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Abstract. Noncommutative or quantum Riemannian geometry has been pro-

posed as an effective theory for aspects of quantum gravity. Here the metric
is an invertible bimodule map Ω1

⊗A Ω1
→ A where A is a possibly noncom-

mutative or ‘quantum’ spacetime coordinate algebra and (Ω1,d) is a specified
bimodule of 1-forms or ‘differential calculus’ over it. In this paper we explore

the proposal of a ‘quantum Koszul formula’ in [14] with initial data a degree

-2 bilinear map ⊥ on the full exterior algebra Ω obeying the 4-term relations

(−1)∣η∣(ωη) ⊥ ζ + (ω ⊥ η)ζ = ω ⊥ (ηζ) + (−1)∣ω∣+∣η∣ω(η ⊥ ζ), ∀ω, η, ζ ∈ Ω

and a compatible degree -1 ‘codifferential’ map δ. These provide a quan-

tum metric, interior product and a canonical bimodule connection ∇ on all
degrees. The theory is also more general than classically in that we do not as-

sume symmetry of the metric nor that δ is obtained from the metric. We solve
and interpret the (δ,⊥) data on the bicrossproduct model quantum spacetime

[r, t] = λr for its two standard choices of Ω. For the α-family calculus the

construction includes the quantum Levi-Civita connection for a general quan-
tum symmetric metric, while for the more standard β = 1 calculus we find the

quantum Levi-Civita connection for a quantum ‘metric’ that in the classical

limit is antisymmetric. This suggests to consider quantum Riemannian and
symplectic geometry on a more equal footing than is currently the case.

1. Introduction

Noncommutative differential geometry (NCDG) has been proposed for some three
decades now as a natural generalisation of classical differential geometry that does
not assume that the coordinate algebra or their differentials commute. There are
many motivations and applications, many of them still unexplored (eg to actual
quantum systems) but one of them is now widely accepted as an important role,
namely as an effective theory for quantum gravity effects expressed as quantising
spacetime itself. Of historical interest here was [20] in the 1940’s, although this
did not propose a closed spacetime algebra exactly but an embedding of it into
something larger. Specific proposals relating to quantum gravity (the ‘Planck scale
Hopf algebra’) appeared in [10] where they led to one of the two main classes of
quantum groups to emerge in the 1980s as well as to one of the first and most well-
studied quantum spacetimes with quantum group symmetry, namely the Majid-
Ruegg ‘bicrossproduct model’ [15]. In 2D this is the coordinate algebra [r, t] = λr
where λ should be ı times the Planck scale of around 10−35m. In spite of many
hundreds of papers on this quantum spacetime, it continues to be useful as a testbed
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for new ideas in noncommutative geometry and continues to surprise. In particular,
it was shown recently in [4] that the standard differential calculus on this algebra,
namely

(1.1) [r,dt] = λdr, [t,dt] = λdt, [r,dr] = 0, [t,dr] = 0

admits only a 1-parameter form of quantum metrics with classical λ → 0 limit,
namely

dr2 +Bv2; v = rdt − tdr
which is that of either, for B > 0, an expanding universe with an initial big bang
singularity or, for B < 0, a gravitational source so strong that even light eventually
gets pulled back in and with a curvature singularity at r = 0. The calculus here
is the β ≠ 1 point of a family of calculi with similar features. Then in [16] it was
shown that the other α family choice of calculus similarly admits a unique form of
quantum metric which is either de Sitter or anti-de Sitter space depending on the
sign of a parameter. Up to a change of variables we can take α = 1, then

(1.2) [t,dr] = −λdr, [t,dt] = λdt

is the calculus, and the quantum metric has classical limit

r−2dr2 + 2adrdt + br2dt2

with a2 > b. The classical geometry here depends on the sign of b. In both cases
we see that a particular classical (pseudo)Riemannian geometry emerges as being
forced out of nothing but the choice of algebra and its differential structure, showing
that the ‘quantum spacetime hypothesis’ has implications for classical GR. These
constraints on classical geometry emerging from noncommutative algebra were anal-
ysed in general at the semiclassical level, as a new theory of Poisson-Riemannian
geometry, in [5]. Moreover, in both cases the full quantum geometry is constructed
in [4, 16] in the sense of a quantum-Levi Civita (or quantum torsion free quantum
metric compatible) connection in the bimodule formalism of quantum Riemannian
geometry that has its roots in [8, 9, 17, 3].

In spite of these successes, the general formalism of ‘quantum Riemannian geome-
try’ in both the bimodule connection approach and an earlier quantum group frame
bundle approach[11] has until now lacked a general construction for the quantum-
Levi-Civita connection, which has to be solved for on a case by case basis. Recently
in [14], however, one of the present authors introduced a radically new point of view
on both classical and quantum Riemannian geometry as emerging from a choice of
codifferential δ (not the other way around as would be more usual) along with a
new formula[14]

(1.3) ∇LCω η = 1

2
(Lδ(ω, η) +Lωη + (dω) ⊥ η) ; Lδ(ω, η) = δ(ωη) − (δω)η + ωδη

for the classical Levi-Civita connection. Here we view a 1-form ω ∈ Ω1(M) as a
vector field via the metric and ⊥ η is interior product by the vector field similarly
corresponding to η ∈ Ω1(M). The Lie derivative is also given by such an interior
product ω ⊥ and d. The work also led to a new property[14]

δ(ωηζ) = (δ(ωη))ζ + (−1)∣ω∣ωδ(ηζ) + (−1)(∣ω∣−1)∣η∣ηδ(ωζ)

−(δω)ηζ − (−1)∣ω∣ω(δη)ζ − (−1)∣ω∣+∣η∣ωηδζ
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for the classical codifferential acting on ω, η, ζ ∈ Ω(M), the exterior algebra on the
manifold. This says, remarkably, that (Ω(M), δ) makes any Riemannian manifold
into a Batalin-Vilkovisky algebra. From our new starting point we can go further
and axiomatise δ as a degree -1 map obeying certain axioms and if this is of ‘classical
type’ (notably δ2 is tensorial, for example zero) then the connection defined as
above will necessarily be the Levi-Civita one for an inverse metric ( , ) induced by
δ according to the formula

δ(fω) = fδω + (df,ω),
for all f ∈ C∞(M), ω ∈ Ω1(M), see [14, Thm 3.18]. Another feature of this new
approach to classical Riemannian geometry is that it works well with forms of all
degree. Thus the above formula for ∇LC works for η of all degrees provided we
extend ⊥ to all degrees by the formula[14]

(ω1⋯ωm) ⊥ (η1⋯ηn) =∑
i,j

(−1)i+j(ωi, ηj)ω1⋯ω̂i⋯ωmη1⋯η̂j⋯ηn, ωi, ηj ∈ Ω1(M),

where we leave out the hatted ones. If ω has degree 1 then ω ⊥ ( ) is interior
product as used in the Lie derivative in the formula for ∇LC . Classically, ⊥ is
not more data than the metric, it merely extends it as a bi-interior product, and
our Koszul formula is equivalent in this case to the usual Koszul or Levi-Civita
formula but in a novel differential form language that depends also on constructing
the associated Hodge codifferential δ compatibly with the metric[14]. On the other
hand, even when A = C∞(M), we are not limited to this choice as we could let ⊥
be nonsymmetric and still define the inverse metric as the symmetrisation of ⊥ in
degree 1 in the construction of [14], and we are also not limited to the standard
‘classical type’ δ (we look at this slightly more general but still classical construction
in Section 2.5).

It was also pointed out but not the main topic of [14] that this differential-Koszul
formula can be applied when our algebra of coordinates is a noncommutative algebra
A to begin with, and (Ω(A),d) is a quantum differential calculus. We still need a
map ⊥ which we axiomatise as a degree -2 bilinear ‘contraction’ ⊥ on Ω(A) obeying
the 4-term relation as in the abstract, together with a compatible degree −1 map
δ ∶ Ω(A) → Ω(A) the ‘quantum codifferential’. Details will be recalled in the
preliminaries, see Theorem 2.4 in Section 2.3. Compatibility entails that

δ(aω) = aδω + da ⊥ ω
for all a ∈ A and ω ∈ Ω, and also a regularity condition on the other side that
δ(ωa) = (δω)a + ω ⊥R da for some bimodule map ⊥R. The latter is determined
by this formula so is not additional data, rather a condition on δ to be sufficiently
nice. From this data one can construct a quantum bimodule connection ∇ by
the same formula (1.3) and a quantum (inverse) metric ( , ) = 1

2
(⊥ + ⊥R) when

restricted to 1-forms. Classically ⊥R=⊥ ○flip so this would be symmetric. We
also obtain a ‘quantum interior product’ j by allowing higher degree forms in the
first argument, which is also something lacking in noncommutative geometry. The
quantum connection (1.3) now is not necessarily quantum torsion free and quantum
metric compatible (i.e. not necessarily ‘quantum Levi-Civita’ or QLC in the sense of
[4]) but in so far as we make choices that deform the classical theory, the connection
will deform the classical ∇LC . Moreover, the construction has its own interest which
does still apply in the quantum or noncommutative case, and which we explain next.
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This makes these quantum bimodule connections natural and of interest in their
own right even if they do not necessarily obey exactly the previously proposed
axioms of a QLC. Deviation from the latter would now be viewed as a source of
new effects.

Specifically, the (δ,⊥) construction arises in [14] much more deeply from nothing
but the axioms of a noncommutative differential calculus (basically, the Leibniz
rule) and a central extension problem. Thus, in the classical case, one can look for

Ωθ′ ↪ Ω̃↠ Ω(M)
as a sequence of differential graded algebras where we extend the classical exterior
algebra to a quantum one Ω̃ by adjoining a graded-commuting θ′ with dθ′ = 0 and
θ′2 = 0. Such an extension is called ‘cleft’ if Ω ≅ Ω(M)⊕ θ′Ω(M) as a left C∞(M)-
module and ‘flat’ if it is equivalent to a cleft extension with d undeformed. It was
shown in [14] that cleft central extensions are in 1-1 correspondence with certain
2-cocycle data (J , K,∆) that can be interpreted as including a possibly degenerate
(pseudo) Riemannian metric ( , ) as part of an interior product map j, a connection
∇ and a Laplacian. In the flat case ∆ = dδ + δd for some codifferential δ and ∇ is
the Levi-Civita connection given by (1.3), on all degrees. This gives a mechanism
by which the structures of classical GR could emerge out of the algebraic struc-
ture of quantum spacetime if its quantum differential calculus approaches a central
extension as we approach the classical limit. One reason why this could typically
be the case is what has been called the ‘quantum anomaly for differentials’ in the
quantum group literature [2]: often there is not a suitably covariant differential
calculus within deformation theory (due to the the lack of a flat covariant Poisson
connection from the point of view of Poisson-Riemannian geometry[5]) and one
must either live with a nonassociative differential calculus or absorb the anomaly
by having a higher dimension[1]. The same extension theory as above applies when
we replace Ω(M) by some quantum Ω(A) and a flat cleft extension of that leads
to both δ and a cocycle (J , K,∆) which is shown in [14] to provide a bimodule
connection when the first argument of the bracket is in Ω1(A) as well as an interior
product j when the second argument is degree zero. Details are in the preliminaries
Section 2.2.

Thus we have a deeper point of view on how the familiar structures of GR could
arise purely out of noncommutative differential algebra, as well as a practical route
to quantise them. In the present paper we will explore these new ideas in the context
of the bicrossproduct quantum spacetime [r, t] = λr with its two choices (1.2) and
(1.1) of differential calculi. In both cases one has a basis {ei} of central 1-forms
(that commute with all functions) and an inverse quantum metric gij = (ei, ej) as
any 2 × 2 constant matrix of coefficients (we do not impose quantum symmetry
or ‘reality’ conditions as in [4, 16] so do we not have a unique form of metric).
We also could have any constant matrix for the coefficients of the interior product
jei(Vol) = vijej where Vol = e1e2 is the central top form. In Section 3 we solve the 4-
term relations with differentials (1.2) to find that bij = ei ⊥ ej is any 2×2 matrix with
constant entries. We then take a general form of δ, and apply the Koszul formula
to construct a quantum bimodule connection ∇, metric g and interior product j.
Remarkably, we find that some of the conditions for δ2 to be a left-module map or
‘left-tensorial’ precisely characterise a class of quantum connections with classical
limit as λ→ 0, see Theorem 3.3. Among this class and for generic bij , we find:
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(i) The interior product is vij = gkiεkj as classically, where ε12 = 1 is the
antisymmetric tensor;

(ii) ∇ is then QLC, i.e., quantum torsion free and quantum metric compatible,
if and only if δ2 is a ‘strongly tensorial’ in the sense of a bimodule map;

(iii) The metric needed for this is gij = (bij + bji)/2, as classically.
(iv) The δ needed form a two parameter space of constant ai, bi with bi deter-

mined, including the case where δ2 = 0 as classically.

The quantum Koszul formula in this case works as expected. It not only gives the
previously known connection[16] but adds the interior product and ‘explains’ why
the metric that emerges is symmetric rather than this being assumed as in [16],
namely in order to be compatible with the connection induced by the quantum
central extension data.

In Section 4 we similarly solve the 4-term relation for the same quantum spacetime
and its ‘standard’ differentials (1.1). This time we find a unique form of ⊥ namely

bij = b(
0 1
−1 −λ), which we see has an unexpected antisymmetric form in the classical

limit as λ → 0. We again find that δ2 a left-module map ensures a classical limit
for the connection given by the quantum Koszul formula, see Theorem 4.4 and
requiring δ2 to be a bimodule map makes the connection weak QLC (where metric
compatibility is replaced by a weaker notion based on ‘cotorsion’[11] and which is
common in noncommutative Riemannian geometry). With a small further condition
on the metric it becomes QLC. See Example 4.9 where, for generic b,

(i) The interior product is vij = (−g
21 g11

g22 g12) = gkiεkj +O(λ);

(ii) ∇ is weak QLC, i.e. torsion free and cotorsion free, if and only if δ2 is a
bimodule map;

(iii) The ‘metric’ needed for ∇ to be QLC has the form gij = g12 ( 0 1

−1 −λ
2

) =

g12εij +O(λ);
(iv) The δ needed has an order 1/λ singularity as λ→ 0, is uniquely determined

up to a constant of integration and has δ2 = 0.

