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SUMMARY

Transcriptional analysis of brain tissue from people
with molecularly defined causes of obesity may high-
light disease mechanisms and therapeutic targets.
We performed RNA sequencing of hypothalamus
from individuals with Prader-Willi syndrome (PWS),
a genetic obesity syndrome characterized by severe
hyperphagia. We found that upregulated genes over-
lap with the transcriptome of mouse Agrp neurons
that signal hunger, while downregulated genes over-
lap with the expression profile of Pomc neurons
activated by feeding. Downregulated genes are
expressed mainly in neuronal cells and contribute
to neurogenesis, neurotransmitter release, and syn-
aptic plasticity, while upregulated, predominantly
microglial genes are involved in inflammatory re-
sponses. This transcriptional signaturemay bemedi-
ated by reduced brain-derived neurotrophic factor
expression. Additionally, we implicate disruption of
alternative splicing as a potential molecular mecha-
nism underlying neuronal dysfunction in PWS. Tran-
scriptomic analysis of the human hypothalamus
may identify neural mechanisms involved in energy
homeostasis and potential therapeutic targets for
weight loss.

INTRODUCTION

Neural circuits within the hypothalamus regulate energy balance

in response to peripheral nutrient-related cues (Andermann and
Cell R
This is an open access article und
Lowell, 2017; Gautron et al., 2015). Leptin-responsive Agouti-

related protein (Agrp)-expressing neurons in the arcuate nucleus

of the hypothalamus are activated during fasting or caloric deficit

to drive an increase in food intake, while in the nutritionally

replete or fed state, Pro-opiomelanocortin (Pomc) neurons are

activated to reduce food intake (Cowley et al., 1999, 2001). In

humans, loss-of-function mutations that disrupt the function of

these neural circuits result in severe obesity, demonstrating their

pivotal role in human energy homeostasis (O’Rahilly and Farooqi,

2008; van der Klaauw and Farooqi, 2015).

However, experiments in rodents (Atasoy et al., 2012; Betley

et al., 2013) and genetic studies in humans (Hendricks et al.,

2017) suggest that the neural mechanisms that regulate energy

homeostasis are complex and that many molecular components

of these circuits remain to be discovered (Sternson et al., 2016).

One potential approach to identifying genes and pathways is to

use transcriptomic analysis of key tissues and organs to identify

changes in gene expression in response to a perturbation or ge-

neticmanipulation. The specificity of these approaches has been

enhanced by recent technological developments that have

enabled the labeling, sorting, and RNA sequencing of molecu-

larly defined populations of neurons in the mouse brain. To this

end, the recent detailed analysis of high-quality gene expression

data frommouse Agrp and Pomc neurons has provided a frame-

work for investigating the genes whose expression changes with

fasting and feeding (Campbell et al., 2017; Henry et al., 2015).

Although comparable studies of specific cell types are not

feasible in humans, transcriptional analysis of hypothalamic tis-

sue from people with molecularly defined subtypes of severe

obesity has the potential to inform the discovery of neural mech-

anisms involved in energy balance. Here, we characterized the

hypothalamic transcriptome of individuals with Prader-Willi syn-

drome (PWS), a genetic obesity syndrome caused by loss of
eports 22, 3401–3408, March 27, 2018 ª 2018 The Author(s). 3401
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:e.bochukova@qmul.ac.uk
mailto:isf20@cam.ac.uk
https://doi.org/10.1016/j.celrep.2018.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.03.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A

B D

C

Figure 1. Genome-wide Transcriptional Changes in PWS Hypothalamus

(A) Principal-component (PC) analysis showing segregation of PWS and control hypothalamic samples.

(B) Heatmap representing the top 45 most significantly DEGs shown as within-gene Z score (left) and rlog-normalized read counts (right).

(C) Venn diagrams illustrating differentially down- and upregulated genes in PWS versus control samples in this study (discovery set) and overlap with genes from

a previous study in PWS (replication set) (Falaleeva et al., 2015).

(D) Heatmaps representing the expression of brain cell-type-specific genes among the DEGs displayed as within-gene Z score of rlog-normalized read counts.

See also Figure S1 and Table S1.
expression of paternally expressed genes and noncoding RNAs

on chromosome 15q11–q13 (Cassidy et al., 2012).

