of ribosomes on the cytoplasmic side of the

microsomal vesicles and the presence of the ER-resident protein,

tapasin (Fig. 1A and B) with limited contamination of endosomes

as shown by an endosomal marker LAMP2 (Fig. 1B). To explore

whether the peptide-receptive MHC molecules in ER-enriched

microsomes from APC can present antigens to T cells, we first

examined the ability of MHC molecules in isolated microsomal

membranes to assemble with corresponding peptides after an

inside-out process consisting of repeated freeze-thawing. Three

cycles of freeze-thawing could effectively open the microsomal

vesicles, which became pleomorphic (Fig. 1C). The levels of MHC

I and II molecules were similar on the microsomes and cell

surface of APC (Fig. 1B and D, data for H2-Ia and -Kb). The H2-

Kb molecules in the processed microsomes from the IFN-g-treated

DC lines, Jaws II and DC2.4, the macrophage line RAW 309 Cr.1

and the bone-marrow-derived DC could be loaded with the Kb-

specific peptide SIINFEKL derived from chicken OVA residues

257–264 as shown by staining with the SIINFEKL–Kb-specific

antibody 25-D1.16 (Fig. 1D, panel SIINFEKL Kb) and by

crosslinking Kb with crosslinker-modified SIYNFEKL peptides

(Fig. 1E), consistent with our previous reports [12]. However,

only limited amount of MHC I molecules on the surface

of APC were peptide receptive (Fig. 1D, panel SIINFEKL Kb and

E). To further confirm the retention of peptide-receptive MHC I in

the ER, we compared the amount of SIINFEKL–Kb complexes in

the microsomes from OVA expressing mouse lymphoma (RMA)

cells and the microsomes from RMA cells, which were loaded

with exogenous SIINFEKL peptides in vitro. The levels of

SIINFEKL–Kb complexes in the microsomes loaded with SIINFEKL

were much higher than those in the microsomes from OVA

expressing RMA cells (Supporting Information Fig. 1), indicating

that Kb molecules assembled with endogenous peptides are

rapidly transported to cell surface.

To explore the possibility of loading peptides onto microsomal

MHC II molecules, a biotin-labeled, H2-Ia restricted peptide

ISQAVHAAHAEINEAGR OVA 324–340 was used to detect pMHC

II assembly in inside-out converted microsomes. Despite an effi-

cient loading of MHC I molecules, the OVA 324–340 peptide

could not be effectively loaded onto MHC II molecules in the

inside-out converted microsomes at pH 7.0 (Fig. 2A), possibly

due to the association of Ii with MHC II. We therefore processed

peptide loading in an acidic buffer of pH 5, which dramatically

increased the peptide receptiveness of MHC II molecules

(Fig. 2A). In addition to generating peptide-receptive MHC II

molecules, the acidic stripping process also led to the significant

increase in peptide-receptive MHC I molecules (Fig. 2B), which

may be due to the dissociation of pre-processed peptides on MHC

I molecules. Moreover, acidic treatment released ribosomes from

microsomes (Supporting Information Fig. 2), which may prevent

the induction of antibodies against ribosomes. To compare the

level of peptide-receptive MHC II molecules on the cell surface

and in the microsomes of APC, the pMHC II on cells and in

microsomes were analyzed after loading with a biotin-labeled

OVA 324–340 peptide. Results showed that under acidic condi-

tions the microsomes expressed much more of peptide-receptive

MHC II molecules than the cell surface (Fig. 1D, panel Bio-

OVA324–340). Thus, the developed protocol for the preparation

of microsomes with inside-out orientation of peptide-receptive

MHC I and II molecules allows effective assembly with antigenic

peptides in vitro. Using crosslinker-modified MHC I and biotin-

lyted MHC II reporter peptides, it was possible to control the level

of pMHC in the microsomes, which is essential in controlling the

level of T-cell responses.
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In addition, analysis of the costimulatory molecules CD54,

CD80 and CD86 molecules showed that IFN-g-treated DC2.4 cells

expressed well-matched levels on the microsomes and on cells

(Fig. 2C), suggesting that the ER-enriched microsomes can

present both pMHC and costimulatory signals to T cells.