In both cases we can land on any freely chosen gij by choice of (δ,⊥) and we can
further choose δ2 a left module map, which ensures classical limits and that vij is
built from gij , but without further restrictions ∇ need not be torsion free or quan-
tum metric compatible or even a weaker ‘cotorsion free’. In both Sections 3,4 we
provide a rather fuller analysis of the properties resulting from different assump-
tions on δ, including results motivated from a general feature of connections coming
from central extensions of classical type in [14, Prop 3.16] whereby the torsion and
metric compatibility are linearly related, but now in our quantum examples. The
quantum symmetric metric in [4] is then covered in Example 4.8 for which we ob-
tain in the limit a particular classical connection which is not the Levi-Civita one,
and quantise it. The paper ends with some concluding remarks.
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2. preliminaries

Here we collect the precise notions of noncommutative differential geometry in a
bimodule connection approach from [9, 17, 3, 4, 5, 6, 13] but in the form-derivative
version that we will need. We then recall from [14] precisely how these geometries
can be built from cocycle central extensions of the differential calculus, and how
such cocycle extensions can be built from a codifferential δ and a compatible bilinear
‘metric-like’ contraction ⊥. The composition of these two steps amounts to some
kind of ‘quantum Koszul formula’, see Theorem 2.4 taken from [14].

2.1. Form-connections and bimodule noncommutative geometry. Through-
out the paper, a differential graded algebra or DGA over an algebra A means a
graded algebra Ω = ⊕nΩn with Ω0 = A and d ∶ Ωn → Ωn+1 for all available degrees
with d2 = 0 and d obeying the graded Leibniz rule. We will say that a DGA is
standard (or an ‘exterior algebra’) if generated by A,d. A linear or bilinear map on
a DGA has degree m if its output has degree m more than the total degree going
in, for example d has degree 1. If B is a linear map, we define its Leibnizator LB in
a similar manner as in 1.3 but with a sign in the last term according to the degree.

By quantum (inverse) metric we mean that Ω1 is equipped with a bimodule map
( , ) ∶ Ω1 ⊗A Ω1 → A and normally we will assume this is invertible so there is an
actual element g = g1 ⊗ g2 ∈ Ω1 ⊗A Ω1 (sum understood) inverse to it in the sense
(ω, g1)g2 = ω = g1(g2, ω) for all ω ∈ Ω1. As shown in [4] this will entail that g is
central. However, in the present paper ( , ) appears to play a more important role
and we may allow it to be degenerate. Moreover, it appears as the degree 1 case of
a ‘quantum interior product’ j ∶ Ωn ⊗A Ω1 → Ωn−1.

By a form-covariant derivative we mean ∇ω ∶ E → E where E is a left A-module
and

∇ω(a.e) = ∇ωa(e) + (ω,da)e, ∇aω = a∇ω
which is based on the usual axioms in noncommutative geometry for a left con-
nection but evaluated against a 1-form via ( , ). We have a ‘bimodule covariant
derivative’ if E is a bimodule and there is a bimodule map σ ∶ Ω1 ⊗A E ⊗A Ω1 → E
such that

∇ω(e.a) = (∇ωe).a + σω(e⊗ da)
which is evaluation against ( , ) of the usual notion [8, 9, 17, 3] of a bimodule
covariant derivative with σ ∶ E ⊗A Ω1 → Ω1 ⊗A E. Moreover, if ( , ) is invertible
with inverse g = g1 ⊗ g2 then ∇ω on E,F has a tensor product

(2.1) ∇ω(e⊗A f) = ∇ωe⊗A f + σω(e⊗A g1)⊗A ∇g2f, ∀e⊗ f ∈ E ⊗A F.

Setting E = F = Ω1 we can ask that ∇ω(g) = 0 which is the notion of a bimodule
connection on Ω1 being metric compatible. In terms of ( , ), if σ is invertible, then
metric compatibility is equivalent to

(id⊗ ( , ))∇(ω ⊗ η) = d(ω, η), ∀ω, η ∈ Ω1.

Also when E = Ω1 and ( , ) is invertible, one has the notion of torsion,

T∇ ∶ Ω1 → Ω2, T∇ = d − g1∇g2
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and the notion of cotorsion

coT∇ = (d⊗ id − id ∧∇)g = dg1 ⊗ g2 − g1′∇g2′ g2 ∈ Ω2 ⊗A Ω1

for any connection on Ω1, where the primes denote a second copy of g. By defi-
nition a connection is quantum Levi-Civita (QLC) if it is torsion free and metric
compatible. It is weak quantum Levi-Civitia (WQLC) if it is torsion and cotorsion
free (often in noncommutative geometry this weaker property is all we have). A
connection has curvature defined by

R∇ = (d⊗ id − id ∧∇)∇ ∶ Ω1 → Ω2 ⊗A Ω1

which can also be converted in terms of ∇ω, see [14]. Apart from translating to
form-derivatives, these are all established notions of a constructive approach to
noncommutative geometry, see [9, 17, 3, 4, 5, 6, 13] and references therein.

2.2. Bimodule geometries from cocycle extensions. The notion of a central
extension Ω̃(A) of a DGA Ω(A) was introduced in [14] as an extension in degree
1 by the algebra Ωθ′ = k[θ′]/⟨θ′2⟩ viewed as a trivial DGA with θ′ of degree 1 and
dθ′ = 0. More precisely,

Ω̃(A) = Ωθ′ ⊗Ω(A)
as a vector space and

0→ Ωθ′ ↪ Ω̃(A)↠ Ω(A)→ 0

as maps of DGA’s, where the outer maps come from the canonical inclusion in the
tensor product and by setting θ′ = 0. We also require that θ′ is graded-central,

θ′ω = (−1)∣ω∣ωθ′

in Ω̃(A). A morphism of extensions Φ ∶ Ω̃(A)→ Ω̃′(A) means a map of DGA’s such
that

Φ(θ′) = θ′, Φ(ω) = ω − 1

2
θ′δ(ω)

for some degree −1 linear map δ on Ω(A). By a (left) cleft extension we mean
a central extension where the canonical linear inclusion of Ω(A) coming from the
tensor product form is a left A-module map. And by a flat extension we mean one
which is equivalent to one where d is not deformed. We are not so much interested
in the present paper in the actual central extensions. But rather, as for central
extensions of groups, extensions correspond to cocycles[14]. These are defined as
follows.

Definition 2.1. [14] A cocycle on a DGA (Ω(A),d) is (∆, J , K) where J , K is a
degree -1 bilinear map and ∆ a degree 0 linear map, such that,

(2.2) Jωη, ζK + Jω, ηKζ = Jω, ηζK + (−1)∣ω∣ωJη, ζK

(2.3) L∆(ω, η) = dJω, ηK + Jdω, ηK + (−1)∣ω∣Jω,dηK
hold for all ω, η, ζ ∈ Ω(A), and [∆,d] = 0. A cocycle is cleft if Ja, K = 0 for all a ∈ A
and is flat if ∆ = dδ + δd for some degree -1 linear map δ.

The cocycle defines a central extension

ω ⋅ η = ωη − 1

2
θ′Jω, ηK, d.ω = d − 1

2
θ′∆ω, ω, η ∈ Ω(A)
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and conversely every central extension is given by such a cocycle[14]. Our termi-
nology is such that a central extension is respectively cleft, flat precisely when the
cocycle is.

Next, a cleft cocycle (∆, J , K) on a standard DGA Ω(A) is n-regular if[14]

jω(adb) = 1

2
Jωa, bK, ∀ω ∈ Ω, a, b ∈ A

is a well-defined degree -1 map j ∶ Ωi⊗AΩ1 → Ωi−1 for i ≤ n. We say that the cocycle
is regular if it is regular for all degrees. We consider it as an ‘interior product’ arising
from the cocycle and set the inverse metric ( , ) to be its restriction to degree 1. It
is shown in [14, Prop 3.6] that if (∆, J , K) is a regular cleft cocycle on a standard
DGA Ω(A) then j is indeed a bimodule map and

∇ωη =
1

2
Jω, ηK, ∀ω ∈ Ω1, η ∈ Ω

is a bimodule covariant derivative on Ω with

σ ∶ Ω1 ⊗A Ω⊗A Ω1 → Ω, σω(η ⊗A ζ) = jωη(ζ) + ωjη(ζ), ∀ω, ζ ∈ Ω1, η ∈ Ω.

For ∇ on Ω1 to be torsion free in the case of a standard calculus needs

(2.4) g1Jg2,daK = 0

and to be metric compatible, given the form of σ, needs

(2.5) (∇ω(g1bj) − (∇ωg1)bj)⊗A ∇gjg2 +∇ωg1 ⊗A g2 = 0

where g = dbj ⊗A gj which we can write in terms of J , K. The weaker cotorsion free
condition becomes

(2.6) (dbj)g1 ⊗∇g2gj = 0.

Note also that just as j is not necessarily a derivation, we do not necessarily have
compatibility of the connection on higher forms with the wedge product, i.e. the
braided Leibniz condition[14]

∇ω(ηζ) = (∇ωη)ζ + σω(η ⊗ g1)∇g2ζ
which using the cocycle condition would come down to

(2.7) jωη(g1)Jg2, K = Jωη, K, ∀ω ∈ Ω1, η ∈ Ω.

2.3. Cocycle extensions from bilinear contractions. In [14] there is a par-
ticular construction for cleft flat cocycles in the sense of Definition 2.1 from a
‘metric-like’ bilinear contraction on a DGA and a compatible codifferential.

Definition 2.2. A bilinear contraction on a DGA (Ω(A),d) means a bilinear map
⊥ of degree −2 such that ⊥ a = a ⊥= 0 for all a ∈ A and the 4-term relation

(−1)∣η∣(ωη) ⊥ ζ + (ω ⊥ η)ζ = ω ⊥ (ηζ) + (−1)∣ω∣+∣η∣ω(η ⊥ ζ)
holds ∀ω, η, ζ ∈ Ω(A).

Note that the 4-term relation includes when η is degree 0 the assertion that ⊥
descends to a bimodule map Ωm ⊗A Ωn → Ωm+n−2. We will be also interested in
the following.
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Definition 2.3. A compatible codifferential for ⊥ means a degree -1 linear map δ
on Ω(A) obeying

δ(aω) − aδ(ω) = da ⊥ ω, ∀a ∈ A, ω ∈ Ω.

This is called regular if there exists a bimodule map ⊥R∶ Ωn⊗AΩ1 → Ωn−1 such that

δ(ωa) − (δω)a = ω ⊥R da, ∀a ∈ A, ω ∈ Ω.

Similarly to the notion of a bimodule connection, ⊥R here is not additional data
since it is uniquely determined if it exists, which is a property of some δ.

Theorem 2.4. [14, Thm 3.12] Let Ω(A) be a standard DGA equipped equipped with
a bilinear contraction ⊥ and δ a regular compatible codifferential for it. Then

∆ = dδ+δd, Jω, ηK = Lδ(ω, η)+ω ⊥ dη−(−1)∣ω∣dω ⊥ η−(−1)∣ω∣d(ω ⊥ η), ∀ω, η ∈ Ω

is a regular flat cleft cocycle.

By the results in Section 2.2, this implies ∇ a bimodule covariant derivative and
candidate for a ‘quantum Levi-Civita’-like connection. It also implies an interpre-
tation of the interior product jω(da) = 1

2
Jω, aK as a ‘connection on degree 0’ which

now comes out as

jω(η) =
1

2
(ω ⊥ η + ω ⊥R η), η ∈ Ω1, ω ∈ Ω.

The degree 1 case of this is the quantum inverse metric ( , ) = 1
2
(⊥ + ⊥R). In the

classical case it is shown in [14] that ∇ indeed is torsion free and metric compatible
with ( , ) =⊥=⊥R recovering the classical inverse metric if we take for δ the standard
Riemannian codifferential, and then j⋅(η) is indeed the interior product along the
vector field corresponding via the metric to the 1-form η. With this in mind we
refer to Theorem 2.4 as the quantum Koszul formula because it gives a quantum
bimodule connection starting with a bilinear contraction and a compatible map δ.

Example 2.5. [14] Let Ω(A),d) be a standard DGA which is inner in the (purely
‘quantum’) sense that there exists a 1-form θ ∈ Ω1 such that d = [θ, } is the graded-
commutator, i.e., dω = θω − (−1)nωθ for all ω ∈ Ωn. Then

δ = θ ⊥, ⊥R= 0

provides a regular compatible codifferential in Theorem 2.4 for any bilinear con-
traction ⊥ and gives[14]

jω(η) =
1

2
ω ⊥ η, ∇ω = −1

2
L⊥θ(ω, ), σω(η ⊗ ζ) =

1

2
((ωη) ⊥ ζ − (−1)∣ω∣ω(η ⊥ ζ))

∆ = 2∇θ − θ2 ⊥
on forms of all degrees (on degree 0 this is ∆a = 2jθ(da) = θ ⊥ da = δda). One can
check that ∇ω is evaluation by j of ∇η = θ ⊗ η − σ(η ⊗ θ), as in [13]. One can show
that in general

T∇(ω) = −ωθ −
1

2
g1((g2ω) ⊥ θ) = −2ωθ + 1

2
g1 ∧ (g2 ⊥ (ωθ))

coT∇ = 2θg − 1

2
g1′g1 ⊗ (g2g2′) ⊥ θ = 3θg + 1

2
g1g ⊥ (g2θ).
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However, this is just one (far from classical) example of δ and we may be more
interested in prescribing j in degree 1 to a given quantum metric and choosing δ,⊥
as needed to land on this.

Note that the centrally extended noncommutative DGA Ω̃ behind Theorem 2.4 need
not be standard. Moreover, in the setting of the theorem we have automatically
a further extension ̃̃Ω(A) → Ω̃(A) → Ω(A) where we now allow dθ′ ≠ 0 and [14,
Prop 3.21],

ω ⋅ η = ωη + µ
2
(−1)∣ω∣+∣η∣Jω, ηKθ′ − µ

2
(−1)∣ω∣(ω ⊥ η)dθ′

d⋅ω = dω − µ
2
(−1)∣ω∣(∆ω)θ′ + µ

2
(δω)dθ′, θ′2 = θ′dθ′ = (dθ′)θ′ = {ω, θ′} = 0

for all ω, η ∈ Ω(A).

2.4. Discrete nonommutative example. Although not our main topic, the the-
ory applies to the commutative coordinate algebra A = C(Z2 × Z2) with its direct
product noncommutative differential calculus (each Z2 has a unique calculus, the
universal one). Differential 1-forms on a discrete set can be identified as edges of a
graph and this is the calculus on a square so we are solving for the noncommutative
geometry of a square, [?].

