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Abstract 

Soft robotics for medical, endoscopic applications requires a dexterous and compliant mechanism to increase accessibility 

and decrease patient injury. However, soft structures do not offer the level of image and platform stability provided by 

rigid structures. Thus, a variable stiffness mechanism is an ideal solution to reconcile the two requirements of compliance 

and stability; the mechanism explored here is granular jamming. Granular jamming is a phenomenon where particulate 

matter within a membrane can transition from a fluid-like to a solid-like state, based on the level of applied vacuum 

pressure. In the solid-like jammed state, the conventional assumption is made that granule-granule contacts dominantly 

contribute to the system's stiffness. Thus, many works have evaluated the effects of different granule types by 

experimentally varying the sizes, shapes, and material properties of the particles. However, the role of the membrane in 

determining the possible range of stiffness or the variability of granular jamming has not been well studied. This paper 

investigates the effects and significance of membranes for a granular jamming system. Several membranes were 

experimentally tested and analyzed in order to find the amount of flexibility and stiffness they provide when the system is 

in an unjammed and jammed state, respectively. This paper presents for the first time that the membrane plays a 

significant contributing factor in granular jamming stiffness. 

Introduction 

From minimally invasive surgery (MIS) to natural orifice transluminal endoscopic surgery (NOTES), robotics has been 

increasingly popular in the medical field. Many hospitals are already benefiting from robot assisted laparoscopy with 

devices such as the da Vinci; and, for years, flexible endoscopes have aided medical practitioners to examine internal 

organs with minimal invasiveness. These robotic techniques have been shown to significantly improve patient recovery 

periods while decreasing their medical costs (1) (2). Despite these benefits, however, there are a number of hurdles that 

need to be addressed. For rigid arm devices, such as the da Vinci robot and traditional laparoscopic tools, instruments can 

clash with each other, causing additional difficulties in NOTES and laparo-endoscopic single-site surgery (LESS) (3). 

Flexible endoscopes, on the other hand, are preferred in NOTES and LESS, because they provide more maneuverability 

and have fewer trocar port requirements. However, flexible endoscopes lack the platform stability rigid devices provide (4) 

(5). 

A variable stiffness robot takes advantage of the best properties of rigid and soft robotics. Not only will the variable 

stiffness robot have the stability, strength, and manipulation performance of a rigid system, but also the maneuverability 

and access benefits of a soft system (6). Most of the current variable stiffness robots are tendon based, and generally have 

issues with backlash and large external footprints (7) (8) (9) (10). This type of technology can tune their stiffness by 

tensioning all of its cables, but the drawback is that the tip cannot be stiffer than its base. Another popular technique stems 

from the control of the torque output of embedded motors. However, for a MIS application, the micromotors used do not 

exhibit sufficient torque for tissue manipulation (11) (12). There are several other novel techniques for achieving variable 

stiffness in robotics, such as the thermally activated joint (13) and pre-curved concentric tubes (14) (15). Though still new, 

the thermally activated joint can only achieve binary stiffness--fully soft or fully rigid--and the concentric tubes cannot 

dynamically adapt its stiffnesses without compromising shape. 
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Figure 1: Prototype of a variable stiffness endoscope stiffened in arbitrary shapes (top, bottom left, bottom center) and in an unjammed state 
(bottom right). 4 mm spherical granules were used with a polythene membrane. 

Also known as vacuumatics and particle mechanical constraints, granular jamming is a growing field in robotics. It is a 

mechanism which enables particles to act like a liquid, solid, or something in between. As stated by (16), jamming is a 

phenomenon where an external stress can change `fragile matter' from a fluid to a solid-like state. A typical granular 

jamming mechanism consists of three parts: the particles, boundary layer membrane, and a vacuum pump. Normally, the 

particles are free to flow within the membrane, but when vacuum pressure is applied, the membrane “locks” the particles 

in place. Because of this unique feature, many groups have integrated granular jamming into robotic projects such as the 

universal robotic gripper (17), the tendon-supported elephant trunk (18), the jamming skin enabled locomotion robot (19) 

(20), the variable stiffness haptic device (21), the variable stiffness endoscope (5) (22), soft surgical manipulator (23) (24), 

and the emergency vacuum splint (25). Simulations have also been done by several other groups, most notably (26) (27) 

(28) (29) and (30). However, while these groups have examined the effects of granule size, shape, and material on the 

achievable stiffness range (31), the effects of the membrane are not well studied. 

