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Abstract

Background

Reduced lung function is common and associated with increased cardiovascular morbidity

and mortality, even in asymptomatic individuals without diagnosed respiratory disease.

Previous studies have identified relationships between lung function and cardiovascular

structure in individuals with pulmonary disease, but the relationships in those free from diag-

nosed cardiorespiratory disease have not been fully explored.

Methods

UK Biobank is a prospective cohort study of community participants in the United Kingdom.

Individuals self-reported demographics and co-morbidities, and a subset underwent cardio-

vascular magnetic resonance (CMR) imaging and spirometry. CMR images were analysed

to derive ventricular volumes and mass. The relationships between CMR-derived measures

and spirometry and age were modelled with multivariable linear regression, taking account

of the effects of possible confounders.

Results

Data were available for 4,975 individuals, and after exclusion of those with pre-existing

cardiorespiratory disease and unacceptable spirometry, 1,406 were included in the analy-

ses. In fully-adjusted multivariable linear models lower FEV1 and FVC were associated with

smaller left ventricular end-diastolic (−5.21ml per standard deviation (SD) change in FEV1,

−5.69ml per SD change in FVC), end-systolic (−2.34ml, −2.56ml) and stroke volumes
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(−2.85ml, −3.11ml); right ventricular end-diastolic (−5.62ml, −5.84ml), end-systolic

(−2.47ml, −2.46ml) and stroke volumes (−3.13ml, −3.36ml); and with lower left ventricular

mass (−2.29g, −2.46g). Changes of comparable magnitude and direction were observed

per decade increase in age.

Conclusions

This study shows that reduced FEV1 and FVC are associated with smaller ventricular vol-

umes and reduced ventricular mass. The changes seen per standard deviation change in

FEV1 and FVC are comparable to one decade of ageing.

Introduction

Respiratory disease is common and under-diagnosed, and a significant and growing cause of

death and disability[1]. Much of the excess morbidity and mortality is secondary to cardiovas-

cular disease[2]. In a prospective cohort study of 7,575 patients with chronic obstructive pul-

monary disease (COPD) from Saskatchewan, Canada[3], the quintile of patients with the most

severe COPD had relative risks between 1.4 and 3.1 for all-cause mortality, cardiovascular

mortality, congestive heart failure, and angina.

Lung function is independently associated with cardiovascular morbidity and mortality

[4,5], both in individuals with established respiratory disease and in those without any diagno-

sis or symptoms. In a prospective study of 15,000 individuals in the west of Scotland[6], those

in the lowest quintile for forced expiratory volume in first second (FEV1) had an all-cause

mortality almost twice that of the highest quintile. The risks were similar in asymptomatic

(subclinical) individuals.

The prevalence of subclinical impaired lung function is great: in the National Health and

Nutrition Examination Survey (NHANES) and NHANES III cohort studies of community

volunteers in the United States[7] around 12–13% of individuals had an FEV1 to forced vital

capacity (FVC) ratio less than 0.7, the generally accepted cut-off for obstructive lung disease

[8]. Almost three quarters of these individuals did not have a diagnosis of lung disease, and

most of the undiagnosed individuals reported good or excellent health. Mortality was higher

in those with abnormal spirometry, irrespective of the presence of diagnosed lung disease.

Previous work has explored some of the relationships between lung disease and cardiovas-

cular structure. Using data from the MESA cohort, Grau and colleagues[9] demonstrated that

increasing emphysema severity, quantified with thoracic computed tomography, is associated

with lower right ventricular volumes and mass. They also found that right ventricular mass is

associated with the FEV1 to FVC ratio. Barr et al.[10] continued this analysis to identify similar

relationships between emphysema severity and left ventricular volumes and mass, and between

the FEV1 to FVC ratio and left ventricular end-diastolic and stroke volumes. These analyses

were conducted in an all-comers population, many of whom had existing cardiovascular and

respiratory disease. Furthermore, the effects of FEV1 and FVC per se were not studied. Given

the prevalence of subclinical changes in lung function, together with the associations with

adverse outcomes, we set out to explore the relationships between lung function and cardio-

vascular structure and function in a population free from diagnosed cardiovascular and respi-

ratory disease.