The calculus has basis of translation invariant 1-forms ei, i = 1,2 with relations
eif = Ri(f)ei where Ri(f) is right translation by 10,01 for i = 1,2 respectively,
where Z2 × Z2 = {00,01,10,11} in a compact notation for its four elements (with
each digit a copy of Z2). The exterior derivative on degree 0 is df = (∂if)ei where
∂i = Ri− id. The exterior algebra in this model is defined in the usual way by e2

i = 0
and e1e2 + e2e1 = 0, with top form Vol = e1e2. For the map ⊥ we are forced to take
a diagonal form

ei ⊥ ej = δijai
since the bimodule relations require that e1 ⊥ e2f = R1R2(f)e1 ⊥ e2 for all f which,
since e1 ⊥ e2 is an element of a commutative algebra, is not possible unless it is
zero.

The 4-term relation on this DGA in degrees 1 on the diagonal case ei, ei, ei is

aiei = eiai, i.e. ∂iai = 0

while if i ≠ j we have

−e2
i ⊥ ej+aiej = εijei ⊥ Vol, −εijVol ⊥ ej = ei ⊥ e2

j+eiaj , −εijVol ⊥ ei = εjiei ⊥ Vol

which means

ei ⊥ Vol = aiεijej , Vol ⊥ ej = eiεijaj , Rj(ai) = −ai.
If one of the forms is Vol then we have

−εijVol ⊥ Vol + δijajVol = ei(ej ⊥ Vol), −(Vol ⊥ ei)ej = Vol ⊥ Volεij −Volδijaj

(ei ⊥ Vol)ej = −ei(Vol ⊥ ej)
which when i = j are all obeyed given the relations on the ai. (One of these is
Volai = −aiVol.) When i ≠ j the first two are both equivalent to Vol ⊥ Vol = 0 while
the last is empty. We thus solve our 4-term relations with two constant parameters

a1 = (a,−a, a,−a), a2 = (b, b,−b,−b), a, b ∈ C
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where we list the values at the four points of the group in the order 00,01,10,11.
Up to an overall normalisation, there is just one free parameter a

b
and an associated

function α = a1
a2

.

Because this is only a warm up, we will not do the full analysis of all possible δ
compatible with the above ⊥, but merely give an example:

Proposition 2.6. Up to an overall normalisation there is a unique 1-parameter
form of quantum metric on A = C(Z2 × Z2) coming out of the ⊥ construction and
quantum Koszul formula with δ = θ ⊥, namely

g = e1
2

a1
⊗ e1 + e2

2

a2
⊗ e2

∇e1 = −2αe2 ⊗ e2, ∇e2 = −2α−1e1 ⊗ e1; α = a1

a2
= a
b
(1,−1,−1,1)

σ(e1 ⊗ e1) = e1 ⊗ e1 + 2αe2 ⊗ e2, σ(e1 ⊗ e2) = e2 ⊗ e1

σ(e2 ⊗ e1) = e1 ⊗ e2, σ(e2 ⊗ e2) = e2 ⊗ e2 + 2α−1e1 ⊗ e1

which is invertible and not involutive. Here ∇ei = θ⊗ei−σ(ei⊗θ) and is torsion-free
and cotorsion-free (or weak quantum Levi-Civita). It has curvature

R∇(e1) = 4Vol⊗ (αe2 − e1) = αR∇(e2).

Proof. The calculus here is inner with θ = e1 + e2 which gives in our case

δ(ei) = ai, δ(Vol) = a1e2 − a2e1, ∇eiei = 0, ∇e1e2 = a2e1, ∇e2e1 = a1e2

∆f = θ ⊥ df = −a1∂1f − a2∂2f, ∆e1 = 2a1e2, ∆e2 = 2a2e1, σei(ei ⊗ ei) =
1

2
aiei,

σe1(e2⊗e1) =
1

2
a1e2, σe1(e2⊗e2) = −a2e1, σe2(e1⊗e1) = −a1e2, σe2(e1⊗e2) =

1

2
a2e1

and zero otherwise. These results come from Vol ⊥ θ = e1a2 − e2a1 so that

∇eiej = −
1

2
(εij(e1a2 − e2a1) − aiej + eiaj), σek(ei ⊗ ej) =

1

2
(εkiej′εj′j + ekδij)aj

where j′ ≠ j. Now since j is invertible for a, b ≠ 0 we look at the corresponding
metric and connection:

Next, the parameter in g up to overall normalisation is the one constant a/b, which
also defines the function α = a1

a2
. We use g to convert the form-connection coming

from the cocycle to a connection Ω1 → Ω1 ⊗A Ω1, which is straightforward noting
that eiα = −αei. This connection is torsion free since dei = 0 and clearly ∧∇ei = 0.
One can check that it is also cotorsion-free. Here d( 1

a1
) = − 2

a1
e2 and d( 1

a2
) = − 2

a2
e1

from which

coT∇ = d( 2

ai
ei)⊗ ei −

2

ai
ei ∧∇ei = 0.

The connection is not, however, metric compatible as a bimodule connection. Its
curvature is computed using dα±1 = −2α±1θ and [α,Vol] = 0. �

Two by-products of the cocycle construction were that we also have an ‘interior
product’ and a connection on 2-forms, in the above example

jVol(ei) = −aiεijej , ∇ei(Vol) = 0

from the formulae found for ⊥. We also have a Hodge Laplacian ∆ on all degrees.
The connection is a braided-derivation in that (2.7) holds.
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2.5. Classical limit of the quantum Koszul formula. As a small corollary of
the quantum Koszul formula we apply it in the classical case of A = C∞(M) for M
a Riemannian manifold with its classical exterior algebra Ω(M). However, we let
⊥= ( , ) + π on 1-forms instead of the obvious choice ⊥M= ( , ), where ( , ) is the
inverse metric and π is an antisymmetric bivector field.

First it can be shown that we can extend ⊥ to higher forms by the same formula as
in [14] (as recalled in the introduction) as an extended ‘inner product’ but for the
not-necessarily symmetric ( , ) + π on 1-forms. In particular, we have

ω ⊥ η = ω ⊥M η + (−1)∣ω∣Liπ(ω, η)
where ⊥M is the usual extension of ( , ) and if π = π1π2 (sum of such terms
understood) we define iπ = iπ1iπ2 as in [14] where i along a vector field is the usual
interior product. Thus

iπ(ωη) = iπ1(π2(ω)η − ωiπ2(η)) = iπ1(η)iπ2(ω) − iπ2(η)iπ1(ω)
if ω is a 1-form. Similarly, if δM is the usual Riemannian codifferential, we define

δ = δM + [d, iπ]
and check

δ(aω) = δM(aω) + (da)iπ(ω) + adiπω − iπ((da)ω) − aiπdω)
= aδM(ω) + jda(ω) + a[d, iπ] −Liπ(da,ω) = aδ(ω) + da ⊥ ω.

This is a special case (the classical limit) of [14, Lem. 3.13], which says that ∆, J , K
are unchanged by adding the π terms i.e. we still get the Riemannian Hodge
Laplacian and Levi-Civita connection from our approach to the Koszul formula.

In an extreme case we can set ( , ) = 0 and δM = 0 so that ⊥= π on 1-forms. In this
case our ‘connection’ given by the cocycle obeys ∇ω(aη) = a∇ωη so ∇ in this limit
is actually a tensor.

3. Bicrossproduct model with α-calculus

We let A be the 2D bicrossproduct model spacetime algebra A with generators
r, t and relations [r, t] = λr where λ is an imaginary parameter. We consider the
‘α-calculus’ [16] given by commutation relations [t,dr] = −λdr, [t,dt] = λαdt and
note that in this case

[rα, t] =λαrα

[t,drα] =α[t, rα−1dr] = α[t, rα−1]dr + αrα−1[t,dr] = −λα(α − 1)rα−1dr − αrα−1λαdr

= − λα2rα−1dr = −λαdrα.

Thus if we set rα → r′ and λα → λ′ and then drop the prime notation, this is
equivalent to setting α = 1 in our original differential algebra. Thus, as remarked
in the introduction, we need only to consider this case. We choose a central basis
e1 = r−1dr and e2 = rdt. The exterior algebra is defined by e2

i = 0, e1e2+e2e1 = 0 and
top form e1e2 = drdt = Vol. We will see in this section how the quantum Koszul
formula can be used to find the quantum Levi-Civita connection for any central
quantum metric. We start by solving for ⊥ in the sense of Definition 2.2.
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Lemma 3.1. Any matrix of constant entries ei ⊥ ej = bij defines a solution of the
4-term relations with

ei ⊥ Vol = bijεjkek, Vol ⊥ ej = bijεikek, Vol ⊥ Vol = εijbijVol

(sum of repeated indices).

Proof. Because the ei are central we must have a(ei ⊥ ej) = (aei ⊥ ej = (eia) ⊥ ej =
ei ⊥ (aej) = ei ⊥ (eja) = (ei ⊥ ej)a for all a ∈ A, i.e. the ei ⊥ ej must be in the
centre of the algebra. In the polynomial setting the centre is the constants. The
content of the 4-term relations in this case are otherwise exactly the same as the
classical case and so it is not surprising that we find the same form as classically.
We look at the 4-term relations for the various cases of 1-forms. If they all coincide,
for example,

−e1e1 ⊥ e1 + (e1 ⊥ e1)e1 =e1 ⊥ e1e1 + e1(e1 ⊥ e1) ⇒ b11e1 = e1b11

holds automatically as e1 is central. Similarly for e2. Next we have

−e1e1 ⊥ e2 + (e1 ⊥ e1)e2 =e1 ⊥ e1e2 + e1(e1 ⊥ e2) ⇒ e1 ⊥ Vol = b11e2 − e1b12

−e2e1 ⊥ e1 + (e2 ⊥ e1)e1 =e2 ⊥ e1e1 + e2(e1 ⊥ e1) ⇒ Vol ⊥ e1 = e2b11 − b21e1

−e1e2 ⊥ e1 + (e1 ⊥ e2)e1 =e1 ⊥ e2e1 + e1(e2 ⊥ e1) ⇒ −Vol ⊥ e1 + b12e1 = −e1 ⊥ Vol + e1b21

of which the first two are as stated and the last is then automatic. Similarly for
Vol ⊥ e2 and e2 ⊥ Vol with the roles of 1,2 interchanged. Finally, we look at the
4-term relations with ω = e1, η = e2, ζ = Vol which gives Vol ⊥ Vol as stated. Other
cases and other positions of Vol give nothing new. For example with η = Vol the
4-term relation requires

(ei ⊥ Vol)ej = −ei(Vol ⊥ ej)
which holds for the solution found, again as is the case classically for ⊥. �

We are next interested in fixing ⊥ and looking for regular compatible δ in the sense
of Definition 2.3. To start with, we characterise degree -1 maps δ by four functional
parameters

(3.1) δei = ai ∈ A, δVol =∑
i

biei, bi ∈ A.

We similarly define matrices by

(3.2) jei(ej) = (ei, ej) = gij , jVol(ei) = vijej gij , vij ∈ A
for the quantum metric and interior product that we can construct from (δ,⊥) using
Theorem 2.4.

Proposition 3.2. (1) For fixed bij, regular compatible δ correspond to ai being
at most linear in t, r−1 and bi at most linear in t, r.

(2) For all gij , vij there exists a unique choice of ai, bi up to constants ki, li
such that the quantum metric and interior product have these values.
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(3) Non-singular ai, bi correspond to g = 1
2
(b + bT ) to order λ, the symmetrisa-

tion of the matrix b, and vi1 = −gi2, vi2 = gi1 to order λ i.e. deforming
the classical interior product as a derivation. These hold exactly, not only
to order λ, if and only if the ai, bi are constants.

(4) In the generic case where ∣b∣ ≠ 0, δ2 is a left module map if and only

(i) g12 = 1

2
(b12 + b21), g22 = b22, vi1 = −g2i, vi2 = g1i

(ii) l1 + k2 = b12, l2 − k1 + b11 = 0.

(5) In the generic case where also b11b22 ≠ b212, δ2 is a bimodule map if and
only if in addition to (4), gij = 1

2
(bij + bji), or equivalently if and only if

the ai, bi are constants (related as in (4)(ii)).

Proof. (1) To apply Theorem 2.4 we need δ to be regular in the sense of a suitable
bimodule map ⊥R∶ Ω⊗A Ω1 → Ω. Since ei are central, if ⊥R exists it must be given
by

ei ⊥R da = da ⊥ ei + [a, ai]
and we take this as a definition extended as a bimodule map. It is well-defined
since

ei ⊥R (adb) = ei ⊥R (d(ab)) − ei ⊥R ((da)b) = d(ab) ⊥ ei + [ab, ai] − (da ⊥ ei + [a, ai])b
= d(ab) ⊥ ei − da ⊥ eib + a[b, ai] = d(ab) ⊥ ei − ((da)b) ⊥ ei + a[b, ai]
= a(db ⊥ ei + [b, ai]) = a(ei ⊥R db) = (eia) ⊥R db.

We then compute jei(ej) = 1
2
(ei ⊥ ej + ei ⊥R ej) which gives

(gij) = 1

2
( 2b11 + r−1[r, a1] b12 + b21 + r[t, a1]
b12 + b21 + r−1[r, a2] 2b22 + r[t, a2]

) .

We also have

Vol ⊥R e1 = (r−1[r, b1] − b12)e1 + (r−1[r, b1] + b11)e2

Vol ⊥R e2 = (r[t, b1] − b22)e1 + (r[t, b2] + b21)e2

giving jVol(ei) = 1
2
(Vol ⊥ ei +Vol ⊥R ei) and therefore

jVol(e1) = −
1

2
(b12 + b21)e1 + b11e2 +

1

2
r−1[r, bi]ei

jVol(e2) = −b22e1 +
1

2
(b12 + b21)e2 +

1

2
r−1[t, bi]ei.

We then want to invert these expressions to find the form of ai and bi, ensuring
that gij and vij remain constant parameters. We consider each component of the
quantum metric separately. From the expression of g11 we have that a1 must be of
the form a1 = 2

λ
(g11 − b11)t + f(r) for some function f . Obtaining a particular g12

then tells us that

2g12 − (b12 + b21) = r[t, a1] = r[t, f(r)] = −λr2f ′(r).
This has solution

f(r) = 2

λr
(g12 − 1

2
(b12 + b21)) + k1
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for some constant of integration k1. This gives

(3.3) a1 =
2

λ
((g11 − b11)t + (g12 − 1

2
(b12 + b21))

1

r
) + k1.