Peptide-loaded microsomes induce T-cell responses
in vitro

Based on the total protein content, on average 104 APC could

produce 1–3 mg of microsomes. After the removal of excess

Figure 1. ER-enriched microsomes. EM images of ER-enriched microsomes prepared from RAW309Cr.1 cells before (A) and after (C) processing
with freeze-thaw and acidic stripping (Scale bars: 100 nM). Arrows indicate ribosomes. (B) Immunoblotting analysis of 20 mg lysates from
RAW309Cr.1 cells and microsomal membranes, respectively, with antibodies against tapasin, LAMP2 and MHC I, respectively. (D) Panel labeled Ia
and Kb show the FACS analysis of the expression of these H2-Ia and H2-Kb molecules, respectively, in microsomal membranes and on the surface
of three APC lines and bone-marrow-derived DC. Panels Bio-OVA-Ia and SIINFEKL–Kb display the mean fluorescence intensity of these two
complexes in microsomes and on the cell surfaces. The loading of peptides onto microsomes and cells is described in ‘‘the Materials and methods
section’’. (E) A total of 2�106 RAW309Cr.1 cells or 20mg of microsomal membranes were incubated with 100mM crosslinker modified and 125I
labeled SIYNFEKL peptides and exposed to UV irradiation before lysis. The total lysates were submitted for precipitation with the Y3 antibody
specific for Kb molecules and the precipitates were separated on a SDS-gel. The crosslinked Kb molecules were visualized after exposure to X-ray
film. The presented data are representative of three experiments.

Figure 2. Acidic treatment induced expression of
peptide-receptive MHC II and enhanced peptide
loading onto MHC I molecules of microsomal
membranes and expression of costimulatory mole-
cules. (A) Displays biotin-OVA320–340-Ia complexes
detected by FITC-Streptavidin under pH 7.0 or 5.0 and
(B) shows FACS detection of the SIINFEKL–Kb complex
by 25-D1.16 antibody in peptide-loaded microsomal
membranes with or without pre-treatment with acidic
stripping. Microsomal membranes with PBS serve as a
background control. (C) Expression of costimulatory
molecules in microsomal membranes and their paren-
tal DC2.4 cells was analyzed by immunoblotting with
specific antibodies as indicated.
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peptides, 1–2 mg of peptide-loaded microsomes from bone-

marrow-derived DC or 1�105 peptide-pulsed DC were

co-cultured with 1� 105 OTI T cells for either 48 h prior

to measuring IL-2 production or for 3 days before

proliferation assay. Our results showed that SIINFEKL-loaded

microsomes were more potent at inducing T-cell responses in

vitro in a peptide-dose-dependent manner than peptide-

pulsed DC (Fig. 3, upper panel). Similarly, OVA324–340

peptide-loaded microsomes stimulated IL-2 production in OTII

cells more effectively than peptide-pulsed DC (Fig. 3, lower

panel).

The immunogenicity of peptide-loaded microsomes could be

maintained for more than 6 months if the microsomes were

stored in�801C (data not shown). Together, these results present

the possible use of a reconstituted cell-free antigen-presenting

system as an effective alternative to DC in stimulating both CD4

and CD8 T-cell responses.

Peptide-loaded microsomes are predominately
distributed to peripheral lymphoid organs

Effective T-cell-based vaccines have to deliver antigens at a

sufficient dose to peripheral lymphoid organs for optimal

stimulation of effector T cells. It has been reported that

antigen-armed DC are better distributed to peripheral LN, if

administrated subcutaneously [13]. However, microsomes

cannot actively migrate to lymphoid organs; we therefore

examined the tissue distribution of peptide-loaded microsomes

from CFSE or 35S-methonine-labeled bone-marrow-derived DC

and their parental DC after intravenous administration. Twenty-

four hours after injection, 7.4% bone-marrow-derived micro-

somes had accumulated in the spleen, and 0.66% in the LN.

