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SUMMARY 

A new two-dimensional discrete element method, which is able to simulate a system involving a 

large number of arbitrary convex elements, is proposed. In this approach, a novel distance potential 

function is defined using a normalized format of the penetrated distance between contact couples, whilst 

a holonomic and precise algorithm for contact interaction is established, accounting for the influence of 

the tangential contact force. Furthermore, the new contact detection algorithm is well suited for non-

uniform blocks unlike the common No Binary Search (NBS) method that requires uniform elements. The 

proposed method retains the merit of the combined finite-discrete element method (FDEM) and avoids 

its deficiencies. Compared with the existing FDEM, the distance potential function has a clear physical 

meaning, where the calculation of contact interaction avoids the influence of the element shape. 

Accordingly, the new method completely gets rid of the restraint of uniform element type and can be 

applied to arbitrary convex elements. The new method is validated with well-known benchmark 

examples and the results are in very good agreement with existing experimental measurement and 

analytical solutions. Finally, the proposed method is applied to simulate the Tangjiashan landslide. 
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1. Introduction 

Discontinuous problems exist in many practical engineering scenarios, for instance, underground 

mining, rock blasting, tunneling. The problem involves a large number of individual particles or blocks 

in the system and it is challenging to determine the contact interaction between the particles and blocks 

when using the continuum assumption as in the finite element method (FEM) and the boundary element 

method (BEM). 

Over recent decades, the development of accurate and efficient numerical methods for 

discontinuous problems has become a very active research field. Depending upon the formulation and 

solution for the dynamic equation, these methods can be grouped into the implicit and explicit approaches. 

The most representative method of the implicit approach is the discontinuous deformation analysis 

(DDA). Since the initiation of the DDA by Shi [1] in 1985, it has achieved various developments [2-4]. 

Many studies have been carried out to validate the performance of this method [5-8]. However, it still 

suffers from various deficiencies. The contact condition is determined by the process of an open-close 

iteration which repeatedly fixes and removes normal and tangential springs between the blocks. As a 

result, the stiffness of contact springs affects the results significantly [9]. Another drawback is that the 

numerical accuracy is sensitive to the choice of the penalty value and the time step size [10]. Furthermore, 

DDA is not suitable for irregular blocks [11] and it has no efficient way to solve the corner-to-corner 

contact condition [4]. Originally, DDA cannot reflect the accurate stress distribution within the blocks. 

To address this problem, Shi [12] proposed the numerical manifold method (NMM) which is well suited 

for the continuous-discontinuous problem [13-16]. However, the NMM is still in its infancy and suffers 

from some inherent deficiencies, such as, the linear dependence problem [17] and is insufficiently 

effective for contact defection and contact transfer processes. 

An alternative to the above discontinuous numerical methods is the discrete element method (DEM). 

Rather than the implicit approach utilized in DDA and NMM, DEM relies on an explicit approach to 

avoid solving a matrix of dynamic motion equations. Besides, the non-linearity property in the material 

behavior can also be handled in a straightforward manner [11]. Generally, DEM is divided into the 

granular discrete method and the block discrete element method according to the geometrical 

characteristic of the element. The granular discrete element method, firstly applied to analyze the 

movement of soils, has enjoyed considerable popularity due to the simplicity of the element type [18] 

and efficiency in contact detection [19], since it was suggested by Cundall and Strack [20]. Over the past 

twenty years, the method has been widely applied to many different fields such as the mechanism of 

granular materials [21-23], and rock fracture [24-26]. However, it has a severe drawback that the physical 

behavior of a single particle model as well as the large assemblies can be different from the actual 

behavior in some applied situations [27]. For example, interlocking of the particle cannot be captured 

with circular or spherical elements [28, 29]. In addition, the value of the shear strength among the 
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granular particle assemblies are below those obtained experimentally [30]. 

On the other hand, the block discrete element method has received a close attention in recent years 

because it considers the realistic element shape. This kind of method was firstly raised by Cundall and 

Strack [31] in 1971 for the analysis of progressive failure of rock slopes. The core concept of this method 

is that it treats all the blocks as rigid and a small amount of penetration is allowed in order to consider 

the relative displacement. At each time step, the contact interaction is updated by the incremental force-

displacement law as shown in Figure 1. The application of this method is limited initially due to the 

various categories of contact situations, such as, vertex-to-vertex, vertex-to-edge and edge-to-edge 

contacts. In order to solve the contact problem, Cundall introduced the common plane (CP) method [32] 

which is now widely applied in various types of discrete element method codes. By translating and 

rotating the common plane, the contact types can be reduced to corner-to-plane contact. In recent years, 

the discrete element method with a polygon has been developed in the UDEC [33], and has been 

successfully employed in many applications [34-37]. 

 

Figure 1. Mechanical model of the contact force in 2D DEM [11]. 

However this method has an incomplete contact interaction algorithm because of a lack of simple 

and unified mechanical model for different contact situations. In addition, it cannot deal with the vertex-

to-vertex contact. For the standard block DEM method, this kind of difficulty mainly comes from the 

non-determinacy of the normal contact force, as the normal direction is evolved discontinuously and not 

smoothly at the corner. This also results in an inconsistent contact force, which could cause energy 

imbalance and numerical errors [38]. One common practice to overcome the corner singularity is the 

application of a corner rounding procedure so that the blocks can slide past one another in a smooth way 

when two opposing corners interact [4, 39]. Even though the common plane method and the improved 

algorithm have been proposed to solve the contact detection problem, they still face a number of problems, 

such as the proper choice of the common plane, the iterative error for the spinning common plane and 

the uniqueness of the plane. Consequently, the reliability of simulation results is influenced by these 

shortcomings of standard DEM. 

