QUANTUM KOSZUL FORMULA ON QUANTUM SPACETIME
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ABSTRACT. Noncommutative or quantum Riemannian geometry has been pro-
posed as an effective theory for aspects of quantum gravity. Here the metric
is an invertible bimodule map Q! ® 4 Q' — A where A is a possibly noncom-
mutative or ‘quantum’ spacetime coordinate algebra and (Q!,d) is a specified
bimodule of 1-forms or ‘differential calculus’ over it. In this paper we explore
the proposal of a ‘quantum Koszul formula’ in [14] with initial data a degree
-2 bilinear map L on the full exterior algebra 2 obeying the 4-term relations
DM wn) L¢+ (wLmC=wi (1) + (~DMHMw(n L0), VYw,n,(e0

and a compatible degree -1 ‘codifferential’ map 6. These provide a quan-
tum metric, interior product and a canonical bimodule connection V on all
degrees. The theory is also more general than classically in that we do not as-
sume symmetry of the metric nor that ¢ is obtained from the metric. We solve
and interpret the (J, 1) data on the bicrossproduct model quantum spacetime
[r,t] = Ar for its two standard choices of Q. For the a-family calculus the
construction includes the quantum Levi-Civita connection for a general quan-
tum symmetric metric, while for the more standard 8 =1 calculus we find the
quantum Levi-Civita connection for a quantum ‘metric’ that in the classical
limit is antisymmetric. This suggests to consider quantum Riemannian and
symplectic geometry on a more equal footing than is currently the case.

1. INTRODUCTION

Noncommutative differential geometry (NCDG) has been proposed for some three
decades now as a natural generalisation of classical differential geometry that does
not assume that the coordinate algebra or their differentials commute. There are
many motivations and applications, many of them still unexplored (eg to actual
quantum systems) but one of them is now widely accepted as an important role,
namely as an effective theory for quantum gravity effects expressed as quantising
spacetime itself. Of historical interest here was [20] in the 1940’s, although this
did not propose a closed spacetime algebra exactly but an embedding of it into
something larger. Specific proposals relating to quantum gravity (the ‘Planck scale
Hopf algebra’) appeared in [10] where they led to one of the two main classes of
quantum groups to emerge in the 1980s as well as to one of the first and most well-
studied quantum spacetimes with quantum group symmetry, namely the Majid-
Ruegg ‘bicrossproduct model’ [15]. In 2D this is the coordinate algebra [r,t] = Ar
where A should be » times the Planck scale of around 1073°m. In spite of many
hundreds of papers on this quantum spacetime, it continues to be useful as a testbed
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for new ideas in noncommutative geometry and continues to surprise. In particular,
it was shown recently in [4] that the standard differential calculus on this algebra,
namely

(1.1) [r,dt] = Adr, [t,dt]=Ad¢, [r,dr]=0, [t,dr]=0

admits only a l-parameter form of quantum metrics with classical A - 0 limit,
namely
dr? + Bv?;,  v=rdt-tdr

which is that of either, for B > 0, an expanding universe with an initial big bang
singularity or, for B <0, a gravitational source so strong that even light eventually
gets pulled back in and with a curvature singularity at » = 0. The calculus here
is the 8 # 1 point of a family of calculi with similar features. Then in [16] it was
shown that the other « family choice of calculus similarly admits a unique form of
quantum metric which is either de Sitter or anti-de Sitter space depending on the
sign of a parameter. Up to a change of variables we can take o = 1, then

(1.2) [t,dr] =-Xdr, [t,d¢]=Adt
is the calculus, and the quantum metric has classical limit
r2dr? + 2adrdt + br2dt?

with a? > b. The classical geometry here depends on the sign of b. In both cases
we see that a particular classical (pseudo)Riemannian geometry emerges as being
forced out of nothing but the choice of algebra and its differential structure, showing
that the ‘quantum spacetime hypothesis’ has implications for classical GR. These
constraints on classical geometry emerging from noncommutative algebra were anal-
ysed in general at the semiclassical level, as a new theory of Poisson-Riemannian
geometry, in [5]. Moreover, in both cases the full quantum geometry is constructed
in [4, 16] in the sense of a quantum-Levi Civita (or quantum torsion free quantum
metric compatible) connection in the bimodule formalism of quantum Riemannian
geometry that has its roots in [8, 9, 17, 3].

In spite of these successes, the general formalism of ‘quantum Riemannian geome-
try’ in both the bimodule connection approach and an earlier quantum group frame
bundle approach[11] has until now lacked a general construction for the quantum-
Levi-Civita connection, which has to be solved for on a case by case basis. Recently
in [14], however, one of the present authors introduced a radically new point of view
on both classical and quantum Riemannian geometry as emerging from a choice of
codifferential ¢ (not the other way around as would be more usual) along with a
new formula[14]

(13) Ly =5 (Ls(wm) + Lo+ (dw) Lu)s La(wn) = 0(em) = (8 + i

for the classical Levi-Civita connection. Here we view a 1-form w € Q'(M) as a
vector field via the metric and L 7 is interior product by the vector field similarly
corresponding to 7 € QY (M). The Lie derivative is also given by such an interior
product w 1 and d. The work also led to a new property|[14]

8(wn¢) = (8(wn))¢ + (1)ws(n¢) + (-1)FDMps(we)
~(0w)n¢ = (-1)¥lw(n)¢ — (1) Mlynsc
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for the classical codifferential acting on w,n, € Q(M), the exterior algebra on the
manifold. This says, remarkably, that (Q(M), ) makes any Riemannian manifold
into a Batalin-Vilkovisky algebra. From our new starting point we can go further
and axiomatise 0 as a degree -1 map obeying certain axioms and if this is of ‘classical
type’ (notably 62 is tensorial, for example zero) then the connection defined as
above will necessarily be the Levi-Civita one for an inverse metric (, ) induced by
0 according to the formula

6(fw) = fow +(df,w),
for all f e C°(M),w € Q' (M), see [14, Thm 3.18]. Another feature of this new
approach to classical Riemannian geometry is that it works well with forms of all

degree. Thus the above formula for V¢ works for 7 of all degrees provided we
extend L to all degrees by the formula[14]

(wirwm) L (n1-np) = Z(_l)ﬁ-j(wiv77]')Wl"'w\i"'wmnl'“m'"nn7 Wi, Nj € (M),
i,

where we leave out the hatted ones. If w has degree 1 then w 1 () is interior
product as used in the Lie derivative in the formula for V¢, Classically, L is
not more data than the metric, it merely extends it as a bi-interior product, and
our Koszul formula is equivalent in this case to the usual Koszul or Levi-Civita
formula but in a novel differential form language that depends also on constructing
the associated Hodge codifferential § compatibly with the metric[14]. On the other
hand, even when A = C* (M), we are not limited to this choice as we could let L
be nonsymmetric and still define the inverse metric as the symmetrisation of 1 in
degree 1 in the construction of [14], and we are also not limited to the standard
‘classical type’ § (we look at this slightly more general but still classical construction
in Section 2.5).

It was also pointed out but not the main topic of [14] that this differential-Koszul
formula can be applied when our algebra of coordinates is a noncommutative algebra
A to begin with, and (£2(4),d) is a quantum differential calculus. We still need a
map L which we axiomatise as a degree -2 bilinear ‘contraction’ 1 on 2(A) obeying
the 4-term relation as in the abstract, together with a compatible degree —1 map
J: Q(A) » Q(A) the ‘quantum codifferential’. Details will be recalled in the
preliminaries, see Theorem 2.4 in Section 2.3. Compatibility entails that

d(aw) = adw +da L w

for all a € A and w € , and also a regularity condition on the other side that
d(wa) = (dw)a + w Lg da for some bimodule map Lr. The latter is determined
by this formula so is not additional data, rather a condition on ¢ to be sufficiently
nice. From this data one can construct a quantum bimodule connection V by
the same formula (1.3) and a quantum (inverse) metric (, ) = 3(L + Lg) when
restricted to 1-forms. Classically 1gp=1 oflip so this would be symmetric. We
also obtain a ‘quantum interior product’ j by allowing higher degree forms in the
first argument, which is also something lacking in noncommutative geometry. The
quantum connection (1.3) now is not necessarily quantum torsion free and quantum
metric compatible (i.e. not necessarily ‘quantum Levi-Civita’ or QLC in the sense of
[4]) but in so far as we make choices that deform the classical theory, the connection
will deform the classical VZ¢. Moreover, the construction has its own interest which
does still apply in the quantum or noncommutative case, and which we explain next.
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This makes these quantum bimodule connections natural and of interest in their
own right even if they do not necessarily obey exactly the previously proposed
axioms of a QLC. Deviation from the latter would now be viewed as a source of
new effects.

Specifically, the (d, 1) construction arises in [14] much more deeply from nothing
but the axioms of a noncommutative differential calculus (basically, the Leibniz
rule) and a central extension problem. Thus, in the classical case, one can look for

Qg > Q - Q(M)

as a sequence of differential graded algebras where we extend the classical exterior
algebra to a quantum one Q by adjoining a graded-commuting ¢’ with d6’ = 0 and
6> = 0. Such an extension is called ‘cleft’ if Q= Q(M) @ 0'Q(M) as a left O (M)-
module and ‘flat’ if it is equivalent to a cleft extension with d undeformed. It was
shown in [14] that cleft central extensions are in 1-1 correspondence with certain
2-cocycle data ([, ], A) that can be interpreted as including a possibly degenerate
(pseudo) Riemannian metric (, ) as part of an interior product map j, a connection
V and a Laplacian. In the flat case A = dd + dd for some codifferential § and V is
the Levi-Civita connection given by (1.3), on all degrees. This gives a mechanism
by which the structures of classical GR could emerge out of the algebraic struc-
ture of quantum spacetime if its quantum differential calculus approaches a central
extension as we approach the classical limit. One reason why this could typically
be the case is what has been called the ‘quantum anomaly for differentials’ in the
quantum group literature [2]: often there is not a suitably covariant differential
calculus within deformation theory (due to the the lack of a flat covariant Poisson
connection from the point of view of Poisson-Riemannian geometry[5]) and one
must either live with a nonassociative differential calculus or absorb the anomaly
by having a higher dimension[1]. The same extension theory as above applies when
we replace (M) by some quantum Q(A) and a flat cleft extension of that leads
to both § and a cocycle ([, ],A) which is shown in [14] to provide a bimodule
connection when the first argument of the bracket is in Q!(A4) as well as an interior
product j when the second argument is degree zero. Details are in the preliminaries
Section 2.2.

Thus we have a deeper point of view on how the familiar structures of GR could
arise purely out of noncommutative differential algebra, as well as a practical route
to quantise them. In the present paper we will explore these new ideas in the context
of the bicrossproduct quantum spacetime [r,¢] = Ar with its two choices (1.2) and
(1.1) of differential calculi. In both cases one has a basis {e;} of central 1-forms
(that commute with all functions) and an inverse quantum metric g* = (e;,e;) as
any 2 x 2 constant matrix of coefficients (we do not impose quantum symmetry
or ‘reality’ conditions as in [4, 16] so do we not have a unique form of metric).
We also could have any constant matrix for the coefficients of the interior product
je, (Vol) = v*e; where Vol = ejes is the central top form. In Section 3 we solve the 4-
term relations with differentials (1.2) to find that b;; = e; L e; is any 2x2 matrix with
constant entries. We then take a general form of §, and apply the Koszul formula
to construct a quantum bimodule connection V, metric g and interior product j.
Remarkably, we find that some of the conditions for 4% to be a left-module map or
‘left-tensorial’ precisely characterise a class of quantum connections with classical
limit as A — 0, see Theorem 3.3. Among this class and for generic b;;, we find:
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(i) The interior product is v¥ = g*ey; as classically, where e;o = 1 is the
antisymmetric tensor;
(ii) V is then QLC, i.e., quantum torsion free and quantum metric compatible,
if and only if 62 is a ‘strongly tensorial’ in the sense of a bimodule map:;
(iii) The metric needed for this is g = (b;; + bj;)/2, as classically.
(iv) The ¢ needed form a two parameter space of constant a;,b; with b; deter-
mined, including the case where 62 = 0 as classically.

The quantum Koszul formula in this case works as expected. It not only gives the
previously known connection[16] but adds the interior product and ‘explains’ why
the metric that emerges is symmetric rather than this being assumed as in [16],
namely in order to be compatible with the connection induced by the quantum
central extension data.