Importantly, after 7 days, 5.64 and 0.81% of bone-marrow-

derived microsomes were still in the spleen and LN, respectively

(Fig. 4A), indicating that microsomes accumulate and are retained

in major peripheral lymphoid organs. In contrast, only 2.78 and

0.21% of peptide-pulsed and bone-marrow-derived DC were

distributed to the spleen and LN 24 h after i.v. injection and this

reduced to 0.93 and 0.18% after 7 days (Fig. 4A). Seven days after

injection, microsomes in the spleen accumulated in the periarter-

iolar lymphoid sheath (PALS), which mainly consists of T cells

(Fig. 4B). DC were also distributed to the PALS 2 days after

injection (Supporting Information Fig. 3). However, 7 days after

injection, very few DC were remained in the peripheral lymphoid

tissues and distributed randomly in the follicles, suggesting

that they are the dying DC taken up by phagocytes in the follicles

(Supporting Information Fig. 3). The microsomes accumulated in

T-cell areas as indicated by co-staining with anti-T- and

B-cell markers (Fig. 4B). To investigate the possibility that

microsomes are endocytozed by APC, the microsomes from

CFSE-labeled DC2.4 cells were used for internalization assay with

bone-marrow-derived DC. Results showed that FITC-labeled

dextran were effectively endocytozed by DC, while endocytosis

of microsomes was not detected (Fig. 4C). Although we cannot

exclude the possibility that some of the microsomes were

endocytozed by APC in peripheral lymphoid tissues in vivo, the

potent T-cell responses suggest that such an accumulation is

essential to deliver sufficient quantity of antigens to T cells in

lymphoid system.

Microsome vaccine protects against vaccinia virus
infection in vivo by induction of both CD4 and CD8
T-cell responses

The capacity of peptide-loaded microsomes in the induction of

effective anti-viral immune responses in vivo was evaluated by an

in vivo vaccinia viral infection model in C57BL/6 mice. The

recombinant vaccinia virus used carries a gene encoding chicken

OVA [14]. Five groups of C57BL/6 mice were immunized

intravenously with; a mixture of SIINFEKL and OVA 324–340

peptide-loaded microsomes from bone-marrow-derived DC from

C57BL/6 at a dose of 20 mg microsomes/mouse or same

microsomes but loaded with irrelevant influenza matrix protein

(MP) peptides at the same dose or a mixture of SIINFEKL

(100 mg) and OVA324–340 (100mg) or 106 DC pulsed with

SIINFEKL and OVA 324–340 peptide or 106 DC pulsed with

irrelevant MP peptides or PBS as the controls. The mice were then

boosted after 7 days. Ten days after boosting, 20 of the 30 mice in

each group were challenged with an infectious dose of 2�105

PFU and the other 10 with a sublethal dose of 5� 106 PFU of

OVA-VV virus. Forty-eight hours after challenge, 5 of the 20 mice

in infectious dose group were sacrificed for analysis of

Figure 3. Peptide-loaded microsomes induce T-cell responses. Activa-
tion of OT1 (upper panel) or OTII (lower panel) T cells by SIINFEKL or
OVA324–340 peptide-loaded microsomal membranes from bone-
marrow-derived DC or peptide pulsed DC as shown by the production
of IL-2 and proliferative responses. Microsomes or DC loaded with
irrelevant MP peptide served as controls.
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T-cell responses and 4 days after, another 5 were sacrificed for

viral clearance study, while the remaining mice were used for

clinical study.

About 4.3% of CD8 T cells in mice immunized with SIINFEKL

and OVA324–340 peptide-loaded microsomes were SIINFEKL

specific, while only 1.8% were in mice immunized with peptide-

pulsed DC (Fig. 5A). SIINFEKL-specific CD8 T cells were not

detected in the other three groups as indicated by tetramer

staining (Fig. 5A). In conjunction with the induction of CD8-

specific T cells, the in vitro restimulation of CD4 T cells

showed that OVA324–340 peptide-loaded microsomes induced

stronger IL-2 production and proliferative responses of CD4

T cells from the mice immunized with a mixture of SIINFEKL

and OVA324–340 peptide-loaded microsomes than the

mice with peptide-pulsed DC (Fig. 5B and C). These results

indicate that an integrated immune response of both CD4 and

CD8 T cells were induced in mice by peptide-loaded microsomes

and suggests that the microsomes are more immunogenic than

their parental DC.