This paper aims to comprehensively examine several types of membrane materials suitable for a granular jamming-based 

medical robot. The sterilizable membranes should be soft and flexible to maintain good contact with the granules, as 

previous works show that such an interaction improves the hysteresis (32). Their effects on the stiffness range, hysteresis, 

and variability will open a broader range of granular jamming analysis, aiding in the optimization of such systems using 

the technology. The experimental results presented in this paper will be a first for variable stiffness robotics, and will be 

an aid in designs of new devices such as the Core-Snake from (33). 

Methods 

For the flexible endoscope, a single joint segment was analyzed to better understand the effects of the membrane during 

granular jamming. The joint was a cylinder 15 mm in diameter and 40 mm in length, filled with 4 mm diameter glass 

spheres. The average packing factor for each test was 0.61 +/- 0.01. As the paper is focused on the membranes, a 

reference material of glass was chosen for the granules. Glass was used for its elastic and frictional properties, as well as 

being a classic granule type in literature. The 4 mm diameter size was chosen based on the author's previous work, which 

showed that 4 mm is an ideal size for the given joint dimensions  (32) (34).  

To comprehensively record the behavior and effect of membranes in granular jamming, three types of tests were 

performed on the granular jammed joint: bending, tensile, and compression tests. These tests are meant to categorize the 

behaviors of the joint from tasks the robot will perform. Because the granules and membranes are decoupled, the joint 

may behave as different equivalent materials for the three types of tasks it must perform. For example, in turning or lifting, 

the behavior of the joint may have a different stiffness characteristic than for pulling or pushing. The bending tests 

 

 

 



correspond to these turning or lifting manipulation tasks, the tension tests correspond to pulling tasks, and the 

compression tests correspond to pushing tasks the joint and robot will perform. 

 

Figure 2: The various membranes tested for their effect on a granular jamming joint were, from left to right: A) vitrile, B) vinyl, C) nitrile, D) latex, 
and E) polythene. 

The five different membranes tested were the following: latex, nitrile, vinyl, vitrile, and polythene. The former four 

materials were chosen based on their applications in the medical field, particularly surgical gloves. Latex is the most 

commonly used surgical membrane, with nitrile and vinyl commonly used as latex-free substitutes. Vitrile is a mixture of 

vinyl and nitrile, offering increased strength over pure vinyl and increased flexibility over pure nitrile. The polythene 

material was chosen from its applications in the food industry, such as vacuum packaged goods. Polythene is a low-

density polyethylene, the most commonly used non-toxic plastic material. Figure 2 shows the five material types selected 

for this paper. 

The experiments were repeated at three different pressure levels: 101 kPa (15 PSI-A), 55 kPa (7.5 PSI-A), and 10 kPa (1.5 

PSI-A). The pressures were achieved by a two-stage, oil-based vacuum pump (Mastercool 90066-2V-220) and measured 

by an absolute pressure sensor (Honeywell 0-30 PSI). Thus, all pressure measurements were done in absolute pressure. 

Additionally, tensile tests were performed on the membranes to quantify the Young's modulus of each material. These 

experiments were done at atmospheric pressure (101 kPa/15 PSI-A) without granules. 

For the bending tests, the joint tip was deflected horizontally by a motorized linear rail for a distance of 10 mm at a speed 

of 1 mm/sec, as seen in Figure 3. The resistive force done by the joint was measured by an ATI Nano17 Force/Torque 

Sensor. This experimental setup was controlled and recorded with LabVIEW. Ten experimental trials were performed for 

each membrane at each pressure level. 

 

Figure 3: The bending experimental setup, where the joint tip is deflected 10 mm horizontally. 



The tensile experimental setup can be seen in Figure 4. The ends of the joint are held in place by grippers, and are 

deflected with a 20% strain. The velocity of the tensioning was 10 mm/min. Five experimental trials were performed for 

each membrane at each pressure level. 

