
A

Effective Verification for Low-Level Software with Competing
Interrupts

LIHAO LIANG, TOM MELHAM, and DANIEL KROENING, University of Oxford

PETER SCHRAMMEL, University of Sussex

MICHAEL TAUTSCHNIG, Queen Mary University of London

Interrupt-driven software is difficult to test and debug, especially when interrupts can be nested and subject

to priorities. Interrupts can arrive at arbitrary times, leading to an exponential blow-up in the number of

cases to consider. We present a new formal approach to verifying interrupt-driven software based on symbolic

execution. The approach leverages recent advances in the encoding of the execution traces of interacting,

concurrent threads. We assess the performance of our method on benchmarks drawn from embedded systems

code and device drivers, and experimentally compare it to conventional approaches that use source-to-source

transformations. Our results show that our method significantly outperforms these techniques. To the best

of our knowledge, our work is the first to demonstrate effective verification of low-level embedded software

with nested interrupts.

1. INTRODUCTION

Interrupts are a key design primitive for embedded software that interacts closely
with hardware. The interrupt mechanism enables timely response to outside stimuli
in a power-efficient way. Interrupts are common in all styles of computing platforms,
including safety-critical embedded software, low-power mobile platforms, and high-end
information systems.

But interrupt-driven code is difficult to engineer. Device drivers, typical examples of
software that use interrupts heavily, are known as the “fault-hotspots” of the Linux Ker-
nel [Chou et al. 2001; Palix et al. 2011]. The crux of the problem is the non-determinism
inherent in systems that use interrupts; the hardware can divert control to the interrupt
service routine (ISR) at any time, resulting in surprising interactions between the code
that is interrupted and the ISR. The problem is exacerbated by interrupt nesting, where
the ISR itself can be preempted by interrupts with higher priority.

Most existing approaches to validating interrupt-driven software rely on testing.
But testing is particularly unreliable in the case of nested interrupts, as the number
of possible interleavings—i.e. interspersions of interrupt arrivals into a run of the
code—grows exponentially in the number of interrupts that occur. Bugs are therefore
easily missed, and any errors that are observed are hard to reproduce.

The concurrent nature of interrupt generation and handling and the sheer size of the
search space suggest a formal approach to validation. Model Checking, in particular,
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shines when applied to problems with subtle corner cases. Several model-checking
based approaches to the problem have therefore been explored. A standard technique
is to instrument the source code of the program by inserting conditional calls to the
interrupt procedure, in effect mimicking the semantics of the hardware interrupt.
The instrumented program is then passed to a conventional analyser for sequential
programs. The approach is straightforward to implement, and is in principle viable in
the case of nested interrupts as well. Sophisticated instances of this type of approach
use over-approximating analyses, akin to partial-order reduction, to determine program
locations where the call to the ISR can be omitted safely—for example when only
variables that are not shared with the ISR are read or written [Schlich et al. 2009;
Bucur and Kwiatkowska 2011].

The interleaving semantics of programs with nested interrupts closely resemble
the semantics of programs with multiple threads. In particular, it is clear that the
behaviours under interrupt semantics are a subset of the behaviours under thread
semantics. This suggests an analysis using Model Checkers for concurrent programs,
such as SPIN [Holzmann 1997]. False alarms caused by the over-approximation can be
addressed by means of suitable instrumentation. We discuss this approach in Sec. 4.

The key contribution of this paper is a new alternative approach. It leverages recent
advances in SAT-based analysis of concurrent systems. The central idea is to collect
the set of possible events (reads or writes) in a system comprising an interrupt-driven
program and its ISRs, and construct from these events a formula that relates their
relative ordering by means of a symbolic happens-before relation. The formula is then
passed to a modern SAT or SMT-solver together with a constraint that specifies the set
of error states. If the solver determines the formula is satisfiable, an error trace giving
the exact sequence of events can be extracted from the satisfying assignment.

The method has been shown to be effective for interleaving semantics of threads,
including multi-core memory models with relaxed consistency [Alglave et al. 2013].
CBMC, a tool implementing this idea, was awarded the Gold medal in the “Concurren-
cySafety” category in the 2017 software verification competition. The work on memory
models reported by Alglave et al. [2013] explores a weakening of the thread semantics to
capture the additional behaviours in the multi-core case. By contrast, our contribution
in this paper is to employ a specially designed strengthening of the interleaving seman-
tics of threads, in the form of a symbolic encoding by a partial order that more precisely
captures the subset of interleavings required to model nested interrupts faithfully.

The novel encoding we present here provides the first demonstrated method for
effective verification of software with nested interrupts. This work builds on—but also
substantially extends—the framework of Alglave et al. [2013] to address this entirely
different application area, demonstrating the essential generality of this framework.
We provide a theoretical analysis of this new extension in Sec. 5.5, and experimental
results that explore its effectiveness in section 6.

2. NESTED INTERRUPTS

Interrupt semantics is very platform-dependent. On some microcontrollers (e.g. ARM
Cortex-M, AT89CXX), priorities or priority groups can be configured, whereas others use
fixed priorities (e.g. AVR1305). There are architectures where lower-priority interrupts,
when enabled, can preempt higher-priority ones (e.g. ATMEL256). The primary way
to implement priorities is by enabling and disabling interrupts appropriately, e.g. by
means of API functions such as AVR’s sei and cli instructions.

In this paper, we target the following interrupt semantics. When entering an ISR, all
interrupts are masked by the hardware and thus ignored. The ISR can then change
which specific interrupts are globally enabled or disabled by issuing a command, e.g. by
setting particular bits in a global control register. The interrupt mask can then be lifted,
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ISR D iret
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Fig. 1: A complex scenario of nested interrupts

allowing whatever interrupts are enabled at that point to subsequently preempt the
execution of the ISR. As an example consider Fig. 1, where interrupt a is preempted by
interrupts b and c, which is in turn preempted by interrupt d. The state recording which
interrupts are enabled and which are disabled is global, and so any changes made by
an ISR to this state remain in force when it completes execution.

Note that interrupts with priorities are a special case of this semantics, where the
interrupts enabled during execution of an ISR are only those with higher priority. The
handling of lower-priority interrupts is thus suspended until the handling of those with
higher priority is completed. So, in principle, our semantics covers the vast majority of
microcontrollers. For the modelling approaches we discuss later in this paper, however,
we propose more direct ways in which priorities can be handled.

We illustrate the semantics of programs with nested interrupts through the simple
code fragment in Fig. 2. In this example, the interrupt handler ISR A enables the
interrupt handled by ISR B. This permits the execution of ISR A to be preempted by an
interrupt that is then serviced by ISR B.

In this work, we focus on verification of safety properties, such as user-defined
assertions. An example occurs in the code of ISR B in Fig. 2. Suppose interrupt ISR A

enables interrupt 2, as shown, and interrupt ISR B does not enable any interrupts.
Then the property (x == 6) in ISR B always holds because the execution of ISR B cannot
be interrupted. But if interrupts are enabled incorrectly—as depicted in Fig. 3—the
assertion (x == 6) will be violated. The ISR ISR B can be interrupted and the invoked
ISR can change the value of y just before the assignment to x in ISR B is executed.

We note that an interleaving semantics in which ISRs are treated as threads would
admit an assertion-violating execution in the example of Fig. 2. This is because in a
multi-threaded program, between statements y = 2 and x = 3 * y of ISR B, the control
can return to ISR A which then updates the value of y. Consequently, tools for multi-
threaded software verification, naı̈vely applied, can report an assertion violation that
is not possible in any actual execution of the program. This motivates the need for
techniques that model the semantics of interrupts more precisely than threads do. The
program analysis principles discussed in this paper for interrupt handling also apply to
the analysis of prioritised, preemptive task scheduling policies.

irqreturn t ISR A(...) irqreturn t ISR B(...)

{ // start execution {
// enable interrupt B ...

... y = 2;

y = 1; x = 3 * y;

... assert(x == 6);X

... ...

return IRQ HANDLED; return IRQ HANDLED;

} }

Fig. 2: Motivating example
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irqreturn t ISR A(...) irqreturn t ISR B(...)

{ { // start execution

... // enable interrupt A

... ...

