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Abstract

Direct numerical simulations (DNS) are reported for the turbulent rotating-disk boundary layer
for the first time. Two turbulent simulations are presented with overlapping small and large
Reynolds numbers, where the largest corresponds to a momentum-loss Reynolds number of
almost 2000. Simulation data are compared with experimental data from the same flow case
reported by Imayama et al. (Eur. J. Mech. B/Fluids, vol. 48, 2014, pp. 245–253), and also a
comparison is made with a numerical simulation of a two-dimensional turbulent boundary layer
(2DTBL) over a flat plate reported by Schlatter and Örlü (J. Fluid Mech., vol. 659, 2010, pp. 116–
126). The agreement of the turbulent statistics between experiments and simulations is in general
very good, as well as the findings of a missing wake region and a lower shape factor compared
to the 2DTBL. The simulations also show rms-levels in the inner region similar to the 2DTBL.
The simulations validate Imayama et al.’s results showing that the rotating-disk turbulent bound-
ary layer in the near-wall region contains shorter streamwise (azimuthal) wavelengths than the
2DTBL, probably due to the outward inclination of the low-speed streaks. Moreover, all velocity
components are available from the simulations, and hence the local flow angle, Reynolds stresses
and all terms in the turbulent kinetic energy equation are also discussed. However there are in
general no large differences compared to the 2DTBL, hence the three-dimensional effects seem
to have only a small influence on the turbulence.
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1. Introduction1

This paper investigates the turbulent rotating-disk boundary layer, which arises over a disk2

rotating in otherwise quiescent fluid. In contrast to a flat-plate boundary layer, the boundary3

layer on the rotating disk is three-dimensional. The flow is dragged along with the rotating disk,4

but it also has a radial outward component, the so-called crossflow component, and to fulfil mass5

conservation, fluid is drawn towards the disk from the non-rotating fluid outside the boundary6

layer. If the boundary layer is laminar, a similarity solution exists as shown in 1921 by von7

Kármán. For the laminar rotating-disk flow, a convenient measure of the Reynolds number is the8

nondimensional radius, defined as9

R = r∗
√

Ω∗

ν
= r, (1)
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where ∗ refers to a dimensional quantity, r∗ is the radial position on the disk and δ∗ =
√
ν/Ω∗ is10

the length scale used, where ν is the (dimensional) kinematic viscosity of the fluid and Ω∗ is the11

angular velocity of the disk.12

The laminar rotating-disk boundary layer experiences a primary global instability at a Rey-13

nolds number that depends on the azimuthal wavenumber β and below which the flow field14

always starts to transition to turbulence; e.g. for β = 68 Appelquist et al. [2] found R = 583. In15

experiments, a secondary global instability due to the presence of stationary cross-flow vortices16

triggers the transition process for even lower Reynolds numbers, R = 510 − 520 [3, 4]. As17

an example, a disk with a radius of 25 cm rotating at 1400 revolutions per minute in air will18

experience start of transition at a radial distance of about 16 cm from the center of the disk and19

a boundary layer that becomes fully turbulent a few more centimeters further radially outwards,20

hence the boundary layer leaving the disk will be turbulent. For a recent review of previous and21

current research on the stability properties of the rotating disk flow see [5].22

The laminar boundary layer existing at lower R has a constant boundary-layer thickness that23

does not vary in the radial direction. This feature changes when the flow becomes turbulent, the24

thickness increases over the transition region and continues to increase with r∗ as the boundary25

layer becomes fully turbulent. Several experiments of this turbulent boundary layer have already26

been carried out [6–10] and also one large-eddy-simulation study has been reported [11]. In all27

these experiments one of the major difficulties arises from the thinness of the boundary layer,28

which makes even single hot-wire measurements hard to carry out close to the wall and more29

or less excludes multi-wire probes to be used, at least close to the wall. Hence, experimental30

turbulence data are scarce for this flow, and those that have been reported also suffer from spatial31

resolution issues.32

There are at least two major differences compared to the two-dimensional turbulent boundary33

layer, namely the three-dimensionality of the flow and the inflow towards the disk from the34

undisturbed region above the disk. However the experiments show that the crossflow component35

is rather weak, the flow angle at the wall was found to be 11◦ by Refs. [6, 9]. In the experiments36

by Littell and Eaton [8], X-probes were used and both the radial and azimuthal mean velocity37

components were obtained and they showed a similar angle at their closest points to the disk (at a38

wall distance of approximately 100 viscous units). The near-wall region has been experimentally39

examined by Refs. [9] and [10] and Imayama et al. [10] found a lower turbulence intensity of the40

azimuthal velocity component in the near-wall region compared with the streamwise fluctuation41

level in a two-dimensional turbulent boundary layer over a flat plate (2DTBL). Differences were42

also found in the outer region in line with previous results (e.g. Refs. [8, 11]), such as a missing43