      

Figure 4: Experimental setup for the tensile and compressive tests, where the joint is deflected with a 20% strain in tension and compression, 
respectively. 

Figure 4 also shows the compression experimental setup. Similar to the tensile experiments, the joint's base was fixed 

using grippers, and a displacement of 20% strain was performed. The velocity of the compression tests were also set to 10 

mm/min. Five trials were performed on each membrane for each of the three pressure levels. 

The tension and compression experiments were done with an Instron 5900 Testing System. Data from the first trial of 

each experiment with the Instron were not used, due to the Mullins effect (35). 

The hysteresis value H is normalized for each experiment and is calculated by the difference in area of the loading (top) 

and unloading (bottom) curves divided by the area of the loading curve (  
             

     
⁄ ). 

Results 

The individual results show the measured force or stress for given deflections, the hysteresis, and the variability for each 

of the membranes under each test to underline the differences between membrane materials. Additional analyses were 

performed to summarize the relationship between pressure and effective Young's modulus for each membrane type from 

the experimental results for the bending, tensile, and compression tests, respectively. 

In the results, the value of the Young’s modulus E is used to derive common interpretations the stiffness property of the 

joint from three types of tests: bending, tension, and compression. Because of the unique structure of the granular 

jamming joint, the modulus E differs among the different deformation types. This gives rise to design guidelines for 

membrane material selection depending on the importance of each type of deformation a robot would experience. 

Membrane tensile analysis 

To see the behavior of the membrane and empirically measure the effective Young's modulus E, tensile tests were 

performed on the membranes themselves. Young's modulus E was calculated by the slope of a linear plot fitted onto the 

experimental results, as E=stress/strain. The empty membrane cylinders were subjugated to 20% strain. The thicknesses of 

the membranes were 0.07 mm, with the exception of the polythene, which was 0.06 mm in thickness. The volume of the 

membrane cylinders were all 7070 mm
3
. 



 

Figure 5: Five different membranes tested with 20% tensile strain. (Note: Polythene is on a different scale to show detail) 

Under tensile strain, latex, vinyl, and vitrile exhibit fairly linear behavior with very little hysteresis, as shown in Figure 5. 

Nitrile has a relatively large hysteresis, similar to that of the polythene. In the case of polythene, E was still derived from a 

fitted linear curve, despite the nonlinear behavior. This approximation was taken as it exhibited ten times greater stress 

than the former four membrane types and the resulting E value also showed to be similarly greater. From observation, the 

polythene material's large hysteresis is due to permanent deformation caused by stretching the membrane. 

Performing a pairwise Mann-Whitney U test on the peak stresses, the latex-vinyl and nitrile-vitrile pairs were not 

significantly different (p > 0.2). All other pairs were found to be significantly different (p < 0.008). 

Bending results 

In Figure 6, polythene indeed showed to achieve the highest bending force at 3.12 N, about 30% greater than the next 

highest, nitrile. However, this was at a cost of hysteresis and variability. This shows that a ten-fold increase in E, as seen 

in Figure 5, does not increase the bending force by the same amount. The poor performance in hysteresis is due to the high 

level of permanent deformation the joint undergoes after being loaded, but not from the membrane itself; namely, the 

interaction between the granules and the membrane, as well as granules to granule interactions, caused the joint as a whole 

to deform permanently. This does suggest that the membrane is too stiff to possess the elasticity to reverse the motion of 

the internal particles, though the membrane itself does not permanently deform. At 7 mm, the joint is no longer in contact 

with the force sensor on the return trip, and thus no forces are recorded. On the same macro scale, each of the joints 

exhibit similar amounts of hysteresis at atmospheric pressure. Without a pressure differential, the resistance to bending 

and the elasticity of the joint is dominated by the membrane, rather than the granules. Nitrile and latex have the second 

and third highest stiffness ranges, and they perform better than polythene in terms of both hysteresis and variability. Those 

two materials perform similarly across all the measured parameters with each other, as well. Vinyl and vitrile have lowest 

stiffness ranges, and have similar amounts of variability with latex and nitrile.  

