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Abstract 

The ability to extract accurately the stress intensity factor and the T-Stress for 

fractured engineering materials is very significant in the decision-making process for in-

service engineering components, mainly for their functionality and operating limit. The 

subject of computational fracture mechanics in engineering make this possible without 

resulting to expensive experimental processes. 

In this thesis, the Finite Block Method (FBM) has been developed for the 

meshless study of interface stationary crack under both static and dynamic loading in bi-

materials. The finite block method based on the Lagrangian interpolation is introduced 

and the various mathematical constructs are examined. This includes the use of the 

mapping technique. In a one-dimensional and a two-dimensional case, numerical 

studies were performed in order to determine the interpolation error.  

The finite block method in both the Cartesian coordinate and the polar 

coordinate systems is developed to evaluate the stress intensity factors and the T-stress 

for interface cracks between bi-materials. Using the William’s series for bi-material, an 

expression for approximating the stress and displacement at the interface crack tip is 

established. In order to capture accurately the stress intensity factors and the T-stress at 

the crack tip, the asymptotic expansions of the stress and displacement around the crack 

tip are introduced with a singular core technique. 

The accuracy and capability of the finite block method in evaluating interface 

cracks is demonstrated by several numerical assessments. In all cases, comparisons have 

been made with numerical solutions by using the boundary collocation method, the 

finite element method and the boundary element method, etc. 
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CHAPTER 1 
 

 

 

1 Introduction 
 

 

 

 

1.1. Background and Motivation of Research  

In modern engineering, the ability to solve complex problems with the emphasis 

on reducing cost, material wastage and time-saving is vital for engineering firms to stay 

competitive. Firms also require efficient operational capabilities and processes to 

survive in a globalised competitive business environment. However, to achieve the 

above, engineers have to work at the pinnacle of efficient engineering analysis and 

manufacturing techniques. Engineers have to develop a better diagnosis of a given 

problem, collect high level reliable data, better formulation of the problem and 

eventually computational analysis of the problem without the cost of repeated 

experimentation.  

Experimental data and the development of theoretical techniques for solving 

complex problems have expanded our understanding of various scientific phenomena. 

This includes the behaviour of elastic materials under tensile and shear loading, fluid 

flow around solid bodies and the behaviour of cracks in monolithic materials. Since the 

conception of computers, it has served as the best approach to resolving complex 

scientific and engineering problems by expediting numerical analysis. Hence, the taught 

subject of computational engineering. 
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Computational engineering has formed the basis for various engineering studies, 

mainly the three classical states of matter. In a much more practical explanation, 

computational engineering has a great influence on the design of aerospace products, 

automotive vehicles and motor sports to list a few. Airbus, a European aerospace giant 

design their aircraft in its entirety using computer aided engineering software. The wing 

profiles were optimised by running several computational analyses. The strength and 

stiffness of the structure were also analysed using a finite element program.  

Formula One is also a competitive motor sport which thrives on continuous 

innovation. The design teams develop the racing cars with the aid of computational 

fluid dynamics (CFD) in order to determine the aerodynamic forces around the car. In 

turn, the extracted loads are utilised in Finite Element Analysis (FEA). The winglets and 

spoilers are also designed with the combination of wind tunnel experiments and CFD 

programs. Adjustments of the winglet and spoiler designs are critical to the competitive 

nature of motor sport. A minute change in drag, downforce and overloading of the car 

composite structure can influence the outcome of a race. Maclaren, the sports car 

manufacturer also designed the contour for the “McLAREN 12C” using CFD and wind 

tunnel testing for aerodynamic optimisation.  

The real-life use of computational engineering analysis and the ability to predict 

material behaviour is a testament to the safe levels of mass transportation and the 

construction of high rise buildings. The need for computational engineering is more 

vital than ever before. The drive to cut cost by reducing repeated experiments has 

placed computational analysis at the centre of modern engineering design. 

The advent of Finite Difference Method by “Sir Thomas Harriet” paved the way 

to simulate simple engineering problems. Over the years’ scientist and engineers in 

pursuit of accurate simulations, predictions of system behaviour and responses have led 

the drive to develop several numerical methods. This includes the Finite Element 

Method (FEM), the Finite Volume Method (FVM), the Boundary Element Method 

(BEM), the Mesh Free or Meshless Method. The FEM method is very popular and 

widely used in industry. The FEM method has formed the basis for many forms of 

engineering and academic research. These numerical methods allow the analysis of 

many million degrees of freedom. 
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In solid mechanics, the behaviour of an elastic material under mechanical loading 

is described by a Partial Differential Equation (PDE). The governing PDE for material 

deformation is well established, and this is termed the equilibrium equation. An 

approach to solving PDE equations can be categorised into two numerical methods, the 

strong form and the weak form. In a strong form solution, the PDE is discretised and 

solved directly. A typical example is the Finite Difference Method (FDM). Conversely, 

a weak form method further establishes a series of equations which describe the same 

physical phenomena. In essence, the weak form gives an approximate solution to the 

problem. The finite element method is an established example of the weak form 

method. 

Solving PDE by the strong method can give an accurate solution. However, such a 

method can be very difficult to solve when complex problems are encountered. In cases 

where the PDE is too difficult to solve, the weak form is employed. The weak numerical 

method permits a computing approximation which is an equivalent form of the equation 

we are trying to solve. Before achieving an approximating solution, the weak form 

requires the establishment of a series of algebraic equations. In the case of solid 

mechanics, large stiffness matrices for high degrees of freedom are generated. 

Nonetheless, the availability of powerful computer processors can expedite and handle 

this process. 

Research into developing numerical methods by the weak form process has 

followed the same basic steps. These are the steps followed; 

- Establish a strong form formulation representing the physical phenomena. 

- Determine the weak form formulation. 

- “Choose approximations for the unknown function”. This can be the 

displacement function. 

- Apply the weight function. 

- Solve the system of equations 



1.2.   Failure Analysis of Structures 

28 
 

1.2. Failure Analysis of Structures 

Structural analysis formulations are used to determine the material capabilities 

under prescribed loads. Consider a building under buffeting winds. We can examine the 

structure under such conditions using numerical analysis. The structure can fail under 

high bending stresses or vibrations. A similar scenario can be observed under 

earthquakes and massive explosions. In the case of an aircraft or a bridge, the structure 

can experience high oscillations and cyclic loading during high wind conditions. This, 

in turn, can lead to a catastrophic failure of the structure by rupturing or fractural 

failure. Well-established numerical methods have been developed to study such 

structural failures.  

The failure of engineering structures and sometimes engineering systems as a 

whole can lead to a catastrophic loss of lives. Most engineering structures are likely to 

fail by either the yield dominant or the fracture dominant.  

Material failure by fracture is a significant part of this thesis. This is due to the 

difficulty in assessing the impact of cracks on a material strength. Research over the 

years has focused on characterizing the parameters necessary for crack initiation and 

propagation. These include the Griffith Energy Balance Approach, the Stress Intensity 

Approach, the Crack Opening Displacement Approach and the Rice’s J-Integral 

Parameter.  

The study of fracture mechanics is best conducted by experimental means. 

However, this presents new challenges in terms of test coupon design and 

manufacturing. Other challenges include the cost of material, the need for an 

experimental setup and the capability to extract accurate and reliable data from the 

experiment. Overcoming the challenges listed above does not necessarily mean the test 

coupon can replicate the exact behaviour of a structure during failure by means of 

material fracture.  

Material failure by fracture has become vital due to the extensive use of composite 

materials and aerospace grade adhesives on modern spacecraft and aircraft designs. This 

is due to the drive to reduce mass and subsequently reduce the greenhouse gases from 

rocket launches of spacecraft and aircraft engines.  
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In order to qualify composite materials on a spacecraft or an aircraft for flight, all 

aspects of the structure needs to be checked and examined for defects. But firstly, 

engineers have to be sure the minimum acceptable defects can be detected and repaired. 

The use of Non-Destructive Testing (NDT) methods such as x-ray can reveal the 

existence of voids in adhesive joints. This defect can affect the shear stress distribution 

of the adhesive joint. The use of computational methods will give a good assessment of 

the stress distribution around the joint. In addition to this, the existence of small cracks 

in other aircraft components and the factors that contributes to crack growth can be 

explored using various computational techniques. The opportunity to use computational 

methods to evaluate the behaviour of cracks is therefore paramount to the future of not 

only spacecraft and aircraft but other sectors of engineering. 

In addition, advances in computer power and numerical analysis techniques 

makes it possible to analyse a structure with critical levels of cracks. Using 

computational techniques, engineering components can be analysed if it comes under 

damage whilst in service. A detailed analysis of such a component can be carried out for 

different load cases, and a reasonable decision is made without resulting in the 

discarding of materials and generating waste. An experimental analysis will be at a 

disadvantage for such a case. The example stated above is one of many reasons why 

computational analysis plays an important role in modern engineering analysis and also 

in research.  

Furthermore, the case has been made for the continuous development of new 

computational techniques, and this is attributable to the changing nature of engineering 

designs. Engineering designs have become complex as a result of complex living 

standards and the contributing factors of global warming. Building designs are no 

longer simple, weather patterns are not easily predictable, and the need for efficient 

transportation has led to complex vehicle designs and materials. All these improvements 

require new numerical techniques in order to perform a reasonable analysis. Moreover, 

the numerical skill and knowledge developed for one stream of science can be 

transferable and this was shown by Lucy [54]. The numerical technique developed for 

the study of astrophysics has now formed the building blocks for the meshless method. 
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1.3. Computational Challenges and the Need for Meshless Method 

In recent years the demand to solve difficult computational analysis has become 

more significant. In the field of computational solid and fluid mechanics, simulations of 

large deformations using mesh-based methods such as the finite element method and the 

finite volume method can become difficult to achieve. In addition, mesh-based methods 

are not well suited to handle a discontinuity which does not align with the original mesh 

lines. In regards to an evolving discontinuity, mesh lines have to remain coincidental 

throughout the discontinuous analysis by re-meshing after every step in the analysis. 

This repeated adjustment can introduce computational errors in the analysis result. This 

also introduces a different level of computational difficulty mainly programming and 

debugging of errors in the code. 

The above explanation is part of a broad view on the need to develop alternative 

numerical methods in order to eliminate or reduce some of the challenges listed. The 

argument for the continuous development of meshless method is therefore made strong. 

Meshless methods have been under development for the past forty years with the 

initial work by Lucy [54] on the Smooth Particle Hydrodynamic (SPH) method. Since 

1977, moderate levels of meshless method have been published. This was soon changed 

as researchers from the nineties began to pursue a more rigorous numerical alternative 

to mesh-based methods. 

Recently, meshless methods became more prominent with the pioneering work of 

Nayroles [59] and later work by Belytschko [53]. Nayroles proposed the diffuse 

approximation method and the diffuse element method. The newly developed method 

found use in generating smooth approximating functions at known set points. This 

method also gave accurate derivatives of the function at these points [59]. The Element-

free Galerkin Method (EFG) also proposed by Belytschko [53] followed a similar trend 

and mindset to improve the accuracy of meshless method.  

The Element-Free Galerkin method uses the moving least square method and 

nodal data for interpolation. Belytschko’s work showed some key advantages of 

meshless methods over the finite element method. The EFG method did not show signs 

of volumetric locking and the rate of convergence exceeded the equivalent FEM model. 

The Element-Free Galerkin method was used to successfully evaluate elasticity and heat 
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conduction problems. The EFG method has also been applied to the study of linear 

elastic fracture. Evidence shows that accurate level of stress intensity factor for a crack 

can be easily achieved by simply adding more nodes in the region near the crack tip 

[53]. 

The above paragraph has highlighted some of the positive traits of meshless 

method, and this is not an exhaustive list of the advantages of performing meshless 

analysis. More on this topic is covered in Chapter 2 of this thesis. 

As it will be shown later, this research will continue with the current trend in 

numerical analysis by reducing the number of elements for the study of fracture 

mechanics. 

1.4. Research Objectives  

The study of fracture mechanics using the finite element method, the finite 

difference method and the boundary element method are well documented. However, 

these numerical methods are mesh based. This trait of the afore mentioned numerical 

methods present engineers and scientist with a challenge to model complex geometry. 

In the case of crack propagation, the analyst must refine the mesh repeatedly. The use of 

Extended Finite Element Method (XFEM) proposed by Belytschko [41] now automates 

such processes. Nonetheless, such a model still requires human intervention in setting 

up the model and partitioning the model to generate an acceptable mesh.  

In fracture mechanics the aptitude of a cracked medium to fail under some remote 

loading is characterised by the fracture parameter called the stress intensity factor. 

Another important fracture parameter is the T-stress which affects the behaviour of 

crack propagation. The stress intensity factor and the T-stress as determined by the 

mesh-based numerical methods have proven to be dependent on the quality of the mesh 

at the crack tip. The mesh refinement around the crack tip can be tedious and the 

process in mesh refinement can become demanding.  

The drive to solve boundary value problems and the failure of elastic solids with 

fewer emphases on meshing shows the need for more advance numerical methods. This 

is the purpose for the continuous research as presented in this thesis. This research has 

set out to successfully achieve the following contribution: 



1.5.   Thesis Structure 

32 
 

- The research will develop the meshless method called the finite block method 

(FBM) for the evaluation of static and dynamic interface cracks. The stress 

intensity factor and the T-stress are to be determined using the formulations 

developed for the finite block method.  

- The finite block method will be compared against other numerical techniques. 

The techniques considered for comparison are the Displacement Correlation 

Technique (DCT) and the Proportionality Method (PM), both utilising the nodal 

displacements and the stresses from an FEA to evaluate an interface crack. The 

DCT and the PM methods are dependent on the choice of numerical method. 

Therefore, the outcome of any comparisons between the DCT method, the PM 

method and any other technique will reflect on the choice of numerical method 

used in approximating the nodal stress and displacement near the crack tip. As a 

consequence of this comparison, the research will take the opportunity to make 

some major improvements to the DCT and the PM methods. The improved 

results are to be compared against the results by the FBM method. 

In this research, numerical analysis and results are extensively checked against 

established and published papers. This is deemed an acceptable method to check the 

validity of the proposed numerical method and the stress intensity factors. The 

development of the finite block method for interface crack and the analyses presented in 

this thesis are comprehensive. 

1.5. Thesis Structure 

This thesis is organised into several chapters. The three main chapters, namely 

chapters 4, 5 and 6 are around the author’s journal papers. The thesis is summarised as 

follows: 

Chapter 2 gives the literature review on the classical theory of fracture mechanics 

and this covers both static and dynamic fracture mechanics. The review extends to cover 

interface crack between bi-materials. An extensive review of cracks using the finite 

element method and the meshless methods is presented. The finite block method for 

elasticity, which forms the basis for this research is also covered. 

Chapter 3 establishes the fundamentals of the finite block method. A one-

dimensional derivative is developed using the Lagrangian series interpolation. The first 
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order differential matrix is also determined for one-dimensional uniformly arrange 

nodes. Using the first order differential matrix it is shown that higher order differential 

terms can be determined. Several numerical analyses for a one-dimensional case is 

presented. For a two-dimensional study, the mapping technique is developed for the 

finite block method. In all assessment of the finite block method, analytical solutions 

are provided for direct comparison. 

Chapter 4 covers the setting-up of the finite block method for crack analysis. The 

well-developed numerical method utilises the Williams series to formulate the equations 

required to evaluate an interface crack. Due to the binary phenomena of the stress 

intensity factor at the interface crack tip, a singular core is used. This chapter explores 

the use of the singular core for analysing static bi-material cracks. Numerical calibration 

of the finite block method is also carried out in order to observe the varying effect of the 

various parameters. Numerical results for different types of cracks are reported.  

Chapter 5 details the study of the T-stress. Firstly, an extensive review of the T-

stress is given. This is followed by the finite block method derivation for extracting the 

T-stress. This chapter also explores the use of the singular core for analysing static bi-

material cracks. Numerical calibration of the finite block method are also carried out in 

order to observe the varying effect of the various parameters. Numerical assessments for 

different crack lengths and bi-materials are reported.  

In Chapter 6, an elastodynamic assessment of a cracked medium is presented. 

The dynamic stress intensity factor and the dynamic T-stress for interface crack between 

bi-materials is determined using the finite block method. The elastodynamic 

formulations developed for the finite block method is covered in this chapter.  

The evaluation of static stress intensity factor and static T-stress for interface 

crack between bi-materials is well documented. However, the same cannot be said for 

the dynamic stress intensity factor and the dynamic T-stress for interface crack between 

bi-materials. The need for more published papers is therefore a necessity. The work 

reported in Chapter 6 will contribute to the computational study of interface crack 

between bi-materials.  

Chapter 7 compares the finite block method against other numerical techniques 

used in determining the interface crack between bi-materials. In this chapter, the stress 

intensity factor for interface cracks is determined using the proportionality method and 
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the displacement correlation technique. In this chapter, both techniques employ the 

FEM method in calculating the stress intensity factor.  

In practice, the accuracy of a DCT method and the PM method depends on the 

accurate calculations of the numerical method used in determining the displacement and  

the stress at  the crack tip. Therefore, some major improvements to the DCT and the PM 

method is suggested. The proposed improvement is to reduce the transfer of error from 

the FEM method to the numerical techniques for crack evaluation. 

Chapter 8 summarises the key findings and contributions. Suggestions for future 

research are also presented in this chapter. 

1.6. Summary of Original Contributions 

The research had an aim to develop an effective meshless alternative for 

computing the stress intensity factor and the T-stress for interface crack between bi-

materials. The aims and objectives were successfully achieved and the technical details 

of the research are documented in Chapters 3 to 7 respectively. Owing to the success of 

this research, a detailed summary of the technical contributions to knowledge as 

presented in this thesis and published papers is documented in Chapter 8. An overview 

of the technical contribution is outlined as follows: 

- For a two-dimensional analysis, the Lagrange series interpolation has been 

developed in conjunction with a square normalised domain and the mapping 

technique to approximate higher order partial differential equations. The 

interpolations are all in the strong form. 

- The finite block method as presented in this research incorporates all the major 

advantages of meshless method. When comparing the finite block method 

against other meshless methods, parameters such as the size or number of nodes 

in a support domain is not required. A square normalised domain introduced at 

the start of every analysis is used instead. 

- Using the Williams eigenfunction expansion approach, the finite block method 

accurately determines the stress intensity factor and the T-stress for interface 

crack between bi-materials.  
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- The finite block method as demonstrated in this research utilised only 8 blocks 

and a singular core to accurately determine the SIF and the T-stress. This means 

the computational effort is minimized.  

- The finite block method accurately determines the dynamic stress intensity 

factor and the dynamic T-stress using only six blocks and a singular core. When 

compared against the finite element method, the finite block achieved the same 

level of accuracy and a reduction in the total computational time by using a 

small number of blocks. The finite block method also required less 

computational effort and less time in setting up the numerical model. In essence, 

the finite block method is an efficient numerical method when it comes to 

evaluating interface cracks between bi-materials. 
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CHAPTER 2 
 

 

 

2 Literature Review 
 

 

 

 

2.1. An Overview of Fracture Mechanics  

In the study of fracture mechanics, the material is assumed to contain an existing 

crack. The existence of a crack creates a discontinuity in the material. Using various 

engineering techniques mainly Non-Destructive Testing (NDT), we can determine the 

presence of small cracks and defects in a material. Due to the availability of many NDT 

techniques, the right method or technique must be chosen in order to assess the material 

properly. Some typical NDT analysis techniques include the radiography (x-ray or 

gamma ray), the magnetic particle test and the ultrasonic test. 

The existence of cracks in engineering materials in many cases is as a result of 

poor manufacturing techniques amongst others. The existence of trapped air or bubbles 

during the manufacturing process creates ring shaped voids within the material (Fig. 

2.1). This leads to discontinuities and a reduction in overall material strength. Over 

time, the existing voids will develop, to fracture the material at a lower operating limit 

than it was originally designed. Under the right conditions for rupture, cracks stemming 

from voids in a material can propagate leading to a catastrophic failure. Small voids 

with the characteristics of a penny shaped crack is a common occurrence in adhesively 

bonded structure and composite materials where the cooling of temperatures is difficult 
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to control. The same can be said about other manufacturing processes that require air or 

water cooling. 

The origin of cracks does not always stem from poor manufacturing processes. In 

some circumstances, the subcritical cracks will develop through corrosive stress and 

cyclic loading. Nonetheless, this can have a detrimental effect on the performance of a 

material if it exceeds the operating limits. 

 

 
 

 

Figure 2.1 The existence of voids in an adhesive lap joint [8]. 

 

In fracture mechanics, as in many other engineering streams, the failure of a 

material in linear terms has to be quantified by a value. Consider Fig 2.2, an infinite 

plate with a centre crack is remotely loaded at a distance from the crack plane. It is 

observed that the stress becomes infinite as it approaches the crack tip and eventually 

stress singularity is achieved at the crack tip. Thus, the stress is inversely proportional to 

the square root of the radius.  

In the study of fractures, the aptitude of a material with cracks to fail is 

determined by the stress intensity factor K . The stress intensity factor is a function of 

the material geometry, the forces applied and the boundary conditions. Another 

parameter for quantifying material failure by fracture is the energy release rate G  [1]. 
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Together, the two parameters form part of a material’s fracture property and  are defined 

as the critical values CK  and CG . The subsequent sections of this chapter will expand 

on the field of fracture mechanics. 

 

Figure 2.2 A plot of the stress profile ahead of the crack tip. y  is the stress 

component in the y direction and 0= .  

 

2.1.1 The Theory of Classical Fracture Mechanics 

2.1.1.1 The Energy Balance Approach 

Works by Griffith and Irwin has formed the basis for the study of Linear Elastic 

Fracture Mechanics (LEFM). Griffith has been credited with some of the early works on 

fracture analysis. Griffith’s work studied the behaviour of brittle cracks in glass and 

consequently developed the concept of energy-based analysis for a cracked medium [4, 

14]. In this concept, it was postulated that there is an energy balance in the cracked 

medium and that the process to create or form a new crack will result in a decrease in 

the total energy. Also, a process to extend an existing crack will render the total energy 

to remain constant.  

Crack tip 
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The Griffith energy balance approach is best explained with the aid of a 

schematic diagram. As illustrated in Fig 2.3, an infinite plate is subjected to a uniform 

tensile load, which is applied remotely away from the crack plane. This set-up of the 

cracked plate under tensile loading is said to be under equilibrium conditions and the 

total energy is unchanged. Therefore, in order to extend the crack, the potential energy 

content of the plate is utilised to overcome the surface energy of the material. Also, 

according to the principle of minimum potential energy, the cracked plate under tensile 

load must remain in a state of equilibrium. Thus, in order to attain an equilibrium state 

for the cracked plate and the total energy due to the crack extension, the potential 

energy must decrease.  Now, considering the 2D infinite plate in Fig 2.3 with a gradual 

increase in the crack area dA, the Griffith energy balance is given by [14] 

0=+


=
dA

dW

dA

d

dA

dU s  ,          (2.1) 

also, Eq. (2.1) can be rearranged to give 

dA

dW

dA

d s=


−  ,            (2.2) 

where U is the total energy,   is the potential energy and sW  is the work required in 

order to create new surfaces. The subscript s stands for surface in this context. Griffith 

also established a relationship between the potential energy of the cracked plate and the 

applied stress using the Inglis stress analysis around an elliptical hole [165] 

E

Ba22

0


−=  ,           (2.3) 

where B represents the thickness of the plate and 0  is the potential energy of a plate 

without a crack.   

An introduction of a crack surface into the plate will require some level of 

energy. Therefore, the change in surface energy for a crack length 2a is expressed in the 

following manner 

ss aBW 4=  ,            (2.4) 
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where s  is the surface energy per unit area (surface tension). Therefore, the availability 

of energy for crack extension is expressed as 

 

E

a

dA

d 2

0
=


−   and             (2.5) 

s
s

dA

dW
2=  .             (2.6) 

According to the definition in Eq. (2.2), the fracture stress is obtained by 

equating Eq. (2.5) and Eq. (2.6), which gives  

21
2









=

a

E s
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 .           (2.7) 

It must be noted that the Griffith energy balance approach can be applied to 

different shapes of crack. This includes a penny shaped crack.  

2.1.1.2 The Energy Release Rate 

The energy release rate as developed by Irwin is based on the energy approach 

similar to the Griffith energy method for fracture. The energy release rate determines 

the availability of energy for crack extension. The energy release rate is also called the 

crack extension force. Irwin [164] defined the energy release rate as  

dA

d
G


−=  .            (2.8) 

Therefore, considering Eq. (2.5), the energy release rate for a cracked plate of length 2a 

in a plane stress state gives 

E

a
G

2

0
=  .            (2.9) 

In order for fracture to occur, the energy release rate G  must exceed the critical 

energy release rate CG , i.e., CGG  . The critical energy release rate which is also 

called the fracture toughness of the material is defined as  

f
s

C w
dA

dW
G 2==  ,                    (2.10) 
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where fw  is the fracture energy and depending on the type of material, the fracture energy can 

be affected at the crack tip by the effects of plasticity and viscoplasticity. For a brittle material 

sfw = . Also, the fracture toughness is a parameter of the material which means it is 

independent of the applied loads and the geometry of the cracked body. 

2.1.1.3 The Stress Intensity Approach 

Work by Westergaard [3] focussed on the stress distribution around the crack tip. 

This was later examined by Irwin [2] to show that in the vicinity of the crack tip the 

stress is a function of the radius (considering the crack tip as the centre or the reference 

point for the radius) and the angle of elevation from the crack tip. The crack tip 

coordinate definition is shown in Fig. 2.2. Irwin then proceeded to develop the stress 

intensity approach as an alternative means to the energy approach for evaluating the 

stresses in the vicinity of the crack tip [14]. 

According to Irwin, the stress intensity factor is a measure of the stress singularity 

at the crack tip [2, 166]. The asymptotic stress field around the crack tip is expressed as   

( ) Cf
r

K
ijij += 




2
,         (2.11) 

where the subscripts i  and j  defines the rectangular coordinates x
 
and y  or the polar 

coordinates r  and   at the crack tip as illustrated in Fig. 2.3. K is the stress intensity 

factor and together rK 2  is the singularity term as 0→r  and C  represents higher-

order terms in the equation. ijf  is the angular functions expressed in terms of   only.  

Furthermore, since there are different modes of crack, Eq. (2.11) can also be 

expressed in terms of mode I, mode II and mode III as follows 
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Detailed explanation of the different modes of crack is covered in section 2.1.1.4 

of this thesis. For the moment, the importance of the stress intensity factor as expressed 

in Eq. (2.11) is explained using an infinitely wide plate with a centre crack and 

subjected to mode I crack loading as shown in Fig. 2.3. However, a similar cracked 

model under a different loading such as mode II or mode III could have also been 

chosen to emphasize the importance of the stress intensity factor. Hence, there is no 

criteria for choosing mode I for this explanation apart from the prevalent use of mode I 

in explaining the stress intensity factor in many literatures. Considering the infinite plate 

with a crack as illustrated in Fig 2.3, a pure mode I crack loading is created if remotely 

applied stress 0  is perpendicular to the crack plane. Therefore, the stress at the crack 

tip can be treated to be proportional to the far field stress, leading to the agreement 

0IK . The relationship between IK  and 0 , was further developed after a review of 

the works by Westergaard and Irwin. This finally led to establishing an expression 

relating the mode I stress intensity factor IK , the crack length a  and the remotely 

applied stress 0 , given as 

aK I  0=  .                   (2.15a) 

Similarly, the mode II stress intensity factor IIK  of Eq. (2.15a) is achieved by remotely 

applying shear stress loads along the boundaries. As it is explained here, the concept of 

a wide infinite plate with a crack was used in formulating Eq. (2.15a). Conversely, a 

semi-infinite plate with an edge crack and subjected to a mode I loading will produce a 

different expression for a mode I stress intensity factor IK . This is due to the difference 

in the boundary conditions for an infinite plate with a centre crack and a semi-infinite 

plate with an edge crack.  

