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ABSTRACT

The interconnectedness of financial institutions affects instability and credit crises. To quantify systemic risk we introduce
here the PD model, a dynamic model that combines credit risk techniques with a contagion mechanism on the network of
exposures among banks. A potential loss distribution is obtained through a multi-period Monte Carlo simulation that considers
the probability of default (PD) of the banks and their tendency of defaulting in the same time interval. A contagion process
increases the PD of banks exposed toward distressed counterparties. The systemic risk is measured by statistics of the loss
distribution, while the contribution of each node is quantified by the new measures PDRank and PDImpact. We illustrate how
the model works on the network of the European Global Systemically Important Banks. For a certain range of the banks capital
and of their assets volatility, our results reveal the emergence of a strong contagion regime where lower default correlation
between banks corresponds to higher losses. This is the opposite of the diversification benefits postulated by standard credit
risk models used by banks and regulators who could therefore underestimate the capital needed to overcome a period of crisis,
thereby contributing to the financial system instability.

Introduction
One lesson learned from the recent credit crisis is that the stability of the financial system cannot be assessed focussing
exclusively on each individual bank or financial institution. A broader approach to systemic risk, defined as the risk that a
considerable part of the financial system is disrupted1, is required, as interconnections and interactions are at least as important
in contributing to the overall dynamics2–9. A number of regulatory boards and committees, such as the the Financial Policy
Committee (FPC) at the Bank of England, the European Systemic Risk Board (ERSB) and the Financial Stability Oversight
Council in the United States, have been created in order to identify, monitor and take action to remove or reduce systemic
risk. They are looking at new methodologies and ideas from different disciplines to deepen their understanding of the complex
phenomena involved in financial crises10. In particular techniques borrowed from network science11, 12 have been successfully
applied to the study of network resilience to external shocks13–15 and have proven useful in the analysis of financial systemic
risk16–21. In this context, financial institutions are described as nodes in a network, connected by different kinds of edges,
indicating: cross ownership22, investments in the same set of assets (overlapping portfolios)23–25 or credit exposures (for
example loans)26–29.

In this article, we will focus on the analysis on the propagation of the financial distress through direct credit exposures,
where the distressed event is the insolvency of the financial institutions. We will introduce a new hybrid framework, the
so-called PD model, which constructively combines together two different and almost complementary approaches to assess the
risk of insolvency of financial institutions.
The first approach, from now on referred to as network theory approach, analyses the spread of the contagion of an external
stress in the network of exposures between banks. The banks can use their capital as a buffer to absorb the shocks, but they
default if the loss is greater than the capital. Through a cascade mechanism of sequential defaults over the network, the initial
external stress can lead to the disruption of a substantial part of the system.
The second approach, the credit risk approach, is normally used by banks to estimate their economic capital (i.e. the capital
that is necessary to overcome a period of crisis without major disruption for the business) against the risk of default of their
counterparties in lending transactions. It is based on assigning a probability of default to each counterparty and using a model
to describe the tendency of some of them to default together. A time horizon is chosen for the analysis and a potential loss
distribution is obtained via Monte Carlo simulation. Typically the economic capital is obtained as the difference between a
quantile of the loss distribution and its mean. This approach can be used in the financial systemic risk context imagining the



financial institutions as a portfolio of risky assets owned by the regulators30.
The two approaches have been developed by two different communities of researchers that have been pursued their research
independently, with no significant interaction and cross pollination, until now. Our model, the so-called PD model aims at
creating a bridge between the two approaches, making valuable use of all the available information about the system to analyse
and quantify its systemic risk. At its core the PD model is a credit risk model with a contagion mechanism that increases the
probability of default of nodes affected by defaults in their neighbourhood, defined by the exposure network.
One of the main and somewhat counter-intuitive results of the PD model is that there are situations for which lower correlations
between nodes correspond to higher risk. As far as we are aware, this fact is not known within the financial risk management
community that is used to think that a diversified (less correlated) portfolio always require less capital. As a result, the economic
capital calculations might not be conservative enough, exposing banks and financial system to the next severe crisis.

Two modelling approaches to financial risk
The Network Theory approach
Financial institutions are described as the N nodes of a network as shown in Fig. 1a. The links of the network are directed
and their topology is described by the matrix a = {ai j}, where the weight ai j equals to the sum of the exposures of node
i to the default of node j. Example of exposures are: loans, bonds, share ownership and derivative contracts. Each node
is characterised by its total asset Ai={1,...,N}, i.e the set of anything a financial institution owns and that can be converted to
cash, by a threshold Ei={1,...,N}, denoting the capital of the bank that can be used to absorb losses, and by a loss given default
LGDi={1,...,N}, representing the percentage of the total asset that would be lost in case of default. A node i is considered
insolvent and in default if Ei(t)≤ 0. To start a contagion process, the system is initially perturbed with a sudden loss, and a
model that simulates financial contagion is used to estimate the total loss of the network.