(or weak) wake region.44

In the present work, DNS results for the turbulent rotating-disk boundary layer are presented.45

The advantage of the DNS as compared to experiments is that there is no interference between46

measurement equipment and the wall, and it is possible to obtain all velocity components in-47

cluding the turbulent stresses and other correlations. The results are compared, where possible,48

with the results from Ref. [10], but also with a 2DTBL simulation [12]. The new simulations are49

described in §2 and results are presented and discussed in §3. Finally a summary is given in §4.50
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r = [200 650] Nr = 137 ∆r = 3
θ = [0 2π/12] Nθ = 61 ∆θ = 2π/(12 × Nθ)
z = [0 49] Nz = 31 ∆z = 0.4, s = 1.08
T = [0 4.625] NT = 3.33 × 106 ∆T = 1.39 × 10−6

Table 1: Summary of the spectral-element mesh for the smaller turbulent simulation (R1) in terms of size of the domain
[min max], number of spectral elements (Nr , Nθ and Nz in the r, θ and z directions, respectively) and the resolution of
the spectral elements in the radial, azimuthal and wall-normal directions in the equidistant region. The total number of
spectral elements is 259,067. Additionally information on the time is also given where T is the total time in rotations,
NT the number of timesteps and ∆T the length of the timestep.

2. Simulations51

2.1. Simulation code Nek500052

The simulations were performed with the massively parallel code Nek5000 [13] using a Spec-53

tral Element Method (SEM). The code solves the full incompressible Navier–Stokes equations54

∂Ux

∂t
+ Ux · ∇Ux = −∇p +

1
Res
∇2Ux + fx (2)

together with the continuity equation55

∇ · Ux = 0, (3)

where Ux = (ux, uy,w) are the velocities in Cartesian coordinates, p is the pressure, Res is the56

simulation Reynolds number and fx is a forcing term used in connection with the initial tripping,57

fictional forces (if included) and a sponge region are sometimes used together with the radial58

boundary conditions. For the velocities in cylindrical coordinates, U = (u, v,w) are used corre-59

sponding to the radial (r), azimuthal (θ) and wall-normal (z) directions. The time-scale within60

Nek5000 is such that t corresponds to the number of radians through which the disk has rotated.61

The number of full rotations is measured by T = t/(2π). For further reading on the solver and62

use of the code the reader is referred to [13–16].63

2.2. Computational mesh64

Two simulations were made named R1 and R2, and their spectral-element meshes are given65

in table 1 and 2 together with temporal information. All lengths are normalised with δ∗ and time66

with the time period for one revolution. Within each element, a spectral mesh is used with the67

polynomial order 7. The radial ranges are different for each of the two simulations, R1 focuses on68

small radial positions (low Reynolds numbers) and R2 focuses on large r. For both simulations,69

the elements are equidistant up to either r = 542 or 682 and then clustered towards the disk edge70

at either r = 560 or r = 700, respectively. This is illustrated together with an instantaneous field71

for case R2 in figure 1 however only a part of the spectral-element mesh is shown.72

In the wall-normal direction the elements are stretched according to73

zn =
sn − 1
s − 1

∆z, (4)

where s is the stretching factor, zn is the coordinate at position n above the wall and z1 = ∆z is74

the height of the spectral element closest to the wall. The values of these and other parameters75

are shown in tables 1 and 2.76
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r = [400 800] Nr = 194 ∆r = 2
θ = [0 2π/13.6] Nθ = 155 ∆θ = 2π/(13.6 × Nθ)
z = [0 49] Nz = 31 ∆z = 0.4, s = 1.08
T = [0 4.125] NT = 2.97 × 106 ∆T = 1.39 × 10−6

Table 2: Turbulent simulation R2, for captions see table 1. The total number of spectral elements is 932,170.

Figure 1: Illustration of the distribution of the spectral elements for case R2. Slices for T = 1.75 shown in the rotating-
reference frame at (a) θ = 0 and (b) z = 0.4 (z+ ≈ 12.5 for these R < 700). The colour shows the azimuthal velocity in
the rotating frame of reference, i.e. the velocity is zero at the disk surface and −1 far away. At R > 700 one observes the
damping of the turbulence when the flow leaves the disk.