In section 2.1.1.2, the first fracture parameter, the energy release rate was 

discussed and now the second fracture parameter, the stress intensity factor has been 

introduced. As stated, the former is a measure of the energy required for crack extension 

and this method considers the global behaviour of the cracked body. Meanwhile, the 

stress intensity factor is a local parameter which characterises the displacements, the 

stresses and the strains at the crack tip.  For a homogeneous isotropic material, a unique 

relationship exist between the energy release rate and the stress intensity factor.  



2.1     An Overview of Fracture Mechanics 

43 
 

By squaring all the terms in Eq. (2.15a) and substituting into Eq. (2.9) gives an 

expression for the energy release rate and the stress intensity factor IK
 
as  

E

K
G I

2

=  .                   (2.15b) 

This expression is for a plane stress state analysis. 

 

 

Figure 2.3 A through thickness crack in an infinite plate. The plate is subjected to a 

far field stress at the top and bottom. 
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2.1.1.4 Stress Intensity Factor and the Basic Modes of Fracture 

The three basic modes of crack displacement deformations are the opening mode 

(Mode I), the sliding mode (Mode II) and the shear mode (Mode III). The different 

modes of crack displacement is illustrated in Fig. 2.4. Other displacement deformation 

includes the bending and the torsion mode. Therefore, by no means can we say all types 

of cracks are representative of these modes. Cracks in reality are sometimes irregular in 

shape and size, and this can present a different level of difficulty in trying to evaluate 

the stress and displacement fields. Nonetheless, it is ideal to model the cracks in terms 

of the modes shown in Fig. 2.4 for theoretical analysis. 

 

 

Figure 2.4 The three basic modes of crack displacement (a) Mode I (opening mode), 

(b) Mode II (sliding mode) and (c) Mode III (shear mode) [7]. 

 

For the different crack displacement modes in Fig. 2.4, the stress field near the crack tip 

is evaluated by considering a centre crack in an infinite plate. The plate is under biaxial 

loading as shown in Fig. 2.5. 

  

(a) 
(c) (b) 
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Figure 2.5 The biaxial loading of an isotropic infinite plate with a centre crack. 

 

The stress field around a mode I crack is reviewed as part of this study. Taking the 

crack tip to be the origin of a polar coordinate system, the stress components near the 

crack tip of a biaxially loaded isotropic plate is given by [7] 
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A similar solution exists for a mode II and mode III crack problem. The stress field for a 

mode II problem with an in-plane shear at infinity is given by 
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Equally, the stress field for Mode III 
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The displacement fields for mode I and mode II crack in the Cartesian coordinate 

system gives, for plane stress state [39] 
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2.1.2 Dynamic Fracture Mechanics  

Dynamic fracture is the study of cracked bodies subjected to dynamic loads in 

order to establish the growth, the arrest and branching of propagating cracks [9]. 

However, research in fracture mechanics tends to focus on stationary static crack. The 

study of dynamic fracture plays an important role in the failure of cracked bodies. 

Hence, dynamic fracture mechanics should be treated with equal relevance as stationary 

static cracks. 
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A cracked structure subjected to dynamic or time dependant loads has the stress 

intensity factor at the crack tip amplified. This is due to the dynamic effect. Thus, a 

similar cracked structure which might not fail under stationary static loading might fail 

under dynamic conditions.  

Fracture dynamics can exist due to an abrupt loading or rapid crack growth. This 

in turn can cause stress waves to propagate through the cracked body, and these waves 

can reflect of free boundaries like the cracked plane [14]. However, this description 

gives the impression that fracture dynamics revolves around the impact loading of a 

cracked body. This review has categorised the various forms of fracture dynamic 

loadings in an attempt to simplify the complicated topic of fracture dynamics in the 

interest of the reader. Fracture dynamics can exist in a stationary form and in a case 

where the crack tip is propagating. The former is concerned with a cracked body under 

dynamic loading but with a crack tip spatial velocity equal to zero. The latter is due to a 

rapidly moving crack tip across a loaded structure. This occurrence is down to the 

structure becoming unstable as the crack extension overcomes the resistive force [9, 10].  

In the study of dynamic fracture mechanics, we might be presented with a 

situation where the influence of “inertia forces, rate-dependant material behaviour and 

reflected waves” might be too great to ignore [14]. Typical example includes the rapid 

loading of a cracked body. However, this is not the case for applications of LEFM and 

elastic-plastic fracture mechanics analysis, where mainly static loading is considered. 

Furthermore, there is no criterion or standard for defining the rapidity of structural 

loading. Instead, decisions of loading can be based on “qualitative reasoning” and well-

known solutions to certain problems [9]. 

The study of dynamic fracture is made complex if the above effects are included 

in the analysis. In a case where the inertia, the material rate-dependent and the reflected 

waves are ignored, the analysis reduces to a quasi-static state and the problem is easily 

solved. Depending on the problem, we can ignore some of the above effects influencing 

the analysis. The concept of reducing a complex dynamic problem to a reasonably 

solvable one is a branch of dynamic fracture mechanics called “Elastodynamic Fracture 

Mechanics” [14]. In this research, materials with linear behaviour are studied using the 

established theories of elastodynamics. 
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Elastodynamic study of a cracked body is imperative in understanding how cracks 

interact with elastic waves. This is relevant when performing NDT test of cracked 

materials with the aid of an ultrasonic wave [15, 16]. The results from the NDT test will 

show how the ultrasonic waves are scattered by the crack and the pattern of the scatter 

can reveal the location of the crack, the orientation of the crack and the crack profile.  

Elastodynamics is relevant in evaluating cases of rapid impact or loadings such as 

a bird strike on an aircraft, a submarine colliding with an unwarranted structure, a 

missile or projectile impact on a target, etc. These examples including the sudden 

impact of a bird strike on an aircraft can induce a transient response. Thus, an existing 

crack in such a structure might become agitated and the SIF can exceed the critical 

limits for crack propagation.  

2.1.2.1 Stress and Displacement Field for a Stationary Crack Under 

Dynamic Loading 

It is observed that the stress field at the crack tip of a stationary crack under 

static loading takes the same form as that under dynamic loading. Therefore, the 

Laplace transform of the stress intensity factor in the vicinity of the crack tip is inverted 

to give the dynamic asymptotic stress and displacement distributions [10]. The dynamic 

stress and displacement field as expressed by the Williams expansion is given by [11, 

12] 
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where r  and   are the planar polar coordinate system centred at the crack tip,   is the 

shear modulus and 





+

−
=

1

3
 for plane stress and  43−=  for plane strain.  )(tT  is 

the dynamic T-stress. )(tK I  and )(tK II  are the dynamic stress intensity factors for 

mode I and mode II respectively. 

2.1.3 Interface Crack of Bi-material 

2.1.3.1 Overview of Bi-material 

The use of bi-material in engineering construction has always existed. Ancient 

structures like the pyramids in Egypt, the Aztecs structure in South America, Hadrian’s 

wall in Great Britain and many more were constructed by joining different materials 

together. The combination of bricks and mortar is a simple case of a bi-material. In 

modern times, advances in material technology has led to the development of complex 

bi-materials. This includes soldering of electronic components and welding of high 

tensile steel for high rise buildings, bridges, ships, to name a few. Other forms of bi-

materials include composites with Fibre Reinforced Plolymer (FRP) and aluminium 

honeycomb sandwich panels. 

The designing and manufacturing of spacecraft is another sector of engineering 

where bi-materials are used extensively. For spacecraft design, the requirement to 

minimise the weight of the structure has led to new material designs and different ways 

of holding the structure together. On some spacecraft joints the number of titanium bolts 

have been reduced in favour of adhesive bonded joints. Other areas of the spacecraft 
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structure where aluminium metal plates are used has now been replaced by aluminium-

honeycomb sandwich panels. 

 

  

(a)      (b) 

 

Figure 2.6 (a) The weld bead of an aluminium and steel joint. (b) An inspection 

shows the formation of a thin intermetallic layer. This bi-material interface shows an 

irregular surface close to the aluminium and a smooth surface near the steel [29]. 

 

The use of Carbon Fibre Reinforced Plastic (CFRP) composite has also been well 

received across the automotive and aerospace industry. Spacecraft central structures are 

often built with CFRP. At the same time, the use of metal panels on super-cars has been 

replaced by the availability of CFRP. The construction of yachts has been made easier 

by applying layers of CFRP to a precast or a mould. 

The advantages of using bi-materials as outlined above does also present 

engineers with some challenges, and this research will focus on the development of 

cracks and voids along the interface boundary of the different materials. These defects 

are mainly caused by flaws in the manufacturing of the interface bonds, thermal effects 

and operational use of the bi-material. Fig. 2.6 shows an intermetallic layer after the 

joining of two metal sheets by welding. A closer inspection of the welded joint reveals 

some level of imperfection. 

Forcing two metals together by conventional welding involves fusion at high 

temperatures [25]. The HY-80 high yield strength and low-alloy steel is a strong 



2.1     An Overview of Fracture Mechanics 

51 
 

material and often used in military applications and ship building. The welding of HY-

80 has been investigated by Savage [24]. The work shows that the use of hydrogen 

electrodes in the welding process develops small grades of cracks within the weld 

fusion boundary [24]. Friction Stir Welding (FSW) was developed by TWI as an 

alternative to the conventional solid weld. The FSW can also join together dissimilar 

materials showing some level of incompatibility [27]. However, the FSW method also 

presents engineers with a unique form of defects.  The following defects are formed 

during an FSW welding; the lack of heat and irregular stirring during the welding can 

produce cavities and groves defects [26]. A picture showing the different outcomes of 

the FSW welding is shown in Fig. 2.7. 

 

 

 

Figure 2.7 Macrograph view of an FSW weld using three different weld pins [28]. 

The top picture shows a defect along the weld interface. The subsequent pictures show 

no defect after the weld. 

 

In the case of soldering, electrical components are joined together using a solder 

wire or filler metal. The constant use of electrical devices and mechanical impact by a 

sudden drop of handheld devices can generate micro cracks at the soldered joints. 

Furthermore, the cooling and warming of the on-board components will induce thermo-

cyclic effect which can also lead to fracture at the solder bond interface [47].  

Some metals can be difficult to weld and this is a common attribute of aluminium 

alloys. During the welding process, aluminium oxide (Al2O3) forms a layer or coating 
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which is unfavourable to a welded bond. Employing friction welding techniques at high 

pressure will abrasively remove the layer of oxidation [30]. In the case of a welded joint 

we can have a build-up of voids in the weld. Another case where voids can form is the 

manufacturing process of adhesive bonds. The voids in adhesive joints are mainly 

caused by bubbles of trapped air. It can now be accepted that bi-materials does have an 

imperfect joint along the bonded interface [18]. Therefore, the design failure along the 

interface of bi-materials demands a good understanding of the failure mechanisms. In 

this research, the fracture characteristic of defects along the interface of bi-materials is 

investigated. 

2.1.3.2 Interface Crack Stress and Displacement Field 

Theoretical research of interface crack has become prominent in the last five 

decades. Some of the early pioneering work on interface crack research includes 

Williams [18] attempt to resolve developing fault lines in geology. The developing fault 

lines between layers of rock strata produce interfaces which need to be characterised 

and understood. Zak and Williams [23] also employed the eigenfunction method to 

investigate the stress singularity ahead of a perpendicular crack tip which terminates at 

the bi-material bond line. Fig. 2.8 shows a typical set-up of an interface crack. The 

asymptotic analysis around an interface crack tip by Williams [18] has shown that the 

stress and displacement field are oscillatory in nature. This behaviour is strikingly 

different to that of a cracked homogeneous body. Further work by Erdogan has 

established the magnitude of the oscillatory region at the interface crack tip to be “10-6 

of the crack length” and this is small indeed.  

Mathematically, the oscillatory phenomena at the crack tip predict the 

interpenetration or the overlapping of opposite faces behind the crack tip [21]. However, 

this can be corrected if the opposite faces are considered to be “mutually convex” [17]. 

Attributable to the oscillatory behaviour at the crack tip, a simple mode I loading of a 

crack body will result in a mixed mode effect at the crack tip. Therefore, the stress 

intensity factor as recognised in a homogeneous cracked body is not well defined when 

analysing an interface crack. The mode I and mode II stress intensity factors are coupled 

together at the interface crack tip.  
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The stress and displacement fields of an interface crack tip as determined by 

Williams [18] is expressed as follows [17] 
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The Dundur parameter   ranges between 21−  and 21 , and reduces to zero for 

identical materials. 

 

 
 

Figure 2.8 A bi-material plate with a centre interface crack subjected to tensile and 

shear loadings at infinite. 

 

a a 

 

 

 

 

  

 

 

 

 
 ,  y 

x 

 ,  

Plane stress 

Plane strain 



2.1     An Overview of Fracture Mechanics 

54 
 

Considering Fig. 2.8, this is a plate under uniform tensile and shear loading as 

defined by Rice and Sih [19]. For a crack length of 2a, the stress intensity factors IK  

and IIK  are given by  
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From Eq. (2.27) and (2.28), the expression for the stress intensity factors is a mixture of 

the tensile and shear stress fields. Also, in a similar loading format as shown in Fig. 2.8 

and without the shear stress loading the stress intensity factors are given by [17] 

( )
a

iKK
iKKK III

III 
 







 +
=+=

cosh

00*
 ,                  (2.29) 

From Eq. (2.29) where 
22

III KK +  does not contain the logarithm factor, we can express 

the complex stress intensity factors in terms of  
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In Eq. (2.29) a mixed mode effect is still observed at the interface crack tip in the 

absence of the shear stress loading. Ahead of the crack tip, the normal and shear stresses 

intertwine across the interface. At the crack opening behind the crack tip, a shearing and 

opening displacement is an occurrence. The stress intensity factors as expressed above 

can be determined using the following simplified expressions in terms of stress [17, 20] 
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Similarly, behind the crack tip, the stress intensity factor for an interface crack is 

expressed in terms of the crack opening displacement by [20, 21] 

( )
( ) ( )

r
E

K

i

r
i

i

xy 
+

=+





cosh212

4
 ,                 (2.32) 

21

111

EEE
+=


   ,                    (2.33) 

where the subscript 1 and 2 for the Young’s modulus denotes material 1 and 2. 

Also, 
−+ −= xxx uu  and 

−+ −= yyy uu  ,      (2.34) 

where −+ ,  indicates the upper and lower surface. 

In addition, the normal and shear stress singularity field fluctuates slowly along 

the cracked interface according to  

))ln(sin())ln(cos( rirr i  +=  .                  (2.35) 

This section has reported broadly on the complications in trying to determine the 

stress intensity factors at the interface crack tip considering the presence of oscillatory 

singularities. Many researchers have proposed solutions in order to bypass the 

oscillatory singularity. Comninou [17] and other researchers have explored some ideas 

in order to solve the oscillatory issues. Work by Atkins [22] considers a three-layer 

approach where the third or middle material contains the crack. This way the crack 

exists in a homogeneous body. This approach will do away with any singularity effect. 

However, this method has its criticisms and challenges. The interface has now changed 

and no longer representative of a case where the crack actually exists along the interface 

which is the subject of interest. 

2.2. Computational Fracture Mechanics 

The study of fracture mechanics is best conducted by experimental means. 

However, the experimental approach presents researchers with some challenges in terms 

of test coupon design and manufacturing. In addition, the cost of material, the need for 

an experimental setup and the capability to extract accurate and reliable data from the 

experiment can prove to be difficult to achieve. Overcoming the challenges listed above 
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does not necessarily mean the test coupon can replicate the exact behaviour of a 

structure during failure by means of material fracture. 

The challenges listed in the paragraph above can be resolved differently with 

modern computational analysis. Modern advances in computational power and 

numerical analysis techniques makes it possible to analyse a structure with critical 

levels of cracks. Computational techniques allow in-service components to be analysed 

if a fault develops whilst in service. A detailed analysis can be carried out for different 

load cases and a reliable result is achieved. An experimental analysis will be at a 

disadvantage for such a case. The example stated above is one of many reasons why 

computational analysis plays an important role in modern engineering analysis and also 

in research. Some of the popular numerical techniques include the Finite Difference 

Method (FDM), the Finite Element Method (FEM), the Finite Volume Method (FVM), 

the Boundary Element Method (BEM) and the Meshless Method amongst others. 

The finite element technique has played an important role in studying fracture 

mechanics over the years. The Boundary Element Method is another popular numerical 

method used for the study of fracture mechanics. Both these methods utilise elements in 

their analysis. The use of elements in simulating fracture mechanic and elastostatic 

problems presents its own challenges. This includes singularity issues at the crack tip 

and the need for fundamental and particular solutions for integrating the domain and the 

boundary. 

2.3. The Finite Element and Boundary Element Analysis of 

Cracks 

FEM is a well-established method for the study of solid mechanics. FEM has also 

been employed in the study of fluids and thermal behaviours of engineering systems. 

The firm status of FEM pertains to the generality of the numerical formulation and the 

availability of commercially developed FEM programs like ABAQUS, ANSYS and 

NASTRAN.  

FEM fracture mechanics determines the variation in crack surface displacements 

and the asymptotic expression for the stress in the vicinity of the crack tip. By plotting a 

variation of grid point stress leading to the crack tip versus the grid point radius from 

the crack tip, the stress intensity factor can be extrapolated [37]. Such simple approach 
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to determine the SIF is easily achieved for a homogeneous analysis. The determination 

of the SIF by the finite element method works in conjunction with numerous methods. 

This includes the J-Integral method as developed by Rice [31] and several displacement 

techniques based on the near crack tip displacement [32, 33].  

In addition to FEM fracture mechanics, advance numerical techniques exist and 

these can adequately calculate the stress intensity factor for arbitrary fracture load 

configurations. Moreover, these numerical techniques sufficiently determine the stress 

intensity factors for complex cases like interface cracks and cracks in Functionally 

Graded Materials (FGM).  

For the boundary element method, several papers have been published which 

covers the investigation of interface crack [35, 36].  Lee [36] investigated bi-material 

interface crack of an elastic and viscoelastic material using the boundary element 

method. The extended finite element method (XFEM) is a much more versatile version 

of the finite element method [40, 41, 42]. The XFEM incorporates the partition of unity 

method which allows the modelling of discontinuity in the case of cracks. For this, the 

XFEM has a range of applications including dynamic fracture mechanics and crack 

propagation [43, 44]. 

The standard FEM elements available for general boundary and domain analysis 

lack the ability to represent the stress singularity at the crack tip. Both FEM and BEM 

modelling of cracks has been enhanced with the advent of the Quarter Point Element 

(QPE) developed by Barsom [38]. The square root singularity term is incorporated in 

the quarter point element and this has improved the approximation of the stress intensity 

factor. Tan and Gao [45] investigated interface crack using a quadratic quarter point 

element developed for boundary element method.  This near crack tip element resolves 

the difficulties of interface crack pertaining to oscillatory effects at the crack tip [45].  

The T-stress as discovered by Williams [18] is a component of the non-singularity 

stress around the crack tip. The T-stress is regarded as a significant fracture parameter, 

and several numerical approaches to determine this parameter is continuously evolving. 

J. and V. Sladek employed the boundary element method to investigate the T-stress for 

an interface crack [34]. The quarter point element for the boundary element method was 

utilised by Tan and Wang [39] to determine the T-stress at the crack tip. Also, work by 
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Sladek [12] developed formulations which allowed the expedient analysis of the T-

stress using the conventional crack tip quarter point element for FEM. 

FEM and BEM are not only limited to stationary crack analysis but have equal 

importance in analysing dynamic cracks in order to determine the Dynamic Stress 

Intensity Factor (DSIF). In addition to FEM and BEM, there are a wide range of 

numerical methods available for dynamic analysis. Kim and Paulino [106] extended the 

interaction integral method originally developed to determine the SIF of a stationary 

crack to the evaluation of cracks subjected to dynamic loading. In the evaluation of 

dynamic stress intensity factor, the interaction integral method was formulated to work 

in conjunction with the FEM method. Fedelinski and Sladek also determined the DSIF 

using the J-Integral in conjunction with the boundary element method [49]. 

2.4. Meshless Method 

2.4.1 An Overview of Meshless Method   

The traditional mesh-based methods, mainly the FEM and BEM method have 

several drawbacks and constraints which can limit their ability to tackle difficult 

engineering and scientific problems. Some of the drawbacks include element locking, 

tedious meshing of complex geometries, difficulty in determining derivative solutions, 

etc. 

In the context of FEM and BEM, an elastic body can be discretised by using a set 

of elements and grid points to represent the domain and the boundaries. On the other 

hand, the meshless method can represent the same elastic body and its boundaries by 

using a range of grid points scattered or organised around the body. In essence, the 

meshless method can be defined as the process of establishing a system of algebraic 

equations for a given problem without the need for meshes (combined use of elements 

and grid points). The displacement and stress fields can now be approximated locally at 

the grid points.  

The meshless method has become a popular research topic and the development 

of meshless method has continued for the last 30 years. Some of the earlier developed 

meshless methods include the Smooth Particle Hydrodynamics (SPH), the Element Free 
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Galerkin method (EFG), Meshless Local Petrov-Galerkin method (MLPG), Point 

Interpolation Method (PIM), Local Point Collocation method (LPC) and many more. 

The intentions of the meshless method is to solve the governing partial differential 

equations of a given problem by means of using only the grid points. However, this 

approach can be difficult to achieve. Hence, the development of several meshless 

methods to solve challenging problems. For this, the various meshless methods can be 

categorised in the order of mesh reduction up to what can be described as a truly 

meshless method. Some meshless methods require the use of background cells to 

compute the analysis. The EFG method and the MLPG method may use this method of 

meshless analysis. The use of background cells can be robust, reliable and in some cases 

easier to generate by automated means. The final category consists of a case where no 

mesh is utilised in the analysis. The local point collocation method may belong to this 

meshless method.   

2.4.2 Smooth Particle Hydrodynamics (SPH)  

The Smooth Particle Hydrodynamics method was initially developed to study the 

various phenomenon in astrophysics [50]. The SPH method has been classified as a true 

meshless method [51] and possibly the oldest meshless method. SPH is a meshless 

particle method and therefore does not need a grid mesh to interpolate material 

derivative. In SPH a physical body or system is reconstructed by particles which have 

physical properties. The particles are said to interact with each other within a limit 

controlled by a weight function. 

Smooth Particle Hydrodynamics is based on the Lagrangian method developed by 

Lucy [54] and Gingold [55]. The fundamentals of the SPH method is the ability to 

express any function in terms of the spatial particles representing the problem domain. 

This is achieved by integral interpolation of the function [50]. The particle 

representation in computational solid mechanic problems is a positive feature of the 

SPH method. This allows the handling of large deformations in solid matter. Similar 

representation using mesh-based methods is difficult to achieve. Such large body 

deformations are seen during an explosion, high speed impact and crack propagation. 
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The SPH method and algorithms were developed for the study of astrophysics as 

stated above. Inherently, the methods and algorithms were based on probability theories 

and this worked well in studying the various astrophysical phenomenon. However, a 

direct application to analyse computational fluid mechanics and computational solid 

mechanics presents a different set of challenges. This includes challenges of stability 

and accuracy in reproducing the governing differential equations. Nonetheless, research 

continues to develop the SPH method to improve the reliability, efficiency and accuracy 

of the numerical solutions [56 – 58].  

2.4.3 Element Free Galerkin Method (EFG)  

The Element Free Galerkin method was briefly described in Chapter 1 of this 

thesis. This section will expand on the formulation and construction of the EFG method.  

Belytschko [53] developed the EFG method by modifying the Diffuse Element Method 

(DEM) and employing the Moving Least Square method (MLS) for the interpolation. 

EFG method follows the meshless construct by representing the problem domain 

and the boundary with a set of grid points. A set of system algebraic equations is then 

established using the Galerkin method. In terms of solid mechanics, the Galerkin 

method is formulated in order to handle the essential boundary conditions using the 

Lagrange multipliers.  

 

 
 

Figure 2.9 EFG method: Cell and quadrature points representation in the domain 

[53]. 
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The system equations are computed using the Gauss integration scheme. In order 

to deal with the domain integration in EFG method, a background mesh of cells 

overlays the problem domain. Integration points are distributed across the background 

cells and the accuracy of the integration is controlled by the cell density of integration 

points as represented in Fig. 2.9.  The field functions mainly displacement and stresses 

at a point in the problem domain can be determined using nodal parameters and a 

support domain. 

The EFG method has been well received by researchers, and in addition to the 

patch test carried out by Belytchko [53], the EFG method has also been used in the 

analysis of arbitrary Kirchhoff shells [60]. Hegen [61] also combined EFG method and 

FEM in order to take advantage of their positive traits. The EFG method is applied in 

the critical regions such as near a crack tip and the FEM method is used for representing 

the remaining region deemed less significant in influencing the results at the crack tip. 

Restricting EFG to a small critical region can reduce the computational time which is 

seen as a disadvantage when performing an analysis with only the EFG method. The 

hybrid approach of combining EFG method and FEM method can give an accurate 

result for the stress intensity factor. 

2.4.4 Meshless Local Petrov-Galerkin Method (MLPG)  

The Meshless Local Petrov-Galerkin method (MLPG) as developed by Atluri and 

Zhu [52, 62] is termed to be truly meshless. In the EFG method the problem is solved 

by the global weak form over the entire problem domain and background cells are used 

for the domain integration. Alternatively, the MLPG method adopts the Local 

Symmetric Weak Form (LSWF) approach by defining a small localised sub-domain 

which is located within the global domain. This is illustrated in Fig. 2.10.  
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Figure 2.10 The problem domain, the sub-domains and prescribed boundary 

conditions as defined by Atluri [52, 62] 

 

In the MLPG method, the local weak form integrations are based on the Petrov-

Galerkin residual formulation. Which allow for flexibility to choose a trial function and 

a weight function independently. Akin to the EFG method, the moving least square 

approximation is implemented in the MLPG method for constructing the shape 

functions. 

The MLPG method can be computationally expensive when compared with other 

numerical methods like FEM where element equations mainly shape functions and other 

systems equations are pre-determined. However, by combining the MLPG method with 

the FEM method and the Boundary Element Method (BEM) by Liu and Gu [66], we 

can improve the solution efficiency. 

When we consider the application of the MLPG method, Aturi [64] was able to 

successfully solve elasto-statics problems. MLPG has been applied to the study of static 

and dynamic (stability, free vibration and forced vibration) of beams [63, 65]. 
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2.4.5 Meshless Collocation Method  

Meshless collocation method is an alternative form of meshless method based on 

the strong form. In the preceding sections, the focus has been to explain meshless 

methods based on the weak form. Other established strong forms of meshless methods 

include the Irregular Finite Difference Method (IFDM) and the Finite Point Method 

(FPM). 

Adversely, the strong form meshless methods stated above can become unstable 

with the usage of irregular nodes. The approximated result can also be less accurate. 

Inadequate collocation points in the sub-domain may result in significant margins of 

error [68]. Review of several numerical methods based on the collocation method shows 

the variety of interpolation and approximation techniques. These include the moving 

least square method, the radial basis function, and the least-square collocation method 

[67 - 70]. 

Over the years much effort has been devoted to advancing the Finite Point 

Method (FPM) to achieve stability and accurate results. Oñate [70] worked on 

stabilizing the FPM for the analysis of convection-diffusion and fluid flow type 

problems. Oñate [69] also showed that the stabilized quadratic FPM developed for 2D 

and 3D elasticity problems can produce higher accuracy result than the standard FEM. 

Also, Galerkin based methods can produce accurate results when compared with a 

collocation-based method. However, the computational effort for the collocation 

method is much less than the Galerkin equivalent analysis. 

2.4.6 Point Interpolation Method 

Point Interpolation Method (PIM) is a meshless technique where the shape 

function is constructed using polynomial interpolation functions. The problem domain 

is discretised by field nodes and the field function at any point in the domain   is 

defined as )(xu . Employing nodes in a local support domain, the field function )(xu  at 

a point Qx   is interpolated using polynomials as follows [73, 74, 75] 
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where n  is the number of nodes in the support domain of node Qx , )(xpi  is the 

monomials and )( Qi xa  is the unknown coefficient yet to be determined and this is 

expressed as 
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For a one-dimensional problem, the basis is given as  nT xxxP ,,,1 2=  and for a 

two-dimensional case  ,,,,,1 xyyxPT = . 