The models originally proposed to study network stability18, 31 relied on a variant of the ’domino effect’ to propagate the
stress and, if the original shock was not big enough to start the chain reaction, no quantifiable effect could be calculated. To
overcome this limitation Battiston et al32 introduced DebtRank, a new measure of systemic risk. The DebtRank of node i,
is a number measuring the fraction of the total economic value in the network that is potentially affected by the distress or
the default of node i. The measure presented interesting characteristics such as being expressed in monetary terms and being
able to ’feel’ the stress in the network also in absence of actual defaults. However, it is not evident how, in the real world, the
propagation of the stress postulated by the model would happen and how it would translate in an actual loss for the banks.
In order to fill this gap Bardoscia et al33 proposed a slightly modified model and a derivation of the dynamics for the shock
propagation using basic accounting principles. To obtain their results, the authors had to make the not fully financially justified
assumption that the exposures towards other banks lose their value proportionally to the loss in capital suffered by the borrowing
banks, namely:

ai j(t +1) = ai j(t)
E j(t)

E j(t−1)
(1)

where E j(t) and ai j(t) are, respectively, the capital of bank j and the exposure that bank i has with bank j at time t. The above
updating equation is used when bank j has not defaulted in the previous time period, otherwise ai j(t +1) is set to be zero. In
such approach it is also crucial to understand how the time step is defined: is it a year, a quarter or a minute? The answer is not
irrelevant because one of the findings of Ref.33 is that, no matter how small the initial shock is, if the modulus of the largest
eigenvalue of the interbank leverage matrix Λi j =

ai j
Ei

is greater than one, at least one bank fails. This is clearly unrealistic
in actual financial networks. In reality, even if it is tempting to interpret t as a time, it should be considered just as an index
identifying a step in the algorithm. No well defined time length is specified and the process can be thought as instantaneous.

The Credit Risk approach
Within this approach the system is considered as a portfolio of investments Ai={1,...,N} and the goal is to obtain an estimate
of the risk, expressed as statistics (usually quantiles) of the potential loss distribution within a chosen time period (in the
financial industry, it is usually taken as one year)34, 35. As shown in Fig. 1b, each investment is associated with a probability of
default within the time interval PDi={1,...,N}, a loss given default LGDi={1,...,N} and a correlation matrix ρ = {ρi j} relative to
the stochastic process of the assets returns. The focus of the credit risk approach, with respect to the network theory one, is
on the probabilities of default PD, as in this case the nodes are intrinsically unstable and can default even in absence of any
externally-applied stress. The evaluation of the probability of default of a counterparty is a crucial activity performed routinely
by banks, when assessing the risk involved in lending transactions. The probability of default can also be obtained from credit
rating agencies (Moody’s, Standard & Poors, Fitch, etc.) that use their estimation model on historical default data.
In order to define a random process to simulate the default of banks, which takes into account their tendency to default during
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Figure 1. The PD model merges network theory and credit risk approaches. (a) In the network theory approach, the
focus is on the propagation of the stress on the network of exposures {ai j} between financial institutions, and the capital Ei
represents the buffer that can be used by bank i to absorb shocks. (b) The credit risk approach focuses on the default
probabilities PDi and on the tendency of the nodes to default together as described by a Gaussian latent variable model with
correlation matrix ρ = {ρi j}. The objective is to obtain a loss distribution and its quantiles. (c) The PD model takes into
account both the matrices {ai j} and {ρi j}, and all the available information about the nodes, namely total asset Ai, capital Ei,
loss given default LGDi and probability of default PDi. For visualization purposes, only the maximum spanning tree of the
correlation network was shown in panel (b) and (c).

the same time step, the basic idea is to use correlated random variables Xi={1,...,N} drawn from a multivariate distribution to
drive the defaults. The loss distribution is obtained performing a Monte Carlo simulation of the random variables Xi={1,...,N} for
one time period. The asset k defaults when the simulated Xk = xk falls below a numeric value that is a function of PDk.

Gaussian latent variable model: In the so-called Gaussian latent variable model36, a multivariate Gaussian distribution with
zero mean, unit variance and correlation matrix {ρi j}, is used to sample Xi={1,...,N}. The condition for the default of asset k is
chosen as:

δk = 1 ⇐⇒ xk < Φ
−1(PDk) (2)

where Φ is the univariate Gaussian distribution, while, for example, the implied probability PDi j of double default of node i
and j is:

PDi j = Φ2(Φ
−1(PDi),Φ

−1(PD j),ρi j) (3)

where Φ2 is the bivariate standard Gaussian distribution. Statistics of the loss distribution are then used to estimate the capital
that is needed to remain solvent during the chosen time period at a certain level of confidence. The simulation is repeated a
sufficient number of times to lower the Monte Carlo error below a level that is deemed acceptable. The Gaussian latent variable
model was introduced for the first time by Vasicek37 in 1987. It has then been adopted by the portfolio credit risk methodology
called CreditMetrics35 and used as the underlying methodology for the capital requirements of loan positions by the Basel
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committee38, 39.
The main ideas behind the Gaussian latent variable model were already introduced in 1974 by Merton40 with his option model
for corporate default based on the capital structure of a company (see Methods). The Gaussian latent variable model can be
seen as a proxy of a “multi-company” generalization of the Merton model where companies default if they experience a high
negative asset return described by the random variables Xi={1,...,N} with asset return correlation {ρi j} 41. Instead of using the
asset return correlations for calibrating the matrix ρ , it is an accepted industry practice to use equity return correlations42, where
daily time series data are available (a brief explanation of why equity return correlations can be used as a substitute for asset
return correlations can be found in Ref.43).