In wall-bounded turbulent flows the resolution of the mesh needs to be evaluated based on77

the inner (viscous) length scale `∗∗ = ν/v∗τ. Here, v∗τ is the azimuthal friction velocity defined by78

the azimuthal wall shear stress τ∗w,θ,79

v∗τ =

√
τ∗w,θ

ρ
=

√
µ

ρ

∣∣∣∣∣∂V∗

∂z∗

∣∣∣∣∣
z=0

=

√
ν

∣∣∣∣∣∂V∗

∂z∗

∣∣∣∣∣
z=0
. (5)

where V∗ is the mean azimuthal velocity (in the following capital letters (U,V,W) denote mean80

velocities, and (u′, v′,w′) denote the corresponding fluctuations around the mean), ρ and µ are the81

dimensional density and dynamic viscosity, respectively. Note that u∗τ can be defined similarly by82

using the wall shear stress in the radial direction. The friction velocity (v∗τ) is used to nondimen-83

sionalize the azimuthal velocity and rms to become V+ = V∗/v∗τ and v+
rms = v∗rms/v

∗
τ (similarly84

4



for U+ = U∗/v∗τ and u+
rms = u∗rms/v

∗
τ), and the viscous length scale normalize the wall-normal85

distance z+ = z∗/`∗∗.86

However, since all velocities presented herein are normalised using the local azimuthal wall87

velocity V∗w = Ω∗r∗ and the normalising length scale is δ∗ =
√
ν/Ω∗ it may be more illuminating88

to express the friction velocity and the viscous length scale normalised with these quantities,89

which gives:90

v∗τ
V∗w

= vτ = (∆w/r)1/2 and
`∗∗
δ∗

= `∗ = (∆wr)−1/2 , (6)

where ∆w is the nondimensional wall gradient91

∆w =
δ∗

V∗w

∣∣∣∣∣∂V∗

∂z∗

∣∣∣∣∣
z=0

. (7)

Although, due to our already nondimensionalized simulations the actual calculation of vτ
involves an artificial viscosity (νs = Re−1

s , see Eq. 2), giving

vτ =

√
νs

∣∣∣∣∣∂V
∂z

∣∣∣∣∣
z=0

and `∗ =
νs

vτ

In our case νs is set to one.92

The spatial resolution of the mesh can be expressed in inner scale units in all directions,93

∆z+, ∆r+ and r∆θ+ shown in figure 2 for both simulation cases. The resolution varies across the94

spectral elements due to the spectral mesh. In (a) and (b), ∆z+ is shown as a function of radius95

and height. The first point in each mesh is below z+ = 0.8 (0.35) for all radial positions and there96

are at least five (eleven) points below z+ = 10. The values in parentheses correspond to the best97

resolved local values. The contour of ∆z+ = 10 is shown in black. In (c) and (d), ∆r+ is shown98

with the average resolution in red. In (e) and (f), only the minimum and maximum resolutions99

across a spectral element in terms of r∆θ+ are shown as a function of radius. It is clear that the100

resolution is higher for smaller r and z due to the cylindrical formation of the elements. The time101

step in the simulation corresponds to less than approximately 0.01 viscous time unit.102

2.3. Boundary and initial conditions103

The boundary conditions were the same as used by [2] and are briefly described below. The104

flow velocities at the disk were specified as no-slip and non-penetration conditions, and for the105

top boundary condition the following combination of Dirichlet and stress-free conditions was106

used: the perturbation velocities in the wall-parallel directions were set to zero (ux = 0 and107

uy = 0), whereas the wall-normal velocity (w) was set to follow the stress-free Neumann bound-108

ary condition for the corresponding weak formulation. Outwards of the disk edge, located at109

r = 560 (R1) or 700 (R2), the surface was assigned a symmetric boundary condition. For this110

condition the domain is mirrored in the z−direction and the physical geometry of the simulation111

then corresponds to an infinitely-thin disk where W = 0, and ∂U/∂z = 0 and ∂V/∂z = 0. Far-112

ther outwards, prior to the outer radial boundary specified by the stress-free Neumann boundary113

condition, there was a weak sponge that force the azimuthal velocity component to zero and the114

wall-normal component to a weak updraft. The segmentation of the domain from the full rotat-115

ing annulus to a section was made possible through cyclic boundary conditions in the azimuthal116

direction, which are essentially periodic boundary conditions but involve an appropriate rotation117

of the velocities across the boundary.118
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Figure 2: Resolution of the two meshes in plus units. The ∆z+ colours in (a) and (b) are shown in log2 scale, and contour
of ∆z+ = 10 is shown in black. In (c) and (d) the average resolution of ∆r+ is shown in red. In (e) and (f) only minimum
and maximum resolutions of r∆θ+ are shown.
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Both simulations started with the von Kármán similarity solution over the full domain. Ini-119

tially, an undisturbed laminar flow was simulated such that the flow could adapt to the symmetry120

boundary condition radially outwards from the disk edge. At T = 1/8, a trip forcing was turned121

on and the turbulent flow started evolving.122

2.4. Turbulence trip123

The trip forcing used is described in detail in Ref. [17], it is here transferred to the rotating-124

disk geometry. The tripping is a weak, random volume force acting in the wall-normal direction125

and can be thought of as a strip of velcro tape commonly used in experiments to trip the incoming126

flow over e.g. a flat plate. In the present case the trip strip is added along a line in the azimuthal127