The approximation of the field function )(xu  for node Qx  using nodes in the 

support domain will yield a set of algebraic equations which must be solved. By 

enforcing the field function )(xu  to be satisfied at the nodes within the support domain, 

the field function in Eq. (2.36) is now expressed in terms of the nodal values and this is 

express as 

axPu i

T

i )(=  ,         (2.38) 

where iu  is the nodal value of u  at  ixx =  and ni 1= . Eq. (2.38) can also be written 

in a matrix form as 

aQPu =   .          (2.39) 

Thus, the unknown coefficient a is determined by 

uP
1−

= Qa   .          (2.40) 

Substituting Eq. (2.40) into Eq. (2.36) gives  
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where the shape function is defined by 
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2.4.7 Meshless Method Vs Mesh-based Method 

This literature review has highlighted some of the strengths of the ongoing 

developments and capabilities of meshless method. A comparison of meshless and 

mesh-based method, mainly Finite Element Method is outlined below. 

• Elements and grid point: FEM uses structured mesh to represent the domain 

while meshless method might use background cells. Truly meshless uses only 

grid points in the domain and along the boundary. 

• Mesh generation: Mesh for FEM are predetermined and the user has to choose 

the best suited elements for the analysis. Mesh generation can be difficult for 

complex geometries and models. In terms of meshless method, the grid point 

generation for a complex geometry can be relatively easy and less demanding. 

• Construction of shape function: For FEM, the shape function is predetermined 

and it depends on the element. The shape function for meshless method depends 

on the grid points or the background cells if used in the analysis. 

• Computational speed: In the case of the same number of nodes, the FEM method 

can be faster. The moderate speed of the meshless method is down to the setup 

of large system equations and shape functions during the analysis. However, this 

is compensated by the time saving in setting up the model. 

• Accuracy of analysis: FEM is an accurate numerical method and this is 

demonstrated by its commercial success. FEM is very accurate when compared 

with the finite difference method. In the meantime, meshless method can be 

equally accurate when compared with FEM. For a linear analysis, meshless 

method can be more accurate than FEM. 

• Commerciality and availability of software: FEM method is very popular and 

widely used across industry. Many software for FEM analysis are available in 

shops. FEM is widely trusted and has become the standard for checking and 

verifying newly developed numerical programs. Meshless method on the other 

has a few written programs but the pace and the necessity for science and 

engineering analysis is fast growing. 
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2.5. The Finite Block Method  

2.5.1 Overview 

The finite block method is a new meshless point collocation method proposed by 

Li and Wen [71]. The finite block method simply divides the physical domain into 

blocks and the boundaries of the blocks are connected by nodes. The governing partial 

differential equation for the system is derived in terms of the nodal values. This process 

is achieved by employing the mapping technique for each block until the entire domain 

is mapped. In this process, the stress and displacement continuities along the finite 

block boundary is maintained. 

Li and Wen [71] demonstrated the capabilities of the finite block method by 

performing several numerical examples. This include the study of stationary heat 

conduction for an anisotropic nozzle, the transient heat conduction for an isotropic ring, 

a plate with a circular hole and the evaluation of a three-dimensional heat conduction 

problem in a Functionally Graded Material (FGM). Comparing the achieved results for 

the examples stated above with the analytical equivalent showed a high degree of 

accuracy for the finite block method. 

Further development by Wen and Li [72] saw the implementation of finite block 

method for elasticity. Considering a 2D case in the Cartesian coordinate system, the 

practical domain is transformed by a square normalised domain using the mapping 

technique. A partial differential of a function in the practical domain is then determined 

with respect to the normalised domain axis.  Thus, we can now deduce the first order 

partial differential matrices for the function in the practical domain. In the case of 

elasticity this is the displacement differential matrix in the Cartesian coordinate system. 

Exploring the relationship between stress and strain, and the displacement differential, a 

matrix is formed in terms of the equilibrium equation for a 2D plane stress. The matrix 

equation reduces to a series of algebraic equations which is then solved to determine the 

displacement for each node. The work by Wen and Li [72] on elasticity was used to 

evaluate a cantilever beam in a functionally graded media. This process is further 

expanded in Chapter 3 due to the relevance of elasticity in the study of material fracture. 
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CHAPTER 3 
 

 

 

3 Finite Block Method: 

Interpolation of Field Variable 
 

 

 

 

3.1. Introduction 

In computational engineering, the unknown field function mainly displacement at 

a given point is determined by an approximation technique. Some of the established 

approximation techniques include the Moving Least Square method (MLS), the Radial 

Basis Function method (RBF), the Lagrange series interpolation and the Point 

Interpolation Method (PIM). The formulation of these approximation techniques 

eventually leads to the construction of the shape function which is central to the 

numerical process to determine the unknown field function. 

In the case of finite element method, the shape function is based on the 

characteristics of the element. In most cases, the shape function for FEM analysis is 

predetermined prior to the analysis. Therefore, applying elements designated for a 

model exhibiting simple geometry might not be suitable for a model with large 

deformations, and this can lead to an inaccurate result. The inaccuracies of the result is 

due to the limitations of the element shape function and the inability to perform multiple 

complex analyses. Thus, several types of elements have been developed for modelling 

different types of problems in FEM. 
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By contrast to the finite element method, the meshless method shape functions are 

determined during the analysis and not before the analysis. This means the shape 

function varies at different points in the domain and no two shape functions are 

necessarily the same.  

In the meshless method, the shape function construction employs a small number 

of nodes at the point of interest. The selected nodes used in constructing the meshless 

shape function are described as the local support domain. Shape functions are easily 

constructed with regular node arrangement. However, for irregular node arrangement, 

the shape function construction can be challenging.  

In this research, the Lagrange approximation is employed in the interpolation of 

finite blocks for a given problem. Therefore, the construction of the Lagrange series 

interpolation is presented in this chapter. The consistency of the interpolation, the 

continuity, nodal arrangement and other influencing parameters are explored in this 

chapter. As expected, the interpolation error is discussed in order to understand the 

strength and limitations of the Lagrange series interpolation. 

3.2. Evaluation of Differential Matrix by the Lagrange Series 

Interpolation: One-Dimensional Problem 

3.2.1 Derivatives for One-Dimensional Regular Node Distribution 

For a one-dimensional problem, a group of nodes are evenly arranged on a 

straight line as shown in Fig. 3.1. Arrangement of the nodes is defined by  
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Figure 3.1 One-dimensional evenly distributed collocation points. 

 

The first order differential of a function ( )u  can be evaluated using the Lagrange 

series interpolation method. The function ( )u  is approximated by the following 

expression 
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The function ( )u  can also be expressed in terms of the Lagrange series interpolation 

and the nodal values in the form 
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where the nodal value is expressed as  N
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The determined first order derivative of the function is given by 
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and the equivalent Lagrange series interpolation is given by 
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The derivative of the function ( )u  can be expressed in a matrix form 

uDU 0=   ,            (3.7) 

where  TNuuu ''

2

'

1 ,, =U  is the vector of nodal value of the first order derivative which 

is derived with respect to the   coordinate, 0D  is the first order differential matrix for a 

one-dimensional case and  TNuuu ,, 21=u . 

Considering Fig. 3.1 where a total of 7 nodes are used to define the one-

dimensional problem. The first order differential matrix for nodal arrangement from 2 

up to 7 is given by 
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It is observed that the matrix )(0 ijd=D  follows the pattern jNiNij dd −+−+−= 1,1  

( )Nji ,,2,1, =  and 0
1

=
=

N

j

ijd  ( )Ni ,,2,1 = . 

3.3. Numerical Assessment 1 

3.3.1 One-Dimensional Regular Node Arrangement 

The convergence and accuracy of the interpolation technique is demonstrated by 

estimating the second order derivative of a given function. By employing the following 

function 

252 3)2cos(),( yexxyxu y +−=  ,         (3.9) 

where the second order derivative is also given by 
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In this study, a regular nodal distribution is considered and the number of nodes 

varies from 3 to 9 respectively. Table 3.1 shows the average errors for the different 

nodal configurations. In this case the average error is defined as   
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where iw  is the numerical solution and 
*

iw  represent the analytical solution. 

  



3.3     Numerical Assessment 1 

72 
 

Number of Nodes N 1_error  2_error  

      

3 1.69 x 10-1 3.78 x 100 

4 9.76 x 10-2 2.46 x 100 

5 8.04 x 10-3 6.76 x 10-1 

7 2.58 x 10-4 4.49 x 10-2 

8 5.06 x 10-4 3.06 x 10-2 

9 1.75 x 10-5 1.46 x 10-3 

 

Table 3.1  1_error  is the average relative error between the FBM interpolation and 

the exact solution of Eq. (3.9) and 2_error  represent the average relative error between 

the FBM interpolation and the analytical solution of Eq. (3.10). 

Fig. 3.2 to 3.5 shows the plotting of the second order derivatives using a total number of 

node N = 3, 5, 7 and 9. Regular nodal distribution was used to obtaining this result. 

 
Figure 3.2 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 3.  
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Figure 3.3 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 5. 

 

 

 

Figure 3.4 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 7. 
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Figure 3.5 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 9. 

 

The approximation of the second order derivative of the function in Eq. (3.9) 

using the Lagrange series interpolation is plotted in Fig 3.2 through 3.5. The exact 

solutions are compared with the Lagrange approximation by considering all values of x 

for 1−=y . For N = 3, the second order differential is interpolated as a constant. This is 

depicted in Fig. 3.2. This is due to an inadequate number of nodes for the interpolation 

of a parabolic function. 

Interpolation along the boundary by the Lagrange approximation can be shown 

to be challenging. From Fig. 3.2 we can see the effects of approximating with a small 

number of nodes. The relative error for approximating values of Eq. (3.10) using nodes 

N = 3 is too high and this is given in Table 3.1 to be over 3.78. However, this was 

resolved by increasing the number of nodes. At N = 7 the average relative error 

decreased significantly to less than 5% and the error further decreases to 0.11% when 

the number of nodes was increased to N = 9. Also, to achieve a reasonable or highly 

accurate result using a regular node distribution, the nodal density along the boundary 

and the domain are increased simultaneously. Hence, we cannot increase nodes in 

targeted areas or areas of interest. Nonetheless, it can be seen from Fig. 3.3 to 3.5, the 

Lagrange series interpolation can produce accurate results for the second order 
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differential as expressed in Eq. (3.10) by simply increasing the global nodal density for 

the analysis. 

3.4. Numerical Assessment 2 

3.4.1 One-Dimensional Irregular Node Arrangement 

The first order differential matrix 0D  as determined for a one-dimensional case is 

a function of the nodal arrangement. Therefore, the equivalent first order differential 

matrix for a one-dimensional case with an irregular node distribution is presented in this 

section.  The numerical analysis described in section 3.3.1 is repeated in this section in 

order to ascertain the effect of the nodal arrangement on the accuracy of the numerical 

result. 

For a one-dimensional problem, a group of irregular nodes arranged on a straight 

line is shown in Fig. 3.6 below. The arrangement of the nodes is selected to be 

Chebyshev's roots, as  

( )
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 ,   Ni ,,2,1 =  .       (3.12) 

 

 

 

 

 

 

 

 

 

Figure 3.6 One-dimensional irregular distributed collocation points. 

 

In this assessment of the Lagrange series interpolation, the function in Eq. (3.9) is 

examined with an irregular node distribution. The average relative error for the analysis 
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is presented in Table 3.2. Fig. 3.7 to 3.9 shows the plotting of the second order 

derivative of Eq. (3.9),  using a total number of node N = 5, 7 and 9. 

 

Number of Nodes N 1_error  2_error  

      

3 1.95 x 10-1 3.78 x 100 

5 6.59 x 10-3 4.35 x 10-1 

7 6.62 x 10-5 1.65 x 10-2 

9 1.50 x 10-5 7.11 x 10-4 

 

Table 3.2 1_error  is the average relative error between the FBM interpolation and 

the exact solution of Eq. (3.9) and 2_error  represent the average relative error between 

the FBM interpolation and the analytical solution of Eq. (3.10). 

 

 

 
 

Figure 3.7 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 5. 

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

-2 -1 -1 0 1 1 2

Analytical Solution Numerical Solution (FBM)

2

2

x

u



  

x  



3.4     Numerical Assessment 2 

77 
 

 

 

Figure 3.8 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 7. 

 

 

 

 

Figure 3.9 Comparing the analytical and numerical solution for the second order 

derivative of Eq. (3.9), for 1−=y . Employing a total number of nodes N = 9. 
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The regular node distribution analysis as presented in Numerical Assessment 1 

section 3.3 shows that the accuracy of the result was improved by increasing the total 

number of nodes. However, this approach will lead to a high computational cost when a 

large model is to be analysed.  To avoid such an issue, the area of interest in a model 

should be targeted and the number of nodes in that region should be increased. A typical 

case where such a requirement will be of great benefit is the study of the fields near a 

crack tip. In this section 3.4.1, such a technique was examined by using an irregular 

node distribution arrangement and the number of nodes was increased near the 

boundary for better approximation of the defined functions. For the same number of 

nodes N = 7 as used in the regular distribution, the Lagrange approximation method 

with an irregular node distribution attains a lower average relative error. This is reported 

in Table 3.2 to be 1.65%. In addition, it can be deduced from Table 3.1 and 3.2 that both 

the regular and the irregular nodal arrangements can be equally effective for the 

Lagrange series interpolation when using higher number of nodes.  

3.5. Evaluation of Differential Matrix by the Lagrange Series 

Interpolation; Two-Dimensional Problem 

3.5.1 Derivatives for Two-Dimensional Regular Node Distribution 

The study of finite block method in a two-dimensional sense is best described 

with the aid of a normalised square domain. In this study, the normalised square domain 

has been assigned the coordinate system o  and this is depicted in Fig. 3.10. In 

addition, local collocation points describing the domain and the boundary are also 

prescribed.  

Following the same manner as described for the one-dimensional method above, 

we can define a two-dimensional smooth function ),( u  across the normalised 

domain. Also, we define in terms of each nodal value the partial derivative 

),(),( 
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where the number for the point P  is determined by the expression ijNP +−= )1( . 

The values of i  and j denote the number of horizontal lines (rows) and vertical lines 

(columns) respectively. The numbering system as expressed here is therefore utilised 

globally in the subsequent analysis in this report.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10 A square normalised domain with coordinate system o . a) global 

numbering system b) local numbering system. 

 

Eq. (3.13) can also be reworked in a matrix form as 

uDU  =  ,                     (3.14) 

The vector derivative of the nodal values U  is defined by 
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where M is the total number of nodes given by NNM = . 
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For a square domain with normalised coordinate system and numbering, the first 

order differential matrix in the global numbering system for all nodes is given by  
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  .                   (3.16) 

In this case 0D  is the differential matrix for a one-dimensional nodal distribution with 

dimensions NN   as expressed in Eq. (3.8). In a similar manner, the partial 

differential with respect to the   direction is given by 

),(
u

),(U 






=   ,                 (3.17a) 
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=   .                 (3.17b) 

Using the local numbering system for the collocation points jiNP +−= )1(  , Eq. 

(3.17) can be expressed in a matrix form as 

uDU  =   .                     (3.18) 

Furthermore, Eq. (3.18) can be written in terms of a transformed matrix using the global 

numbering system as 

 UTU =   and  uTu =  .                   (3.19) 

After establishing that the collocation points in the global numbering system 

ijNP +−= )1(  equates to the collocation point in the local numbering system 

jiNP +−= )1( , this leads to a situation where all elements in the transformation 

matrix T  are zero except at  

1)1(,)1( =+−+− jiNijNT   ,  Nji ,,2,1, = .                 (3.20) 

By re-organising the number of nodes, Eq. (3.19) can be reworked to give 

uDuTTDU  == −1
,   

TTT =−1
 .                   (3.21) 
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In essence, the formulation as determined in Eq. (3.21) can be utilised in resolving 

higher order derivatives. In the case of a two-dimensional domain, a general expression 

for the higher order derivatives with respect to   and   can be written in the form 

),(
u

),(
)(

)( 



ppnm

nm

pp

mnU



=

+

 .                                 (3.22) 

Thus, nodal values of Eq. (3.22) is determined in a matrix form as 

uDDU
nmmn
 =)(

  .                    (3.23) 

3.6. Finite Block Method: Derivatives of a Two-Dimensional 

Problem Using the Mapping Technique 

The critical feature of the finite block method is the ability to divide the physical 

domain of a plate (2D case) into blocks. Using a similar technique as performed in the 

finite element method, a two-dimensional quadratic element or block expressed in the 

form of a normalised domain can be mapped onto a real or a physical domain, and vice 

versa using the appropriate transformation equations. The technique of mapping an 

irregular mesh in real space into a structured mesh in a normalised space is described as 

the ‘Boundary-Fitted Coordinate Method” [89]. Some of the desirable features of the 

boundary-fitted coordinate method is the flexibility of modelling curved boundaries and 

at the same time keeping the features of a structured mesh [90]. 

For the finite block method, the governing equations are satisfied in the strong 

form at certain collocation points. Therefore, for a two-dimensional analysis this feature 

of the FBM method is maintained. The first order partial differential matrix can be 

obtained directly using the mapping technique based on the Lagrange series 

interpolation.  

Since a 2D block analysis is under consideration, we begin by defining a two-

dimensional block or element with 8 nodes as illustrated in Fig. 3.11. A square 

normalised domain with 8 nodes has been deliberately chosen for the mapping of the 

geometry. 

A smooth function ( ) ,u  can be approximated in the domain 1  and 1  

as 
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where M  and N  are the number of collocation points along the two axes, lu  indicates 

the nodal value, iMjl +−= )1( , with uniformly distributed nodes at ),1/()1(21 −−+−= Mii  

Mi ,...,2,1= , )1/()1(21 −−+−= Njj , Nj ,...,2,1= , and two polynomial functions 
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The total number of nodes is given by NMQ = .  

The first order partial differential is determined straight away with respect to   and   

respectively 
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where  
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In the same manner as the finite element method, a quadratic element used in a 

two-dimensional problem in the Cartesian coordinate system ),( yx  can be mapped 

using a square in a mapping domain ),(  , by using a set of quadratic shape functions 

with 8 nodes as shown in Fig. 3.11(b). The quadratic shape functions are defined below 

as   

,4,3,2,1,)1)(1)(1(
4

1
),( =−+++= i     N iiiii               (3.29a) 

,7,5                                ,)1)(1(
2

1
),( 2 =+−= iN ii                (3.29b) 
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.8,6                            ,)1)(1(
2

1
),( 2 =+−= iN ii                (3.29c) 

The partial differentials of the above shape functions with respect to the normalised axis 

is given by 
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(a)                                                                              (b) 

 

Figure 3.11 Two-dimensional node distribution in the mapping domain: (a) the local 

numbering system of the nodes; (b) the square domain with 8 nodes for the mapping of 

the geometry. 

 

Also, using the same approach as the finite element method, a quadratic block (element) 

in the FBM method can be mapped using a square normalised domain, shown in Fig. 

3.11(b), as 
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where ),( kk yx  denotes the coordinate of nodes k .  

The first order partial differentials of the function ),( yxu  in the Cartesian coordinate 

system are therefore obtained by 
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Then, substituting Eq. (3.26) into Eq. (3.32) gives 
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Finally, the nodal values of the first order partial differentials in Eq. (3.34) can be 

written, in a matrix form, as 

uDu xx ,, =  ,  uDu yy ,, =   ,                   (3.35) 

where the vectors of the nodal value of the first order partial differentials  
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are the vectors of the nodal value of displacement  T

ku=u , and the partial differential 

matrices 

  ),(,, kkxklx D =D  ,  ),(,, kkykly D =D , ),...,2,1,( Qlk = ,  

where the total number of nodes is given by NMQ = .  
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In addition, for the L-th order derivatives in two-dimensions with respect to both 

coordinates x and y, 

Lnm
yx

yxu
yxu

nm

nm
mn

xy =+
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  ,                 (3.37) 

can be approximated in a matrix form, in terms of the first order partial differential 

matrices x,D   and y,D  ,  as  

uDDu n
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, =  ,                    (3.38) 

3.7. Numerical Assessment 3 

The finite block method is investigated for a two-dimensional case using one 

block. Fig. 3.12 shows the block with the nodes on the boundary and the domain. This 

is the block in the transformed domain after the mapping process has been applied. In 

this investigation, several regular node distributions with dimensions ranging from 3 x 3 

to 11 x 11 are considered. The coordinates of the regular node arrangement are given by  
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The first and second order derivative of Eq. (3.9) is applied across the 2D block in 

order to observe the accuracy of the finite block method using the mapping technique. 

The first order differential of Eq. (3.9) is given by 

yxex
x

u 52)2sin(2 −−=



, 10  x  ,  10  y .                (3.41) 

The average relative error between the finite block method and the exact solutions are 

reported in Table 3.3. Furthermore, a plot of the second order differential of Eq. (3.9) 

across the 2D domain and the boundary is presented in Fig. 3.13. The plot between the 

exact solution and the numerical method (FBM) considers the values of all x at y = 0.5. 
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Figure 3.12 One block representing the transformed domain with regular node 

distribution. A 7 x 7 node distribution. 

 

 

 

 

 

Figure 3.13 Comparing the exact solution of Eq. (3.10) and the FBM method 

approximation as determined by 7 x 7 and 15 x 15 nodal distribution. The solution 

plotted is for all values of x  at 5.0=y . 
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Number of Nodes N 1_error  2_error  3_error  

        

3 2.40 x 10-3 4.27 x 10-1 1.93 x 100 

5 2.83 x 10-4 1.35 x 10-2 1.53 x 10-1 

7 5.64 x 10-6 1.97 x 10-4 3.60 x 10-3 

9 5.37 x 10-8 1.65 x 10-6 4.11 x 10-5 

11 3.07 x 10-10 8.82 x 10-9 2.83 x 10-7 

 

Table 3.3 1_error   is the average relative error between the FBM interpolation of 

Eq. (3.9) across the domain and the exact solution of Eq. (3.9). 2_error  represent the 

average relative error between the FBM interpolation and the analytical solution for the 

first order partial differential equation of Eq. (3.9). 3_error  is the average relative error 

between the FBM interpolation and the analytical solution of Eq. (3.10).  

 

In a 2D case study, a single block with a regular node distribution is considered. 

The result of using the mapping technique to transform the nodes from the normalised 

square domain onto the transformed or practical domain is shown in Fig 3.12. By 

varying the number of nodes, the relative average error is determined for Eq. (3.9), Eq. 

(3.10) and Eq. (3.41) respectively. The results are presented in Table 3.3.  

According to Table 3.3, the interpolation error increases when the order of 

derivative goes up. But interpolation of the actual function in Eq. (3.9) shows an error 

less than 1% even for N = 3. However, the relative error is controlled by simply 

increasing the number of nodes.   

In addition, the result extracted from across the domain for all values of x at y = 

0.5 is shown in Fig. 3.13. The exact solution is compared against the finite block 

approximation for N = 7 and 15. From Fig. 3.13, it can be said that a highly accurate 

result was determined by the finite block method at both the boundary and the domain. 



3.8     Summary 

89 
 

Therefore, for a 2D case, the Lagrange approximation technique in conjunction with the 

mapping technique is an adequate interpolation method for the finite block analysis. 

3.8. Summary 

In this chapter, the Lagrange series interpolation is introduced. The one-

dimensional and two-dimensional differential matrices were constructed in terms of the 

nodal values. The accuracy of setting up the differential matrix was assessed by several 

numerical examples. In both the one-dimensional and the two-dimensional case, regular 

and irregular nodal distributions were considered. In addition, the effects of the nodal 

arrangements and the number of collocation points were observed. In all cases, the 

numerical results were compared with analytical solutions. 

The mapping technique is discussed in this chapter for two-dimensional problems. 

The mapping technique is one of the essential components of the finite block method. 

Analysis of a two-dimensional case was carried out and the interpolation error was 

reported. The comparison of analytical results and numerical results of the FBM method 

shows acceptable accuracies.  
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CHAPTER 4 
 

 

 

4 Finite Block Method: 

Stationary Interface Crack 
 

 

 

 

4.1. Introduction 

The finite block method has already been applied to the study of heat conduction 

in functionally graded materials [71] and anisotropic elasticity problems [72]. In this 

chapter, the formulation for the finite block method is presented for the analysis of 

interface crack.  

Firstly, the Williams [18] series for describing interface crack stress and 

displacement is considered (Appendix B1). The problem domain is then divided into 

blocks and the partial differential operators are determined in terms of the nodal values. 

The Lagrange series interpolation is used for evaluating 1D and 2D differential matrix. 

For the 1D case, the first order derivative matrix is formed using a set of nodes 

collocated on a straight line. Beyond this, higher order derivatives can be easily 

achieved. For multi-dimensional problems, any order of partial differential matrices is 

achieved directly by transforming the local numbering system of the matrix to a global 

numbering system. At each node, the multi-dimension partial differential can be 

obtained from the “one-dimension derivative matrix” of the first order. This is seen as a 

computational advantage when compared with the MLS and the RBF method, where 
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interpolation is done via a support domain. Using the mapping technique for each block, 

a quadratic type element block is used in transforming the real domain into the 

transformed domain using the square normalised mapping domain. A set of linear 

equations based on the governing equilibrium equation and boundary conditions in 

terms of stress is obtained. This is then used to determine the nodal values of stress and 

displacement along the bi-material boundary and near the crack tip. Eventually, the 

interface stress intensity factor is calculated using the Williams expansion series. 

The method as introduced in this chapter differs from the conventional FEM crack 

analysis where quarter-point elements are used for modelling the crack tip. In this study, 

a singular core is introduced around the crack tip in a way that allows the accurate 

capture of the interface stress intensity factor. 

4.2. Interface Crack Formulation for Bi-Material  

4.2.1 Williams Series for Bi-material Interfacial Crack  

Investigating the interface crack in bi-materials, Williams first utilized the 

eigenfunction expansion approach to analyse the asymptotic nature of the dominant 

stress singularity at the crack tip. But first Williams [18] sought a solution which 

allowed the normal stress and the shear stress to vanish along the crack face, also the 

displacement and the stress must be continuous along the bond line of the two materials 

which forms the bi-material. Such a solution as explained in Appendix B1 can be found 

by expressing the stress and the displacement (in the polar form) in terms of the 

biharmonic stress function [18,104,169]. Nonetheless, the complex potential function 

method developed by Kolosov and Muskhelishvili [170] meets these requirements and 

it is a convenient method for evaluating a two-dimensional crack problem [170]. 

According to the complex potential method, the displacement and the stresses are 

formulated in terms of analytical functions by means of complex variables. Therefore, 

by solving the analytical function using a prescribed boundary condition the stresses and 

the displacement around the crack tip is also determined. Using the Muskhelishvili 

formalism, the displacements ),( yx uu
 and stresses ),,( xyyx   surrounding the crack 

tip can be presented in terms of complex potentials   and   as [170] 
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where superscript 2,1  =  refer to the material above the crack plane (1) and material 

below the crack plane (2), coordinate 
irez =  in the complex, the primes denote 

derivatives with respect to z and the over bars represent the complex conjugate, 
）（   

is the shear modulus and 
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in which 
)(  indicates the Poisson's ratio. The Muskhelishvili formalism as stated in 

Eq. (4.1) is derived in Appendix B2 of this thesis.  

The potentials   and   are analytic everywhere except at the crack tip. 

