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Abstract

This thesis investigates to what extent do cognitive biases a�ect human understanding of

interpretable machine learning models, in particular of rules discovered from data. Twenty

cognitive biases (illusions, e�ects) are analysed in detail, including identi�cation of possibly

e�ective debiasing techniques that can be adopted by designers of machine learning algo-

rithms and software. This qualitative research is complemented by multiple experiments

aimed to verify, whether, and to what extent, do selected cognitive biases in�uence hu-

man understanding of actual rule learning results. Two experiments were performed, one

focused on eliciting plausibility judgments for pairs of inductively learned rules, second

experiment involved replication of the Linda experiment with crowdsourcing and two of

its modi�cations. Altogether nearly 3.000 human judgments were collected. We obtained

empirical evidence for the insensitivity to sample size e�ect. There is also limited evidence

for the disjunction fallacy, misunderstanding of �and�, weak evidence e�ect and availability

heuristic.

While there seems no universal approach for eliminating all the identi�ed cognitive bi-

ases, it follows from our analysis that the e�ect of many biases can be ameliorated by

making rule-based models more concise. To this end, in the second part of thesis we pro-

pose a novel machine learning framework which postprocesses rules on the output of the

seminal association rule classi�cation algorithm CBA [Liu et al, 1998]. The framework

uses original � undiscretized � numerical attributes to optimize the discovered association

rules, re�ning the boundaries of literals in the antecedent of the rules produced by CBA.

Some rules as well as literals from the rules can consequently be removed, which makes the

resulting classi�er smaller. Benchmark of our approach on 22 UCI datasets shows average

53% decrease in the total size of the model as measured by the total number of conditions

in all rules. Model accuracy remains on the same level as for CBA.
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Both the content and direction of biases can be predicted theoretically and explained by

optimality when viewed through the long lens of evolutionary theory. Thus, the human mind

shows good design, although it is design for �tness maximization, not truth preservation.

Haselton and Nettle [2006]
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1. Introduction

This thesis aims to investigate the e�ect of cognitive biases on human understanding of

machine learning models, in particular inductively learned rules. We use the term cognitive

bias as a representative term for various related cognitive phenomena (heuristics, e�ects,

illusions and constraints) that demonstrate as seemingly irrational reasoning patterns that

are thought to allow humans to make fast and risk averse decisions. The fundamental

questions we will seek answer to is: How can cognitive biases a�ect understanding of

rule-based models? Can we improve the interpretability of machine learning models by

considering cognitive biases?

First, we study systematic distortions in human understanding of inductively learned

rules. Suppressing the cognitive bias, or �debiasing� the human consumers of machine

learning models, is a prerequisite to machine learning models being properly interpreted.

For example, in article entitled �Psychology of Prediction� Kahneman and Tversky [1973]

warned that cognitive biases can lead to violations of the Bayes theorem when people

make fact-based predictions under uncertainty. These results also apply to plausibility of

inductively learned rules, since these are associated with measures such as con�dence and

support expressing the (un)certainty of the prediction they make. Following the �cognitive

biases and heuristics� research program started by Tversky and Kahneman in the 1970s

over 50 cognitive biases have been discovered to date [Pohl, 2017]. Their cumulative

e�ect on human reasoning should not be underestimated as already the early work showed

that �cognitive biases seem reliable, systematic, and di�cult to eliminate� [Kahneman and

Tversky, 1972]. The e�ect of some cognitive biases is more pronounced when people do not

have well-articulated preferences [Tversky and Simonson, 1993], which is often the case in

explorative machine learning.

Previous works have analysed the impact of cognitive biases on multiple types of human

behaviour and decision making. A speci�c example is the seminal book �Social cognition�

by Kunda [1999], which is concerned with their impact on social interaction. Another,

more recent work by Serfas [2011] is focused on the context of capital investment. This

thesis deals with the impact of cognitive biases on human understanding of rule learning

results.