Lung function and cardiac structure and function
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Methods

UK Biobank is a large prospective cohort study of approximately 500,000 unselected commu-

nity volunteers aged 40 to 69 at the time of enrolment, living in the United Kingdom. The

design and conduct of the study have been described in detail previously[11]. This study was

covered by the general ethical approval for UK Biobank studies from the NHS National

Research Ethics Service on 17th June 2011 (Ref 11/NW/0382). None of the authors had direct

contact with the study participants. This report is a cross-sectional analysis of the subset of par-

ticipants who took part in the imaging pilot programme.

Demographics and doctor-diagnosed co-morbidities were self-reported by electronic ques-

tionnaire and interview with a healthcare professional. Data collected during the imaging visit

were used in the analyses, except where unavailable, in which case data from the enrolment

visit were used. If a participant did not answer a question regarding a comorbid diagnosis, or

did not know, it was assumed they did not have the condition. Physical measurements (height,

weight, blood pressure, heart rate) and smoking status were captured exclusively at the time of

imaging.

Smokers were defined as individuals who smoke, or used to smoke, on all or most days.

Those who smoked occasionally were deemed to be never smokers. For current or previous

smokers, pack year history was calculated as the product of the number of packs of cigarettes

smoked per day and the difference between age started smoking and age stopped smoking (or

age at imaging for current smokers).

Cardiovascular magnetic resonance

A subgroup of participants is undergoing cardiovascular magnetic resonance imaging (CMR).

The CMR acquisition protocol and post-processing have been described previously[12]. In

brief, participants underwent imaging using a 1.5 Tesla Siemens MAGNETOM Aera scanner

(Siemens Healthcare GmbH, Erlangen, Germany) at a central imaging centre. Short and long

axis cine images were acquired using a balanced steady state free precession sequence. Manual

image analysis was performed across two core imaging centres using cvi42 version 5.1.1 (Circle

Cardiovascular Imaging, Calgary, Canada) by observers blinded to all clinical information.

The software used these contours to calculate right and left ventricular end-diastolic, end-

systolic, and stroke volumes; right and left ventricular ejection fraction; and left ventricular

mass. The manual image analysis and quality control, including assessment of intra- and inter-

observer variability, have been described in detail previously[13].

Spirometry

Spirometry without bronchodilator administration was performed at the time of imaging

according to a standard protocol using a Vitalograph Pneumotrac 6800 spirometer [14]. Each

participant produced two blows, and a third if there was unacceptable variance in the first two

(as calculated by the spirometer). The forced expiratory volume in one second (FEV1), forced

vital capacity (FVC), and an automated assessment of measurement quality were recorded.

Spirometry blows were excluded from the analysis if the automated quality assessment was

anything other than ‘acceptable’. Participants were excluded if they had fewer than two accept-

able blows, if the coefficient of variation for the two or three acceptable blows exceeded 5%, or

if the difference between the best and second best acceptable blow exceeded 150ml, in accor-

dance with established guidelines[8]. To investigate the potential impact of these exclusion cri-

teria on the results we performed a sensitivity analysis in which all participants with at least

two ‘acceptable’ spirometry blows were included, without any limit on the permissible range

Lung function and cardiac structure and function

PLOS ONE | https://doi.org/10.1371/journal.pone.0194434 March 20, 2018 3 / 12

https://doi.org/10.1371/journal.pone.0194434


or coefficient of variation between blows. The results of this sensitivity analysis are presented

in S2 File. Obstructive spirometry was defined as an FEV1 to FVC ratio less than 0.7.

Statistical analysis

The CMR-derived parameters and FEV1 and FVC were approximately normally distributed

and the assumptions for linear regression were satisfied. FEV1 and FVC were standardised to

the mean (FEV1 mean 2.87 litres, SD 0.70 litres; FVC mean 3.73 litres, SD 0.89 litres).