Similarly, for g21 we need a2 = 2
λ
(g21 − 1

2
(b12 + b21)) t + g(r) for some function g.

Then to obtain g22 we need

2g22 − 2b22 = r[t, a2] = r[t, g(r)] = −λr2g′(r)

which has solution

g(r) = 2

λr
(g22 − b22) + k2

giving

(3.4) a2 =
2

λ
((g21 − 1

2
(b12 + b21)) t + (g22 − b22)

1

r
) + k2.

We can see that ai has to be at most linear in t and r−1 in order for gij to be
constant and hence j a bimodule map. For bi we consider

(vij) = 1

2
(−(b12 + b21) + r−1[r, b1] 2b11 + r−1[r, b2]

−2b22 + r−1[t, b1] b12 + b21 + r−1[t, b2]
)

and we repeat the exact same process used to invert the gij . This gives

(3.5) b1 =
2

λ
((v11 + 1

2
(b12 + b21)) t − (v21 + b22)r) + l1

(3.6) b2 =
2

λ
((v12 − b11)t − (v22 − 1

2
(b12 + b21)) r) + l2

for constants of integration li. We can se that these are at most linear in t, r.

(2) The inverse metric coefficients gij together with the coefficients vij form an
8-parameter space. Using a change of notation we can write

ai = āit + âir−1 + ki, bi = b̄it + b̂ir + li
which gives 12 parameters āi, âi, b̄i, b̂i, ki, li. However, as the ai, bi only ever appear
as a commutation with either of the functions r or t, the constants of integration do
not effect the resulting values of gij , vij . Thus we are left with 8 genuine parameters,
giving us a unique choice up to constants.

(3) Using the above notation, for the parameters to be non singular we need

āi, âi, b̄i, b̂i to vanish to order λ. This happens precisely when we have the con-
ditions stated. We assume that the constants ki, li are nonsingular as functions of
λ, i.e. have a classical limit.

(4) We compute

δ2(fVol) = δ(fδVol + df ⊥ Vol) = fδ2Vol + df ⊥ (biei) + δ(∂jfbjmεmkek)
= fδ2Vol + (∂jf)(bibji + bjmεmkak) + (∂l∂jf)bjmεmkblk.

Requiring all but the first term to vanish for all f gives

(∂1f)(b11c1 + b12c2) + (∂2f)(b21c1 + b22c2) + (∂2f∂1f)∣b∣ − (∂1∂2f)∣b∣ = 0
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for c1 = b1+a2, c2 = b2−a1. Here df = (∂1f)e1+(∂2f)e2 define the partial derivatives.
Since r and t generate the algebra, it suffices to require the above for f = r, t. These
choices give

b11c1 + b12c2 = 0, b21c1 + b22c2 + ∣b∣ = 0

with solution when ∣b∣ ≠ 0,

(3.7) b1 + a2 = b12, b2 − a1 = −b11.

Inserting (3.3)-(3.6) gives these in terms of the constant parameters as stated on
looking at different powers of t, r. In principle there could be some further possi-
bilities when ∣b∣ = 0.

(5) Since Vol is central, the condition for a δ2 to also be a right module map is that

(3.8) δ2Vol = biai + (∂jbi)bij
is central (summations understood). To evaluate this we compute db1 and find
that ∂1b1 = 2

λr
(v21 + b22) = 0 (where we used the left-module map condition) and

∂2b1 = 2
λr

(g12 − g21). Similarly by considering db2 we find that ∂1b2 = 0 and

∂2b2 = 2
λr

(g11 − b11). Substituting these expressions into δ2(Vol) we need

2t

λ
((g12−g21)(k1−l2)+(g11−b11)(l1+k2))+

2

λr
((g12−g21)b12+(g11−b11)b22)+l1k1+l2k2

to be central. Applying the left-module conditions this becomes

(g12 − g21)b11 + (g11 − b11)b12 = 0, (g12 − g21)b12 + (g11 − b11)b22 = 0

as our additional conditions to those of part (3). If det(b11 b12

b12 b22
) ≠ 0 then this is

equivalent to g12 = g21, g11 = b11 which given the results of part (3) is equivalent
to g = 1

2
(b + bT ) as matrices. There are some further exceptional cases where δ2

is a bimodule map and the above determinant vanishes. Finally, we observe that
the conditions displayed in (4)(i) and (5) of the proposition are equivalent to the
conditions in part (3) for the ai, bi to be constant. So apart from the exceptional
cases, if δ2 is a left module map then it is a bimodule map if and only if the ai, bi
are constants ai = ki, bi = li (with bi determined from the ai by by (4)(ii)). From
the above, its value is

δ2Vol = l1k1 + l2k2 = b12k1 − b11k2,

which includes zero as we can choose the remaining parameters freely. �

We are interested in obtaining gij invertible with inverse gij and metric g = gijei⊗ej
central. This forces gij to be constants (since the ei are central and the coordinate
algebra has a small centre). We may also want g to be quantum symmetric in the
sense ∧g = 0 which in our case just means gij symmetric and hence in a real setting
quantises AdS or dS geometry in 2D. Proposition 3.2 (3) says that this important
case arises just from the assumption that δ has a classical limit. We also quantise
the interior product j in this case. We see that the same conclusion holds in (5)
from requiring the algebraic property that δ2 is ‘strongly tensorial’ in the sense of
a bimodule map as in the classical case in [14].
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To complete the quantum geometry we proceed in the case g invertible to construct
the quantum connection associated to (δ,⊥) by the quantum Koszul formula in
Theorem 2.4. We adopt the notations

T∇(ei) = TiVol, coT∇ =∑
i

CiVol⊗ ei; Ti,Ci ∈ A

to describe the resulting torsion and cotorsion. We will display the connection in
the case where it has a classical limit, but the full expression can be found in the
proof. We always take δ defined as they must be by ai, bi in (3.3)-(3.6) for given
central invertible gij and given vij .

Theorem 3.3. (1) The resulting connection ∇ depends only on the combinations
b1+a2, b2−a1 and is non-singular if and only if the δ2 left module conditions (4)(i) in
Proposition 3.2 hold to order λ. In this case the cotorsion, torsion and connection
are

C1 =
1

∣g∣ (b1 + a2 − b12), C2 =
1

∣g∣ (b2 − a1 + g11)

T1 =
1

2
(g11C1 + g12C2), T2 =

1

2
(g12C1 + g22C2)

∇e1 =
1

2∣g∣g
12(∣g∣C1 + 2g12)e1 ⊗ e1 −

1

2∣g∣g
12(2g11 − ∣g∣C2)e1 ⊗ e2

− 1

2∣g∣g
11(∣g∣C1 + 2g12)e2 ⊗ e1 +

1

2∣g∣g
11(2g11 − ∣g∣C2)e2 ⊗ e2

∇e2 =
1

2∣g∣g
22(∣g∣C1 + 2g12)e1 ⊗ e1 +

1

2∣g∣ (g
22∣g∣C2 − 2g12g12)e1 ⊗ e2

− 1

2∣g∣ (g
12∣g∣C1 + 2g11g22)e2 ⊗ e1 −

1

2∣g∣g
12(∣g∣C2 − 2g11)e2 ⊗ e2

to order λ.

(2) These formulae hold exactly, not only to order λ, if and only if the δ2 left module
conditions (4)(i) in Proposition 3.2 hold.

(3) The quantum connection in (2) is torsion free and metric compatible (i.e. ∇
is a quantum Levi-Civita connection) if and only if the remaining δ2 bimodule map
conditions displayed in (4)(ii) and (5) in Proposition 3.2 also hold (i.e. the ai, bi
are constants with b1 + a2 = b12 and b2 − a1 + b11 = 0). The associated braiding is
σ(ei ⊗ ej) = ej ⊗ ei.

Proof. (i) We compute the cocycle and hence 1-form covariant derivative from The-
orem 2.4 as

Je1, e1K =0, Je1, e2K = (a2 + b1 − b12)e1 + (b2 − a1 + b11)e2

Je2, e1K = − (a2 + b1 + b21)e1 + (a1 − b2 + b11)e2, Je2, e2K = −2b22e1 + (b12 + b21)e2.
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We can also compute the braiding map σω using the formula σ(η⊗ ζ) = jωηζ +ωjηζ
and making use of gij = 1

2
(bij + bji) as,

σe1(e1 ⊗ e1) =
1

2
(2b11 + r−1[r, a1])e1, σe1(e1 ⊗ e2) =

1

2
(b12 + b21 + r[t, a1])e1

σe2(e1 ⊗ e1) =
1

2
(b12 + b21 − r−1[r, b1])e1 +

1

2
r−1([r, a1] − [r, b2])e2

σe2(e1 ⊗ e2) =
1

2
(2b22 − r−1[t, b1])e1 +

1

2
r−1([t, a1] − [t, b2])e2

σe1(e2 ⊗ e1) =
1

2
r−1([r, a2] + [r, b1])e1 +

1

2
(2b11 + r−1[r, b2])e2

σe1(e2 ⊗ e2) =
1

2
(r[t, a2] + r−1[t, b1])e1 +

1

2
(b12 + b21 + r−1[t, b2])e2

σe2(e2 ⊗ e1) =
1

2
(b12 + b21 + r−1[r, a2])e2, σe2(e2 ⊗ e2) =

1

2
(2b22 + r[t, a2])e2.

(ii) We next define our abstract connection via the metric as ∇ei = g1⊗∇g2ei, where
g = g1 ⊗ g2 = gijei ⊗ ej in terms of the inverse matrix (gij) which we write in terms
of (gij) as usual. This gives

∇e1 =
1

2
g1 ⊗ Jg2, e1K

= 1

2∣g∣g
12(b1 + a2 + b21)e1 ⊗ e1 −

1

2∣g∣g
12(a1 − b2 + b11)e1 ⊗ e2

− 1

2∣g∣g
11(b1 + a2 + b21)e2 ⊗ e1 +

1

2∣g∣g
11(a1 − b2 + b11)e2 ⊗ e2

∇e2 =
1

2
g1 ⊗ Jg2, e2K

= 1

2∣g∣ (g
22(b1 + a2 − b12) + 2g12b22)e1 ⊗ e1 +

1

2∣g∣ (g
22(b2 − a1 + b11) − g12(b12 + b21))e1 ⊗ e2

− 1

2∣g∣ (g
21(b1 + a2 − b12) + 2g11b22)e2 ⊗ e1 −

1

2∣g∣ (g
21(b2 − a1 + b11) − g11(b12 + b21))e2 ⊗ e2.

(iii) For the torsion we compute

∧∇e1 − de1 = −
1

2∣g∣g
12(a1 − b2 + b11)Vol + 1

2∣g∣g
11(b1 + a2 + b21)Vol

= 1

2∣g∣ (g
11(b1 + a2) − g12(a1 − b2) + g11b21 − g12b11)Vol

∧∇e2 − de2 =
1

2∣g∣ (g
22(b2 − a1 + b11) − g12(b12 + b21))Vol + 1

2∣g∣ (g
21(b1 + a2 − b12) + 2g11b22)Vol −Vol

= 1

2∣g∣ (g
22(b2 − a1) + g21(b1 + a2) + g22b11 + 2g11b22 − g21b12 − g12(b12 + b21) − 2∣g∣)Vol

giving us

(3.9) T1 =
1

2∣g∣ (g
11(b1 + a2) + g12(b2 − a1) +

1

2
g11(b21 − b12))

(3.10) T2 =
1

2∣g∣ (g
22(b2 − a1) + g21(b1 + a2) + g11b22 − g21b12).
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For cotorsion we compute

(d⊗ id − id ∧∇)g = − d( 1

∣g∣g
21e2)⊗ e1 + d( 1

∣g∣g
11e2)⊗ e2

− 1

∣g∣g
22e1∇e1 +

1

∣g∣g
12e1∇e2 +

1

∣g∣g
21e2∇e1 −

1

∣g∣g
11e2∇e2

= 1

2∣g∣2 g
22g11(b1 + a2 + b21)Vol⊗ e1 −

1

2∣g∣2 g
22g11(a1 − b2 + b11)Vol⊗ e2

− 1

2∣g∣2 (g
12g21(b1 + a2 − b12) + 2g11g12b22)Vol⊗ e1

− 1

2∣g∣2 (g
12g21(b2 − a1 + b11) − g11g12(b12 + b21))Vol⊗ e2

− 1

2∣g∣2 g
21g12(b1 + a2 + b21)Vol⊗ e1 +

1

2∣g∣2 g
21g12(a1 − b2 + b11)Vol⊗ e2

+ 1

2∣g∣2 (g
11g22(b1 + a2 − b12) + 2g11g12b22)Vol⊗ e1

+ 1

2∣g∣2 (g
11g22(b2 − a1 + b11) − g11g12(b12 + b21))Vol⊗ e2

− 1

∣g∣g
21Vol⊗ e1 +

1

∣g∣g
11Vol⊗ e2

= 1

2∣g∣2 (∣g∣(b1 + a2 + b21) + ∣g∣(b1 + a2 − b12) − 2∣g∣g21)Vol⊗ e1

+ 1

2∣g∣2 (∣g∣(b2 − a1 + b11) − ∣g∣(a1 − b2 + b11) + 2∣g∣g11)Vol⊗ e2

= 1

∣g∣ (b1 + a2 − g12 + 1

2
(b21 − b12))Vol⊗ e1 +

1

∣g∣ (b2 − a1 + g11)Vol⊗ e2

giving us

(3.11) C1 =
1

∣g∣ (b1 + a2 − g12 + 1

2
(b21 − b12)) , C2 =

1

∣g∣ (b2 − a1 + g11)

in terms of b1 + a2, b2 − a1. These expressions for Ti and Ci are invertibly related
to {b1 + a2, b2 − a1}, in particular

(3.12) b1 + a2 = ∣g∣C1 + g12 − 1

2
(b21 − b12), b2 − a1 = ∣g∣C2 − g11,

which we then use in (3.9) and (3.10) to find Ti in terms of Ci as

T1 =
1

2
(g11C1+g12C2), T2 =

1

2
(g21C1+g22C2)+

1

2∣g∣ (g
11(g22−b22)+g21(g12−1

2
(b12+b21))).