The �rst contribution of our study is analysis of twenty cognitive biases that can distort

interpretation of rule learning results. We include biases classi�ed into judgment and

thinking categories according to systematization proposed by Pohl [2017]. To validate

whether selected biases manifest when people interpret the actual results of rule learning,

we designed several experiments focused on assessing plausibility � or believability � of

machine learning models. The second contribution of the thesis is � the �rst of its kind �
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empirical study of the e�ect of selected cognitive biases on human understanding of machine

learning results.

Based on the literature review and our experimental results, we propose a model de-

scribing which cognitive biases are triggered when humans assess plausibility of inductively

learned rules and whether they in�uence plausibility in positive or negative way. The third

contribution of the thesis is the resulting graphical model of plausibility of rules. This dia-

gram summarizes our research �ndings and can be used to raise awareness about the e�ect

of cognitive biases on perception of rule learning results among the designers of machine

learning algorithms and software. This model is complemented with a list of practical

recommendations for the same audience.

While there seems no easy way for eliminating all the identi�ed cognitive biases, it follows

from our analysis that the e�ect of many biases can be ameliorated by making rule-based

models more concise. The fourth contribution of the thesis is a novel machine learning

framework which reduces the size of the classi�er as measured by the number of conditions

in the rules composing the produced models. This framework postprocesses output of the

state-of-the-art association rule classi�cation algorithm CBA [Liu et al., 1998].

Thesis organization. The text is divided into three parts. Part I covers the interdisci-

plinary study of cognitive biases and heuristics. Part II describes the machine learning

framework. Finally, Part III contains the conclusions.

Part I is organized as follows. Chapter 2 covers the limited prior work related to com-

prehensibility of machine learning models. Chapter 3 de�nes the problem addressed in

the �rst part of the thesis. Chapter 4 reviews applicable research on cognitive biases and

heuristics, and presents analysis if implications they may have on comprehension of induc-

tively learned rules. Chapter 5 describes our crowdsourcing experiments with elicitation

of plausibility for rules learned from data. Finally, Chapter 6 summarizes the �ndings into

a qualitative visual model and a list of recommendations.

Part II is organized as follows. Chapter 7 reviews related learning algorithms. Chapter 8

de�nes the problem that we address in this part of the thesis. Chapter 9 describes the

software framework. Finally, Chapter 10 reports on the experimental evaluation.

Part III is organized as follows. Chapter 11 provides a summary of contributions for both

preceding parts. Chapter 12 presents limitations of the research performed and outlook

for future work.

The Appendix contains a list of software and data accompanying the thesis.
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E�ect of Cognitive Biases on

Interpretation of Rules Discovered
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2. Related Work

The main factor driving evolution of machine learning algorithms is arguably measurable

improvement of accuracy on basket of reference datasets. This chapter focuses on the

limited amount of research that also re�ects comprehensibility of the produced models.

In order to track progress in comprehensibility, machine learning research adopted the

assumption that model length can be used as its direct measure, making link to the well-

known Occam's razor principle. As our review shows, there are also several studies that

address other types of comprehension, such as �justi�ability� and compliance with domain

knowledge. The discussion of various proposed notions of comprehensibility is instrumental

for selection of a speci�c metric used to measure comprehension of rules for further analysis

within this thesis. We are concerned with model comprehension by actual people who use

machine learning results to get new insights and make decisions. While the emphasis of this

chapter is on research performed in machine learning, some results from cognitive science,

which is concerned with the study of how humans process and perceive information, are

also included.

Chapter organization. Section 2.1 presents the notions of plausibility and comprehensi-

bility. Section 2.2 is devoted to the Occam's razor principle. There is a paucity of research

on the speci�c topic of rule plausibility in the machine learning literature, nevertheless

there has been work in the related area of interpretability of symbolic machine learning

models, especially trees, which we review in Section 2.3. Section 2.4 reviews the limited

available work on semantic comprehensibility and plausibility of machine learning mod-

els. Section 2.5 relates our work to prior research done in cognitive science speci�cally for

rules. Results from cognitive science that apply to speci�c cognitive biases are covered in

the following chapter.

2.1. Plausibility and Three Levels of Comprehensibility

In this section, we introduce several de�nitions of comprehensibility. While the fact that

machine learning models should aim for human comprehensibility is largely undisputed,

the exact de�nition of comprehensibility that should be optimized is as of writing a subject

of debate [Lipton, 2016].