The relationships between nine CMR-derived parameters and both FVC and FEV1 were

modelled with multivariable linear regression, using age, sex, ethnicity, height, weight, systolic

blood pressure, resting heart rate, Townsend deprivation index (a commonly used measure of

material deprivation where positive values represent above-average deprivation and negative

values below-average deprivation), education level (categorised as the presence or absence of a

degree or professional qualification), regular alcohol consumption (defined as three or more

occasions per week), smoking history (pack years) and any diagnosis of hypertension or diabe-

tes as co-variates. Height and weight were included as covariates in the regression models,

rather than indexing the dependent variables to body surface area, since the use of ratios in

regression analysis is liable to spurious results and misinterpretation[15,16]. The approach

adopted ensures all variables in the model are appropriately adjusted for body composition.

To place the effects of spirometry on CMR-derived parameters in context, the relationships

between the CMR-derived parameters and age were modelled in a similar fashion, except that

both FEV1 and FVC were used as co-variates. Interaction terms were used to explore any strat-

ification by sex in the relationships between the CMR-derived parameters and the primary

exposure variable (FEV1, FVC, or age) in each regression model.

Each regression analysis was performed on a complete-case basis without imputation of

missing data. Nine of thirteen covariates had no missing data, and the covariate with most

missing data (alcohol consumption) lacked fewer than one percent of observations. The out-

come variables (CMR-derived parameters) had fewer than two percent missing observations,

which were clustered in 22 participants who were missing all the outcome variables and

another one who was missing right ventricular parameters.

Regression coefficients are presented as the change in the CMR-derived parameter per stan-

dard deviation change in FEV1 or FVC, or per decade change in age. P values were calculated

using Student’s t test or ANOVA for continuous variables and Chi-squared test for categorical

variables. Statistical analyses were performed using R version 3.3.2[17].

Results

1,221 individuals were excluded on account of pre-existing cardiorespiratory disease, the defi-

nition of which is provided in S1 File. Of the remaining 3,754 individuals, a further 2,348 were

excluded in the primary analysis because they did not meet the criteria for reproducible and

acceptable spirometry. The case selection process for the primary analysis is shown in Fig 1.

1,406 participants were included in the primary analysis. On account of missing data, the

number of observations in the regression models was 1,366 or 1,367 depending on the CMR-

derived parameter being studied. Baseline characteristics, stratified by tertile of FEV1, are

described in Table 1. Compared to those in the highest tertile, those in the lowest tertile of

FEV1 were older, more likely to be female, shorter, lighter, had lower diastolic blood pressure

and higher resting heart rates, and were more likely to have obstructive spirometry.

Following adjustment for potential confounders in a multivariable linear model, lower

FEV1 and FVC were associated with smaller left ventricular (LV) end-diastolic volume, LV

end-systolic volume, LV stroke volume, right ventricular (RV) end-diastolic volume, RV end-

Lung function and cardiac structure and function
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systolic volume, RV stroke volume, and LV mass (Table 2). The interaction terms between the

primary exposure variables and sex were not statistically significant and thus there were no dif-

ferences in the observed relationships between males and females. The linear relationships

between CMR-derived parameters and FEV1 and FVC are shown in the S1 and S2 Figs,

respectively.

In a similar multivariable linear model, increasing age was associated with smaller LV end-

diastolic volume (−3.96ml, −6.01ml to −1.92ml), LV end-systolic volume (−1.52ml, −2.86ml

to −0.17ml, LV stroke volume (−2.47ml, −3.73ml to −1.20ml), RV end-diastolic volume

(−5.30ml, −7.49ml to −3.11ml), RV end-systolic volume (−3.03ml, −4.47ml to −1.59ml), and

RV stroke volume (−2.30ml, −3.57ml to −1.03ml) (Table 3). Values represent the mean and

lower and upper 95% confidence intervals for the change in CMR-derived parameter per

Fig 1. Case selection flowchart for the primary analysis.

https://doi.org/10.1371/journal.pone.0194434.g001
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decade increase in age. FEV1, FVC, and age did not influence right or left ventricular ejection

fraction. Age did not influence left ventricular mass. The relative effect sizes of FEV1, FVC,

and age on CMR-derived parameters are shown in Fig 2.