In Section 4 we similarly solve the 4-term relation for the same quantum spacetime
and its ‘standard’ differentials (1.1). This time we find a unique form of L namely

-1-A
limit as A - 0. We again find that § a left-module map ensures a classical limit
for the connection given by the quantum Koszul formula, see Theorem 4.4 and
requiring 42 to be a bimodule map makes the connection weak QLC (where metric
compatibility is replaced by a weaker notion based on ‘cotorsion’[11] and which is
common in noncommutative Riemannian geometry). With a small further condition
on the metric it becomes QLC. See Example 4.9 where, for generic b,

01 . . . . .
bi; = b( ), which we see has an unexpected antisymmetric form in the classical

21 11

(i) The interior product is v% = (—9922 912) = g"er; + O(N);

(ii) V is weak QLC, i.e. torsion free and cotorsion free, if and only if 62 is a
bimodule map;

(iii) The ‘metric’ needed for V to be QLC has the form g% = 912( 0 1)\) =

~1-2
912% +O0(N);

(iv) The 0 needed has an order 1/ singularity as A — 0, is uniquely determined
up to a constant of integration and has 6% = 0.

In both cases we can land on any freely chosen g% by choice of (6, 1) and we can
further choose 62 a left module map, which ensures classical limits and that v is
built from ¢%, but without further restrictions V need not be torsion free or quan-
tum metric compatible or even a weaker ‘cotorsion free’. In both Sections 3,4 we
provide a rather fuller analysis of the properties resulting from different assump-
tions on ¢, including results motivated from a general feature of connections coming
from central extensions of classical type in [14, Prop 3.16] whereby the torsion and
metric compatibility are linearly related, but now in our quantum examples. The
quantum symmetric metric in [4] is then covered in Example 4.8 for which we ob-
tain in the limit a particular classical connection which is not the Levi-Civita one,
and quantise it. The paper ends with some concluding remarks.
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2. PRELIMINARIES

Here we collect the precise notions of noncommutative differential geometry in a
bimodule connection approach from [9, 17, 3, 4, 5, 6, 13] but in the form-derivative
version that we will need. We then recall from [14] precisely how these geometries
can be built from cocycle central extensions of the differential calculus, and how
such cocycle extensions can be built from a codifferential § and a compatible bilinear
‘metric-like’ contraction 1. The composition of these two steps amounts to some
kind of ‘quantum Koszul formula’, see Theorem 2.4 taken from [14].

2.1. Form-connections and bimodule noncommutative geometry. Through-
out the paper, a differential graded algebra or DGA over an algebra A means a
graded algebra Q = @,Q" with Q° = A and d: Q® - Q"*! for all available degrees
with d2 = 0 and d obeying the graded Leibniz rule. We will say that a DGA is
standard (or an ‘exterior algebra’) if generated by A,d. A linear or bilinear map on
a DGA has degree m if its output has degree m more than the total degree going
in, for example d has degree 1. If B is a linear map, we define its Leibnizator Lp in
a similar manner as in 1.3 but with a sign in the last term according to the degree.

By quantum (inverse) metric we mean that Q! is equipped with a bimodule map
(,):2'®4 0" - A and normally we will assume this is invertible so there is an
actual element g = g' ® g% € 2! ®4 Q' (sum understood) inverse to it in the sense
(w,9")9% = w = g'(¢°,w) for all w e Q. As shown in [4] this will entail that g is
central. However, in the present paper ( , ) appears to play a more important role
and we may allow it to be degenerate. Moreover, it appears as the degree 1 case of
a ‘quantum interior product’ j: Q" ® 4 Q! - Q"L

By a form-covariant derivative we mean V,, : F - E where F is a left A-module
and

Vo(a.e) =Vya(e) + (w,da)e, Vaw=aVy,

which is based on the usual axioms in noncommutative geometry for a left con-
nection but evaluated against a 1-form via (, ). We have a ‘bimodule covariant

derivative’ if E is a bimodule and there is a bimodule map 0 : Q' @4 E®4 Q! - E
such that

Vw(e.a) = (Vye).a+o,(e®da)

which is evaluation against ( , ) of the usual notion [8, 9, 17, 3] of a bimodule
covariant derivative with o : E®4 Q' - Q' ® 4 E. Moreover, if ( , ) is invertible
with inverse g = ¢! ® g2 then V., on E, F has a tensor product

(2.1) Vo(e®a f)=Vee®s f+0,(e®49g")®aVyf, Ve® fecE®4PF.
Setting £ = F = Q! we can ask that V,(g) = 0 which is the notion of a bimodule

connection on Q! being metric compatible. In terms of ( , ), if o is invertible, then
metric compatibility is equivalent to

(ide (, )V(wen) =d(w,n), Yw,neQ'
Also when E = Q! and (, ) is invertible, one has the notion of torsion,

TV:QIQQZ, Tv :d—glvgz
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and the notion of cotorsion
coTy = (d®@id-idAV)g=dg' ® g° — "'V, v g? € Q2 @4 Q!

for any connection on Q!, where the primes denote a second copy of ¢g. By defi-
nition a connection is quantum Levi-Civita (QLC) if it is torsion free and metric
compatible. Tt is weak quantum Levi-Civitia (WQLC) if it is torsion and cotorsion
free (often in noncommutative geometry this weaker property is all we have). A
connection has curvature defined by

Ry=(d®id-idAV)vV: Q' - 0?0, Q!

which can also be converted in terms of V,, see [14]. Apart from translating to
form-derivatives, these are all established notions of a constructive approach to
noncommutative geometry, see [9, 17, 3, 4, 5, 6, 13] and references therein.

2.2. Bimodule geometries from cocycle extensions. The notion of a central
extension (A) of a DGA Q(A) was introduced in [14] as an extension in degree
1 by the algebra Qg = k[0']/(0"?) viewed as a trivial DGA with 6’ of degree 1 and
df’ = 0. More precisely,

Q(A) =Qy @ Q(A)
as a vector space and

0—-Qp > QA) »QA) -0
as maps of DGA’s, where the outer maps come from the canonical inclusion in the
tensor product and by setting 8’ = 0. We also require that 0’ is graded-central,
0'w = (-1)“lwe’
in Q(A). A morphism of extensions ® : Q(A) - Q'(A) means a map of DGA’s such
that )
o0 =0, P(w)=w- 59'5(w)

for some degree —1 linear map § on Q(A). By a (left) cleft extension we mean
a central extension where the canonical linear inclusion of Q(A) coming from the
tensor product form is a left A-module map. And by a flat extension we mean one
which is equivalent to one where d is not deformed. We are not so much interested
in the present paper in the actual central extensions. But rather, as for central

extensions of groups, extensions correspond to cocycles[14]. These are defined as
follows.

Definition 2.1. [14] A cocycle on a DGA (Q(A),d) is (A,[, ]) where [, ] is a
degree -1 bilinear map and A a degree 0 linear map, such that,

(2.2) [wn, ¢ + [w,n]¢ = [w,n] + (-1)“lw]n, (]

(2.3) La(w,n) = d[w,n] + [dw, n] + (=1)*![w, dn]

hold for all w,n, € Q(A), and [A,d] =0. A cocycle is cleft if [a, | =0 for all a € A
and is flat if A =dé + dd for some degree -1 linear map 9.

The cocycle defines a central extension

w~77:w77—%9’[[w,77]], d.w:d—%H'Aw, w,neQ(A)
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and conversely every central extension is given by such a cocycle[14]. Our termi-
nology is such that a central extension is respectively cleft, flat precisely when the
cocycle is.

Next, a cleft cocycle (A,[, ]) on a standard DGA Q(A) is n-regular if[14]
1
jw(addb) = iﬂwa,b}], YVwe, a,be A

is a well-defined degree -1 map j: Q'®4 Q! - Q! for i <n. We say that the cocycle
is regular if it is regular for all degrees. We consider it as an ‘interior product’ arising
from the cocycle and set the inverse metric (, ) to be its restriction to degree 1. It
is shown in [14, Prop 3.6] that if (A,[, ]) is a regular cleft cocycle on a standard
DGA Q(A) then j is indeed a bimodule map and

1
Vo = 5[[w,n]], VweQl, neQ

is a bimodule covariant derivative on ) with
c:'@a004 Q0 > Q 0,(n®aC) =iwn(C) +winy(C), VYw,(eQl ne.

For V on Q' to be torsion free in the case of a standard calculus needs

(2.4) g' g%, da] = 0
and to be metric compatible, given the form of o, needs
(2.5) (Ve (9'05) = (Vug')bj) ®4 Vg, 9% + Vg’ ®4 9% =0

where g = db; ® 4 g; which we can write in terms of [, ]. The weaker cotorsion free
condition becomes

(2.6) (dbj)g' ® V29, = 0.

Note also that just as j is not necessarily a derivation, we do not necessarily have
compatibility of the connection on higher forms with the wedge product, i.e. the
braided Leibniz condition|[14]

Vo (n¢) = (Vo) + 0w (n® g')V g2

which using the cocycle condition would come down to

(2.7) Jon(g?, T1=lwn, [, YweQ', neQ.

2.3. Cocycle extensions from bilinear contractions. In [14] there is a par-
ticular construction for cleft flat cocycles in the sense of Definition 2.1 from a
‘metric-like’ bilinear contraction on a DGA and a compatible codifferential.

Definition 2.2. A bilinear contraction on a DGA (©(A),d) means a bilinear map
1 of degree —2 such that 1 a =a L=0 for all a € A and the 4-term relation

(- (wn) L ¢+ (W L) =w L (n) + (- w(y 1¢)
holds Vw,n,( € Q(A).

Note that the 4-term relation includes when 7 is degree 0 the assertion that L
descends to a bimodule map Q™ ® 4 Q" — Q™2 We will be also interested in
the following.
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Definition 2.3. A compatible codifferential for 1 means a degree -1 linear map d
on Q(A) obeying
daw) —ad(w) =da Lw, VaeA, well
This is called regular if there exists a bimodule map Lz: Q" ®4 Q' - Q™! such that
d(wa) - (dw)a=w Lrda, VaeA, well

Similarly to the notion of a bimodule connection, Lr here is not additional data
since it is uniquely determined if it exists, which is a property of some §.

Theorem 2.4. [14, Thm 3.12] Let Q(A) be a standard DGA equipped equipped with
a bilinear contraction L and § a regular compatible codifferential for it. Then

A=d6+6d, [w,n] = Ls(w,n)+w L dn-(-1)¥ldw 1 n-(-1)¥ld(w L ), Vw,ne

is a regular flat cleft cocycle.

By the results in Section 2.2, this implies V a bimodule covariant derivative and
candidate for a ‘quantum Levi-Civita’-like connection. It also implies an interpre-
tation of the interior product j, (da) = %[[w,a]] as a ‘connection on degree 0’ which
now comes out as

1
jw(n)zi(win+wan), 776(217 we.

The degree 1 case of this is the quantum inverse metric (, ) = 3(L + Lg). In the
classical case it is shown in [14] that V indeed is torsion free and metric compatible
with (', ) =L=1p recovering the classical inverse metric if we take for § the standard
Riemannian codifferential, and then j.(n) is indeed the interior product along the
vector field corresponding via the metric to the 1-form 5. With this in mind we
refer to Theorem 2.4 as the quantum Koszul formula because it gives a quantum
bimodule connection starting with a bilinear contraction and a compatible map 4.

Example 2.5. [14] Let Q(A4),d) be a standard DGA which is inner in the (purely
‘quantum’) sense that there exists a 1-form 6 € Q! such that d = [0, } is the graded-
commutator, i.e., dw = 0w — (-1)"wl for all w € Q™. Then

6=01, 1r=0

provides a regular compatible codifferential in Theorem 2.4 for any bilinear con-
traction L and gives[14]

((wn) L¢=(-D¥w(n 10))

DN | —

. 1 1
Jw(ﬁ): §WJ-777 vw:_iLLG(wv )a Uw(n®§):

A=2vy-0%1
on forms of all degrees (on degree 0 this is Aa = 2jp(da) =0 L da = dda). One can

check that V,, is evaluation by j of Vn=0®n-o(n®6), as in [13]. One can show
that in general

To () = w8~ " (4%w) 10) = =200 + g" 7 (5 L (w8)

1, , 1
coly =209~ 59" ¢' & (9°¢%) L0 =309+ 5g'g 1 (4°0).
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However, this is just one (far from classical) example of § and we may be more
interested in prescribing j in degree 1 to a given quantum metric and choosing 6, 1
as needed to land on this.