2.1.1. Syntactic Comprehensibility

Recently there has been resurgence of work on comprehensibility of output of symbolic

machine learning algorithms, in particular of rule learners. These algorithms either directly
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optimize some comprehensibility metric (e.g approach of Lakkaraju et al. [2016]) or have

some inherent property that is considered to produce more comprehensible results (e.g.

Stecher et al. [2016]). The notion of comprehensibility optimized in these algorithms is

the size of the model, which corresponds to what is referred to in philosophy as linguistic

simplicity � the length of the message conveying the hypothesis in given language. We will

refer to this type of comprehensibility as syntactic comprehensibility.

2.1.2. Semantic Comprehensibility

A second level of comprehensibility corresponds to human ability to semantically interpret

the model. According to the related notion of semantic simplicity, this would allow the

analyst to come up with examples that would falsify the model [Post, 1960]. In inductive

learning it is rarely the case that it is required that a hypothesis is consistent with all data,

therefore a single con�icting example will rarely falsify a learned rule. Nevertheless, scores

such as con�dence and support that are associated with rules directly relate to the validity

of these rules given the data, corresponding to the ability to falsify requirement posed

by Popper [1935, 2005].1 As a component of semantic comprehensibility we consider the

ability of the analyst to relate the meaning of the individual conditions to the prediction

made by the rule, which allows falsi�cation through utilizing analyst's prior knowledge on

the subject.

2.1.3. Pragmatic Comprehensibility

Third, �nal level of comprehensibility relates to human ability to relate the inductively

learned hypothesis to prior hypotheses applicable to the subject. This corresponds to the

pragmatic simplicity de�ned by Post [1960].

2.1.4. Plausibility

We introduce plausibility (persuasiveness, believability) of a machine learning model as a

distinct notion from comprehensibility. A prerequisite for plausibility is the ability of the

analyst to interpret, or comprehend, the model on all three levels.

Syntactic comprehensibility deals with correct �mechanical understanding� of the model,

while semantic and pragmatic comprehension involves domain knowledge: on the level of

individual conditions for semantic comprehension and on the level of the entire hypothesis

for pragmatic comprehension. Mental product of pragmatic comprehension is the subjec-

tively assigned level of plausibility of the hypothesis. Symbolically, the relation between

plausibility and comprehensibility is as follows: syntactic comprehension → semantic com-

prehension → pragmatic comprehension → plausibility. The distinction between semantic

and pragmatic comprehensibility is not, in practice, made in the scope of our work.

1Reference Popper [1935] is for original publication in German.
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2.2. Occam's Razor

Occam's razor principle has been used as inductive bias in machine learning algorithms

under the assumption that the simplest model will perform best. This principle is inter-

preted in machine learning generally as �choose the shortest explanation for the observed

data� [Mitchell, 1997]. This principle is attributed to English philosopher and theologian

William of Ockham (c. 1287-1347).

In inductive learning context, Michalski [1983] states that inductive learning algorithms

need to incorporate a preference criterion for selecting hypotheses to address the problem of

the possibly unlimited number of hypotheses, and that this criterion is typically simplicity,

referring to recent philosophical works on simplicity of scienti�c theories by Kemeny [1953]

and Post [1960], which re�ne the initial postulate attributed to Ockham. Occam's razor

is also used in some algorithms under the assumption that more concise models are more

comprehensible. �Simplicity �rst� methodology is one of the basic principles of the ID3

decision tree learner [Elomaa, 1994, Quinlan, 1986], one of the most in�uential machine

learning algorithms.

Central to investigating the validity of Occam's razor as inductive bias is the de�nition

of simplicity. According to Post [1960] judgment of simplicity should not be made �solely

on the linguistic form of the theory�.2 This type of simplicity is referred to as linguistic

simplicity. A related notion of semantic simplicity is described through the falsi�ability

criterion [Popper, 1935, 2005]: the theory is the simpler, the more easily it can be falsi�ed.