Merging the two approaches: the PD model framework
Our model combines network theory and credit risk approaches, using all the available information about the system. As shown
in Fig. 1c, we consider the financial system as a portfolio of risky assets as if it were “owned” by the regulators, and we use
credit risk techniques to calculate its loss distribution. At the same time, as in the network theory approach, we consider each
individual bank as a node in a network of exposures. In order to include a contagion mechanism we use a multi-period Gaussian
latent variable model with M time steps43. The length ∆t of the time step is chosen coherently with the available data about the
probabilities PD≡ PD(t, t +∆t) of having a default between t and t +∆t. Usually ∆t for which PD data is available is one year.
The total length of time T = M∆t is an input of the model and depends by the type of analysis to be performed. For analysing a
systemic crisis we found that T = 7 years is a reasonable choice. The contagion mechanism is particularly intuitive and simple:
the default of one node increases the probability of default of the neighbouring nodes in subsequent time steps44–47 according
the characteristics of the network of exposures {ai j}. In particular, a node i experiences an impact Ii(t) at time t:

Ii(t) = ∑
j

ai j(t)δ j(t)LGD j(t) (4)

where δ j(t) is equal to 1 if node j has defaulted at time t, and is 0 otherwise. The quantity ai j(t) represents the exposure of
node i to the default of node j, and the index j in the sum includes all the nodes that have not defaulted at the previous times
0, .., t−∆t. The impact Ii(t) increases the probability of default PDi(t +∆t) at the successive time step. In our framework, t is a
proper time variable and not just an identifier for a step of an algorithm, hence it is possible to write an updating equation for all
the basic variables of the system as a function of the impact I(t):

Ei(t +∆t) = Ei(t)− Ii(t)

Ai(t +∆t) = Ai(t)− Ii(t) (5)
PDi(t +∆t) = f (Ii(t),Ei(t), ...)

In general, it is also possible to introduce updating equations for the matrix ρ , for LGDi and for the network a = {ai j}, as
well as dependencies to evolving macroeconomic scenarios and model financial institutions as complex agents reacting to the
contingent situation of the system.
In this paper, we specialize to the case with ρi j, ai j and LGDi as constant in time. For updating the probabilities of default we
use two alternative equations that we have called respectively ”Merton update” and ”Linear update”.
Merton update: In the Merton update we use Eq. (20) to update the probabilities of defaults. Assuming ∆t = 1 year,
Bi(t) = Bi = Ai(0)−Ei(0) and σi as constants and with the further assumption that µi = 0, we can write:

PDi(t +∆t) = 1−Φ

(
ln(Ai(t)− Ii(t))− lnBi−0.5σ2

i ∆t

σi
√

∆t

)
(6)

We have also set PDi(t +∆t) = 1 if Ii(t)≥ Ei, i.e the bank defaults if the impact is greater than the capital. The parameters
σi can be obtained inverting Eq. (6) at time t = 0 given PDi(0). Other choices of µ and σ are also possible. For example
the assumption of constant σ is not completely satisfactory as it is reasonable to expect that the volatility increases when the
company approaches the default. It is possible to devise a more complex implementation of the model that includes a dynamics
for σ(t) and µ(t).
Linear update: The Merton update is the financially ”correct” way to update the probabilities of default. However we have
found useful to introduce an alternative updating equation for PDi(t +∆t) where the increase in PDi is directly proportional to
the impact Ii(t). This can be thought as a proxy version of the Merton update when the volatility σ is extremely large (see
Fig. 2).

PDi(t +∆t) = min
[

1,PDi(t)+
(1−PDi(t))Ii(t)

Ei(t)

]
(7)

with PDi(t +∆t) being capped to 1 when the impact Ii(t) is greater or equal to Ei(t).
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Figure 2. Probability of default PD of a node as a function of the impact I expressed as a fraction of the capital E.
When the ratio I/E is equal or greater than 1 we set PD = 1 as the financial institution is insolvent and it will default during the
next time period. The continuous line describes the Linear update while the dots represent the Merton update with different
values of the asset volatility σ .

Calculation of the loss distribution:
As described in the paragraph relative to the credit risk approach, the default of financial institution i at time t corresponds to a

drawn value xi of random variable Xi in the sampling (X1 = x1,X2 = x2, . . . ,XN = xN) smaller than Φ−1(PDi(t)). If at least a
node has defaulted at time t, we update the variables of the system for the next time t +∆t as in Eqs. (5). Defaulted nodes are
then removed with their respective edges. Instead, if no node has defaulted at time t, we proceed to the following time step and
the new sampling with the same network and stochastic process parameters. The simulation is then continued for M temporal
iterations. The loss L(t) for the entire network at time t is calculated as:

L(t) = ∑
j

A j(t)LGD j(t)δ j(t) (8)

while the total loss Ltot is obtained by summing up the discounted values of the losses at the different time periods:

Ltot(M) =
M

∑
t=1

L(t)D(t) (9)

where D(t) is the discount factor relative to time t. In the following we indicate with the symbol • averages of the loss
distribution.

Risk measures: PDImpact and PDRank
In our framework, the nodes are characterized by an initial probability of default PD(t)≡ (PD1,PD2, . . . ,PDN) at time t = 0.
Hence, even in absence of any external shock, the system can suffer losses during the simulations within the considered time
frame of M time periods. The loss distribution so obtained, and in particular the expected loss Ltot(PD) can be used as the
base-line for comparison with the losses in presence of stress. Since a distress of the network is described as an increased
probability of default of a set of nodes, δPD, we can introduce the so-called Probability of Default Impact (PDImpact),
indicated as C(δPD), of the stressing perturbation δPD onto the initial probability of default PD as:

C(δPD) = Ltot(PD+δPD)−Ltot(PD) (10)

where the two terms on the right hand side are respectively the average loss of the network in the presence and absence of the
additional stress δPD.