In recent years, some improvements have been made to make DEM more accordant with practical 

circumstances and provide more efficient models of contact interaction [18, 39-44] and contact detection 

algorithm [45-51]. Among them, the combined finite-discrete element method (FDEM) draws the most 
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attention since it was introduced by Munjiza [52]. In FDEM, the medium is discretized into a large 

number of triangular elements with a similar size. The contact interaction is determined by overlapping 

areas between the contact couples with a new definition of potential function. According to the Green's 

formula and properties of a linear potential distribution in the triangular element, the calculation of the 

normal contact force is simplified as an integral of the potential on the boundary of the overlapping area. 

Moreover, the direction of the normal contact force can also be defined based on the outer normal 

direction of the boundary. In general, Munjiza has made a revolutionary impact on the model of contact 

interaction which introduces a new and uniform calculation model to avoid tackling different contact 

situations as the vertex-to-vertex contact and energy conservation is also obtained during the contact 

process. On the other hand, Munjiza [53] introduced the no binary search (NBS) method which reduces 

the CPU and computer memory requirements for processing contact problems with a large number of 

separate elements[38]. In recent years, a two-dimensional research code Y-code has been developed [38], 

together with a graphical user interface (Y-GUI) [54]. It has been successfully employed in various 

applications [55-60]. 

Nevertheless, there are some aspects that need to be strengthened in this method. The definition of 

the potential function lacks a clear physical meaning. In addition, both the value of the potential function 

and its normal contact force are greatly influenced by the element shape. In other words, with the same 

penetration and overlapping areas, the potential value and the normal contact force are not the same at 

all time. This method also does not include the calculation of the tangential contact force due to the 

difficult determination of the tangential direction at each time step. Another drawback is this method 

cannot be utilized for an arbitrary polygonal element. Moreover, the efficiency of the NBS algorithm is 

significantly influenced, when it is applied for a problem that includes a large number of elements with 

different sizes. 

In the current work, a new two-dimensional discrete element method is proposed. The basic idea of 

the proposed method is motivated by the limited application of FDEM due to its sensitiveness to the 

element shape and omission of the tangential contact force. In this approach, a novel definition of a 

distance potential function is developed and a complete calculation algorithm for contact interaction is 

exhibited. Furthermore, a non-uniform block contact detection algorithm is introduced to overcome the 

defects of the NBS contact detection algorithm. In comparison with FDEM, the new approach exhibits a 

clearer physical meaning for the distance potential function and presents a more accurate calculation of 

contact interaction for arbitrary convex polygonal elements. In addition, the cost of the developed contact 

detection algorithm is proportional to the total number of individual blocks. As a result, it is possible for 

the proposed method to be utilized in large-scale discrete element simulations. 

This paper is organized as follows. In the next section, after the basic idea of FDEM is given, the 

concept of a potential function is introduced. Then the distance potential function and the algorithm of 
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contact interaction are established in detail in section 3. The non-uniform block discrete element contact 

detection algorithm is introduced in section 4. Several illustrative examples are studied to validate the 

presented method in section 5. Conclusions are summarized in section 6. 

2. Basic idea of potential contact interaction  

In FDEM, the system is represented by individual blocks and each block is discretized into finite 

elements. With the definition of the potential function, FDEM provides an effective way to simulate the 

process of transition from continuum to discontinuum. In this section, the basic definition of a potential 

function and the calculation algorithm of the potential contact interaction are introduced in detail. 

2.1. Potential contact force 

As described in FDEM, contact couples penetrate each other and this results in a distributed contact 

force which is generally associated with the shape and size of the overlapping area between the contact 

couples. 

Consider two discrete elements, tβ  and cβ , with arbitrary shapes. tβ  is penetrated by cβ  as 

shown in Figure 2. The overlapping area S is bounded by the boundary Γ. 

 

Figure 2. Two contact elements and the contact force df  due to the infinitesimal overlapping area dA. 

Considering an infinitesimal overlapping area dA, the infinitesimal normal contact force is obtained: 

 d [grad grad ]c tφ φ f , (1) 

where cφ  and tφ  are the values of a potential function at a point in dA belonging to c  and t , 

respectively. 

Thus, the total normal contact force over the overlapping area is generated: 

 [grad grad ]dn c t
S

φ φ A f  (2) 

This can also be rewritten as an integral over the boundary   in accordance with Green Formula: 
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 ( )dn c tφ -φ Γ


 f n , (3) 

where n  is the outward unit normal vector of  . 

2.2. Definition of the potential function 

For a unified solution format of Eq. (3), the considered system is discretized into tri-node triangular 

elements in FDEM. A new potential function of the point p in the element is defined as: 

  
31 2

sum sum sum

0  is outside the element

33 3
min , ,  is inside the element

                                   , p

φ p AA A
 , p

A A A




  
 
 

, 1φ  , (4) 

where i , i = 1,2,3A  is the area of the sub-triangle, as shown in Figure 3, and sumA  is the area of the 

element. 

 

Figure 3. The areas of the sub-triangle divided by the point p in a triangle element. 

Consequently, the calculation of normal contact force is carried out with Eqs. (3) and (4) by 

integrating the potential function over the boundaries of the overlapping area as shown in Figure 4. The 

simulation is simplified by managing to avoid dealing with specific various contact conditions and not 

having to use a rounded corner for the vertex-to-vertex contact of two triangular blocks. 
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Figure 4. Normal contact force of element ABC calculated by an integration over the boundary of the 

penetrated area. 