Third, Post [1960] introduces pragmatic simplicity which relates to the degree to which the

hypothesis can be �tted into a wider context.

In the following, we will review work on the relation of Occam's razor to model accuracy

and comprehensibility.

2.2.1. Model Accuracy

A particular implementation of Occam's razor in machine learning is the minimum descrip-

tion length principle, which selects models based on the number of bits needed to encode

them. In his critical analysis Domingos [1999] shows that it is provably and empirically

false to favour the simpler of two models with the same training-set error on the grounds

that this would lead to lower generalization error. In other words, it is not true that model

simplicity leads to greater accuracy.

2.2.2. Comprehensibility

Occam's razor is typically transposed to the rule learning research as fewer conditions in a

rule model are preferred to more conditions [Domingos, 1999]. It follows that syntactically

simpler and more concise representations complying to the Occam's razor principle max-

imize the syntactic comprehensibility metrics as discussed above. For example, empirical

2According to an example included in Kemeny [1953], when comparing solar system theories, the Tycho
Brahe's system is linguistically simpler than Copernicus' system because of the convenient choice of
the co-ordinate system associated with heliocentristic system.
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result of Lakkaraju et al. [2016] is that syntactically simpler decision sets are better inter-

pretable than decision lists, which are nested and can contain negations. Similarly, Piltaver

et al. [2014] found that trees with smaller number of levels and smaller branching factor

are more comprehensible than more complex trees. It should be noted that these results

apply to comparing representations, or languages for conveying models. Here, simplicity

relates to the syntax or �intuitiveness� of the representation, rather than to the amount of

information the model conveys.

The evidence for �shorter is more comprehensible� is not unanimous. Other empirical

results that focus on comparing models with the same syntax that we cover in Sections 2.3.3

and 2.4 show that actually models or hypotheses with more information can be considered

as more comprehensible [Allahyari and Lavesson, 2011] and plausible [Lavra£, 1998].

Domingos concludes that the principle of Occam Razor is still relevant for machine

learning but should be interpreted as a preference for more comprehensible (rather than

simple) model. Here, the term comprehensible clearly does not refer to syntactic length.

2.3. Syntactic Comprehensibility (Interpretability)

When a machine learning text refers to comprehensibility, it most likely refers to syntactic

comprehensibility, synonymous terms for which are interpretability and understandability

[Piltaver et al., 2014].3

2.3.1. Measurement

The primary criterion in assessing interpretability of models is their syntactic form (rules,

trees, . . .) as well as the related metrics. For rule-based models there are two metrics:

number of conditions in the rule and number of rules in the model [García et al., 2009,

Lakkaraju et al., 2016]. For decision trees, the metrics are number of leaves, branching

factor, number of nodes in a branch, number of instances belonging to the leaf, the weighted

sum of the depths of leaves and the weighted sum of the branching factors on the paths

from the root to the leaves [Piltaver et al., 2014, 2016].

According to Bibal and Frénay [2016] measuring comprehensibility by the size of the

model can be justi�ed psychologically by the theory of Miller [1956], which states that

humans can cope with 5 to 9 entities at a time. Another opinion is expressed by Otero

and Freitas [2013] who argue that syntactic size of the model is not a good measure of

comprehensibility and instead propose the prediction-explanation size, which measures the

simplicity of ordered rule list by number of conditions that need to be checked to apply

the model to classify an instance.

Piltaver et al. [2014] designed a survey methodology for assessing interpretability of

decision trees based among others, on the human ability to use the model to classify a

new instance, explain classi�cation and rate tree comprehensibility. The survey consisted

of �ve types of questions asking participants to i) classify an instance using a visualization

3For further discussion of the terminology refer to Bibal and Frénay [2016].
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of a decision tree, ii) explain which attributes values must be changed/retained in order

to classify instance into another class, iii) validate whether a statement is con�rmed or

rejected according to the tree, iv) discover task asking the subject to �nd an attribute-

value pair that is unusual for instances from given class, v) rate comprehensibility of a

classi�cation tree. The level of task completion was measured with human accuracy and

time on the task. The primary result of this study is the validation of methodology used,

rather than any nontrivial new �ndings.