The clinical symptoms were closely related to the induction of

immune responses in vivo. In the infectious dose groups, although

a degree of protection was observed in mice immunized

with peptide-pulsed DC, only SIINFEKL and OVA324–340

loaded microsomes completely protected against viral infection

as these mice had shown no body weight loss and no viral

particles detected in lung tissue unlike the other groups

(Fig. 6A and C). With a sublethal dose of virus, although

mice immunized with SIINFEKL and OVA324–340 loaded

microsomes showed body weight loss, they were protected

from death and recovered rapidly after infection (Fig. 6B),

while two out of ten mice immunized with peptide-pulsed DC

died after 5 days (Fig. 6B). All mice in other groups died

Figure 4. Peptide-loaded microsomes accumulate in peripheral lymphoid organs, but not endocytozed by DC in vitro. (A) Distribution of SIINFEKL-
peptide-loaded and 35S-methionine-labeled microsomes from bone-marrow-derived DC or peptide pulsed DC in the indicated tissues from
C57BL/6 mice at different times after i.v. injection. (B) Fluorescence microscopy showing distribution of peptide-loaded and CFSE-labeled
microsomes in spleen 7 days after i.v. injection. Cell nuclei were visualized by DAPI counter-staining. The colocalization of microsomes (green)
with T-cell areas as indicated by staining with anti-CD3 (bright red) or B220 (orange red) antibodies. Upper panel shows 10� imaging and lower
panel shows 40� for DAPI staining and 20� for antibody staining. (C) Fluorescence microscopy showing (i) FITC-labeled dextran; (ii) CFSE-labeled
microsomes loaded with SIINFEKL peptides; (iii) DC incubated with FITC-dextran; and (iv) DC incubated with CFSE-labeled microsomes.
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(Fig. 6B). Furthermore, the spleens were double the size in

the protected mice immunized by OVA peptide-loaded micro-

somes indicating potent immune responses (data not shown)

concordant with the observed accumulation of microsomes in

peripheral lymphoid organs. These results demonstrate that

peptide-loaded microsomes are highly immunogenic and better

than live DC to serve as effective vaccines to protect against acute

viral infection.

Discussion

Vaccines based on matured DC armed with defined antigens

appear very promising for both prophylactic vaccines and

immune therapies [15, 16]. However, the difficulties involved

in the control of antigen loading, the preparation of matured

DC in vitro and the complexities of DC subsets in the

induction versus suppression of T-cell activation in vivo limit

DC-based vaccine applications [17]. The present study describes

an effective alternative to DC therapy using ER-enriched

microsomes isolated from DC. The abundant peptide-receptive

MHC and costimulatory molecules and accumulation in the

peripheral lymphoid organs contribute to the high efficacy of the

microsomal vaccine in vivo. The immunogenicity can be main-

tained for more than 6 months if the prepared microsomal

vaccines are stored in �801C or in liquid nitrogen (data not

shown), making the prepared vaccine consistent and cost

effective.

The sustained accumulation of antigen-carrying microsomes

in the peripheral lymphoid organs explains the high efficacy of

induced responses in vivo [18]. A possible explanation for

such a high accumulation is that matured live DC may actively

migrate in and out of the peripheral lymphoid organs,

while microsomes from matured DC have the same homing

potential, but could not actively migrate out from lymphoid

organs. Recently, it has been shown that DC in the peripheral

lymphoid organs are actively exchanged with DC in blood

[19] in a dynamic equilibrium, which suggests that the low

accumulation of injected DC into the lymphoid organs is

largely due to the rapid equilibration with endogenous DC.

Significantly, most of the injected microsomes are located in the

PALS area, which could effectively present antigens to memory

T cells [20–22].

One of the important findings is the loading of MHC II

in the ER-enriched microsomes. Our results provide evidence

suggesting that in acidic condition the Ii in microsomes can

dissociate from MHC II molecules and generate a peptide-recep-

tive status allowing assembly with exogenous peptides. Although

we were not able to directly compare microsomal MHC II

assembly with the assembly of MHC II in the endosomal

compartments [22], the induction of CD4 T-cell responses

in vitro and in vivo suggests that acidic processed microsomal

membranes are able to deliver MHC II-restricted antigenic

peptides to CD4 T cells. The acidic treatment also stripped ribo-

somes from microsomes as well as pre-processed peptides from

MHC I molecules, which increases the loading efficiency of pMHC

molecules and reduces potential side effects such as anti-ribo-

some or anti-nuclear responses.