3. Distance potential function 

3.1. Some issues of contact force calculation in FDEM 

It can be clearly noticed from Eq. (3) that the potential function plays an important role in the 

calculation of a normal contact force and itself provides a measurement of the embeddedness between 

the contact couples. The potential function should achieve the same value under the same penetrated 

distance. In fact, as shown in Figure 5(b), despite having the same penetration distance from three bases 

of the sub-triangles, the equivalency of calculation results with Eq. (4) cannot be satisfied. The accuracy 

of Eq. (4) is limited to the condition which is shown in Figure 5(a). 

 

(a)                                            (b) 

Figure 5. The distribution of potential function in triangular elements for (a) an equilateral triangle and 

(b) an arbitrary triangle. 

The fundamental reason for this phenomenon lies in the susceptibility for the element shape. As 

shown in Figure 6, two same triangular elements DEF and HIJ penetrate the target element ABC (an 

equilateral triangle in Figure 6(a) and an arbitrary triangle in Figure 6(b)) with the same distance h along 

the normal direction of boundary BC and AC respectively. The potential values of point D and H is given 
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by Eq. (4): 

    DBC HAC

ABC ABC

3 3
D  ,  H

S S

S S
    (5) 

 

(a)                                  (b) 

Figure 6. Two same triangular elements DEF and HIJ penetrate the target element ABC with same 

distance h along the normal direction of boundary BC and AC respectively. (a) ABC is a regular 

triangle; (b) ABC is an arbitrary triangle. 

The different shapes of triangle ABC obtain different results, because the triangles DBC and HAC 

have a large difference in the element area. In Figure 6(a)    D Hφ φ  because of the same area of 

DBCS  and HACS . However, it presents the opposite result in Figure 6(b). The discrepancy caused by the 

element shape can be observed clearly. As a result, the normal contact force between the contact couples 

is not equivalent. However, although the element shapes have differences, the normal contact force 

cannot be different due to the same penetration distance in the same element. 

In addition, this definition is not appropriate for polygonal elements. As shown in Figure 7(a) it can 

be observed that a similar distribution of potential in a rectangular element is possible. However, the 

equivalency of the potential values are not satisfied for points with the same penetrated distance in 

different sub-triangular elements. The algorithm for an arbitrary quadrilateral element can be incorrect. 

The presence of discontinuities along the lines between the centroid and vertex can be observed in Figure 

7(b) and the potential value is not equal to 1 at the centroid of the polygonal elements. 
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(a)                                       (b) 

Figure 7. The distribution of potential in quadrilateral element. (a) potential distribution in a rectangle; 

(b) potential distribution in an arbitrary quadrangle. 

3.2. Concept of the distance potential function 

In FDEM, a convenient and efficient approach was developed to compute the normal contact force. 

However, the physical meaning and numerical precision of this method remains uncertain due to the 

deficiency of the potential definition. In this section, a new distance potential function with a normalized 

partition of the embedding distance is utilized to calculate the normal contact force. 

As explained in [38], the potential value should be chosen as a constant on the boundaries of 

elements in order to satisfy the law of conservation of energy. In this work, it is assumed that the distance 

potential d  at the point p inside an arbitrary polygon is defined as: 

  
0

   is outside the element
  11

 is inside the element
d d

,
p

p
ph,

r

 




 



， , (6) 

where h is the distance between the point p and the corresponding edge as shown in Figure 8, r stands 

for the radius of the maximum inscribed circle of the element. Because of the arbitrary element shapes, 

the definition of the distance potential could result in an internal polygonal area at the center of element 

instead of an in-center as shown in Figure 8. The points in the polygonal area are not defined by the 

distance potential function. Although the distance potential singularity is observed in this polygonal 

region, the calculation is not affected. Considering the large value of a normal stiffness, penetration will 

not happen in this internal polygonal area. 
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Figure 8. The distance between the point p and the corresponding edge. 

The merit of this definition lies in the approach of the approximated calculation of the normal 

contact force. Completely different from FDEM, the normal contact force is computed using the 

normalized partition of embedding distance instead of the original potential function. The distance 

potential between the contact couples has the same value for an arbitrary polygon with a fixed penetration, 

as shown in Figure 9. In addition, the radius of the maximum inscribed circle can also be determined in 

an arbitrarily convex polygon. The normal contact stiffness of different edges of the element is in 

accordance with the actual conditions. As a result, it can avoid errors during the calculation of the 

potential and the normal contact force that were discussed in section 3.1. 

 

Figure 9. The distribution of the potential in polygon elements. 
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3.3. Normal contact force 

Consider two rigid convex polygonal elements in contact, as shown in Figure 10. Now by Eq. (3) 

and the novel distance potential definition, the normal contact force caused by the penetration of the 

contact element cβ  into the target element tβ  is simplified as an interaction between the element tβ  

and the edges of cβ . 

 

Figure 10. Contact elements and the interaction points between the element tβ  and the edges of cβ . 

As presented in Figure 10, interaction points between the edge HG and the target element tβ  are 

obtained and the distance potential value for each interaction point can be calculated with Eq. (6). Then 

the total normal contact force on HG is obtained as: 

 
HG HG

HG HG HG[0- ( )] ( ),t n d ,t n d ,t
l l

p φ P dl p φ P dl   f n n , (7) 

where HGn  is the outward unit normal of the HG and the direction of the normal contact force, np  

represents the penalty value, and ,d tφ  stands for the value of distance potential function of the point on 

the edge HG belonging to the element tβ . 

It is worth to notice that the distribution of the distance potential ,d tφ  between the interaction 

points is along a straight line and linear, as shown in Figure 11. Consequently, the interaction scheme is 

simplified as an area calculation. 



 

12 

 

Figure 11. Distance potential distribution along the edge HG and the loading point o of the total normal 

contact force of the edge HG. 