Therefore, four analytic complex functions, two for each medium, are assumed as a 

power series of the complex variable of z as 

 zCzBzA )()()(）（）（   , +==   ,                   (4.3) 

where constants 
)()()( ，,  CBA  and as yet unknown eigenvalue   are assumed to be 

complex in general. Considering the boundary traction conditions gives 

     0,0 )2(）2（)1(）1（ ==
−== 

 xyyxyy i-  i-   .                    (4.4) 

After substituting Eq. (4.3) into Eq. (4.1c), we can now proceed to enforce the 

boundary conditions at Eq. (4.4) which gives 

( ) ( ) ,  0)1()1(12)1()1(1 =+++ −−− BAzeCAz i  
                (4.5a) 

( ) ( ) 0)2()2(12)2()2(1 =+++ −− BAzeCAz i  
  .                (4.5b) 

These two equations produce 
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 ieACAB 2)1()1()1()1(   , −=−=   ,                  (4.6a) 

 ieACAB 2-)2()2()2()2(   , −=−=   .                  (4.6b) 

On the other hand, the stress and displacement continuities on the bonded line give 

    )2(

0

)1(

0 ==
+=+

 yxyx iuuiuu  ,                   (4.7a) 

    )2(

0

)1(

0 ==
−=−


 xyyxyy ii   .                  (4.7b) 

Then it reduces to the solution of the characteristic equation 

0ˆ)ˆ1( 24 =−−−   ii ee   ,                     (4.8) 

where 

）2（）1（）2（

）1（）2（）1（

ˆ





+

+
=  ,                     (4.9) 

along with the relationship 

( ) ( ))2()2(）2（)1（)1()1(）1（）2（ CACA −=−    ,                (4.10a) 

( ) ( ))2()2()1（)1()1(）2（ BABA +=+    ,               (4.10b) 

)2()2()1()1( CACA +=+  ,                 (4.10c) 

The characteristic Eq. (4.8) gives two solutions 

12 =ie   and                   (4.11a) 

 ˆ2 −=ie   ,                   (4.11b) 

and the corresponding sets of eigenvalue are 

nn =   for ,2,1,0=n  , (Integer)                 (4.12) 

 inn −+=
2
1

  for ,2,1,0=n , (Complex)                (4.13) 

where  /2)ˆln(= .  
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There are two sets of solutions for n  given by Eq. (4.12) and (4.13) which are 

investigated further in sections 4.2.1.1 and 4.2.1.2. Where the corresponding solutions 

for the displacement and stress are defined. 

4.2.1.1 Solution (A): Integer Eigenvalues 

Substituting Eq. (4.12) into Eq. (4.11a) and Eq. (4.10a) gives 

)2()2()1()1(   , IIII ACAC −=−=    and   
( )
( )





=

+

+
=

)2()1(

)1()2(
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)2(
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1
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I

A

A
  .               (4.14) 

Therefore, in the upper and lower half plane, we have
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4.2.1.2 Solution (B): Complex Eigenvalues  

Same as in section 4.2.1.1, substituting Eq. (4.13) into Eq. (4.11b) and Eq. 

(4.10a) results 

   ˆ/  ,ˆ )2()2()1()1(

CCCC ACAC ==   and   ̂
)1(

)2(

=
C

C

A

A
 .                 (4.16) 

Therefore, the displacements and stresses in the upper and lower half plane are given 

as 
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 .            (4.17c) 

Solutions for the stress and displacement series in Eq. (4.15) and Eq. (4.17) are worked 

to construct the general solutions for two-dimensional plate with a straight interfacial 

crack as the following 
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It can be observed from Eq. (4.15) that there are no singular stresses in the solution. 

From Eq. (4.17), the singular stresses can be found when 0=n  
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+=+  ,               (4.19) 

where K  is the stress intensity factors in the complex form defined by 

( ) aiA
a

iKK

a

K
C

III /2ˆ1
2

1)1(
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+







+=

+
=   .                (4.20) 

For the finite block method, all the coefficients for the set of solutions for 
)1(

CnA  

)1-,...1,0( bNn =  should be determined by the specified boundary conditions of the 

traction and displacement, here bN  is the number of boundary collocation point. 
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4.3. Finite Block Method in Various Coordinate Systems  

4.3.1 Finite Block Method in Cartesian Coordinate System  

Consider a 2D elasticity with domain   enclosed by boundary   in isotropic 

media in a Cartesian coordinate system. The constitutive equations for two-dimensional 

plane-stress state in the Cartesian coordinate system are 

( ) ,  
)1( 2 yxx

E



 +

−
=     ( )  ,  

)1( 2 xyy

E



 +

−
=  

xyxy G =   ,  
)1(2 +

=
E

G   ,                  (4.21) 

where, E ,   are the Young’s modulus and the Poisson’s ratio, G  is the shear modulus. 

The strains can be expressed with displacements as 
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=   .                (4.22) 

For two-dimensional static problem in a Cartesian coordinate, the equilibrium equations 

are 

,0=+
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  ,                 (4.23) 

where xb  and yb  are the body forces. Introducing the first order differential matrices in 

Eq. (3.35) into the stresses in Eq. (4.21) yields for each node P  in the physical domain 
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                  (4.24) 

where the stress vectors of the nodal value 
T

xkx }{=σ , 
T

yky }{=σ ,   
T

xykxy }{=τ , 

T

xkx u }{=u , 
T

yky u }{=u . Substituting the stresses from Eq. (4.24) into the equilibrium 

equations in (4.23) for each collocation point P  gives 
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where 
T

xkx b }{=b   and 
T

yky b }{=b  are the nodal value vectors of the body forces. The 

boundary conditions of the displacements and the tractions are described as  

 ,)()(
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  uP                    (4.26) 

for the displacements and 
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   P                (4.27) 

for the tractions, where 
0000   and   , , yxyx ttuu  are the given boundary values of the 

displacement and the traction on the boundaries u  and   respectively,  ),( yx nnn  is 

the outward normal to the boundary. It is observed that there are )(2 2 NMQ =  linear 

algebraic equations both from Eq. (4.25) and boundary conditions from Eq. (4.26) and 

(4.27) in the case of one block. By solving a set of linear algebraic equations, all nodal 

values of the displacements ),( yx uu  can be obtained. 

In the case with more than one block, the connection conditions on the interface 

)III,(

int   between two blocks (I, II) must be satisfied as follows  
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4.3.2 Finite Block Method in Polar Coordinate System  

For two-dimensional plane-stress state in the polar coordinate system, we have 

( ) ,
)1( 2 
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−
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=                    (4.29) 
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The strains can be expressed with displacements as 
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The equilibrium equations give 
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where rb  and b  are the body forces. Same as differential matrices application in the 

Cartesian coordinate system, the nodal values of stresses in Eq. (4.29) are written, in 

matrix form, as 
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where 
T

rkr }{=σ , 
T

k}{  =σ , 
T

krr }{  =τ  , diagR =ˆ ]/1[ kr  the coordinate 

correspondence yxr →→   and   and then: xr ,, DD = , y,, DD = . Applying 

differential matrices over the equilibrium equations in Eq. (4.31) for each collocation 

point P  in the domain gives 
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P                 (4.33) 

Substituting Eq. (4.32) into Eq. (4.33) gives a set of linear algebraic equations in terms 

of the nodal values of displacements as the following 
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It is clear, for the Cartesian coordinate and the polar coordinate systems, only the first 

order partial differential matrices are involved. 

4.4. The Finite Block Configuration at the Crack Tip 

To capture the singular stresses accurately, special treatments should be 

introduced. In order to determine all coefficients in the Williams’ series, i.e. 
)1(

InA  and 

)1(

CnA  )1-,..,1,0( bNn = , a singular polygonal core is introduced centred at the crack tip, 

as shown in Fig. 4.1, where 0r  is the radius of the circle with dash lines, which 

indicates the size of the singular core and ),( kkrP   ),...1( bNk =  is the coordinate of the 

collocation point on the interface between the block and the core.  
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4.4.1 The Relationship Between the Singular Core and the 

Williams Series in Cartesian Coordinate 

Each side of the polygon corresponds to an interface with six blocks. Patently, 

there are six blocks surrounding the hexagonal core, as shown in Fig. 4.1. In the 

Williams’ series of stress and displacement in Eq. (4.18), we consider the finite terms 

with truncation number bN . On the interface between the block and the singular core 

),( kkr  , we have the following connection conditions: 
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 ),( kkrP     ( )bNk ,...,2,1=
 
.               (4.35) 

In the numerical procedure, the unknowns include the nodal displacements 

],[ yx uu  for each block ( ) = NML  and coefficients 
)1(

InA  and 
)1(

CnA  )1-,..,1,0( bNn =
 

in the Williams’ series. With the same number of algebraic equations from the 

governing equations in the domain of each block, connection condition along the 

interfaces between blocks and along the interfaces between the singular core and the 

blocks, all unknowns can be obtained. The stress intensity factors are evaluated from 

Eq. (4.20) successively.  

 

 

 

 

 

 

 

  

 

Figure 4.1 A polygonal singular core and collocation points on the interfaces. 
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4.4.2 The Relationship Between the Singular Core and the 

Williams’ Series in Polar Coordinate 

For a simple case, two blocks are sufficient in the numerical procedure as shown 

in Fig. 4.2(a). Two blocks in the coordinate ),( r  shown in Fig. 4.2(b) can be mapped 

using the square normalised domain. In the Williams’ series of stress and displacement 

in Eq. (4.18), we consider the finite terms with truncation number bN . We suppose that 

there are bN  collocation points along the interfaces between the blocks and the circular 

core ) ,(  −= kck rr  with four connection equations in polar coordinate system as 
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Figure 4.2 Finite blocks and circular core centred at the crack tip of radius 0r  in the 

polar coordinate with interfaces: (a) two blocks and ),( r  system; (b) two blocks and 

),( r  system. 

 

I 

 
 

a 

a 

 

θ,y 

 

I 

 

core 

II 

 

 

II 

 



4.5     Numerical Assessment 1 

102 
 

The Williams' solutions in polar coordinate can be represented by 
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for the displacements and 
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               (4.38)  

for the stresses [171].  

4.5. Numerical Assessment 1 

4.5.1 Parameter Study 

Firstly, consider a circular disk with an edge crack loaded by constant normal 

tractions 0  along the circumference as shown in Fig. 4.3. Suppose that the crack tip is 

located at the centre of the disk and the crack length Ra = . A plane stress assumption is 

considered. The number of collocation point along each side are equal 

MNMNM IIIIII ==== . So, the number of collocation points on the interface 

between blocks and core is )2(2 − M  and the truncation terms 2−=MNc . The disk 

is centred at the crack tip. Two semi-rings, upper and lower are mapped into normalised 

domain with precisely two blocks. The numerical results of the stress intensity factor are 

shown in Table 4.1 for the different number of nodes M where 
)1()2( 2 = , 

3.0)2()1( ==  and 2.0/ =Rrc . Numerical solutions with the boundary collocation 

method are listed in Table 4.1 for comparison. It is apparent that the agreement is 

excellent. Table 4.2 shows the results of the stress intensity factors for the different 

ratios 
)1()2( /  when the number of node 16=M  and 2.0/0 =Rr .  
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Figure 4.3 A circular disk with an edge crack. The disk is loaded radially along the 

circumference. 

 

Table 4.3 shows the numerical results with variation of the Poisson ratio )2(

where the number of node 16=M , 2/ )1()2( =  and 2.0/ =Rrc . In addition, the 

accuracy and convergence are also observed and the results are listed in Table 4.4. In 

this case, 0.3)2()1( ==  for the different core sizes. 

 

 

M  aK I  0/  aK II  0/  

9 3.1668 0.0572 

11 3.1753 0.0584 

13 3.1760 0.0591 

15 3.1755 0.0598 

BCM 3.1668 0.0616 

 

Table 4.1 Normalised stress intensity factor versus the number of node. The FBM 

results are compared against the BCM results. 
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)1()2( /  aK I  0/  aK II  0/  

FBM BCM FBM BCM 

1 3.1772 3.1721 0.0000 0.0000 

2 3.1720 3.1710 0.0614 0.0616 

3 3.1636 3.1693 0.0870 0.0859 

4 3.1621 3.1674 0.0976 0.0963 

5 3.1597 3.1656 0.1025 0.1009 

6 3.1568 3.1640 0.1044 0.1028 

7 3.1555 3.1626 0.1050 0.1032 

8 3.1529 3.1614 0.1049 0.1030 

9 3.1530 3.1603 0.1045 0.1024 

10 3.1514 3.1593 0.1036 0.1016 

 

Table 4.2 Normalised stress intensity factor versus the ratio of 
)1()2( / . The FBM 

results are compared against the BCM results. 

 

 

 

)2(  aK I  0/  aK II  0/  

FBM BCM FBM BCM 

0.0 3.1720 3.1626 -0.0383 -0.0376 

0.1 3.1825 3.1651 -0.0088 -0.0047 

0.2 3.1716 3.1679 0.0272 0.0284 

0.3 3.1720 3.1710 0.0614 0.0616 

0.4 3.2077 3.1745 0.0970 0.0949 

 

 

Table 4.3 Normalised stress intensity factor versus the ratio of )2( . The FBM 

results are compared against the BCM results. 
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Rrc /  aK I  0/  aK II  0/  

0.20 3.1720 0.0614 

0.25 3.1675 0.0647 

0.30 3.1626 0.0641 

0.35 3.1493 0.0669 

0.40 3.1368 0.0686 

BCM 3.1710 0.0616 

 

 

Table 4.4 Normalised stress intensity factor versus the core size Rrc / . The FBM 

results are compared against the BCM results. 

 

The stress intensity factor as reported in Tables 4.1 to 4.4 are determined using 

the Williams series expansion and the finite block method. In order to improve the 

accuracy of the approximation of the coefficients of the singular terms of the Williams 

series and eventually the stress intensity factor correctly, a singular core as shown in 

Fig. 4.1 is centred around the crack tip. 

The assessment of stress intensity factor using the finite block method began 

with a parameter study. A circular disk with an edge crack in the polar coordinate 

system shown in Fig. 4.3 was used in the parameter study. The disk is centred at the 

crack-tip. Two semi-rings, upper and lower are mapped into normalised domain with 

precisely two blocks. In this case, the two blocks used represent materials 1 and 2, and 

the singular core is centred at the crack tip. The first parameter under consideration is 

the number of nodes and the stress intensity factor values were compared against the 

boundary collocation method. The results are reported in Table 4.1. For M = 9 the IK  

value achieved by the finite block method is effectively the same as that produced by 

the boundary collocation method. However, due to the magnitude of the IIK  value, 

further increase in the number of nodes was required. Around M = 15, the relative error 

for the IIK  value between the finite block method and the boundary collocation method 

is determined to be 0.0292%. This value is significantly small even for an interface 

crack.  
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In Table 4.3, a variation in the Poisson’s ratio between the two materials was 

varied by increasing )2(  of the lower block II. The stress intensity factor values 

determined shows stable results when compared to the boundary collocation method. At 

a larger )2(  value of 0.4, the relative error for the IK  value gives 0.0105% and the 

IIK  value gives 0.0221%.  

Table 4.4 reports on the effect of the core size on the stress intensity factor 

results. At a core size of Rrc /  = 0.40 the relative error for the IK  value between the 

finite block method and the boundary collocation method is calculated to be 0.0108% 

and the IIK  value gives 0.114%. For the minimum value considered in this study Rrc /  

= 0.20, the relative error for the IK  value gives 0.0003% and the IIK  value gives 

0.003%. Based on the above assessment, it can be said that some of the parameters 

deemed essential can be easily handled by the finite block method. As can be seen from 

the significantly low error margins, the influence on the stress intensity factor results 

can be controlled and reduced to a bare minimum. 

4.6. Numerical Assessment 2 

4.6.1 Cartesian Coordinate System 

In order to demonstrate the effectiveness of the finite block method in determining 

the stress intensity factor for an interface crack, a bi-material plate with a centre crack 

(CCP) and a bi-material plate with an edge crack (SEN) were analysed. In both cases 

the CCP and the SEN specimens were analysed for various elastic moduli ratios, mainly 

)2()1( / EE , and crack length a. 

4.6.1.1 Analysis of Bi-material Plate with a Centre Crack  

The bi-material plate with a centre crack has a uniform tensile load 0  applied at 

the top and bottom of the plate as shown in Fig. 4.4. Owing to the symmetry with 

respect to the y axis, it is equivalent to solve the boundary value problem for a half plate 

with four blocks for each material (upper and lower media) with plane strain state and 

Poisson ratios 3.0)2()1( == . The size of the polygonal core 2.0/0 =Wr  and the crack 
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length =Wa /  4.0 , 5.0  and 6.0 . For each block, the control number of collocation 

point density is given by MNM ==  )   ,...,,( VIIIIII= . 

The results of stress intensity factors (SIF) versus the ratio of Young's modulus

)2()1( / EE  are shown in Fig. 4.5 to 4.10 for the different cases. The equivalent centre crack 

analysis was carried out using ABAQUS, a finite element analysis program to check the 

finite block method. Also, the solutions given by Song using the scaled boundary finite 

element method (SBFEM) [76] are provided for comparison. The stress intensity factors 

IK  and IIK  are normalised by a 0 . 

 

 

 
 

Figure 4.4 A finite block setup of a bi-material plate with a centre crack and 

uniformly loaded at the top and bottom. 
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Figure 4.5 Normalised IK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.4. 

 

 

 

 

Figure 4.6 Normalised IIK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.4. 
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Figure 4.7 Normalised IK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.5. 

 

 

 

 
 

Figure 4.8 Normalised IIK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.5. 
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Figure 4.9 Normalised IK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.6. 

 

 

  

 
 

Figure 4.10 Normalised IIK  stress intensity factor for various elastic modulus 

combinations. Centre crack length a/W = 0.6. 
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4.6.1.2 Analysis of Bi-Material Plate with An Edge Crack  

In order to demonstrate the effectiveness of the finite block method and its 

application, the analysis has been extended to the evaluation of a single edge notched 

(SEN) bi-material specimen. The SEN bi-material plate has a uniform tensile load 0  

applied at the top and bottom of the plate as shown in Fig. 4.11. Owing to the symmetry 

with respect to the y axis, it is equivalent to solve the boundary value problem for a half 

plate with four blocks for each material (upper and lower media). All other analysis 

parameters remain unchanged as prescribed for the centre crack analysis. 

The results of stress intensity factors (SIF) versus the ratio of Young's modulus

)2()1( / EE  are shown in Fig. 4.12 and 4.13 for the different cases. The equivalent edge 

crack analysis was carried out using FEM (ABAQUS). Also, the solutions given by [35] 

are provided for comparison.  

 

 
Figure 4.11 A finite block set-up of a bi-material plate with an edge crack and 

uniformly loaded at the top and bottom. 
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Figure 4.12 Normalised IK  for various elastic modulus combinations, )2()1( / EE . Edge 

crack with length a/W = 0.5. 

 

 

 

 

 
 

Figure 4.13 Normalised IIK  for various elastic modulus combinations, )2()1( / EE . 

Edge crack with length a/W = 0.5.  
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(a) 

)2()1( / EE  

 

FBM BEM [35], Error (%) [ABAQUS], Error (%) 

aK I  0/  aK I  0/  aK I  0/  

1 2.8213 0.52 0.18 

2 2.7623 2.05 2.17 

3 2.7449 2.44 2.62 

4 2.736 2.56 2.79 

5 2.73 - 2.87 

10 2.7153 2.64 3.02 

 

 

(b) 

)2()1( / EE  

 

 

FBM BEM [35], Error (%) [ABAQUS], Error (%) 

aK II  0/  aK II  0/  aK II  0/  

1 0.0001 0.00 0.00 

2 -0.2237 16.22 2.14 

3 -0.3337 16.78 1.31 

4 -0.3988 17.43 0.69 

5 -0.4416 - 0.21 

10 -0.5363 18.87 1.15 

 

 

Table 4.5  The tables show the error margins between the FBM and the relevant 

references. The column headed FBM contain the actual values of the SIF while the 

remaining columns shows the percentage errors. (a) stress intensity factors IK  and       

(b) stress intensity factors IIK  for an edge crack, length a/W = 0.5.  
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In numerical assessment 2, further analysis by the finite block method was 

performed on a bi-material 2D plate with an interface centre crack and an edge crack. 

For the centre crack, the IK  and IIK  values at a/W = 0.4, 0.5 and 0.6 all shows a good 

agreement when compared against the reference values. The results of the stress 

intensity factors depicted in Fig 4.5 to 4.10 shows the accuracy of the finite block 

method.  

For the edge crack at a/W = 0.5, Fig. 4.12 is seen to show a wider gap between 

the calculated IK  values and the reference values. This is due to the close proximity of 

the calculated IK  value for every )2()1( / EE  at the crack tip. But a calculation of the 

relative error reported in Table 4.5 (a) shows a very good approximation of the IK  

value by the finite block method. At )2()1( / EE  = 10 where the error is greatest, the relative 

error between the finite block method and FEM (ABAQUS) is calculated to be 3.02%. 

This is within an acceptable margin of error of less than 5%. 

From Table 4.5 (a), the calculated highest relative error for the IK  value equals 

2.64% when compared against the BEM method [35] and 3.02% when compared 

against FEM (ABAQUS). This is influenced by the high elastic modulus ratio 
)2()1( EE = 

10. In comparing the IIK  values from the BEM method [35] and the FEM (ABAQUS), 

Table 4.5 (b) shows that the finite block method is far more accurate than the BEM 

method [35]. At the same time, the highest relative error between the FBM calculated 

result and the FEM (ABAQUS) equal 2.14%. 

4.7. Numerical Assessment 3 

4.7.1 A Disk with An Edge Crack 

In this assessment, we consider a circular disk with an edge crack, loaded by a 

constant normal traction 0  along the circumference as shown in Fig. 4.3. Suppose that 

the crack tip is located at the centre of the disk and the crack length Ra = . A plane 

stress assumption is considered. The number of collocation points along each side are 

equal MNMNM IIIIII ==== . So, the number of collocation points on the interface 

between blocks and core is )2(2 − M  and the truncation terms 2−=MNc
.  
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Two semi-rings, upper and lower are mapped into normalised domain with 

precisely two blocks. The numerical results of the stress intensity factor are shown in 

Fig. 4.15 and 4.16 for the different ratios )1()2( /  where the number of node M = 8 

and 16, and 2.0/0 =Rr . In this study, the crack length 5.0== Ra  and d  is the 

diameter of the circle. The equivalent circular crack analysis was carried out using FEM 

(ABAQUS), to check the finite block method results.  Details of the FEM (ABAQUS) 

model for the edge crack disk is shown in Fig. 4.14 below. 

Details of ABAQUS Analysis for Circular Edge Crack 

• Analysis performed using ABAQUS version 6.9-2. 

• ABAQUS quadratic element type: CPS8R 

• The FEM model converged after 4851 nodes and 1600 elements. 

• Quarter point elements with ABAQUS singularity control was employed in this 

analysis. 

 

 

 

Figure 4.14 FEM model of a circular crack disk with a normal traction around the 

circumference and crack tip at the centre. The FEM (ABAQUS) model has a sweeping 

mesh in the direction of the crack tip. 

 

Edge crack 
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Figure 4.15 Normalised stress intensity factor 
IK  versus the ratio of  

)1()2( /  for 

crack length 5.0== Ra . 

 

 

  

 

Figure 4.16 Normalised stress intensity factor 
IIK  versus the ratio of 

)1()2( /  for 

crack length 5.0== Ra . 
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Numerical Assessment 3 examines the stress intensity factors for a circular disk 

with an edge crack. The IK  and IIK  values as calculated by the finite block method is 

compared against the FEM (ABAQUS) and the boundary collocation method on Fig. 

4.15 and 4.16. The IK  value plot shows a marginal difference between the FEM 

(ABAQUS) method and the boundary collocation method. Also, by increasing the 

number of nodes from M = 8 to M = 16 had little influence on the result between the 

FEM (ABAQUS) method and the finite block method.  

For the IIK  value reported in Fig. 4.16, the IIK  value is slightly higher for the 

FEM (ABAQUS) method when compared against the finite block method. It should be 

noted that the IIK  value can be difficult to determine due to the miniature size of the 

values at the crack tip. The IIK  values at the crack tip shows no significant change by 

increasing the number of nodes from M = 8 to M = 16. However, it can be said that the 

results by the finite block method is very close to the boundary collocation results. 

4.8. Summary 

In this chapter, the interface crack formulation for the finite block method is 

developed. By combining the finite block method with the Williams’ series of stress 

functions, the stress intensity factor and other coefficients of the regular terms in the 

Williams’ series can be obtained directly for a stationary static case. An expression of 

the William’s series in terms of both the Cartesian and the polar coordinate system are 

also given. 

A singular core centred at the crack tip was introduced as part of a special 

treatment to determine the stress intensity factor. A polygon and a circular core were 

applied in this study. In order to demonstrate the capabilities of the finite block method 

in calculating the stress intensity factor, several numerical assessments of interface 

crack were carried out. This includes analyses of a 2D plate with a centre crack and a 

2D plate with an edge crack. Also, a parameter study was performed using a circular 

disk with an edge crack. This was to gain an understanding of the parameters 

influencing the accuracy of the stress intensity factor values as determined by the finite 

block method. FEM (ABAQUS) solutions are also reported and used for comparison. 

The FBM result also shows good agreement with the boundary collocation method. In 



4.8     Summary 

118 
 

all cases, the obtained results were compared with reference papers, the boundary 

collocation method and FEM (ABAQUS). 
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CHAPTER 5 
 

 

 

5 Finite Block Method: 

Evaluation of T-stress for a 

Bi-Material Interface Crack  
 

 

 

 

5.1. Introduction 

In fracture mechanics, the conventional theory is to characterise the state of 

material failure only by the stress intensity factor. In the case of a homogeneous plate 

under tensile loading, it is widely accepted that only the perpendicular component of 

stress at the crack tip affects the material mode-I loading. This method of characterising 

material failure was established from the work by Irwin’s development of crack tip 

stress intensity factor theory. Over the years several works by researchers including 

Sladek [114, 147] have shown that other factors are at play at the crack tip. The 

investigations have shown that fracture failure is influenced by a stress component 

called the T-stress, which acts parallel to the crack plane. Therefore, the influence of 

this parallel loading at the crack tip must be considered during fracture assessment.  

An extensive review of the T-stress from the last six decades has been conducted 

by Gupta [91]. In the review, several analytical and experimental techniques are 

presented. Experimental techniques for evaluating the T-stress include the “photoelastic 
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method” [91]. Using a photoelastic material and a dedicated wavelength of light, we can 

observe a dark fringe and a light fringe effect. Fig. 5.1 below shows the photoelastic 

fringes without the effects of the T-stress. The second image in Fig. 5.2 shows the 

forward leaning of the fringes due to the influence of the T-stress. 

 

Figure 5.1 Photoelastic fringes without the presents of the T-stress. [91] 

 

 

Figure 5.2 Photoelastic fringes showing the forward leaning effect of the T-stress. 

[91] 

 

Further experiments have considered the influence of the T-stress in predicting crack 

behaviour. This includes evaluating the crack path [148, 149, 150, 151] and the fracture 
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angles [152]. In all, the use of the T-stress theory in predicting crack path and fracture 

angles gives reliable predictions when compared with experimental data.  

In addition, many analytical methods for evaluating the T-stress also exist. This 

includes the stress distribution method, the weight function technique, the Eshelby J-

Integral method and the Eigen series expansion method. The weight function technique 

and the Green function method have been developed by Fett [81, 92, 93, 96] to 

determine the T-stress for a single and a double edge circular disk under several 

boundary conditions. At the same time, Fett [92, 93] and Li [94] used the weight 

function technique to determine the stress intensity factor and the T-stress for a 

rectangular plate with an edge crack. In order to verify the accuracy of the weight 

function solutions, a finite element analysis of the problem was conducted and the result 

shows good agreement. Li [94] concluded that the weight function method as developed 

is adequate to obtain a solution for the T-stress and the stress intensity factors. Also, 

Kfouri [97] proposed the use of the Eshelby theorem to calculate the T-stress by 

expressing the T-stress in terms of the J-Integral method. This approach is deemed to be 

accurate when compared with the Eigen function expansion of stress [34, 97]. The 

accuracy of this method is derived from the distance taken by the J-Integral path away 

from the crack tip. Therefore, avoiding the crack tip singularity terms during the 

analysis. 