RESULTS AND DISCUSSION

RNA sequencing was performed on post-mortem hypothalamic

tissue from four PWS patients and four age-matched controls

from the University of Maryland Brain and Tissue Bank (Fig-

ure S1). Although samples from controls matched for both age

and obesity were not available, the bodymass index (BMI) values

of patients and controls were comparable (Figure S1A). Prin-

cipal-component analysis revealed segregation between PWS

and control samples (Figure 1A).We identified 3,676 differentially

expressed genes (DEGs) in PWS individuals compared with con-

trols (Table S1; Benjamini-Hochberg false discovery rate [FDR] <

0.25; 658 with FDR < 0.05). The most highly downregulated

genes (FDR < 5 3 10�5) were located in the PWS critical region

(Figure 1B). A random subset of genes were validated by qRT-

PCR (Figure S1E). In the absence of high-quality hypothalamic

tissue for replication, we compared our data with a previous

high-density microarray study of hypothalamic gene expression
3402 Cell Reports 22, 3401–3408, March 27, 2018
in two PWS patients (Falaleeva et al., 2015) and found significant

overlap of dysregulated genes (Figures 1C and S1D; Table S1).

However, there was minimal overlap with datasets derived

from PWS induced pluripotent stem cell (iPSC)-derived neuronal

cell lines (data not shown); notably, we did not find reduced

expression of the obesity-associated gene PCSK1 reported

recently (Burnett et al., 2017b).

To identify the cellular origin of DEGs, we ranked genes on the

basis of their relative expression in single-cell transcriptomic

data from neurons, astrocytes, microglia, oligodendrocytes,

and endothelial cells (Supplemental Experimental Procedures).

We found that downregulated genes were enriched for neuronal

markers (p = 3 3 10�8), while upregulated genes were enriched

for microglial genes (p = 9 3 10�5) (Figure 1D). Further analysis

using CIBERSORT (Newman et al., 2015) also showed that

PWS hypothalamic tissue was characterized by a reduction in

neurons (Figure S1F). Interestingly, this cellular transcriptomic

profile aligns with that seen in autism (Parikshak et al., 2016),

in several neurodegenerative diseases, and in the aging brain

(Blalock et al., 2004; Lu et al., 2004) (Figure S2A), suggesting

that fundamental mechanisms regulating neuronal maintenance
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Figure 2. Dysregulated Gene Co-expres-

sion Modules in PWS Hypothalamus

Converge with Fasting and Feeding Re-

sponses in Specific Hypothalamic Cell

Types from Mice

(A) Venn diagrams illustrating the number of DEGs

that are down- and upregulated in PWS hypo-

thalami compared with controls and their expres-

sion in Pomc, Agrp, and other neurons (Campbell

et al., 2017; Henry et al., 2015). For comparison,

the reference gene sets (Pomc, 261 genes; Agrp,

167 genes; other neurons, 1,589 genes) are

included in Figure S2A.

(B) Number of PWS DEGs (up- or downregulated)

that are expressed in Agrp neurons in the fasted

versus fed state (q < 0.05 in Henry et al., 2015).

(C) Gene co-expression modules among upregu-

lated PWS DEGs. Hierarchical clustering of DEGs

upregulated in PWS with log2 fold change >1.5.

The heatmap illustrates pairwise gene-gene cor-

relation clustering (Pearson correlation, distance =

1-cor, Ward clustering). The sidebar (right) dis-

plays the overlap with genes previously reported

upregulated (red) or downregulated (green) in Agrp

neurons in the fasted versus fed state (q < 0.05 in

Henry et al., 2015).

See also Figure S2 and Table S1.
may contribute to a range of human neurological diseases,

including PWS.

Overlap of the Human PWS Transcriptome with the
Transcriptome of Agrp Neurons in Fasting
To identify potential candidate obesity genes, we compared

PWS DEGs with genes expressed in hypothalamic Agrp and

Pomc neurons in mice (Campbell et al., 2017; Henry et al.,

2015) (Supplemental Experimental Procedures). We found that

expression of Agrp was increased 3-fold in PWS hypothalamus

versus controls (p = 0.01), suggesting this potent orexigenic

may play a role in the hyperphagia associated with PWS. Other

upregulated genes were predominantly expressed in mouse

Agrp neurons that signal hunger, while genes downregulated

in PWS were relatively overrepresented in mouse Pomc neurons

that signal the fed state (Fisher’s exact test, odds ratio [OR] = 7.2,

p = 2.3 3 10�4) (Figures 2A and S2). A significant number of

PWS upregulated genes were expressed inmouse Agrp neurons

and upregulated in fasted animals (Fisher’s exact test, OR = 5.3,

p = 10�12; Figure 2B), suggesting that these genes represent a

conserved signature of the neural response to fasting or food

deprivation.