Thus Eq. (7) can be rewritten as: 

     
1HG HG 1

0

1

2 i i

n

,t n i i P P

i

p φ P φ P l




 f n , (8) 

where 
1i iP Pl


 is the distance between the interaction points iP  and 1iP . And the action position o can 

be determined as the center of the potential distribution as shown in Figure 11. 

The normal contact moment HG ,nM  as relative to the loading point is given: 

 
HG HG,n cent o ,c M n f , (9) 

where cent on   is the vector from the contact force load position o to the centroid of the element. 

Accordingly, the total normal contact force ,n tf  and the corresponding moment ,n tM  caused by 

the penetration of cβ  to tβ  can be found by a repeated calculation around the remaining edges of the 

element cβ . Analogously, total normal contact force ,n cf  and normal contact moment ,n cM  

associated with the edges of element tβ  caused by the penetration of tβ  to cβ  can be also obtained 

with Eqs. (3) and (6) as follow; 

 [ ( )]n,c i ,t n d ,cp φ P dl f n , (10) 

 
, ,n c cent i i c M n f , (11) 

where ,i tn  is the outward unit normal of the edge i of the element tβ , d ,cφ  represents the distance 

potential value of the point p on the edge i belonging to the element cβ , cent in  is the vector from the 

contact force load position of edge i to the centroid of the element, and ,i cf  is the normal contact force 

of edge i caused by the penetration of tβ  to cβ . 

Thus total normal contact force and moment between the contact couples is given: 

 
n n,t n,c f f f  (12) 

 
n n,t n,c M M M  (13) 
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And the applying point of the total normal contact force is determined according to the principle of 

moment balance: 

 
pn n n r f M , (14) 

  ,pn pn cent pn centx x y y  r , (15) 

where  ,pn pnx y  and  ,cent centx y  are the coordinates of the applying point of the total normal contact 

force and the centroid of the element, respectively. 

3.4. Tangential contact force 

Another source of possible distortion of accuracy in FDEM is the omission of the tangential force. 

The newly proposed method takes into account the tangential contact force and a precise computational 

algorithm is presented on the basic idea of the force-displacement law. 

In this work, the tangential contact force is obtained by following the solution of the total normal 

force. The direction parallels with the tangential component of the increment displacement which is 

decomposed according to the normal vector as shown in Figure 12. Naturally, it is perpendicular to the 

total normal contact force at each time step. The loading position is almost identical with the total normal 

contact force. 

 

Figure 12. Tangential component of the element 
cβ . 

To obtain the increment displacement, the relative velocity of the contact element c  with respect 

to target element t  is assumed as: 

      i i i i i i i

c t c c t t
v v v ω r ω r , (16) 

where 
i

c
v  and 

i

t
v  are the translational velocities of blocks c and  t  at step i, respectively; ω

i

c  and 

ω
i

t  stand for the angular velocities of blocks c and  t , respectively. Then the incremental tangential 

displacement δ i

s  is: 

    i i i i i

s n n n n t         
 

Δδ Δs Δs n n v v n n Δ  (17) 
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The tangential contact force is updated as: 

 
1i i i

s s sr   f f Δf , (18) 

where r is the rotation matrix that rotates the normal vector from step i-1 to the normal vector at the 

current step i, 
2 1 2 1

1 2 1 2

=

T ' '

' '

n n n n
r

n n n n

   
   

   
, in which  1 2,n n  and  ' '

1 2,n n  are the unit normal 

direction vector at the step i and i-1, respectively, 
i

sΔf  is the incremental tangential contact force 

expressed as: 

 
i i

s s sk Δf Δδ  (19) 

The magnitude of the tangential force is checked with the maximum possible value max( )i

sf  defined 

by the Coulomb-type friction law: 

  
max

tan
i i

s nf f c   , (20) 

where   is the maximum static friction angle, c represents the cohesion force, 
i

nf  stands for the 

magnitude of the total normal contact force at step i. If the absolute value of 
i

sf  is larger than  
max

i

sf , 

i

sf  is set to be equal to  
max

i

sf . 

The tangential contact moment is given by: 

 i i i

s cent s s M n f , (21) 

where 
i

sM  is the tangential contact moment at step i, and 
i

cent sn  is the vector from the force load 

position to the centroid of the element at step i. 

4. Contact detection algorithm 

The contact detection algorithm for the discrete element method must be robust and efficient in 

order to reduce the requirement of CPU and computer memory, because the total cost of the processing 

of contact interactions for all possible contact couples is proportional to N2, where N is the total number 

of discrete elements. Large-scale discrete element models always involve substantial individual blocks 

and thus the computational cost of DEM can be largely affected by the contact algorithm. To address this 

issue, Munjiza [53] proposed a linear contact detection algorithm, the no binary search (NBS) algorithm, 

in which both the total CPU time and computer memory requirements are proportional to the total number 

of the blocks. However, the NBS algorithm is based on a strict condition of the element size and it cannot 

be applied to solve the problems that include non-uniform blocks. The calculation area is discretized 

according to the largest element, and as a consequence, contact detections for the small blocks are also 

performed even when they are far away from each other. It greatly degrades the calculating efficiency. 

Subsequently, Munjiza [61] developed the multi-step Munjiza–Rougier algorithm (MMR) for particles 
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with different sizes. 

In this work, a new contact detection algorithm is developed for non-uniform blocks based on the 

square bounding box by combining the NBS and MMR algorithm. 

The basic idea for this algorithm is dividing the blocks into groups according to the size of the 

element: 

Group 1: size of bounding box for the first group blocks d1: 1 maxd D ; 

Group 2: size of bounding box for the second group blocks d2: 2 max 1d D / ,   ; 

Group 3: size of bounding box for the third group blocks d3: 
2

3 max 1d D / ,   ; 

… 

Group n: size of bounding box for the n group blocks dn: 
1

max 1n

nd D / ,   , 

where maxD  is the maximum circumcircle diameter among all the blocks. 