direction at a radial position of 230 for the low Reynolds number simulation (R1) and at 430 for128

the high Reynolds number simulation (R2). The number of modes used were 11 and 25 in the129

azimuthal direction, respectively. The reason for the higher mode number for case R2 is due to130

the longer strip line for a larger radial position. The extent in the radial direction is determined131

by a Gaussian distribution, with a standard deviation given by 4δ1,95, where δ1,95 = 1.2 is the132

displacement thickness of the von Kármán laminar boundary layer (see Eq. (8) below). The133

extent of the trip forcing in the wall-normal direction is also determined by a Gaussian function134

with a standard deviation of δ1,95, where the centre location is at z = 0, i.e. only using half the135

function. The trip in our simulations has a time-dependent amplitude that fluctuates over a time136

scale ts = 2π/180. The magnitude of the disturbance is ten times larger for R1 than for R2.137

2.5. Data handling138

During the course of the simulations several instantaneous fields were saved. Additionally,139

various quantities were temporally averaged every 10th timestep to get enough data for statisti-140

cal calculations, e.g. mean velocities and higher moments. Since the mean value was not known141

during the simulations the velocities and their higher moments were themselves averaged where-142

after the different moments could be calculated. For instance, if ui = Ui + u′i then the mean Ui,143

and the variance, skewness and flatness of u′i can be evaluated from averages of ui, u2
i , u3

i and u4
i .144

Also, more complex quantities like transport terms in the turbulent kinetic energy equation or the145

dissipation can be evaluated in a similar manner. This is further elaborated in Appendix A.146

3. Results147

In this section the results from the simulations are presented both in terms of integral flow148

parameters as function of radial distance and distributions of the mean velocities, flow angles149

and higher moments as function of the distance from the disk surface at seven different Reynolds150

numbers, namely r = 261, 328, 397, 464, 530, 601, 669. In § 3.1 the integral quantities of the151

flow are defined and shown how they vary with Reynolds number for the two different simula-152

tions R1 and R2 and in § 3.2 the mean flow is shown. In section 3.3 the variances (rms), skewness153

and all three Reynolds shear stress terms are shown as well as the turbulent kinetic energy bud-154

get. Also, the Townsend structure parameter, A1, which gives an indication of the strength of155

the three-dimensionality is investigated and compared with the 2DTBL. Instantaneous velocity156

field are shown in section 3.4, whereas section 3.5 gives spectral information of the turbulence.157

Where possible the results are compared with the experiments at the two Reynolds number by158

Imayama et al. [10], denoted in their paper as T01 and T02, at r = 668 and 698, respectively.159

The corresponding momentum-loss thickness Reynolds numbers, Rθ, are 1704 and 1926. In [10]160
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the experimental results were also compared with 2DTBL simulation results by Schlatter and161

Örlü [12] at low but similar Reynolds numbers. Here, we chose to do the comparison with the162

two-dimensional case for Rθ = 1420, denoted by 2D01 in [10].163

3.1. Integral flow quantities164

The azimuthal velocity can be normalized with the wall velocity in the laboratory frame to165

become VN(z) = V(z)/V(0) = V(z)/VW . Two boundary-layer thicknesses, δ95 and δ99, can also166

be defined as the distances from the disk where VN = 0.05 and VN = 0.01, respectively. Based167

on these heights, the displacement thicknesses δ1,95 and δ1,99 can also be defined as168

δ1,95 =

∫ δ95

0
VN dz, δ1,99 =

∫ δ99

0
VN dz, (8)

and the momentum-loss thicknesses as169

δ2,95 =

∫ δ95

0
VN

(
1 − VN

)
dz, δ2,99 =

∫ δ99

0
VN

(
1 − VN

)
dz. (9)

The corresponding shape factors are H95 = δ1,95/δ2,95 and H99 = δ1,99/δ2,99, respectively. The170

friction Reynolds number can further be defined as Reτ,95 = vτδ95r (or Reτ,99 = vτδ99r), and the171

Reynolds number based on the momentum thickness as Reθ,95 = δ2,95r (or Reθ,99 = δ2,99r).172

The statistical quantities were azimuthally and temporally averaged, the time averaging start-173

ing at T = 1.625 and T = 1.125 for case R1 and R2, respectively. In figure 3 the resulting174

boundary-layer properties are shown from such an average: (a) boundary-layer thickness (δ95175

and δ99) on top of VN ; (b) displacement and momentum thickness (δ1,95, δ1,99, δ2,95 and δ2,99)176

on top of VN ; (c) skin-friction coefficients (cf r = 2(uτ/Vw)2 and cf θ = 2(vτ/Vw)2); (d) the non-177

dimensional viscous length scale (`∗ = r−1
√

2/cf θ); (e) Reynolds numbers (Reτ,95, Reτ,95, Reθ,95,178

Reθ,99); and (f) shape factors (H95, H99) and δ95/δ99. In all figures the laminar boundary-layer179

properties are seen at the smallest r for both cases since the prescribed inflow is laminar.180