Note that the centrally extended noncommutative DGA Q behind Theorem 2.4 need
not be standard. Moreover, in the setting of the theorem we have automatically
a further extension Y2(A) - Q(A) - Q(A) where we now allow df’ # 0 and [14,
Prop 3.21],

w1 =+ S(-D) e - £ (1M (w L m)de’

dw = dw - %(—1)"‘"(Aw)0’ + g(éw)dG’, 02 =0'd0’ = (d0')0' = {w,0'} = 0
for all w,n e Q(A).

2.4. Discrete nonommutative example. Although not our main topic, the the-
ory applies to the commutative coordinate algebra A = C(Zy x Zs) with its direct
product noncommutative differential calculus (each Zs has a unique calculus, the
universal one). Differential 1-forms on a discrete set can be identified as edges of a
graph and this is the calculus on a square so we are solving for the noncommutative
geometry of a square, [?].

The calculus has basis of translation invariant 1-forms e;, i = 1,2 with relations
e;.f = Ri(f)e; where R;(f) is right translation by 10,01 for i = 1,2 respectively,
where Zy x Zy = {00,01,10,11} in a compact notation for its four elements (with
each digit a copy of Zy). The exterior derivative on degree 0 is df = (9;f)e; where
0; = R;—id. The exterior algebra in this model is defined in the usual way by ef =0
and ejes + ege; = 0, with top form Vol = ejes. For the map L we are forced to take
a diagonal form
e; L €; = 51']' a;

since the bimodule relations require that e; 1 eaf = R1Ra(f)e1 L eq for all f which,
since e 1 e is an element of a commutative algebra, is not possible unless it is
Zero.

The 4-term relation on this DGA in degrees 1 on the diagonal case e;,e;,€; is
a;e; = eja;, i.e. 0;a;=0
while if ¢ # j we have
—e? Lej+aze; =€ e; L Vol, —e;;VolLej=e; L e?+eiaj, —€;; Vol L e; = €5;¢; L Vol
which means
e; L Vol = ae;5ej, Vol Lej =eie5a;, Rj(a;)=-a;.
If one of the forms is Vol then we have
—€;;Vol L Vol + 6;;a;Vol = e;(e; L Vol), —(Vol L e;)e; = Vol L Vole;; — Vold;;a;
(e; L Vol)e; = —¢;(Vol L ¢j)
which when ¢ = j are all obeyed given the relations on the a;. (One of these is

Vola; = —a;Vol.) When i # j the first two are both equivalent to Vol 1 Vol = 0 while
the last is empty. We thus solve our 4-term relations with two constant parameters

ay = (a,-a,a,-a), as=(bb,-b,-b), a,beC
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where we list the values at the four points of the group in the order 00,01, 10, 11.
Up to an overall normalisation, there is just one free parameter § and an associated
function a = Z—;

Because this is only a warm up, we will not do the full analysis of all possible §
compatible with the above L, but merely give an example:

Proposition 2.6. Up to an overall normalisation there is a unique I1-parameter
form of quantum metric on A = C(Zy x Z2) coming out of the L construction and
quantum Koszul formula with § =0 1, namely

2 2
g=e1—®e; +tea— Qe
ai a2

a; a
Vei = —20es ® €3, Vea=-2a 'e1®e; o= L 5(1,—1,—1, 1)
a2

ole1®e1)=e1®e; +2aea®ey, o(e1®ex)=es®ey
olea®e1)=e1®ea, o(ea®ez)=e3 @€+ 2a7te; ® ey
which is invertible and not involutive. Here Ve; = 0®e;—o(e;®60) and is torsion-free
and cotorsion-free (or weak quantum Levi-Civita). It has curvature

Ry(e1) =4Vol ® (ces —e1) = aRy(ea).

Proof. The calculus here is inner with 6 = e; + e5 which gives in our case

d(ei) =a;, 6(Vol) =ajes —aser, Ve,e;=0, Ve es=aszer, Ve,e1=aies
1

Af =01 df = —alalf—ag(')gf, A€1 =2ajes, AEQ = 2aseq, O'e,i(ei ®€i) = Eaiei,

1 1
Oc,(e2®e1) = §a162, Oc,(e2®€3) = —agey, 0q,(e1®e1) = —ajea, 0.,(e1®e3) = 5@261

and zero otherwise. These results come from Vol 1 6 = ejas — exaq so that
1 1
Ve, €5 = —i(eij(elag —e2a1) —ae; +eia;), o (e;®e€j)= i(ekiej:ej/j +edij)a;

where j' # j. Now since j is invertible for a,b # 0 we look at the corresponding
metric and connection:

Next, the parameter in g up to overall normalisation is the one constant a/b, which
also defines the function o = Z—; We use g to convert the form-connection coming
from the cocycle to a connection Q' - Q! ® 4 Q, which is straightforward noting
that e;a = —ae;. This connection is torsion free since de; = 0 and clearly AVe; = 0.
One can check that it is also cotorsion-free. Here d(=X) = —2e; and d(L) = —2¢;

al ai az az
from which

2 2
coTy =d(—e;) ®e; — —e; AVe; = 0.
a; a;
The connection is not, however, metric compatible as a bimodule connection. Its
curvature is computed using da*! = —2a*'6 and [«, Vol] = 0. O

Two by-products of the cocycle construction were that we also have an ‘interior
product’ and a connection on 2-forms, in the above example

Jvol(€i) = —azeije;, Ve, (Vol) =0

from the formulae found for 1. We also have a Hodge Laplacian A on all degrees.
The connection is a braided-derivation in that (2.7) holds.
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2.5. Classical limit of the quantum Koszul formula. As a small corollary of
the quantum Koszul formula we apply it in the classical case of A = C* (M) for M
a Riemannian manifold with its classical exterior algebra Q(M). However, we let
1=(, )+ on 1-forms instead of the obvious choice Lp= (, ), where ( , ) is the
inverse metric and 7 is an antisymmetric bivector field.

First it can be shown that we can extend 1 to higher forms by the same formula as
in [14] (as recalled in the introduction) as an extended ‘inner product’ but for the
not-necessarily symmetric (, ) +7 on 1-forms. In particular, we have

win=wlyn+ (DL, (wn)

where 17 is the usual extension of ( , ) and if 7 = mymy (sum of such terms
understood) we define i, =i, i, as in [14] where i along a vector field is the usual
interior product. Thus

ir (W) = iy (M2 ()N = Winy (1)) = i, (N)iry (W) = iy (M), (W)
if wis a 1-form. Similarly, if §,; is the usual Riemannian codifferential, we define
0=0p+[d,ix]
and check
0(aw) = dpr(aw) + (da)iz(w) + adizw — ix((da)w) - aiydw)
=adp(w) + jaa(w) + a[d,ir] - L;_(da,w) = ad(w) + da L w.
This is a special case (the classical limit) of [14, Lem. 3.13], which says that A, [, |

are unchanged by adding the 7 terms i.e. we still get the Riemannian Hodge
Laplacian and Levi-Civita connection from our approach to the Koszul formula.

In an extreme case we can set (, ) =0 and dps =0 so that 1= on 1-forms. In this
case our ‘connection’ given by the cocycle obeys V,(an) = aV,n so V in this limit
is actually a tensor.

3. BICROSSPRODUCT MODEL WITH a-CALCULUS

We let A be the 2D bicrossproduct model spacetime algebra A with generators
r,t and relations [r,t] = Ar where X is an imaginary parameter. We consider the
‘a-calculus’ [16] given by commutation relations [¢,dr] = —Adr, [¢,dt] = Aadt and
note that in this case

[r* t] =Aar®
[t,dr®] =a[t,r* tdr] = a[t,r*  ]dr + ar® [t,dr] = -Aa(a - 1)r*tdr — ar® ! Aadr
= - A?r*7 dr = —Xadr®.

Thus if we set 7* — 7’ and Aa - X and then drop the prime notation, this is
equivalent to setting « = 1 in our original differential algebra. Thus, as remarked
in the introduction, we need only to consider this case. We choose a central basis
e1 = r~tdr and ey = rdt. The exterior algebra is defined by ef =0, erea+eqe; =0 and
top form ejes = drdt = Vol. We will see in this section how the quantum Koszul
formula can be used to find the quantum Levi-Civita connection for any central
quantum metric. We start by solving for 1 in the sense of Definition 2.2.
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Lemma 3.1. Any matriz of constant entries e; L e; = b;; defines a solution of the
4-term relations with

e; L Vol = bijejkek, Vol L € = bijﬁikek, Vol 1 Vol = eijbijVol

(sum of repeated indices).

Proof. Because the e; are central we must have a(e; L e;) = (ae; L ej = (e;a) Lej =
e; L (aej) =e; L (eja) = (e; L ej)a for all a € A, i.e. the e; L e; must be in the
centre of the algebra. In the polynomial setting the centre is the constants. The
content of the 4-term relations in this case are otherwise exactly the same as the
classical case and so it is not surprising that we find the same form as classically.
We look at the 4-term relations for the various cases of 1-forms. If they all coincide,
for example,

—-e1e1 Ler + (61 1 61)61 =e1 Leep + 61(61 s 61) = bi1e1 = e1b11

holds automatically as e; is central. Similarly for e;. Next we have

—eje1 Leg+ (61 1 61)62 =e; L ejeq + 61(61 1 62) = e L Vol= bi1es —e1b1a
—ege1 L ey + (62 L 61)61 =eqo L e1eq + 62(61 1 61) = Vol lLe; = egby1 —barer
—ej1eg L ep + (61 1 62)61 =e; 1 egeq + 61(62 1 61) = —VolLe; +bae; = —e1 L Vol+eiba

of which the first two are as stated and the last is then automatic. Similarly for
Vol 1 es and es 1 Vol with the roles of 1,2 interchanged. Finally, we look at the
4-term relations with w = e1,n = es, = Vol which gives Vol 1L Vol as stated. Other
cases and other positions of Vol give nothing new. For example with 1 = Vol the
4-term relation requires

(61‘ L VOI)Gj = —ei(Vol L Ej)

which holds for the solution found, again as is the case classically for 1. (]

We are next interested in fixing 1 and looking for regular compatible § in the sense
of Definition 2.3. To start with, we characterise degree -1 maps § by four functional
parameters

(31) 561' =a; € A, 6Vol = Z bi€i, bz €A

We similarly define matrices by

(3.2) e, () = (eivej) =97, ivai(ei) =ve; g7 07 e A
for the quantum metric and interior product that we can construct from (4, L) using
Theorem 2.4.

Proposition 3.2. (1) For fized b;;, reqular compatible § correspond to a; being
at most linear in t,r~' and b; at most linear in t,r.

(2) For all g¥ v there exists a unique choice of a;,b; up to constants k;,l;
such that the quantum metric and interior product have these values.
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(3) Non-singular a;,b; correspond to g = %(b+ bT) to order X, the symmetrisa-

tion of the matriz b, and v'* = —¢g2,  v*2 = ¢' to order X i.e. deforming

the classical interior product as a derivation. These hold exactly, not only
to order A, if and only if the a;,b; are constants.

(4) In the generic case where |b| # 0, 62 is a left module map if and only

: 1 i i i i
(i) 912=§(b12+b21)7 9% =by, v'=-g%, v?=g
(Z’L) ll +k2 =b12, lg—k‘l +b11 =0.
(5) In the generic case where also byjibas # bly, 6% is a bimodule map if and
only if in addition to (4), g¥ = %(bij +bj;), or equivalently if and only if
the a;, b; are constants (related as in (4)(ii)).

Proof. (1) To apply Theorem 2.4 we need § to be regular in the sense of a suitable
bimodule map Lp: Q®4 Q' - Q. Since e; are central, if 1 exists it must be given
by

e; Llrpda=da 1L e; +[a,a;]

and we take this as a definition extended as a bimodule map. It is well-defined
since

ei Lr (add) =¢; L (d(adb)) —e; Lr ((da)b) =d(ab) L e; + [ab,a;] - (da L e; + [a,a;])b
=d(adb) Le; —da L e;b+alb,a;] =d(ab) L e; — ((da)b) L e; +a[b,a;]
=a(db L e; +[b,a;]) =ale; Lr db) = (e;a) Lg db.