The numerical study of T-stress has predominantly been conducted by the FEM 

method. Ayatollahi [84] used the finite element method to determine the T-stress which 

became part of a study into brittle and ductile fracture under mixed mode loading. 

Additionally, the T-stress for several test specimens were determined by Wang [153] 

using the finite element analysis. The test specimens include the SECP, DECP and 

CCP. Other numerical techniques including the boundary element method have also 

been employed in the evaluation of the T-stress. Tan [39] used the “quarter point crack 

tip elements” in conjunction with the boundary element method to determine the T-

stress.  

In recent years, more research on the T-stress regarding interfacial cracks, 

anisotropic and functionally graded materials (FGM) as well as adhesive materials has 

become the focus of many researchers [111, 154, 155, 156, 157]. In terms of anisotropic 

materials and FGM, Kim and Paulino [86] discovered that the difference in elastic 
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modulus has a direct effect on the calculated T-stress. Employing the path independent 

M-Integral technique and the “Subregion boundary element method”, Sladek [34] 

computed the T-stress for interfacial cracks. The solution considered a point force 

applied directly at the crack tip and in the direction parallel to the interface crack plane. 

The interface crack problem is solved by choosing a properly suited auxiliary solution 

which reflects a relationship between the T-stress and the mutual M-Integral method. 

Several test specimens were analysed by this technique and the T-stress for a 

homogeneous and a bi-material case was presented. The study by Sladek [34] covers a 

finite plate with a centre crack, a finite plate with a single edge notch and a finite plate 

with double edge notch. 

The T-stress is an important fracture parameter in respect of fracture behaviour 

and crack stability. This is because the T-stress has certain effects on the crack growth 

direction, the shape and size of the plastic zone, the crack tip constraint and the fracture 

toughness [98, 99, 101, 102]. Chen [103] also attested to the practical use of the T-stress 

method by predicting “crack-growth trajectory in narrow-body fuselages” 

Therefore, this chapter is organised as follows; an overview of the stress 

distribution which indicates the T-stress is introduced for a homogeneous cracked body. 

The finite block method approach to modelling interface crack and the extraction of the 

T-stress using the eigenfunction approach is presented. The capability of the finite block 

method is illustrated by analysing several test cases. Test specimens covered in this 

study include a plate with a centre crack, a plate with a single edge notch and a double 

edge notch plate. 

5.2. The T-stress in a Homogeneous Cracked Body 

For a homogeneous elastic body under pure mode I fracture loading, the 

components of the stress field at the front of the crack tip is described by the William 

stress field solution. This is expressed mathematically for a two-dimensional case as 

[82, 87, 100, 101, 104] 
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where the stress components x  , y  and xy  define the stress state at arbitrary points 

around the crack tip, r and   are the polar coordinates as defined in Fig. 2.3. The T  in 

Eq. (5.1a) is termed the T-stress. A, B and O in Eq. (5.1) and Eq. (5.2) are constants. 

From Eq. (5.1), the T-stress is defined as the second non-singular term in the 

Williams solution. For the purposes of a two-dimensional study, it is convenient to 

consider only the T term for now. As it happens, the stress field for mode II loading is 

also given by the following expression 
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However, it can be observed from Eq. (5.2) that the T-stress term is not replicated 

in the mode II fracture loading. 

The T-stress of a homogeneous cracked medium can be evaluated using the well-

established method of interaction integral. Implementation of the interaction integral 

method and the boundary integral method in finite element analysis [84, 88] and the 

boundary element method [107] has been well reported for evaluating the T-stress in 

homogeneous crack bodies. The popular commercial FEM program ABAQUS also 

utilise the interaction integral method for extracting the stress intensity factor and the T-

stress. Further explanation on the interaction integral approach and it application on 

homogeneous and interface crack is given in [77, 108, 110]. 
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5.3. Determination of the T-stress By the Finite Block Method 

5.3.1 The Eigenfunction Approach 

Following on from Chapter 4, the eigenfunction expansion approach to analyse 

the asymptotic nature of the stress field at the crack tip is extended to the extraction of 

the T-stress in interface crack media. The T-stress formulation for interface crack is 

developed from Eq. (4.15). The equation is repeated here for clarity.  

The integer eigenvalue expression for the stress and displacement is given by 
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The corresponding complex eigenvalues expression for the stress and displacement is 

given by 
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From Eq. (5.3), the T-stress can be found when 1=n  and the T-stresses in two different 

media is given as 

)(

1

)( 4 
IAT = ,  2,1=  and .)1()2( TT =         (5.5) 

It means that the T-stress has a jump over the interface and the gap depends on the 

ratio   as defined in Eq. (4.14). For the finite block method, all the coefficients for the 

integer solutions including 
)1(

InA )1-,...1,0( bNn =  should be determined by the specified 

boundary conditions of the traction and displacement, here bN  is the number of 

boundary collocation point. 

5.4. Numerical Assessment 1 

5.4.1 Parameter Study 

The parameters influencing the accurate calculation of the T-stress of a circular 

disk with an edge crack similar to Fig. 4.3 is considered. The circular disk is loaded by a 

constant normal traction 0  along the circumference. A plane stress assumption is 

considered and the number of collocation points along each side are equal 

MNMNM IIIIII ==== . Hence, the number of collocation points on the interface 

between the blocks and the core is )2(2 − M  and the truncation terms 2−=MNc . The 

disk is centred at the crack tip. Two semi-rings, upper and lower are mapped into a 

normalised domain with precisely two blocks. The numerical results of the T-stress are 

shown in Table 5.1 for the different number of nodes M where 
)1()2( 2 = , 

3.0)2()1( ==  and 2.0/ =Rrc . Numerical solutions with the Boundary Collocation 

Method (BCM) are also reported in Table 5.1 for comparison. It is apparent that the 

agreement is excellent.  



5.4     Numerical Assessment 1 

 

126 
 

Table 5.2 also shows the results of the T-stress for different ratios 
)1()2( /  when 

the number of nodes 16=M  and 2.0/0 =Rr . The results for the T-stress given by Fett 

[118] for a semi-crack disk with homogeneous media, i.e. 1/ )1()2( = , 0 896.1 =T . 

This value is compared against the T-stress value achieved by the FBM method and it 

shows a good result. Table 5.3 shows the numerical results for a variation of the 

Poisson’s ratio 
)2(  where the number of nodes 16=M  , 2/ )1()2( =  and 

2.0/ =Rrc .  

In addition, the accuracy and the convergence of the study is observed and the 

results are reported in Table 5.4 in the case of  0.3)2()1( ==  with different core size. 

It is apparent, the best results can be obtained when 2.0/ =Rrc .  

 

M  0

）2（ /T  

9 2.5659 

11 2.5492 

13 2.5446 

15 2.5432 

BCM 2.5424 

 

 

Table 5.1 Normalised T-stress versus the number of nodes. 
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)1()2( /  
0

）2（ /T  

FBM BCM 

1 1.8966 1.8961 

2 2.5391 2.5425 

3 2.8771 2.8816 

4 3.0875 3.0928 

5 3.2330 3.2378 

6 3.3385 3.3437 

7 3.4192 3.4247 

8 3.4849 3.4886 

9 3.5367 3.5404 

10 3.5784 3.5832 

 

Table 5.2 Normalised T-stress versus the ratio of 
)1()2( / . 

 

 

)2(  0

）2（ /T  

FBM BCM 

0.0 2.5451 2.5393 

0.1 2.5443 2.5403 

0.2 2.5374 2.5414 

0.3 2.5391 2.5425 

0.4 2.5479 2.5436 

 

Table 5.3 Normalised T-stress versus the variation of Poisson’s ratio )2( . 
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Rrc /  
0

）2（ /T  

0.20 2.5391 

0.25 2.5133 

0.30 2.5234 

0.35 2.4913 

0.40 2.4632 

BCM 2.5425 

 

Table 5.4 Normalised T-stress versus the core size Rrc /  compared with the BCM. 

 

Using the disk with an edge crack from Fig. 4.3, parameters with the potential to 

influence the calculated T-stress values were examined. From Table 5.1, the calculated 

T-stress values were compared against the boundary collocation method. By increasing 

the number of nodes from M = 9 to M = 15, the lowest achieved relative error between 

the finite block method and the boundary collocation method equals 3.14 x 10-4%. This 

is significantly small and almost negligible. Clearly, the number of nodes at the crack 

tip is a contributing factor in terms of accuracy of the T-stress result. 

In Table 5.2, the T-stress results are reported after varying the shear modulus 

between block I and block II. The T-stress values from Table 5.2 shows a stable result 

for all values determined by the finite block method when compared against the 

boundary collocation method. The relative error margin is calculated to be 1.7 x 10-3%. 

Certainly, this error value is very small.  
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5.5. Numerical Assessment 2 

In order to demonstrate the effectiveness of the finite block method in determining 

the T-stress value for an interface crack, a bi-material plate with a centre crack (CCP), a 

single edge notched (SEN) and a double edge notched (DEN) were analysed. In all three 

cases the CCP, SEN and the DEN specimens were analysed for various elastic modulus 

ratios, mainly )2()1( / EE , and crack length  a . 

5.5.1 Analysis of a Bi-material Plate with a Centre Crack  

A bi-material plate with a centre crack has a uniform tensile load 0  applied at the 

top and bottom of the plate, similar to Fig. 4.4. Owing to the symmetry with respect to 

the y axis, it is equivalent to solve the boundary value problem for a half plate with four 

blocks for each material (upper and lower media) with plane strain state and Poisson’s 

ratios 3.0)2()1( == . The size of the polygonal core 2.0/0 =Wr  and several crack 

lengths are considered ,4.0/ =Wa  ,5.0  and 6.0 . For each block, the control number of 

collocation point density is given by MNM ==   (  VIII  III ,...,,= ). 

Results of the T-stress versus the ratio of Young's modulus )2()1( / EE  are shown in 

Fig. 5.3, 5.4 and 5.5 for the different crack lengths. The solutions given by Song using 

the Scaled Boundary Finite Element Method (SBFEM) [76] and by Sladek using the 

Boundary Element Method (BEM) [34] are provided for comparison. The T-stress as 

presented here is normalised to the stress 22

00   ,/ III KKKaK += . Also, the reported 

T-stress results considers the effect of material 2. 
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Figure 5.3 Normalised T-stress of a centre cracked plate (CCP) with various elastic 

modulus combinations. Centre crack length a/W = 0.4. 

 

 

 

 
Figure 5.4 Normalised T-stress of a centre cracked plate (CCP) with various elastic 

modulus combinations. Centre crack length a/W = 0.5. 
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Figure 5.5 Normalised T-stress of a centre cracked plate (CCP) with various elastic 

modulus combinations. Centre crack length a/W = 0.6. 

 

In view of the T-stress results shown in Fig. 5.3 to 5.5, the finite block method 

has demonstrated it can produce very good results for different bi-material 

combinations.  

 

By directly comparing the finite block result for the T-stress against the 

boundary element method [34] and the SBFEM method [76], for a/W = 0.5, we can see 

that the T-stress values are almost a perfect match. However, as the crack length is 

increased to a/W = 0.6, the error converges as the bi-material stiffness increases. This 

indifference in the calculated T-stress value is due to the block arrangement. 

Nonetheless, the impact of the block arrangement on the T-stress as shown in Fig. 5.5 is 

minimal.   

5.5.2 Analysis of a Bi-material Plate with an Edge Crack  

The bi-material plate with a single edge notched (SEN) shown in Fig. 4.11 is 

considered for the next T-stress assessment. The SEN bi-material plate has a uniform 

tensile load 0  applied at the top and bottom of the plate. Due to the symmetry of the 

plate with respect to the y axis, it is equivalent to solve the boundary value problem for 

a half plate with four blocks for each material (upper and lower media). All other 

-1.60

-1.40

-1.20

-1.00

-0.80

-0.60

-0.40

-0.20

0.00
0 2 4 6 8 10 12

FBM BEM Method [34]

)2()1( / EE  

 



5.5     Numerical Assessment 2 

 

132 
 

analysis parameters remain unchanged as per the description of the single edge notched 

(SEN) analysis in section 4.6.1.2. The size of the polygonal core 2.0/0 =Wr  and crack 

lengths considered a/W = 0.4 and 0.5. 

Results of the T-stress versus the ratio of Young's modulus )2()1( / EE  are shown in 

Fig. 5.6 and 5.7 for the different crack lengths. The solutions given by Sladek using the 

Boundary Element Method (BEM) [34] are provided for comparison. The T-stress as 

presented here is normalised to the stress 22

00   ,/ III KKKaK += . Also, the reported 

T-stress results considers the effect of material 2. 

 

 

 

  

Figure 5.6 Normalised T-stress of a single edge notched (SEN) with various elastic 

modulus combinations. Edge crack length a/W = 0.4. 
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Figure 5.7 Normalised T-stress of a single edge notched (SEN) with various elastic 

modulus combinations. Edge crack length a/W = 0.5. 

 

For a crack length a/W = 0.4, the plotted T-stress result (Fig. 5.6) shows a slight 

difference between the FBM method and the BEM method by Sladek [34]. At the same 

time when the crack length a/W = 0.5, Fig. 5.7, the gap closes significantly. This is due 

to the slight distortion in the block arrangement at the crack tip. Therefore, to achieve 

good results, it is recommended that the blocks should be organised or arranged in a 

way that produces a geometric symmetry of blocks around the crack tip. Hence, an even 

geometric representation on either flank of the crack tip. This explanation must be taken 

seriously if one is to produce accurate results by the finite block method.  

5.5.3 Analysis of a Bi-material Plate with a Double Edge Crack  

The finite block method is employed to evaluate a double edge notched (DEN) bi-

material specimen. A uniform tensile load is applied at the top and bottom of the plate 

as shown in Fig. 5.8. Owing to the symmetry with respect to the y axis, it is equivalent 

to solve the boundary value problem for a half plate with four blocks for each material 
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(upper and lower media) with plane strain state and Poisson ratios 3.0)2()1( == . The 

size of the polygonal core 2.0/0 =Wr  and crack length a/W = 0.5.  

For each block, the control number of collocation point density is given by 

),...,,(  VIII  IIIMNM ===  .  

Results of the T-stress versus the ratio of elastic modulus is shown in Fig. 5.9. The 

solutions given by Sladek using the boundary element method (BEM) [34] are provided 

for comparison. The T-stress as presented here is normalised to the stress 

22

00   ,/ III KKKaK += . Also, the reported T-stress results considers the effect of 

material 2. 

 
Figure 5.8 A finite block setup of a bi-material plate with a double edge crack. The 

tensile loads are uniformly applied at the top and bottom of the plate. Crack length a/W 

= 0.5. 
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Figure 5.9 Normalised T-stress of a double edge notched (DEN) with various elastic 

modulus combinations. Double edge crack of length a/W = 0.5. 

 

 

By applying an organised block arrangement with symmetry (equal block 

lengths behind and ahead of the crack tip) around the crack tip for a double edge crack, 

the finite block method produced very good result as presented in Fig. 5.9. Again, the 

finite block method with the Lagrange series interpolation has demonstrated it can 

determine the T-stress of an interface crack with only 8 blocks. 

In all cases of the finite block method evaluation of the T-stress for an interface 

crack, several material combinations were considered. The analysis plotted in Fig. 5.9 is 

shown to be stable for bi-materials in the range  1/ )2()1( =EE   to  10/ )2()1( =EE . 
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5.6. Summary 

In this chapter, the T-stress which is an important fracture parameter is 

extensively discussed. An expression for the T-stress at the crack tip was developed for 

the finite block method in conjunction with the William’s series expansion and the 

eigenfunction approach.  

Several numerical assessments were considered as part of this study. A 2D plate 

with a centre crack (CCP), a single edge notched (SEN) and a double edge notched 

(DEN) were successfully analysed. The accuracy attainable by the finite block method 

and the crack tip singular core is clearly visible when compared with the boundary 

element method [34] and the SBFEM method [76]. 
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CHAPTER 6 
 

 

 

6 Determination of Dynamic Stress 

Intensity Factor and the Dynamic 

T-stress for Bi-Materials Using the 

Finite Block Method 
 

 

 

 

6.1. Introduction 

A brief introduction on dynamic stress intensity factor was fore-mentioned in 

Chapter 2 of the literature review. As noted, the dynamic stress intensity factor is a 

significant characteristic of a cracked body. A good understanding and determination of 

the dynamic stress intensity factor and the dynamic T-stress will assist in deciding the 

operating limits of a cracked engineering component. The study of dynamic fracture 

mechanics can be categorised into an experimental study and a computational study. 

Experimental investigation of dynamic stress intensity factor (DSIF) has been a 

subject of interest by many researchers. The aim is to gain a good understanding of the 

effects and influence of DSIF on material failure. In dynamic fracture mechanics, the 

emphasis is on the fracture toughness of the material. The effect of the dynamic loading 

can lead to the fracture of the material. Additionally, research shows that the dynamic 
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fracture toughness is a function of the rate of change in the stress intensity factor. Works 

by many researchers including Dally and Baker [126], and Kalthoff [46] have shown 

that the dynamic fracture toughness is much higher than the static fracture toughness. 

Dynamic loading of a single edge notch (SEN) by Owen [127, 128] at low loading rate 

obtained a dynamic fracture toughness of < 104 MPa 1−sm . A follow-up experiment 

by Owen [127], used a split Hopkinson bar test which gave a dynamic fracture 

toughness of > 105 MPa 1−sm . Further work by Owen [128] produced similar results. 

Therefore, it can be deduced that at low loading rates (K < 104 MPa 1−sm ), the 

dynamic fracture toughness is approximately the same as quasi-static value. However, 

at higher loading rates, a steep rise of the dynamic fracture toughness is seen when 

compared with quasi static results.  

In addition to experimental studies, a great deal of work on numerical 

investigations of a cracked body under dynamic loading continues to be published. 

Using the finite element method, Basu and Narasimhan [129] investigated the influence 

of “inertia and strain rate sensitivity” on fracture initiation due to mode I dynamic 

loading. 

By contrast, limited research has been devoted to the study of T-stress of a 

cracked media under dynamic loading. Earlier work on this feature by Koppenhoefer 

[112] considered the impact loading of a pre-cracked Charpy specimen where the Q-

Stress is determined. The T-stress is considered to be equivalent to the Q-Stress for a 

ductile solid under dynamic loading [112]. In this case, Q is the stress triaxiality. The 

study by Koppenhoefer shows a negative Q-Stress for the loading history. Basu also 

investigated the triaxiality parameter Q for a single edge notch (SEN) specimen under 

dynamic loading [130]. One of the main conclusions drawn from their investigation is 

said to be the inexistence of constraint loss under static loading. In effect, the SEN 

specimen under high loading rate shows a strong negative Q-Stress value.  

To evaluate the stress intensity factors accurately for both static and dynamic 

cases, many new techniques have been developed recently. The extended finite element 

method was applied to dynamic cracks in a piezoelectric solid by Bui [120], Liu [121], 

Bui [122] and Yu [119]. The singular edge-based smoothed finite element method for 

stationary dynamic crack problems in 2D elastic solids was demonstrated by Liu [116]. 
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It is also understandable that each of these numerical methods has its own advantages 

and disadvantages.   

In this chapter, the dynamic stress intensity factor and the dynamic T-stress is 

evaluated for a bi-material media with an interface crack. The William’s solutions for a 

static case is used to replace the transformed solution in the process of resolving the 

complexity of the William’s solution in the transformed domain. This is then 

incorporated in the finite block method to determine the complex dynamic stress 

intensity factors and the dynamic T-stress for an interface crack. Due to the lack of 

exact analytical solution for the dynamic loading of a bi-material plate with a centre or 

an edge crack, the numerical result obtained by the finite element analysis (ABAQUS) 

are presented on the same figures for comparison. 

6.2. The Concept of Elastodynamic Fracture Mechanics 

6.2.1 Elastodynamic Analysis 

In solving elastodynamic problems, one can approach it by the time-domain or the 

frequency-domain method. The time dependent approach requires time integration of 

the domain at every time step increment [131]. The frequency-domain approach 

requires the use of the Laplace transform in solving the initial problem in the Laplace 

transform domain before proceeding to a solution in the real domain by the inversion 

Laplace transform method such as the one proposed by Durbin [115]. Another dynamic 

technique called the Newmark time integration method was proposed by Newmark 

[141] and this can be incorporated in FEM methods for the evaluation of structure 

dynamics [116].   

6.2.2 Equation of Motion for a Cracked Elastic Medium 

In general, the study of dynamic fracture mechanics considers the inertial effects 

during the dynamic loading. Therefore, to describe the dynamic behaviour of a cracked 

medium under body forces, the governing equation of the medium is expressed. For a 

2D homogeneous, isotropic and elastic body 
2  bounded by boundary tu =   
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and 0= tu  with an initial traction-free crack boundary represented by C  as shown 

in Fig. 6.1. 

 

 

 

 

 

 

Figure 6.1 A 2D domain with notations for the governing equation. 

 

6.3. Finite Block Method in Elastodynamic 

For a two-dimensional dynamic problem in a Cartesian coordinate system, the 

equilibrium equations are given by  
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where xb  and yb  are the body forces. Substituting Eq. (4.21) and (4.22) into Eq. (6.1) 

gives, for plane stress state 
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The expression relating the stress and strain as expressed in the finite block 

method is given by Eq. (4.25). For the dynamic case, substitute the stresses from Eq. 

(4.25) into the equilibrium Eq. (6.1) and (6.2) for each collocation point P  which gives 
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where 
T

xkx b }{=b   and 
T

yky b }{=b  are the nodal value vectors of the body forces. The 

boundary conditions of the displacements and the tractions are described as  

,)()( 0 PuPu xx =   PuPu xy ,)()( 0=  ,uP        (6.4) 

for the displacements and 
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for the traction. The initial conditions are set to zero when 0=t , given 

.0==== yuxuuu yxyx  

Alternative expression for Eq. (6.5a) gives 
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for the tractions, where 
0000   and   , , yxyx ttuu  are the given boundary values of the 

displacement and the traction on the boundaries u  and t  respectively and  ),( yx nnn  is 

the outward normal to the boundary.  

The Laplace transformation of a function ( )tf  in real time domain into the 

Laplace domain is defined as   

( ) ,)(
~

0

dtetfsf st−



=            (6.6) 

in which s  is the Laplace transform parameter. 

By applying the Laplace transformation over both sides of the equilibrium Eq. 

(6.3) [143] for zero initial condition give 
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xb
~

 and yb
~

 are the body forces, xu~  and yu~  are the displacement matrix expressed in the 

Laplace domain. 

With zero body forces and zero initial condition, Eq. (6.7) reduces to  
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Similar to the stationary crack analysis, and in the case of one block there are  

)(22 NMQ =  linear algebraic equations both from Eq. (6.8) and boundary conditions 

from Eq. (6.4) and (6.5). By solving the set of linear algebraic equations, all nodal 

values of the displacements can be obtained. 
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For two blocks and above, the connection conditions on the interface 
)(

int

III,  mainly 

the displacement and the traction between two blocks (I, II) must be satisfied as follows  
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In solving the Laplace Transform, the inverse strategy proposed by Durbin [115] 

was adopted. This is a simple and an accurate technique. Selecting ( )1K+  samples in 

the transformation space K,...,1,0, =k sk , the transformed variables ),(
~

ksPf are 

obtained by the FBM. Then, the time dependent function ),( tPf can be approximated 

by 
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where ),(
~

ksPf  denotes the transformed variable in the Laplace domain and the 

parameter of the Laplace transform 0/)2( Tiksk  +=  )1( −=i , in which   and 0T  

are two free normalised parameters. The parameter 0T  depends on the observing period 

in the time domain. In the follow-up examples, all variables are normalised for the sake 

of convenience for the analysis. The other optional method is the time-domain method 

and for this, the finite difference technique should be used [118].  

As the Williams solution in the transformed domain is too complicated even for 

the homogeneous case )( )1()2( EEE ==  to be obtained, the Williams solution for a 

static case is utilised instead. The conclusion made by Li [167] states that the Williams 

solution can replace the transformed solutions in the transformed domain with Deng’s 

series [117] for isotropic media if the radius of the core is small enough. 
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6.4. Numerical Assessment 1 

6.4.1 Dynamic Loading of a Finite Block Plate with a Central 

Crack 

Consider a square plate with a central crack of length 2a loaded by uniformly 

distributed normal tractions )(0 tH  on the top as shown in Fig. 6.2, where )(tH  is a 

Heaviside function. Due to the symmetry with respect to y axis, only half of the plate is 

modelled with plane stress assumption, Poisson’s ratio 3.0)2()1( ==  and the mass 

density  == )2()1(
.  

 

 

Figure 6.2 Rectangular plate containing central crack under dynamic load. 

 

Firstly, a homogeneous material plate simply supported on the bottom is 

considered for the first assessment. In the Laplace transform and the inverse procedure, 

the free parameter K is a variable. Therefore, an optimum value for K must be 

determined in the early stages of this study. The free parameter K is tested using the 

following values, K = 10, 15, 20 and 25. Other parameters in Eq. (6.10) are defined as;
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5=  and 20/ 00 =tT , where 00 / cWt =  and velocity / 0 Ec = . The plate is divided 

into six blocks with a singular core size 2.0/0 =Wr  and the number of collocation point 

density 8=M .  

Fig. 6.3 to 6.8 shows the variations of the normalised mode I and II stress 

intensity factor and the normalised T-stress plotted against the normalised time Wtc / 0 . 

The impact of the various values of K on the calculated IK , IIK  and T-stress as 

determined by the FBM method are compared. The FBM dynamic results and the 

numerical results by the FEM method (ABAQUS) are presented in the same figures for 

comparison.  

Due to the unavailability of an exact analytical solution of a cracked plate under 

dynamic loads, it is within reason to use an established numerical method to validate the 

FBM dynamic analysis. There are many commercial packages available for numerical 

analysis. The most popular of these is the commercial software ABAQUS which has an 

already verifiable FEM numerical codes. Therefore, it is rational to repeat the dynamic 

analysis with ABAQUS in order to validate the FBM dynamic analysis. For this 

purpose, a homogeneous plate is first analysed to establish the accuracy of the FBM and 

also, several parameters were varied in order to optimise the FBM method for dynamic 

analysis. Further down in this chapter, the true capabilities of the FBM method is tested 

by performing several analyses on interface cracks between bi-materials.  

Additionally, successive numerical assessments reported in this chapter will show 

that the FBM method can achieve the same level of accuracy as ABAQUS but using 

minimum computational effort. As explained in the FBM dynamic model, it can be 

observed that less work is required in setting-up the dynamic model for analysis. 

Contrary to the FBM modelling process, the FEM model for the dynamic analysis 

proved to be difficult and challenging as it was observed. The FBM analysis requires 

several blocks, 6 in total. Meanwhile, ABAQUS requires a high mesh density in order 

to achieve a mesh convergence. The mesh convergence study is reported in Appendix 

C. An attempt to localised the mesh density at the crack tip was very difficult to 

achieve. A mesh partitioning was applied to the whole model and a transitional mesh 

was applied as we move from the fine mesh region to the coarse mesh region. This 
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process proved to be time consuming when trying to achieve a structured mesh. 

Therefore, the only outcome was to increase the global mesh density in a structured 

form. This then resulted in a converged mesh suitable for the dynamic analysis. 

Details of the FEM model (ABAQUS) as used in this study is explained below:  

Details of the ABAQUS Dynamic Analysis 

In this chapter, the finite block dynamic analysis was verified by performing the 

same dynamic analysis using ABAQUS. In ABAQUS the user is presented with two 

types of dynamic analysis. These are the implicit and the explicit method. The explicit 

method in ABAQUS determines the values of dynamic quantities at tt + , and these 

values are based entirely on the availability of the dynamic quantities at time t. 

However, the implicit dynamic analysis is performed by direct time integration using 

the central difference operator.  

As reported in ABAQUS, the explicit method is conditionally stable and the 

limits of the stability is based on the duration for an elastic wave to cross the smallest 

element dimension in the model [133]. This might lead to an early termination of the 

analysis by ABAQUS if the analysis does not converge for a given time interval. The 

implicit method overcomes this stability issues by solving for the dynamic quantities at 

tt + .  