... y = 2;

y = 1; x = 3 * y;

... assert(x == 6);  

... ...

return IRQ HANDLED; return IRQ HANDLED;

} }

Fig. 3: Motivating example (modified)

3. INTERRUPT SEQUENTIALISATION

The first conventional approach we compare our new method with is a source-to-source
transformation that translates a program with interrupts into a sequential program,
similar to the approach proposed by Kidd et al. [2010]. This allows us to analyse
interrupt-driven code by leveraging existing verification tools for sequential programs.

Interrupts can happen at any program point where they are enabled. An intuitively
simple way to model this as a sequential program is to insert a non-deterministic call to
the handler of an interrupt wherever it is enabled. Semantically, a non-deterministic call
is a function call that—independently—either is or is not invoked each time program
control passes through the point at which it occurs. This models the contingent arrival,
at that point of program execution, of interrupts that are generated externally.

We extend this idea to encompass the arrival and handling of nested interrupts.
In this case, the transformation is realised by the insertion of (unconditional) calls to
a certain scheduling function, instead of to a fixed interrupt handler. The scheduling
function non-deterministically invokes handlers for the interrupts that are enabled.
An optimisation resembling partial-order reduction is then used to reduce the number
of calls to the scheduling function. This retains an invocation of the scheduler only in
certain program locations, namely just before any program statement that has potential
run-time interactions with interrupts through shared variables.

The basic idea is well-known [Bucur and Kwiatkowska 2011]. To the best of our
knowledge, however, our transformation is the first to combine generalisation through
a scheduling function that models potentially nested arrivals of diverse interrupts with
an optimisation similar to partial-order reduction to verify low-level software with
nested interrupts. We also provide experimental results (Sec. 6).

3.1. Modelling Nested Interrupts using a Scheduler

We define a scheduling function together with two global variables: count is a bound
on the number of interrupt arrivals that can occur during program execution, and
the Boolean irq enabled[i] indicates whether interrupt i is currently enabled. At the
beginning of the interrupt-driven code, count is set to a positive integer and the ar-
ray irq enabled is initialised to zeros. Then irq enabled[i] is set to 1 right after any
statement in the original code that explicitly enables interrupt i.

The scheduling function in Fig. 4 works as follows. First, if count is already zero the
scheduler does nothing and exits. Otherwise, up to count interrupts might still occur.
To decide which ones do occur, at this point of the program execution, the scheduler loops
count times and, in each iteration, makes a non-deterministic choice among all possible
interrupts. If the chosen interrupt is enabled, according to irq enabled, and count has
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void schedule_irq(void) {

int j = count;

int irq;

for (int i = 0; i j; i++) {

// non-deterministically generate candidate irq

irq = nondet_int() ;

assume(irq = 0 && irq num_irqs);

// if irq is enabled, contingently generate the interrupt

if (count != 0 && irq_enabled[irq] && nondet_bool()) {

count--;

// invoke the ISR, preempting the calling program

switch (irq) {

case 0: ISR_A(); break;

case 1: ISR_B(); break;

...

default: ;

}

}

}

}

Fig. 4: Scheduling function

not reached zero, the scheduler makes a non-deterministic choice between doing nothing
(to simulate that this interrupt does not occur) and calling the corresponding interrupt
handler, decrementing count. The variable count is checked in the conditional inside
the loop because the ISRs may themselves be interrupted and so have invocations of
the scheduler within them that also decrement count.

In the special case where interrupt priorities are explicit, a global array irq pty is
used to store the priority of each interrupt. When the scheduler generates a candidate
interrupt, it is considered further only if its priority is strictly higher than the currently-
executing interrupt (if any) stored in a global variable curr pty. Then if the scheduling
function decides to invoke an interrupt handler, it stores the current interrupt priority
in a variable local to the scheduler, and updates curr pty to the priority of the interrupt
being handled, in the same way as Kidd et al. [2010]. Then it can restore curr pty to
the previous priority upon return from the invoked handler.

Although in our experiments we bound the number of interrupt arrivals, the sequen-
tial translation can be extended to handle an unlimited number of interrupt arrivals.
To do so, we eliminate the count variable and replace the main loop with an infinite one.
Each time through the loop, the scheduler makes a non-deterministic choice between
exiting and generating another candidate interrupt. The resulting code might then be
analysed by an unbounded model checker.

3.2. Reducing Scheduler Calls

In the naı̈ve approach, interrupt arrivals are modelled by inserting a call to the sched-
uler at every boundary between instructions in the program to be translated, including
the code of each of its interrupt handlers. But this will almost certainly make formal
analysis computationally intractable. We therefore use an optimisation that strongly
resembles partial-order reduction [Godefroid 1994; Godefroid and Wolper 1991; Katz
and Peled 1988; Peled 1994; Clarke et al. 2001] to lessen the number of calls to our
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scheduling function, while preserving the semantics given by the naı̈vely-transformed
program. As with partial-order reduction, the idea is to reduce the number of permuta-
tions of a sequence of individual state transitions that need to be considered, when the
order of the transitions does not affect the result of formal analysis.

Our optimisation does a light-weight static analysis of the program to determine calls
to the scheduler that can be omitted. Consider a point in the original program between
two program statements, P and Q. Informally, this call may be omitted if nothing an
invocation of the scheduler might do could interact via shared state with anything the
statement Q does. More precisely, we can omit this call if:

— P and Q do not enable or disable any interrupts, and
— neither any interrupt enabled between P and Q, nor any nested interrupts that may

be invoked within this interrupt’s execution, have variables shared with Q that are
written by Q and read by the interrupts, or vice versa.

In essence, the state transitions effected by the scheduler and by Q are independent,
and so any invocation of the scheduler can be deferred until after the execution of Q.

4. MODELLING INTERRUPTS WITH THREADS

The second source-to-source transformation we use for comparison generates multi-
threaded code and was suggested by Regehr and Cooprider [2007]. This method verifies
program properties for specific, user-defined interrupt arrival scenarios, rather than
modelling all possible patterns of interrupt arrival. The method requires us to know
which interrupts are enabled at every point of program and ISR execution. We then
choose a collection of locations, at each of which we insert some instrumentation that
models the potential for a specific enabled interrupt to arrive at that or any subsequent
point of program execution. These locations can be in the ISRs as well as in the main
program. Interrupt re-entrance is not allowed, but a particular interrupt can arrive and
be handled multiple times in succession.

This technique uses threads to model interrupts. The basic setup is as follows:

(1) We start the main program as a thread.
(2) At any point in the original code where an interrupt is enabled, we may insert code

that explicitly spawns a further thread that executes that interrupt’s ISR. We endow
each such thread with a unique and distinct copy of its ISR function body, so that we
can distinguish multiple arrivals of the same interrupt.

(3) We instrument the code so that a thread modelling an interrupt arriving and being
handled starts executing only if its corresponding interrupt is enabled.

(4) Our instrumentation also ensures that execution of an enabled ISR preempts
execution of the main program or the ISR that enabled it, but not vice versa.

Using threads this way means that an ISR can start running any time after the thread
that models it is spawned, by the interleaving semantics of multi-threaded programs.
Note that when we model multiple invocations of the same ISR, we create separate
function bodies for each one. This allows them to have different instrumentations.

To ensure that only the threads of enabled ISRs can preempt those of enabling ones
or the main program, we assign a depth to each thread according to the following rule.
If thread j is spawned by thread i, then the depth of thread j is greater than that of
thread i. If two threads are spawned by the same ISR thread (or the main program),
then their depth is the same. We then instrument the code so that execution of all
threads with smaller depth is blocked by any execution of a thread with greater depth.

Just as in the sequential transformation of Sec. 3, since we instrument at the source
code level, we treat each program statement as the smallest atomic block in any in-
terleaving of the execution of program threads. Function calls in the ISRs are inlined,
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because two ISRs may call the same function and may therefore need different instru-
mentations. We further assume the existence of a global Boolean array irq enabled[i]

that records whether each interrupt i is currently enabled or not. We suppose the state
of this array is maintained either by the programming language or explicitly by the
programmer. At the beginning of ISR i’s function body, we insert the atomic statement
below to make sure ISR i starts executing only if interrupt i is enabled.1

atomic { assume(irq enabled[i]); }

This ensures that a thread modelling an interrupt, spawned at a point in the program
where the interrupt is enabled, will not begin execution at some later time if the
interrupt has in the meantime been explicitly disabled.