 



 

Figure 6: Bending experimental results from the five membrane types (latex, nitrile, vinyl, vitrile, and polythene) for three internal pressures 
(101, 55, and 10 kPa), with 4 mm smooth glass spherical granules. 

The variability between trials was about 10-12% of the measured force for each membrane at 10 kPa. Thus, while 

hysteresis may be high per trial, there is a level repeatability between trials. We performed a pairwise Mann-Whitney U 

test to ascertain whether the influence of different membranes on the variability of the peak stiffness of the joint were 

significantly different from each other. In the unjammed state (pressure = 101 kPa), all pairs were significantly different 

with the latex-vitrile pair of p < 0.005, and all other pairs giving p < 0.0003. Since the peak stiffness of the unjammed 

state mainly depends on the membrane stiffness, this implies that there is a base level difference in the bending stiffness 

due to the different types of membranes we selected for this experiment. Some pairwise comparisons changed their level 

of statistical significance when we applied the maximum level of vacuum (10 kPa), such as with vinyl and vitrile losing a 

significant difference (p > 0.8). This implies that there is an interaction effect between the type of membrane and the level 

of vacuum. In order to test whether there is a significant overall interaction effect between pressure and membrane type, 

we performed an n-way ANOVA test. We found that, while both the pressure and membrane type have a significant effect 

on the stiffness of the joint separately (p < 0.0001), there is also a significant interaction effect between the membrane 

type and pressure (p < 0.0001). 

In addition to the statistical tests on the peak lateral force, we tested whether membrane type causes a significant 

difference in the force/strain profiles shown in Figure 6.  Each force profile was significantly different from others (p < 

0.0001) for the 10 kPa pressure level. For the 101 kPa pressure level, nitrile and vitrile are similar (p > 0.1). 

To estimate the stiffness parameter of the granular jamming joint, we approximated it as a one end fixed cantilever beam 

undergoing a force at the tip. The purpose of these estimations is to provide a first look at the effect of Young's modulus E 

in the context of granular jamming, despite the joints exhibiting some inelastic behavior. Note that this model does not 

estimate the hysteresis from the unloading phase. The total bending moment M is the following: 

                               | |   | ||    |                    (1) 

 where   is the total moment,   is the length of the beam, and      is the externally applied force. For our bending 

experiments and stiffness parameter estimation based on the cantilever assumption,   was 40 mm. The moment at single 

point along the beam is characterized by the following: 

                            (2) 

 



 where   is the distance from the fixed end. From Equation 2 we can see that the change in moment decreases 

linearly, as   approaches the tip. Thus, with the fixed end undergoing the largest moment, the jammed system will bend 

the most at the base, as seen in Figure 3.  

The beam bending behavior can be written as a fixed-ended solid cylinder undergoing a point load at the free tip, and it is 

written as follows:  
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 where      is the perpendicular displacement of the beam along distance  . Figure 7 shows the calculated beam 

bending shape and corresponding E value from Equation 3, where the tip deflection distance      is kept constant at 10 

mm and      is from experimental data. 

 

Figure 7: Calculated beam bending to find the equivalent Young's modulus E, given a tip force      and tip displacement      

The area moment of inertia   is given as: 
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with   as the radius of the joint. 

Thus, from the experimental bending results, and rearranging Equation 3, E can be calculated as: 
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Figure 8 summarizes the E values for each of the membranes under different pressures. Latex and nitrile exhibited similar 

properties, while vinyl and vitrile also behaved similarly. Polythene showed the largest E, indicating that the membrane's 

E value correlates to the elasticity and stiffness of the joint as a whole. 



 

Figure 8: Relationship between vacuum pressure and stiffness for bending 

Tensile results 

The tensile tests demonstrate that, in tension, the mechanical properties of the membrane affect the performance of the 

joints in jammed states. However, as the granules do not exhibit cohesion, the question remains, does jamming have an 

effect on the joint’s stiffness? At an atmospheric 101 kPa internal pressure, the joint behaved similarly to the membrane-

only tensile test. However, vacuum pressures altered the joint's stiffness characteristics. 