20 SHAHN MAJID & LIAM WILLIAMS

We can also use (3.12) to write the connection above in terms of Ci to give

∇e1 =
1

2∣g∣g
12 (∣g∣C1 + g21 + 1

2
(b12 + b21)) e1 ⊗ e1 −

1

2∣g∣g
12(g11 + b11 − ∣g∣C2)e1 ⊗ e2

− 1

2∣g∣g
11 (∣g∣C1 + g21 + 1

2
(b12 + b21)) e2 ⊗ e1 +

1

2∣g∣g
11(g11 + b11 − ∣g∣C2)e2 ⊗ e2

∇e2 =
1

2∣g∣ (g
22 (∣g∣C1 + g21 − 1

2
(b12 + b21)) + 2g12b22) e1 ⊗ e1

+ 1

2∣g∣ (g
22(∣g∣C2 − g11 + b11) − g12(b12 + b21))e1 ⊗ e2

− 1

2∣g∣ (g
21 (∣g∣C1 + g21 − 1

2
(b12 + b21)) + 2g11b22) e2 ⊗ e1

− 1

2∣g∣ (g
21(∣g∣C2 − g11 + b11) − g11(b12 + b21))e2 ⊗ e2.

This simplifies as stated when the ai, bi are constant.

(iv) We can see from (3.11) and (3.3)-(3.6) that Ci and hence Ti and ∇ as found
above are nonsingular if and only if

g12 = 1

2
(b12 + b21), g22 = b22, vi1 = −g2i, vi2 = g1i

hold to order λ and in this case the torsion and cotorsion are related as stated to
order λ and Ci as stated to order λ. These are exactly part (i) of the conditions
for δ2 to be a left module map in Proposition 3.2 (4) (i.e. without the restriction
on the ki, li).

(v) Finally suppose the conditions displayed in Proposition 3.2 (4)(i) so we are
in the case of (iv). Then C1 = 0 is exactly one of the conditions (3.7) in the
proof of Proposition 3.2 (4), while C2 = 0 becomes the other half of this if and
only if g11 = b11 which is the condition displayed in (5) in Proposition 3.2. These
combined assumptions are equivalent to ai, bi constant with values shown by part
(3) of Proposition 3.2.

We also find from our formulae for σω that σei(ek ⊗ ej) = gijek. It then follows , as
gij is inverse to gij , that σ(ei ⊗ ej) = g1 ⊗σg2(ei ⊗ ej) = ej ⊗ ei (this does not mean
it is the flip map on general elements, as it extends as a bimodule map). We then
compute

∇ekg = gij(∇ekei ⊗ ej + ei ⊗∇ekej) = 0

on using the values of ∇ found in (i). �

This is in line with the main result in [14] that the Levi-Civita connection arises
in the classical case for a flat central extension with δ of classical type (such as
δ2 = 0), but now in the quantum case provided only that δ has a classical limit.
We can also compute the quantum curvature of the quantum connection given for
non-singular δ in Theorem 3.3. As in Theorem 3.3, we continue here under the δ2

left module map assumption in part (2) of the theorem. The formula for curvature
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was recalled in Section 2.1. In terms of cotorsion this amounts in our case to

R∇(e1) = −
1

4∣g∣ (∣g∣
2C2C1 + 4g11g12)Vol⊗ e1 +

1

4∣g∣ (4g
11g11 − ∣g∣2C2

2)Vol⊗ e2

R∇(e2) =
1

4∣g∣ (∣g∣C1(2g12 + ∣g∣C1) − 2g22(2g11 − ∣g∣C2))Vol⊗ e1

+ 1

4∣g∣ (2g
11 − ∣g∣C2)(2g12 − ∣g∣C1)Vol⊗ e2

which is of particular interest when Ci = 0 so that we have the quantum Levi-Civita
connection by the theorem.

In our above analysis we have concentrated on the connection acting on 1-forms,
but the cocycle construction also gives it on forms of all degree. Continuing in our
δ2 left module map assumption, similar calculation from 2∇eiVol = Jei,VolK gives

(3.13) ∇e1Vol = 1

2
∣g∣C2Vol, ∇e2Vol = −1

2
∣g∣C1Vol

using Vol ⊥ Vol from Lemma 3.1. We see at the quantum Levi-Civita connection
where Ci = 0 that ∇eiVol = 0. We can also compute

(∇eie1)e2 + e1∇eie2 =
∣g∣
2
(C2 −C1 − g11 + b11)Vol

which vanishes in the quantum Levi-Civita case. So these coincide, i.e. the deriva-
tion rule (2.7) holds for quantum Levi-Civita connection.

Another by-product of our theory is a Hodge-Laplacian given by ∆ = δd+dδ, which
we compute in the general case on some generators as

∆(r) =δdr = δ(re1) = dr ⊥ e1 + rδe1 = r(b11 + a1)
∆(t) =δdt = δ(r−1e2) = −r−2dr ⊥ e2 + r−1a2 = r−1(a2 − b12)

∆(e1) =δde1 + dδe1 = da1 = 0

∆(e2) =δde2 + dδe2 = δ(Vol) + da2 = b1e1 + b2e2

∆(Vol) =δdVol + dδVol = d(b1e1) + d(b2e2) = (a1 − g11)Vol.

Finally, we might wonder if our choice of δ has a geometric picture in terms of the
quantum Levi-Civita connection as is the case classically in the form of a diver-
gence. We let iη(ω) = jω(η) be the left handed ‘interior product’ defined by j and a
candidate for the geometric codifferential that works at least in the classical case is
i ○ ∇. Recall that the connection depends only on the combinations b1 + a2, b2 − a1

so δ is not fixed for a particular choice of metric and connection. Proposition 3.2
part (2) tells us that this freedom corresponds to the value of vij and we can fix it
geometrically as follows.

Lemma 3.4. For the quantum Levi-Civita connection we have δ = i ○∇ if and only
if a1 = g11, a2 = g12 and b12 = b21. In this case bi = 0 and δ2 = 0.
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Proof. We compute

i ○ ∇(e1) =
1

2∣g∣g
11g12(∣g∣C1 + 2g12) − 1

2∣g∣g
12g12(2g11 − ∣g∣C2)

− 1

2∣g∣g
11g12(∣g∣C1 + 2g12) + 1

2∣g∣g
11g22(2g11 − ∣g∣C2)g22

= 1

2∣g∣ (∣g∣C2(g12g12 − g11g22) + 2g11(g11g22 − g12g12)) = g11 − 1

2
∣g∣C2

i ○ ∇(e2) =
1

2∣g∣g
22g11(∣g∣C1 + 2g12) + 1

2∣g∣g
12(g22∣g∣C2 − 2g12g12)

− 1

2∣g∣g
12(g12∣g∣C1 + 2g11g22) − 1

2∣g∣g
12g22(∣g∣C2 − 2g11) = g12 + 1

2
∣g∣C1

so for the quantum Levi-Civita connection Ci = 0 we have the same as δei if and
only if a1 = g11, a2 = g12. This agrees with i ○ ∇Vol precisely when b12 = b21. �

This quantises the classical choice of δ within our 2-parameter moduli of values of
ai that lead to the same quantum Levi-Civita connections. We also see that the
geometric divergence δ requires gij = bij or ( , ) =⊥ which is the natural choice for
the classical theory in [14].

4. Bicrossproduct model with its standard differential calculus

The same quantum spacetime A as in the previous section has another family of
calculi, the β calculus, for which the standard case (β = 1) is given by commutation
relations

[r,dt] = λdr, [t,dt] = λdt, [r,dr] = 0, [t,dr] = 0.

The general β case is significantly more complicated but not expected to be fun-
damentally different in view of related work such as [16]. This time a central basis
is

e1 = dr, e2 = ν = rdt − tdr
and the canonical exterior algebra here obeys e2

1 = 0, e2
2 = −λVol and e1e2+e2e1 = 0,

with top form Vol = e1e2. We start by solving for ⊥ in the sense of Definition 2.2.

Lemma 4.1. The general solution to the 4-term relations on this exterior algebra
when λ ≠ 0 has the form

Vol ⊥ ei = −ei ⊥ Vol = bei, e1 ⊥ e1 = 0, e1 ⊥ e2 = b, e2 ⊥ e1 = −b, e2 ⊥ e2 = −λb
Vol ⊥ Vol = 2bVol

for some constant parameter b.

Proof. To start with we set ei ⊥ ej = bij and require that ⊥ is a bimodule map, which
as in Section 3 forces the bij to be constants. The 4-term relation on e1, e1, e1 gives
that [b11, e1] = 0 as in the proof of Lemma 3.1, which is automatic. On e1, e1, e2 we
have

−e1e1 ⊥ e2 + (e1 ⊥ e1)e2 =e1 ⊥ e1e2 + e1(e1 ⊥ e2) ⇒ b11e2 = e1 ⊥ Vol + e1b12.

Next, e2, e1, e1 gives

−e2e1 ⊥ e1 + (e2 ⊥ e1)e1 =e2 ⊥ e1e1 + e2(e1 ⊥ e1) ⇒ Vol ⊥ e1 + b21e1 = e2b11.
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The e1, e2, e1 equation is automatic while e1, e2, e2 gives

−e1e2 ⊥ e2 + (e1 ⊥ e2)e2 =e1 ⊥ e2e2 + e1(e2 ⊥ e2)⇒ −Vol ⊥ e2 + b12e2 = −λe1 ⊥ Vol + e1b22

which in view of our previous values we write as

Vol ⊥ e2 = (b12 + λb11)e2 − (b22 + λb12)e1.

Similarly on e2, e1, e2 we have

−e2e1 ⊥ e2 + (e2 ⊥ e1)e2 =e2 ⊥ e1e2 + e2(e1 ⊥ e2) ⇒ Vol ⊥ e2 + b21e2 = e2 ⊥ Vol + e2b12

which we write as

e2 ⊥ Vol = (b21 + λb11)e2 − (b22 + λb12)e1.

On e2, e2, e1 we have

−e2e2 ⊥ e1 + (e2 ⊥ e2)e1 =e2 ⊥ e2e1 + e2(e2 ⊥ e1) ⇒ λVol ⊥ e1 + b22e1 = −e2 ⊥ Vol + e2b21

which we write as

e2 ⊥ Vol = (b21 − λb11)e2 − (b22 − λb21)e1.

Comparing the two different values we have for e2 ⊥ Vol implies for λ ≠ 0 that
b11 = 0 and b12 = −b21. Finally, the 4-term relation on e2, e2, e2 gives us

−e2e2 ⊥ e2 + (e2 ⊥ e2)e2 =e2 ⊥ e2e2 + e2(e2 ⊥ e2) ⇒ λVol ⊥ e2 + b22e2 = −λe2 ⊥ Vol + e2b22

which implies that −Vol ⊥ e2 = e2 ⊥ Vol provided λ ≠ 0. Comparing the values
already obtained for these, we deduce that b22 = −λb12. This gives the stated form
with b12 = b. We also look at the 4-term relations with one of the forms being Vol
to obtain the value shown. �

This is already far from the classical case as the classical limit of ei ⊥ ej is antisym-
metric. We can still proceed to see what kinds of metrics and connections can be
obtained by the quantum Koszul formula. As in Section 3, we take a general form
of degree -1 map δ namely δei = ai and δVol = ∑i biei for ai, bi ∈ A and ask for it to
be regular and compatible with ⊥ in the sense of Definition 2.3. We can also ask
to land on particular values gij , vij for the quantum metric and interior product by
application of Theorem 2.4.

Proposition 4.2. (1) For fixed constant parameter b, regular compatible de-
gree -1 maps δ correspond to ai and bi each being at most linear in t

r
, 1
r

.

(2) For all gij , vij there exists a unique choice of ai, bi up to constants ki, li
such that the quantum metric and interior product have these values.

(3) Nonsingular ai, bi correspond to gij = vij = 0 to order λ.

(4) δ2 is a left module map if and only if

vi2 = g1i, vi1 = −g2i − λg1i, l1 + k2 + λk1 = 0, l2 − k1 = 0.

(5) δ2 is a bimdolue map if in addition

g11 = 0, g12 + g21 = 0, k1 = 0

where the last two apply in the generic case of b ≠ 2g12.
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Proof. The proof that δ is regular and that ⊥ is a bimodule map is exactly the same
as in the proof of Proposition 3.2. Here we again use the equation for ⊥R, but for
this calculus we find

e1 ⊥R e1 =[r, a1], e1 ⊥R e2 = [t, a1]r − [r, a1](t − λ) − b
e2 ⊥R e1 =[r, a2] + b, e2 ⊥R e2 = [t, a2]r − [r, a2](t − λ) − λb

Vol ⊥R e1 =([r, b1] − b)e1 + [r, b2]e2

Vol ⊥R e2 =([t, b1]r − [r, b1](t − λ))e1 + ([t, b2]r − [r, b2](t − λ) − b)e2.

We then set jei(ej) = gij for our quantum metric, jVol(ei) = vijej and use our known
data for ⊥. This gives

(gij) = 1

2
( [r, a1] [t, a1]r − [r, a1](t − λ)
[r, a2] [t, a2]r − [r, a2](t − λ) − 2λb

)

jVol(e1) =
1

2
([r, b1]e1 + [r, b2]e2)

jVol(e2) =
1

2
(([t, b1]r − [r, b1](t − λ))e1 + ([t, b2]r − [r, b2](t − λ))e2).

As before, we then want to invert this relationship and solve for ai and bi in such
a way that gij and vij are constants (numerical parameters). We consider each
component of the quantum metric separately. From the expression for g11 we have

that a1 must be of the form a1 = 2tg11

λr
+ f(r) for some function f . In our notation

here t
r

is always to be read 1
r
⋅ t in our calculus. Obtaining a particular g12 then

tells us that

2g12 + 2g11(t − λ) = [t, a1]r = [t, 1

r
]2tg11

λ
r + [t, f(r)]r = 2tg11

r
r + [t, f(r)]r

= 2g11 1

r
(rt − λr) + [t, f(r)]r = 2g11(t − λ) + [t, f(r)]r

using the algebra commutation relations. Comparing the two sides, we see that

[t, f(r)]r = 2g12 or −λf ′(r) = 2g12

r2
, which has soltution

f(r) = 2g12

λr
+ k1

for some constant of integration k1. This gives the form of a1, namely

(4.1) a1 =
2

λr
(g11t + g12) + k1.

Similarly, for g21 we need a2 = 2g21t
λr

+ g(r) for some function g. Then to obtain a

particular g22 we need

2g22 + 2λb + 2g21(t − λ) = [t, a2]r = [t, 1

r
]2g21t

λ
r + [t, g(r)]r = 2g21(t − λ) + [t, g(r)]r.