Using hierarchical cluster analyses of high-confidence DEGs

(absolute log fold change > 1.5), we identified sets of co-ex-

pressed genes and gene modules whose expression was upre-

gulated in Agrp neurons in the fasted state (Figure 2C). We

observed increased expression of ribosomal proteins involved

in protein synthesis. This finding aligns with the upregulation of

genes involved in endoplasmic reticulum (ER) protein transloca-

tion and Golgi trafficking seen in Agrp neurons in mice with fast-

ing (Henry et al., 2015) and may reflect increased production of
neuropeptides for secretion. Several genes downregulated in

PWS, and also in mouse Pomc neurons, were involved in synap-

tic transmission and neuronal maintenance and integrity. As

loss-of-function mutations in some of these genes (SRPX2 and

ZBTB16; Table S1) are known to cause human neurological dis-

orders, their reduced expression could contribute to both the

obesity and the neurodevelopmental phenotype of PWS.

A subset of co-regulated genes dysregulated in the PWS hy-

pothalamus are expressed in Agrp neurons in fasting and are

known to play a role in energy homeostasis and adipocyte

biology in rodents (SOCS3, ANGPTL4, FOSL1, FOSL2, and

STC2; Table S1). Interestingly, bone morphogenic factor-3

(BMP3), whose expression is markedly decreased in mouse

Agrp neurons in the fasted state (�17.7-fold, q = 2.0 3 10�5;

Henry et al., 2015), was found to be significantly decreased in

the human PWS hypothalamus. These findings generate hypoth-

eses that will need to be explored further. Characterization of the

neurons in which these genes are expressed and the processes

they regulate, as well as DEGs expressed in other transcription-

ally distinct neuronal cell types, may provide insights into the

mechanisms involved in human energy balance.

Human PWS Hypothalamus Is Characterized by
Downregulation of Genes Involved in Neuronal Function
and Upregulation of Microglial Genes and Inflammatory
Markers
We found that downregulated DEGs were significantly enriched

for genes involved in certain processes, namely, neurogenesis,

neurotransmitter release, and synaptic function (Figure 3A). Us-

ing Ingenuity Pathway Analysis, we identified 11 potential regu-

lators of clusters of downregulated DEGs (Table S2), including
Cell Reports 22, 3401–3408, March 27, 2018 3403
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Figure 3. Pathways Predicted to Be Affected by Changes in Gene Expression Seen in PWS Hypothalamus

(A) A gene annotation network illustrating terms (Gene Ontology, Reactome, Key) enriched among downregulated DEGs. Nodes represent downregulated DEGs

annotated with illustrated terms; edges join pairs of genes annotated with the respective term.

(legend continued on next page)
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the neurotrophin brain-derived neurotrophic factor (BDNF) and

its receptor, TrkB (encoded by NTRK2). Putative BDNF/TrkB tar-

gets among the downregulated DEGs were predominantly

related to synaptic processes (Figure 3B). This finding is

intriguing, as BDNF is a major regulator of the development,

maturation, andmaintenance of neurons and amodulator of syn-

aptic plasticity (Snider, 1994). Moreover, in mice and humans,

genetic disruption of BDNF and TrkB causes developmental

delay, stereotyped behaviors, impaired pain sensation, hyper-

phagia, and severe obesity (Gray et al., 2006; Yeo et al., 2004),

phenotypes that show some overlap with those seen in PWS.

We also obtained several post-mortem brain samples for

histology. Very few samples were of sufficient quality, limiting

quantitative analysis, but fluorescence in situ hybridization of

human hypothalamic tissue suggested that the number of cells

expressing BDNF and NTRK2 mRNA was reduced in the ventro-

medial nucleus of the hypothalamus in PWS (Figures 3C and S3).

We measured levels of plasma BDNF (potentially derived from

platelets) in patients with PWS versus age-matched obese con-

trols, but we did not find a significant difference (Figure S3G), in

contrast to one previous study (Han et al., 2010). Possible expla-

nations are that BDNF levels are known to vary considerably in

plasma versus serum and among assays; additionally, plasma

BDNF may not reflect BDNF expression in the brain.