One of the major problems in human DC-based vaccines

is the complexity of DC after in vitro maturation. The heterogenic

populations of matured DC include both immunogenic

and tolerogenic APC, which produce a mixture of inflammatory

cytokines as IL-12 and inhibitory factors such as TGF-b, IDO

and IL-10 [5, 23, 24], which hamper the efficacy of immune

responses. The microsomes are free from soluble factors,

and their preparation is biologically reproducible and consistent

at the level of peptide loading and antigenicity when compared

with live DC. In addition, the ER-enriched microsomes do not

contain cytosolic or nuclear proteins, which reduces potential

side effects. We have not found antimicrosome responses

in vitro or in vivo, suggesting that the ER-resident proteins were

tolerated.

Both exosomes and plasma-membrane-derived vesicles from

APC have been reported to induce potent immune responses in

vivo [9, 10, 25, 26]. It is however unknown how peptides are

processed to pMHC in these vesicles. Some viruses can bud into

MHC II-enriched compartments and be released by exosomes

[27], which could limit applications for using autologous

exosomes in anti-viral vaccines. The potential advantage of

exosomes is that the pMHC class II may be enriched from antigen

pre-fed DC due to the processing of pMHC II in endocytotic

compartments. For technical reasons, we could not biochemically

compare the pMHC II quality in peptide-loaded microsomes in

vitro with that in endosomal compartments in vivo. Nevertheless,

the observed high efficiency loading and the induction of CD4 T-

cell responses demonstrate the immunogenic efficiency of pMHC

II in microsomes. Furthermore an important advantage for a

microsome vaccine is the ability to directly present pMHC and

costimulatory signals to T cells. We demonstrated that micro-

somes were not endocytozed by DC in vitro. Although we could

not exclude the possibility that some of the microsomes in vivo

could be endocytosed by APC and the pMHC are indirectly

presented by APC to T cells in lymphoid organs, the observed

ability to directly activate antigen-specific T cells could be

important in microsome vaccines to chronic viral infections or

cancer: conditions where endogenous DC are less active in vivo

[28, 29].

After mixing with peptides, the plasma-membrane-derived

vesicles also showed the ability to directly interact with T cells

and induce responses in vivo [9]. However, as we have shown,

the number of peptide-receptive MHC I molecules on the surface

of APC is limited due to the presence of pre-processed pMHC I.

Therefore, it may be difficult to deliver antigenic peptides with

medium or low affinity, which cannot compete with the prepro-

cessed peptides on MHC molecules. Owing to the nature of the

sonication methods used in the preparation, some of the ER

membranes may also have been present in these preparations [9],

which as we show have abundant peptide-receptive MHC I

molecules. If ER-derived microsomes are used, the inside-out

processing is required to load peptides effectively and to expose
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the luminal side of costimulatory and MHC molecules to T cells

(data not shown).

Compared with live DC, cell-free membrane vaccines do not

include soluble inhibitory factors, but they also exclude inflam-

matory cytokines such as IL-12. However, the high efficacy of

microsomal vaccines indicates that the inflammatory cytokines

produced by mature DC are not essential for the induction of

effective immune responses in vivo.

In summary, our results present a novel form of vaccine with

pMHC I- and II-loaded microsomal membranes. This form of

vaccine is comparatively easy to prepare, stable and the quality of

preparations can be checked at any step during the procedure.

We demonstrate that the microsomal vaccines are better than

their parental DC for the induction of potent immune responses

against viral infection in vivo.

Materials and methods

Mice and cell lines

OTI and OTII transgenic mice on the C57BL/6 background

expressing a TCR specific to the H2-Kb-SIINFEKL and specific for

H2-Ia-OVA324–340 peptide complex, respectively, were kindly

provided by Dr. Kioussis D. MRC National Institute for Medical

Research, London. C57BL/6 mice were purchased from Harlan

UK, (Oxon, England). All animals were maintained in pathogen-

free facilities at the Brunel University. Jaws II, macrophage

RAW309Cr.1 were obtained from American Type Culture

Collection (ATCC). DC2.4 DC line was kindly provided by Dr.