Then the process of this contact detection algorithm can be performed in n steps: 

Step 1: All the elements are mapped into the space which is divided into cells based on 1d  as 

shown in Figure 13. According to the current positions of the centroid of elements each block can be 

mapped to only one cell following the formulation: 

 min

max

1 int( +0.5)i

k

x x
x

l


  , (22) 

 min

max

1 int( +0.5)i

k

y y
y

l


  , (23) 

where
ix ,

iy are the coordinates of the centroids in global coordinate system. 
kx ,

ky are the coordinates 

of the centroids when the elements are mapped into the cells, and 
maxl  is the size of the cell at each step. 

 

Figure 13. Illustration of the new non-uniform block contact algorithm, where blocks are divided into 

four groups based on the element size and space divided into identical cells which are large enough to 

contain the first group element. 
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Then, contact detection is performed for the first group element. The detection of contact for the 

first group element is circulated as a direct check and the discrete elements are regarded as either central 

or neighboring cells, as shown in Figure 14. Two discrete elements mapped into the cells can be 

determined as contact couples if the contact condition is met: 

 d l , (24) 

where d is the distance between the centroids of the contact couples, and l is the contact distance:

1max 2maxl l l  , where
1maxl ,

2maxl are the longest distances between the vertexes and centroids of the two 

contact elements, respectively. 

The contact elements for the first group elements can be obtained respectively. 

 

Figure 14. Contact check cells illustration, where the blank cell is the central cell and the shaded 

elements are the neighboring cells. 

Step 2: The first group elements are removed from the system and all the remaining elements are 

mapped into the space which is divided using d2 as shown in Figure 15. Then contact detection is 

performed between the elements of group 2 and the remaining group elements with the same method as 

in step 1. 
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Figure 15. Step 2 illustration, where the first group elements are removed and space is divided into 

identical cells using d2 as the length scale. 

Step n: By analogy, in this step only elements in group n remain in the system as shown in Figure 

16 and the contact detection is carried out between those elements. 

 

Figure 16. Contact detection for the last group elements. 

With the new contact detection algorithm, the size of the cell in each step is approximately equal to 

that of the detection elements. The coordinates of the elements mapped into the cells show the actual 

distribution law of the elements and thus greatly improve the accuracy of contact detection for elements 

with different sizes. 

5. Numerical examples 

Several numerical examples are presented in this section to provide validation of the accuracy and 

capability for this newly proposed method. Firstly, the reliability and accuracy in the normal contact 

force calculation is verified by simulating the impact process between triangular blocks. Then energy 

conservation property is proved by a test using a beam-shaped heap of rigid fragments. A numerical 

frictional experiment composed of two blocks is simulated to explain the ability in tracking the friction 

interaction. Another benchmark is about the block accumulation which illustrates the computational 

efficiency for arbitrary polygonal elements of this method. Then the method is applied to model the 

sliding/toppling test for rock slope and the joints structure effects in the sliding rock mass. Finally the 

simulation of Tangjiashan landslide is performed to illustrate the capability of this proposed method to 

deal with a practical problem of large scale.  
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5.1. Simulation of impact between triangular blocks 

As already noted, the proposed method can provide an accurate normal contact force without the 

influence of the element shape. In this example, a numerical simulation is carried out to verify this 

assertion. 

The problem consists of two triangular blocks A and B which are fixed on a horizontal plane, and 

block C falls towards A and B due to gravity. The shape and size of blocks A and B are the same and the 

geometry for this problem is illustrated in Figure 17. The density of the blocks is 2000 kg/m3 and the 

initial velocity of block C is set as 0 m/s. The vertical acceleration due to the gravity is -10 m/s2, friction 

is neglected. In this simulation, large embedding is allowed with the application of a small contact 

stiffness for observation of the process of penetration. 

 

Figure 17. Numerical model of the impact test. 

Initially block C is free-falling towards A and B, and then turns into a reverse movement after the 

impact with blocks A and B due to the asymmetrical contact force caused by the penetrations between 

the contact couples A, C and B, C. The reason is that A and B have the same geometry, same physical 

parameters, the same angle between the inclined surfaces and the horizontal plane A  and B , and 

more importantly the same penetration between the two contact couples. 

The predicted motion of block C is given in Figure 18. From these results, it can be clearly observed 

that block C falls down initially and then bounces along the original falling trajectory. The simulation 

with the proposed method follows the expected motion of rigid body impact. 
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Figure 18. Predicted motion block C simulated by the proposed method. 

For comparison, the result achieved with FDEM is exhibited in Figure 19. It is worthwhile to notice 

that the motion trajectory is not the same before and after the collision and a horizontal movement and 

deflection of block C is observed in the simulation. The trajectories of block C obtained by the two 

methods are compared with each other as shown in Figure 20(a). As explained in section 3.1, the normal 

contact force between the two contact couples can be unequal with each other in FDEM as defined by 

the potential function as described in Figure 21(b). This is because the potential function in FDEM is not 

strictly a function of the penetration distance. It results in a horizontal displacement of block C after it 

impacts with the blocks A and B as shown in Figure 20(b). 

 

Figure 19. Predicted motion block C simulated by FDEM. 
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(a) 

 

(b) 

Figure 20. Simulation results by two methods for the impact case of triangular blocks, where (a) the 

motion trajectories of block C is shown by two methods, and (b) the time variation of the horizontal 

displacement of block C. 