We then compute je, (¢;) = 2(e; L e +e; Lg e;) which gives

(g7 = 1 ( 2b11 + r‘il[r,al] bio + bay + r[t,al]) '
2 \bi2 +bo1 + 171, as] 2boo + 1[t, az]
We also have
Vol L ey = (17 [r,by] = bia)ey + (r [r,b1] + b11)ea
Vol L ea = (r[t,b1] = baz)er + (r[t,ba] + bay )ea
giving jvoi(e;) = %(Vol Le;+Vol Lg e;) and therefore

. 1 1 _
jvol(e1) = —§(b12 +bo1)er +bries + 57" 1[7’, b le;

. 1 1 _
jvol(e2) = —bager + §(b12 +bay)ea + 3" ¢, biles.

We then want to invert these expressions to find the form of a; and b;, ensuring
that ¢ and v¥ remain constant parameters. We consider each component of the
quantum metric separately. From the expression of g'! we have that a; must be of
the form a; = %(g11 - b))t + f(r) for some function f. Obtaining a particular g*2
then tells us that

29" = (b2 + bor) =r[t,a1] = r[t, f(r)] = =M? f (7).
This has solution
f(T):)\*(g —*(b12+b21))+k1
r 2
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for some constant of integration k;. This gives
2 1 1
(33) a) = X ((gll - bll)t + (912 - 5([)12 + bgl)) ;) + ]{71.

Similarly, for g?! we need ay = %(g21 - %(612 + b21))t+ g(r) for some function g.
Then to obtain ¢%? we need
297 — 232 = 1t az] = [t g(r)] = ~Ar’g'(r)

which has solution

2

g(r) = )\*(922 = baz) + ko

r

giving
2 1 1

(34) ag = X ((921 — 5(1)12 + bgl))t + (922 — bgg);) + kz.

We can see that a; has to be at most linear in ¢ and r~! in order for g% to be
constant and hence j a bimodule map. For b; we consider

(v17) = 1 (=(big +boyy + 77 [r,b1] 261y + 77 [, bo]
2 —2boo +’I“_1|:t,b1] bis + b2y +p1 [t7b2:|

and we repeat the exact same process used to invert the ¢g*/. This gives

(35) b1 = ; ((Ull + %(blg + bgl))t - (1)21 + bgg)?“) + ll
2 12 22 1
(36) bg = X((U —bll)t—(ﬂ —§(b12+b21))7’)+l2

for constants of integration [;. We can se that these are at most linear in ¢, r.

(2) The inverse metric coefficients g% together with the coefficients v form an
8-parameter space. Using a change of notation we can write

a; :d¢t+0:7;7’_1 -i-k’i7 bl = b;t+b;’l“+li

which gives 12 parameters a;, d;, b;, b}, k;,l;. However, as the a;,b; only ever appear
as a commutation with either of the functions r or ¢, the constants of integration do
not effect the resulting values of g%/, v¥. Thus we are left with 8 genuine parameters,
giving us a unique choice up to constants.

(3) Using the above notation, for the parameters to be non singular we need
di,di,l;i,l;i to vanish to order A\. This happens precisely when we have the con-
ditions stated. We assume that the constants k;,[; are nonsingular as functions of
A, i.e. have a classical limit.

(4) We compute
6%(fVol) = §(f6Vol +df L Vol) = f6*Vol + df 1 (bie;) + (& fbjmemrer)
= 6°Vol + (& ) (bibji + bjmemrar) + (8'0” F)bjmemibir-
Requiring all but the first term to vanish for all f gives
(0" f)(bricy + braca) + (9% f) (barcy + baoca) + (02 £ f)|b] - (8* 0% f)|b] = 0
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for ¢y = by+ay,ca = by—a1. Here df = (01 f)e1+(0%f)es define the partial derivatives.
Since r and t generate the algebra, it suffices to require the above for f = r t. These
choices give

b1161 + b1262 = 0, 62161 + 62262 + |b| =0
with solution when [b| # 0,

(37) b1 +asg = b12, b2 -—ay = —b11.

Inserting (3.3)-(3.6) gives these in terms of the constant parameters as stated on
looking at different powers of t,7. In principle there could be some further possi-
bilities when [b] = 0.

(5) Since Vol is central, the condition for a 62 to also be a right module map is that
(38) 62\/01 = biai + (({ybz)bw

is central (summations understood). To evaluate this we compute db; and find
that 9'b; = 2 (v +baz) = 0 (where we used the left-module map condition) and
0%b, = %(g12 - ¢*'). Similarly by considering db, we find that 9'by = 0 and
0%y = %(g11 - b11). Substituting these expressions into §2(Vol) we need

2t

2
X((912—921)(k1—12)+(911—b11)(11+k2))+;((912—921)b12+(911—b11)b22)+l17€1+12k2

to be central. Applying the left-module conditions this becomes
(9" =g* b1+ (g =bi)b12 =0, (9" = g*" )biz + (9" = b11)baz = 0

b11 b2
b1z bz
equivalent to g2 = g?!, g'' = by; which given the results of part (3) is equivalent
to g = %(b +bT) as matrices. There are some further exceptional cases where §2
is a bimodule map and the above determinant vanishes. Finally, we observe that
the conditions displayed in (4)(i) and (5) of the proposition are equivalent to the
conditions in part (3) for the a;,b; to be constant. So apart from the exceptional
cases, if 62 is a left module map then it is a bimodule map if and only if the a;, b;
are constants a; = k;,b; = [; (with b; determined from the a; by by (4)(ii)). From
the above, its value is

as our additional conditions to those of part (3). If det( ) # 0 then this is

82Vol = Iy ky + loks = bioky — b1k,

which includes zero as we can choose the remaining parameters freely. ([l

We are interested in obtaining g/ invertible with inverse g;; and metric g = g;;e; ®e;
central. This forces g;; to be constants (since the e; are central and the coordinate
algebra has a small centre). We may also want ¢ to be quantum symmetric in the
sense Ag = 0 which in our case just means g;; symmetric and hence in a real setting
quantises AdS or dS geometry in 2D. Proposition 3.2 (3) says that this important
case arises just from the assumption that § has a classical limit. We also quantise
the interior product j in this case. We see that the same conclusion holds in (5)
from requiring the algebraic property that 62 is ‘strongly tensorial’ in the sense of
a bimodule map as in the classical case in [14].
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To complete the quantum geometry we proceed in the case g invertible to construct
the quantum connection associated to (J,1) by the quantum Koszul formula in
Theorem 2.4. We adopt the notations

Ty(e;) =T;Vol, coTy = ZCiVol® e;; T3,CieA

to describe the resulting torsion and cotorsion. We will display the connection in
the case where it has a classical limit, but the full expression can be found in the
proof. We always take ¢ defined as they must be by a;,b; in (3.3)-(3.6) for given
central invertible g*/ and given v%.

Theorem 3.3. (1) The resulting connection V depends only on the combinations
bi+az,by—ay and is non-singular if and only if the 52 left module conditions (4)(i) in
Proposition 3.2 hold to order A. In this case the cotorsion, torsion and connection
are

1

1
:m(b1+a2—b12), ng—(bg—al +g11)

Ch
lg

1 1
T = 5(91101 +g"%Co), Tp= 5(91201 +g%°Cs)

1 1
Ver =m912(|9|01 +29'%)e; ® ey — mg”(?g“ ~19lCa)er ® ey

1
- —g11(|g\Cl + 2g12)€2 ® e+
2lg]

1 1
Veo :—gQQ(|g|Cl + 2912)61 el + —
2|g] 2|g

1
- %(912@\01 +2g" g*)es @1 -

1
911(2911 ~19lC2)es ® €2
2|g|

(9*9|C2 - 29"%g"*)er ® €3

1
—g"(|g|C2 - 2g" ez ® e
2|g|

to order M.

(2) These formulae hold exactly, not only to order X, if and only if the 62 left module
conditions (4)(i) in Proposition 3.2 hold.

(3) The quantum connection in (2) is torsion free and metric compatible (i.e. V
is a quantum Levi-Civita connection) if and only if the remaining 6 bimodule map
conditions displayed in (4)(ii) and (5) in Proposition 3.2 also hold (i.e. the a;,b;
are constants with by + as = bia and bs — a1 + by1 = 0). The associated braiding is
ole; ®ej) =¢e; ®e;.

Proof. (i) We compute the cocycle and hence 1-form covariant derivative from The-
orem 2.4 as

[[617 61]] =0, [[61, 62]] = (112 +b1 — 512)61 + (b2 —apt b11)€2

[[62, 61]] =- (ag + bl + b21)€1 + (a1 - b2 + b11)€2, [[62, 62]] = —2b22€1 + (b12 + b21)62.
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We can also compute the braiding map o, using the formula o(n® () = juwn{ +wjnC
and making use of "/ = £ L(bij +bji) as,

oe,(e1®e€q) :§(2b11 + r_l[nal])el, oe, (61 ®€9) = %(blg +ba1 +1[t,a1])er
oo, (e1® €1) =%(b12 b= [ b ])er + %r_l([r,al] ~[r,ba])es

0o, (1 €3) :%(ngg [t b1 ])er + %r‘l([t,al] [t ba])es

Oe,(e2®e€7) :%r_l([r, az] +[r,b1])er + %(2()11 + r‘l[r, ba])es

0o, (€2 @ €3) :%(r[t, as] + 1 [, b1 ])er + %(b12 +bor + 771t ba])es
Oe,(€2®e€7) :%(bu +boy + 7"1[7", as])es, Te,(ea®eq) = %(21722 +7r[t,az])es.

(ii) We next define our abstract connection via the metric as Ve; = g* ® V j2¢e;, where
g=g'®g?= gijei ® ej in terms of the inverse matrix (g;;) which we write in terms
of (¢g*) as usual. This gives

1
Vel =§gl ® [9%, el

912(b1 +as + b21)61 ®e — — 2((11 — b2 + b11)€1 ® eo

g (b1+02+b21)€2®61+7 1(@1—b2+b11)62®62

2lg]

~ 2g]

1
Vea 259 ® H92762]]

(922(b1 +as — b12) + 29 b22)€1 ®e + — 9 (922(b2 —ay + b11) 912(b12 + bgl))el ® eo

1
2y

~2g] ||

—(g*" (b1 + as —b12) +2g" ' ba)e2 ® 1 - g (921(1?2 —ap+b11) = g" (bia + ba1))ez ® ea.