Mann D. Southampton, UK. All lines were cultured in RPMI 1640

Figure 5. Induction of CD4 and CD8 T-cell responses by peptide-loaded microsomes in vivo. CD57BL/6 mice were injected i.v. with a mixture of
SIINFEKL and OVA324–340 loaded microsomes (20 mg/mouse) from bone-marrow-derived DC and boosted once after 7 days. The mice injected with
irrelevant MP peptide-loaded microsomes, mixture of SIINFEKL and OVA 324–340 peptides and PBS serve as controls. Seven days after boosting,
total splenocytes were stained with SIINFEKL tetramer and CD8 (A). For CD4 T-cell responses, CD4 T cells were isolated from splenocytes and
stimulated in vitro at 2� 105 CD4 T cells per well with the corresponding stimuli as indicated. Two days after stimulation, IL-2 production was
measured by ELISA (C) and 3 days after proliferation responses were detected by 3[H] incorporation (CPM) (mean of triplicate cultures7SD) after
exposure to 3[H]thymidine for 8 h (B).
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or DMEM supplement with 10% FBS (Invitrogen). For Jaws II

cells, the culture also contained GM-CSF (Invitrogen) at 5 ng/mL.

For antigen presentation, the Jaws II, DC2.4 and RAW309Cr.1

cells were treated with IFN-g at 100 IU/mL for 24 h.

Bone-marrow-derived DC

Immature DC were generated from bone marrow progenitors by

culturing them in the presence of GM-CSF and maturated by LPS

stimulation as described previously [11]. At the end of IFN-g or

LPS treatment, the dead cells were less than 5% in the cell lines

and 15% in bone-marrow-derived DC.

Antibodies and flow cytometry

FITC-conjugated antibodies to CD54, CD80, CD86, 25-D1.16 and

FITC-conjugated Streptavidin; PE-conjugated antibodies to H2-Ia

and Y3 were from BD Biosciences. Antibodies against tapasin

and H2 molecules were described previously [12]. Anti-LAMP2

antibody was from eBioscience. Kb-SIINFEKL Pentamer was

from Proimmune. Antibodies used for immunoblotting of mouse

CD54 (AF796), CD80 (AF740) and CD86 (AF-441-NA) were from

R&D systems. A PE-Pro5TM was used for the analysis of

fluorescently labeled cells and the medium fluorescent intensity

from three experiments was presented. The isotype Ig was used

as background controls for all the staining of both cells and

microsomes. The setting of side-scatter and forward-scatter

was the same between cells and microsomes. Owing to the

uneven sizes of microsomal vesicles, the entire events detected

in side-scatter and forward-scatter were used for the analysis on

fluorescent channels. The medium fluorescent intensity was

then compared. CD4 or CD8 microbeads (Miltenyi Biotec)

were used for isolation of CD4 or CD8 T cells from spleens of

OTII or OTI mice, respectively, according to the manufacturer’s

protocol.

Peptides and peptide modification

Peptides were synthesized by Invitrogen and purified to more

than 95% purity. The �amino group of lysine in the H2-Kb-

specific SIYNFEKL peptide was covalently modified by a photo-

reactive crosslinker and labeled with iodination (125I) as

described previously [30]. The N-terminus of peptide

OVA324–340 was labeled and purified with a biotin-labeling

kit (Pierce).

Preparation of ER-enriched microsomal membranes

Microsomes from cell lines or bone-marrow-derived DC were

prepared and purified according to our previous publication [30].

Briefly, cells were washed and resuspended in homogenization

buffer. After homogenization, tonicity was restored to 0.15 M NaCl.