 

(a) 
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(b) 

Figure 21. Normal contact force between the contact couples A, C and B, C obtained by two methods 

for the impact case of triangular blocks, where (a) the normal contact force calculated by the proposed 

method, and (b) the normal contact force calculated by FDEM. 

5.2. Beam-shaped heap of rigid fragments 

In order to evaluate the energy conservation and computational stability of the proposed method, 

the simulation of beam-shaped heap of rigid fragments is simulated following Munjiza [38]. The original 

shape of the heap is shown in Figure 22. The model is discretized by 16×160 triangle elements. The 

velocity of the rigid projectile is set as constant with u=-50 m/s as shown in Figure 22. For comparison, 

the test with the same setting is also simulated by FDEM. 

The predicted transient motion of the heap is given in Figure 23. Both the proposed method and 

FDEM present the same relative motion trend. Initially the fragments are stacked each other that they 

contact, however there is no overlap or contact force between the fragments. As the projectile impacts 

the center of the heap, the fragments in heap near the impact point are extracted by the projectile. This 

result is an acceleration of these fragments while moving at the opposite direction of the triangular 

projectile. Due to the interaction between the fragments, the disturbance spreads from the initial impact 

point to the edges of the heap, causing further fragments to move away from each other. The result is 

that the shape of the heap begins to change and the packing density decreases. 

When the projectile finally goes through the heap, the shape and the density of the heap have 

considerably changed. At this stage, the fragments and projectile separate with each other in a constant 

velocity. It is worth to notice that the symmetry of the heap is preserved during the whole process of the 

impact. 

Figure 24 shows the evolution of the energy conservation obtained by the proposed method and 

FDEM. The reduction of the kinetic energy is a consequence of the contact. The kinetic energy translates 

into the potential energy due to the overlapping of the fragments in contact. Then the potential energy is 
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zero and the kinetic energy is equal to the initial value, when the fragments and projectile get a constant 

velocity. 

 

Figure 22. Model of the beam-shaped heap. 

 

Figure 23. Predicted transient motions of the fragments; (a) the simulation result by the proposed 

method; (b) the simulation result by FDEM. 
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Figure 24. Kinetic energy as a function of time calculated by two methods. 

5.3. Test for the numerical frictional experiment 

In this example, the process of a quadrate block sliding on a horizontal surface with an initial 

horizontal velocity is simulated as a benchmark test of a friction problem for this proposed method. 

Table 1 lists the geometric information and material properties of the sliding quadrate block for this 

test. 

Table 1 

Geometric information and material properties of two sliding quadrate blocks for this simulation. 

Figure 25 presents the simulation model of this test. The block is given an initial horizontal velocity 

4 m/su  . The horizontal velocity decreases linearly because of the influence of friction until it stops at 

a distance that can be analytically calculated. 

Figure 26 and 27 show the displacement and velocity of this block with a constant friction 

coefficient  φ  0.1, 0.16 and 0.2 using the proposed method and theoretical analysis, respectively. 

The results show perfect agreement between the proposed method and the theoretical results. 

 

Figure 25. Model of the numerical friction experiment. 

Parameter Length (m) 
Density 

(kg/m3) 

Young’s 

modulus (Pa) 

Normal 

stiffness 

(N/m) 

Tangential 

stiffness 

(N/m) 

Value 0.5 2600 91 10  91.5 10  91.2 10  



 

24 

 

Figure 26. Time variation of the displacement of the sliding quadrate block for several friction 

coefficients as calculated by the proposed numerical method and analytically. 

 

Figure 27. Time variation of the velocity of the sliding quadrate block for several friction coefficients 

as calculated by the proposed numerical method and analytically. 

Figure 28 shows the results of displacement time variation for several values of the normal stiffness. 

Again, an excellent match is revealed between the proposed method and the analytical results. 

 

Figure 28. Time variation of the displacement of the sliding quadrate block for several values of the 

normal stiffness as calculated by the proposed numerical method and analytically. 
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5.4. Simulation of block accumulation 

The following example is used to validate the ability of the proposed method to calculate the motion 

of arbitrary convex elements.  

To simulate the process of deposition under the influence of gravity, a rigid box of dimension 32 

mm × 122 mm is adopted. Four series of blocks with different shapes fall into the box and achieve a 

stable state by applying the same friction coefficient of block-block and block-wall, = 0.15μφ  and a 

damping ratio 0.002. The element models used in this example are presented in Figure 29.The material 

properties of all the blocks are assumed to be identical as described in Table 2: 

Table 2 

Material properties of the blocks. 

 

Figure 29. Simulation models of four series of deposition consisting of (a) triangles; (b) quadrates; (c) 

rectangles; and (d)-(h) all five different element types are in the fourth set of simulations. 

The simulation results can be seen in Figure 30. For comparison, the same example is also simulated 

with FDEM in which the polygonal blocks are represented by the triangular blocks bundled together with 

springs as shown in Figure 31. The simulation methods achieve similar results exhibited in Figure 32 

and both two methods reflect the block motion. However, two approaches present different performance 

when dealing with this problem of polygonal elements. Table 3 lists the total calculation time of the two 

methods for the polygonal elements. Clearly, the proposed method performs much better and it is much 

more suitable and efficient for the medium involves arbitrary polygonal elements than the FDEM. 

Parameter 

Total 

volume of 

blocks 

(mm2) 

Density 

(kg/m3) 

Young’s 

modulus 

(Pa) 

Poisson 

radio 

Normal 

stiffness 

(N/m) 

Tangential 

stiffness 

(N/m) 

Value 800 2000 91 10  0.167 92 10  92 10  
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Figure 30. Simulation results of the four series of deposition examples with the proposed method and 

for elements of (a) triangles; (b) quadrates; (c) rectangles; and (d) mixed shapes. 