The two simulations are shown simultaneously up to the radial edge position and experimen-181

tal data from [10] are marked with a circle (T01, ◦) or a square (T02, �). It should be noted that182

the comparison with the experiments may differ in absolute terms since the absolute values at a183

given r depend on the distance from, and the strength of, the trip, and as can be seen in figure 3(a)184

there is a slight difference compared with the experimental data. At the end of the domain there185

may also be an edge effect that may affect the simulation data.186

In figures 3(a), (b) and (e) linear curve fits to the boundary-layer thickensses are shown for187

values between r = 400 − 500 from case R1. These curves are shown to agree with data from188

case R1 well beyond this radial range, and act as an extrapolation to case R2. In figure 3(b) it is189

clear that the values of case R2 are lower than those of case R1. These lower values correspond190

well to the experimental data compared to the linear extrapolation from case R1. For the inner191

region, (c) and (d) show that the properties from both simulations correspond well over a certain192

region. It is clear that case R2 has a region where the boundary layer is developing however193

around r = 480 both c f and `∗ for case R2 have reached a similar level as those for case R1.194

Furthermore, in figure 3(e), the Re values of the two simulations seem to converge towards a195

linear increase with r, and follow the linear fit from case R1. This is, however, only at high r196

for case R2, before the edge effect takes place. In figure 3(f) the two simulations merge nicely197

around r = 520 and case R2 takes over for positions radially outwards. In the following figures198

both simulations are included where there is a change at radial position r = 530 from R1 to R2.199
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Figure 3: Boundary-layer statistics averaged over T = 1.625 − 4.625 for case R1, and T = 1.125 − 4.125 for case R2.
Rotating-disk experiments T01 and T02 from [10] are shown as© and �, respectively, and the 2DTBL simulation 2D01
from [12] is shown as a black-filled diamond.
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For the comparison to the 2DTBL, [12] (case 2D01), it is necessary to decide to which r the200

2D-simulation should correspond. Imayama et al. [10] compared their experimental results to201

case 2D01 at r = 668 due to a similar skin-friction coefficient and we chose the same r for our202

comparison. As can be seen, the skin-friction coefficient, shown by a black-filled diamond in203

figure 3(c), is similar to T01 and R2. Diamonds showing 2D01 data are also found in figure 3(e)204

and (f), where Reτ,99 and Reθ,99 are lower than both simulations and experiments, and H99 and205

δ95/δ99 are higher. Only experimental case T01 is further considered since T02 is just at the edge206

of our case R2.207

3.2. Mean flow statistics and turbulent fluctuations208

In the following section we use data from both simulations. From R1 we plot data for r =209

261, 328, 397, 464, 530 and for R2 data from r = 530, 601, 669. Therefore, there are two sets of210

data for r = 530, which is the highest r for R1 and the lowest r for R2; they have developed211

from different initial conditions and these should not be expected to be perfectly identical. For212

the mean velocity the quantity commonly shown is 1 − VN since this velocity profile can be213

compared to that of a flat plate with zero velocity at the wall and 1 in the free stream.214

In figure 4(a)–(f) the mean velocities (azimuthal and radial) as well as the local horizontal215

flow angle are shown using the inner and outer length scales, respectively (the latter using δ95 as216

the scaling factor). The inner scaling is based on the azimuthal friction velocity (vτ) for both the217

azimuthal and radial components. Also the viscous length scale `∗ is based on vτ.1218

In figures 4(a)–(b) the mean velocity profiles for r = 669 from the present case, the experi-219

ments and the 2DTBL can be compared. For the inner scaling (a), all three cases show a good220

correspondence, although the rotating disk data do not show any obvious wake component, as221

also pointed out by [8]. For the outer scaling (b), there is now a significant difference between222

the 2DTBL and the rotating disk, because of the difference in the wake component.223

In figures 4(c)–(d) both the azimuthal and radial mean velocities are plotted for seven Reynolds224

numbers, and as can be seen the maximum radial velocity is an order of magnitude smaller than225

the disk velocity. For r = 669, the value for the maximum of radial velocity as well as its position226

in the boundary layer are in good agreement with the results reported by [8], see their figure 3b.227

In figures 4(e)–(f) the local flow angle (in the rθ-plane) is shown together with the flow angle228

for the laminar flow. As can be seen the flow angle decreases with Reynolds number and at229

the disk surface approaches a value close to 17◦. This is larger than the flow angles reported in230

literature from experiments which are close to 11◦ [6, 8, 9], however is in good agreement with231

the LES results from [11] where the flow angle at the surface was found to be around 16◦, for a232

slightly higher Reθ of 2660.233

The radial velocity component has a maximum that moves outwards in inner scaling (fig-234

ure 4(c)) and inwards in outer scaling (figure 4(d)) when r increases. If instead UN is plotted as235

function of z (see figure 5(a)), the maximum (marked by a cross) lies close to z = 1 for all r.236