Figure 9 show that the mechanical properties of latex, nitrile, and vinyl are rather similar, but nitrile presents a larger 

hysteresis. On the other hand the polythene is one order of magnitude stiffer than the other membranes and for a 20% 

strain, it undergoes permanent deformation thus presenting a higher hysteresis. In general, the granule-filled joints in these 

tensile tests present an elastic (linear) behavior for small deformation, after which the slope of the graphs changes 

considerably. Indeed, the joint tends to act as a unique material; after this linear region the mechanical behavior of the 

joint can be compared to a sample after reaching its yield stress. The internal particles have been separated from the 

applied load. According to this interpretation, the joint in stiffness varying applications should be used in the 

pseudoelastic tract in order to take advantage at best of the different performances. Thus, the joint should be operated for a 

range of deformation that is different at each vacuum level.  

 

Figure 9: Tensile experimental results from the five membrane types (latex, nitrile, vinyl, vitrile, and polythene) for three internal pressures (101, 
55, and 10 kPa), with 4 mm smooth glass spherical granules. (Note: polythene is on a different scale for detail) 

The latex membrane filled with glass spheres in the case of atmospheric pressure presents a trend similar to the membrane 

alone. When 55 kPa vacuum is applied the slope of the initial elastic tract more than doubles from 0.56 MPa to 1.6 MPa; 

when the vacuum is increased to 10 kPa the slope of the initial tract further increase to 1.8 MPa. Hysteresis in the case of 

 



the test performed at atmospheric pressure is 0.0038 and increases considerably when vacuum is applied to 0.0108 at 55 

kPa up to 0.0138 at 10 kPa, confirming that a high level of energy is dissipated in the jammed configuration due to 

internal friction and permanent deformation of the membrane. 

The elastic properties of latex and nitrile behaved similarly at atmospheric pressure. When vacuum is applied, the nitrile 

stress-strain slopes of the elastic tract increase to 1.8, 3, and 6.3 MPa for the pressure levels 101, 55 and 10 kPa, 

respectively. It is interesting to observe that, at the 10 kPa pressure level, the nitrile elastic tract extends to a higher 

deformation than in the case of latex. 

When at atmospheric pressure, the Young's modulus E of the joint with each membrane are similar to the values found in 

the membrane-only tests, apart from polythene. Thus, without jamming, the tensile strength of the joint is limited by the 

membrane, with granules playing little effect. However, with vacuum, latex, nitrile, and vitrile doubled and tripled their E 

values. Vinyl displayed no significant change, and polythene increased by 50%. 

From the variability standpoint, the variability between trials was fairly low, 1-2 orders of magnitude smaller than those 

from the bending tests.  

 

Figure 10: Relationship between vacuum pressure and stiffness for tension 

Figure 10 shows some materials, such as nitrile, vinyl, and vitrile decrease in stiffness from 55 to 10 kPa. On the other 

hand, latex and polythene increase linearly as more vacuum is drawn. 

Performing pairwise Mann-Whitney U tests on the peak stresses show that, at 101 kPa, all membranes were significantly 

different from each other (p < 0.008), with the exception of nitrile and vinyl (p > 0.4). At 10 kPa, these membranes, like 

all other pairs, become significantly different (p < 0.008). This indicates that though membranes may exhibit similar 

properties when the joint is unjammed, they become distinct when vacuum is applied implying a significant interaction 

effect between the membrane types and level of vacuum. 

The Mann-Whitney U tests for the stress/strain profiles show that, at 10 kPa, each membrane is significantly different 

from the others (p < 0.0001), apart from latex and nitrile (p > 0.1). At 101 kPa, latex is similar to nitrile and vinyl (p > 0.2), 

and nitrile is somewhat similar to vinyl (p > 0.05). 

Compression results 

In most elastic materials, such as rubber, Young's modulus can be found from tension or compression. However, because 

the structure of the joint is composed of granular material, it is possible for the joint to behave differently under 

compression than under tension.  