In a sensitivity analysis employing a broader definition of acceptable spirometry (at least

two ‘acceptable’ blows with no restriction on the range or coefficient of variation of these

blows) 2,070 individuals met the criteria for inclusion. There were minimal changes to the

Table 1. Baseline characteristics of the study population by tertile of FEV1.

Tertile of FEV1 P value

1st

(n = 475)

2nd

(n = 468)

3rd

(n = 463)

Age (years) 57.6 (6.6) 53.8 (7.8) 52.3 (7.5) < 0.001

Sex (male) 41 (9%) 162 (35%) 396 (86%) < 0.001

Height (cm) 163 (7) 168 (7) 177 (7) < 0.001

Weight (kg) 68 (13) 73 (15) 82 (13) < 0.001

Diastolic BP (mmHg) 78 (10) 78 (10) 80 (9) 0.002

Systolic BP (mmHg) 137 (19) 135 (18) 137 (16) 0.976

Resting heart rate (beats per minute) 72 (10) 69 (11) 68 (12) < 0.001

Townsend deprivation index -1.99 (2.76) -2.01 (2.66) -1.84 (2.75) 0.388

Hypertension 128 (27%) 130 (28%) 121 (26%) 0.852

Diabetes 22 (5%) 15 (3%) 22 (5%) 0.423

Obstructive spirometrya 63 (13%) 34 (7%) 19 (4%) < 0.001

Smoking history (pack years) 4.71 (10) 4.87 (11) 5.23 (11) 0.448

Educational level (degree or professional qualification) 312 (66%) 304 (65%) 314 (68%) 0.632

Ethnicity (white) 456 (97%) 457 (98%) 455 (98%) 0.428

Alcohol consumption (three or more drinks per week) 88 (19%) 87 (19%) 98 (21%) 0.524

Data represent mean (standard deviation) or n (percentage) for continuous and categorical variables, respectively.

The cut-offs between the first and second and second and third tertiles, of FEV1 were 2.5 litres and 3.09 litres, respectively.

P values by ANOVA or Chi-squared test.
aObstructive spirometry defined as an FEV1 to FVC ratio < 0.7.

https://doi.org/10.1371/journal.pone.0194434.t001

Table 2. Effects of lung function on CMR-derived parameters.

CMR Parameter FEV1 (standardised) FVC (standardised)

Effect estimate 95% CI P value Effect estimate 95% CI P value

Lower Upper Lower Upper

Left ventricular end-diastolic volume (ml) −5.21 −7.42 −3.00 < 0.001 −5.69 −8.03 −3.36 < 0.001

Left ventricular end-systolic volume (ml) −2.34 −3.78 −0.89 0.002 −2.56 −4.09 −1.03 0.001

Left ventricular stroke volume (ml) −2.85 −4.22 −1.49 < 0.001 −3.11 −4.55 −1.67 < 0.001

Left ventricular mass (g) −2.29 −3.77 −0.82 0.002 −2.46 −4.02 −0.89 0.002

Left ventricular ejection fraction (%) NS −0.55 0.60 0.927 NS −0.56 0.65 0.886

Right ventricular end-diastolic volume (ml) −5.62 −7.98 −3.26 < 0.001 −5.84 −8.34 −3.34 < 0.001

Right ventricular end-systolic volume (ml) −2.47 −4.03 −0.92 0.002 −2.46 −4.10 −0.82 0.003

Right ventricular stroke volume (ml) −3.13 −4.50 −1.76 < 0.001 −3.36 −4.81 −1.91 < 0.001

Right ventricular ejection fraction (%) NS −0.68 0.48 0.739 NS −0.78 0.44 0.588

Effect sizes represent the change of the CMR parameter per standard deviation reduction in FEV1 or FVC in a multivariable linear regression adjusted for age, sex,

ethnicity, height, weight, systolic blood pressure, resting heart rate, Townsend deprivation index, education level, regular alcohol consumption, smoking history, and

any diagnosis of hypertension or diabetes. CI; confidence interval. NS; not statistically significant.

https://doi.org/10.1371/journal.pone.0194434.t002
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effect sizes in the multivariable linear regression, and the 95% confidence intervals were nar-

rower on account of the larger sample size (S2 File). There were no changes to the direction or

statistical significance of the results.