Another global array thread running records the currently executing thread, along
with all the threads the executions of which have begun but have been suspended. The
code for each thread i is instrumented with assignments that set thread running[i] to 1

initially and to 0 when the thread completes. We then insert at every boundary between
statements throughout the code for thread i the following atomic statement

atomic { assume(thread running[j0]==0 && ... && thread running[jn]==0); }

where threads j0 to jn are all those threads, excluding thread i itself, the depths of
which are greater than or equal to that of thread i. This assume statement ensures
that the program statement it precedes is executed only if no thread of greater or equal
depth is running—i.e. execution of this ISR has not been interrupted or no other ISRs
that cannot be preempted by this ISR are currently running.

In the special case where interrupts have explicit priorities, we take an approach
similar to that explained in Sec. 3. A global array irq pty is used to store the priority of
each interrupt. All threads that model an arrival of the same interrupt will have the
same priority. We then use a slightly modified form of instrumentation, in which the
atomic assume statement is as shown above but threads j0 to jn are all the threads,
excluding thread i, the priorities of which are greater than or equal to that of thread i.
That is, we simply replace ‘depth’ by ‘priority’.

With all this instrumentation, the resulting translated program can be checked
by verification tools for concurrent programs, such as CBMC [Alglave et al. 2013],
ESBMC [Morse et al. 2014], or CSeq [Inverso et al. 2015].

5. ENCODING INTO PARTIAL-ORDER CONSTRAINTS

We now present the primary contribution of this paper, a new symbolic encoding for
interrupt-driven programs with interrupt nesting. The validation methodology and
modelling approach are the same as in Sec. 4: the user verifies properties for specific
interrupt arrival scenarios, which are modelled by spawning ISR threads at selected
points in the program. As with the approach in Sec. 4, we can model multiple arrivals
of the same interrupt by creating separate copies of the ISR function body for each one.
By doing so, we can decide statically the depth of each invocation of ISRs. But instead
of instrumenting the source code to constrain the resulting concurrency interleavings,
we encode the concurrent program execution and express the interleaving constraints
directly by a SAT/SMT formula.

The idea is to translate a concurrent program into atomic memory read/write events,
and then describe the interleavings of these events that can occur as a symbolic partial
order expressed by a formula. The overall encoding is a formula of the form SSA∧PORD ,

1In many verification tools, atomic sections are supported by a pair of constructs VERIFIER atomic begin()

and VERIFIER atomic end() that indicate the beginning and the end of an atomic section, respectively. The
atomic assume statement can be realised by using an atomic section and the VERIFIER assume primitives.
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Source Code
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Symbolic Event
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Decision Procedure

Fig. 5: Overview of encoding into partial-order constraints

where conjunct SSA encodes the data and control structure of the program, in the
style expounded by Alglave et al. [2013], and conjunct PORD is a predicate that over-
approximates the set of all possible interleavings of ISRs that can occur during execution
of the program. (We discuss the over-approximation in Sec. 5.5, after presenting the
algorithms.) As outlined in Sec. 2, the program may contain assertions for verification,
which will be included in SSA. A satisfying assignment to the variables in the formula
corresponds to a potential error trace in the interrupt-driven program, identifying an
assertion violation. An overview of our method is shown in Fig. 5.

We emphasize that our partial-order encoding for nested interrupts is not to be
confused with partial-order reduction, which was mentioned in Sec. 3.2.

5.1. Static Single Assignment Form

The first conjunct SSA in our encoding is built in the same way as is employed by Alglave
et al. [2013], which is based on a variant of the logical encoding of the static single
assignment (SSA) form of Clarke et al. [2003]. In SSA, each occurrence of a program
variable is annotated with an index; assignments can then be turned into equalities,
with the indices yielding distinct variables in the resulting equation. For example, the
assignment x := x + 1 results in the equality x1 = x0 + 1. Unique indices are also
used in loop unwinding; for example, iterating x := x + 1 twice gives x1 = x0 + 1 and
x2 = x1 + 1. Each equation has a guard, which is the disjunction over the conjunctions
of the branching conditions that occur along all the program paths leading to the
assignment statement. So guards encode the control flow of the program. For more
information, including the treatment of pointers, see Clarke et al. [2003].

For a concurrent program, a distinct index is used for each occurrence of a shared
variable. Consequently, the connection between reads and writes across concurrent com-
ponents of the program is broken. Reading a shared variable is then non-deterministic,
over-approximating the behaviours of the program. For example, in the program given
in Fig. 6, ISR B reads the value of global variable x and uses it to compute b. Depending
on whether ISR B starts its execution before ISR A, x in ISR B can get value x1 from
ISR A or x0 from the initialisation step. As both scenarios are possible, we use a new
index x2 to capture both cases in the encoding. The construction of PORD then includes
constraints to enforce consistency of corresponding reads and writes [Alglave et al.
2013]. The following two subsections elaborate on how to construct PORD .

5.2. Symbolic Events

Once the SSA encoding SSA is obtained, we construct a collection of symbolic memory
events based on the occurrences of variables being read or written. A symbolic memory
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volatile unsigned x = 0, y = 0; x0 = 0 ∧ y0 = 0

volatile unsigned a = 0, b = 0; a0 = 0 ∧ b0 = 0

void* ISR A(void* arg) {
x = 1; x1 = 1
a = y + 1; a1 = y1 + 1

}

void* ISR B(void* arg) {
async: ISR A(); // spawn ISR A thread

y = 1; y2 = 1

b = x + 1; b1 = x2 + 1
}

void main() {
async: ISR B(); // spawn ISR B thread

assert(!(a == 1 && b == 1)); a2 = 1 ∧ b2 = 1
}

Fig. 6: An example of the static single assignment form for concurrent programs

x0 = 0 ∧ y0 = 0 (m1) W x 0 (m2) W y 0

a0 = 0 ∧ b0 = 0 (m3) W a 0 (m4) W b 0

x1 = 1 (A1) W x 1

a1 = y1 + 1 (A2) R y y1 (A3) W a a1

y2 = 1 (B1) W y 1

b1 = x2 + 1 (B2) R x x2 (B3) W b b1

a2 = 1 ∧ b2 = 1 (m5) R a a2 (m6) R b b2

Fig. 7: Symbolic memory events for the program in Fig. 6

event has four parts: a unique identifier, a direction (read or write), the memory location
that is read or written, and a value, which may be given by a symbolic expression
containing variables.

Consider the example in Fig. 7. The SSA equation a1 = y1 + 1 arises from the
statement a = y + 1 in ISR A. This generates two symbolic memory events: (A2) R
y y1 and (A3) W a a1. Event A2 reads memory location y (i.e. the variable y in the
original program) with symbolic value y1. Event A3 writes to the memory location a

with symbolic value a1, which is equal to y1 + 1 as given in the SSA equation.

5.3. Partial-Orders for Nested Interrupts

Using the symbolic memory events just described, we construct a symbolic partial order
as a formula PORD that over-approximates the set of all possible interleavings of reads
and writes that can occur in any execution of the original program. The motivation for
making an over-approximation is to reduce the size of PORD by using data dependencies
to define control dependencies in program executions. As will be seen in Sec. 5.5, this
is still precise for non-nested interrupts—but it may signal false alarms in some more
complex scenarios. We believe, however, that it is still precise enough in practice, which
is confirmed in our experimental studies in Sec. 6.

Our encoding is an extension of the framework explained by Alglave et al. [2012]. It is
based on the idea of an event graph of reads and writes to shared memory locations. An
event graph represents a set of candidate executions of the program with a particular
set of control-flow choices for each thread, in which memory reads and writes happen in
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(m1) W x 0 (m2) W y 0

(m3) W a 0 (m4) W b 0

(A1) W x 1

(A2) R y y1

(A3) W a a1

(B1) W y 1

(B2) R x x2 program order

(B3) W b b1 read-from
write serialisation

from-read

nested-isr

(m5) R a a2 (m6) R b b2

Fig. 8: Event graph for the example program in Fig. 6

a certain partially-constrained order between different threads. There may be many
different event graphs consistent with a given program, each describing different
interrupt-arrival scenarios. The nodes of an event graph are the symbolic memory
events of the program. For clarity of presentation, we sometimes just write the unique
identifier component of a symbolic memory event as a node, it being understood that the
other three components are obtainable from the identifier they are associated with. The
edges of an event graph model a particular global happens-before order of the memory
events that occur across the main program and the ISR threads.