The implicit scheme in ABAQUS uses an operator defined by Hilber and Huges 

[168], and the backwards Euler operator for the time integration. Effectively the Huges 

operator is a generalised form of the Newmark operator with a capability to control the 

numerical damping [133].  

Some level of numerical damping is required since a change in the time step 

induces some level of noise into the solution. By introducing some numerical damping 

into the analysis removes the high-frequency noise from the solution.  

In the ABAQUS implicit dynamic analysis, no material damping was 

necessarily required or specified. By using the ABAQUS default settings where the 

Hilber-Hughes Operator Parameter 05.0−=  is recommended, the remaining damping 

parameters are adjusted accordingly during the analysis. 
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Based on the explanation outlining the differences between the explicit and the 

implicit dynamic methods, the implicit dynamic method was employed in this study. 

Using the parameters defined below, several analyses for an interface crack between a 

bi-material as described per FBM dynamic analysis was conducted. The dynamic stress 

intensity factors and the T-stress as determined by the implicit dynamic method is 

plotted on the same graph alongside the results attained by the FBM. 

ABAQUS Implicit Dynamic Analysis Parameters 

• Analysis performed using ABAQUS version 6.9-2. 

• Type of analysis: Fixed Time Increments 

• Time Increment = 0.01 

• Time Period = 16.0     

• Material density, elastic modulus and the Poisson’s ratio is the same as defined 

for the model used in the FBM dynamic analysis. 

• Hilber-Hughes Operator Parameter 05.0−=  

To ensure that the results produced by ABAQUS is accurate, a mesh 

convergence study was conducted on the FEM model dedicated for the dynamic 

analysis. Detailed explanation of the mesh convergence study is reported in Appendix C 

of this thesis. From the convergence study, the analysis began to converge when a total 

of 800 elements was applied to the FEM model. Furthermore, since it is recommended 

by ABAQUS to use a high mesh density when performing a dynamic analysis via the 

implicit method, it is within reason to opt for a mesh with 8978 elements. This will 

ensure the FEM model converges during the analysis. As it was the case, all the 

ABAQUS implicit dynamic analysis was run successfully without any premature 

terminations. 
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Figure 6.3 Normalised stress intensity factor atK I  0/)(  versus the normalised 

time  Wtc / 0 . The graph shown here compares the effects of the free parameter K on 

the results. 

 

Figure 6.4 Normalised stress intensity factor atK I  0/)(  versus the normalised 

time  Wtc / 0 . The graph shown here has the results for free parameter K = 10, 15 and 

20 omitted. 
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Figure 6.5  Normalised stress intensity factor atK II  0/)(  versus the normalised 

time  Wtc / 0 . The graph shown here compares the effects of the free parameter K on 

the results. 

 

 

Figure 6.6  Normalised stress intensity factor atK II  0/)(  versus the normalised 

time  Wtc / 0 . The graph shown here has the results for free parameter K = 10, 15 and 

20 omitted. 
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Figure 6.7 Normalised T-stress 0/)( tT  versus the normalised time  Wtc / 0 . The 

graph shown here compares the effects of the free parameter K on the results. 

 

 

 

Figure 6.8 Normalised T-stress 0/)( tT  versus the normalised time Wtc / 0 .The 

graph shown here has the results for free parameter K = 10, 15 and 20 omitted. 

 

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10 12 14 16

FBM Free Parameter K = 10 FBM Free Parameter K = 15
FBM Free Parameter K = 20 FBM Free Parameter K = 25
ABAQUS

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10 12 14 16

FBM ABAQUS

 

Wtc /0  

 

Wtc /0  



6.5     Numerical Assessment 2 

 

151 
 

Initial analysis of a homogeneous plate as calculated by the finite block method 

is shown in Fig. 6.3 through 6.8. The FBM plotted results of the dynamic stress 

intensity factors )(tK I  and )(tK II  against the FEM (ABAQUS) equivalent in Fig. 6.3 

to 6.6 shows that the achieved results are in phase with the ABAQUS analysis. For a 

moderate level of collocation point density M = 8, the result shows the finite block 

method can produce very good results when compared with ABAQUS where a large 

number of elements is utilised in the analysis. 

For an isotropic analysis, the finite block method is capable of calculating the 

dynamic stress intensity factor for mode II crack easily. Owing to the small values of 

the )(tK II  stresses, a singular core size of 2.0/0 =Wr  and a collocation point density of 

8=M  was adequate enough to produce very good result. When it comes to the 

dynamic T-stress, Fig. 6.7 and 6.8 exhibits no signs of instability and the wave profile is 

almost a perfect match against the FEM (ABAQUS) results. 

In this study, the optimum value for the free parameter K is determined to be 25. 

After varying the free parameter K from 10 to 25, it is clear from Fig 6.3, 6.5 and 6.7, 

the impact of the free parameter on the SIF and the T-stress is minimum. Therefore, it is 

acceptable to use K = 25 for successive analysis. 

6.5. Numerical Assessment 2 

6.5.1 Convergence Study: number of nodes M 

In order to observe the convergence of the finite block method under dynamic 

loading, different densities of collocation points are considered. A similar two-

dimensional plate with a centre crack, six blocks and a singular core (Fig. 6.2) as 

described in Numerical Assessment 1 is utilised in this study. 

For simplicity, a homogeneous plate and a singular core size 2.0/0 =Wr  is 

maintained for the different number of collocation points. The corresponding dynamic 

stress intensity factors for the different node numbers M = 7, 8 and 9 are shown in Fig. 

6.9 through 6.13. 
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Figure 6.9 Normalised stress intensity factor atK I  0/)(  for the different 

collocation point densities versus the normalised time  Wtc /0 .  

 

Figure 6.10 Normalised stress intensity factor atK II  0/)(  for the different 

collocation point densities versus the normalised time  Wtc /0 .  
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Figure 6.11 Normalised stress intensity factor atK II  0/)(  for the different 

collocation point densities versus the normalised time Wtc /0 . 7=M  omitted from the 

graph. 

 

Figure 6.12 Normalised T-stress 0/)( tT  for the different collocation point densities 

versus the normalised time  Wtc /0 .  
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Figure 6.13 Normalised T-stress 0/)( tT  for the different collocation point densities 

versus the normalised time Wtc /0 . 7=M  omitted from the graph. 

 

From Fig. 6.9, the normalised dynamic stress intensity factor for mode I in a 

homogeneous plate gives very good result when compared with the FEM (ABAQUS) 

analysis. This is true for all collocation point densities M = 7, 8 and 9. However, the 

same cannot be said for the mode II dynamic stress intensity factor. Due to the small 

magnitude of the )(tK II  value at the crack tip, it is observed that an increase in the 

number of collocation points at the crack tip is necessary.  

As can be seen from Fig. 6.10 the dynamic stress intensity factor is directly 

influenced by the number of nodes used in the analysis. From Fig. 6.10 we can see that 

when M = 7, there is a high level of resonance or fluctuations of the dynamic stress 

intensity factor for )(tK II . By omitting M = 7 from the plotted result, Fig. 6.11 shows a 

much stable result for collocation point densities M = 8 and M = 9. 

In Fig. 6.10, the instability of the )(tK II  value is noted to be along all-time 

variables for M = 7. The same cannot be said for the dynamic T-stress values shown in 

Fig. 6.12. The dynamic T-stress values shows high resonance regions where the 

calculated magnitude of the T-stress is very small or close to zero. By increasing the 

collocation point densities to M = 8 and M = 9, a stable result is produced by the finite 

block method. Fig. 6.13 shows that the dynamic T-stress as calculated by the finite 
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block method is in good agreement with FEM (ABAQUS) results when using 

collocation point densities M = 8 and M = 9. 

6.6. Numerical Assessment 3 

6.6.1 Convergence Study: singular core 

The convergence study continues from Numerical Assessment 2. In the finite 

block method dynamic analysis, the effect of the singular core size is observed for the 

different ratios of Wr /0 . In this assessment, Wr /0  is observed at 2.0/0 =Wr , 25.0  

and 3.0 . For simplicity, the homogeneous plate from Fig. 6.2 and a collocation point 

density 8=M  is considered.  

The dynamic stress intensity factor and the T-stress are shown in Fig. 6.14 to 6.16 

for different sizes of the singular core centred at the crack tip.  

 

 
 

 

Figure 6.14 Normalised stress intensity factor atK I  0/)(  for the different 

singular core size versus the normalised time Wtc /0 . 
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Figure 6.15 Normalised stress intensity factor atK II  0/)(   for the different 

singular core size versus the normalised time Wtc /0 . 

 

 

 

Figure 6.16 Normalised T-stress 0/)( tT  for the different singular core size versus 

the normalised time Wtc /0 . 
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Based on the observations from Numerical Assessment 1 and 2, it was 

reasonable to evaluate the influence of the singular core on the dynamic stress intensity 

factor values and the dynamic T-stress values. Using a collocation point density M = 8, 

Fig. 6.14 shows that the core size has little influence on the calculated )(tK I  values by 

the finite block method. However, in Fig. 6.15 the calculated )(tK II  values by the finite 

block method shows that by reducing the core size from 3.0/0 =Wr  to 2.0/0 =Wr , the 

relative error between the FEM (ABAQUS) results and the finite block results is 

significantly reduced and the )(tK II  values were brought closer together.  

Hence, using a smaller core size will produce accurate results by the finite block 

method even at a moderate level collocation point density of  M = 8. A similar pattern is 

seen from Fig. 6.16 where the dynamic T-stress value )(tT  shows no substantial 

changes from the normalised time 0/0 =Wtc   to 9/0 =Wtc . Beyond normalised time 

9/0 =Wtc , the  )(tT  values as calculated by the finite block method are still closer to 

the FEM (ABAQUS) results. 

6.7. Numerical Assessment 4 

6.7.1 Interface Crack 

In this assessment of the finite block method, a centre interface crack between a 

bi-material plate and under the same loading condition as in Numerical Assessment 1 is 

considered. All parameters are the same except the Young’s modulus EE =)1( , EE 2)2( =  

for the first bi-material combination and EE =)1(  and EE 3)2( =  for the second bi-

material combination. The ratio for the singular core size 2.0/0 =Wr  is maintained for 

the different bi-material combinations and the number of nodes 8=M .  The time 

dependent normalised stress intensity factors atK I  0/)(  , atK II  0/)(  and the T-

stress 0/)( tT  are shown in Fig. 6.17 to 6.22 respectively. 
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Figure 6.17 Normalised stress intensity factor atK I  0/)(  versus the normalised 

time Wtc /0 . Young’s modulus EE =)1( , EE 2)2( = . 

 

 

 

Figure 6.18 Normalised stress intensity factor atK II  0/)(  versus the normalised 

time Wtc /0 . Young’s modulus EE =)1(
, EE 2)2( = . 
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Figure 6.19 Normalised T-stress 0/)( tT  versus the normalised time Wtc /0 . 

Young’s modulus EE =)1( , EE 2)2( = . 

 

 

 

Figure 6.20 Normalised stress intensity factor atK I  0/)(  versus the normalised 

time Wtc /0 . Young’s modulus EE =)1( , EE 3)2( = . 
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Figure 6.21 Normalised stress intensity factor atK II  0/)(  versus the normalised 

time Wtc /0 . Young’s modulus EE =)1( , EE 3)2( = . 

 

 

 

Figure 6.22 Normalised T-stress 0/)( tT  versus the normalised time Wtc /0 . 

Young’s modulus EE =)1( , EE 3)2( = . 
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The previously acquired results from Numerical Assessments 1 through 3 has 

shown that in order to determine the dynamic stress intensity factors and the dynamic T-

stress accurately for a bi-material, the optimum values of the following parameters were 

chosen; the collocation point density M = 8, the free parameter K = 25 and the core size 

2.0/0 =Wr . 

In Fig. 6.17 and 6.20, the normalised dynamic stress intensity factor values for 

mode I is presented for 2/ )2()1( =EE  and 3/ )2()1( =EE . The normalised )(tK I  values 

as calculated by the finite block method shows good agreement when compared with 

the FEM (ABAQUS) results after observing a complete wave cycle.  

As noted in the previous numerical assessment, the normalised dynamic stress 

intensity factor values of )(tK II  can become unstable. According to the results 

presented in Fig. 6.18 and Fig. 6.21, the )(tK II  values for an interface crack as 

determined by the finite block method gives good result when compared against the 

FEM (ABAQUS) result. 

6.8. Summary 

In this chapter, the elastodynamic formulation for assessing interface cracks by 

the finite block method is developed. The Williams series interpolation for a static case 

was employed in constructing the finite block method. The developed elastodynamic 

problem as expressed in the Laplace transform domain is approximated by the Durbin’s 

inversion method. Also, the singular core as explained in Chapter 4 was utilised to 

improve the calculation of the dynamic stress intensity factor and the dynamic T-stress. 

In this study, several numerical assessments were carried out for a 2D plate with a 

centre crack. A homogeneous plate with a centre crack and subjected to dynamic loads 

was used in the convergence study. This was followed by the dynamic assessment of 

interface crack for several bi-material combinations. In all cases, the achieved dynamic 

stress intensity factor and the T-stress were directly compared against FEM (ABAQUS) 

analysis. 
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CHAPTER 7 
 

 

 

7 The Assessment of FBM 

Method Against Other 

Numerical Techniques 
 

 

 

 

7.1. Introduction 

Extensive reviews of interface crack by the finite element method has revealed 

several techniques for determining the complex stress intensity factor between bi-

materials. The complex stress intensity factor of an interface crack can be extracted by 

the displacement approach or the interaction integral approach [86, 106, 107]. Another 

common technique includes using the finite element method to obtain the displacement 

field around the crack tip. Using the displacement along with formulations in linear 

elastic fracture mechanics, the SIF of the crack can be extrapolated after discarding 

estimates within the vicinity of the crack tip [37]. In most cases this technique is applied 

to a cracked homogeneous material. However, applying this technique to an interface 

crack between bi-material in order to ascertain the complex SIF can be challenging. 

Also, the study of bi-materials which is an important part of this research is not 

limited to the combination of two plates with different material properties, it can also be 

extended to composite materials. Thus, the study of debonding between a fibre and a 
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matrix is warranted. Using the FEM method, Aslantas [80] analysed the interface crack 

of a matrix with a single fibre. The cracked interface is assumed to take the shape of a 

ring. The complex stress intensity factors are then determined using the displacement 

correlation technique. In this particular piece of work, the near crack tip nodal 

displacement, used in the displacement correlation technique was determined by the 

FEM method. 

On the other hand, there are fracture analysis methods and formulations that 

struggles to calculate accurately the SIF of an interface crack by utilizing just the crack 

tip nodal displacements and stresses produced by an FEM analysis. For example, the 

fracture analysis results produced by the near crack tip nodal stress is shown to be 

unstable for an interface crack [137]. This is due to the oscillatory effect of the stresses 

near the crack tip.  

Additionally, a strong deformation of the elements along the crack face can be 

observed from an FEM interface crack analysis. Hence, the nodes along the crack face 

will also see a strong deformation near the crack tip. This means, a fine mesh would be 

required around the crack tip in order to reduce the effects of the deformation. 

Therefore, using the Displacement Correlation Technique for an interface crack 

assessment can be difficult and computationally costly. 

For a bi-material made of two isotropic media, the interaction integral method in 

conjunction with the finite element method is a common approach in determining the 

complex SIF. The interaction integral method is based on the J-Integral which is widely 

accepted as a fracture mechanic parameter. The J-Integral can be directly related to the 

stress intensity factor and the energy release rate. Some of the main advantages of the 

interaction integral method include the provision of numerical efficiency and the high 

level of accuracy in determining the complex stress intensity factor. The interaction 

integral method as explained in [107] can also be used for evaluating the T-stress of an 

interface crack. The interaction integral is based on a conservative integral for two 

admissible state of an elastic solid, where the two states are defined by an actual and 

auxiliary state [77, 109, 110]. 
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The success of the interaction integral method has led to an extensive commercial 

usage in evaluating the stress intensity factor of a cracked elastic media. The 

commercial FEM software ABAQUS is a good advocate of the interaction integral 

method. ABAQUS analyses interface cracks using this technique in order to determine 

the complex stress intensity factor and the T-stress. In addition to the study of bi-

materials using the FEM method, Amit and Kim [111] evaluated the stress intensity 

factor and the T-stress in a functionally graded material using the interaction integral 

method and the FEM method. 

As reported previously in Chapter 4, the finite block method has demonstrated a 

strong capability in determining the complex stress intensity factor of an interface crack. 

The FBM method starts the interface crack analysis by approximating the nodal 

displacements around the crack tip using a singular core. This is then followed by 

approximating the complex stress intensity factor using the Williams series. Indeed, it 

can be said that the strength of the FBM is in its ability to approximate the nodal 

displacement around the crack tip region and then eventually the constants of the 

Williams series. 

This section of the thesis compares the FBM method against other numerical 

techniques in order to assess the sheer capability for accurately calculating the complex 

SIF. Previously, the calculated FBM results for the complex SIF was compared against 

the J-Integral technique, which is the fracture formulation used by ABAQUS. This 

section allows the FBM crack analysis technique, mainly the Williams eigenfunction 

series to be compared against the stress proportionality method and the displacement 

correlation technique.  

In the interest of balance and credibility of the comparison, enhancements have 

been made to the DCT method and the proportionality method in order to improve the 

accuracy of the stress intensity factor. The remainder of this chapter is therefore 

dedicated to the explanation of the detailed improvements to the DCT method and the 

proportionality method. The improved results are then compared against the FBM 

results for a cracked plate. 
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The chapter is organised in the following manner. The stress intensity factor is 

approximated using the finite element method and the proportional method. This will 

lead to the proposed technique called the stress proportionality method and allows for 

reasonable approximation of the stress intensity factors for various interface cracks and 

material combinations. This is followed-up by the determination of the complex stress 

intensity factor for interface crack by making some modifications to the displacement 

correlation technique. 

7.2. Evaluation of Interface Crack by the Finite Element Method 

Several techniques for evaluating the interface crack of bi-materials using the 

FEM method has been reviewed for this chapter. As a result of this review, the need for 

further FEM techniques to efficiently determine the stress intensity factor for interface 

crack is always desirable. Hence, the work on the proportionality method in conjunction 

with the FEM method as reported below. 

7.2.1 The Proportionality Method for Interface Crack 

Nisitani has been credited with some of the early works on FEM study of cracks 

of a homogeneous plate [135]. Teranishi [139] and Nisitani [140] determined the stress 

intensity factor for a mode I crack based on the effectiveness of the crack tip stresses 

determined by the finite element method. Since the proposed stress method for 

evaluating a homogeneous crack by Nisitani, the proportionality method has been 

extended to the study of interface crack. Although the proportionality method is deemed 

to be simple it is also regarded as a very effective technique in evaluating interface 

crack by the finite element method. 

The use of FEM nodal stresses ahead of the crack tip to determine the stress 

intensity factor of an interface crack has proven to be unstable [137]. This is due to the 

oscillatory effect of the interface crack and this can lead to higher error margins. By 

contrast, the FEM nodal displacement of the crack opening can produce a far better 

result when utilised in a COD method to determine the SIF. The COD method can 

produce a much better result when compared with the stress approach.  
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Another limiting factor of the proportionality method is the use of the same FEM 

mesh in the reference problem as well as the given unknown problem. This is quite 

difficult to achieve unless the same crack tip mesh is carved out from one model and 

used in another. 

The next section describes the principles of the proportionality method. Using the 

finite element analysis in conjunction with a reference model, the stress intensity factor 

of a given problem is determined using the proportionality method.  

7.2.2 Principles of the Proportionality Method in Homogeneous 

Materials 

The proportionality method is explained by considering a crack in a homogeneous 

plate. Under normal mode I loading of a homogeneous plate with a crack plane at 0=

, the stress distribution ahead of the crack tip is given by  

r

K I
y




2
=  ,            (7.1) 

where y  is the crack tip stress acting in the y-direction. For a given radius from the 

crack tip the function in Eq. (7.1) is said to be constant, therefore, given the expression  

constant
K I

y
=


  .           (7.2) 

Based on the fact established in Eq. (7.2), a stress intensity factor expression can be 

made between two different crack problems.  If the stress intensity factor for a reference 

problem A is known then by equating Eq. (7.2) for a given unknown problem B at the 

same radius from the crack tip gives 

y
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  .            (7.3) 

In Eq. (7.3), 


IK  is termed the stress intensity factor for the reference problem 

which is known. The stress intensity factor for the given unknown problem IK  is easily 
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determined using Eq. (7.3). The reference stress and the stress from the given unknown 

problem can be deduced from a finite element analysis. 

7.2.3 Principles of the Proportionality Method for Interface Crack 

The proportionality method cannot be used for evaluating interface crack without 

some level modification. This is due to the oscillatory effect of the stress component at 

the crack tip. In general terms, the stress at the crack tip is related to the complex stress 

intensity factors according to 






i

III
xyy

a

r

r

iKK
i 







+
=+

22
,          (7.4) 

and expressed in terms of IK  and IIK  gives [136], [137] 
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For a constant radius emanating from the crack tip the oscillatory terms are said to be 

the same for two different crack problems, therefore,  
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In the same way as a homogeneous crack problem, a similar proportionality expression 

is developed for an interface crack, given as 
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 .          (7.8) 

As noted, the stress intensity factors with the asterisk superscript represent the reference 

problem determine by the finite element method.  
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For an interface crack, a similar stress distribution around the crack tip can be 

obtained by the finite element method according to the following condition 

FEMy

FEMxy

FEMy

FEMxy

,

,
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,

*

,








=  .           (7.9) 

In this case the stress values 
*

,FEMxy  , 
*

,FEMy , FEMxy ,  and  FEMy,  are calculated by 

FEM. 

Therefore, the stress intensity factors of a given interface crack problem based on 

the known stress values is given by 
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7.2.4 Loading Stress for the Reference Problem  

The stress intensity factor for the reference problem based on the model and 

loading shown in Fig. 7.1 is defined as 

( ) ( ) iaiSTKK III 21** ++=+  .       (7.12) 

In order to determine the values of T and S, a tensile and shear stress are superimposed 

on the reference problem. Additionally, the stresses near the interface crack subjected to 

the loads T and S are given by 

ST ST

FEMy

ST

FEMyFEMy += ==== *** 1,0

,

0,1

,,   ,              (7.13a) 

ST ST

FEMxy

ST

FEMxyFEMxy += ==== *** 1,0

,

0,1

,,   ,               (7.13b) 

where  *0,1

,

== ST

FEMy  and *0,1

,

== ST

FEMy  are the stresses for T = 1, S = 0, *1,0

,

== ST

FEMy   and  

*1,0

,

== ST

FEMy  are the stresses for T =  0, S = 1 respectively. 

By setting T = 1 and substituting Eq. (7.13) into (7.9) yields 
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Figure 7.1 The reference problem. 

 

7.2.5 Conditions of the Proportionality Method 

The use of the proportionality method requires certain conditions in order to 

achieve good results. These conditions include; 

• The same crack length for both the reference problem and the given unknown 

problem.  

• The oscillatory term of the reference problem and the given unknown problem 

must be changed to be the same. This is achieved by selecting a nodal stress at 

the same radius from the crack tip, only then is this condition satisfied. 
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• The same Finite Element mesh has to be used around the crack tip. The main 

error in using the proportionality method is said to stem from the differences in 

crack tip mesh in terms of mesh size and pattern. 

7.2.6 Conditions for the Newly Proposed Stress Proportionality 

Method 

The stress proportionality method as presented here utilises the basic principles as 

explained in the preceding sections. In addition to that, the stress proportionality method 

is an improvement to some of the challenges outlined in section 7.2.5. This includes the 

ability to determine the stress intensity factor of a two-dimensional plate without the 

need to equate the near crack tip mesh. The reference problem of any crack plate can be 

used to determine the stress intensity factor of an unknown given problem without 

necessarily having the same crack length.  

One of the main challenges in using the proportionality method is down to the 

issue of reducing the FEM approximation error. Some of the solutions presented include 

the use of the same mesh for both the reference problem and the given unknown 

problem. However, this limits the number of problems that can be tackled without 

encountering some FEM modelling challenges. The stress proportionality method 

resolves this in the following order; 

• For both the reference problem and the unknown given problem a fine mesh is 

applied near the crack tip region. This way the FEM error is reduced when it 

comes to the analysis of the stress intensity factor. The use of fine mesh also 

increases the chance of finding a node with marginally the same radius in both 

the reference problem and the given unknown problem. As will be shown in the 

numerical assessments, this method does not require the radius to be equal but 

requires the crack tip radius differences for both the reference problem and the 

given unknown problem nodes used in the estimation to be reasonably small in 

order not to distort the result. 

• The determined stress intensity factor values for the given unknown problem is 

then plotted on a scattered graph against the radius. A correlation line is used to 
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optimise the results further to give the final stress intensity factor as determined 

by the equation of a straight line. 

The stress proportionality method has only been applied to the investigation of 

stress intensity factor for a two-dimensional plate without the need to equalise the FEM 

mesh. In the first instance, a two-dimensional homogeneous plate with a centre crack is 

examined for different crack lengths. This technique is extended to the study of 

interface cracks. All achieved results are compared with published results in order to 

determine the accuracy of this technique. 

7.3. Numerical Assessment 1 

In the assessment of the proposed method (Stress Proportionality Method), a 

homogeneous plate with a centre crack is analysed for both the given unknown problem 

and the reference problem. The SIF is determined for several plate dimensions and 

crack lengths. In all cases, the appropriate reference problem is stated for clarity of the 

analysis. Fig. 7.2 shows a typical 2D plate for the given unknown problem and the 

given reference problem including the dimensions.  

Using an FEM program (ABAQUS), the nodal stress ahead of the crack tip is 

determined. For simplicity, the SIF for the given reference problems are also determined 

using ABAQUS. Now, the stress proportionality method is applied to determine the 

SIF. As part of the stress proportionality method, an optimization process is achieved by 

a scatter plot of the SIF versus the radius, and this is shown in Fig. 7.3 to 7.8. 

For the homogeneous plate assessment, several plate geometries are considered. 

In most cases, the crack length for the given unknown problem is the same as the given 

reference problem. For cases where the crack length differs significantly (longer or 

shorter than each other) we only use the equivalent radius from the crack tip for the 

given problem. 

In this assessment, the SIF for all given unknown problems are also determined 

using the COD method. The achieved results using the stress proportionality method 

will be compared to the equivalent COD results and reference [161]. 
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The achieved SIF and reported errors for the stress proportionality method, COD 

method and the reference [161] is outlined in Table 7.1, where IK  is normalised by 

aK  00 = . 

 

 

 

Figure 7.2 2D plate of the given unknown problem with dimensions 4 x 4 and crack 

length a/b = 0.5. Only half of the plate is analysed due to symmetry along the y axis. 
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Figure 7.3 The SIFs of the given unknown problem is plotted against the nodal 

radius ahead of the crack tip. This is for a homogeneous plate of dimension 4 x 4 with a 

centre crack, a/b = 0.5. Stress Proportionality Method uses a reference problem of plate 

dimension 4 x 8 and a/b = 0.5. 

 

 

 

 

Figure 7.4 The SIFs of the given unknown problem is plotted against the nodal 

radius ahead of the crack tip. This is for a homogeneous plate of dimension 4 x 4 with a 

centre crack, a/b = 0.5. Stress Proportionality Method uses a reference problem of plate 

dimension 20 x 12 and a/b = 0.4. 
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Figure 7.5 The SIF of the given unknown problem is plotted against the nodal 

radius ahead of the crack tip. This is for a homogeneous plate of dimension 20 x 8 with 

a centre crack, a/b = 0.2. Stress Proportionality Method uses a reference problem of 

plate dimension 4 x 8 and a/b = 0.5. 