Analogously, we can also introduce a node centrality measure, that we name the Probability of Default Rank, or PDRank,
for assessing the relative importance of each financial institution. The PDRank of node i is obtained multiplying the probability
of default of node i by the additional average loss experienced by the network due to the default of node i:

PDRanki = PDi ·
(
Ltot(PDDi)−Ltot(PDIi)

)
(11)

where PDDi is the initial probability vector in which the probability corresponding to node i has been set to 1 at t = 0, while
PDIi is the initial probability vector where the probability corresponding to node i has been set to 0 and kept at the value 0 for
each time t ≥ 0 (the node cannot default during the simulation). Therefore, the quantities Ltot(PDDi) and Ltot(PDIi) represent
respectively the average loss, during the simulation, when node i defaults at time 1, and when node i cannot default (the average
loss that the network would suffer anyway irrespective of the node i). In practice, PDRanki of node i measures the expected
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Figure 3. A network with two nodes is used to show the characteristics of different models. The system is
characterized by nodes with a total asset A, a capital E, a loss given default LGD and a probability of default PD. The
correlation between the nodes is ρ , while the exposures of a node to the default of the other are respectively a12 and a21.

loss “due” to node i. As the already known DebtRank, it is expressed as a monetary value and can be used to rank the nodes in
terms of their ’systemic risk’. Introducing PDRank and PDImpact we maintain the characteristics of DebtRank: a monetary
value for the ’centrality measure’ of a node and the sensitivity to a distress of the network also in absence of actual default.

A further characterization of a network, which we name PDBeta, can be obtained by quantifying the sensitivity of the
system to a percentage increase of all the initial probabilities of default. Assuming an approximate linear relationship between
the PDImpact C(δPD∗) obtained for an increase of the probabilities of default δPD∗ ≡ PD · x/100 and the percentage of
increase x, we can define PDBeta as follow:

PDBeta =
C(δPD∗)

x
(12)

In this way PDBeta represents the variation of PDImpact for a unitary percentage variation of the probabilities of default.

Results
To illustrate how our model works and its differences with respect to the standard approaches, we will study the case of a
network with only two nodes, which can easily be treated within a Markov chain approach. We will then present the results of
numerical simulations of the PD model for the network of the European Globally Systemic Important Banks. Among the main
findings, we will show cases where the system presents “strong contagion” effects characterized by an increased risk when the
average correlation between nodes is lower. Such behaviour is counter-intuitive as the lower the correlation the lower should be
the tendency of defaulting together triggering large losses. This is indeed what happens in standard credit risk models where
only one time period is taken into account. Analysing multiple time periods, as in the PD model, the contagion effects start
playing a role and, in appropriate circumstances, they dominate the dynamics. When this happens, a lower correlation increases
the probability of single node defaults in the first time steps. The network then experiences an increase of the probability of
default of the remaining nodes, and severe losses follow in the subsequent time steps.

The two banks case
Let us consider the network with two nodes shown in Fig. 3. The network is described by the exposure a12 of node 1 to node
2, the exposure a21 of node 2 to node 1, and by the correlation ρ between the two nodes. Moreover, we have the following
quantities associated with the nodes: the capitals E1 and E2, the total assets A1 and A2, and the probabilities of default PD1 and
PD2.

Network theory approaches
The first network theory approach that we consider is the so-called Furfine model31, which is based on a domino effect
mechanism that propagates the stress of a node if and only if it is severe enough to wipe out the entire capital of the
neighbouring nodes. The process starts with the application of an external shock (a loss) S to, let us say, node 1, but the stress is
not propagated over the network if S≤ E1. If instead S > E1, node 1 defaults with a loss A1 ·LGD1. Node 2 will in turn default
if and only if a21 ·LGD1 > E2, with an additional loss A2 ·LGD2. The problem of this model is that it does not feel the stress on
the network. For example even if S is just below E1, nothing happens as the capital can absorb the stress, and similarly if the
impact a21 ·LGD1 is just below E2.
In order to overcome this limitation the Generalized DebtRank model can be used instead. In this model, the stress applied to
node i is described by a continuous variable hi(t) = 1−Ei(t)/Ei representing the percentage loss of the capital at iteration t,
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with hi = 1 corresponding to a default33. In our network with two nodes, the node variables are updated at each iteration as:

h2(t +1) = min[1,h2(t)+
â21

E2
(h1(t)−h1(t−1))]

h1(t +1) = min[1,h1(t)+
â12

E1
(h2(t)−h2(t−1))] (13)

where we have introduced the quantities âi j = ai j ·LGD j. Again the process is started by the application of an initial stress
0 < S < 1 to node 1 at iteration t = 0. Thus, we set h1(0) = S and h2(0) = 0, with h1(−1) = h2(−1) = 0. The algorithm is
iterated until the stress on the nodes converges to the values h̃1 and h̃2, and the loss is calculated as:

Loss = h̃1E1 + h̃2E2 (14)

This algorithm presents the opposite problem with respect to the Furfine model as it can be extremely sensitive to external
shocks. For example, in case of â21

E2
> 1 and â12

E1
> 1, the shock is amplified at each iteration until at least one of the two nodes

defaults. This unrealistic outcome occurs no matter how small the initial loss is. In the actual financial system the capital of a
bank is usually greater of an exposure toward any other bank, however instabilities as outlined above can nevertheless arise in
financial networks as described in Bardoscia et al (2017)16.