There are five kinds of edges in an event graph that indicate specific types of ordering
relationship between events: program order (po), write serialisation (ws), read-from
(rf), from-read (fr), and nested-isr (ni). An event graph is said to be valid if po ∪ ws ∪
rf ∪ fr ∪ ni is acyclic—i.e., there are no cyclic dependencies among the read and write
events in the event graph. One valid event graph for the example program introduced
in Sec. 5.2 is given in Fig. 8. This event graph corresponds to the arrival and handling
of interrupt A during the handling of interrupt B, just after execution of the first
assignment statement in ISR B.

We now explain each relation in detail. We write thread(e) to denote the thread that
generates memory event e, whether of an ISR or the main program. Note that memory
events e and e′ may belong to the same ISR, but this does not necessarily mean that
thread(e) = thread(e′), as they may belong to two different copies of the ISR function
body—i.e. two different threads. We define depth(e) to be the execution depth of the
thread that contains e, the same way we define depth in Sec. 4.

— The relation program order (po) is defined by the textual order of instructions within
the code for each thread, or the main program. It relates only memory events that
belong to the same thread. In the example event graph given in Fig. 8, the events
within each handler and the main program are ordered as indicated by the numeric
suffix of their identifiers.

— The relation write serialisation (ws) is the union of a set of total orders, each of
which orders all the write events that access a specific memory location. For example,
in the event graph in Fig. 8, ws = {(m1, A1), (m2, B1), (m3, A3), (m4, B3)}. The ws
relation represents an order in which the write events to each memory location occur
during an execution of the program and the modelled interrupts.

— The relation read-from (rf) relates each read event to a unique write event from
which it is assumed that the read gets its value. More precisely, for all read events
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(r) R x a there is unique write event (w) W x b which accesses that same memory
location x such that (w, r) ∈ rf. As will be seen later, each such edge in the graph
adds a constraint a = b to the overall partial-order encoding—because, of course, r
must read the same value that was written by w. In our example event graph, read
event A2 reads the value of memory location y that is written by write event m2.

— The relation from-read (fr) contains certain read-write event pairs (r, w) that access
the same memory location and thereby constrain the read r to happen before the
write w. It is constructed as follows. Suppose there is a pair (w, r) in the read-from
relation rf. That is, it is assumed that r reads the value written by w. Now consider
any write w′ that occurs after w, according to the write serialisation relation ws.
The read event r must happen before the write event w′, for otherwise r would have
gotten its value from w′ instead of w. We express this constraint by having (r, w′) ∈
fr. In our example, (m2, A2) ∈ rf and (m2, B1) ∈ ws, so (A2, B1) ∈ fr.

Finally, we define the nested-isr (ni) relation. This represents constraints on the order
of memory events that arise due to the program semantics of interrupt-handling. Recall
from Sec. 2 that all interrupts are masked by the hardware when an ISR is entered.
The ISR can then selectively enable or disable individual interrupts, before lifting the
mask. If ISR i enables interrupt j, which subsequently arrives during the execution of
ISR i, the execution of ISR j must finish before the execution of ISR i can resume. The
nested-isr relation captures this semantics.

Formally, the relation nested-isr (ni) is defined as follows. For all memory events e,
e′ such that thread(e) 6= thread(e′) and depth(e) ≤ depth(e′), if (e′, e) ∈ ws ∪ rf ∪ fr, then
for all events e′′ such that (e′, e′′) ∈ po, we put (e′′, e) ∈ ni. Intuitively, suppose e′ is in a
thread executing ISR j and e′ happens before e, which is in a thread with equal or lower
depth that is executing ISR i. This means that ISR i has been interrupted by ISR j,
which generates memory event e′ before execution of ISR i has reached memory event e.
Since ISR j must exit before control is returned to ISR i, any memory events e′′ in the
execution of ISR j that occur after e′ in program order must also happen before e. So we
have (e′′, e) ∈ ni. In our example, interrupt A has arrived and is handled during the
execution of ISR B, indicated by (A1, B2) ∈ rf. Then ISR A must complete its execution
before the control goes back to ISR B, so we have (A3, B2) ∈ ni. This is depicted as a
solid, bold edge in Fig. 8.

5.4. Algorithms for Computing Constraints for Symbolic Partial Orders

We now elaborate on the algorithms for computing the formula PORD , which charac-
terises a set of possible interleavings among the ISRs and the main program under
analysis. We can view PORD as the set of all valid event graphs that are consistent
with the structure of the program and with the semantics of the interrupt scenarios
with which we have instrumented the program. As we shall see later, PORD is a slight
over-approximation of this set; that is, it admits some event orderings that cannot occur
in any real program execution. This will be explained in detail in Sec. 5.5.

Algorithms 1–3 take as input the set of all the symbolic events of a program with
nested interrupts and its program order po. They produce as output sets of constraints
that characterise the four relations between symbolic events in a valid event graph
for the program. The formula PORD is the conjunction of all these constraints. Each
algorithm computes a set of constraints for one of the relations write serialisation
(ws), read-from (rf), or from-read (fr). In addition, each algorithm computes one part
of the constraints for the nested-isr (ni) relation—namely those constraints on ni that
arise from the other constraints that the algorithm computes. Our algorithms generate
the same constraints for relations ws, rf, and rf as in Alglave et al. [2013]. The novel
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Algorithm 1: Constraints for write serialisation

Input : A set of symbolic events and program order po

Output : Sets of constraints Cws and Cni ws

1 Cws ← ∅; Cni ws ← ∅

2 writes ← {(α, {w1 . . . wn}) | wi is a write event ∧ mloc(wi) = α}

3 for α, W s.t. (α, W) ∈ writes do

4 for w, w′ ∈ W s.t. thread(w) 6= thread(w′) do

5 Cws ← Cws ∪ {w � w
′ ∨ w

′
� w}

6 if depth(w) ≥ depth(w′) then

7 Cni ws ← Cni ws ∪ {(w � w
′ ∧ grd(w) ∧ grd(w′))⇒

∧
e∈last(w) e � w

′}

8 if depth(w) ≤ depth(w′) then

9 Cni ws ← Cni ws ∪ {(w
′
� w ∧ grd(w′) ∧ grd(w))⇒

∧
e∈last(w′) e � w}

extension we have made in this work to adapt this framework to the new setting of
interrupts is to use these constraints to generate further constraints for the ni relation.

In what follows, we write mloc(e) for the memory location of event e, val(e) for the
symbolic value of event e, and grd(e) for the guard of the SSA equation from which e is
derived. For every event e, we introduce an integer variable cke, which is the clock of e.
Given two memory events e and e′, our encoding will then express that event e happens
before event e′ with the constraint cke < cke′ . We write e � e′ as a shorthand for the
formula grd(e) ∧ grd(e′) ⇒ cke < cke′ .

Algorithm 1 computes the constraints Cws on the relation write serialisation (ws)
and constraints Cni ws on the part of the nested-isr relation that derives from event
orderings in ws. Specifically, it adds, for each pair of write events w and w′ that access
the same memory location and do not belong to the same thread (lines 2–3), the
constraint that either (w,w′) ∈ ws or (w′, w) ∈ ws (line 5). Because of the definition of
e � e′, the disjunction is exclusive. So a satisfying assignment of values to the integer
clock variables in this constraint constitutes a set of (guarded) total orders on all write
events that access each location α.

If a write w happens before another write w′ and depth(w′) ≤ depth(w), then according
to our definition of the nested-isr relation, all memory events e after w in the program
order must also happen before w′. This is expressed by

∧
e∈last(w) e � w′ in line 7, where

last(e) = {e′ | (e, e′) ∈ po ∧ ¬∃e′′.thread(e′) = thread(e′′) ∧ (e,′ e′′) ∈ po}

Note that we state only the last events e in the program order of the ISR that contains w.
This is an optimisation, as all memory events between w and any e in program order
will happen before w′ by transitivity. Symmetrically, we also impose a similar constraint
in cases where depth(w) ≤ depth(w′) (line 9).