 

Figure 31. The element types of several triangular elements bundled together with springs which have a 

high elastic stiffness for the FDEM simulation: (a) a quadrangle-shape element; (b) a pentagon-shape 

element; (c) a hexagon-shape element; and (d) a heptagon-shape element. 
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Figure 32. Simulation results of the four series of deposition examples by FDEM and for the elements 

of (a) triangles; (b) quadrates; (c) rectangles; and (d) mixed shapes. 

Table 3 

The computer time required by two methods in simulating the accumulation of blocks with different 

shapes. 

Element type 

The proposed method FDEM 

Time (s) Time (s) 

Quadrate 759.4 1825.9 

Rectangle 594.3 1284.5 

Mixed 1101.2 2760.3 

5.5. Sliding/toppling test of a joint rock slope 

The limit equilibrium analysis of toppling failure for a joint slope described by Goodman and Bray 

[62] is a popular validation case for various discontinuous methods because of the relatively simple 

geometry, boundary conditions and conditions of external loads. Heok and Bray [63] give an example of 

a toppling problem of two dimensional joint slope with the limit equilibrium analysis method (Figure 

34). In this paper, this example is adopted to test the proposed method by comparing the numerical results 

with the analysis results provided by Heok and Bray. 

In this example, a rock slope of 92.5 m height which is cut at an angle of 56.6  in a layered rock 

mass dipping at 60  into the base of the block. The slope is discretized into 16 blocks which are 

considered as rigid and rested on a base stepped at 1 m and the block 10 is at the crest. The width of each 

block Δx  is 10 m, and the height and the ratio between the height and width Δny x  of each block are 

shown on Table 4. The friction angle between the faces and bases of the blocks is set to be 38.15  ( f ) 

and the unit weight of the rock is 25 kN/m3. The geometry of the simulation is shown in Figure 34. 

Table 4 

 Geometric information of the blocks for this simulation, where 
ny  and x  are defined in Figure 

33. 

n ny  x  ny x  

1 4.0 10 0.4 

2 8.0 10 0.8 

3 12.0 10 1.2 

4 16.0 10 1.6 

5 20.0 10 2.0 

6 24.0 10 2.4 
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7 28.0 10 2.8 

8 32.0 10 3.2 

9 36.0 10 3.6 

10 40.0 10 4.0 

11 34.0 10 3.4 

12 28.0 10 2.8 

13 22.0 10 2.2 

14 16.0 10 1.6 

15 10.0 10 1.0 

16 4.0 10 0.4 

Figure 35 presents the failure type of this joint rock slope. It can be noticed that the blocks can be 

distinguished into three groups as based on the following behavior: 

(1) Stability blocks; Blocks 14, 15 and 16 which are in the upper of the slope are stable, because 

the friction angle of the base of the blocks f  is larger than the angle of the base of block p  and these 

blocks are short enough to have their gravity centers lie inside the base. The formulas of the criteria for 

two stable conditions which prevent blocks from sliding and toppling respectively are given by: 

 
p f   (25) 

 cot p

y

x



 (26) 

(2) Toppling blocks; Blocks 4 to 13 compose the zone of toppling. On the basis of the limit 

equilibrium conditions the interaction between the blocks can be obtained. From block 5 to block 13, as 

the ratio Δny x  is greater than cot p , the toppling occurs. Block 4 still topples, although the ratio of 

the block satisfies Eq. (25). This is caused by the imbalance torque applied on this block. 

(3) Sliding blocks; Blocks 1, 2 and 3 belong to the sliding group because the thrust force on the 

upper face of these blocks is greater than the friction force acting on the base of the block. The behavior 

modes of the blocks are shown in Table 5. The simulation result is shown in Figure 35. 
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Figure 33. Limit equilibrium conditions for toppling/sliding of the nth block [63]. 

 

Figure 34. Model of sliding/toppling test of a joint rock slope. 
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Figure 35. Simulation result of the sliding/toppling test of a joint rock slope by the proposed method. 

Table 5 

Simulated results by proposed method as related to Figure 35. 

5.6. Simulation of the joints structure effects on the sliding rock mass 

In this section, the accuracy verification of this proposed method is performed with the following 

simulation. This simulation is based on the experiment operated by Li [64] and the result is compared 

against the experiment data and available numerical results. 

The simulation consists of five manual accumulation slopes with different sets of transfixion plane 

as shown in Table 6, and the geometrical properties of the slopes are listed in Table 7. 

Table 6 

Models of five manual accumulation slopes with different sets of transfixion plane: 

Number Diagram of the mechanism Joints construction 

1 

 

Big blocks, persistent joints 

2 

 

Big blocks, stepped joints 

3 

 

Medium blocks, persistent joints 

4 

 

Medium blocks, stepped joints 

5 

 

Mixture blocks: 

Big blocks with stepped joints 

Small blocks with persistent joints 

n Mode n Mode n Mode n Mode 

1 Sliding 5 Toppling 9 Toppling 13 Toppling 

2 Sliding 6 Toppling 10 Toppling 14 Stable 

3 Sliding 7 Toppling 11 Toppling 15 Stable 

4 Toppling 8 Toppling 12 Toppling 16 Stable 
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Table 7 

The geometrical properties of the blocks 

Block type Length (m) Height (m) 

Big block 0.2 0.1 

Medium block 0.1 0.1 

Small block 0.05 0.05 

In the experiment, five types of accumulation slope are placed on a platform, respectively. Then 

turning the platform counterclockwise with a constant angular velocity until the failure of slope occurs. 

The friction angle and cohesion of the blocks and the platform are the same which are set to be =26  

and 2.14 Pac  . The constant angular velocity of platform is 0.03 rad/s and the vertical acceleration 

due to gravity is 9.81 m/s2.  