The compression tests differ largely from either the bending or tensile tests, as the joints show relatively little stress until 

0.15 to 0.18 compressive strain. The reason for this is likely two-fold. The first is due to the granules having restructured 

and repacked to a different jammed state after the first cycle. The dotted lines in Figure 11 show this occurring, as granule 

rearrangement can be seen in drops in stress. Secondly, the membrane could have undergone permanent changes, known 



as the Mullins effect, after the first cycle. As the membrane behavior stabilizes after this first cycle, the analysis is done on 

the subsequent trials.     

In Figure 11, the hysteresis of each membrane varies significantly between atmospheric and vacuumed pressures. In 

atmospheric conditions, the values of hysteresis for all the membranes are about 2-3 times larger than at medium vacuum. 

Vitrile and polythene have similar hysteresis values at 10 kPa with atmospheric pressure, whereas the other membranes do 

not show such an increase in hysteresis. Through observation, the higher hysteresis at atmospheric pressure can be 

attributed to the membranes' inability to return to its initial shape when the Instron returns to its initial position. However, 

at 55 kPa, the stress the membrane imposes on the granules enables them to maintain the joint structure after the Instron 

moves back. This same behavior is observed at 10 kPa for latex, nitrile, and vinyl. For vitrile and polythene, the 20% 

compressive strain is observed to cause some permanent deformation in the joint, possibly from a restructuring of the 

granules. 

 

Figure 11: Compression experimental results from the five membrane types (latex, nitrile, vinyl, vitrile, and polythene) for three internal 
pressures (101, 55, and 10 kPa), with 4 mm smooth glass spherical granules. The dotted lines represent the first loading cycle, which was 
omitted from the analysis due to the Mullins effect. (Note: polythene is on a different scale for detail) 

Like the tensile results, from the variability standpoint, the variability between trials was fairly low, 1-2 orders of 

magnitude smaller than those from the bending tests. 

Young's modulus E was calculated from the slope of the non-zero values between 0.18 to 0.2 strain.  

Figure 12 shows that polythene was not significantly stiffer than other materials at 10 kPa, with vinyl exhibiting the same 

stiffness of E = 3.3 MPa. In fact, vinyl showed a drastically larger stiffness range than any other material, with latex a 

close second. Nitrile and vitrile behaved very similarly in this test. 

 



 

Figure 12: Relationship between vacuum pressure and stiffness for compression 

The pairwise Mann-Whitney U tests for the peak stresses show that, at 101 kPa, each pair is significantly different (p < 

0.008), though nitrile and vinyl were only mildly different (p < 0.01). At 55 kPa, several membrane pairs converge, with 

latex, nitrile, and vinyl behaving similarly (p > 0.1). However, at 10 kPa, all membranes become significantly different 

from each other (p < 0.008), implying that at high vacuum levels, there is a significant interaction effect between the 

membrane types and the level of vacuum. 

The Mann-Whitney U tests for stress/strain compression profiles shows that vinyl and vitrile are mildly similar (p > 0.05) 

at 10 kPa, with all other membrane combinations are distinct (p < 0.005). At 101 kPa, the five membranes were 

significantly different from each other (p < 0.005). 

Discussion 

The comprehensive tests on latex, nitrile, vinyl, vitrile (blend of vinyl and nitrile), and polythene performed in this paper 

spark many interesting points in the world of robotic granular jamming. The material of the membrane affects not just the 

stiffness range, but the variability and hysteresis, as well. From the data analysis, several membranes were not 

significantly different from each other without the presence of vacuum pressure, as exhibited by the pairwise Mann-

Whitney U tests on membrane-only, 101 kPa tensile, and 101 kPa compression tests. However, with the addition of 

granules and vacuum pressure, the membranes diverge to become distinct with statistically significant differences. On the 

other hand, in bending, the membranes were distinct at the 101 kPa level, but had a converging pair at 10 kPa. This 

implies that there is a different type of interaction between the pressure, granules, and membranes in bending than in 

tension or compression. Thus, future designs for granular jamming manipulators must consider the principle motions it 

will exhibit before selecting a membrane type. 