Algorithm 2 computes constraints Crf on the relation read-from (rf) and constraints
Cni rf on the part of the nested-isr relation deriving from event orderings in rf. In addi-
tion to specifying orders between write and read events, it connects the symbolic value
of each read event to the value written by one of the possible writes. For each pair of a
write w and a read r that access the same memory location (lines 2–7), we introduce a
fresh Boolean variable swr (line 9) to indicate that r in fact does read the value written
by this w (line 10) as well as say that w must happen before r (line 11). Technically, this
is achieved by enforcing val(r) = val(w) in line 10. The vector of all the swr variables
introduced in this part of the algorithm constitutes a symbolic index into all the possible
ways in which reads get their values from writes. Note that the disjunction in line 14
technically allows a read event to get its value from multiple writes. However, with
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Algorithm 2: Constraints for read-from

Input : A set of symbolic events and program order po

Output : Set of constraints Crf , Cni rf

1 Crf ← ∅; Cni rf ← ∅

2 reads ← {(α, {r1 . . . rn}) | ri is a read event ∧ mloc(ri) = α}

3 writes ← {(α, {w1 . . . wn}) | wi is a write event ∧ mloc(wi) = α}

4 for α, R, W s.t. (α, R) ∈ reads ∧ (α, W) ∈ writes do

5 for r ∈ R do

6 tmp ← ∅

7 for w ∈ W do

8 if (r, w) 6∈ po then

9 tmp ← tmp ∪ {swr}

10 Crf ← Crf ∪ {swr ⇒ (grd(w) ∧ grd(r) ∧ val(w) = val(r))}

11 Crf ← Crf ∪ {swr ⇒ w � r}

12 if thread(w) 6= thread(r) ∧ depth(w) ≥ depth(r) then

13 Cni rf ← Cni rf ∪ {(w � r ∧ grd(w) ∧ grd(r))⇒
∧

e∈last(w) e � r}

14 Crf ← Crf ∪ {grd(r)⇒
∨

s∈tmp
s}

Algorithm 3: Constraints for from-read

Input : A set of symbolic events and program order po

Output : Set of constraints Cfr , Cni fr

1 Cfr ← ∅; Cni fr ← ∅

2 reads ← {(α, {r1 . . . rn}) | ri is a read event ∧ mloc(ri) = α}

3 writes ← {(α, {w1 . . . wn}) | wi is a write event ∧ mloc(wi) = α}

4 for α, R, W s.t. (α, R) ∈ reads ∧ (α, W) ∈ writes do

5 for (w, w′) ∈ W × W, r ∈ R s.t. w 6= w
′ ∧ thread(r) 6= thread(w′) do

6 Cfr ← Cfr ∪ {(swr ∧ w � w
′ ∧ grd(w′))⇒ r � w

′}

7 if depth(r) ≥ depth(w′) then

8 Cni fr ← Cni fr ∪ {(swr ∧ w � w
′ ∧ grd(w′))⇒

∧
e∈last(r) e � w

′}

constraints of relation from-read described in Algorithm 3, this will be prevented. To
see this, suppose (w, r), (w′, r) ∈ rf and (w,w′) ∈ ws. Then we have (r, w′) ∈ fr, forming a
cycle between r and w′. This is not a valid execution. The constraints related to nested
interrupts are generated in lines 12–13 in the same way as in Algorithm 1.

Finally, Algorithm 3 constructs constraints Cfr for the relation from-read (fr) and
constraints Cni fr for the part of the nested-isr relation derived from event orderings in
fr. For every read-write pair (r, w) that accesses the same memory location α (lines 2–4),
we consider all other writes w′ that accesses this memory location too and happen after
w (expressed by w � w′ line 6). Recall that in Algorithm 2 we introduce the Boolean
variable swr to say that (w, r) ∈ rf. So if r does indeed get its value from w, then we
require r � w′ to hold. That is r must happen before w′, for otherwise it would get its
value from w′. The constraints related to nested interrupts are generated in lines 7–8
in a way similar to those in Algorithms 1 and 2.

In the special case where interrupts have explicit priorities, we take an approach
similar to those used in the program transformation methods discussed in the previous
sections. A global array irq pty is used to record the priority of each interrupt, and we
define the priority of a memory event pty(e), to be the priority of the ISR function body
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it belongs to. Then to handle explicit priorities in our encoding, we only need to replace
any occurrence of depth(e) with pty(e) in our algorithms.

Finally, it is worth discussing a precise encoding that represents exactly the set
of all possible interleavings of ISRs that can occur during program execution. It is a
straightforward modification of the partial-order encoding, where the constraints for
the nested-isr (ni) relation consider events that can access different memory locations.
By contrast, the ni relation of the partial-order encoding only considers events that
access the same memory locations in the ws, rf, and the fr relations. More precisely,
for each pair of ISRs i and j such that the execution depth of ISR i is smaller than
or equal to that of ISR j, the nested-isr (ni) constraints of the precise encoding are
as follows: for each memory event e of ISR i and the first memory events e′ of ISR j,
which can either access the same or different memory locations, if e′ happens before
e, then for all memory events e′′ after e′ in ISR j, e′′ must happen before e, encoded as
(e′ � e ∧ grd(e′) ∧ grd(e)) ⇒

∧
e
′′∈last(e′) e

′′ � e. Although the edge (e′, e) may not belong

to any of the partial-order relations, the verification condition e′ � e ∧ grd(e′) ∧ grd(e) is
checked by the underlying solver used in an algorithm that computes the constraints.
Since the precise encoding relates events that access the same and different memory
locations, it produces constraints that are potentially larger than those of the partial-
order encoding. In Sec. 6, we experimentally compare these two encodings.

5.5. Analysis of the Algorithms

Our encoding does not relate events in the same ISR call as they are already related
by program order, except for read-from as a read event can get its value from a write
event in the same ISR call. The (asymptotic) size of our encoding is, in the worst case,
quadratic for write serialisation and read-from, and cubic for from-read, in the maximum
number of memory events for a single address. Note that the encoding produced by our
algorithm is by no means minimal in terms of size. For example, line 13 of Algorithm 2
can, in principle, exclude cases where all of the following hold: w and r do not belong
to the same ISR call, depth(r) ≤ depth(w) is true, and w is the last write event in the
program order s.t. the conjunction of guards grd(w) and grd(r) is satisfiable. However, in
each iteration, we would need to check whether grd(w) ∧ grd(r) is satisfiable, which can
be quite expensive. We need to balance the size of the encoding and the computational
cost of producing it.

As discussed in Sec. 2, executions of an interrupt-driven program with n interrupts
should satisfy the following: for any pair of ISRs i and j, if ISR i preempts the execution
of ISR j, then ISR i must finish its execution before the control can return to ISR j. In
terms of our partial-order relation framework, this means if an execution represented
by an event graph of the program satisfies the following: if 1) the depth of ISR i is
greater than or equal to the depth of ISR j, and 2) event e of ISR i happens before event
e′ in ISR j, then for all events e′′ in ISR i, we have e′′ happens before e′. We say that
this execution satisfies the nested-execution property.

Since our encoding is an over-approximation of the set of all possible program execu-
tions, if a safety property holds in our partial-order encoding, i.e. the property holds
in every execution that satisfies the encoding, it also holds in every execution of the
original program. On the other hand, if a safety property is violated in our partial-order
encoding, it may not be violated in the original program. We exhibit one such example
that violates the nested-execution property in Fig. 9.

In this example, the execution of the main program is preempted by ISR B, which
is then preempted by ISR A. Since a0 happens before m1 represented by a ws edge,
according to the definition of ni, we have an ni edge from a1 to m1. Similarly, since b1
gets its x value from a1, there is an ni edge from a1 to b1. However, there is no ws, rf, or
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ISR A

a0 : y = 0

a1 : x = 2

ISR B

b0 : x = 1

b1 : y = x + y

b2 : assert(y = 0 && y = 3)

Main

m0 : x = 0

m1 : y = 2

ws

po
ws

ni

rf, ni rf, ws

po, rf

Fig. 9: Counterexample

fr edge from ISR B to the main program, so there is no ni edge to ensure the execution
of ISR B finishes before the control can return to the main program. Note that the
precise encoding would have an ni constraint indicating b2 happens before m1, since b0
happens before m1, even though they access different memory locations. Then there is
a cycle m1 → b1 → b2 → m1, excluding this counterexample.