(iii) For the torsion we compute

1
AVer —dey = — —g"%(ay — by + by )Vol + —— g (b1 + ag + bay ) Vol

2/g]” | K
1
:M(g L(by +a2) - g*% (a1 — ba) + g'tbyy — g*2by1) Vol
1
AVes —dey :M(g”(bg —ay +b11) - g% (b1 + ba1)) Vol + 2lg |(921(b1 +ag —bya) + 29" by ) Vol - Vol
1
:M(922(b2 - al) + 921(b1 + (12) + g22b11 + 2gllb22 — g21b12 - 912(b12 + b21) - 2|g|)Vol
giving us
(3.9) T = oy |(911(b1 +az) + g% (b2 - ar) + g Y(bg1 - b12))
(310) T2 (922(b2_a )+g (bl +a2)+gub22—g b12)

2|
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For cotorsion we compute

1 1
(deoid-idAV)g = _d(Mg2162) ®eq + d(mglleg) ® e

1
— —g*esve; -
lg] lg

22gll(b1 +ag + bgl)Vol ®e —

22 12
—geiVer+ —g e1Vea +

|9l

9 YeaVey

1
2922911 (a1 — b2 +b11) Vol ® ey

2lg |2 2lg]

2| |2(g 921(b1+a2—b12)+291 gl2b22)V01®€1

TE (912921(b —ay+bi1) =g g"? (b2 + ba1)) Vol @ ey

1 1
|2g 219" (b1 +ag + by1)Vol @ ey + P 21912 (4 — by + b1y ) Vol ® e

2| 2

(g 922(b1 +ag — b12) + 2gllgl2b22)vol ® ey

2| E (911922(b —ay+bi1) =g g"? (b2 + ba1)) Vol @ ey

Vol ® eq + —g Hyol @ ey

| K lgl
(lg(b1 + az +bay) +[g|(b1 + az — bi2) — 2|glg*" ) Vol ® e;

2| |2
2| B (19/(b2 = ar + b11) = |g|(a1 = ba + b11) +2|glg" ") Vol ® €2
1 1
:—| (b1 +as— g+ §(b21 - blz))VOl ®ep + ﬂ(bg —a1+g")Vol® ey

g g
giving us

1 1
(3.11) Cy = I (bl +ag—g'?+ 5 (b21 - blz)), Cy= " |(bz —a;+g'")

in terms of by + ag,bs — a;. These expressions for T; and C; are invertibly related
to {b1 + ag,bs — a1}, in particular

1
(3.12) by +ag = |g|Cy + ¢** - 5(621 ~b2), by—ay =]glCs—g",
which we then use in (3.9) and (3.10) to find 7; in terms of C; as

1 1
T = 5(91101+912C2)a T3 = *(9210 +92202)+2 (9 11(922—522)+921(912—§(b12+521)))~
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We can also use (3.12) to write the connection above in terms of C; to give

1
—g"%(g"" + b1 —|g|Co)er ® ea

1 1
Ve :7912 (|g|Cl + 921 + *(blg + bgl)) e1®e| —
2 2|g]

2|g|

1 1 1
- 50 (1910 g+ S bz b)) e2 @ s+ Sg (61 + bur - lglC)er @
2|g 2 2|g|
1 1
Ves :m (922 (|g|C1 + 921 — 5(()12 + bgl)) + 2912()22) e ®eq
1
+ —(9%(|9|C2 = "' +b11) — g"*(b12 + b21))e1 ® ea
2|g|
1 1
- (921 (|9|Cl +g°" = = (bi2 + b21)) + 2911522) €2 ®ep
2|g 2
1

- m(gm(\ﬂ(b — g +b11) - g" (biz + b21))e2 ® e

This simplifies as stated when the a;, b; are constant.

(iv) We can see from (3.11) and (3.3)-(3.6) that C; and hence T; and V as found
above are nonsingular if and only if
1 i i i i
g% = 5(512 +ba1), g7 =bo, v'=-g¥ W?=g!
hold to order A and in this case the torsion and cotorsion are related as stated to
order A and C; as stated to order A. These are exactly part (i) of the conditions

for 42 to be a left module map in Proposition 3.2 (4) (i.e. without the restriction
on the k;,1;).

(v) Finally suppose the conditions displayed in Proposition 3.2 (4)(i) so we are
in the case of (iv). Then C; = 0 is exactly one of the conditions (3.7) in the
proof of Proposition 3.2 (4), while Cy = 0 becomes the other half of this if and
only if g'! = by; which is the condition displayed in (5) in Proposition 3.2. These
combined assumptions are equivalent to a;,b; constant with values shown by part
(3) of Proposition 3.2.

We also find from our formulae for oy, that o, (er ®¢€;) = g*ey,. It then follows , as
g is inverse to g;;, that o(e; ® e;) = g* ® 7,2(e; ® ;) = €; ® ¢; (this does not mean
it is the flip map on general elements, as it extends as a bimodule map). We then
compute

Vekg = gij(vekei ® €; +6€;® Vekej) =0

on using the values of V found in (i). O

This is in line with the main result in [14] that the Levi-Civita connection arises
in the classical case for a flat central extension with § of classical type (such as
82 = 0), but now in the quantum case provided only that ¢ has a classical limit.
We can also compute the quantum curvature of the quantum connection given for
non-singular § in Theorem 3.3. As in Theorem 3.3, we continue here under the §2
left module map assumption in part (2) of the theorem. The formula for curvature
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was recalled in Section 2.1. In terms of cotorsion this amounts in our case to

1 1
Ry(ey) =- m(|g|20201 + 4911912)\/01 ®ep + m(élgng11 - |g|2C22)Vol ® ea
1
Ry(e2) =@(Ig|01(2912 +1g/C1) - 2¢**(2g™ = 1g|C2)) Vol ® ey
1
+ m@g“ - 191C2) (29" - |9|C1) Vol ® ea

which is of particular interest when C; = 0 so that we have the quantum Levi-Civita
connection by the theorem.

In our above analysis we have concentrated on the connection acting on 1-forms,
but the cocycle construction also gives it on forms of all degree. Continuing in our
82 left module map assumption, similar calculation from 2V, Vol = [e;, Vol] gives

1 1
(3.13) Ve, Vol = §|g|CQVol, Ve, Vol = —§|g|01Vol

using Vol 1 Vol from Lemma 3.1. We see at the quantum Levi-Civita connection
where C; =0 that V., Vol = 0. We can also compute

(Veie1)€2 +e1Ve, 2 = %(CQ -4 —gll + bu)VOl

which vanishes in the quantum Levi-Civita case. So these coincide, i.e. the deriva-
tion rule (2.7) holds for quantum Levi-Civita connection.

Another by-product of our theory is a Hodge-Laplacian given by A = §dd+d§, which
we compute in the general case on some generators as

A(r) =6dr =6(rey) =dr L ey +rde; =r(b11 +a1)
A(t) =6dt = 5(r~tey) = —r72dr L ey + 1 tag = 77 (ag — bra)
A(er) =ddey +dde; =day =0
A(ez) =ddey + ddeg = 6(Vol) +dag = breg + baey
A(Vol) =6dVol + dsVol = d(bye;) + d(baes) = (a1 — g*) Vol.

Finally, we might wonder if our choice of ¢ has a geometric picture in terms of the
quantum Levi-Civita connection as is the case classically in the form of a diver-
gence. We let i,,(w) =j.,(n) be the left handed ‘interior product’ defined by j and a
candidate for the geometric codifferential that works at least in the classical case is
ioV. Recall that the connection depends only on the combinations by + as,bs — aq
so d is not fixed for a particular choice of metric and connection. Proposition 3.2
part (2) tells us that this freedom corresponds to the value of v/ and we can fix it
geometrically as follows.

Lemma 3.4. For the quantum Levi-Civita connection we have § =10V if and only
if a1 = g*', as = ¢'? and b1y = be1. In this case b; =0 and §2 = 0.
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Proof. We compute

, 1
iov(er) =5~ 9" 9" (l9C1 +2¢"%) - L gizgizgqn lg1C2)

2lg? Igl

1
——g"g"(|lgC1 +2¢") t3

9“922(29“ 191C2) g™
2Igl

1
(|g| 2(912 12 911922) +2911(gll 22 912912)) :gll _ §|g|02

ioV(e2) =5— |g| 979" (|9C1 +2¢"%) + —— 2| 9 9'%(9%191C2 - 29"%¢™?)
1
~ g’ 9% (g"191Cr + 29" 9%?) - 3lg |gl2922(|g|02 29') = 9"+ < IglCl
so for the quantum Levi-Civita connection C; = 0 we have the same as de; if and
only if a; = g'*, ay = g'2. This agrees with i o VVol precisely when by3 = bo;. (]

This quantises the classical choice of § within our 2-parameter moduli of values of
a; that lead to the same quantum Levi-Civita connections. We also see that the
geometric divergence § requires g¥ = bij or (1, ) =L which is the natural choice for
the classical theory in [14].

4. BICROSSPRODUCT MODEL WITH ITS STANDARD DIFFERENTIAL CALCULUS

The same quantum spacetime A as in the previous section has another family of
calculi, the 8 calculus, for which the standard case (8 = 1) is given by commutation
relations

[r,dt] = Xdr, [t,dt]=Adt, [r,dr]=0, [¢t,dr]=0
The general 8 case is significantly more complicated but not expected to be fun-
damentally different in view of related work such as [16]. This time a central basis
is

e1=dr, ey=v=rdt-tdr

and the canonical exterior algebra here obeys e% =0, e% = -AVol and ejes +eseq =0,
with top form Vol = ejes. We start by solving for L in the sense of Definition 2.2.

Lemma 4.1. The general solution to the 4-term relations on this exterior algebra
when A #0 has the form

Volle;=-e; L Vol=be;, e  Le; =0, ey Lex=b, esle;=-b, eglex=-Ab
Vol 1 Vol = 2bVol
for some constant parameter b.

Proof. To start with we set e; L e; = b;; and require that 1 is a bimodule map, which
as in Section 3 forces the b;; to be constants. The 4-term relation on eq,e1,e; gives
that [b11,e1] = 0 as in the proof of Lemma 3.1, which is automatic. On ey, eq, e we
have

—e1e1 L eg+ (61 1 61)62 =e; L ejeq + 61(61 1 62) = bi1eg =e1 L Vol + e1bqs.
Next, e, e1,€1 gives

—€ege1 L e+ (62 1 61)61 =ez L eje; + 62(61 1 61) = Vol L e1 +bare1 = eabqy.
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The e1, e2,e1 equation is automatic while eq, es, es gives
—er1ey Leg+(e1 Leg)es =€ L egea +e1(ea Leg) = —Vol L eg +bigea = —Aey L Vol + e1bag
which in view of our previous values we write as

Vol 1 es = (bya + Ab11)ea — (bag + Ab12)eq.
Similarly on e, e1,es we have
—ese1 Leg+ (ea Lep)es =eg L ejes+ea(e; Leg) = Vol Les+bares =es L Vol +esbia
which we write as

ea L Vol = (bay + Abyy)ea — (bag + Abia)e.
On ey, e9,e1 we have
—egeg L ey +(ea Leg)er =eg L eger +ea(ea Ley) = AVol L eg +bagey = —ea L Vol + egbag
which we write as

€2 L Vol = (ba1 — Ab11)ea — (bag — Abaq)ey.

Comparing the two different values we have for e 1 Vol implies for A # 0 that
b11 =0 and bys = —bo1. Finally, the 4-term relation on es, eo, €5 gives us

—egeg 1 eg + (62 L 62)62 =eg 1 egeq + 62(62 1 62) = AVol 1L e3 + bages = —Aeg L Vol + exbas

which implies that —Vol 1 e3 = e3 L Vol provided A # 0. Comparing the values
already obtained for these, we deduce that bss = —Ab12. This gives the stated form
with b1o = b. We also look at the 4-term relations with one of the forms being Vol
to obtain the value shown. ([l

This is already far from the classical case as the classical limit of e; L e; is antisym-
metric. We can still proceed to see what kinds of metrics and connections can be
obtained by the quantum Koszul formula. As in Section 3, we take a general form
of degree -1 map § namely de; = a; and 6Vol = ¥, bse; for a;,b; € A and ask for it to
be regular and compatible with 1 in the sense of Definition 2.3. We can also ask
to land on particular values g%/, v% for the quantum metric and interior product by
application of Theorem 2.4.

Proposition 4.2. (1) For fized constant parameter b, regular compatible de-
gree -1 maps § correspond to a; and b; each being at most linear in %, 1

;;
(2) For all g ,v% there exists a unique choice of a;,b; up to constants k;,l;
such that the quantum metric and interior product have these values.

(3) Nonsingular a;,b; correspond to g” =v% =0 to order \.

(4) 62 is a left module map if and only if
v2 =gt v = —g? NG L+ ko + N1 =0, lo—ky =0.
(5) 62 is a bimdolue map if in addition
=0, ¢%+¢? =0, k=0

where the last two apply in the generic case of b+ 2g*2.
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Proof. The proof that § is regular and that 1 is a bimodule map is exactly the same
as in the proof of Proposition 3.2. Here we again use the equation for 1Lp, but for
this calculus we find

e1 Lrer =[r,a1], e Lrey=[t,ar]r—[r,a1](t-A)-0b
es Lr ey =[r,as]+b, es Lges=[t,as]r—[r,as](t—X)-Ab
Vol 1g e1 =([r,b1] —b)er + [, ba]es
Vol 1g es =([t,b1]r = [r,b1](t = X))er + ([¢,b2]r = [r,b2](t = A) —b)ea.

We then set je, (¢;) = g* for our quantum metric, jvor(e;) = v¥¢; and use our known
data for L. This gives

iy _ L[ [ra1] [t,a1]r = [rya1](t =)
(9 )‘2(V¢@] U¢mh—[naﬂU—A)—zw)

%ank1+hﬁﬂ@)

vei(e2) = 5 ([ ba]r = [0 = Mes + (16 balr = [ b2](E = M)ea).