In the case of the polythene, a high stiffness was achieved, likely due to its high tensile modulus characteristic. However, 

as polythene does not stretch elastically it has a high level of hysteresis in a trial. Nonetheless, this does not limit granular 

jamming from being repeatable per se. Despite hysteresis or inelastic deformation shown in Figure 6, Figure 9, and Figure 

11, once air is reintroduced into the joint, it is effectively reset and ready to operate again. In other words, when the joint 

as a whole exhibits inelastic behavior or “permanent” deformation, may it be from the membrane or granules, the joint can 

retain its maximum stiffness characteristic upon unjamming and re-jamming the joint. The re-jamming process 

compensates for changes in previous granule packings and membrane deformations, as shown by the low variability in 

our results. This is unlike conventional materials where inelastic deformation is permanent and translates to poor 

repeatability. Thus, as a robotic mechanism, the variability between granular jamming trials is the important factor for its 

repeatability. For example, in the case of polythene in tension, while it exhibited an average of 42% hysteresis per trial, it 

only exhibited and average of 2.2% in variability between trials. These results provide design considerations for a variable 

stiffness flexible manipulator, where granular jamming is used to tune the rigidity of an endoscopic device, such as the 

device seen in Figure 1. The endoscope is soft to be dexterous and compliant when inserted, but can become rigid to 

provide the camera with a stable platform. Though previous works show that the granules impact the stiffness range and 



profile of the robotic device, our results show the membrane also plays a significant role (p < 0.005 between most 

membranes). 

The conventional preconception is that a thin, flexible membrane is most ideal for granular jamming, such as latex rubber. 

However, our results show that this is not the case, with polythene consistently outperforming the rubber-based 

membranes in stiffness. At atmospheric pressure, the granule-filled joints for each of the membranes performed similarly 

to one another (p > 0.1 for nitrile and vitrile bending), with the exception of polythene. The rubber-like materials latex, 

nitrile, vinyl, and vitrile tended to have better hysteresis and low variability. However, when vacuumed to 55 kPa and 10 

kPa, the joints began to behave much differently from each other. This could be attributed to the interaction between the 

granules and membrane. At atmospheric pressure, the granules play only a small role. When jammed, the membrane's 

ability to maintain stress on granules causes the joints to behave more solid-like. For example, during compression in 

atmosphere, the granules are pushed together and thusly expand the latex membrane. At 10 kPa vacuum, the granules' 

attempt to expand the membrane is counteracted by the latex's constriction due to pressure. Thus, the measured stress 

increases 6-fold, as can be seen from Figure 11. On the other hand, nitrile only had a 3-fold increase. This may be from the 

less flexibility of nitrile, as the membrane-only tests in Figure 5 show that it experiences substantial hysteresis. Similarly 

for polythene, as the material's inherent properties resists expansion, the relative change between atmospheric and vacuum 

is only about a 50% increase in stiffness.  

Additionally, the behaviors of the joints in the three overarching tests showed that, on a macro scale, the granular 

jamming system behaves as a different type of material in bending, tension, and compression, as the Young's modulus E 

change depending on the loading direction. Thus, future robotic manipulators using granular jamming must take the 

performance of desired tasks into consideration, as they differ. 

From (34), changing the granule shape and surface friction can greatly increase the stiffness of the joint. Changing from 

smooth glass spheres to matte plastic cubes increased the stiffness by 1.8 times. From (32), stiffness can be increased by 

using smaller granules. Here, we show that the membrane properties are also a driving factor in achievable stiffness. Thus, 

future applications for granular jamming must use these factors in consideration.  

Conclusions 

This paper presents the characteristics of five clinically approved membrane materials for a granular jamming-based 

flexible robot. Latex and nitrile were found to be similar in bending and tension tests, and are “well-rounded” materials. In 

particular, latex not only has the least variance in E between the bending, tension, and compression tests, but also behaves 

distinctively between atmospheric, 55 kPa, and 10 kPa.  Vinyl and vitrile tend to be quite varied between the load 

scenarios, working better than latex in some while worse in others. Polythene consistently achieved the highest E values 

for all the tests, which may be beneficial for applications focused on stiffness. However, for applications desiring a softer 

state or better stiffness range, latex may be better suited. 