For the non-nested case where the main program has only one ISR, a safety property
violated in the partial-order encoding will also be violated in the original program. More
precisely, we have the following theorem:

Theorem. For an event graph of a program with one ISR that satisfies the partial-
order constraints program order (po), write-serialisation (ws), read-from (rf), from-read
(fr), and nested-isr (ni), there exists a program execution that satisfies the nested-
execution property.

Proof. Let a and m be the first event in ISR A and the main program, respectively,
such that (a,m) belongs to one of the ws, rf, and fr relations. By the definition of ni, for
all events that happen after a in ISR A will happen before m. For events a′ and m′ that
happen before a and m in ISR A and the main program, respectively, they either access
different memory locations or read the same memory location. Thus, their ordering
does not matter, we can have m′ happens before a0 and a′ happens before m as shown
in Fig. 10. Then the execution satisfies the nested-execution property.2 �

Our experimental results in Sec. 6 show that the partial-order encoding obtains the
same verification results as the precise encoding for all our benchmarks, while the
runtime is faster on all but one of the benchmarks.

6. EXPERIMENTS

We compare our new partial-order encoding, described in the preceding section, with
two conventional source-to-source transformations. These translate interrupt-driven
code into sequential code and into multi-threaded code, respectively.

6.1. Verification Tools

To evaluate the performance of our partial-order encoding for nested interrupts, we
implemented our algorithms in a prototype tool called i-CBMC, which is an extension
of CBMC [Clarke et al. 2004]. Moreover, we apply a range of existing verifiers to
sequentialised programs and programs that have been instrumented with threads.

For interrupt sequentialisation as described in Sec. 3, we used the following tools:

2For the correctness proof of relations write-serialisation, read-from, and read-from, please refer to the
extended version of the Alglave et al. [2013] at https://arxiv.org/abs/1301.1629.
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ISR A Main

a0 m0

... ...

a m

... ...

an

Fig. 10: ISR A preempts the main program right before event m

— The sequential version of CBMC [Clarke et al. 2004], a bounded model checker for
the C programming language;

— SatAbs [Clarke et al. 2005], BLAST [Shved et al. 2012], and CPAchecker [Dangl
et al. 2015], which implement counterexample-guided abstraction refinement (CE-
GAR) [Clarke et al. 2000];

— UFO [Albarghouthi et al. 2012d], which implements interpolation-based verification
in an abstraction refinement loop [Albarghouthi et al. 2012a; 2012b; 2012c].

For modelling interrupts with threads as discussed in Sec. 4, we used:

— The concurrent version of CBMC [Alglave et al. 2013];
— IMPARA [Wachter et al. 2013], which combines a new, symbolic form of partial-order

reduction with the Impact algorithm [McMillan 2006];
— ESBMC [Morse et al. 2014], a context-bounded symbolic model checker for multi-

threaded C programs;
— Lazy-CSeq [Inverso et al. 2015], a tool that translates a multi-threaded C program

into a sequential C program with a given bound on the schedule rounds;
— The concurrent version of SatAbs [Clarke et al. 2005];
— Threader [Popeea and Rybalchenko 2013], which implements thread-modular rea-

soning [Gupta et al. 2011].

The tools were run using the SV-COMP17 configuration (http://sv-comp.sosy-lab.org/
2017/rules.php). We make our benchmarks and detailed experimental data available
for other researchers at http://www.cprover.org/interrupts/. The source code of i-CBMC
can be found at https://github.com/lihaol/cbmc/tree/i-cbmc.

6.2. Benchmarks

We assess the effectiveness of each method on benchmarks derived from embedded
software and Linux device drivers. For each benchmark, we have a version where
interrupts are correctly disabled and enabled, and another version where they are
incorrectly managed so that safety properties are violated.

Logger models parts of the firmware of a temperature logging device from a ma-
jor industrial enterprise (112 LOC, and 172 LOC for the extended version). It has
two interrupt-triggered tasks: the measurement task must not be preempted by the
communication task, or a measurement is written to a wrong position in the log.

Blink is an application from TinyOS. It displays a pattern on three LEDs with the
help of timers. TinyOS provides a virtualisation API to handle several alarms with
one hardware timer. There are two interrupt-triggered tasks, for firing the alarm and
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Interrupt Sequentialisation

LOC In
te

rr
u

p
ts

S
ch

ed
u

le
r

C
a

ll
s

BLAST
2.7.3

CPAChecker
1.6.12

UFO
SV-
COMP14

CBMC
ea3a21f

Logger 112 2 8 ✓ 17.7 s ✓ 2.7 s ✓ 1.4 s TO

+ incorrect 112 2 9 ! 0.5 s ! 7.0 s ! 36.2 s TO

Logger (extended) 172 3 22 * 0.4 s unknown TO TO

+ incorrect 172 3 18 ! 84.1 s ! 9.1 s TO TO

Blink 2,652 2 193 ✗ unknown ✓1425.1 s TO

+ incorrect 2,652 2 198 ✗ unknown ? 1420.5 s TO

RcCore 7,035 3 347 * 2.7 s unknown TO TO

+ incorrect 7,035 3 347 ! 2.7 s unknown TO ✗

Brake (1 Wheel) 3,938 2 6 * 0.1 s unknown ✓ 0.8 s ✓ 80.8 s
+ incorrect 3,938 2 7 TO unknown ? 1.1 s ✗

Brake (2 Wheels) 3,938 3 10 TO unknown ✓ 7.8 s TO

+ incorrect 3,938 3 7 TO unknown ? 1.1 s TO

Brake (3 Wheels) 3,938 4 14 TO unknown ✓ 854.1 s TO

+ incorrect 3,938 4 9 TO unknown ? 3.8 s TO

✓= proved correct, ! = bug exposed, ? = bug missed, * = false alarm
✗ = tool crashes, PE = parse errors, TO = timeout 1800 s

Table I: Experimental results of interrupt sequentialisation

updating the timer when it overflows. If the alarm firing can preempt the updating of
the timer, the timer keeps running even though the alarm has already fired.

Brake is generated from the Simulink model of a brake-by-wire system provided by
Volvo Technology AB (3938 LOC). It consists of four threads communicating with four
wheel brake controllers, together with one main thread, responsible for computing the
braking torque, which should not be preempted. Otherwise, the brake torque can be
miscalculated. We parameterised this benchmark by the number of wheels.

RcCore is a Linux device driver for a remote control together with a model of the
Linux kernel (7035 LOC). The original driver uses locks to enforce priorities—namely
that querying the availability of transmission protocols may not be interrupted by a
modification to the protocol settings. We introduced a bug such that the driver may
crash due to a NULL pointer dereference if priorities are disregarded.

We performed all experiments on a 64-bit machine running Linux with eight Intel
Xeon 3.07 GHz cores and 48 GB of main memory.

6.3. Results and Discussion

Our results indicate that the transformation to sequential code performs worst, whereas
our partial-order encoding is clearly more effective than the two program transformation
techniques. We discuss our experimental results of each approach in more detail below.