The way that interpretability is measured in Lakkaraju et al. [2016] is quite similar

to the earlier approach of Piltaver et al. [2014].4 The �rst evaluation criterion used are

decision boundaries, which roughly corresponds to the classify task mentioned above. The

second type of evaluation asked the participants to provide descriptions of classes based

on the discovered rules. This task is somewhat similar to the explain task, however, the

correctness of answers cannot be determined automatically, but needs to be assessed by

human judges. The results were measured using the same criteria as Piltaver et al. [2014]

used, that is in terms of i) human accuracy and b) time spent. Additionally, the authors

used the average number of words comprising the textual descriptions.

2.3.2. Which Representation is Most Comprehensible?

The comparative study of comprehensibility of various representations received some at-

tention in the past years. An overview of the four mostly studied symbolic representations

is given in the Example box on page 25.

One of the �rst such studies based on empirical results from experiments involving human

subjects was performed by Huysmans et al. [2011]. The conclusion is that decision tables

are better in terms of comprehensibility than decision trees or textually presented rules.

Forecast Sunny Sunny Cloudy Rain Rain
Humidity High Normal � � �
Wind � � � Strong Weak

Play Yes x x x
Play No x x

Table 2.1.: Decision table example

4Lakkaraju et al. [2016] seem to be unaware of the prior work of Piltaver et al. [2014].
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Figure 2.1.: Decision tree example

Example. (Decision tree, decision list, decision set and decision table)

An example of a decision tree is depicted in Figure 2.1. Decision tree consists of inner

decision nodes (for example Forecast), attribute values are attached to edges (Rain),

and the �nal decision is in the leaf node (Yes). Further discussion of decision trees

can be found in the seminal work of Quinlan [1993].

The tree in Figure 2.1 corresponds to the following rules:

• IF Forecast=Sunny AND Humidity=High THEN Play(No)

• IF Forecast=Sunny AND Humidity=Normal THEN Play(Yes)

• IF Forecast=Cloudy THEN Play(Yes)

• IF Forecast=Rain AND Wind=Strong THEN Play(No)

• IF Forecast=Rain AND Wind=Weak THEN Play(Yes)

A decision table corresponding to these rules is depicted in Table 2.1. The decision

table is divided into four quadrants delimited by the bold horizontal and vertical

lines. The horizontal line divides the table into the condition part (top) and action

part (bottom). The vertical line delimits attributes (left) from their values (right).

The dash symbol denotes that the value is no relevant. The 'x' symbol in the action

part denotes the class assigned when the conditions are met [Huysmans et al., 2011].

If the rules given above are associated with some rule quality metrics or information

regarding the distribution of classes in the training data, they could also be interpreted

as an unordered rule set [Fürnkranz et al., 2012, p. 26]. To evaluate unordered rule

set all rules are tried and all �ring rules can take part on assigning the class (subject

to con�ict resolution). Rule �res when its antecedent matches the description of the

instance.

In a decision list rules are tried from the �rst to the last and the �rst rule which �res

is used to classify the instance [Fürnkranz et al., 2012, p. 26]. Converting our example

to a rule list would require adding a default rule to the end. A default rule assigns a

class without checking any conditions.

According to another user study by Allahyari and Lavesson [2011] decision trees are
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more comprehensible than rule sets. Most recently, Lakkaraju et al. [2016] performed a

user study showing that decision sets are more interpretable than decision lists. In addition

to user studies, we have identi�ed one qualitative comparison. Freitas [2014] in his position

paper discusses the comprehensibility of decision trees, classi�cation rules, decision tables,

nearest neighbours and Bayesian network classi�ers. This research does not, however,

include any original empirical results.

What is relevant to our research are indications that better syntactic comprehensibility

of a particular type of representation (such as decision trees or rules) is tied with repre-

sentation's adherence to the Occam's razor principle.

2.3.3. Relation between Comprehensibility and Model Size

Results on the relation between the size of representation and comprehensibility are limited

and con�icting.