As before, we then want to invert this relationship and solve for a; and b; in such
a way that ¢g” and v* are constants (numerical parameters). We consider each

component of the quantum metric separately. From the expression for g'' we have

11
that a; must be of the form a; = 2’;& + f(r) for some function f. In our notation
here f is always to be read % -t in our calculus. Obtaining a particular g'? then

tells us that

ivol(e1) =

1.2tg™! 2tglt
29"+ 29" (£ = \) = [ty a1 ]r = [t, =] 1 + [t, f(r)]r = =
'

r+ [t f(r)]r

1
=2g" = (rt = Ar) + [t f(r)]r = 29" (t = A) + [t, fF(r)]r
r
using the algebra commutation relations. Comparing the two sides, we see that
12
[t, f(r)]r =2¢"% or =Af'(r) = Qf—z, which has soltution

92 12
)=k
Ar

for some constant of integration k;. This gives the form of a1, namely
2

(4.1) a1= 39"t +g"%) + k.
r

21
Similarly, for g?! we need ay = % + g(r) for some function g. Then to obtain a

particular ¢?? we need
1 21

292 +2\b+ 2% (t = \) = [t,a2]r = [t, ;] 29 tr +[t,g(r)]r =2¢* (t = \) + [t, g(r)]r.

Comparing the two sides we deduce [, g(r)]r = 2g°?+2X\b or ¢'(r) = —2/\9:22 -2 with
solution

giving the form of aq,

2 2b
(4.2) az = — (g%t +¢**) + — + k.
T
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We can see that a; has to be at most linear in ;‘, =. For b; we consider

(1}”) _ ( [’I"7 bl] [’/’, bg] )
[t,b1]r = [r,b1](E =) ([t,b2]r = [, b2](t= X))’

and we use the same process we used to invert for ¢g*/. This gives

2 2
(43) b1 = f(’l)llt+1)21) +ll7 bg = f(’l]12t+’l)22) +lg
Ar Ar
for constants of integration [;. Again, we can observe that these are at most linear
t 1
in o

Parts (2) and (3) are obtained by solving as in Proposmon 3.2, only replacing ¢
with L - and for b; the constant b; is used for the coefficient of as opposed to r. The
form of (4.1)-(4.3) tells us the conditions for a;, b; to be non- smgular in A\ assuming
the k;,l; are. For part (4) we compute

82(fVol) =6(f6Vol + df L Vol) = f6*Vol +df L bie; — bS((d°f)e;)
=f62Vol + (8 f)(e; L e)bi = b(9' f)ai - (9'0" f)bley L e;).
Requiring all but the first term to vanish for all f gives the condition
(0" f)b(by —a1) = b(D*f)(by + ag + Aby) + b2(920 f) = b2(91 0% f) + B2N(9%9%f) = 0

where the partial derivatives are defined by d in our basis {e;} as usual. Again,
since 7 and t generate the algebra it suffices to consider f =¢,r which respectively
give the two conditions

2b
(44) b1+a2+)\b2——20, bg—a1:0.
r

We then use (4.1)-(4.3) and consider different powers of r, ¢ to obtain the displayed
equations in terms of ¢g*/,v",l;, k;, using the first pair to present the 2nd pair as
values of {;, v

For part (5), since Vol is central, the additional condition for a right and hence
bi-module map is that

(4.5) 62Vol = bja; + b(9" = X\0?*)by - b0*by
is central. From db; we find
2'[}21 21}11 21)22 2,012
O'by =-"—, b=, 0O'by=-", Pby=-"+
! Ar2 T2 2 Ar2 27 w2

hence for (4.5) to be central we need

(U11t+’l}21)(gllt+g12) +— 11(911t+g12) 4 (’U12t+’U22)(921t+g )

A2r2 Ar2 )\2 2
4 19, 5 29 4b |, 14 29 4b 12 _ 20022 202 20!t
+ — t+ + t+v + - -
2l trgT) e (v ) SVE Rl v

+ &(vut +0%) + 2—(gllt +g'?) + 2—(1;1215 +0%?) + %(gmt P+ — 2005
r AT AT AT r
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to be central. At our level of polynomials in ¢, r,r~!, we require the expression itself
to vanish (leaving a constant 62Vol = l;k; = ~Ak?). Applying the left module map

condition and collecting terms of order %2 we have

44 11t2_é 1221 4 1 12t_é 112, 4 19 10

t_f
h\ 9 )\9 g b\ g )\g g )\9 g
4 4 2 2
—4gng11t—4gng12+4bgn+Xglng2+ ;gntJr ;7912+ ;7921_

For t? term to vanish we require g'! = 0 as stated. Given this, the other terms
vanish if and only (g'? + ¢%!)(b-2¢*?) = 0. We then examine the coefficient of the
% terms of our original expression which we again need to vanish in order to be
central. Assuming we have 62 a left module map, we are left with 2(b—2¢'%)k; = 0.
For generic b this means ¢'? + ¢! = 0 and k% = 0, and hence §%Vol = 0. ([l

Unlike Section 3, we see that we cannot usefully take a;,b; and hence § to be
nonsingular in the sense of having a classical limit, if we want non-zero g,j in the
classical limit. However, we can still explore the resulting quantum geometry and
ask for 62 to be tensorial (at least a left module map). For fixed g™, v% the a;,b; are
uniquely defined according to the above by (4.1)-(4.3) up to free parameters k;,l;.
These play the role of the constant values of a;,b; in Section 3 and do not affect
the metric or j but do affect the central extension cocycle and bimodule connection
coming out of the quantum Koszul formula for our choice of §. We will study the
quantum connection through its torsion and cotorsion coefficients T;, C; defined as
before. We let

1
lg| = det(g"), |glx = 9| - 5/\2(9”)2-

Lemma 4.3. The connection from the quantum Koszul formula for any fized g%
and v¥ has torsion and cotorsion

1 2b
Ty (0 (a2 08 7) = (02 20 (01 - 12)
1 2b 4
Ty :m ((bg —a1)(g®* + Ag*) + Abig" + Aba (g% + Mgt + ¢! (a2 +b1 - 7) - Lg|)
1 20 2¢%
Cl=(a2+g|/\b1—— g )
gl lgl roor
1 2 11
o (B, )
91 \ gl r

where a;, b; are given in terms of the parameters k;,l; by (4.1)-(4.3).

Proof. (i) The covariant derivative along 1-forms is given by V., e; = %[[ei, e;] where
the cocycle data in Theorem 2.4 comes out as

2
[e1,e1] =0, [e1,ez] = ((12 +b - ;b) e1+ (b —ay)es

2
[[62,61]] = (;b— as — bl) e + (a1 - b2)62, II€27€2]] = —>\(b161 + b262)
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while the generalised braiding from o,,(n ® ¢) = ju,¢ + wj,{ comes out as
1

0e (61 ®er) =2 [roan]es

oo (e1®es) =~ ([t ar]r - [ryar](t - \))er

Gus(er®e1) =~ ([roar] - [rib1])er + %[r, ba]es

0es(e1 @ 2) =5 ([ 10 = 0) = [t buIr)er + 2 ([T = [ran] (£ = A) = [1, o] + [, 521~ A)es
0, (2@ 1) =5 ([r.n] + [, ax])er + [ bales

e (e2®ea) ==([t,b1]r = [r,b1](t = A) + [t,a2]r — [r,a2](t = A) = 2X\b)e; + %([t, balr —[ryba](t = N))es

A
2
([r, 011t = X) = [t,b1]r)er + %([t,ag]r —[r,a](t = X) = 2Xb = A[t,ba]r + A[r, b2 ] (t = X))es.

NI RN RN RN RN~

oo, (e2® 1) == 2[r,b1]es + %([r, as] - [r,ba])e

Oey(e2®e€9) =

N>

(ii) The abstract connection is Ve; = g' ® Vg2e;, where g = g' ® g% = gije; ®e; is the
metric with (g;;) inverse to (¢g*/). This comes out as

1
Ver =§gl ® [g°, e1]

1 2b 1
== 7912 (* —az— bl) e1®e; — 7912(01 —-ba)e1 ® ey
2|g]| 2|g]
1 2b 1
+ 7g11 (7 —ag — bl) ea ®ep + 7911(611 — b2)€2 ® en
2|g| r 2|g|
v _1 1 2
€2 _29 ® [[g 762]]
_L 22 275 12 L 22 12
= g“las+b1 - +Ag b1 |er®er + (g (b2 —a1) + Ag “ba)e; ® eo
2|g| r 2|g|
L 21 275 11 L 21 11
— q a2+b1— +)\g bl ea®ep — (g (bg—a1)+)\g b2)€2®62.
2|g| r 2|g|

(iii)We can now compute the associated torsion Ty as

1 1 2b A
AVer —deg = — —g12 (ay —by) Vol + — gt (a2 +b - —)Vol - =gt (a1 —bg) Vol
2|g| r 2|g]

2|g]|
Lo oo 12 1 (45 2b "
AVes —desg :7(9 (bg—a1)+)\g bQ)V01+7 g as +b; — — +)\g by | Vol
2lg] 2|g] T
A 2
o (921 (ba —a1) + /\911b2) Vol — —Vol
2|g] T

from which we read off the values of T; as stated. For the cotorsion, need
1

coTy :(d®id—idAV)(| |
g

(¢Pe10e1-gPe1®es—gHes®@e; +glles ® 62))
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which we examine term by term:

1
-—g*%e1Vey

lg]

1 2b 1
—— g%l (a2 +b - —) Vol® eq — %29 (a1 - by) Vol ® e,
“2gP? r 2|g[?

(d®ld ld/\V)(| |g 61® 1)

1
f91261 Vea

91
1 2b A
= 2| |2g12921 (a2 +b — —)Vol ®e — g |2glzgucV01 ®ep
g r

1 12 9
—2| |2g g° (ba —a1) Vol ® es —

1
(deid-id A V) (—Lq'g”e1 ® 62) =

A2
oy |Qg g dVol ® e

1 1
-9 *921€2V€1
lg] lg]

1 2b
—Vol®e; — g2lg12 (a2+b1——)Vol®el
2|g|? r

2
(d®id—id/\v)( |‘g 62®61) Vol @ e +
T

R |9|
2lgI?

A 2b
9%'9"% (a1 —b) Vol @ ey + =——g°'g"' (a2 +by - —)Vol@el

+
2o 2lg| r

A
2| |2921g11 (a1 —b2) Vol ® eo

1
fgllegveg

lg]

1 2b
2| |2 911 12:Vol ® e + 2| |2911922 (a2 +by - 7) Vol ® e,

2
(d®1d—1d/\v)(| |g 62®€2) g =Vol® ey -
T

14 |9|

——Vol® ey +
“2lgP2

Hel2qVol ® ey

1 41 90
g g~ (bs—ay)Vol®es + g
e 2|g|?

A 2b
|2911921 (a2 +b - 7)Vol®el (g”) b1 Vol ® e;

2y 292

11 21 (bg—al)V01®62— (911) boVol ® es.

" 2gp? 2| 2
Collecting like coefficients of Vol ® e; and simplifying gives the coefficients C;. O
We now want to look carefully at the classical limit and, knowing from Proposi-

tion 4.2 that a;,b; will have to be singular for a nonzero geometry, we write them
in terms of new parameters where we factor out an order 1/\ singularity, thus

(4.6) Sler) =L, S(en) =22+ 23, §Vol = l(6161 +beges);
A P A
2 -2 -
(4.7) a = ;(9117§+g12)+k17 dy (g t+g22)+k2

~ 2 . -2 -
(48) b1 = *(’Ullt—f-’UQI) +ll, bQ = *(012t+v22)+12
T r
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as the general form of regular § in terms of rescaled constant parameters k; = Ak,
I; = M;. This is equivalent to our previous a;,b; given by (4.1)-(4.3) with now &
at most order 1/\ singular corresponding to l;l,il nonsingular. We assume here
that ¢/ and v*/ are nonsingular as A\ — 0 so that @;,b; are also. The condition in
Proposition 4.2 for §2 to be a left module map gives v™/ in terms of g% as before
and the unchanged form
I = ~ky— Moy, ly=ky.

In what follows will limit ourselves to this case, where ¢*/ are given, k; are our
parameters for the connection and everything else is determined.

Theorem 4.4. Let §% be a left-module map and § have at most an order % singu-
larity. Let V be the connection emerging from the extension data for any ¢ and
parameters k;.