Comparing the two sides we deduce [t, g(r)]r = 2g22+2λb or g′(r) = − 2g22

λr2
− 2b
r2

with
solution

g(r) = 2g22

λr
+ 2b

r
+ k2

giving the form of a2,

(4.2) a2 =
2

λr
(g21t + g22) + 2b

r
+ k2.
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We can see that ai has to be at most linear in t
r
, 1
r
. For bi we consider

(vij) = 1

2
( [r, b1] [r, b2]
[t, b1]r − [r, b1](t − λ) ([t, b2]r − [r, b2](t − λ)

) ,

and we use the same process we used to invert for gij . This gives

(4.3) b1 =
2

λr
(v11t + v21) + l1, b2 =

2

λr
(v12t + v22) + l2

for constants of integration li. Again, we can observe that these are at most linear
in t

r
, 1
r
.

Parts (2) and (3) are obtained by solving as in Proposition 3.2, only replacing t

with t
r

and for bi the constant b̂i is used for the coefficient of 1
r

as opposed to r. The
form of (4.1)-(4.3) tells us the conditions for ai, bi to be non-singular in λ assuming
the ki, li are. For part (4) we compute

δ2(fVol) =δ(fδVol + df ⊥ Vol) = fδ2Vol + df ⊥ biei − bδ((∂if)ei)
=fδ2Vol + (∂jf)(ej ⊥ ei)bi − b(∂if)ai − (∂l∂if)b(el ⊥ ei).

Requiring all but the first term to vanish for all f gives the condition

(∂1f)b(b2 − a1) − b(∂2f)(b1 + a2 + λb2) + b2(∂2∂1f) − b2(∂1∂2f) + b2λ(∂2∂2f) = 0

where the partial derivatives are defined by d in our basis {ei} as usual. Again,
since r and t generate the algebra it suffices to consider f = t, r which respectively
give the two conditions

(4.4) b1 + a2 + λb2 −
2b

r
= 0, b2 − a1 = 0.

We then use (4.1)-(4.3) and consider different powers of r, t to obtain the displayed
equations in terms of gij , vij , li, ki, using the first pair to present the 2nd pair as
values of li, v

i1.

For part (5), since Vol is central, the additional condition for a right and hence
bi-module map is that

(4.5) δ2Vol = biai + b(∂1 − λ∂2)b2 − b∂2b1

is central. From dbi we find

∂1b1 = −
2v21

λr2
, ∂2b1 =

2v11

λr2
, ∂1b2 = −

2v22

λr2
, ∂2b2 =

2v12

λr2

hence for (4.5) to be central we need

4

λ2r2
(v11t + v21)(g11t + g12) + 4

λr2
v11(g11t + g12) + 4

λ2r2
(v12t + v22)(g21t + g22)

+ 4

λr2
v12(g21t + g22) + 4b

λr2
(v12t + v22) + 4b

r2
v12 − 2bv22

λr2
− 2bv12

r2
− 2bv11

λr2

+ 2k1

λr
(v11t + v21) + 2l1

λr
(g11t + g12) + 2k2

λr
(v12t + v22) + 2l2

λr
(g21t + g22) + 2bl2

r
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to be central. At our level of polynomials in t, r, r−1, we require the expression itself
to vanish (leaving a constant δ2Vol = liki = −λk2). Applying the left module map
condition and collecting terms of order 1

r2
we have

− 4

λ
g11g11t2 − 4

λ
g12g21 − 4

λ
g11g12t − 4

λ
g11g12t − 4

λ
g12g12

− 4g11g11t − 4g11g12 + 4bg11 + 4

λ
g11g22 + 4b

λ
g11t + 2b

λ
g12 + 2b

λ
g21.

For t2 term to vanish we require g11 = 0 as stated. Given this, the other terms
vanish if and only (g12 + g21)(b − 2g12) = 0. We then examine the coefficient of the
1
r

terms of our original expression which we again need to vanish in order to be

central. Assuming we have δ2 a left module map, we are left with 2(b−2g12)k1 = 0.
For generic b this means g12 + g21 = 0 and k2

1 = 0, and hence δ2Vol = 0. �

Unlike Section 3, we see that we cannot usefully take ai, bi and hence δ to be
nonsingular in the sense of having a classical limit, if we want non-zero g, j in the
classical limit. However, we can still explore the resulting quantum geometry and
ask for δ2 to be tensorial (at least a left module map). For fixed gij , vij the ai, bi are
uniquely defined according to the above by (4.1)-(4.3) up to free parameters ki, li.
These play the role of the constant values of ai, bi in Section 3 and do not affect
the metric or j but do affect the central extension cocycle and bimodule connection
coming out of the quantum Koszul formula for our choice of δ. We will study the
quantum connection through its torsion and cotorsion coefficients Ti,Ci defined as
before. We let

∣g∣ = det(gij), ∣g∣λ = ∣g∣ − 1

2
λ2(g11)2.

Lemma 4.3. The connection from the quantum Koszul formula for any fixed gij

and vij has torsion and cotorsion

T1 =
1

2∣g∣ (g
11 (a2 + b1 −

2b

r
) − (g12 + λg11)(a1 − b2))

T2 =
1

2∣g∣ ((b2 − a1)(g22 + λg21) + λb1g11 + λb2(g12 + λg11) + g21 (a2 + b1 −
2b

r
) − 4∣g∣

r
)

C1 =
1

∣g∣ (a2 +
∣g∣λ
∣g∣ b1 −

2b

r
− 2g21

r
)

C2 =
1

∣g∣ (
∣g∣λ
∣g∣ b2 − a1 +

2g11

r
)

where ai, bi are given in terms of the parameters ki, li by (4.1)-(4.3).

Proof. (i) The covariant derivative along 1-forms is given by ∇eiej = 1
2
Jei, ejK where

the cocycle data in Theorem 2.4 comes out as

Je1, e1K =0, Je1, e2K = (a2 + b1 −
2

r
b) e1 + (b2 − a1)e2

Je2, e1K =(2

r
b − a2 − b1) e1 + (a1 − b2)e2, Je2, e2K = −λ(b1e1 + b2e2)
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while the generalised braiding from σω(η ⊗ ζ) = jωηζ + ωjηζ comes out as

σe1(e1 ⊗ e1) =
1

2
[r, a1]e1

σe1(e1 ⊗ e2) =
1

2
([t, a1]r − [r, a1](t − λ))e1

σe2(e1 ⊗ e1) =
1

2
([r, a1] − [r, b1])e1 +

1

2
[r, b2]e2

σe2(e1 ⊗ e2) =
1

2
([r, b1](t − λ) − [t, b1]r)e1 +

1

2
([t, a1]r − [r, a1](t − λ) − [t, b2]r + [r, b2](t − λ))e2

σe1(e2 ⊗ e1) =
1

2
([r, b1] + [r, a2])e1 +

1

2
[r, b2]e2

σe1(e2 ⊗ e2) =
1

2
([t, b1]r − [r, b1](t − λ) + [t, a2]r − [r, a2](t − λ) − 2λb)e1 +

1

2
([t, b2]r − [r, b2](t − λ))e2

σe2(e2 ⊗ e1) = −
λ

2
[r, b1]e1 +

1

2
([r, a2] − [r, b2])e2

σe2(e2 ⊗ e2) =
λ

2
([r, b1](t − λ) − [t, b1]r)e1 +

1

2
([t, a2]r − [r, a2](t − λ) − 2λb − λ[t, b2]r + λ[r, b2](t − λ))e2.

(ii) The abstract connection is ∇ei = g1⊗∇g2ei, where g = g1⊗ g2 = gijei⊗ ej is the

metric with (gij) inverse to (gij). This comes out as

∇e1 =
1

2
g1 ⊗ Jg2, e1K

= − 1

2∣g∣g
12 (2b

r
− a2 − b1) e1 ⊗ e1 −

1

2∣g∣g
12(a1 − b2)e1 ⊗ e2

+ 1

2∣g∣g
11 (2b

r
− a2 − b1) e2 ⊗ e1 +

1

2∣g∣g
11(a1 − b2)e2 ⊗ e2

∇e2 =
1

2
g1 ⊗ Jg2, e2K

= 1

2∣g∣ (g
22 (a2 + b1 −

2b

r
) + λg12b1) e1 ⊗ e1 +

1

2∣g∣ (g
22(b2 − a1) + λg12b2)e1 ⊗ e2

− 1

2∣g∣ (g
21 (a2 + b1 −

2b

r
) + λg11b1) e2 ⊗ e1 −

1

2∣g∣ (g
21(b2 − a1) + λg11b2)e2 ⊗ e2.

(iii)We can now compute the associated torsion T∇ as

∧∇e1 − de1 = −
1

2∣g∣g
12 (a1 − b2)Vol + 1

2∣g∣g
11 (a2 + b1 −

2b

r
)Vol − λ

2∣g∣g
11 (a1 − b2)Vol

∧∇e2 − de2 =
1

2∣g∣
(g22 (b2 − a1) + λg12b2)Vol + 1

2∣g∣ (g
21 (a2 + b1 −

2b

r
) + λg11b1)Vol

+ λ

2∣g∣
(g21 (b2 − a1) + λg11b2)Vol − 2

r
Vol

from which we read off the values of Ti as stated. For the cotorsion, need

coT∇ =(d⊗ id − id ∧∇)( 1

∣g∣ (g
22e1 ⊗ e1 − g12e1 ⊗ e2 − g21e2 ⊗ e1 + g11e2 ⊗ e2))
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which we examine term by term:

(d⊗ id − id ∧∇)( 1

∣g∣g
22e1 ⊗ e1) = − 1

∣g∣g
22e1∇e1

= 1

2∣g∣2 g
22g11 (a2 + b1 −

2b

r
)Vol⊗ e1 −

1

2∣g∣2 g
22g11 (a1 − b2)Vol⊗ e2

(d⊗ id − id ∧∇)(− 1

∣g∣g
12e1 ⊗ e2) = 1

∣g∣g
12e1∇e2

= − 1

2∣g∣2 g
12g21 (a2 + b1 −

2b

r
)Vol⊗ e1 −

λ

2∣g∣2 g
12g11cVol⊗ e1

− 1

2∣g∣2 g
12g21 (b2 − a1)Vol⊗ e2 −

λ

2∣g∣2 g
12g11dVol⊗ e2

(d⊗ id − id ∧∇)(− 1

∣g∣g
21e2 ⊗ e1) = − 1

∣g∣g
21 2

r
Vol⊗ e1 +

1

∣g∣g
21e2∇e1

= − 1

2∣g∣2 g
21 4∣g∣

r
Vol⊗ e1 −

1

2∣g∣2 g
21g12 (a2 + b1 −

2b

r
)Vol⊗ e1

+ 1

2∣g∣2 g
21g12 (a1 − b2)Vol⊗ e2 +

λ

2∣g∣2 g
21g11 (a2 + b1 −

2b

r
)Vol⊗ e1

− λ

2∣g∣2 g
21g11 (a1 − b2)Vol⊗ e2

(d⊗ id − id ∧∇)( 1

∣g∣g
11e2 ⊗ e2) = 1

∣g∣g
11 2

r
Vol⊗ e2 −

1

∣g∣g
11e2∇e2

= 1

2∣g∣2 g
11 4∣g∣

r
Vol⊗ e2 +

λ

2∣g∣2 g
11g12cVol⊗ e1 +

1

2∣g∣2 g
11g22 (a2 + b1 −

2b

r
)Vol⊗ e1

+ 1

2∣g∣2 g
11g22 (b2 − a1)Vol⊗ e2 +

λ

2∣g∣2 g
11g12dVol⊗ e2

− λ

2∣g∣2 g
11g21 (a2 + b1 −

2b

r
)Vol⊗ e1 −

λ2

2∣g∣2 (g
11)2b1Vol⊗ e1

− λ

2∣g∣2 g
11g21 (b2 − a1)Vol⊗ e2 −

λ2

2∣g∣2 (g
11)2b2Vol⊗ e2.

Collecting like coefficients of Vol⊗ ei and simplifying gives the coefficients Ci. �

We now want to look carefully at the classical limit and, knowing from Proposi-
tion 4.2 that ai, bi will have to be singular for a nonzero geometry, we write them
in terms of new parameters where we factor out an order 1/λ singularity, thus

(4.6) δ(e1) =
ã1

λ
, δ(e2) =

ã2

λ
+ 2b

r
, δVol = 1

λ
(b̃1e1 + b̃e2e2);

(4.7) ã1 =
2

r
(g11t + g12) + k̃1, ã2 =

2

r
(g21t + g22) + k̃2

(4.8) b̃1 =
2

r
(v11t + v21) + l̃1, b̃2 =

2

r
(v12t + v22) + l̃2
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as the general form of regular δ in terms of rescaled constant parameters k̃i = λki,
l̃i = λli. This is equivalent to our previous ai, bi given by (4.1)-(4.3) with now δ

at most order 1/λ singular corresponding to k̃i, l̃i nonsingular. We assume here

that gij and vij are nonsingular as λ → 0 so that ãi, b̃i are also. The condition in
Proposition 4.2 for δ2 to be a left module map gives vij in terms of gij as before
and the unchanged form

l̃1 = −k̃2 − λk̃1, l̃2 = k̃1.

In what follows will limit ourselves to this case, where gij are given, k̃i are our
parameters for the connection and everything else is determined.

Theorem 4.4. Let δ2 be a left-module map and δ have at most an order 1
λ

singu-

larity. Let ∇ be the connection emerging from the extension data for any gij and
parameters k̃i.

(1) The classical limit of the connection exists and has cotorsion and torsion

Ccl1 = − 1

∣g∣ (
2

r
(g11t + g12 + g21) + k̃1) , Ccl2 = 2g11

∣g∣r ,

T cl1 = − 1

2∣g∣g
11 (2

r
(g11t + g12) + k̃1) ,

T cl2 = 1

2∣g∣ ((g
12 − g21) (2

r
(g11t + g12) + k̃1) − g11 (2

r
(g21t + g22) + k̃2) −

4∣g∣
r

) .

(2) The full connection and its torsion can be written in terms of cotorsion as

∇e1 =
g12∣g∣
(g11)2

C̃2e1 ⊗ e1 −
∣g∣
g11

C̃2e2 ⊗ e1

∇e2 = −
∣g∣

(g11)2
(g12C̃1 − g22C̃2)e1 ⊗ e1 −

g12

(g11)2
C̃2e1 ⊗ e2

+ ∣g∣
(g11)2

(g11C̃1 − g21C̃2)e2 ⊗ e1 +
∣g∣
g11

C̃2e2 ⊗ e2

T1 =
1

g11
C̃2, T2 =

∣g∣
(g11)2

(g11C̃1 + (g12 − g21 + g11)C̃2) −
2

r

where

C̃1 =
(g11)2

2∣g∣ ( 2

∣g∣r (g
21t + g22) + k̃2

∣g∣ −
2λ

r
(g11t + g12) − λk̃1)

C̃2 = −
(g11)2

2∣g∣ (2

r
(g11t + g12) + k̃1) ; C̃i =

Ci −Ccli
λ

.