This value is slightly larger than the position of the maximum for the laminar profile. In a polar237

plot (see figure 5(b)) similar to the one shown in Ref. [8] (their figure 4) it is clear why their238

estimate of the maximum skew angle of 11◦ is too small, this value was based on measurements239

for 1 − VN & 0.4 whereas the largest angle occurs at the surface of the disk, i.e. 1 − VN = 0.240

1If the total wall shear stress (τw,tot =
√
τ2

w,r + τ2
w,θ) had been used to define the friction velocity it would have

increased by a mere 2%.
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Figure 4: Turbulent mean profiles. (a)–(b) Comparison between 2DTBL [12], experiments [10], and r = 669 for the
present DNS. (c)–(d) Seven different r for the present DNS. (e)–(f) Mean flow angle as function of wall distance for
all seven Reynolds numbers. The figures show inner (left column) and outer (right column) scalings, respectively. The
logarithmic law seen as a dashed line in (a) and (c) has a Kármán constant κ = 0.41 and logarithmic intercept of 5.0.
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3.3. Reynolds stresses and turbulent kinetic energy budget241

In figure 6(a)-(f) the fluctuating data of the azimuthal and radial velocities are shown. Fig-242

ures 6(a)-(c) show the azimuthal velocity fluctuations for a comparison between the same three243

cases as in figures 4(a)-(b), but here plotted scaled with (a) the friction velocity, (b) the wall244

velocity and in (c) as a local intensity. Overall the agreement is good however the experimental245

data show a lower value, especially close to the wall. This may be due to insufficient spatial246

resolution of the hot-wire probe in the experiments. The maximum is located at z+ = 15 with247

a value of v+
rms = 2.7, which is slightly lower than case 2D01. For the outer region, the disk248

simulations show slightly larger vrms levels than both 2D01 and T01. In figure 6(d) the local249

intensity for all seven r is shown and increases with r, approaching a value of 0.4 in the near-wall250

region, corresponding well to the value obtained by [18]. In figures 6(e) and (f) urms and vrms251

distributions are shown for both inner and outer scaling for all seven r.252

It is also of interest to examine higher-order moments and here the skewness is presented,253

defined as254

S v = −
v′3

v3
rms

(10)

where overbar denotes a temporal and spatial average. Here, the skewness factor is defined with255

a negative sign in order to be comparable with the 2DTBL since in that case the high velocity256

is the free stream. There is a clear correspondence between cases 2D01, T01 and r = 669 from257

case R2 for the inner region shown in 7(a). In (b) there are some deviations in the outer region.258

Figure 7(c) shows that the skewness is constant with r in the inner region in contrast to (d)259

showing the outer region. The deviation of r = 261 is due to the boundary layer not being fully260

developed at this position.261

The turbulent kinetic energy (TKE) for the fluctuations is denoted by

k =
u′u′ + v′v′ + w′w′

2

and is shown in figure 8(a) together with its components, all normalized by v2
τ. In (b) the262
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Figure 6: Turbulent rms profiles. (a)–(c) Azimuthal rms plotted as a function of inner scaled wall distance, outer scaled
wall distance, and local turbulence intensity against inner scaled wall distance. (d)–(f) All seven Reynolds numbers, (d)
local turbulence intensity, (e) u+
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Reynolds shear stresses are shown. By following the tensor notation the turbulent kinetic en-263

ergy can be written k = u′iu
′
i/2, and the full equation in Cartesian coordinates reads264

∂k
∂t

+ U j
∂k
∂x j︸ ︷︷ ︸

convection

=

−u′iu
′
j
∂Ui

∂x j︸      ︷︷      ︸
turbulent production

−
∂

∂x j

(1
2

u′iu
′
iu
′
j +

1
ρ

u′j p
′ − ν

∂k
∂x j

)
︸                                    ︷︷                                    ︸

redistribution terms

−ν
∂u′i∂u′i
∂x j∂x j︸      ︷︷      ︸

viscous dissipation

.