Standard credit risk approach.
The example with two nodes is particularly convenient as Monte Carlo simulations are not necessary and the system can be
described in terms of a four states Markov chain48. In order to further simplify the treatment we study the case where the nodes
are symmetric. In particular we assume they have the same numerical values for the parameters A, PD and LGD. The four
states of the Markov chain are named according to the defaulted nodes: {0} no node has defaulted, {1} node 1 has defaulted,
{2} node 2 has defaulted and {12} both nodes have defaulted. Starting with the system in state {0}, in the following time step,
it will move to state {1} with probability p0→1, to state {2} with probability p0→2 and to state {12} with probability p0→12.
Examining Fig. 4 it is evident that standard credit risk calculations performed by credit risk managers cannot probe the entire
chain because they use only a single time step. For example, the probability of default of node 2 given the default of node 1,
indicated as p1→12, would start playing a role only from the second time step. The transition probabilities of the Markov chain
can be obtained from the parameters of the Gaussian latent variable model as follows:

p0→12 = Φ2(Φ
−1(PD),Φ−1(PD),ρ) (15)

p0→1 = p0→2 = PD− p0→12 (16)

p0→0 = 1− p0→1− p0→2− p0→12 (17)

Calling π0(t), π1(t), π2(t), π12(t) the probabilities of being, respectively, in state {0}, {1}, {2} and {12} at time t, we
can see from Fig. 5a that π12(t = 1) ≡ p0→12 is an increasing function of ρ and, according to Eq. (15), it only depends
on ρ and PD, and not on other network parameters. This is what bank risk managers would expect as their credit risk
model would normally consider only one time step. In order to calculate a loss distribution at time t, which is the goal of
any model to assess credit risk, we need to consider the loss associated with each of the four states of the Markov chain:
L0 = 0,L1 = L2 = A ·LGD,L12 = 2A ·LGD and their corresponding probabilities π0(t), π1(t), π2(t) and π12(t). The average
loss and the quantiles at the desired confidence level can be calculated from the loss distribution and can be used to assess
the risk of the system. For example, in a standard credit risk model with t = 1, the average loss is given by equation
Ltot(t = 1) = ∑s={0},...{12}Lsπs(t = 1). In the analysis above we have neglected the discount factor from time t to time 0.

The PD model.
In analysing the system with the PD model we extend the parameters that we take into consideration, and maintaining the
symmetry of the two nodes we also set E1 = E2 = E, with a12 = a21 = a and â = a ·LGD. In order to calculate the loss
distribution we use the Markov chain as in Fig. 4, with multiple time steps M. M is an input of the analysis and depends on
the total time length that we want to investigate. It should be chosen to be large enough so that the probability of being in a
particular state is sufficiently spread along the chain, but small enough so that the probability of being in the absorbing state,
with all the nodes that have defaulted, is not overwhelming. We are going to use M = 7 periods ∆t of one year each. We will
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Figure 4. The Markov chain corresponding to a two banks network. The chain has four states: {0} no node has
defaulted, {1} node 1 has defaulted, {2} node 2 has defaulted, {12} both nodes have defaulted. The arrows represent the
possible transitions between states with their associated transition probabilities. The continuous black ones connect the states
that can be reached from state {0} in a single time step as in a standard credit risk model, while the dashed arrows refer to
transitions that are taken into account only by the PD model.

consider different values of the capital E and the corresponding values of σ obtained inverting Eq. (6). Using the PD model
with the Merton update described in Section ”Merging the two approaches: the PD model framework” it is possible to obtain
p1→12 and p2→12 as updating equations depending on the network parameter a, on the node characteristics A and E and on the
volatility σ :

p1→12 = p2→12 = 1−Φ

(
ln( A−â

A−E )−0.5σ2

σ

)
(18)

The additional transition probabilities of the Markov chain can be obtained considering that {12} is an absorbing state, hence
p12→12 = 1, and from the fact that the sum of the transition probabilities from one state to all the states that can be reached with
one time step must add up to 1. For example p1→1 can be obtained as p1→1 = 1− p1→12.
Results at odds with the common intuition appear in the PD model, where we find the emergence of what we have called a
strong contagion regime, in which the probability of suffering the maximum loss (double default) decreases with increasing
correlation between the two banks. This is shown in Fig.5b where we plot the probability of a double default π12(t) after
t = 7 time periods versus ρ , and we explore different values of the initial capital E. We notice that, for the three largest values
of E, the probability π12(t = 7) increases with increasing correlation ρ . This behaviour is not different from that found in
the single-period simulation reported in Fig. 5a. Conversely, for the three smallest values of E, the probability π12(t = 7)
is a decreasing function of ρ . This occurs because the probabilities p1→12 and p2→12 are larger for small values of E and
the “contagion” paths [p0→1, p1→12] and [p0→2, p2→12] become dominant compared to the direct route [p0→12]. When this
happens, we have a strong contagion regime, where the probability π12(t = 7) decreases with increasing correlation ρ , as it is
less likely that the system moves to states {1} or {2} during the first iterations hence it cannot take “advantage” of the high
transfer probability links p1→12 and p2→12.
The loss distribution can be derived analogously to the standard credit risk approach, associating each state to a relative loss. In
particular, Fig. 5b can be interpreted as showing that the probability of experiencing a loss corresponding to the double default
state {12}, Ltot = 2A ·LGD, is a decreasing function of ρ for sufficiently small capital E.