Interrupt Sequentialisation. Table I presents the results of our interrupt sequentialisation.
Column 1 lists our five benchmarks: Logger, extended Logger, Blink, RcCore and Brake
(parameterised by the number of wheels). Columns 2–4 give the number of lines of code,
the number of interrupt arrivals we modelled, and the number of scheduler calls after
our optimisation (Sec. 3) in each benchmark. Column 5 gives results for the interrupt

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Liang, Melham, Kroening, Schrammel, Tautschnig

Modelling Interrupts with Threads

LOC In
te

rr
u

p
ts

IMPARA
0.5.0

ESBMC
4.4.0-
incr

Lazy-
CSeq
SV-
COMP16

CBMC
ea3a21f

Logger 112 2 ✓ 0.5 s ✓ 0.1 s ✓ 12.2 s ✓ 0.4 s
+ incorrect 112 2 ! 0.6 s ? 0.2 s unknown ! 1.5 s

Logger (extended) 172 3 TO ✓ 9.5 s * 17.6 s ✓ 399 s
+ incorrect 172 3 TO ? 9.5 s ! 17.6 s ! 383.2 s

Blink 2,652 2 TO ✓ 1.6 s unknown ✓ 4.5 s
+ incorrect 2,652 2 ! 212.7 s ? 2.4 s unknown ? 19.4 s

RcCore 7,035 3 ✗ PE unknown ✓ 74.9 s
+ incorrect 7,035 3 ✗ PE unknown ! 73.2 s

Brake (1 Wheel) 3,938 2 TO * 0.5 s unknown TO

+ incorrect 3,938 2 TO ! 0.6 s unknown ! 6.8 s
Brake (2 Wheels) 3,938 3 TO * 0.8 s unknown ✓669.3 s
+ incorrect 3,938 3 TO ! 0.8 s unknown ! 16.9 s

Brake (3 Wheels) 3,938 4 TO * 1.0 s unknown TO

+ incorrect 3,938 4 TO ! 1.0 s unknown ! 39.3 s
✓= proved correct, ! = bug exposed, ? = bug missed, * = false alarm

✗ = tool crashes, PE = parse errors, TO = timeout 1800 s

Table II: Experimental results of modelling interrupts with threads

sequentialisation. SatAbs crashed on all our benchmarks so we did not include them in
the table. The best correct entry for each benchmark is marked in bold.

In our experiments with interrupt sequentialisation, the number of interrupt arrivals
is bounded. All sequential tools we tried except CBMC could handle both versions of the
simplest benchmark Logger. CBMC timed out on this benchmark. For other benchmarks,
the tools we tried could obtain only partial results. For the extended Logger benchmark,
both UFO and CBMC timed out on the correct and faulty versions. BLAST reported
a safety violation on both versions of this benchmark, whereas CPAchecker reported
unknown and safety violation on the correct and faulty versions, respectively. For the
Blink benchmark, only UFO was able to prove safety on the non-faulty version in
about 24 minutes; but it failed to report a safety violation on the faulty one. BLAST
crashed, CPAchecker returned unknown, and CBMC timed out on both versions of
this benchmark. For the RcCore benchmark, only BLAST managed to report a safety
violation in about 3 seconds; but it failed to prove safety on the non-faulty version.
CPAchecker returned unknown and UFO timed out on both versions. Finally, UFO and
CBMC were able to prove safety of the correct versions of the Brake benchmark in 1 s
and 81 s, respectively, whereas BLAST returned a counterexample. None of the tools we
tried was able to report a safety violation on the faulty version. It is worth noting that
for most benchmarks, CBMC was not able to finish unwinding the recursion after 30
minutes. The reason is that non-determinism is encoded directly into a SAT formula.

Modelling Interrupts with Threads. Table II presents the results of modelling interrupts
with threads. SatAbs crashed and Threader reported parse errors on all our bench-
marks so we did not include them in the table. The results are better compared to
sequentialisation: CBMC performed the best among the tools we have tried. It managed
to report the expected results for most versions of our benchmarks. It timed out on
the correct version of the Brake benchmark with one and three wheels, In addition, it
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Naı̈ve Modelling Threads Precise PO

LOC In
te

rr
u

p
ts

CBMC
ea3a21f

CBMC
ea3a21f

i-CBMC
-PRE

i-CBMC

Logger 112 2 * 0.2 s ✓ 0.4 s ✓ 0.3 s ✓ 0.2 s
+ incorrect 112 2 ! 0.2 s ! 1.5 s ! 0.3 s ! 0.2 s

Logger (extended) 172 3 * 13.0 s ✓ 399 s ✓ 41.8 s ✓ 28.1 s
+ incorrect 172 3 ! 13.0 s ! 383.2 s ! 35.3 s ! 25.9 s

Blink 2,652 2 * 3.4 s ✓ 4.5 s ✓ 26.5 s ✓ 2.0 s
+ incorrect 2,652 2 ! 3.0 s ? 19.4 s ! 30.5 s ! 3.4 s

RcCore 7,035 3 * 73.4 s ✓ 74.9 s ✓ 76.7 s ✓ 76.6 s
+ incorrect 7,035 3 ! 75.1 s ! 73.2 s ! 56.1 s ! 79.5 s

Brake (1 Wheel) 3,938 2 * 3.9 s TO TO TO

+ incorrect 3,938 2 ! 3.6 s ! 6.8 s ! 4.5 s ! 3.3 s
Brake (2 Wheels) 3,938 3 * 7.1 s ✓669.3 s TO ✓883.9 s
+ incorrect 3,938 3 ! 6.1 s ! 16.9 s ! 9.1 s ! 7.2 s

Brake (3 Wheels) 3,938 4 * 7.2 s TO TO TO

+ incorrect 3,938 4 ! 6.8 s ! 39.3 s ! 15.5 s ! 8.1 s
✓= proved correct, ! = bug exposed, ? = bug missed, * = false alarm

✗ = tool crashes, PE = parse errors, TO = timeout 1800 s

Table III: Experimental results of partial-order encoding

failed to return a safety violation on the faulty version of the Blink benchmark. We
suspect this may be caused by a potential bug in the current CBMC implementation,
since IMPARA managed to report a safety violation on the faulty Blink. IMPARA was
also able to return the expected results of the simplest Logger benchmark. For other
benchmarks, it either timed out or crashed. ESBMC was able to prove safety on the
correct Logger, extended Logger, and the Blink benchmarks; but it missed the bug on
their incorrect versions. It could not parse the Linux device driver RcCore. For the
Brake benchmark, it returned a safety violation on all its incorrect versions, and a false
alarm on the correct ones. Finally, Lazy-CSeq managed to prove safety on the correct
Logger, and report a safety violation on the incorrect extended Logger. But it reported a
false alarm on the correct extended Logger, and unknown for other benchmarks.

In the thread instrumentation approach, each thread requires a separate copy of its
ISR function, so modelling with threads can verify only a bounded number of interrupts,
whereas interrupt sequentialisation can model an unbounded number of interrupts.

Partial-Order Encoding. Overall, i-CBMC with partial-order encoding is the most effec-
tive and time-efficient, outperforming other approaches on most benchmarks. It timed
out in the non-faulty Brake benchmark with one and three wheels, and yields the
expected results in all other experiments.

Table III lists the results of running CBMC on the benchmarks without thread
instrumentation. CBMC reported false alarms on all correct versions of the benchmarks.
This is expectable because without the additional constraints generated by i-CBMC,
CBMC would allow interleavings that are not possible in any execution of the program,
as described in Fig. 3 of Sec. 2. Table III also compares the results of i-CBMC and
CBMC with threads modelling (see the scatter plot in Fig. 11a). Both i-CBMC and
CBMC timed out on the correct version of the Brake benchmark with one and three
wheels. However, CBMC missed the bug in the faulty version of the Blink benchmark,
whereas i-CBMC was able to report a safety violation on it. In addition, the runtime of
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i-CBMC was a lot faster than CBMC on all but two benchmarks. For example, i-CBMC
was more than ten times faster than CBMC on the Blink benchmark.

We also implement the precise encoding described at the end of Sec. 5.4 in a variant
of i-CBMC (i-CBMC-PRE). As we can see in Table III, i-CBMC-PRE was able to return
the expected results for most versions of our benchmarks except the correct version of
the three Brake benchmarks on which it timed out. In general, its runtime is between
that of i-CBMC and concurrent CBMC except that it is the slowest on Blink and the
fastest on the faulty version of RcCore.

In our modelling of interrupts with threads, we made each line of code atomic, which
is an under-approximation of the behaviours of the original code. Our partial-order
encoding models reads and writes as different atomic events and hence captures more
behaviours. Yet, the runtime of i-CBMC is significantly better than that of CBMC
with threads modelling for most variants of our benchmarks. The reason is that the
assume statements in the modelling with threads approach increases the size of the
SAT formula that CBMC generates.

Similarly, since i-CBMC-PRE implements the precise encoding that relates memory
events that access different memory addresses, it generates more constraints than
the partial-order encoding in i-CBMC that only relates events with the same memory
address, resulting in a slower runtime in general (see the scatter plot in Fig. 11b).