(11)

Here, i and j are equal to x, y and z, and Uz = W and u′z = w′. Calculating each full term in265

Cartesian coordinates give scalars that do not have to be transformed to the cylindrical system.266

The turbulent production term is a measure of mean flow energy transfer to the turbulent fluctu-267

ations and is denoted by Pk. The spatial redistribution consists of three terms: the net effect of268
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τ . r = 397 (blue), r = 530 (black, case R1) and r = 669
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turbulent diffusion of u′iu
′
i/2 by u′j (T k); turbulent redistribution caused by the fluctuating pres-269

sure (Πk); and the viscous diffusion of k (Dk). The viscous dissipation of the turbulent kinetic270

energy is further denoted by ε. The resulting data are shown in figure 9 for various Reynolds271

numbers including all terms. Commonly for boundary layers the viscous diffusion of k and the272

viscous dissipation balance each other close to the wall [19], which is also seen here. The peak273

in production is found around z+ = 12 close to where v+
rms has a maximum as expected, and also274

the terms T k and Πk are similar to those for a 2D turbulent boundary layer.275

Finally we calculate the Townsend structure parameter A1 which is defined as

A1 =

[
(vw)2 + (uw)2

]1/2

2k

and gives a measure of the influence of the three-dimensionality of the flow. This is discussed276

at length by Littell and Eaton [8] since one of the motives of their study was to use the rotating277

disk TBL as an example of a three-dimensional TBL. However, as already mentioned they could278

not measure closer to the wall than approximately 100 viscous units. In figure 10 we show our279

DNS results together with the 2DTBL. This shows the difference between the three Reynolds280

numbers of the rotating disk TBL and the 2DTBL is small, and, therefore, that the influence of281

the three-dimensionality on the turbulence is small.282

3.4. Instantaneous velocity fields283

In figures 11 and 12 instantaneous flow fields are shown for cases R1 and R2, respectively284

in the rotating reference frame. The colour scale gives the azimuthal velocity component (VN),285

which is zero at the wall and hence near-wall fluid shows up in a reddish colour. Subfigure (a)286

in both cases show the rθ-plane at z = 0.4 as well as a zR-plane. The turbulent region extends to287

about r = 550 and 700, respectively for the two cases. Since the viscous length scale decreases288

with r (see Eq. 6), the distance from the wall also changes along the radius and is approximately 7289

and 11 for the two cases (for the ranges see the figure captions), hence in both cases the flow field290

shown is outside the viscous sublayer and in the buffer region. What is apparent in both cases291

15



z
+

 

 

10
0

10
1

10
2

−0.4

−0.2

0

0.2

0.4

P
k

ε T
k

Π
k

D
k

Figure 9: All terms in Eq. (11). Showing r = 397 (blue), r = 530 (black, case R1) and r = 669 (red).

z
+

A
1

 

 

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

2D01

Figure 10: The Townsend structure function A1 for three Reynolds numbers: r = 397 (blue), r = 530 (black, case R1)
and r = 669 (red). Also shown are the data from the 2DTBL (2D01) as a dashed line.

16



are the long streaks of low-velocity fluid with patches of high velocity scattered in between. The292

Rz-plane shows large scales that give the boundary layer a ragged edge. In figures (b) and (c)293

parts of the Rθ-plane are expanded and shown for z = 0.2 and 0.4, respectively. They are taken294

at the same time instant and one can clearly see structures that are present at both levels.295

From radial correlations of the azimuthal velocity fields (not shown here) one finds a zero-296

crossing of the correlation function followed by a minimum at ∆r = 2.6 and 2.3 for cases R1 and297

R2 (evaluated at r = 400 and r = 600 respectively) corresponding to about 50 and 65 in viscous298

units. If the minimum is interpreted as half the radial distance between the streaky structures, the299

distance between streaks is in the range of the spanwise scale of low-speed streaks observed for300

a 2DTBL which is usually given as approximately 100 (see for instance Ref. [20]).301

3.5. Spectral maps302

Spectral maps of the azimuthal velocity fluctuations for case R2 at r = 530 and 669 are303

shown in figure 13. They were obtained by a Fourier analysis in the azimuthal direction using304

216 instantaneous fields giving the spectral density E. The data are presented in premultiplied305

form, i.e. E is multiplied with λ, where λ is the wavelength in the azimuthal direction. The306

maxima of the spectra are shown by markers, and additional markers are shown from experiment307

T02 at R = 698 [10] and the simulation data from [12] for the 2DTBL for Reτ = 2500, i.e.308

different data than previously shown. The Reynolds numbers are not fully comparable, although309

both figures show that the maxima of the rotating-disk boundary layer are obtained for shorter310

wavelengths than the 2DTBL, which may be an influence of the streak angle with respect to the311

azimuthal direction.312

4. Summary313

Direct numerical simulation data of the turbulent boundary layer on a rotating disk have314

been extensively compared to previous rotating-disk experiments [10] and data from a flat-plate315

turbulent boundary layer (2DTBL) [12]. Also other previous experiments and one LES study316

of the rotating-disk turbulent boundary layer have been used for comparison. The simulations317

presented correspond well to experiments for the azimuthal mean flow and turbulent statistics318