The nuclear, mitochondria and larger cell debris were removed

by centrifugation at 10 000g. The total microsomes were recovered

by centrifugation at 100 000g and subfractionated by flotation

in sucrose gradients. The microsomes were layered on top of

5 mL of 0.33 M sucrose, layered in turn on top of a discontinuous

sucrose gradient consisting of 2 mL of 2 M and 1 mL of 2.5 M

sucrose. Centrifugation in a TH-641 rotor for 16 h at 110 000g at

41C yielded a microsome band on top of the 2 M sucrose cushion,

which was collected and resuspended in RM buffer (250 mM

Sucrose, 50 mM triethanolamine-HCl, 50 mM KOAc, 2 mM

MgOAc2, 1 mM DTT). Before preparation, cell lines and bone-

marrow-derived DC were activated by treatment of 100 IU/mL of

Figure 6. Immune responses against viral infection (VV-OVA). For anti-viral response, mice were immunized with a mixture of SIINFEKL and
OVA324–340 loaded microsomal membranes from bone-marrow-derived DC twice i.v. with an interval of 7 days. Mice injected i.v. with MP-loaded
microsomal membranes, a mixture of SIINFEKL and OVA324–340 peptides and PBS served as control groups. Ten days after the last immunization,
all mice were challenged with VV-OVA virus at infectious or sublethal doses as indicated. (A) Body weight changes after challenge with infectious
dose of VV-OVA virus and (B) survival of mice challenged with a sublethal dose of VV-OVA virus. (C) Viral titers in the lungs on day 4 of mice
challenged with an infectious dose of VV-OVA virus. Data show mean7SD of log 10 PFU per gram of lung tissues.
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IFN-g or 1mg/mL of LPS for 24 h, respectively. 35S-methionine

(Amersham) and the CFSE-labeled microsomal membranes were

prepared from bone-marrow-derived DC after labeling with either

1mCi 35S-methoinine for 6 h or 2.5mM CFSE (Molecular Probe)

for 10 min.

Processing and peptide loading of microsomes

The microsomes in RM buffer were first processed by freeze-thaw

(30 s in liquid nitrogen and 5 min at 371C) three times, followed

by addition of an equal amount of stripping buffer (0.26 M citric

acid, 132 mM Na2HPO4, 2% BSA, pH 3) and incubation for 3 min

on ice. The microsomal membranes were recovered by centrifu-

gation through a 0.5 M sucrose cushion on an airfuge and

resuspended in RM buffer. For MHC I loading, peptides at

500mg/mL or as indicated and human b2-microglobin (5 mg/mL)

were loaded to the microsomal membranes by incubation for 1 h

at 371C. After loading the excess peptides were removed by

centrifugation through a 0.5 M sucrose cushion on an airfuge and

the loaded microsomes were resuspended as homogenous

population in culture medium. For MHC II, after the freeze-thaw

process, the microsomes in RM buffer were mixed with equal

volume of stripping buffer and peptide at 500 mg/mL or as

indicated for 5 min at 371C. After loading excess peptides were

removed by centrifugation through a 0.5 M sucrose cushion on an

airfuge and the loaded microsomes were resuspended as

homogenous population in culture medium.

In vitro stimulation of T cells

The OTI or OTII T cells were isolated from spleens of OTI or OTII

transgenics by positive selection using a MACS system (Miltenyi

Biotec), with purity consistently above 95% as defined by FACS

analysis with anti-CD8 or anti-CD4 antibodies. A total of 1�105

T cells were incubated at 371C with 1–4mg of peptide-loaded

microsomes for 48 h. IL-2 production was then measured by

ELISA (R&D). For proliferation assay, [3H]thymidine at 1mCi/mL

was added after 3 days of culture and the cells were harvested

after 8 h. When APC were used for stimulation, IFN-g-treated APC

were pulsed with peptides at 500mg/mL or as indicated for 1 h at

371C in HBSS containing 5% FBS and for MHC I loading 5mg/mL

human b2-microglobulin was added. After peptide pulsing, APC

were washed and irradiated at 4000 Rad. A total of 1�105

peptide-loaded APC were cultured in vitro with 1�105 OTI or

OTII cells.

In vivo distribution of microsomal membranes or DC

Microsomes were purified from either CFSE or 35S-methoinine-

labeled bone-marrow-derived DC. An aliquot of 20mg of peptide-

loaded microsomes or 1� 106 peptide-pulsed DC was injected

into C57BL/6 mice i.v. At various times as indicated, spleen, lung,

LN and liver were collected and CPM was measured. The

percentage of accumulated microsomes or DC was calculated as

CPM/gram of the organ and divided by the total CPM of injected

microsomes or DC. The distribution of CFSE-labeled microsomes

was morphologically analyzed on the frozen sections of the

spleen 7 days after injection. The frozen sections were also used

for staining with PE-labeled anti-B220 antibody (BD Biosciences)

or rabbit anti-CD3 antibody (BD Biosciences) followed with

Alexa Fluor 594-conjugated donkey anti-rabbit IgG (Jackson

ImmunoResearch Lab).

Internalization assay

Bone-marrow-derived DC were incubated with microsomes

isolated from CFSE-labeled DC2.4 cells or with FTIC-labeled

dextran for 5 h at 371C. Free-microsomes or dextran were

removed by low-speed centrifugation at 2500 rpm in PBS. Cells

were then fixed and analyzed by fluorescent microscopy.