We present the number of constraints (symbolic program expressions and partial or-
ders), variables and clauses of the SAT formulas that CBMC without thread instrumen-
tation (naı̈ve CBMC), i-CBMC, i-CBMC-PRE, and CBMC with thread instrumentation
(concurrent CBMC) produce in Fig. 12, 13a, and 13b, respectively. As we can see, the
additional constraints generated by i-CBMC result in a slightly larger formula than
those of CBMC without thread instrumentation. By contrast, the formula of CBMC with
thread instrumentation are much larger than those of i-CBMC on most benchmarks. For
example, on the extended Logger benchmark, the numbers of i-CBMC are substantially
smaller than those of concurrent CBMC, which is reflected by the fact that the runtime
of i-CBMC is an order of magnitude faster than concurrent CBMC. Similarly, i-CBMC
produces smaller SAT formulas for the Logger, Blink, and the faulty version of the
Brake benchmarks, so its runtime is also much lower than that of concurrent CBMC.
Both tools performed similarly on the RcCore benchmark, and timed out on the correct
version of the Brake benchmark with one and three wheels. The interesting case is
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Fig. 11: Scatter plots (runtime in seconds)
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Fig. 12: Number of constraints in the encodings

the safe version of the Brake benchmark with two wheels. Although i-CBMC yields
a similar or smaller encoding, it turns out they are more difficult to solve than those
generated by concurrent CBMC (Table III).

Following the same trend in runtime, the measurements for the formulas that
i-CBMC-PRE generated on our benchmarks are in general between i-CBMC and con-
current CBMC. The exceptions are Blink on which i-CBMC-PRE generated the largest
formula and had the slowest runtime. And it obtained the fastest runtime on the faulty
version of the RcCore.

A limitation of the partial-order encoding is that it is based on bounded model
checking, and thus is able to verify only a bounded number of interrupts. By contrast,
the sequentialised programs can be passed to unbounded model checkers.

7. RELATED WORK

Previous research on formal verification of interrupt-driven programs uses a range of
techniques, including program transformation [Kidd et al. 2010; Regehr and Cooprider
2007; Wu et al. 2013], explicit-state model checking [Schlich et al. 2009], bounded
model checking [Bucur and Kwiatkowska 2011; Li et al. 2013] and predicate abstrac-
tion [Witkowski et al. 2007]. None of these methods demonstrates effective verification
of programs of moderate size with nested interrupts. We briefly survey those methods
most closely related to our techniques.

Wu et al. [2013] describe a translation from programs with nested interrupts into
sequential code, which makes the assumption that interrupts may arrive after every
instruction. This approach suffers from state explosion, which in our translation is
addressed by an optimisation that greatly reduces the number of calls to ISRs.

Kidd et al. [2010] introduce a program transformation that translates a multi-
threaded program into a sequential one by encoding a thread scheduler. Their method
covers threads with fixed priorities, and so is also applicable to interrupt-driven pro-
grams with fixed interrupt priorities. Sec. 3 discusses a modified version of their en-
coding, in which the number of interrupt arrivals is a parameter and multiple arrivals
of the same interrupt are allowed. We also provide experimental results for such a
transformation. By contrast, Kidd et al. [2010] employ the notion of a “hyperperiod”,
during which every interrupt happens exactly once.

Regehr and Cooprider [2007] suggest a source-to-source transformation from
interrupt-driven code to multi-threaded code that assigns a fixed priority to a thread
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Fig. 13: Size of the SAT formulas

when it is created. Threads are scheduled at runtime according to predefined priorities.
This approach requires a thread-aware verification tool that can model threads with
static priorities. We provide experimental results for a variant of their approach in
which the thread priorities are enforced by adding further instrumentation.

Bucur and Kwiatkowska [2011] present a platform-dependent, OS-independent verifi-
cation tool for programs written in C with interrupts. Their tool automatically translates
C code for the MSP430 microcontroller into standard C by modelling the MCU mem-
ory map and direct memory access, and adds calls to interrupt handlers to emulate
arrivals of hardware interrupts. Partial-order reduction is used to reduce the number of
interrupt handler calls. The instrumented program is checked using CBMC. However,
nested interrupts are not supported.

Vörtler et al. [2015] propose a verification framework for applications in the embedded
operating system Contiki, and present a new modelling approach for periodically
occurring interrupts that cannot reply on interrupt reduction such as partial-order
reduction. In the experiments, they compare different interrupt modelling approaches
on three Contiki applications using CBMC.

Li et al. [2013] propose the use of formal verification techniques in medical device
software. Similar to Bucur and Kwiatkowska [2011], they translate embedded code for
the MSP430 microcontroller into standard C, which can be verified by CBMC. Then

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Effective Verification for Low-Level Software with Competing Interrupts A:23

interrupt handlers are called after each basic block of the translated program. Nested
interrupts are not allowed.

Schlich et al. [2009] introduce an abstraction technique for microcontroller assembly
code called interrupt handler execution reduction, which is based on partial-order
reduction and reduces the number of program locations where an interrupt handler
needs to be executed. Yet, they do not handle nested interrupts.

Sinha and Wang [2010; 2011] use axiomatic specifications of Sequential Consistency
(SC) [Lamport 1997] to symbolically encode the executions of concurrent programs.
Based on the semantics given in [Alglave et al. 2012], Alglave et al. [2013] introduce a
symbolic encoding of concurrent programs that supports not only SC but also weaker
memory models such as Intel’s x86 and IBM’s Power. By contrast, the encoding proposed
in this paper is a strengthening of SC.

Witkowski et al. [2007] present a tool DDVerify that is also able to generate an
accurate sequential and concurrent model of the relevant parts of the Linux kernel,
enabling automated verification of Linux device drivers and shared-memory concurrent
programs using predicate abstraction. However, when introducing additional threads,
the DDVerify framework suffers from the state-space explosion problem. A concurrent
model with two threads resulted in a significant increase in the number of predicates
required, yielding time-outs for most of the claims.

Schwarz et al. [2014] derive a static analysis technique to detect data races in pro-
grams with multiple interrupts of static priorities. Their analysis focuses on programs
that use a restricted set of synchronisation patterns with global flag variables. Their
results show the technique is effective in reducing the number of race warnings.

Ouadjaout et al. [2016] present a static analysis based on abstract interpretation to
verify device drivers of the TinyOS operating system. The proposed method can prove
absence of interrupt-related and hardware-software interaction bugs, with several
partitioning techniques to help improve precision of their analysis. They compare
their tool SADA with i-CBMC on their TinyOS benchmarks. The runtime and memory
consumptions of SADA were lower due to their abstraction techniques, whereas i-CBMC
implements bit-precise bounded model checking. The major drawback of SADA is false
alarms. i-CBMC also produced false alarms because of the imprecise modelling of the
hardware and the fixed loop unwinding depth in some of the benchmarks.

Liu et al. [2016] describe a sequentialisation framework for verifying industrial
Multifunction Vehicle Bus controller systems. It uses a happen-before interrupt graph
to reduce false alarms. The resulting sequential program is verified by CBMC.

8. CONCLUSION

We propose a novel method to verify programs with nested interrupts, which combines
symbolic execution and a partial-order encoding. Our encoding captures the interleaving
semantics of nested interrupts more precisely than native threads, which allow “zig-
zag” behaviours between ISRs. We experimentally compare the proposed method to
conventional approaches based on source-to-source transformations into sequential or
multi-threaded programs, which can be handled by off-the-shelf verification tools. Our
experimental results demonstrate that our partial-order encoding is the most effective
method to verify software with nested interrupts.

For future work, we will implement a field-sensitive SSA encoding in i-CBMC, which
has the potential to greatly reduce the number of shared variables in our partial-order
encoding, and will therefore improve scalability. We used finite loop unwindings in our
experiments. We plan to implement our method in the model checker IMPARA [Wachter
et al. 2013], which is capable of proving unbounded safety.
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Thilo Vörtler, Benny Höckner, Petra Hofstedt, and Thomas Klotz. 2015. Formal Verification of Software
for the Contiki Operating System Considering Interrupts. In Proceedings of the 18th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems DDECS. IEEE, 295–298.
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