Table 8 shows the simulation results of five types of accumulation slopes and Figure 36 presents 

the failure behavior of the first accumulation slope. Table 9 compares the failure modes and failure angle 

between the current simulation and the previous results provided by Li [64]. It can be seen that the 

simulation result is in good agreement with the existing experimental and numerical data. 

Table 8 

The simulation results of five types of accumulation slopes. 

Number of 

simulation 
Moment of destruction 

Failure modes and 

angle (deg) 

1 

 

Toppling 

24 

2 

 

Sliding 

26 

-0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

-0.5 0 0.5 1 1.5 2

0

0.5

1

1.5
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3 

 

Toppling 

11 

4 

 

Sliding 

24 

5 

 

Sliding 

20 

 

Figure 36. Failure process of the first slope which consists of big blocks with persistent joints; (a) t = 0 
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s; (b) t = 13.93 s; (c) t = 14.4 s; (d) t = 14.76 s; (e) t = 14.99 s; (f) t = 16 s. 

Table 9 

Failure modes and failure angles of the five accumulation slopes. 

Failure mode 
1 2 3 4 5 

Toppling Sliding Toppling Sliding Sliding 

Failure 

angle 

Distance potential function 

method (deg) 
24.0 26.0 11.0 24.0 21.0 

Experiment data of Li 

(deg) 
22.1~24.2 25.0~26.3 9.8~11.6 23.0~24.9 19.5~21.8 

Numerical result of Li 

(deg) 
23.0 25.5 10.0 23.5 20.0 

5.7. Simulation of the Tangjiashan landslide 

Landslide is one of the common disasters in nature. In recent years, with the development of the 

discontinuous method, there is an extraordinary progress in the stability analysis for the rock slope in 

engineering. In 2008, the Wenchuan Earthquake, one of the major natural disasters in China, caused 

serious earthquake-induced disasters and among them the Tangjiashan landslide which has the largest 

potential risk due to its large volume. At present, some researches have focused on the analysis of the 

mechanism for the Tangjiashan landslide [65-67]. In this paper, a 2-D numerical model is adopted to 

analyze the kinetic movement process of the landslide. 

In this simulation, the slope is set to be consisted of strong weathered rock masses, and the bedrock 

of the Tangjiashan slope is weakly weathered rock masses. The structure planes are divided into the 

bedding plane and joint plane (Figure 37). The physical-mechanical parameters of the rock masses used 

in this simulation are listed in Table 10 and the parameters of the structural planes are shown in Table 

11. 

Figure 38 illustrates the geometry of the model. According to the geologic data of the Tangjiashan 

landslide, the slope is discretized along the joint altitude as shown in Figure 39. 

Figure 40 shows the sliding process of the landslide. It can be seen that the coverage of the landslide 

and the pattern of the barrier dam are in high degree of uniformity with the post-earthquake investigation 

by Hu [68] shown in Figure 37 and the simulation results by Cao [65]. 
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Figure 37. Engineering geology of Tangjiashan landslide and its barrier dam by Hu [68]. 

Table 10 

The physical-mechanical parameters of the rock masses. 

Rock mass 
Density 

(kg/m3) 

Cohesion 

(MPa) 

Internal 

friction 

angle(deg) 

Bulk modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Strongly 

weathered 

rock masses 

2550 1.28 32 1.3 0.8 

Weakly 

weathered 

rock masses 

2650 2.34 35 1.2 0.8 

Table 11 

The mechanical parameters of the structural planes. 

Structural 

plane 

Normal 

stiffness 

(GPa/m) 

Shear 

stiffness 

(GPa/m) 

Internal 

friction angle 

(deg) 

Cohesion 

(MPa) 

Tensile 

strength 

(MPa) 

Bedding plane 3.6 1.2 30 0.5 0.05 

Joint plane 3.6 1.2 23 0.3 0.03 
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Figure 38. Numerical simulation model of Tangjiashan slope. 

 

Figure 39. Discrete element types of the slope. 
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Figure 40. Evolution of the landslide using the newly proposed method of the distance potential 

function at different time stages (a) t = 0 s; (b) t = 0.5 s; (c) t = 1.0 s; (d) t = 1.5 s; (e) t = 2.0 s; (f) t = 

2.5 s; (g) t = 3.0 s; (h) t = 3.5 s; (i) t = 4.0 s; and (j) t = 5.0 s. 

6. Conclusions 

Our definition of distance potential function has been seen to be appropriate for arbitrary two-

dimensional convex elements used in discrete element model. A complete normal contact force 
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calculation model, which includes the magnitude, direction, and the normal contact force moment, was 

determined under the concept of the new potential definition. It led to a new fundamental algorithm for 

the tangential contact force. A new non-uniform block contact detection algorithm was also introduced 

for arbitrary convex polygonal discrete elements with different sizes. This computational method is clear, 

efficient, and stable for 2D models as illustrated for several benchmark problems. 

To be specific, the main features of the proposed method can be summarized as follows: 

(1) Instead of using the standard potential function, the normal contact force is calculated using the 

definition of a distance potential function. It gives an accurate potential value and normal contact force 

without being adversely affected by the element shape. 

(2) Compared with the FDEM, the proposed method can be implemented to deal with the problems 

involving a large number of arbitrary polygonal elements. 

(3) The proposed algorithm for the tangential contact force makes the results more accurate and 

reliable. 

(4) A non-uniform block discrete element contact detection algorithm is introduced to solve the 

contact detection problem for arbitrary convex elements with different sizes. 

The effectiveness of the method for the numerical simulation using the distance potential for a 

system of arbitrary convex polyhedral elements will be discussed in the future study. 
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