(3) Ci = 0 occurs in our moduli space if and only if the δ2 bimodule map condi-
tion displayed in part (5) of Proposition 4.2 holds. In this case Ti = 0 also,
giving a one parameter moduli space of weak quantum Levi-Civita connec-
tions with parameter k̃2.

(4) The connections in (3) are quantum Levi-Civita if and only if in addition

g22 = −λg
12

2
, and have the form

∇e1 = −
1

r
e1 ⊗ e1, ∇e2 = (1

r
(t − λ

2
) − k̃2

2g12
) e1 ⊗ e1 −

g12

r
g.
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Proof. (i) From the conditions (4.4) for δ2 to be a left module map we find

b2 =
ã1

λ
, b1 = −

ã2

λ
− ã1.

We then substitute our expressions for ai, bi into the formulae for the full quantum
connection found in the proof of Lemma 4.3 to get,

∇e1 = −
1

2∣g∣g
12ã1e1 ⊗ e1 +

1

2∣g∣g
11ã1e2 ⊗ e1

∇e2 = −
1

2∣g∣ ((g
22 + λg12)ã1 + g12ã2)e1 ⊗ e1 +

1

2∣g∣g
12ã1e1 ⊗ e2

+ 1

2∣g∣ ((g
21 + λg11)ã1 + g11ã2)e2 ⊗ e1 −

1

2∣g∣g
11ã1e2 ⊗ e2.

The braiding map in this case becomes,

σe1(e1 ⊗ e1) =
1

2λ
[r, ã1]e1

σe1(e1 ⊗ e2) =
1

2λ
([t, ã1]r − [r, ã1](t − λ))e1

σe2(e1 ⊗ e1) =
1

2λ
([r, ã1](1 + λ) + [r, ã2])e1 +

1

2λ
[r, ã1]e2

σe2(e1 ⊗ e2) =
1

2λ
(([r, ã2] + λ[r, ã1])(λ − t) + ([t, ã2] + λ[t, ã1])r)e1

σe1(e2 ⊗ e1) = −
1

2
[r, ã1]e1 +

1

2λ
[r, ã1]e2

σe1(e2 ⊗ e2) =
1

2
([r, ã1](t − λ) − [t, ã1]r)e1 +

1

2λ
([t, ã1]r − [r, ã1](t − λ))e2

σe2(e2 ⊗ e1) =
1

2
([r, ã2] + λ[r, ã1])e1 +

1

2λ
([r, ã2] − [r, ã1])e2

σe2(e2 ⊗ e2) =
1

2
(([r, ã2] + λ[r, ã1])(λ − t) + ([t, ã2] + λ[t, ã1])r)e1

+ 1

2λ
([t, ã2]r − [r, ã2](t − λ) − λ[t, ã1]r + λ[r, ã1](t − λ))e2.

The connection is clearly non-singular and has a classical limit given by,

∇e1 = −
1

2∣g∣g
12 (2

r
(g11t + g12) + k̃1) e1 ⊗ e1 +

1

2∣g∣g
11 (2

r
(g11t + g12) + k̃1) e2 ⊗ e1

∇e2 = −
1

2∣g∣ (g
22 (2

r
(g11t + g12) + k̃1) + g12 (2

r
(g21t + g22) + k̃2)) e1 ⊗ e1

+ 1

2∣g∣g
12 (2

r
(g11t + g12) + k̃1) e1 ⊗ e2

+ 1

2∣g∣ (g
21 (2

r
(g11t + g12) + k̃1) + g11 (2

r
(g21t + g22) + k̃2)) e2 ⊗ e1

− 1

2∣g∣g
11 (2

r
(g11t + g12) + k̃1) e2 ⊗ e2.
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When δ2 is a left-module map the cotorsion Ci, given in Lemma 4.3, become,

(4.9) C1 =
1

∣g∣ (
λ2(g11)2

2∣g∣ ( ã2

λ
+ ã1) − ã1 −

2g21

r
) , C2 =

g11

∣g∣ (2

r
− λg

11

2∣g∣ ã1) .

These have classical limits as stated. We repeat this process for torsion, in which
case we have,

(4.10) T1 = −
1

2∣g∣g
11ã1, T2 =

1

2∣g∣ ((g
12 − g21)ã1 − g11ã2 −

4∣g∣
r

) .

Which again have classical limits as stated.

(ii) These expressions (4.9) and (4.10) for Ci, Ti are each invertibly related to ãi,
in particular

(4.11) ã1 =
2∣g∣

λ(g11)2
(Ccl2 −C2) = −

2∣g∣
(g11)2

C̃2

(4.12) ã2 =
2∣g∣2

λ(g11)2
((C1 −Ccl1 ) + λ(C2 −Ccl2 )) = 2∣g∣2

(g11)2
(C̃1 + λC̃2)

where Ccli are the classical values for the cotorsion as given above. We can then
substitute (4.11) and (4.12) into the formulae for the full quantum connection to
arrive at the form stated. Furthermore, we can use (4.11) and (4.12) in (4.10)
to achieve results similar to that in Section 3 whereby we obtained a relationship
between the torsion and cotorsion as stated. Note that now the cotorsion coefficients
here are not constants and have a particular form in terms of our actual parameters,
as stated.

(iii) From (4.9), we can clearly see that C2 = 0 if and only if g11 = 0. We then have
that

C1 = −
1

∣g∣ (ã1 +
2g21

r
) .

Therefore, C1 = 0 if and only if ã1 = − 2g21

r
. We can then use equation (4.7) to

expand ã1 to arrive at the conditions g11 = 0, g21 + g12 = 0, k̃1 = 0 which are
precisely the δ2 bimodule map conditions displayed in part (5) or Proposition 4.2.
It is easy to then substitute these conditions on gij into (4.10) to see that Ti = 0
also in this case. We can also write

ã1 =
2g12

r
, ã2 =

2

r
(g22 − g12t) + k̃2

in which case our weak quantum Levi-Civita bimodule connections becomes

∇e1 = −
1

r
e1 ⊗ e1, ∇e2 = (1

r
(t − λ) − g22

g12r
− k̃2

2g12
) e1 ⊗ e1 −

g12

r
g

σ(e1 ⊗ e1) = e1 ⊗ e1, σ(e1 ⊗ e2) = e2 ⊗ e1, σ(e2 ⊗ e1) = e1 ⊗ e2 + λe1 ⊗ e1

σ(e2 ⊗ e2) = e2 ⊗ e2 − λ(2g22

g12
+ λ) e1 ⊗ e1 + λe1 ⊗ e2 − λe2 ⊗ e1
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where the latter are obtained from σ(ei ⊗ ej) = g1 ⊗ σg2(ei ⊗ ej) and

σe1(e1 ⊗ e1) =0, σe1(e1 ⊗ e2) = g12e1, σe2(e1 ⊗ e1) = −g12e1, σe2(e1 ⊗ e2) = g22e1,

σe1(e2 ⊗ e1) =0, σe1(e2 ⊗ e2) = −λg12e1 + g12e2, σe2(e2 ⊗ e1) = −λg12e1 − g12e2,

σe2(e2 ⊗ e2) =λ(g22 + λg12)e1 + (g22 − λg12)e2.

(iv) For metric compatibility we must have

∇g = (∇⊗ id)g + (σ ⊗ id)(id⊗∇)g = 0

where at this point

g = 1

∣g∣ (g
22e1 ⊗ e1 − g12e1 ⊗ e2 + g12e2 ⊗ e1)

and that ∣g∣ = g12g12. Using this we compute for our weak quantum Levi-Civita
connections that

(∇⊗ id)g = − 2g22

g12g12r
e1 ⊗ e1 ⊗ e1 +

1

g12r
e1 ⊗ e1 ⊗ e2 +

1

g12r
e1 ⊗ e2 ⊗ e1 −

1

g12r
e2 ⊗ e1 ⊗ e1

+ 1

g12
(1

r
(t − λ) − g22

g12r
+ λk2

2g12g12
) e1 ⊗ e1 ⊗ e1

(σ ⊗ id)(id⊗∇)g = − 1

g12
(1

r
(t − λ) − g22

g12r
+ λk2

2g12g12
)σ(e1 ⊗ e1)⊗ e1

− 1

g12r
σ(e1 ⊗ e1)⊗ e2 +

1

g12r
σ(e1 ⊗ e2)⊗ e1

− 1

g12r
σ(e2 ⊗ e1)⊗ e1.

Substituting the values of σ and combining, we arrive at the requirement

− 1

∣g∣r (2g
22 + λg12)e1 ⊗ e1 ⊗ e1 = 0

which gives us the result stated. �

Lemma 4.5. For the connection in Theorem 4.4,

(1) The curvature for general gij has classical limit

Rcl∇(e1) = −
1

∣g∣g
11 (2

r
(g11t + g12) + k̃1)

1

r
Vol⊗ e1

Rcl∇(e2) =
1

∣g∣ (
1

2
(2

r
(g11t + g12) + k̃1)(2

r
(g11t + g12 + g21) + k̃1) + g11 (2

r
(g21t + g22) + k̃2)

1

r
)Vol⊗ e1

− g
11

∣g∣ (2

r
(g11t + g12) + k̃1)

1

r
Vol⊗ e2.

(2) The one parameter moduli space of weak quantum Levi-Civita connections
in case (3) of Theorem 4.4 are all flat.

Proof. (i) We begin by first computing the full quantum curvature of the connection
assuming it is a left module map, using the expression for the connection given in
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Theorem 4.4 in terms of the residue functions ãi. Recall that quantum curvature
is given by

R∇ = (d⊗ id − id ∧∇)∇.
We then have

R∇(e1) =
1

2∣g∣g
11ã1 ( λ

2∣g∣ ã1 −
2

r
)Vol⊗ e1 −

1

2∣g∣dã1(g12e1 ⊗ e1 − g11e2 ⊗ e1)

R∇(e2) = −
1

4∣g∣2 (λ(g11)2[ã1, ã2] − 2∣g∣ã1
2 − 4∣g∣((g21 + λg11)ã1 + g11ã2)

1

r
)Vol⊗ e1

− g
11ã1

4∣g∣2 (λg11ã1 +
4∣g∣
r

)Vol⊗ e2

− 1

2∣g∣ ((g
22 + λg12)dã1 + g12dã2)e1 ⊗ e1 +

1

2∣g∣g
12dã1e1 ⊗ e2

+ 1

2∣g∣ ((g
21 + λg11)dã1 + g11dã2)e2 ⊗ e1 −

1

2∣g∣g
11dã1e2 ⊗ e2.

Expanding the ãi according to equations (4.7) in terms of the parameters k̃i gives
us the full quantum curvature of the connection as

R∇(e1) =( 1

2∣g∣g
11 (2

r
(g11t + g12) + k̃1)( λ

2∣g∣g
11 (2

r
(g11t + g12) + k̃1) −

2

r
) − 2λ

∣g∣r2
(g11)2)Vol⊗ e1

R∇(e2) =
1

∣g∣ (
1

2
(2

r
(g11t + g12) + k̃1)(2

r
(g11t + g12) + k̃1 +

2

r
(g21 + λg11)) − λ

2(g11)2

r2
)Vol⊗ e1

− 1

∣g∣ (
λg11

r2
(2g21 + λg11) − g11 (2

r
(g21t + g22) + k̃2)

1

r
)Vol⊗ e1

+ (λ(g
11)2

∣g∣r2
− g11

4∣g∣2 (2

r
(g11t + g12) + k̃1)(λg11 (2

r
(g11t + g12) + k̃1) +

4∣g∣
r

))Vol⊗ e2.

We can then set λ→ 0 to get the classical limit stated.

(ii) Using the above formulae for the full quantum curvature in terms of k̃i, one can

clearly see that setting g11 = 0 means that R∇(e1) = 0. Setting g11 = 0 and k̃1 = 0
gives

R∇(e2) =
1

∣g∣ (
g12

r
(2

r
g12 + 2

r
g21))Vol⊗ e1 = 0

given that g12 = −g21. �

So far we have focussed on the connection on 1-forms. For the connection applied
to forms of degree 2 we have the following lemma:

Lemma 4.6. For regular δ and the covariant derivative ∇ei = 1
2
Jei, K, we have that

∇eiVol = 0 if and only if δ2 is a left module map.

Proof. From the cocycle data given in Lemma 4.3 we have

∇e1Vol = 1

2
Je1,VolK = 1

2
(b2−a1)Vol, ∇e2Vol = 1

2
Je2,VolK = −1

2
(a2 + b1 + λb2 −

2b

r
)Vol

using Vol ⊥ Vol from Lemma 4.1. �
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We also have a Hodge Laplacian defined by ∆ = δd + dδ. We also expand ai
according to Proposition 4.2 in order to take the exterior derivative and assume δ2

a left-module.

∆(r) =δdr = δe1 =
2

λr
(g11t + g12) + k̃1

λ

∆(t) =δdt = 2

λr2
((g11t + g12)(t − λ) + (g21t + g22)) + tk̃1 + k̃2

λr

∆(e1) =dδe1 =
2g11

λr2
e2 −

2g12

λr2
e1

∆(e2) =δde2 + dδe2

= − 2

r
( 2

λr
(g21t + g22) + 2

r
(g11t + g12) + g

22

λr
+ k̃2

λ
+ k̃1) e1

+ 2

r
( 2

λr
(g11t + g12) + g

21

λr
+ k̃1

λ
) e2

∆Vol =δdVol + dδVol = (2g12

λr2
+ 2g21

λr2
+ 4g11t

λr2
+ 4g11

r2
+ 2k̃1

λr
)Vol.

Since our δ does not have a classical limit for generic gij there is no question that
it coincides with the ‘geometric codifferential’. For completeness, this comes out as

Proposition 4.7. In the classical limit, the geometric codifferential arising from
the extension data via the connection is given by

i ○ ∇e1 =
g11(g21 − g12)

∣g∣r (g11t + g12)

i ○ ∇e2 =
1

∣g∣r ((g
21g21 + g12g12 − 2g11g22)(g11t + g12) + g11(g21 − g12)(g21t + g22))

i ○ ∇Vol =0.