The network of European Global Systemically Important Banks
We have applied our model to analyse the data collected by the European Banking Authority (EBA) relative to the European
Global Systemically Important Banks (GSIB). As it is standard in this field of investigation, a complete set of data relative to
the exposure matrix {ai j} is not available as it is sensitive information and usually not even the regulators have it. We have
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Figure 5. Probability of double default versus ρ in a standard credit risk approach and in the PD model. We consider
a symmetric two node network, with parameters A = 200 bn EUR, PD1 = PD2 = 0.001 and â = 1 bn EUR. (a) In the standard
credit risk approach, the probability π12 of being in state {12} after one time step increases monotonically with the correlation
ρ between the two nodes. (b) In the PD model with 7 time periods of one year each, the probability π12 of being in state {12}
is an increasing or decreasing function of ρ depending on the initial capital E. The chart can also be interpreted as the
probability of undergoing a loss Ltot = 2A ·LGD, which is approximately the loss corresponding to a double default.

followed the practice commonly accepted in the research community16, 28, 29 of inferring the bilateral network of exposures
using the data that we do have, namely, for each node i, the component of the total exposures ∑ j ai j and the total liability ∑ j a ji
toward the other financial institutions.

We have used a new algorithm described in Methods to create a set of ten bilateral networks and we have used averages
over the ensemble to perform our analysis. The initial values of the probabilities of default have been obtained from public
information about the credit rating of the banks and from statistics available on the Fitch website (see Methods), while the other
characteristics of the banks such as the capital E and the total asset A are available from the EBA data set. Following43, we will
use a single value of pairwise correlation coefficient ρ for each non-diagonal entry of the correlation matrix and where not
otherwise specified, we will assume ρ = 0.5 which can be interpreted as the average correlation between banks. To complete
the set of parameters we have assigned a LGD = 0.6 to each financial institution. Setting the same LGD for all the GSIB banks
is a reasonable approximation given that they pertain to the same industry sector and geographic area. The value of LGD = 0.6
has been chosen according to the analysis in Ref.49. The numerical results obtained in this section reflects the approximations
and assumptions made and are conservative as we have not included the likely reaction of regulators and banks after the first
defaults (replenishing their capital for example).

The strong contagion regime
We have used a PD model with 7 periods of one year each, and we have performed 100000 Monte Carlo simulations for each
period and changed the network from one year to the next one by using both the Merton and the Linear update rules. We have
repeated the process for different values of ρ and for each of the ten networks of the ensemble created by the algorithm in
Methods. The distributions of the total loss Ltot experienced by the network under different values of average correlations ρ

are shown in Fig. 6. While the distribution relative to the Merton update presents a relatively low risk of severe losses, for
the Linear update the risk is considerably higher. This is to be expected as, in the Linear update, the probability of default
of the nodes increases substantially after the first defaults, triggering further losses in the following time steps. The Linear
update distribution shows also the defining characteristic of what we have called strong contagion regime, i.e. a regime where
the probability of extreme losses decreases with increasing correlation, as it is less likely to have defaulting nodes during the
initial time steps that would act as catalysts for the contagion process. As described for the two banks case, these effects are not
present in standard credit risk models and, if not properly taken into account, could bring to an underestimation of the risk. The
PD model with the Merton update is the financially relevant model and, for the GSIB data, it does not exhibit strong contagion
effects, so it is reasonable to question if they can arise in actual financial networks. The answer is affirmative, as the Linear
update can be seen as an approximation of the Merton update when the asset volatilities are extremely high (see Fig. 2). The
same effects can occur in the Merton update also when the capitalization of the banks is insufficient. To show this, in Fig. 7 we
report the loss distribution obtained reducing the capital of the banks by 50% and using the Merton update. In this case, the
capital is not enough and any shock can increase drastically the probability of default, hence the strong contagion effect of
decreasing risk with increasing correlation.
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Figure 6. Loss distribution obtained with the PD model for the GSIB bank network and for different values of
average correlation ρ . The plot reports the number of counts (relative to 100,000 simulations) with a given value of loss at the
final time interval of M = 7 years. The number of counts with loss equal to 0 are not shown. We have assigned a loss given
default LGD = 0.60 to each bank, so the maximum loss is 60% of the total asset of the system, defined as the sum of the total
assets of the banks. The panel on the right represents the loss distribution obtained using the Merton update where it can be
seen that the risk of a complete collapse of the system increases with increasing ρ as in standard credit risk models. In the left
panel, relative to the Linear update, the tail of the distribution is a decreasing function of ρ due to strong contagion effects. The
error bars represents the maximum and minimum number of counts with respect to an ensemble of networks inferred from the
available GSIB data.

Furthermore, the error bars in Fig. 6 and Fig. 7 do not substantially modify the shape of the loss distributions from which the
risk measures are derived, implying that the results of the PD model are robust with respect to the uncertainties in the network
construction. It appears that the constraints imposed by knowing the total financial exposures and liabilities are quite stringent,
so that our analysis is robust and representative of the actual and unknown matrix of exposures. For this reason, in the following
we will focus our analysis on a single network of the ensemble.
To investigate the sensitivity of the system to a variation in the probability of default of the banks, we have calculated the
PDImpact as defined in Section ”Merging the two approaches: the PD model framework”. Fig. 8 confirms the existence
of an approximate linear relationship between PDImpact and a percentage increase of the initial probabilities of default,
allowing the definition of the measure PDBeta in Eq. (12) that can be used, together with the expected loss Ltot , to gauge
the riskiness of the network. Defining the global asset of the network as Aglob = ∑

N
k=1 Ak, we have found Ltot/Aglob = 0.93%

and PDBeta/Aglob = 0.0124% for the Merton update, and Ltot/Aglob = 5.125% and PDBeta/Aglob = 0.0318% for the Linear
update. As expected, the average loss and the PDBeta for the Linear update are larger than the ones relative to the Merton
update, reflecting its greater capability of spreading the contagion.