2.3.3.1. Larger Models are Less Comprehensible

The relation between the size of representation and comprehensibility was according to

our literature review for the �rst time empirically studied by Huysmans et al. [2011].5

This paper con�rmed the generally accepted knowledge in machine learning that �larger

representations result in a decrease in answer accuracy, an increase in answer time, and a

decrease in con�dence.�6

While Huysmans et al. [2011] obtained the result that larger models are less comprehen-

sible, the study does not report on the domain knowledge the participants of their study

had relating to the data used. It cannot thus be ruled out that the result they obtained

was caused by lack of domain knowledge as hypothesized by Allahyari and Lavesson [2011],

as discussed in the following.

2.3.3.2. Larger Models are More Comprehensible

A direct elicitation of the perceived understandability of classi�cation models has been

performed by Allahyari and Lavesson [2011]. Somewhat similarly to our survey design

presented in Chapter 5, these authors have performed elicitation of preferences on pairs of

models which were generated from two UCI datasets: Labor and Contact Lenses. What is

unique to this study is that the analysis took into account the estimated domain knowledge

of the participants on each of the datasets. On the Labor dataset participants were ex-

pected to have good domain knowledge but not for the Contact Lenses dataset. The study

5This primacy is also directly claimed by Huysmans et al. [2011]: �These �ndings are consistent with a
generally accepted assumption by the data mining community that people �nd smaller models more
comprehensible. However, this assumption was until now not tested empirically in this context [Pazzani,
2000].�

6In Otero and Freitas [2013] the outcome of this study is interpreted exactly in the opposite way: �The
�ndings of this study [by Huysmans et al. [2011]] indicate that the comprehensibility of the model from
a user perspective tends to increase in line with the size of the model. � However, such interpretation
directly contradicts with our quotation from [Huysmans et al., 2011].
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was performed with 100 student subjects and involved several decision tree induction al-

gorithms (J48, RIDOR, ID3) as well as rule learners (PRISM, Rep, JRip). Larger models

were considered as more comprehensible than smaller models on Labor dataset. Allah-

yari and Lavesson [2011] provide the following rationale: �. . . the larger or more complex

classi�ers did not diminish the understanding of the decision process, but may have even

increased it through providing more steps and including more attributes for each decision

step.�

The result is that more complex is more comprehensible on Labor dataset, but not on

the Contact Lenses dataset. Allahyari and Lavesson [2011] explain the discrepancy as

follows: �the provided data in Contact lenses �t in to a more speci�c area of knowledge

(e.g., healthcare or medicine). Many participants have probably never heard about any of

the medical terms if they have not experience an eyesight de�ciency problem.�

2.4. Semantic and Pragmatic Comprehensibility, Plausibility

Consider use case for a rule-based machine learning model, where the domain expert is

presented with a list of rules learned from data and asked to �lter out spurious or untrust-

worthy rules [Kliegr et al., 2011]. In this task, the domain expert is assumed to apply

her previously acquired domain knowledge to assess plausibility of individual rules. It is

implied that the domain expert is able to understand (interpret) the model.

Plausibility is closely related to the term justi�ability, which requires the expert to

assess that the model is in line with existing domain knowledge. In the recent review of

interpretability de�nitions by Bibal and Frénay [2016], the term plausibility is not explicitly

covered, but justi�ability is stated to depend on the interpretability. Justi�ability is de�ned

by Martens et al. [2011] as �intuitively correct and in accordance with domain knowledge�.

There is a paucity of prior research in this area. We identi�ed the following observa-

tions relating to semantic/pragmatic comprehensibility and plausibility of machine learning

models:

• Semantic coherence of literals in the rules improves (semantic) understandability

[Gabriel et al., 2014].

• Violation of monotonicity constraints negatively a�ects plausibility [Freitas, 2014].

• Too simple hypotheses are not plausible [Freitas, 2014, Elomaa, 1994, Lavra£, 1998].

• Domain knowledge elicited from experts can be used to �lter out uninteresting pat-

terns [Pazzani, 1997, Rauch, 2009].

These results are in greater detail elaborated in the following.