A previous histopathological study of the PWS hypothala-

mus found a significantly reduced number of oxytocin neurons

(Swaab et al., 1995), and clinical trials of intranasal oxytocin

administration in PWS are ongoing (Tauber et al., 2017). In

our study, we found a low level of oxytocin mRNA and a

smaller number of cells immunoreactive for oxytocin in the

paraventricular nucleus in PWS samples (Figure 3C), support-

ing the key role of oxytocin as well as BDNF in the neuropa-

thology of PWS. Additional studies are needed to replicate

these findings and to investigate the potential loss of other

neuronal populations (including Pomc and Agrp neurons)

within the hypothalamus in PWS.

We found that upregulated genes in the PWS hypothalamus

were enriched for cytokine signaling and inflammatory pro-

cesses (Figure 3D; Table S2). The most statistically significant

predicted regulator of these genes was tumor necrosis factor

(TNF)-alpha, which plays a critical role in systemic inflamma-

tion (Figure 3E; Table S2). In the human hypothalamus, we

studied expression of S100b (a glial-specific protein marker

of neural damage) and GFAP (an astrocyte filament protein

that plays a critical role in synaptic function and is reduced

in neurodegenerative disorders but increased in brain injury).

We found that S100b protein levels were increased and
(B) Ingenuity Pathway Analysis (IPA) regulator effects analysis indicates the inhib

effects on target genes and processes. Phenotypes predicted to occur as a conse

(enhanced).

(C) Representative FISH images of BDNF and NTRK2 mRNA-expressing cells in t

cells in the paraventricular nucleus of the hypothalamus in PWS and control sam

oxytocin [n = 2 PWS, n = 1 control]).

(D) A gene annotation network illustrating terms enriched among upregulated DE

(E) IPA upstream regulator analysis indicates inhibition of TNF/NFKb signaling.

(F) Representative immunohistochemistry images of S100Beta- and GFAP-immu

control samples.

See also Figure S3 and Table S2.
GFAP immunoreactivity was decreased in the PWS hypothal-

amus compared with controls (Figure 3F). These findings

overlap with data from other neurodevelopmental conditions

(Griffin et al., 1989). Further studies with larger sample sizes

are needed to explore the potential relevance of these

findings.

Targeted Deletion of SNORD116 Affects Neuronal
Differentiation, Proliferation, and Survival
Chromosomal deletions that cause PWS vary in size and thus

can affect a number of genes and noncoding RNAs. None of

the mouse models involving deletion of the homologous region

fully recapitulate the human PWS phenotype (Resnick et al.,

2013); as such, investigation of the molecular mechanisms

that underlie the clinical phenotype has been challenging. The

minimal genetic lesion associated with severe hyperphagia

and obesity in PWS contains a cluster of noncoding small

nucleolar RNAs (snoRNAs) referred to as the SNORD116

gene cluster (de Smith et al., 2009; Sahoo et al., 2008). Post-

natal deletion of SNORD116 in the mediobasal hypothalamus

has recently been shown to lead to increased food intake in

mice (Polex-Wolf et al., 2018). To test whether loss of

SNORD116 affects neuronal development and maintenance,

as suggested by our transcriptomics analysis and in line with

a rodent model (Burnett et al., 2017a), we deleted a 57.4 kb

genomic segment encompassing the SNORD116 cluster using

CRISPR-Cas9 in a SH-SY5Y neuroblastoma human cell line

(Figure S4A). We found that SNORD116-deficient cells ex-

hibited reduced neuronal differentiation, cell proliferation, and

survival compared with wild-type cells (Figures 4A–4C). A

higher proportion of SNORD116-deficient cells displayed neu-

rites when treated with BDNF (mean 13%) compared with no

treatment (mean 23%, p = 0.005, two-tailed t test), whereas

no significant difference was observed within wild-type cells

(28% with no treatment, 36% with BDNF; p = 0.2, two-tailed

t test). Cumulatively, these data identify a transcriptomic signa-

ture in PWS consistent with marked hypothalamic neurodegen-

eration, which may be mediated in part by reduced expression

of the neurotrophin BDNF and its receptor, TrkB. These data

align with experiments in cortical neurons of the SNORD116

knockout mouse (Burnett et al., 2017a). Neuronal loss is asso-

ciated with a marked inflammatory response in the hypothala-

mus, which may be a primary defect, secondary to the neuro-

degenerative process or, as microglia have a role in synaptic

development and function (Barres, 2008), an inflammatory

response to disordered synaptic plasticity in the PWS

hypothalamus.
ition of regulatory factors NTRK2, ADCYAP1, and BDNF (top) with predicted