The critical nodes of the network
We can now analyse the relative contribution of the nodes to the systemic risk of the network. Table 1 reports the values of
PDRank in billion (bn) of EUR, obtained using the Merton update while in Table 2 we used the Linear update. The ranking
of the most important nodes is different in the two cases and the corresponding values can vary by more than one order of
magnitude for nodes with a high probability of default such as BFA with PD = 0.0116 and MPS with PD = 0.0093. These
nodes can act as a catalyst for a chain reaction of losses especially in a “strong contagion” regime: relatively small losses can
have a dramatic effect on the probability of default of the impacted nodes and this explains why they are at the top of the
PDRank table in the Linear update case. The ranking implied by PDRank is different from the one that takes into consideration
the total asset of the financial institutions (as in a “too big to fail” approach). This is evident as the PDRank definition includes
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Figure 7. Loss distribution obtained with the Merton update when the capital of all the GSIB banks has been halved.
All the other parameters of the PD model have been set as in the case considered in Fig. 6. The tail of the distribution is a
decreasing function of ρ due to strong contagion effects arising because the network is weakened having only half of the
capital to absorb the shocks. The error bars represents the maximum and minimum number of counts with respect to an
ensemble of networks inferred from the available GSIB data.

the probability of default, which is not related to the total asset. We can investigate if PDRank can be explained by the
probability of default multiplied by the total asset. Fig. 9 shows that this is not the case even if there is a positive correlation. It
is interesting to note that BFA and MPS are well above the regression line in case of the Linear update (Fig. 9b), which reflects
once again the increased role of the probability of default in a strong contagion regime.

Separated tables

PD Capital Total Asset Bank PDRank
0.001 70.4 2252.7 BNP Paribas 10.8
0.001 59.1 1940.3 Barclays 6.7

0.0017 45.5 1034.4 Unicredit 4.9
0.001 51.3 1410.5 RBS 3.4
0.001 25.1 655.7 Commerzbank 3.3
0.001 70.7 1723.0 Credit Agricole 3.0
0.001 64.3 1455.6 Santander 2.8
0.001 63.4 1659.3 Deutsche Bank 2.7

0.0116 11.9 234.8 BFA 2.1
0.001 50.0 1336.6 BPCE 2.0

0.0093 6.6 201.4 MPS 1.9

Table 1. Top twelve nodes ordered by PDRank, obtained with the Merton update, in the network of GSIB of the
European Union. The data is relative to the end of 2014 which is time 0 in our simulations. Threshold, Total Asset and
PDRank are expressed in billion of EUR.

Discussion
Our model, the PD model, can be used by regulators to quantify the systemic risk of a financial network in terms of statistics
of a loss distribution in a language that is familiar to financial risk managers. The banks can be classified according to their
contribution to systemic risk using the measure that we have called PDRank, while the resilience of the financial system to
external stress can be estimated with PDImpact. The PD model is a dynamic model that allows following the evolution of the
system in time, hence it can be used for scenario analysis and for assessing the likely outcome of policy measures introduced
by regulators. The data relative to the network of bilateral exposures between banks, used by our model, are usually not
available. However, we have found that our analysis is robust and only weakly dependant on the specific network inferred
given the constraints imposed by the available data, namely the aggregated total exposures and the total liabilities of each
bank to the others. When the capitalization of the banks is insufficient or in period of extreme volatility, we have identified a
strong contagion regime where initial losses substantially increase the probability of default of the nodes so that it is likely that
further losses ensue in the remaining time steps. Crucially we have shown that the system can change its behaviour, varying the
parameters of the network, as illustrated with the data relative to the European Global Systemically Important Banks where
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Figure 8. PDImpact vs a percentage increase in the PD of each node. Approximate linear dependence between PDImpact
C(δPD∗) obtained for an increase of the probabilities of default δPD∗ ≡ PD · x/100 and the percentage of increase x. In the
analysed network , the average loss increase per 1% increase in the probability of default is about 3.5 and 9 billion EUR
respectively for the Merton and for the Linear update.

Figure 9. PDRank as a function of Total Asset · PD. PDRank (m EUR) of a financial institution is shown as a function the
probability of default of the corresponding node times its total asset. Panel (a) and (b) refer to the Merton and the Linear update
respectively. While there is a positive correlation, PDRank cannot be explained completely with a linear regression and the
differences can be thought as due to network effects.
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PD Capital Total Asset Bank PDRank
0.0093 6.6 201.4 MPS 82.2
0.0116 11.9 234.8 BFA 75.0
0.0017 45.5 1034.4 Unicredit 26.0
0.0017 38.2 695.9 Intesa Sanpaolo 20.5

0.001 70.4 2252.8 BNP Paribas 15.6
0.001 59.1 1940.3 Barclays 15.5
0.001 51.3 1410.5 RBS 15.4
0.001 63.4 1659.3 Deutsche Bank 15.3
0.001 25.1 655.7 Commerzbank 15.3
0.001 64.3 1455.6 Santander 15.2
0.001 70.7 1723.0 Credit Agricole 15.2

Table 2. Top twelve nodes ordered by PDRank, obtained with the Linear update, in the network of GSIB of the
European Union. The data is relative to the end of 2014 which is time 0 in our simulations. Threshold, Total Asset and
PDRank are expressed in billion of EUR.

halving the capital would move the system to a strong contagion regime (see Fig. 7). One of the striking characteristics of the
strong contagion regime is that lower average correlation between nodes correspond to larger losses. Diversification in this
context increases the risk. This is of extreme importance for banks, and as far as we know the community of risk managers is
not aware of these effects as their credit risk models cannot capture strong contagion effects. This in turn can cause banks to
underestimate the capital needed to overcome periods of crisis with severe consequences for the financial system stability.