(1) The classical limit of the connection exists and has cotorsion and torsion

4 142 " 2g1
Cll: ||( (g t+g +921)+k1)7 02 - g

lglr”
1 2 ~
T =g (*(g”t +9'%) + k1) :
2g” \r
1 2 ~ 2 -\ 4
T;l _ T ((g12 _921) (*(gllt"’ng) + kl) _gll (*(921t+922) + kg) _ |g|) .
gl r r r
(2) The full connection and its torsion can be written in terms of cotorsion as
g'2
Ve = 11|g|2 0261 ®ep — |g| 0262 ® eq
(9*) gt
_ 9] 12 5 22 A g
Veg = - (g2 (g°Ci-g7Cr)er®er - T 11) 5 Cae1 ® e
( igl|)2 (gllé’l - 92162)62 ®ep + g|1|16’262 ® eg
I~ ~ -
T :FC% T = (g|i)2 (9" C1+ (g -g* +g')Cy) - =
where
1142 -
~ g 2 2A ~
— ( ) ((92 t+ 22) + (gllt+gl2)_>\k1)
2|9l \lglr lg | r
_ 11\2 ~ ~ C. - C»Cl
02:_(9 ) ( (11t+g )+/€1); Cz‘: J i
2lg| \r A

(3) C; =0 occurs in our moduli space if and only if the 6 bimodule map condi-
tion displayed in part (5) of Proposition 4.2 holds. In this case T; = 0 also,
giwing a one parameter moduli space of weak quantum Levi-Civita connec-
tions with parameter ko.

(4) The connections in (3) are quantum Levi-Civita if and only if in addition

12
g*% = —)‘QT, and have the form

V =——-e1Q® = ’(t—f)\) k ® - g
& e, §}€ e &
1 1 1 2 2 2 ]2 1 1
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Proof. (i) From the conditions (4.4) for 4% to be a left module map we find

ay b az
—, =—-——aj.
AT
We then substitute our expressions for a;, b; into the formulae for the full quantum
connection found in the proof of Lemma 4.3 to get,

by =

Veq = I 1o Lo
e1=———¢g a1e1®€e1+ —¢g ajea®e€q
2lg] 2|g]

1 . ~ 1 .
- 7((922 + /\912)a1 +912a2)€1 ®e + 791261161 ® e2
2|g| 2|g]

1 . - 1 .
+ 7((921 + /\gll)al +gna2)€2 ®e; — 7911a162 ® es.
2|g] 2|g]

The braiding map in this case becomes,

Veg =

1 -
oe,(e1®e1) =ﬁ[r, dy]er

O¢y (61 ® 62) :2)\

[t,dy]r—[rya1](t—)))er

0es(er ® 1) =5 ([, @)1+ N) + [, @z Des + %[r, d1les
oo (€1® €2) :%(([r, o] + [ @) A=) + ([t da] + A[t, @ ])r)er

| =

- 1 -
[7‘, 01]61 + 5[7“,@1]62

T, a]](t - )\) - [t,a]]r)el + %([t,dl]T - [T, (fl](t - )\))62

Oc, (e2®€1) =—

— N

(

Oe,(e2®€3) =
Tesler@er) =3 ([, @] 4 Alr,l)er + o ([, @] - [r. e

0'62(62 ®€2) = (([T,dg] + )\[’I", Cfl])()\—t) + ([t,(fz] + )\[t,dl])r)el

N RN RN

+ %([t,dg]T —[rya2](t =) = Alt,dr]r + A[r,d1](t - X))ez.

The connection is clearly non-singular and has a classical limit given by,

1 2 . 1 2 i
Ver=-—g" (*(g“t +9"%) + kl) er®er + =—g't (*(g“t +9'%) + kl) e2®e1
g r 2lgl” \r

2 ~ 2 ~
Ves = (922 (;(gnt +g'%) + kl) +g'? (;(gmt +g%%) + k’g)) e1®ep

2lg|
1

2|g]

1
+ PR
2|g]

1
2|g]

9 y
912(;(911t+912)+k1)61®eg
21 2 11 12 - 11 2 21 22 -
g ;(9 t+g ") +ki)+yg ;(9 t+g*)+ka|)e2®e;

2 ~
gll (;(911t+912) +k1)62®€2.
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When 62 is a left-module map the cotorsion C;, given in Lemma 4.3, become,
A2(g11)2 9421 1 (g gl

4.9) €)= ((g)(a2+dl)—d1—g o=t (2o
g\ 2g X r lgl \r 2|g]

These have classical limits as stated. We repeat this process for torsion, in which
case we have,

1 ~ 5 . 4
(4~10) T = —7911(117 T = (( 2 ) ay —911(12 - M)
2|g| 2lg| r

Which again have classical limits as stated.

(ii) These expressions (4.9) and (4.10) for C;,T; are each invertibly related to a;,
in particular

. 2|g] . 2|g]
(4.11) dy = A(QH)Z(C;—@):—( e Co
_ 2lg? . . 2
(4.12) Gy 2ol ((Ch = CY + A(Cy - C5)) = 291 l9/° (C1 +2Co)

A(g')2 (g11)2
where C¢! are the classical values for the cotorsion as given above. We can then
substitute (4.11) and (4.12) into the formulae for the full quantum connection to
arrive at the form stated. Furthermore, we can use (4.11) and (4.12) in (4.10)
to achieve results similar to that in Section 3 whereby we obtained a relationship
between the torsion and cotorsion as stated. Note that now the cotorsion coefficients

here are not constants and have a particular form in terms of our actual parameters,
as stated.

(iii) From (4.9), we can clearly see that Cy = 0 if and only if g'! = 0. We then have
that

Therefore, C; = 0 if and only if a; = —@. We can then use equation (4.7) to
expand d; to arrive at the conditions g'! = 0, ¢?! + ¢'2 = 0, k1 = 0 which are
precisely the 62 bimodule map conditions displayed in part (5) or Proposition 4.2.
It is easy to then substitute these conditions on ¢ into (4.10) to see that T; = 0
also in this case. We can also write

~ 2912 2

a1 ="—, da=-(g*"-g"t)+ ks
r r

in which case our weak quantum Levi-Civita bimodule connections becomes
1 1 :
V€12—761®€1, VGQZ((t—/\ -— —
r r g

0(61®el)=61®61, 0(61®62)=62®61, 0(€2®el)=€1®62+>\61®61

2922

U(eg®eg):eg®eg—)\(12 +/\)61®€1+/\61®€2—/\62®€1
g
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where the latter are obtained from o(e; ® €;) = g' ® 7,2(e; ® ;) and
o, (e1®e1) =0, 0 (e1®e2) = g*2eq, Oe,(e1®€1) = —g'%e, Oe (€1 ®e3) = g*es,
O, (e2®e1) =0, o, (e2®e3)= “Ag'2er + g'%es, Oc,(e2®€71) = -Ag'2er — g'%es,

Oey (€2 ® €3) :)\(922 + )\912)61 + (922 - )\912)62.

(iv) For metric compatibility we must have
Vg=(Veid)g+ (c®id)(id® V)g =0
where at this point
1
g= m(gzzel ®ei—gle1®ey+gley ®@er)

and that [g| = g'?¢g'2. Using this we compute for our weak quantum Levi-Civita
connections that

22
. 1 1 1
(v@ld)g:—mel®€1®€1+ﬁ€1®61®€2+91Tr€1®€2®61—‘9172r€2®61®61
1 (1 g2 Ao
+ g@ (r(t - )\) - g127’ + 72912912 e1®e; ®ey
DN 1 (1 9> ko
(O’@ld)(ld@v)g:_glg(r(t—A)—glzr'Fleng U(€1®€1)®61

1 1
_ ngrU(el ®e1)®es + ﬁa(el ®es) ® e

1
- ngrU(BQ ®er)®ey.

Substituting the values of ¢ and combining, we arrive at the requirement
1

glr

which gives us the result stated. O

(262 + A\g'H)e1 ®@e; ®ey =0

Lemma 4.5. For the connection in Theorem 4.4,

(1) The curvature for general g has classical limit

1 2 ~\1
R%l(el) =— Egu (;(gut+glz) + kl) ;Vol@ el

1 /(1/2 ~ 2 ~ 2 ~\1
(5 (f(gnt-#glz) + kl) (,(911t+912 +921) + kl) -t-g11 (7(g21t+g22) + kg) f)V01® e1
r r r r

R%l(EQ) :m
11

2 ~\1
. (f(gllt +g'?) + kl) ~Vol ® e;.
lgl \r r
(2) The one parameter moduli space of weak quantum Levi-Civita connections
in case (3) of Theorem 4.4 are all flat.

Proof. (1) We begin by first computing the full quantum curvature of the connection
assuming it is a left module map, using the expression for the connection given in
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Theorem 4.4 in terms of the residue functions a;. Recall that quantum curvature
is given by

Ry =(d®id-id A V)V.
We then have

1 A 2 1
Ry(e1) :—gndl (a] - )Vol ®e1 — —da](glzel ®e; —g11€2 ®eq)
2|g] 2gf 7 2|g|
_ 11827 ~  ~ 21 11
Ry(e2) =- IRE Ag')?[d1, d2] - 2glar® - 4lg|((¢* + Ag'')dr + g a2) Vol ® e;
11 ~
_9 (121 /\glldl + M Vol ® es
4\g| r
1
2| |((922 + )\912)(1@1 +9 da2)€1 ®ep+ m 12d61161 ® e2
1
2| |((921 + )\gll)dal +9 da2)€2 ®er — m 11da162 ® ea.

Expanding the a; according to equations (4.7) in terms of the parameters ki gives
us the full quantum curvature of the connection as

Ry(e1) = ! ( (g“t+912)+k1) A 1(g(gllt+g12)+k~1)—g (“)2 Vol ® e,
297 217 \r r Iglr2
1 .9 A2(g11)2
(e = (5 (Bt o) (Bt e 2 og) - S voe,
—(Ag +Ag'h) - 911(2(921t+922)+152)1)vo1®el
|91 T r
112 11 9 _
+ g 2) g . ( (g 11t+912)+k ) )\911(7(g11t+912)+k1) \g| Vol ® ey.
lglr 4|g| r r

We can then set A - 0 to get the classical limit stated.

(ii) Using the above formulae for the full quantum curvature in terms of k;, one can
clearly see that setting g'! = 0 means that Ry(e;) = 0. Setting g*! =0 and k; =0

gives
Ry(es) = ﬁ (g (2912 igm))\/ol ®e; =0
given that g'? = —¢2%. (]
So far we have focussed on the connection on 1-forms. For the connection applied
to forms of degree 2 we have the following lemma;:

Lemma 4.6. For regular 6 and the covariant derivative V., = %[[ei, 1, we have that

Ve, Vol = 0 if and only if % is a left module map.

Proof. From the cocycle data given in Lemma 4.3 we have

1 1 1 1 2b
Ve, Vol = 5[[61,\/01]] = i(bg—al)Vol, Ve, Vol = 5[[62,\/01]] =5 (a2 + b1 + Abg — —) Vol

r

using Vol 1 Vol from Lemma 4.1.
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We also have a Hodge Laplacian defined by A = éd + dd. We also expand a;
according to Proposition 4.2 in order to take the exterior derivative and assume 62
a left-module.

A(r) =6dr = dey = 3(gllt +912) + ﬁ
AT A

A =0t = (9"t + g2)(t - N) + (g7t + g2)) + L2
Ar Ar
911 9412
A(ey) =dde; = %62 - %el
A(ez) =ddey + ddesy

2( 2 2 A
=—Z= —(g21t+922)+f(g”t+gl2)+g—+k—2+k1 el
r \Ar r AT A

202 4 12 921 /;1
— - t P -
+r(/\r(g v )+)\r+)\ “

2912 2g%1  4g'lt  4gM 9%
AVol :5dV01+d(5Vol:(>\r2 i NS n = . % +V Vol.

Since our ¢ does not have a classical limit for generic g/ there is no question that
it coincides with the ‘geometric codifferential’. For completeness, this comes out as

Proposition 4.7. In the classical limit, the geometric codifferential arising from
the extension data via the connection is given by

11/,21 _ 12
g (g g )(911t+912)

ioVep =
lglr
1
ioVes :W((gmgm +912g12 —2g”g22)(gnt+g12)+g11(g21 —912)(g21t+g22))
io VVol =0.