quence of the gene expression changes are shown in blue (inhibited) or orange

he ventromedial nucleus of the hypothalamus and oxytocin mRNA-expressing

ples (BDNF [n = 2 PWS, n = 2 controls], NTRK2 [n = 2 PWS, n = 1 control], and

Gs. Nodes and edges as in Figure 2A.

noreactive cells in the ventromedial nucleus of the hypothalamus in PWS and
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Figure 4. Deletion of SNORD116 Impairs Neuronal Differentiation, Proliferation, and Survival

(A) Targeted deletion of SNORD116 (SNORD116del) affects the neuronal differentiation of SH-SY5Y cells, cultured for 7 days in retinoic acid (RA) in the absence

(n = 5) or presence (n = 3) of BDNF. Left: representative images of wild-type (WT) and SNORD116del cells; right: quantification plot.

(B) Cellular proliferation measured by EdU incorporation at day 7 (n = 3).

(C) Cell survival measured by FACS at day 7 in culture (n = 6).

(D) Overlap between in silico predicted SNORD116 gene targets and PWS differentially expressed and differentially spliced genes.

All data are presented as mean ± SEM. Statistical significance was measured using two-tailed Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001; ns, non-

significance). See also Figure S4 and Tables S3 and S4.
Predicted snoRNA Targets and Detection of Reduced
Splicing Efficiency
SNORD116 and the closely related SNORD115 cluster belong to

a group of orphan snoRNAs with presumed non-canonical

functions. SNORD115 has been shown to regulate the post-tran-

scriptional processing of a single pre-mRNA, the serotonin 2c

receptor, through alternative splicing and RNA editing (Kishore

and Stamm, 2006). Using snoTARGET, we identified 588 pre-

dicted targets for snoRNAs within protein-coding genes (Fig-

ure 4D; Table S3), some of which were differentially expressed

in PWS hypothalamus (Figure S4B). Further studies will be

needed to test the functional significance of these findings. Inter-

estingly, RNA-specific adenosine deaminase (ADARB1), a

predicted target that is significantly downregulated (Figure S4B),

is involved in pre-mRNA editing of glutamate receptor subunit

B and when deleted causes hyperphagia and obesity in mice

(Terajima et al., 2017).

As snoRNAscanmodulateRNAsplicing (Yin et al., 2012), a pro-

cess that plays a major role in human neuronal development, we

performed a transcriptome-wide search for evidence of alterna-

tive splicing (Supplemental Experimental Procedures). We found

evidence of differential use of alternative splice variants in PWS

samples compared with controls (Table S4). Focusing on 180

loci with evidence of differential use of two alternative splice var-

iants, the most frequently observed type of splice variant in PWS

was retained introns (Table S4; Figure S4). Of note, we did not find

evidence for differential splicing of the serotonin 2c receptor (Fig-

ure S4C). Genes with putative differential splicing did not tend to
3406 Cell Reports 22, 3401–3408, March 27, 2018
be differentially expressed, consistent with decoupling of differ-

ential expression and splicing as seen in other disorders; excep-

tions included genes involved in microglial and inflammatory pro-

cesses, which were among the top-ranked alternatively spliced

genes (Table S4). Motif searches within retained introns and

250 bp flanking regions indicated the presence of binding sites

for canonical serine/arginine-rich splicing factors, and the pres-

ence of binding sites with predicted similarity to FUS splicing

factor binding motifs (Figure S4E). The FUS splicing factor regu-

lates alternative splicing in the brain and has been previously

linked to neurodegenerative diseases including amyotrophic

lateral sclerosis (ALS) and frontotemporal lobar degeneration

(FTLD) (Ishigaki et al., 2012; Rogelj et al., 2012).