 

 

 

 

Figure 7.6 The SIFs of the given unknown problem is plotted against the nodal 

radius ahead of the crack tip. This is for a homogeneous plate of dimension 20 x 8 with 

a centre crack, a/b = 0.2. Stress Proportionality Method uses reference problem of plate 

dimension 20 x 12 and a/b = 0.4. 
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Figure 7.7 The SIFs of the given unknown problem is plotted against the nodal 

radius ahead of the crack tip. This is for a homogeneous plate of dimension 20 x 14 with 

a centre crack, a/b = 0.6. Stress Proportionality Method uses a reference problem of 

plate dimension 4 x 4 and a/b = 0.5. 

 

 

 

Figure 7.8 The SIFs of the given unknown problem is plotted against the nodal radius 

ahead of the crack tip. This is for a homogeneous plate of dimension 14 x 20 with a centre 

crack, a/b = 0.6. Stress Proportionality Method uses a reference problem of plate dimension 20 

x 8 and a/b = 0.2.  
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Table 7.1 Comparing the normalised SIF values for a homogeneous centre crack plate with reference and COD method. The errors as 

calculated in the table is with respect to Rooke [161]. 

2D Plate Dimensions of 

Unknown Problem  

Given 

Problem 

a/b 

Ref. Problem 

 Dimensions 

Ref. Problem 

a/b  

h/b 

  

Rooke 

[161] 
COD Method 

Stress Prop. 

Method 

0/ KKI  0/ KKI  
Error 

(%) 0/ KKI  
Error 

(%) 

          

4 x 4 0.5 4 x 8 0.5 1 
1.33 1.322 0.60 

1.325 0.36 

4 x 4 0.5 20 x 12 0.4 1 1.328 0.18 

             

20 x 8 0.2 4 x 8 0.5 0.4 
1.25 1.263 1.05 

1.245 0.39 

20 x 8 0.2 20 x 12 0.4 0.4 1.246 0.34 

             

20 x 12 0.4 4 x 8 0.5 0.6 
1.48 1.520 2.65 

1.479 0.05 

20 x 12 0.4 20 x 12 0.4 0.6 1.484 0.29 

              

20 x 14 0.6 4 x 4 0.5 0.7 

1.865 1.946 4.17 

1.857 0.41 

20 x 14 0.6 4 x 8 0.5 0.7 1.861 0.23 

20 x 14 0.6 20 x 8 0.2 0.7 1.865 0.02 
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The Stress Proportionality Method is first tested on a 2D homogeneous plate with 

a centre crack. The calculated stress intensity factor for several 2D plate dimensions 

were assessed and the results were compared with the COD method and reference result 

[161]. In this study, it was shown that the stress intensity factor error of less than 0.5% 

was achieved by the Stress Proportionality Method when compared against the 

reference [161] result. The COD method achieved a maximum error of 4.17% and this 

is for all the different 2D plates and crack sizes. 

7.4. Numerical Assessment 2 

In this assessment, the SIF is determined for interface crack using the stress 

proportionality method. A bi-material plate of dimension 10 x 20 is considered for the 

given unknown problem and this is shown in Fig. 7.9. The elastic modulus 

combinations for the given unknown problem is chosen to be 5,2,1)2()1( =EE  and 10 

respectively. For the given reference problem, a plate of dimension 4 x 8 is chosen and 

the elastic modulus combinations 1)2()1( =EE  and 2. In all cases only half of the plate 

is analysed by ABAQUS due to symmetry along the y axis. 

As in Numerical Assessment 1, the nodal stresses ahead of the crack tip is 

determined for the homogeneous case using ABAQUS. The SIF IK  for the given 

unknown problem is then determined using the equivalent 1)2()1( =EE  for the given 

reference problem. The graph used in approximating the IK value is shown in Fig. 7.10 

and 7.11. For the remaining elastic modulus combination ( 5,2)2()1( =EE  and 10 ) for 

the given unknown problem, the SIF values for IK  and IIK  are determined using 

2)2()1( =EE  for the given reference problem. The achieved IK  and IIK  values are 

plotted in Fig. 7.12 to 7.17. Table 7.2 also shows the error margins for the stress 

proportionality method when compared against FEM (ABAQUS) calculated IK  and 

IIK  values. 
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Figure 7.9  Bi-material plate of the given unknown problem with dimensions 10 x 

20 and crack length a/b = 0.4. Only half of the plate is analysed due to symmetry along 

the y axis. 
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Figure 7.10 A plot of the stress intensity factor IK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

and given unknown problem 1)2()1( =EE . The reported analysis shows the IK  values 

as estimated along the entire interface bond. The IK  values diverge at the trailing end 

of the graph. 

 

 

Figure 7.11 A plot of the stress intensity factor IK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem of 

plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference and 

given unknown problem 1)2()1( =EE . IK  values considered is truncated at radius r = 

0.45. 
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Figure 7.12 A plot of the stress intensity factor IK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

and given unknown problem 2)2()1( =EE . 

 

 

Figure 7.13 A plot of the stress intensity factor IIK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

and given unknown problem 2)2()1( =EE . 
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Figure 7.14 A plot of the stress intensity factor IK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

2)2()1( =EE  and given unknown problem 5)2()1( =EE . 

 

 

 

Figure 7.15 A plot of the stress intensity factor IIK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

2)2()1( =EE  and given unknown problem 5)2()1( =EE . 
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Figure 7.16 A plot of the stress intensity factor IK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

5)2()1( =EE  and given unknown problem 10)2()1( =EE . 

 

 

 

Figure 7.17 A plot of the stress intensity factor IIK  for plate with dimension 10 x 20 

with a centre crack, a/b = 0.4. Stress Proportionality Method using reference problem 

with plate dimension 4 x 8 and a/b = 0.5. Material elastic constant used for the reference 

and given unknown problem 10)2()1( =EE . 
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The Stress Proportionality Method, as reported, was also applied to a cracked 2D 

bi-material plate and several material combinations were considered. Using the Stress 

Proportionality Method in assessing the interface crack, it was observed that the plotted 

result will begin to diverge at the trailing end of the plotted data points (Fig 7.10). In 

order to achieve good and accurate result, it is important to identify the point at which 

the data point begins to diverge and then truncate the data at this point (Fig 7.11). This 

way, the stress intensity factor results as given by the correlation line (line of fit) are not 

greatly affected. This statement is true for determining the IK  and IIK  values. The IK  

and IIK  values as determined by the Stress Proportionality Method is compared against 

an equivalent ABAQUS result. For the IK  value, the error is less than 1% when 

compared with ABAQUS. 

In this study, it can be observed that any plate of arbitrary crack length can be 

used to determine the SIF of a given problem. In cases where the crack length in the 

reference problem is shorter, the scatter graph shows a strong negative correlation. The 

reverse is observed for a reference problem where the crack length is longer than the 

given problem crack length. The plotted data of SIF versus the nodal radius from the 

crack tip shows a strong positive correlation. Consequently, the use of a longer crack 

length for the reference problem against a shorter crack length in a given problem has 

been proven to be irrelevant when using the Stress Proportionality Method. 

The Stress Proportionality Method has some limitations when trying to 

determine the SIF of a given problem. The difference between the nodal radius from the 

crack tip of the given problem and the reference problem must be obtained first and the 

error margin between the two radii must be determined. The smaller this error margin 

the higher the accuracy of the result. This study has shown that an error margin of 6% 

does not have a significant effect on the overall result.  
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Given Problem Reference Problem IK  IIK  

            

2D Plate a/b 
)2()1( EE  2D Plate a/b 

)2()1( EE  
 Stress Prop. 

Method 
ABAQUS  Error (%)  

 Stress Prop. 

Method 
 ABAQUS  Error (%) 

            

10 x 20 0.4 1 4 x 8 0.5 1 2.76 2.78 0.72 0 0.000 0.00 

10 x 20 0.4 2 4 x 8 0.5 2 2.76 2.77 0.36 -0.04 -0.040 0.00 

10 x 20 0.4 5 4 x 8 0.5 2 2.74 2.74 0.00 -0.08 -0.075 6.67 

10 x 20 0.4 10 4 x 8 0.5 2 2.71 2.70 0.37 -0.09 -0.090 0.00 

 

Table 7.2 The SIF values as determined by the stress proportionality method is compared to SIF values calculated by ABAQUS. The errors 

between the IK  and the IIK  values are shown to be marginal. 
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7.5. Numerical Assessment 3 

In this assessment, the SIF is determined for interface crack using the stress 

proportionality method. A bi-material plate of dimension 4 x 8 with a centre crack length 

a/b = 0.5 is considered for the given unknown problem and the model set-up is similar to 

that shown in Fig. 7.9. The elastic modulus combinations for the given unknown 

problem is chosen to be 5,2,1)2()1( =EE  and 10  respectively. For the given reference 

problem, a plate of dimension 10 x 20 with a centre crack length a/b = 0.4 is chosen and 

the elastic modulus combinations 1)2()1( =EE  and 2 . In all cases only half of the plate 

is analysed by ABAQUS due to symmetry along the y axis. 

The aim of this analysis is to compare the stress proportionality technique against 

ABAQUS (J-Integral method), FBM (Williams series) and the xSBFEM method [78]. 

The results are presented in Table 7.3 and 7.4, and a graphical representation of the 

results are shown in Fig 7.18 and 7.19.  

 

)2()1( EE  

aK I  0/  

SPM Method 

FBM  

(Williams Series) 

ABAQUS  

(J-Integral) 

xSBFEM 

Method [78] 

     

1 1.188 1.182 1.179 1.180 

2 1.189 1.154 1.148 1.148 

5 1.160 1.131 1.123 1.124 

10 1.136 1.190 1.188 1.189 

 

Table 7.3 The normalised IK  values as calculated by the stress proportionality 

method (SPM) is compared against different numerical techniques. The numerical 

techniques considered are ABAQUS (J-Integral method), FBM (Williams series) and 

the xSBFEM Method [78]. The reference problem considered is a 2D plate with 

dimension 4 x 8 and crack length a/b = 0.5. 
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)2()1( EE  

aK II  0/  

SPM Method 

FBM  

(Williams Series) 

ABAQUS  

(J-integral) 

xSBFEM 

Method [78] 

     

1.00 0.000 0.000 0.000 0.000 

2.00 -0.044 -0.056 -0.051 -0.057 

5.00 -0.089 -0.110 -0.098 -0.105 

10.00 -0.109 -0.132 -0.116 -0.124 

 

Table 7.4 The normalised IIK  values as calculated by the stress proportionality 

method (SPM) is compared against different numerical techniques. The numerical 

techniques considered are ABAQUS (J-integral method), FBM (Williams series) and 

the xSBFEM Method [78]. The reference problem considered is a 2D plate with 

dimension 4 x 8 and crack length a/b = 0.5. 

 

 

 

 

Figure 7.18 Normalised IK  for various elastic modulus combinations, )2()1( / EE . 

Centre crack with length a/W = 0.5. 
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Figure 7.19 Normalised IIK  for various elastic modulus combinations, )2()1( / EE . 

Centre crack with length a/W = 0.5. 

 

In this section of the thesis, the newly proposed semi-analytical technique called 

the stress proportionality method (SPM) is compared against several numerical 

techniques used in calculating the stress intensity factors for interface cracks between 

bi-materials. Clearly, from Fig. 7.18 and 7.19 it is shown that the SPM can produce 

accurate results. Also, since the SPM employs the nodal stresses at the crack tip in 

calculating the stress intensity factor, it can be implemented in different numerical 

methods including the FBM method. However, since this technique depends on the 

reference values of a predetermined SIF value and nodal stresses, it should be noted that 

the process to obtain these reference values is performed one-time and can be used in 

repeated analysis to determine the SIF of an unknown problem. 
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7.6. The Displacement Correlation Technique  

In the previous section, the stress ahead of the crack tip was used in calculating 

the stress intensity factor. In this section, the near-tip nodal displacement as extracted 

from a finite element analysis is utilized in determining the stress intensity factor. The 

displacement approach to investigating the stress intensity factor is often seen to be less 

accurate when compared with other numerical methods. Nonetheless, the results 

obtained by the displacement method is within an acceptable level of accuracy for 

various engineering applications. In addition, the displacement method is very easy to 

implement without a significant amount of distortion of the estimated result. 

In terms of stress intensity factor investigations, the displacement approach can be 

categorized as follows; the displacement extrapolation method, the quarter point 

displacement method and the displacement correlation technique. An extensive review 

of the various displacement methods can be found in several papers [1, 37, 158, 159, 

160]. 

The accurate use of any displacement method requires a good interpretation of the 

displacement field around the crack tip. This can be achieved by the use of special near-

tip elements or simply by increasing the element refinement at the crack tip.  

The singular finite element as developed by Barsoum [38] is a step forward to 

improve the numerical analysis near the crack tip. In his development, the mid-side 

nodes near the crack tip are moved to a quarter position from the crack tip. As a result 

of the quarter point, the critical square root singularity as postulated in fracture 

mechanics is replicated. Furthermore, the Williams series stipulate that the crack open 

displacement around a crack tip irrespective of the problem geometry and boundary 

conditions can be express as follows [132]; 

+++= 2321 )()()(),( rdrcrbru kkkk    ,     (7.15) 

where r  is the distance originating from the crack tip,   is the direction and 2,1=k  (x 

and y axis). From Eq. (7.15) the r  expression is incorporated into the quarter-point 

method [38].  
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In a recent work by Gray [132] it is emphasised that the kC  value for u  along 

the crack surface should equate to zero. However, this is not the case and as a result the 

quarter point element fails to satisfy this condition. To achieve an accurate result in the 

vicinity of the crack tip, the linear term is forced to be zero. Using the quarter point 

elements around the crack tip, the stress intensity factor is determined using the 

displacement correlation technique. 

In the remainder of this chapter, the stress intensity factor components IK  and  

IIK  for interface crack is evaluated by making enhancements to the various 

displacement correlation techniques. The quarter point element which is a standard for 

crack analysis in the finite element program ABAQUS is employed in the FEA analysis. 

The accuracy of the proposed technique is confirmed by performing some numerical 

examples of interface crack for several material combinations ( ))2()1( EE . Comparisons 

of IK  and IIK  are made with ABAQUS estimates using the J-Integral approach. 

7.5.1 Enhanced Element Shape Function for Crack Opening 

Displacement (COD) 

The crack surface is purposely assigned to lie on the same plane as the quarter 

point element as shown in Fig. 7.20. The same emphasis can be made for a 1D element 

with three grid points lying along the plane of the crack face, and this is illustrated in 

Fig. 7.21. For a 1D element with three grid points, a quadratic shape function can be 

easily determined [132]. The shape function is given by the following expression;  
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Figure 7.20 a) Quarter point element around crack tip. b) A quarter point element 

showing the crack surface opening. 

 

According to Fig. 7.21 the u  is zero at the crack tip, hence 0=t  reducing the 

displacement equation for the one-dimension quadratic element to  
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According to work by Barsoum [38] moving the mid-side grid point to a quarter 

of the element length leads to Lr  . Where L is the length of the element. According 

Crack tip 
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to Gray [132] the result of moving the mid-side node to the quarter position will result 

in the leading order term for u  at the crack tip which is t  to be the square root of the 

distance. Further work by Gray and Paulino have also shown that the next term in the 

order of u  which is Lrt =2
 should vanish. 

 

 

 

 

 

 

Figure 7.21 One-dimensional crack surface element 

 

The general form of the combined standard quadratic shape function and the modified 

quarter point shape function [132] is given by; 

)21)(1()(ˆ tttt jjj −−+=  ,       (7.18) 

where 0=  is for crack tip element and 1=  is for all other regular elements.   is a 

constant assigned with the following values, 3231 ==   and 342 = . The top 

sign is used when the crack tip is located at 0=t  and the lower sign is used when the 

crack tip is located at 1=t . Since the displacement produced by the standard quarter 

point elements in ABAQUS [133] embody the standard shape function, there is no need 

to directly adjust the element code and shape function. However, any enhancement to 

the shape function can be applied directly to the displacement as determined by the 

quarter point element. 

From Eq. (7.18) a cubic term is defined for the shape function to be applied to 

the COD as determined by the standard quarter point element. For a 1D element with 

three grid points (Fig. 7.21), the cubic shape function at point 2 and 3 is given by 

1 2 3 

t = 0 t = 1 

L 

Crack tip 
L/4 
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The general expression for the displacement correlation technique [33, 37, 95, 

132, 134] in terms of mode I and mode II stress intensity factor (homogeneous case) is 

given by; 
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Applying the modified quarter point shape function in Eq. (7.19) to the near crack tip 

COD gives  
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For the displacement correlation technique, the above expression reduces to 

( ) ( ) 3node2node3node3node2
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where .Lrt =  

7.5.2 Displacement Correlation Technique Using the General 

Interface Crack Formulation 

In a provisional assessment of interface crack by the displacement correlation 

technique, a Quarter-Point Element (QPE) was used to determine the near-tip 

displacements. The enhanced quarter point element shape function technique was then 

implemented on the generalised formulation for an interface crack. Thus, the 

generalised interface crack formulation for computing the complex stress intensity 
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factor components IK  and IIK  are related to the near crack tip displacement [123] by 

the following expression 
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where K is the complex stress intensity factor and the constants of bi-material are given 

as 
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By employing the modified displacement correlation technique of Eq. (7.23), the 

SIF for an interface crack is expressed in terms of the near crack tip displacement where 

Lrr =  is given by  
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By virtue of Eq. (7.24a), it is quite clear the displacement correlation technique cannot 

be fully implemented as the general interface crack Eq. (7.24a) is formulated for a 

single grid point along the crack surface. Extending this to include the displacement 

from two grid points can produce reasonable results. This will be shown by the interface 

crack analysis presented in section 7.5.4, Numerical Assessment 4. Also, a comparison 

of the results obtained for a homogeneous plate using Eq. (7.24b) and the standard DCT 

Eq. (7.25a) is reported in Table 7.4. 

7.5.3 Enhanced Displacement Correlation Technique for Interface 

Crack Using the Enhanced Element Shape Function 

Here, the standard displacement correlation technique seemingly developed for 

the evaluation of interface crack is discussed. Aslantas [80] used the DCT to investigate 

the interface crack of a composite material (matrix with a single fibre). The mode I and 
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II interface SIFs IK  and IIK  are given in terms of the displacement correlation 

technique as 

 (   )tipcrackupperuppertipcracklowerlower

I vvvDvvvD
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K −− −+−−−+−= 12321231 3434
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Figure 7.22 The definition of the interface crack displacement correlation technique 

 

where L retains its meaning as the length of the near-tip element between node 1 and 3. 

1D  and 2D  can be expressed as follow 
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where 
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+=   , iG  and i  are the shear modulus 

and the Poisson’s ratio for the respective materials, 2,1=i . Eq. (7.25a) and (7.25b) can 

be re-organised to give 
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Using a Quarter-Point Element (QPE) where only node 2 is considered, Eq. (7.26a) and 

(7.26b) can be reduced to  
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By applying the enhanced quarter point shape function of Eq. (7.19) to the above 

Eq. (7.26a) and (7.26b), this will result in an expression of the Displacement Correlation 

Technique (DCT) for mode I and mode II SIF given as 
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7.5.4 Numerical Assessment 4 

7.5.4.1 Evaluating the Use of DCT in the General Interface Crack 

Formulation 

In this assessment, the SIF is determined by the DCT method using the general 

interface crack formulation and the enhanced quarter point shape function. A center 

crack of length 2a in a bi-material plate is studied in this example. The plate has width b 

= 2 and height h = 4. A uniform distributed load 0  is applied on the top and bottom. 

Owing to the symmetry with respect to the y axis, it is equivalent to solve the boundary 

value problem for a half plate with a reasonable mesh. The FEM (ABAQUS) analysis 

was conducted under plane stress condition with Poisson’s ratios 3.021 == and the 

crack length 4.0=a  and 5.0=a . The results of SIFs versus the ratio of Young’s 

modulus 
)2()1( EE  are shown in Table 7.5 for different cases. The solutions given by 

ABAQUS are provided in the table for comparison. 

 
  

 

 

Figure 7.23 a) FEM (ABAQUS) model of a 2 x 4 plate with a centre crack and a 

mesh around the crack tip region. b) The quarter point elements around the crack tip, as 

seen in ABAQUS.   

(a) 

 

(b) 
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a/b 
)2()1( EE  

aK I  0/  aK II  0/  

Present ABAQUS Present ABAQUS 

      

0.4 

1.00 1.14 1.11 0.00 0.00 

2.00 1.10 1.11 -0.07 -0.08 

5.00 0.97 1.07 -0.16 -0.19 

10.00 0.88 1.09 -0.22 -0.15 

      

0.5 

1.00 1.22 1.19 0.00 0.00 

2.00 1.17 1.18 -0.08 -0.07 

5.00 1.03 1.16 -0.17 -0.15 

10.00 0.94 1.14 -0.23 -0.18 

     

 

Table 7.5 The normalised stress intensity factors of a centre crack bi-material plate. 

The table shows a comparison of ABAQUS results and the results achieved by the 

general interface crack formulation with the enhanced quarter point shape function, Eq. 

(7.24b). 

 

E  

aK I  0/  

Present ABAQUS 

Error with 

ABAQUS Fehl [95] 

Error with 

ABAQUS 

1.00 1.14 1.11 2.80 1.17 5.18 

 

Table 7.6 The stress intensity factors for a homogeneous centre crack plate. The 

SIF determined by the enhanced general interface crack Eq. (7.24b) is compared with 

the standard DCT in Eq. (7.25a). a/b = 0.4 

 

As part of a review on the use of displacement techniques to determine the stress 

intensity factor, the Displacement Correlation Technique was modified using a 1D 
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element along the crack surface. Comparing the IK  values for a homogeneous crack 

shows that the modified displacement correlation technique using the general interface 

crack Eq. (7.24b) gives an error of 2.89% and the conventional displacement correlation 

technique Eq. (7.25a) gives an error of 5.18%. For centre crack where 5)2()1( EE   in 

Table 7.5, it is easily observed that the relative errors of the stress intensity factors 

against ABAQUS are within 3%. A further improvement of the grid point displacement 

and the shape function is required for higher 
)2()1( EE , and this can be developed as 

part of a future study to obtain a more stable solution. 

7.7. Summary 

In this chapter, various nodal displacement and stress methods used in evaluating 

interface cracks of bi-materials is discussed with much focus on the proportionality 

method and the displacement correlation technique. An improvement to the 

proportionality method termed the stress proportionality method is presented. This 

improved technique was used in estimating the stress intensity factor for a bi-material 

plate. The validity of the stress proportionality method was confirmed by performing 

several numerical tests. Results obtained by the stress proportionality method were 

checked against COD and FEM (ABAQUS) results. 

The displacement correlation technique was investigated to improve the accuracy 

of the stress intensity factor by the FEM method. The general equation for determining 

the stress intensity factor using the quarter point node was modified to include the 

remaining nodes along the crack surface. The new equation was applied to the study of 

interface cracks. A significant improvement can be seen for the IK  value of a 

homogeneous plate. 



199 
 

CHAPTER 8 
 

 

 

8 Conclusion and Perspective 
 

 

 

 

8.1. Thesis Concluding Remarks 

The finite block method has been developed in this research for two-dimensional 

elastostatic and elastodynamic fracture mechanics with dissimilar bi-materials interface 

cracks. In this research, the Lagrange series interpolation which forms the basis for the 

finite block method was successfully implemented and validated by several numerical 

examples.  

In applying the finite block method to the study of elasticity, the physical domain 

is divided into sub-regions, named blocks and each block is mapped using a predefined 

sets of collocation points distributed in a square normalised domain. The first order 

partial differential matrices can be constructed straight-away by using the Lagrange 

series interpolation and the collocation points. The nodal values of displacement can be 

obtained from a set of linear algebraic equations in a strong form from both the 

governing equation and the boundary conditions.  

In Chapter 3, the Lagrange series interpolation is developed for the finite block 

method. Using a uniform or regular nodal arrangement, the first order derivative of a 

given function is presented for a one-dimensional case. As a result, the first order 

differential matrix is determined for both a regular and irregular nodal distribution. For 
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a two-dimensional case, a square domain in a normalised coordinate system was 

defined. In the 2D case the partial derivatives of a function across the domain is 

determined. The differential matrix construction is made easy by using the 1D 

differential matrix to form the 2D matrix. Hence, for a 2D case, the storage for the 

system matrix is largely reduced. 

In order to demonstrate the accuracy of the finite block method and the use of the 

Lagrange series interpolation, a simple 1D problem is assessed for a regular and 

irregular nodal arrangement. Analytical solutions were presented alongside the 

numerical results by the FBM method for comparison. From the 1D assessment, the 

following can be deduced from the study; 

• The average error decreases with an increase in the number of nodes for the 

interpolation. This is true for both regular and irregular nodal distribution. 

The mapping technique is developed for a 2D case using one block. This allows a 

real or a physical domain to be mapped using a square normalised domain and then 

eventually the real or a physical domain is transformed to a 2D mapping domain. Also, 

since the 1D partial differential is determined initially during the construction of the 

square normalised domain, the computational effort is reduced remarkably. The 

Lagrange series interpolation and the mapping technique for a 2D case are assessed for 

several nodal distributions. The result obtained by the 2D FBM analysis shows a 

significant improvement in the average error when compared with an analytical 

solution. 

In Chapter 4, the FBM was developed for an interface crack using the Williams 

asymptotic expansion series. Furthermore, the Williams series was expressed in both the 

Cartesian coordinate system and the polar coordinate system. This would allow the 

FBM to be tested under different scenarios. In order to calculate the stress intensity 

factor at the crack tip accurately, a singular core was used in all the numerical 

assessments in this chapter. 

Firstly, a numerical study of FBM parameters for an interface crack was 

conducted using a circular disk with an edge crack and a singular core. In the study, the 

number of collocation points and the impact on the accuracy of the IK  and IIK  values 

were prioritised. The following conclusion can be drawn from the study;  
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• The IK  and IIK  value for several bi-material combinations obtained by the FBM 

is compared against the BCM. The result shows good agreement. 

• The Poisson’s ratio was varied to obtain the IK  and IIK values. This result was 

compared with the BCM and good agreement was observed.  

• The IK  and IIK  values are obtained for several singular core sizes. At small core 

sizes, good results can be achieved. The result also shows good agreement with 

the BCM. 

This was followed by further numerical assessment of the FBM in the Cartesian 

coordinate system and the polar coordinate system for an interface crack. In the 

Cartesian coordinate system, a 2D plate with eight blocks was used for a centre crack 

and an edge crack analysis. The IK  and IIK  values were determined for several elastic 

moduli ratios. The results were compared with reference papers and ABAQUS, and the 

FBM method is said to give very good results.  

Using the polar coordinate system, a circular disk with an edge crack is assessed 

for the FBM. In this study, the effects of the number of collocation points on the IK  

and IIK  values were examined. The results were compared with ABAQUS and BCM. 

For the number of different collocation points, the IK  and IIK  values for the various 

bi-material combinations were stable. 

In Chapter 5, the finite block method was used to evaluate the T-stress of an 

interface crack. Using the William’s series interpolation and the eigenfunction 

approach, the T-stress formulation is developed for the FBM. The crack tip singular 

core, introduced in Chapter 4 was also employed in the T-stress numerical calculation.  

Initially, parameters influencing the FBM and the T-stress results were examined. 

This include the number of collocation points and the core size. In all cases, the 

normalised T-stress is compared against the BCM. The result shows good convergence 

as the number of collocation points increased. Also, a smaller core size will give good 

result.   

In the various numerical assessments in this chapter, the FBM was used to 

calculate the T-stress for an interface crack in a 2D plate. Three different crack cases 
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were considered, a centre crack (CCP), a single edge notched (SEN) and a double edge 

notched (DEN). The calculated T-stress values were compared to reference paper to 

ascertain the accuracy of the FBM. The plotted FBM results alongside the BEM method 

[34] results shows an excellent agreement. 

In Chapter 6, the elastodynamic study of interface crack was performed. The 

dynamic stress intensity factors and the dynamic T-stress of interface crack was 

calculated using the finite block method. By substituting the FBM expression for stress 

and strain into the equilibrium equation, a finite block dynamic formulation for an 

elastic medium was established. The Laplace transform technique was applied to the 

finite block equilibrium equation. In solving the Laplace Transform, Durbin’s inversion 

method was adopted. 