2.4.1. Semantic Coherence

Gabriel et al. [2014] presented an approach to increasing understandability of a rule learning

model by learning rules that are semantically coherent. This algorithm proceeds as follows.
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The attribute label is parsed for occurrence of words that can be linked to WordNet

[Fellbaum, 1998] synsets (sets of synonyms). Next, Lin's similarity [Lin, 1998] is computed

between each pair of synsets. Given that each word or token can be linked to multiple

synsets, the maximum similarity is used to represent the pair. Finally, the average across

all pair-wise scores is used to denote the �nal coherence score of the rule. The experiments

reported in the paper show that semantic coherence can be increased without signi�cantly

impacting accuracy of the classi�er.

2.4.2. Too Simple not Plausible

According to Freitas [2014] and Elomaa [1994], experts are opposed to oversimplistic mod-

els. A detailed empirical account indicating that smaller does not mean more plausible

was obtained in a study involving a small number experts is reported by Lavra£ [1998]:

�Frequently physicians dislike such [pruned] trees since two few parameters are taken into

account and the trees describes the patients too poorly (not su�ciently detailed) to provide

reliable decisions.� Similar observation is reported by Lavra£ [1998] for models produced

by the CN2 rule learner.

2.4.3. Monotonicity Constraint

One of the few works that closely relates to plausibility of classi�cation models is Freitas

[2014]. It follows from this position paper that what we call plausibility7 depends on the

degree to which domain-speci�c constraints on monotonicity of attributes are followed.

An example of a monotonicity constraint for a numerical attribute given in Martens et al.

[2011] is that increasing the weight of a newly designed car, keeping all other variables

equal, should result in increased predicted fuel consumption. For nominal attributes,

the monotonicity is de�ned by Freitas [2014] di�erently: a speci�c value will be globally

predictive of a speci�c target class, therefore the learning algorithm should refrain from

inserting this speci�c value to rules predicting other classes.

Martens et al. [2011] present a numerical measure for justi�ability which re�ects to what

degree monotonicity constraints are complied with. Feelders [2000] showed on an example

of real housing data and expert knowledge from real estate agents that decision tree models

complying to monotonicity constraints were only slightly worse than unconstrained models

in terms of classi�cation performance, but they are much simpler.

2.4.4. Domain Knowledge used to Filter Uninteresting Patterns

Empirical evidence showing that domain experts do not �nd rules that contain conditions

violating prior domain knowledge as plausible was provided already by Pazzani [1997].

This result is based on a user study, where classi�cation rules predicting dementia were

presented to neurologists.

7Freitas [2014] uses terms user �trust� and �acceptance�.
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One of the �rst systematic approaches to elicitation and utilization of domain constraints

was done by Rauch [2009]. This paper introduced an intuitive arrow notation for elicitation

of domain knowledge from experts. Elicited domain knowledge is subsequently used to �lter

out discovered rules.

2.5. Rule Learning in Cognitive Science

In the following, we will discuss the results obtained in cognitive science for studying

inductive rule learning and their relevance for the problem of plausibility of inductively

learned rules.

2.5.1. Cognitive Basis of Inductive Machine Learning

First approaches for inductive learning from data appeared in the 1950s [Michalski, 1969].

The AQ algorithm [Michalski, 1969] was the �rst inductive rule learning algorithm to use

separate-and-conquer strategy [Fürnkranz, 1999], which is applied in current state-of-the-

art rule learners, such as FURIA [Hühn and Hüllermeier, 2009].

While the original research paper on the AQ algorithm [Michalski, 1969] did not refer to

any cognitive science research, in a follow-up work Michalski [1983] developed a theoretical

framework for inductive learning which stresses the links with cognitive science. This

work includes a comprehensibility postulate according to which �descriptions generated

by inductive inference bear similarity to human knowledge representations�. According to

Michalski [1983] adherence to the comprehensibility postulate in rule learning is considered

as �crucial�.

Despite the early emphasis on the psychological dimension of comprehensibility in the

early and in�uential articles by Michalski [1969, 1983], there is according to our review

of machine learning literature no follow-up work on the transfer of results from cognitive

science to the design of classi�cation machine learning algorithms. However, considerable

crossfertilization between cognitive science and machine learning occurred in the area of

reinforcement learning following the publication of the Q-learning algorithm [Watkins and

Dayan, 1992].