In summary, in this study of the human hypothalamus in a

small number of individuals with PWS, we identified a transcrip-

tomic signature characterized by neuronal loss, altered neuro-

plasticity, and neuroinflammation. Of note, several neuroimaging

studies and case reports in PWS have identified structural ab-

normalities that would be consistent with a reduced number of

neurons, such as reduced gray matter volume in a number of

cortical areas and abnormal gyrification (Manning and Holland,

2015). We identify a potential role for BDNF in PWS that requires

further exploration and may have therapeutic relevance for this

complex neuro-behavioral disorder. Additionally, we demon-

strate that transcriptomic analysis of the human hypothalamus

can generate testable hypotheses of potential relevance to the

understanding of the neural circuits involved in human energy

homeostasis.



EXPERIMENTAL PROCEDURES

Human Samples

Hypothalamic specimens used in the study were obtained at autopsy from

control subjects with no reported clinical signs and patients with genetic diag-

noses of PWS through the University of Maryland Brain Bank at the University

of Maryland (Figure S1A). All procedures were approved by the University of

Cambridge Human Biology Research Ethics Committee (HBREC.2014.14).

RNA Sequencing and Analysis

Total RNA was prepared by tissue homogenization in Trizol reagent (Thermo

Fisher Scientific) of about one-third of hypothalamus. Sequencing of RNA

samples was performed by the University College London (UCL) Genomics

core facility, using the TruSeq poly-A mRNA method (Illumina) and a HiSeq

2000 machine (Illumina). Differential expression, splicing, and pathway anal-

ysis are described in detail in Supplemental Experimental Procedures, as is

the validation of DEGs using qRT-PCR.

In Silico Prediction of SNORD116 Gene Targets

Genome-wide in silico prediction of SNORD116 targets was performed using

snoTARGET software (Bazeley et al., 2008) and RNA-cofold from the Vienna

RNA package (http://www.tbi.univie.ac.at/RNA/).

Cross-Species Comparison with Agrp and Pomc Neuronal Subtypes

and Response to Food Deprivation

Reference gene sets for broad neuronal subtype classifications were derived

from Campbell et al. (2017) as described in Supplemental Experimental Pro-

cedures. Reference gene sets for fasting response in Agrp neurons were ob-

tained from Henry et al. (2015) using a threshold of q < 0.05 (unless otherwise

stated) to define differential expression between fasting conditions.

Immunohistochemistry and Fluorescence In Situ Hybridization

Immunohistochemistry was performed as reported previously (Bouret et al.,

2004) using the following primary antibodies: guinea pig anti-oxytocin (Penin-

sula Laboratories), rabbit anti-GFAP (Dako), and rabbit anti-s100beta (Abcam).

Secondary antibodies were Alexa Fluor 488 donkey anti-guinea-pig IgGs or

Alexa Fluor 488 goat anti-rabbit IgGs (Thermo Fisher Scientific). For the fluo-

rescence in situ hybridization (FISH) experiments, sense and antisense digox-

igenin-labeled riboprobes were generated from plasmids containing PCR frag-

ments of BDNF and NTRK2 (generously provided by Dr. Baoji Xu, The Scripps

Research Institute). Staining density and cell number were calculated using

ImageJ analysis software (NIH). Full details are presented in Supplemental

Experimental Procedures.

Cellular Studies

SH-SY5Y (ATCC CRL-2266) cells were used in all the cellular assays. We used

a well-established protocol to differentiate SH-SY5Y cells into neurons with

retinoic acid (Encinas et al., 2000). Full details onmaintenance, neuronal differ-

entiation, proliferation, and cell survival are presented in Supplemental Exper-

imental Procedures.

SNORD116 Cluster Deletion Using CRISPR-Cas9

We applied a cloning-free CRISPR protocol using gBlocks (gene fragments)

encoding FE-modified single guide RNAs (sgRNAs) promoting enhanced sta-

bility (Arbab et al., 2015). Two gBlocks carrying the guide flanking the

SNORD116 cluster on chr15q11.2 were nucleofected alongsideGFP-express-

ing Cas9 plasmid PX458into the SH-SY5Y line. Fluorescence-activated cell

sorting (FACS)-sorted cells were screened for successful editing using con-

ventional PCR and confirmed by Sanger sequencing. Full details are presented

in Supplemental Experimental Procedures.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 6.0 for

MacOS X. Data are represented as mean ± SEM. A two-tailed Student’s un-

paired t test was used, and p values < 0.05 were considered to indicate statis-

tical significance.
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