Methods
Default correlation vs correlation matrix in the Gaussian latent variable model
The default correlation ρ̂i j represents the tendency of two assets i and j to default together:

ρ̂i j =
〈δiδ j〉−〈δi〉〈δ j〉√

[〈δ 2
i 〉−〈δi〉2][〈δ 2

j 〉−〈δ j〉2]
(19)

where δi = 1 if the node i defaults during the unit time interval and 0 otherwise. The symbol 〈·〉 indicates the expectation value
of a quantity, so that 〈δi〉 is equal to the probability of default PDi previously defined, while 〈δiδ j〉 is equal to the probability
PDi j of simultaneous default of nodes i and j. However, in practice, the matrix of correlations between defaults defined above
is rarely used as in the general case does not interpolate between −1 and 1 and it is difficult to calibrate with the available
financial data, given the scarcity of the events of default. What is used instead are models, such as the Gaussian latent variable
model introduced in Subsection ”The Credit Risk approach”, which describe correlated events and that imply a value for PDi j,
hence indirectly, via Eq. (19), a value for ρ̂i j.

Merton model
Merton model is an option model for corporate default based on the capital structure of a company40. He considered a simplified
model with a company having total assets A(t) and capital E(t) at time t and a single liability B(t) = A(t)−E(t) expiring at
time T = t +∆t. The value of the total assets A of the company is assumed to follow a lognormal random process with drift µ

and volatility σ . A default occurs if during a simulation A(t) falls below the value B(T ) at time T . In that case the assets of
the company are not enough to pay back the liability B(T ), the capital E(T ) = A(T )−B(T ) is negative and the stakeholders
would declare bankruptcy to avoid the payment of the difference. With standard stochastic calculus techniques it is possible to
calculate the probability of default as36:

PD = 1−Φ

(
lnA− lnB+(µ−0.5σ2)∆t

σ
√

∆t

)
(20)

where Φ is the cumulative Gaussian distribution.

Inferring the network
We describe a new algorithm to infer the network of bilateral exposure from the aggregated total asset and liabilities of each
bank toward the other banks. In the literature, a maximum entropy algorithm50 has often been used but it is known that it might
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not represent the best choice for recreating a realistic interbank network51 and different alternatives have been proposed26, 52, 53.
We want to capture the fact that small financial institutions are more inclined to have connections with a small number of bigger
banks. The level of exposure tends to be above a certain minimum value as the creation of a credit relationship involves a
maintenance cost. This was already addressed by Anand et al.54 but here we propose an alternative algorithm that we find
more intuitive and that allows controlling over the minimum exposure amount and the “degree of attraction” between smaller
nodes and bigger ones. The main idea is to match asset with liabilities, building the adjacency matrix in steps: 1) The smaller
borrower nodes choose first where to get the money from; 2) The lender (a different node) is chosen randomly with a probability
that is proportional to its remaining assets to the power of alpha (alpha being the parameter for tuning the degree of attraction
between heterogeneous nodes and set to 1 for the calculations in this paper). 3) The loan amount is chosen as a percentage of
the total liabilities of the borrower node and represents the minimum exposure that it is convenient to exchange, constrained by
the ’residual’ assets of the lender and the ’residual’ liabilities of the borrower. 4) The adjacency matrix and the residual asset
and liabilities amount are updated. 5) The process continues till all the assets are matched with all the liabilities. 6) If at the
end remains one node that can borrow money only from itself, the procedure re-routes some of the previous loans so that the
adjacency matrix is completed with zero values on the diagonal.

Data Availability
The datasets analyzed during the current study are available on-line as follows. As part of its mandate, the European Banking
Authority collects data annually from the Global Systemically Important Banks (GSIB) in the European Union and publishes
the results on its website where we have chosen the data from the year 2014 (https://www.eba.europa.eu/risk-analysis-and-
data/global-systemically-important-institutions/2015). The data set contains the fields “Intra-financial system assets” and
“Intra-financial system liabilities” that we use in our model to recreate the individual exposures using the algorithm described in
the previous paragraph. The field “Total exposures” provides a proxy for the total assets Ai. The capital has been obtained
from another study performed by EBA in cooperation with European Systemic Risk Board (ESRB): ’The EU-wide stress test’,
that aims at ’assessing the resilience of financial institutions to adverse market developments’ (http://www.eba.europa.eu/risk-
analysis-and-data/eu-wide-stress-testing/2014/results).We have selected the Banks that were in both exercises and we identified
35 institutions. The initial probability of default has been obtained from the table “Financial Institutions Average Annual
Transition Matrix: 1990-2014” in the document “2015 Form NRSRO Annual Certification” obtained from Fitch website
www.fitchratings.com.
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