[10]. Compared to the 2DTBL, a missing wake region and a lower shape factor are shown for319

the rotating disk, in agreement with previous results. The missing wake region is also found for320

the asymptotic suction turbulent boundary layer (see Refs. [21, 22]) and may be a result of that321

the outer flow, both for the rotating disk and the suction boundary layer, is moving towards the322

surface, in contrast to the 2DTBL.323

The vrms level in the near-wall region is, however, shown here to be of similar amplitude324

to the 2DTBL, in contrast to earlier experimental measurements by [10]. The v+
rms peak is in325

agreement for all cases located around z+ = 15. Furthermore, the simulations provide data326

showing the development of the statistics with Reynolds number, for example showing a peak327

in the mean radial velocity located at z = 1 for all radial positions. The local flow angle (skew328

angle) is largest at the surface of the disk and decreases with Reynolds number, but seems to329

approach a value around 17 degrees, which is higher than previously reported. Despite the rather330

strong crossflow component the Townsend structural parameter, A1, is almost indistinguishable331

from that of the 2DTBL, in contrast to the results reported by [8]. All Reynolds stresses, the332

kinetic energy budget terms are also provided along with the spectral maps and these compare333

well with the 2DTBL however shorter azimuthal wavelengths are found in the near-wall region,334

in agreement with the results of [10].335
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(a) z = 0.4

(b) z = 0.2 (c) z = 0.4

Figure 11: Case R1 at T = 2.25 in the rotating-reference frame. (b) and (c) show sections of (a) in greater detail. The
same colour bar applies to (a) and (c). In (a) z+ ranges from 5.8 (r = 280) to 10.3 (r = 550), in (b) z+ = 4.4 at r = 450
and in (c) z+ = 8.7 at r = 450. 18



(a) z = 0.4

(b) z = 0.2 (c) z = 0.4

Figure 12: Case R2 at T = 1.75 in the rotating-reference frame. (b) and (c) show sections of (a) in greater detail. The
same colour bar applies to (a) and (c). In (a) z+ ranges from 9.5 (r = 500) to 12.4 (r = 700), in (b) z+ = 5.5 at r = 600
and in (c) z+ = 11.0 at r = 600.
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Figure 13: Premultiplied (λ+E+) spectral maps. The black contours correspond to [0.1 0.25, 0.4, 0.575, 0.775, 0.95, 1.2,
1.6]. Bold numbers correspond to thicker contour lines. (a) r = 530, (b) r = 669.
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Appendix A.341

Appendix A.1. Calculations of higher order terms342

The velocity can be divided into a mean and a fluctuating part: ui = Ui +u′i . In the simulation343

we collect mean values of the first four moments, i.e. ui, u2
i , u3

i and u4
i . From these it is possible344

to obtain the mean value and the first three central moments of u′i such that:345

Ui = ui (A.1)

u′2i = u2
i − U2

i (A.2)

u′3i = u3
i − 3u′2i Ui − U3

i = u3
i − 3u2

i Ui + 2U3
i (A.3)

u′4i = u4
i − 4u′3i Ui − 6u′2i U2

i − U4
i = u4

i − 4u3
i Ui + 6u2

i U2
i − 3U4

i (A.4)

Similarly it is possible to get the Reynolds shear stress terms as u′iu
′
j = uiu j − UiU j if the mean346

values of uiu j are calculated during the simulation. Similarly higher order products needed to347

obtain other physical quantities can also be calculated. However all these terms are expressed in348

the Cartesian coordinate system and need to be transformed to the (r, θ, z)-system. For details of349

this transformation see Appendix A.2.350

The equation for the kinetic energy of the turbulent velocity fluctuations is given by Eq. (11).351

Also all the correlation terms u′iu
′
iu
′
j and u′j p

′ can be calculated by averaging uiuiu j and u j p352

during the simulation. The derivatives needed to, for example, the dissipation term, are done353

directly in the code with spectral accuracy. The full terms of the kinetic energy equation are354

scalars and therefore no transformation between the two coordinate systems is necessary.355

Appendix A.2. Coordinate transformations356

The conversion between the Cartesian coordinates used in the simulation code and the cylin-357

drical coordinates for the physical analysis of the flow field is done using a transformation matrix358

Q =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (A.5)

This transformation can be applied to various orders of tensors. Transforming the velocity vec-359

tor from the Cartesian coordinates the first order transformation U = QUx is used. Further360

transforming a second order tensor, e.g. Reynolds stress terms, the second order transformation361

UUT = QUxUx
T QT is used, commonly known as ‘the Mohr transformation’. The transforma-362

tions up to forth order using tensor notation can be written as363

Ui = Qi, jUx| j

Ui, j = Qi,pQ j,qUx|p,q

Ui, j,k = Qi,pQ j,qQk,rUx|p,q,r

Ui, j,k,l = Qi,pQ j,qQk,rQl,sUx|p,q,r,s

(A.6)

where the matrices are expanded from one row to the next.364
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