Proof. In order to attain a unique classical limit we make use of Theorem 4.4 and
therefore assume 62 is left module map. We then apply i to the resulting classical
connection given in the proof of Theorem 4.4.

1 1
ioVey = - 7912(91% +gl2)gll " 7911(91% +912)921

lglr lglr

11¢,21 _ 12

_9 (9| | 9 )(g11t+912)
glr
1 1
foVey=- W(922911(gut+912) + ' g12 (g% 1 g22)) + W912912(911t+912)

1 1

N W(921921(911t+g12) + g g2 (g% + g22)) - W911922(911t+912)

b

_|g|r((921921 +912912 _2911922)(gllt+g12) +gll(g21 —912)(921t+922)).
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We have previously shown that V., Vol = 0 when 62 is a left module map, but for
completeness and to obtain previously unseen formulae we compute here VVol in
order to compute i o VVol. Thus we have

VVol :gl ® V42 Vol

1
g %21 ® Ve, Vol - g 21 ® Vey Vol - g leg ® Ve Vol + —gtles ® Vea Vol

gl lgl lgl lgl
1 2b
2| |(g (b2_a')+g (a2+b1+)\bz—*))€1®\/ol
r
1 2b
2| |(9 (52—a)+9 (a2+b1+/\b2—*))62®\/01
r
where we have used the formula in the proof of Lemma 4.6. Using the left-module
conditions one then has that VVol = 0. |

We now look at some specific examples. Our general analysis was for a constant
quantum metrics ¢* without assuming quantum symmetry.

Example 4.8. The unique real quantum-symmetric quantum metric for this model
is given in [4] and has the form

(g) - (?A ?)

1+B)\? B

and now we ask for 62 a left module map, which fixes v*/ and [ with
(v7) = (1+le 1+BA ) ,
-L 0

leaving

2t o . 2t N 2 iE

> = il
r(L+BX2) " T r(1+BX) rB
and remaining parameters k;. We cannot apply parts (3),(4) of the Theorem 4.4
due to the form of the metric. In fact one has
~ ~ -2
42 4(1-AB 2b(2 4 2
(52(V01) __ t + ( A t) + b( t+ 3/\) B k’l + bkl + E
Ar2(1+BA2)2  M2B(1+BX?2)  Ar2(1+BX2) M(1+BXA2) Ar A

which is clearly far from being central. This confirms that 62 is not a bimodule
map.

ay =

The quantum connection arising from (J, 1) is therefore not even weak quantum
Levi-Civita. It is given in terms of cotorsion according to Theorem 4.4 as

v G ®
ep=——ex®e
1 ge®a

1+ ~ 1 = C.
Ves :70261 ®e; + E(Cl - )\02)62 ®ep+ §262 ® €2
where
~ B 2\t 2 ~ 2\t ~
Cr=— B+ BN Stk |- ey AR
s (P05 (e ) e )

. B 2t )
Co=— ki].
2 2(1+B)\2)(r(1+B)\2)+ 1)
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The connection has classical limit
B (2t -
Ve =— (* + kl) es ®eq
2 \r

v 1(2%;5) ® +B(2+k§) ® B(%;) ®
ex=——|— e1®e + — | — ea®e; — — | — ea®e
2 5\ 1)ée1 1t 5\ B 2] €2 15\ 1]e2®e2
where Theorem 4.4 gives us the classical torsion and cotorsion as
2t -~ 2B
ccl:—B(—+k1), cst ===
T

r
B (2t - B/(6 ~
TCl:——(—Jrk) TCl:——(—+k).
! 2\ ) 2 2 \rg " ?
Lemma 4.5 gives the classical limit of the curvature as

B (2t -
Rcvl(el) =- 7 (? +k1)V01®61

1(2t ~\%> 1(2 - B2t -~
Rcvl(eg):B(2(:+k1) +r(rB+k2))V01®el_r(rt+k1)V01®62

The classical Ricci tensor here is not proportional to the metric (and nor would we
expect it to be as the connection is not the Levi-Civita one).

The quantum Laplacian has formulae

AG)e 2tk
“Ar(1+BXA2) A
) o
A(t) :l t +l +tl€1+k2
a2 \1+B)X B Ar
2
Aler) =3z oy
Aen) =(- 8t 6 2V + k) N 4t +&+ 2 .
Y7\ 21+ BX2)  A2B A7 TN+ BA2) T A r2(1+BA2) ) °

and like  does not have a classical limit.

Example 4.9. Clearly the nicest form of the metric in the sense that all the cases

of Theorem 4.4 hold, is
i 01
(9”)=1L 1A
1
2

for an overall normalisation scale L, and we also assume that k; = 0 for part (3)
of the theorem to apply and C; = T; = 0. From the formulae displayed in (4.7) we

have
B % ~ 2Lt AL i

a] = R ag=———— — + Ko.
r T r

From Proposition 4.2, for 62 a left module map we have that

(10
@=2( 1),

and also fix b;. From this data one can compute d%(Vol) = 0 so that 62 is a bimodule
map, as it must be according to Proposition 4.2 for this form of metric. The 1-
parameter family of quantum Levi-Civita connections according to Theorem 4.4
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are then given by

1 t ko 1 1
Ver=——-€e1®¢€¢1, Vea=|—-—-——]e1®e;j+—-€e1®e3——€e3®¢€;
r r 2L r r

with braiding map
ole1®e;)=e1®e1, o(eg®er)=e3®e;, o(ea®er) =€ ®ex+Ae;®e
o(ea®ex)=ea®es+N(e1 ®ex—ea®eq)
and zero curvature by Lemma 4.5.

Finally, we have the Hodge Laplacian given by

3L ko 2L
A(r) =0, A(t) =Tzt A(er) =2
2(L 2Lt Kk 2(L &
A N i 1 - =4+ = A(Vol) = 0.
(e2) r(2r )\r+)\)€1 7“(/\7“+)\)e27 (Vol)
Example 4.10. Since the calculus is inner with 6 = —%, we also have a canonical

example of § with j = % 1L, in particular je,(e;) = g% is similar to the preceding
example but now with
v 001
iy = 2
(97) =3 (_1_ A)~

We also compute d(e;) =6 L e; and Vol =6 1 Vol as

b b t b
d(er)=—, d(e2a)=—-(1-=), d(Vol)=01Vol=—te +ez).
Ar r A Ar
This corresponds to parameters k; = 0 and
b b = b )
ay=-, da=-—(t+A), bi=-t=-da-Ad1, by=-=adi.
T r r r

From this or from j., Vol = %ei 1 Vol to compute the form of v¥/ we see that I; = 0
so that 62 is a left module map by our analysis. Furthermore one can check that
§2(Vol) = 0 so that §? is a bimodule map as it must be according to Proposition 4.2.
Formulae in the proof of Theorem 4.4 allow us to compute the connection from a;,
as

1 1
Vep=—-e1 ®eyq, Veng((t-r/\)el ®€1+61®62—€2®€1)
r r
ole1®e;)=e1®e1, og(eg®e)=e3®e;, o(ea®ey) =€ ®ex+Ae; ®eg

0'(62®€2)=62®62+>\(61®62—€2®€1+)\61®61)

and Theorem 4.4 tells is that this is torsion free and cotorsion free or ‘weak quantum

Levi-Civita’. It is flat but not fully quantum Levi-Civita since g*? # —%912, in fact

2\
Vg=—e1®e; ®e;
br
so that the classical limit is metric compatible.

The quantum Laplacian, given by A =dd +dd, is
b
A(T) =3 A(t) = Oa
Ar

Aler) - 2bt b)

v A= (5a

A2 €
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The quantum Laplacian here is singular so does not have a classical limit, as for
the codifferential.

5. CONCLUSIONS AND DISCUSSION

We have seen that the new approach to classical Riemannian geometry and its
quantisation in [14] via an axiomatic ‘codifferential’ § works very well for the o
calculus on our quantum spacetime (Section 3) and does give the quantum Levi-
Civita connection for this model when ¢ is quantum symmetric as assumed in
[16]. One may expect that this will also be the case for other quantum differential
spacetimes that are in some (to be determined) sense ‘close enough’ to classical.

It is also striking that in both cases asking for 6% to be a left module map or
‘left-tensorial’, in the sense §2(fVol) = f6%Vol for all f in the quantum spacetime
algebra, ensures that the connection coming from (J,1) in our quantum Koszul
formula is nonsingular as A - 0 (more generally, it needs to hold at least to order
A). We also saw how this left module map property links the induced interior
product j to the metric extended as something like a derivation, possibly with O(\)
corrections. And we saw that in both cases 1 does not have to be symmetric even
though that would be the classical choice (where 1= ( , ) (the metric) extended in
both arguments to forms). In Section 3 we saw that the symmetric choice allows
0 to agree with the geometric divergence defined as (, )V while in Section 4 only
an antisymmetric plus O()) choice was allowed by the differential calculus, which
is a first hint that it is in some sense ‘far from classical’. Finally, we saw in both
cases how 62 being additionally a right module map or ‘right-tensorial’ (hence a
bimodule map) is a further constraint which in Section 3 forces the metric to be
symmetric and lands us on the quantum Levi-Civita connection, while in Section 4
it forces the metric to be mostly antisymmetric (leaving g®? unconstrained) and
lands us on a weak quantum Levi-Civita connection as in Example 4.9. Requiring
this to be fully quantum Levi-Civita then fixes the relative value of g?2 also. Thus
we are forced to a form of metric that is not symmetric but antisymmetric in the
classical limit. In other words, the quantum Koszul formula method which we
have explored works also for the 8 calculus model on our quantum spacetime in
Section 4 but the geometry that it quantises more naturally is symplectic rather
than Riemannian. It is fair to say that this huge contrast was not visible until now,
where both models have been studied as different quantum Riemannian geometries
of not fundamentally different character if one just wants a quantum symmetric
metric and quantum Levi-Civita connection[16, 4]. The difference now is that we
want the geometry to emerge as part of a quantisation of connections and interior
products on higher differential forms as well as on Q!, which is an integral part of
the the quantum Koszul formula, i.e. we want the quantum-‘Riemannian’ geometry
to work with differential forms in the spirit of Hodge theory and the Cartan formula
for codifferentials.

It is not clear of course if our in-depth analysis of one particular spacetime [r,t] =
Ar allows us to draw lessons more widely. The above phenomena would need to
explored in other models; suffice it to say that some of these general features echo
some of the steps in the proof in [14] that we can recover classical Riemannian
geometry from axiomatic properties of § of classical type. It should also be pointed
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out that the central extension formalism in [14] of which the (d, 1) construction
is an example is more general and there could be other constructions leading to
flat central extensions. Moreover, it seems likely that the central extension theory
should itself be generalised in order to recover the actual 8 = 1 quantum Riemannian
geometry in [4]. This is because the differential calculus on this model has in
fact a natural one higher-dimension extension dictated by quantum Poincaré group
invariance[19]. Namely in 2D this is the 3D calculus with

[dr,r] = X0, [dr,t]=[0",7]=0, [t,dt]=X(0" +dt), [r,dt]=Adr, [0 t]=\0

which we see is not a central extension. Rather, it is shown in [14] that this
calculus is more like a central extension of the calculus on r followed by a semidirect
product construction along the lines [12]. This in turn works more generally for
quantum spacetimes of the form C*(N)>IR where N is a spatial Riemannian
manifold and the semidirect product of space with a time coordinate is given by
the action of a conformal killing vector. Such quantum spacetimes were called
‘almost commutative’ in [12] and the 8 = 1 calculus is an example in this family
with conformal Killing vector r%. Therefore a direction for further work could be
to extend the analysis of Section 4 to the quantum Koszul construction for this
more general class. It would also be interesting to explore it for finite groups where
several quantum Riemannian geometries in our sense are known, as well as for
g-deformed examples such as ¢-SUs; and the g-sphere.

Finally, one should continue the process of making contact between constructive
approaches and other more ‘top down’ (but more powerful) approaches to noncom-
mutative geometry, most notably that of Connes [7] based on an axiomatic Dirac
operator D or ‘spectral triple’ rather than §. One could perhaps consider d + 4 in
this vein as a first step. Better, one should extend the central extension point of
view of [14] to include spinors and make proper contact with the actual geometric
Dirac operator and its interaction with §. It would also be interesting to make
contact with more recent work such as [18]. These are some directions for further
work.
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