Immunization

Microsomes from bone-marrow-derived DC or bone-marrow DC

were loaded either with OVA SIINFEKL or OVA OVA324–340 as

immunogens, or with an HLA-A2-restricted epitope of the

influenza matrix protein (GILGFVFTL) as an irrelevant control

peptide. A total of 1� 106 cells or 20 mg microsomes in 100mL of

physiologic saline were injected into the dorsal tail vein of each

mouse after 7 days; the same dose was given again for boosting.

Viral infection

Mice were infected intranasally with the recombinant vaccinia

virus encoded with chicken OVA [31] in 50mL at the indicated

doses. The mice were weighed and observed for illness daily,

as described previously [31]. In vivo replication of vaccinia virus

was examined by plaque assay on lung tissues, which were

removed, weighed and ground with a mortar and pestle. Serial 10-

fold dilutions of clarified supernatants were used to infect

subconfluent monolayers of BSC40 cells in triplicate in 24 well

plates. After 1 h, the plates were covered in 0.75% methylcellulose

in 10% MEM and incubated at 371C. The cells were fixed

with formalin 2 days after infection and stained with 2% crystal

violet in 40% methanol, and plaques were counted under a

dissecting microscope. Data are presented as geometric mean

log 10 PFU per gram of lung at dilutions that produced more than

five plaques per well.

Ex vivo analysis of antigen specific T cells

For CD8 T cells, splenocytes were stained with FITC-conjugated

anti-CD8 (BD Biosciences). After washing, cells were stained with
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either PE-conjugated Kb-SIINFEKL Pentamer (Proimmune) or

isotype-matched controls, and analyzed by FACS.

For evaluation of CD4 T-cell responses, CD4 T cells were

purified from spleen and LN by CD4-coated magnetic beads

(Miltenyi Biotec) to more than 90% as measured by PE-CD4

antibody on FACS. A total of 105 CD4 T cells were cultured with

either 2mg of OVA320–340 peptide-loaded microsomes from

bone-marrow-derived DC or 1� 105 DC pulsed with the same

peptide for 48 h before measuring IL-2 production by ELISA (BD

Bioscience) or 3 days before proliferation assay with 3H-TdR

(Amersham) incorporation.

Statistics

Statistical comparisons were performed using Student’s t-test;

survival was plotted using Kaplan–Meier curves and statistical

relevance was determined using log-rank comparison. Unless

noted, data were presented as means7SD of pooled data from

four to six independent experiments.
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Supplementary 1. Antigen presentability of microsomes from antigen preloaded and unloaded APCs. Mouse RMA cell line
transfected with OVA gene (OVA-RMA) was used as antigen-preloaded APCs, while native RMA cells were used as unloaded 
APCs. RMA cells and the microsomes from RMA cells were loaded with SIINFEKL in vitro as described in materials and methods,
and indicated as SIIN-RMA and SIIN-M, respectively. The microsomes isolated from OVA-RMA cells were indicated as OVA-M. 
The SIINFEKL-Kb complexes in OVA-M, SIIN-M, and on OVA-RMA and SIIN-RMA were measured by 25D1 antibody (A). The 
antigenicity of SIIN-Kb complexes was analysed by stimulation of OTI cells (B). The loading, stimulation and 25D1 staining were 
described in materials and methods. The presented results are representative from three experiments. 
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Supplementary data 2. Acidic treatment removes ribosomes from microsomes: Microsomes from DC2.4 cells were treated with 
or without acidic stripping. Ribosome RNAs were extracted by Trizol reagents (Invitrogen) according to manufacturer’s protocol. 
RNAs were separated on 1% agrose gel. 18S and 28S rRNAs were indicated according to RNA standards (Invitrogen). 
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Supplementary 3. Distribution of DCs in spleen. Bone-marrow derived DCs were matured, activated and loaded with SIINFEKL 
peptide as described in the materials and methods. The loaded DCs were labeled with CFSE and injected i.v. into C57BL/6 mice. 
Spleens were isolated 36 hours or 7-days post-injection. The frozen sections of the spleens were stained first with anti-CD3 or B220 
antibodies followed with Alexa Fluor 594-conjugated secondary antibodies as described in the materials and methods. 
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