In this study, a 2D plate with a centre crack is dynamically loaded. Due to 

symmetry, only half of the plate was considered and the FBM setup for this assessment 

had only 6 blocks.  

An elastodynamic analysis of a homogeneous plate was first assessed using the 

finite block method and this is covered by Numerical Assessment 1, section 6.4. It is 

apparent, before the arrival time of the dilatation wave travelling from the top of the 

plate to the crack tip, the SIF and the T-stress remain zero approximately. By observing 

the results produced by the FBM method when plotted directly alongside the FEM 

solution, we may conclude that the two numerical methods are in good agreement.  

In Numerical Assessment 2, section 6.5, it was shown that by varying the number 

of collocation points, the IIK  values obtained by the finite block method are stable for 

8M . However, when the number of nodes M  is larger than 12, the divergence of 

numerical solution occurs.  

The computational times (PC with Intel CoreTM i5-3470) for these three densities 

of node (M = 7, 8 and 9) are 218(s), 437(s) and 795(s) respectively. In the finite element 

analysis, 8850 quadratic elements are used and computational cost is 246(s) on the 

computer Brokers Trader Workstation. It is evident that the degree of accuracy is not 

affected significantly by the change of node density.  
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In Numerical Assessment 3, section 6.6, as expected, for a smaller ratio of Wr /0 , 

the results are closer to that provided by the FEM method (ABAQUS). The maximum 

values of SIF obtained by FBM and FEM are close to each other for mode I SIF. 

Therefore, it also indicates that the Williams series for a static interfacial crack can be 

used directly in the transformed domain analysis with a reasonable level of accuracy. As 

the absolute values of mode II SIF is much smaller than mode I, the effect of the 

approximation using Williams series in the singular core is significant.  

In Numerical Assessment 4, section 6.7, additional analyses consider a bi-material 

plate with a centre crack. The dynamic stress intensity factors and the dynamic T-stress 

plotted alongside an FEM (ABAQUS) result shows good agreement. 

In Chapter 7, a new technique called the Stress Proportionality Method based on 

the proportionality method is proposed. By using the stress intensity factor and the 

nodal stress ahead of the crack tip for a known problem, the stress intensity factor of an 

unknown given problem can be determined easily. This method shows that the stress 

intensity factor can be determined via nodal stress. The stress approach in this chapter 

tries to diffuse the notion by which the use of nodal stress gives unstable results for the 

stress intensity factor. For convenience, ABAQUS was used for calculating the nodal 

stress ahead of the crack tip for both the given known problem and the given unknown 

problem. The extracted stress intensity factor for the given known problem is utilised in 

calculating the stress intensity factor for the given unknown problem.  

8.2. General Observation 

Seeing from the numerical assessments, it is clear that the finite block method for 

a static load problem is very efficient, stable and accurate. In addition, due to the 

difficulty in resolving the Williams series solution in the transformed domain, the 

approximation by using static Williams series is shown to have been successfully 

applied to a cracked plate under dynamic loading. The Williams series for a static case 

can capture the dynamic stress intensity factor and the T-stress for an interface crack 

between bi-materials. The finite block method is of the following characteristics when 

compared with other numerical schemes:  
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1) A physical problem with a complex geometry can be easily represented by very 

few blocks (similar to an element). 

2)  Collocation points for each block are determined using the mapping technique. 

3) Using the Lagrange series interpolation, one-dimensional differential matrix 0D  is 

easily obtained. 

4) Higher order partial differential matrices can be determined straight-away from 

0D . 

5) The governing equations are in a strong form which means it can be extended to 

any type of partial differential equation including elasticity problems. 

6) In the applications of fracture mechanics, a high degree of accuracy is obtained 

for static cases as the singular core is introduced centred at the crack tip. 

7) The FBM method is sensitive for a large number of nodes due to high order 

Lagrange expansion. 

 

8.3. Technical Contributions to Knowledge 

The technical findings and original contributions to knowledge that has 

resulted from this research can be summarised as follows:  

 

• In this research, a meshless method called the finite block method is proposed for 

the first time to evaluate interface crack between bi-materials. The advantages of 

the finite block method over other meshless methods will become prevalent with 

further studies and evaluation of different types of cracks.  

• Using a defined set of collocation points, the first order one-dimensional 

differential matrix is developed in terms of the nodal values. The Lagrange 

interpolation series was adopted for the construction of the first order differential 

matrix. 

• For a two-dimensional domain, the transformation matrix is applied to the 

derivative on the primary axis in order to determine the unknown derivative along 

a secondary axis.  

• For a two-dimensional problem, the mapping technique is also implemented using 

a quadratic block or element with 8 nodes. This means the first order differential 
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matrix is calculated once and can be mapped onto all the blocks in a physical 

domain. Unlike the FBM, the Meshless Local Petrov-Galerkin Method, the 

Meshless Collocation Method and the Point Interpolation Method employ a 

support domain in their numerical analysis.  

• The finite block method incorporates all the major advantages of meshless 

method. When compared against other meshless methods, parameters such as the 

size or number of nodes in a local support domain is not required in the finite 

block method. The use of the local support domain is a prominent technique used 

by the MLPG method [52, 62]. In the finite block method, a block called the 

normalised square domain is proposed instead. By using a single block with 

prescribed nodes at the beginning of the analysis the first order one-dimensional 

differential matrix is determined. 

• As presented in this research, a single normalised square domain is defined at the 

beginning of each analysis and the first order one-dimensional differential matrix 

is determined using the Lagrange interpolation series. Thus, the FBM 

interpolations of differential equations are in the strong form. There is no need for 

background mesh or cells prior to the numerical interpolation which is the 

standard approach used by the Element Free Galerkin method.  

• The Lagrange series is proposed for evaluating the governing equations for the 

two-dimensional bi-material plate. 

• The polar form of the equilibrium equation for plane elasticity is developed for 

the first time using the first order one-dimensional differential matrix. The 

formulations for the finite block method in the polar form is systematically 

presented. 

• The stresses and displacements in the Williams series is developed using the 

complex potential method proposed by Kolosov and Muskhelishvili. The constant 

values InA  and CnA  resulting from this version of the Williams series are 

determined by the finite block method using the singular core centred at the crack 

tip. Subsequently, the stress intensity factors and the T-stresses are calculated for 

interface cracks between bi-materials.  

• A relationship between the singular core centred at the crack tip and the Williams 

series is presented for both the Cartesian coordinate system and the polar 
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coordinate system. For the Cartesian coordinate system, a polygonal core is 

implemented and for the polar coordinate system, it was practical to apply a 

circular core. 

• In this research, the Williams expansion series for an interface crack and a 

singular core is proposed for the first time. To accurately calculate the stress 

intensity factor and the T-stress, a technique which combines the Williams 

expansion series and a singular core centred at the crack tip is proposed for 

interface crack between bi-materials. By using the singular core, the finite block 

will approximate the constants from the Williams expansion series and in turn 

calculate the SIF and the T-stress. The FBM uses the singular core for the 

approximation of the near crack tip displacements and stresses for the interface 

crack between bi-materials. Meanwhile, other numerical methods like the FEM 

(ABAQUS) method and BEM method [34] incorporates techniques like the 

interactive integral method for crack analysis. 

• In most FEM programs, the quarter-point element is utilised for crack analysis. 

However, this technique requires a high mesh density in order to get accurate 

results. This can be avoided by applying a high mesh density localised at the crack 

tip. The introduction of localised meshes will also require transitional meshes as 

we move further away from the crack tip region. It is very difficult to achieve a 

smooth transitional mesh between the fine mesh region and the course mesh. By 

contrast, transitional blocks or meshes are not required in the FBM method. 

Hence, the use of a singular core around the crack tip by the FBM method is a 

significant advantage over the equivalent FEM model. In the FBM program, the 

implementation of a singular core has shown to be robust in calculating the stress 

intensity. The number of blocks required in forming the singular core is only a 

fraction of the elements applied in an equivalent FEM analysis. 

• After an extensive investigation into elastodynamics of interface cracks, it was 

concluded that there are no analytical solutions for interface crack between bi-

materials. Therefore, an elastodynamic solution proposed for the FBM is 

presented. The dynamic SIF and the dynamic T-stress are calculated by adopting 

the Durbin [115] strategy for dynamic analysis and replacing the transformed 

solution with the Williams series for a static state. The accurate calculation of the 
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dynamic SIF and the dynamic T-stress is credited to the control of the singular 

core at the crack tip.  

• The FBM program for dynamic analysis needs some form of verification. 

However, due to the unavailability of dynamic numerical solutions for interface 

crack between bi-materials, the only alternative is to perform a numerical analysis 

using an existing numerical program. At the time of this research, the ABAQUS 

commercial software was deemed credible for the verification of the FBM 

program. Work done in this research has shown that the FBM can produce results 

which can match the credibility and accuracy of ABAQUS but using minimum 

resources and computational effort. With further development and verification, the 

FBM method can serve as a benchmark and a verification tool for other numerical 

methods in the future. 

• The FBM method has an alternative approach to analysing interface cracks when 

compared to the FEM method. The difference between the two numerical methods 

is the use of elements or blocks. The framework and mathematical concepts of the 

FBM method developed for static and elastodynamic analyses of interface cracks 

will definitely add to the existing knowledge on fracture dynamics. 

• As a result of comparing the FBM to other numerical techniques, improvements 

to the proportionality method is proposed. The improved technique based on the 

proportionality method called the Stress Proportionality Method is presented. The 

development of this technique is presented in Chapter 7 of this thesis and some of 

the major disadvantages of the original proportionality method were addressed. 

The accuracy of this new technique is demonstrated by comparing the SIF results 

against ABAQUS (J-Integral technique) and the FBM method (Williams series). 

The success of this technique means, the nodal values of displacement and stress 

from the FBM can be utilised in the future to determine the SIF for an interface 

crack between bi-materials.  
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8.4. Future Work 

Some features and capabilities of the finite block method as presented in this 

thesis remain open for further study. Thus, future studies can focus on the following 

aspects;  

• In this thesis, the finite block method is developed in the strong form. A future 

study can focus on developing a weak form of the FBM method. This can lead to 

a more stable and convergence solution.  

• The crack length use in the finite block model were chosen without increasing the 

number of blocks. This can lead to a suppression of the blocks ahead the crack tip. 

Future work should consider using blocks with equal length on each side of the 

crack tip. Priority should be given to the shape and dimensions of the singular 

core. This can reduce or eliminate the nodal density distortions around the crack 

tip. 

• This research mainly focused on simple geometry and straight-line cracks. 

However, the finite block method can be extended to study complex geometries 

with cracks. By introducing a slant crack in to the geometry, a mixed mode 

fracture effect is created. For mixed mode crack, it means a derivation of the 

William’s series expansion will be required to cover the different crack modes and 

then combining their results. 

• Dynamic study of stationary cracks is presented in this thesis. Therefore, further 

work on the Finite Block Method can be extended to the prediction of crack 

extension since the meshless nature of this method requires no remeshing. 

However, some special treatment of the blocks arrangement and the singular core 

at the crack tip may require some rework. 
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1 Appendix A 

 

A.1 Algorithms for Constructing the Differential Matrix D0 

In Chapter 3 of this thesis, the Lagrange series interpolation is employed for the 

numerical interpolation of the finite block method. The following algorithm computes 

the first order differential matrix D0 which is the coefficient term from the Lagrange 

series interpolation.  

The code below is for MATLAB: 

clear all 

% Number of points for Lagrange interpolation 

nx=11; 

ny=11;  

x=linspace(-1,1,nx); 

y=linspace(-1,1,ny); 

% Points in global numbering system  

[xm,ym]=meshgrid(x,y); 

%Total number of nodes 

M=nx*ny; 

X=reshape(xm',M,1); 

Y=reshape(ym',M,1); 

% Construct first order differential matrix D0 

for i=1:nx 

    xi=x(i); 

    U=routine_lag_D0(nx,x,xi); 

    for j=1:ny 
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        D0(i,j)=U(j); 

    end 

end 

%Function for construct first order differential matrix D0 

function [U]=routine_lag_D0(n,x,xi) 

for k=1:n 

    DC=1;  

    for i=1:n 

        if k~=i 

            DC=DC*(x(k)-x(i)); 

        end 

    end  

    D1=0; 

    for i=1:n  

        if i~=k 

        D2=1; 

            for j=1:n 

                if j~=k && j~=i 

                    D2=D2*(xi-x(j)); 

                end 

            end    

            D1=D1+D2; 

        end 
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    end 

    U(k)=D1/DC; 

end 
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1 Appendix B1 
 

B1.1 Standard Elasticity Equations 

In the absence of body forces, the equilibrium equation for a plane elasticity 

(plane strain and plane stress) problem is given as  
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  ,                   (B1.1) 

where xx , yy  and xy  are the stress components in the Cartesian coordinate system.  

Relationship between the strain-displacement is given by  
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where xx , yy and xy are the strain components, xu  and yu  are the displacement 

components in Cartesian coordinate system (x,y). 

The stress-strain relationship 

( ) xxyyxxxx  2* ++=  , 

( ) yyyyxxyy  2* ++=  ,  

xyxy  2=  .                    (B1.3) 

Eq. (B1.3) can be written as such 

 



Appendix B1 

 

230 
 

( )
( )








+

+
−= yyxxxxxx 









*

*

22

1
 ,  

( )
( )








+

+
−= yyxxyyyy 









*

*

22

1
 , 

xyxy 



2

1
=  ,                    (B1.4) 

where   is the shear modulus and  
*  is given by 

 





1

3*

−

−
=  . For Plane stress   +−= 13  and for plane strain   43−= .   is the 

Poisson’s ratio. 

B1.2 The Compatibility Equation  

By differentiating Eq. (B1.2a) twice with respect to y, differentiating Eq. 

(B1.2b) twice with respect to x and differentiating Eq. (B1.2c) once with respect to x 

and y, we can eliminate the displacement from the equations. The final expression after 

the differentiation; 
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Substituting Eq. (B1.5a) and Eq. (B1.5b) into Eq. (B1.5c) give the compatibility 

equation as follows 

yxxy

xyyyxx
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2  .                (B1.6a) 

Pulling together Eq. (B1.1) and Eq. (B1.4), Eq. (B1.6a) can be written as 
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( ) 02 =+ yyxx   ,                    (B1.6b) 

where the Laplace operator 
2  is given by 
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B1.3 The Airy Stress Function 

The Airy stress function is an effective technique used for solving two-

dimensional equilibrium problems. For a two-dimensional elasticity problem, the 

stresses are expressed in terms of the Airy stress function   as 
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B1.4 The Biharmonic Equation 

For an elasticity problem, it is normal to solve for the displacement, the strain 

and the stress in the order as it is stated. However, by expressing the stress in terms of 

the Airy stress function we can bypass the displacement approach completely. 

Therefore, the displacement can be ignored and we can solve for only the stress and the 

strain. However, there is a caveat. When solving for the strain without the displacement, 

it is expected that the compatibility equation is satisfied.  

Since the equilibrium equation Eq. (B1.1) is satisfied by the conditions of the 

compatibility equation according to the definitions in Eq. (B1.7). Thus, the 

compatibility equation Eq. (B1.6b) can be expressed as 

0224 ==   ,                   (B1.8) 

where 
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is the biharmonic operator. Leading to  
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yxyx
  for plane strain.             (B1.11) 

Eq. (B1.10) and Eq. (B1.11) are termed the biharmonic equations.  

B1.5 The Williams Eigenfunction Expansion Series  

The Williams [18,104] eigenfunction expansion method is fundamental to the 

study of the stress and displacement fields near the crack tip. As it was explained in 

Chapter 4, the stress and displacement can be expressed in terms of the Airy stress 

function   which satisfies the biharmonic equation, Eq. (B1.8).  

It has been shown that an expansion of the Airy stress function around the crack 

tip as shown in Fig. B1.1 can be written in a series form [104] as follows 

( )


=

+=
0

1

n

nFr n    ,                 (B1.12) 

where n  as expressed in the series are the eigenvalues which is yet to be determine.  

)(nF  are the corresponding eigenfunctions. 

Substituting Eq. (B1.12) into the biharmonic equation Eq. (B1.11) where the 

Laplace operator is in the polar form ),( r  as defined in Fig. B1.1, gives 
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By integrating Eq.(B1.13) leads to the following solution 

( ) ( ) ( ) 1cos1sin +++= nnnnn BAF    

   ( ) ( ) 1cos1sin −+−+ nnnn DC  ,             (B1.14) 

where nA , nB , nC  and nD   are unknown constants which are yet to be determined 

using the stress boundary conditions 
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0==   r ,  at   =   along the crack surface.             (B1.15) 

B1.5.1 Mode I Crack for a Homogeneous Plate 

For a mode I crack, the Airy stress function is described as an even function of 

 . Therefore, the constants nA  and nC  in Eq. (B1.14) becomes zero. Therefore, Eq. 

(B1.12) is updated to give 

( ) ( ) 
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Figure B1.1 The 2D cracked plate showing the coordinate system. 

 

Using the Airy stress function in the polar form, the stresses around the crack tip 

is approximated as follows 
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An expression for the displacement in the polar form is achieved using Hooke’s 

law and strain-displacement relationship stated as follows: 
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where   and   retain the same definitions as stated in Eq. (B1.4). 

Replace the stresses in Eq. (B1.18) with the definitions from Eq.(B1.17) to get 
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Now, apply the boundary conditions from Eq. (B1.15) to the stress equations, Eq. 

(B1.17) and this will result in the following simultaneous equation in terms of nB  and 

nD  . 

( ) ( ) 01cos1cos =−++  nnnn DB  ,            (B1.20a) 

( ) ( ) ( ) ( ) 01sin11sin1 =−−+++  nnnnnn DB  .           (B1.20b) 

For non-trivial solution of nB  and nD  , the following characteristic equation of the 

eigenvalue  n  is valid; 

( ) 02sin =n                   (B1.21) 

and the corresponding eigenvalues are 

,2,1,0,
2

== n
n

n .                (B1.22) 

Ignore all negative values since it has no physical meaning. Also, for  0=n  will lead to 

infinite displacement. Thus, Eq. (B1.22) reduces to 

,2,1,
2

== n
n

n                  (B1.23) 

Applying the eigenvalues from Eq. (B1.23) to Eq. (B1.20) leads to 
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nnn DD
n

n

B −=









+









−

−=





1
2

cos

1
2

cos

 , valid for 𝑛 = 2, 4, 6, ….          (B1.24b) 

By substituting the eigenvalues from Eq. (B1.23) into the stress equations, Eq. (B1.17) 

gives 
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Note that the above equation is satisfied by the relationship between nB  and nD  as 

expressed in Eq. (B1.24). 

Eq. (B1.25) is rearranged as follows, using the first two terms 2,1=n   from Eq. 

(B1.24) and expressed in terms of  nD  : 
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 By setting 1=n  in Eq. (B1.26a), the first term results in a singularity at the 

crack tip. Therefore, 1D  in the first term relates to the stress intensity factor and 2D  in 

the second term relates to the T-stress at the crack tip. 

The Cartesian form of the above stress expressions for the series is given below: 
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where 24DT =  is the T-stress. 

A similar process exists for deriving the mode II and mode III expressions for 

the Williams expansion series. Further information is covered by the following 

references [15, 104]. 
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1 Appendix B2 
 

B2.1 The Method of Complex Potentials 

The displacement and stress field for a two-dimensional plane elasticity problem 

are easily evaluated using the complex potential method proposed by Muskhelishvili 

[170]. The viability of this method is based on the Airy stress functions  . 

B2.1.1 Airy Stress Function Expressed in Terms of Complex Potential 

The complex variable z in the Cartesian coordinate system is defined as 

iyxz +=                      (B2.1) 

and the complex conjugate 

iyxz −=                      (B2.2) 

where 1−=i . 

The polar form of the complex variable is expressed as 

( )  ireirz =+= sincos                   (B2.3) 

and the complex conjugate 

( )  ireirz −=−= sincos .                  (B2.4) 

Using the complex variable z, a complex function )(zf  can exist. Therefore, the 

derivative of the function )(zf  is easily determined with respect to z.  

According to the Cauchy-Riemann equation, the function )(zf  can be shown to 

be analytical when the real and imaginary parts are harmonic.  

Also, stated in Eq. (B1.7) the Airy stress function is a biharmonic function, 

therefore we can introduce a new function ),( yxP  as such 

P= 2                      (B2.5) 
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From Eq. (B2.5), it can be said that the function ),( yxP  is harmonic when expressed as 

0222 == P                     (B2.6) 

Now let ),( yxQ  be the harmonic conjugate of ),( yxP . Therefore, the analytical 

function )(zf  can be expressed as 

( ) 0=+= iQPzf  .                   (B2.7) 

Likewise, let  

( ) ( ) iqpdzzfz +== 4

1
  .                  (B2.8) 

Then the derivative of     

( ) ( )zfz
4

1' =                   (B2.9a) 

and according to the Cauchy-Riemann equations gives 
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Making P and Q the subject of the equation gives 
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−= 44   .              (B2.11) 

Now consider the function )( yqxp+−  which can be shown to be harmonic is defined 

as 

( )  02 =+− yqxp                  (B2.12) 

and forms a real or imaginary part of another function )(z .  

Now consider the real part of the function )(z  
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( ) ( ) zyqxp  Re=+−  .                (B2.13) 

Using the relationship where iyxz −=  gives 

( ) ( ) zzyqxp Re=+  .                (B2.14) 

Substituting Eq. (B2.14) into Eq. (B2.13) gives the Airy stress function expressed in 

terms of the complex potential method as 

( ) ( ) ( ) zzzyx  += Re,    or 

( ) ( ) ( ) ( ) ( )zzzzzzyx  +++=,2  .                  (B2.15) 

Using the definitions for the Airy stress function in Eq. (B1.7) and Eq. (B2.15), we 

obtained 
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 .               (B2.16) 

Noting the following definitions 
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 .            (B2.18) 

A simple way to express the stress and displacement in the complex potential is by 

using the above relationships and Eq. (B2.15) to obtain 

( ) ( ) ( )zzzz
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i
x

'' 


++=
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 .               (B2.19) 

By substituting Eq. (B2.19) into a definition of stress using the Airy stress function, Eq. 

(B1.7) gives 

( ) ( ) ( ) ( )zzzzzi yyxx

""''  −−+=+  ,              (B2.20) 
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( ) ( ) ( ) ( )zzzzzi xyyy

""''  +++=−  .              (B2.21) 

Adding Eq. (B2.20) and (B2.21) will lead to 

( ) ( )  ( ) zzzyyxx

''' Re42  =+=+  .              (B2.22) 

Subtracting Eq. (B2.20) from (B2.21) will lead to 

( ) ( ) zzzi xyxxyy

""22  +=−− .              (B2.23) 

Applying the conjugate on both sides of Eq. (B2.23) gives 

( ) ( ) zzzi xyxxyy

""22  +=+−  .              (B2.24) 

B2.1.2 Complex Potential Representation of Displacement 

Using the strain-displacement relationship from Eq. (B1.18) and the stress expression in 

terms of the Airy stress function, Eq. (B1.7), we can substitute into Eq. (B1.3) which is 

the stress-strain relationship to get 
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Substituting Eq.(B2.11) into Eq. (B2.25) and Eq. (B2.26) leads to 
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Integrate Eq. (B2.28) and (B2.29) to get the following expressions 
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  and              (B2.30) 
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where )(1 yf  and )(2 xf   are the rigid body displacements which can be ignored. 

Using the definition, iqpz +=)(  from Eq. (B2.8), and the expressions from Eq. 

(B2.30) and Eq. (B2.31), we can substitute into the complex potential equation Eq. 

(B2.16) to get the following complex expression 

( ) ( ) ( ) ( )zzzziuu yx

''2  −−=+  ,              (B2.32) 

where  
( )
( )
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+
=

*

* 3
 

Altogether, the Kolosov-Muskhelishvili formulas from Eq. (B2.22), (B2.24) and 

(B2.32) are written below for convenience; 

( ) ( )  ( ) zzzyyxx

''' Re42  =+=+ ,  

( ) ( ) zzzi xyxxyy

""22  +=+− , 

( ) ( ) ( ) ( )zzzziuu yx

''2  −−=+  .             (B2.33) 
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2 Appendix C 

 

C.1 Introduction 

In Chapter 6 of this thesis, a two-dimensional bi-material plate with a centre 

crack was examined under dynamic conditions using the newly developed finite block 

method. Due to the unavailability of an analytical solution for the two-dimensional 

interface cracked plate, FEM (ABAQUS) was used for the verification of the FBM 

method analysis.  

Since FEM (ABAQUS) analysis will serve as the benchmark for the verification 

of the FBM solution, the accuracy of the FEM (ABAQUS) analysis is highly 

significant. Therefore, a mesh convergence study is required to ensure the result of the 

FEM (ABAQUS) dynamics analysis is not affected by a changing element size. 

Furthermore, the mesh convergence study must be performed under static conditions. 

Details of the FEM analysis is outlined below. 

C.1.1 Details of FEM (ABAQUS) Model 

A two-dimensional plate with a centre crack is considered for the mesh 

convergence study. The two-dimensional plate has the same dimensions as used in the 

finite block dynamic analysis. Due to symmetry with respect to the y axis, it is 

equivalent to solve the boundary value problem for a half plate. The ABAQUS model of 

the plate and the various boundary conditions is shown in Fig. C.1. The static analysis is 

performed for a plane stress state. The stress intensity factor has been deemed to be the 

critical parameter for the mesh convergence study. Therefore, an output request for the 

SIF was chosen in ABAQUS. Since ABAQUS uses the contour integral to determine 

the stress intensity factor, the total number of contours for this analysis is chosen to be 

5. The elastic modulus 1=E  and Poisson’s ratio 3.0= . These values of the material 

property are maintained for the different convergence trial study. A uniform tensile 

stress 1=  is applied at the top and bottom of the plate. 

Since the stress at the crack tip will lead to large deformations, the standard 

quadratic elements provided by ABAQUS is deemed adequate for the mesh 

convergence study.  
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The version of ABAQUS used for this study: ABAQUS/CAE 6.9-2 

ABAQUS quadratic element type: CPS8R 

Quarter point elements with ABAQUS singularity control was employed in this 

analysis. 

The FEM model showing the different number of elements is presented in Fig. 

C.2 through C.4. 

 

 

Figure C.1 An FEM model of the cracked plate subjected to a uniform uniaxial 

stress at the top and bottom. 

 

 

 

Centre crack 
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Figure C.2 FEM model with 10 x 20 elements 

 

 

Figure C.3 FEM model with 12 x 22 elements 
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Figure C.4 FEM model with a total number of elements = 8978 

 

C.1.2 Mesh Convergence Analysis and Results 

In performing the convergence study, 8 successive runs of the FEM analysis 

were carried out and each time the number of elements was increased. The number of 

elements used in this study ranges from 200 to 8978. For every run of the FEM analysis 

the average stress intensity factor is recorded as shown in Table C.1. 

The stress intensity factors are plotted against the number of elements as shown 

in Fig C.5. For verification purposes, the analytical solution for the stress intensity 

factor as provided by Rooke [161] is also plotted on the same graph. 
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Figure C.5 An 8-point convergence graph. By using the stress intensity factor as the 

critical parameter which is determined by ABAQUS for every variation in the number 

of elements. 

 

Analysis No. Number of Nodes Number of Elements Average IK  

1 671 200 1.6713 

2 873 264 1.6710 

3 1187 364 1.6710 

4 1649 512 1.6713 

5 2541 800 1.6713 

6 4239 1352 1.6713 

7 8699 2812 1.6713 

8 27405 8978 1.6713 

 

Table C.1 The average stress intensity factor values as determined by ABAQUS 

using 5 contours for the J-Integral method. 

  

The last 5 points shows that the stress intensity factor has converged. Therefore, the 

ABAQUS dynamic analysis as reported in this thesis utilised the final mesh with a total 

of 8978 elements. 
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