Future work includes further analysis of membrane to granule interactions and designing membranes to optimize such 

interactions. Such as in (32), a bumpy membrane, which increases the friction and couples the membrane to the granules, 

certain properties can be improved. The membrane coupling can improve the tensile performance of a granular jammed 

joint, as the jamming phenomenon begins to apply to the membrane, as well. 
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Table 1: Membrane-only tensile test 

Membrane Type Stress (MPa) Hysteresis Variability (MPa) E (MPa) 

Latex 0.01 0.07 0.006 0.06 

Nitrile 0.01 0.52 0.004 0.06 

Vinyl 0.01 0.24 0.006 0.06 

Vitrile 0.02 0.20 0.007 0.08 

Polythene 0.17 0.53 0.060 0.83 

 

Table 2: Bending test 

Membrane Type Pressure (kPa) Force (N) Hysteresis Variability (N) E (MPa) 

Latex 101 

55 

10 

0.36 

1.72 

2.03 

0.42 

0.43 

0.51 

0.01 

0.08 

0.17 

0.31 

1.47 

1.74 

Nitrile 101 

55 

10 

0.39 

1.86 

2.12 

0.36 

0.40 

0.51 

0.02 

0.09 

0.14 

0.33 

1.60 

1.82 

Vinyl 101 

55 

10 

0.13 

1.42 

1.79 

0.52 

0.50 

0.44 

0.01 

0.12 

0.21 

0.11 

1.22 

1.54 

Vitrile 101 

55 

10 

0.27 

1.16 

1.77 

0.55 

0.69 

0.61 

0.02 

0.11 

0.18 

0.32 

1.00 

1.52 

Polythene 101 

55 

10 

0.48 

2.42 

3.12 

0.49 

0.48 

0.73 

0.03 

0.13 

0.36 

0.41 

2.08 

2.68 

 

Table 3: Tensile test 

Membrane Type Pressure (kPa) Stress (MPa) Hysteresis Variability (MPa) E (MPa) 

Latex 101 

55 

10 

0.01 

0.03 

0.04 

0.40 

0.36 

0.30 

0.0002 

0.0010 

0.0011 

0.06 

0.12 

0.20 

Nitrile 101 

55 

10 

0.02 

0.04 

0.05 

0.26 

0.28 

0.30 

0.0009 

0.0020 

0.0005 

0.06 

0.19 

0.19 

Vinyl 101 

55 

10 

0.02 

0.02 

0.02 

0.37 

0.35 

0.53 

0.0006 

0.0009 

0.0012 

0.08 

0.09 

0.08 

Vitrile 101 

55 

10 

0.03 

0.06 

0.08 

0.40 

0.30 

0.27 

0.0006 

0.0013 

0.0014 

0.11 

0.25 

0.33 

Polythene 101 

55 

10 

0.11 

0.14 

0.19 

0.40 

0.43 

0.42 

0.0010 

0.0030 

0.0042 

0.43 

0.53 

0.60 

 

Table 4: Compression test 

Membrane Type Pressure (kPa) Stress (MPa) Hysteresis Variability (MPa) E (MPa) 

Latex 101 

55 

10 

0.01 

0.03 

0.06 

0.12 

0.06 

0.04 

0.0002 

0.0009 

0.0006 

0.11 

1.06 

2.66 



Nitrile 101 

55 

10 

0.01 

0.02 

0.03 

0.28 

0.02 

0.09 

0.0003 

0.0002 

0.0010 

0.14 

0.86 

1.37 

Vinyl 101 

55 

10 

0.01 

0.03 

0.08 

0.30 

0.07 

0.05 

0.0006 

0.0007 

0.0016 

0.17 

2.13 

3.30 

Vitrile 101 

55 

10 

0.01 

0.02 

0.05 

0.29 

0.09 

0.21 

0.0005 

0.0005 

0.0005 

0.36 

0.91 

1.26 

Polythene 101 

55 

10 

0.09 

0.12 

0.13 

0.20 

0.09 

0.17 

0.0012 

0.0014 

0.0017 

2.25 

3.31 

3.50 

 

 