Discussion

The key finding of our study is that in a large cohort of individuals without prior diagnosis of

cardiorespiratory disease, lower lung function is associated with smaller left and right ventricu-

lar end-systolic, end-diastolic, and stroke volumes; and with lower left ventricular mass. These

relationships are independent of other variables known to affect cardiac structure. There was

no association with ejection fraction.

The results of our study confirm and expand on previous work. The Multi Ethnic Study

of Atherosclerosis (MESA) lung substudy has previously identified relationships between

emphysema severity, quantified by thoracic computed tomography, and right and left ven-

tricular volumes and mass[9,10,18], although the consistency of the relationships varied

between analyses, and many of the patients had diagnoses of cardiovascular and respiratory

disease. In the same cohort, reduced FEV1 to FVC ratio was associated with LV end-diastolic

volume and LV stroke volume[10], and with RV mass[9] although associations with FEV1

and FVC per se were not studied. Using echocardiography, Watz and colleagues[19] showed

that LV end-diastolic diameter and RV diameter are associated with FEV1. Our study

extends these previous findings to a cohort without diagnosed heart or lung disease, and

demonstrates consistent relationships between spirometry and multiple measures of left and

right ventricular structure and function. The effect sizes seen in this study (2.29ml to 5.84ml

per standard deviation change in FEV1 or FVC) are comparable to those seen in MESA[10]

and in echocardiographic studies[19]. Furthermore, they are comparable in size to the effects

of systolic and diastolic blood pressure, and diabetes, all widely accepted drivers of ventricu-

lar remodelling[20].

Age is a significant risk factor for cardiovascular morbidity and mortality[21,22], and is

associated with the development of ventricular fibrosis, remodelling, and diastolic dysfunction

[23]. Previous investigations have explored the relationship between age and ventricular struc-

ture and function. Analysis of a subset of the UK Biobank CMR study, free from all reported

Table 3. Effects of age on CMR-derived parameters.

CMR Parameter Age (decades)

Effect estimate 95% CI P value

Lower Upper

Left ventricular end-diastolic volume (ml) −3.96 −6.01 −1.92 < 0.001

Left ventricular end-systolic volume (ml) −1.52 −2.86 −0.17 0.027

Left ventricular stroke volume (ml) −2.47 −3.73 −1.20 < 0.001

Left ventricular mass (g) NS −2.58 0.16 0.083

Left ventricular ejection fraction (%) NS −0.39 0.67 0.614

Right ventricular end-diastolic volume (ml) −5.30 −7.49 −3.11 < 0.001

Right ventricular end-systolic volume (ml) −3.03 −4.47 −1.59 < 0.001

Right ventricular stroke volume (ml) −2.30 −3.57 −1.03 < 0.001

Right ventricular ejection fraction (%) NS −0.13 0.94 0.142

Effect sizes represent the change of the CMR parameter per decade increase in age in a multivariable linear regression adjusted for FEV1, FVC, sex, ethnicity, height,

weight, systolic blood pressure, resting heart rate, Townsend deprivation index, education level, regular alcohol consumption, smoking history, and any diagnosis of

hypertension or diabetes. CI; confidence interval. NS; not statistically significant

https://doi.org/10.1371/journal.pone.0194434.t003
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comorbid disease[13] showed a statistically significant negative correlation between age and

LV and RV end-diastolic, end-systolic, and stroke volumes; and LV mass. Similar relationships

were found using the MESA dataset[24,25], and in the current study population.