Proof. In order to attain a unique classical limit we make use of Theorem 4.4 and
therefore assume δ2 is left module map. We then apply i to the resulting classical
connection given in the proof of Theorem 4.4.

i ○ ∇e1 = −
1

∣g∣r g
12(g11t + g12)g11 + 1

∣g∣r g
11(g11t + g12)g21

=g
11(g21 − g12)

∣g∣r (g11t + g12)

i ○ ∇e2 = −
1

∣g∣r (g
22g11(g11t + g12) + g11g12(g21t + g22)) + 1

∣g∣r g
12g12(g11t + g12)

+ 1

∣g∣r (g
21g21(g11t + g12) + g11g21(g21t + g22)) − 1

∣g∣r g
11g22(g11t + g12)

= 1

∣g∣r ((g
21g21 + g12g12 − 2g11g22)(g11t + g12) + g11(g21 − g12)(g21t + g22)).
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We have previously shown that ∇eiVol = 0 when δ2 is a left module map, but for
completeness and to obtain previously unseen formulae we compute here ∇Vol in
order to compute i ○ ∇Vol. Thus we have

∇Vol =g1 ⊗∇g2Vol

= 1

∣g∣g
22e1 ⊗∇e1Vol − 1

∣g∣g
12e1 ⊗∇e2Vol − 1

∣g∣g
21e2 ⊗∇e1Vol + 1

∣g∣g
11e2 ⊗∇e2Vol

= 1

2∣g∣ (g
22(b2 − a1) + g12 (a2 + b1 + λb2 −

2b

r
)) e1 ⊗Vol

− 1

2∣g∣ (g
21(b2 − a1) + g11 (a2 + b1 + λb2 −

2b

r
)) e2 ⊗Vol

where we have used the formula in the proof of Lemma 4.6. Using the left-module
conditions one then has that ∇Vol = 0. �

We now look at some specific examples. Our general analysis was for a constant
quantum metrics gij without assuming quantum symmetry.

Example 4.8. The unique real quantum-symmetric quantum metric for this model
is given in [4] and has the form

(gij) = (
1

1+Bλ2 0
λ

1+Bλ2
1
B

)

and now we ask for δ2 a left module map, which fixes vij and l̃ with

(vij) = (
−2λ

1+Bλ2
1

1+Bλ2

− 1
B

0
) ,

leaving

ã1 =
2t

r(1 +Bλ2) + k̃1, ã2 =
2λt

r(1 +Bλ2) +
2

rB
+ k̃2

and remaining parameters k̃i. We cannot apply parts (3),(4) of the Theorem 4.4
due to the form of the metric. In fact one has

δ2(Vol) = − 4t2

λr2(1 +Bλ2)2
+ 4(1 − λBt)
λr2B(1 +Bλ2) +

2b(2t + 3λ)
λr2(1 +Bλ2) −

4k̃1

λr(1 +Bλ2) +
2bk̃1

λr
+ k̃1

2

λ

which is clearly far from being central. This confirms that δ2 is not a bimodule
map.

The quantum connection arising from (δ,⊥) is therefore not even weak quantum
Levi-Civita. It is given in terms of cotorsion according to Theorem 4.4 as

∇e1 = −
C̃2

B
e2 ⊗ e1

∇e2 =
1 +Bλ2

B2
C̃2e1 ⊗ e1 +

1

B
(C̃1 − λC̃2)e2 ⊗ e1 +

C̃2

B
e2 ⊗ e2

where

C̃1 =
B

2(1 +Bλ2) (B(1 +Bλ2)( 2λt

r(1 +Bλ2) +
2

rB
+ k̃2) −

2λt

r(1 +Bλ2) − λk̃1)

C̃2 = −
B

2(1 +Bλ2) ( 2t

r(1 +Bλ2) + k̃1) .
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The connection has classical limit

∇e1 =
B

2
(2t

r
+ k̃1) e2 ⊗ e1

∇e2 = −
1

2
(2t

r
+ k̃1) e1 ⊗ e1 +

B

2
( 2

rB
+ k̃2) e2 ⊗ e1 −

B

2
(2t

r
+ k̃1) e2 ⊗ e2

where Theorem 4.4 gives us the classical torsion and cotorsion as

Ccl1 = −B (2t

r
+ k̃1) , Ccl2 = 2B

r

T cl1 = − B
2

(2t

r
+ k̃1) , T cl2 = −B

2
( 6

rB
+ k̃2) .

Lemma 4.5 gives the classical limit of the curvature as

Rcl∇(e1) = −
B

r
(2t

r
+ k̃1)Vol⊗ e1

Rcl∇(e2) =B (1

2
(2t

r
+ k̃1)

2

+ 1

r
( 2

rB
+ k̃2))Vol⊗ e1 −

B

r
(2t

r
+ k̃1)Vol⊗ e2

The classical Ricci tensor here is not proportional to the metric (and nor would we
expect it to be as the connection is not the Levi-Civita one).

The quantum Laplacian has formulae

∆(r) = 2t

λr(1 +Bλ2) +
k̃1

λ

∆(t) = 2

λr2
( t2

1 +Bλ2
+ 1

B
) + tk̃1 + k̃2

λr

∆(e1) =
2

λr2(1 +Bλ2)e2

∆(e2) =(− 8t

r2(1 +Bλ2) −
6

λr2B
− 2(λk̃1 + k̃2)

λr
) e1 + ( 4t

λr2(1 +Bλ2) +
2k̃1

λr
+ 2

r2(1 +Bλ2)) e2

and like δ does not have a classical limit.

Example 4.9. Clearly the nicest form of the metric in the sense that all the cases
of Theorem 4.4 hold, is

(gij) = L( 0 1

−1 −λ
2

)

for an overall normalisation scale L, and we also assume that k̃1 = 0 for part (3)
of the theorem to apply and Ci = Ti = 0. From the formulae displayed in (4.7) we
have

ã1 =
2L

r
, ã2 = −

2Lt

r
− λL

r
+ k̃2.

From Proposition 4.2, for δ2 a left module map we have that

(vij) = L( 1 0

−λ
2

1
) ,

and also fix b̃i. From this data one can compute δ2(Vol) = 0 so that δ2 is a bimodule
map, as it must be according to Proposition 4.2 for this form of metric. The 1-
parameter family of quantum Levi-Civita connections according to Theorem 4.4
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are then given by

∇e1 = −
1

r
e1 ⊗ e1, ∇e2 = ( t

r
− k̃2

2L
) e1 ⊗ e1 +

1

r
e1 ⊗ e2 −

1

r
e2 ⊗ e1

with braiding map

σ(e1 ⊗ e1) = e1 ⊗ e1, σ(e1 ⊗ e2) = e2 ⊗ e1, σ(e2 ⊗ e1) = e1 ⊗ e2 + λe1 ⊗ e1

σ(e2 ⊗ e2) = e2 ⊗ e2 + λ(e1 ⊗ e2 − e2 ⊗ e1)
and zero curvature by Lemma 4.5.

Finally, we have the Hodge Laplacian given by

∆(r) =0, ∆(t) = −3L

r2
+ k̃2

λr
, ∆(e1) = −

2L

λr2
e1

∆(e2) = −
2

r
( L

2r
− 2Lt

λr
+ k̃1

λ
) e1 −

2

r
( L
λr

+ k̃1

λ
) e2, ∆(Vol) = 0.

Example 4.10. Since the calculus is inner with θ = −dt
λ

, we also have a canonical

example of δ with j = 1
2
⊥, in particular jei(ej) = gij is similar to the preceding

example but now with

(gij) = b
2
( 0 1
−1 −λ) .

We also compute δ(ei) = θ ⊥ ei and δVol = θ ⊥ Vol as

δ(e1) =
b

λr
, δ(e2) =

b

r
(1 − t

λ
), δ(Vol) = θ ⊥ Vol = b

λr
(te1 + e2).

This corresponds to parameters k̃i = 0 and

ã1 =
b

r
, ã2 = −

b

r
(t + λ), b̃1 =

b

r
t = −ã2 − λã1, b̃2 =

b

r
= ã1.

From this or from jeiVol = 1
2
ei ⊥ Vol to compute the form of vij we see that l̃i = 0

so that δ2 is a left module map by our analysis. Furthermore one can check that
δ2(Vol) = 0 so that δ2 is a bimodule map as it must be according to Proposition 4.2.
Formulae in the proof of Theorem 4.4 allow us to compute the connection from ãi,
as

∇e1 = −
1

r
e1 ⊗ e1, ∇e2 =

1

r
((t + λ)e1 ⊗ e1 + e1 ⊗ e2 − e2 ⊗ e1)

σ(e1 ⊗ e1) = e1 ⊗ e1, σ(e1 ⊗ e2) = e2 ⊗ e1, σ(e2 ⊗ e1) = e1 ⊗ e2 + λe1 ⊗ e1

σ(e2 ⊗ e2) = e2 ⊗ e2 + λ(e1 ⊗ e2 − e2 ⊗ e1 + λe1 ⊗ e1)
and Theorem 4.4 tells is that this is torsion free and cotorsion free or ‘weak quantum
Levi-Civita’. It is flat but not fully quantum Levi-Civita since g22 ≠ −λ

2
g12, in fact

∇g = 2λ

br
e1 ⊗ e1 ⊗ e1

so that the classical limit is metric compatible.

The quantum Laplacian, given by ∆ = δd + dδ, is

∆(r) = b

λr
, ∆(t) = 0,

∆(e1) = −
b

λr2
e1, ∆(e2) = ( 2bt

λr2
+ b

r2
) e1 +

b

λr2
e2, ∆(Vol) = 0.
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The quantum Laplacian here is singular so does not have a classical limit, as for
the codifferential.

5. Conclusions and discussion

We have seen that the new approach to classical Riemannian geometry and its
quantisation in [14] via an axiomatic ‘codifferential’ δ works very well for the α
calculus on our quantum spacetime (Section 3) and does give the quantum Levi-
Civita connection for this model when g is quantum symmetric as assumed in
[16]. One may expect that this will also be the case for other quantum differential
spacetimes that are in some (to be determined) sense ‘close enough’ to classical.

It is also striking that in both cases asking for δ2 to be a left module map or
‘left-tensorial’, in the sense δ2(fVol) = fδ2Vol for all f in the quantum spacetime
algebra, ensures that the connection coming from (δ,⊥) in our quantum Koszul
formula is nonsingular as λ → 0 (more generally, it needs to hold at least to order
λ). We also saw how this left module map property links the induced interior
product j to the metric extended as something like a derivation, possibly with O(λ)
corrections. And we saw that in both cases ⊥ does not have to be symmetric even
though that would be the classical choice (where ⊥= ( , ) (the metric) extended in
both arguments to forms). In Section 3 we saw that the symmetric choice allows
δ to agree with the geometric divergence defined as ( , )∇ while in Section 4 only
an antisymmetric plus O(λ) choice was allowed by the differential calculus, which
is a first hint that it is in some sense ‘far from classical’. Finally, we saw in both
cases how δ2 being additionally a right module map or ‘right-tensorial’ (hence a
bimodule map) is a further constraint which in Section 3 forces the metric to be
symmetric and lands us on the quantum Levi-Civita connection, while in Section 4
it forces the metric to be mostly antisymmetric (leaving g22 unconstrained) and
lands us on a weak quantum Levi-Civita connection as in Example 4.9. Requiring
this to be fully quantum Levi-Civita then fixes the relative value of g22 also. Thus
we are forced to a form of metric that is not symmetric but antisymmetric in the
classical limit. In other words, the quantum Koszul formula method which we
have explored works also for the β calculus model on our quantum spacetime in
Section 4 but the geometry that it quantises more naturally is symplectic rather
than Riemannian. It is fair to say that this huge contrast was not visible until now,
where both models have been studied as different quantum Riemannian geometries
of not fundamentally different character if one just wants a quantum symmetric
metric and quantum Levi-Civita connection[16, 4]. The difference now is that we
want the geometry to emerge as part of a quantisation of connections and interior
products on higher differential forms as well as on Ω1, which is an integral part of
the the quantum Koszul formula, i.e. we want the quantum-‘Riemannian’ geometry
to work with differential forms in the spirit of Hodge theory and the Cartan formula
for codifferentials.

It is not clear of course if our in-depth analysis of one particular spacetime [r, t] =
λr allows us to draw lessons more widely. The above phenomena would need to
explored in other models; suffice it to say that some of these general features echo
some of the steps in the proof in [14] that we can recover classical Riemannian
geometry from axiomatic properties of δ of classical type. It should also be pointed
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out that the central extension formalism in [14] of which the (δ,⊥) construction
is an example is more general and there could be other constructions leading to
flat central extensions. Moreover, it seems likely that the central extension theory
should itself be generalised in order to recover the actual β = 1 quantum Riemannian
geometry in [4]. This is because the differential calculus on this model has in
fact a natural one higher-dimension extension dictated by quantum Poincaré group
invariance[19]. Namely in 2D this is the 3D calculus with

[dr, r] = λθ′, [dr, t] = [θ′, r] = 0, [t,dt] = λ(θ′ + dt), [r,dt] = λdr, [θ′, t] = λθ′

which we see is not a central extension. Rather, it is shown in [14] that this
calculus is more like a central extension of the calculus on r followed by a semidirect
product construction along the lines [12]. This in turn works more generally for
quantum spacetimes of the form C∞(N)>◁R where N is a spatial Riemannian
manifold and the semidirect product of space with a time coordinate is given by
the action of a conformal killing vector. Such quantum spacetimes were called
‘almost commutative’ in [12] and the β = 1 calculus is an example in this family
with conformal Killing vector r ∂

∂r
. Therefore a direction for further work could be

to extend the analysis of Section 4 to the quantum Koszul construction for this
more general class. It would also be interesting to explore it for finite groups where
several quantum Riemannian geometries in our sense are known, as well as for
q-deformed examples such as q-SU2 and the q-sphere.

Finally, one should continue the process of making contact between constructive
approaches and other more ‘top down’ (but more powerful) approaches to noncom-
mutative geometry, most notably that of Connes [7] based on an axiomatic Dirac
operator D or ‘spectral triple’ rather than δ. One could perhaps consider d + δ in
this vein as a first step. Better, one should extend the central extension point of
view of [14] to include spinors and make proper contact with the actual geometric
Dirac operator and its interaction with δ. It would also be interesting to make
contact with more recent work such as [18]. These are some directions for further
work.
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