In the current study, the variation in ventricular volumes and mass seen with lower FEV1

and FVC is comparable to that seen with ageing. Notably, the changes in CMR-derived

parameters per standard deviation of FEV1 and FVC are approximately the same as those

seen with one decade of ageing. This suggests lower lung function is associated with a ‘pre-

mature ageing’ effect on the ventricle. This provides potential insight into the mechanisms

responsible for adverse cardiovascular outcomes in those with deranged lung function, and

Fig 2. Effect sizes for the change in CMR-derived parameter per standard deviation reduction in FEV1 and FVC,

and per one decade increase in age. Filled shapes represent the change in the CMR-derived parameter per standard

deviation reduction in FEV1 or FVC, or per decade increase in age. Error bars represent the 95% confidence interval

for the effect estimate.

https://doi.org/10.1371/journal.pone.0194434.g002
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highlights the potential importance of measuring lung function as a marker of cardiovascular

‘ageing’ and risk.

Our analysis did not identify any relationship between ejection fraction and FEV1, FVC, or

age, despite the significant influence of these factors on other measures of ventricular function.

Similar results were found in a MESA analysis of individuals with emphysema[10]. Our results

add to the evidence that ejection fraction alone is an insensitive marker of cardiac function

and remodelling, particularly as it relates to respiratory function.

This study has several limitations. The design of UK Biobank renders it liable to selection

bias, and it is likely that the population recruited to the study is not completely representative

of the population as a whole. The self-reporting of co-morbidities and lifestyle factors such as

smoking is liable to ascertainment bias. The relatively low prevalence of smoking observed in

our study population may be explained, at least in part, by these two factors.

Many participants were excluded from the analysis as their spirometry did not meet con-

ventional criteria for reproducibility and validity. It is possible that the variability in spirome-

try arose from its acquisition in the non-specialist UK Biobank assessment centre, rather than

in a dedicated pulmonary function laboratory. Furthermore, the study protocol limited partici-

pants to producing three blows, rather than repeating the measurement until valid and repro-

ducible results were achieved, as is commonly done in clinical practice. Nonetheless, even after

individuals with unacceptable variation had been excluded the full range of FEV1 and FVC

were represented, and thus the ability to examine relationships between these parameters and

cardiac structure was preserved. Furthermore, the sensitivity analysis revealed that exclusion

of these individuals did not materially affect the results, and suggests that no significant selec-

tion bias was introduced by the exclusion of individuals with unacceptable spirometry. The

inclusion only of individuals with reproducible, high quality spirometry increases the confi-

dence in the relationships identified by this study.

This study raises a number of questions worthy of further analysis, including the long term

cardiovascular outcomes of individuals with subclinical changes in lung function, the changes

in cardiovascular phenotype over time in those with deranged spirometry, and evaluation of

ventricular fibrosis in participants with impaired lung function through T1 mapping. These

will be amenable to investigation as longitudinal follow-up and parametric mapping data

become available from UK Biobank.

Conclusions

In a large cohort of patients without known cardiorespiratory disease, lower FEV1 and FVC

are associated with smaller left and right ventricular volumes, and lower left ventricular mass.

The changes in ventricular structure per standard deviation fall in FVC and FEV1 are similar

to those seen with a one decade increase in age, and may shed light on the mechanisms under-

lying increased cardiovascular risk in those with subclinical changes in lung function, as well

as the importance of lung function as a risk factor for cardiovascular disease.
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S1 Fig. Univariable associations between CMR-derived parameters and FEV1. Each panel

shows the association between one CMR-derived parameter and FEV1 prior to the standardi-

sation of the lung function. R2 is the coefficient of explained variance, calculated as the square

of the Pearson correlation coefficient between the CMR-derived parameter and FEV1 on a

complete pairs basis.

(TIF)

S2 Fig. Univariable associations between CMR-derived parameters and FVC. Each panel
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of the lung function. R2 is the coefficient of explained variance, calculated as the square of the
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