2.5.2. Rule as Object of Study in Cognitive Science

A hypothesis � a rule inductively learned from data � is a very speci�c form of alternative.

Psychological research speci�cally on hypothesis testing in rule discovery task has been

performed in cognitive science at least since the 1960's. The seminal article by Wason

[1960] introduced what is widely referred to as Wason's 2-4-6 task. Participants are given

the sequence of numbers 2, 4 and 6 and asked to come up with a rule that generates

this sequence. In search for the hypothesized rule they can ask the experimenter other

sequences of numbers, such as 3-5-7 that are either supposed to conform to the rule or not.

The experimenter answers yes or no. While the target rule is simple �ascending sequence�,

people �nd it di�cult to discover this speci�c rule, because they apply the con�rmation
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bias [Nickerson, 1998], human tendency to focus on evidence con�rming the hypothesis at

hand [Nickerson, 1998].

One of the later works in this area is entitled �Strategies of rule discovery in an inference

task� [Tweney et al., 1980]. While the title could suggest that this work is highly relevant to

our machine learning problem, it is actually a psychological study of the inference processes

(that is �meta-rules� people use in the reasoning process), which does not directly relate

to the notion of �rules� used in machine learning, which typically correspond to particular

pattern in data in a speci�c domain. Of similar limited relevance are follow-up works of

Rossi et al. [2001], Vallée-Tourangeau and Payton [2008].

Another related �eld are cognitive theories of human decision making, which study how

humans combine multiple pieces of evidence, which in our case correspond to conditions

(literals) in a rule. The contribution of individual conditions to the overall plausibility of

the rule is an important part of our research problem, but there is a paucity of directly

applicable research in cognitive science. Most of this research that we identi�ed in our brief

survey is based on Bayesian reasoning (studies by Gopnik and Tenenbaum [2007], Gri�ths

et al. [2010]), rather than rule induction.

If we consider an individual rule (hypothesis) as one of alternatives between which the

user decides, we can apply research of human decision-making processes. Most notably, this

includes results of research program on cognitive heuristics and biases started by Amos

Tversky and Daniel Kahneman in the 1970's. In our work, we draw heavily from this

intensely studied area of human cognition. A review of applicable work from cognitive

science continues in Chapter 4.



3. Problem Statement

The vision of �nding nuggets of valuable knowledge has been one of the key drivers of

development of the �eld of Knowledge Discovery in Databases [Fayyad et al., 1996]. The

merits on which the results of interpretable machine learning models are evaluated is the

analysts' appreciation of the plausibility (persuasiveness) of the discovered nuggets. Our

work focuses on the relation between the length of a rule, as measured by the number of

literals, and its plausibility.

Chapter organization. Section 3.1 justi�es our choice of rule as the object of our study.

Section 3.2 de�nes cognitive bias. Finally, Section 3.3 presents the research questions.

3.1. Inductively Learned Rule

We selected the individual rule on the output of rule learning as the object of our study.

Focusing on simple artefacts � individual rules � as opposed to entire models such as rule

sets or rule lists allows deeper, more focused analysis since rule is a small self-contained item

of knowledge. Making a small change in one rule, such as adding a new condition, allows to

test the e�ect of an individual factor that can in�uence perception of rule plausibility. In

this section, we will shortly introduce the inductively learned rule in the machine learning

and cognitive science contexts.

3.1.1. Decision Rules in Machine Learning

The type of inductively learned decision rule which we consider is depicted in Figure 3.1 and

follows the notation used in Fürnkranz et al. [2012, page 25], an authoritative monograph

on rule learning, where con�dence and support are two selected rule evaluation measures.

IF A AND B THEN C, confidence=c and support=s

IF veil is white AND odour is foul THEN mushroom is poisonous

confidence = 90%, support = 5%

Figure 3.1.: Inductively learned rule

In this simple example, A,B,C are literals, which are composed of attribute name (veil)

and its value (white). Literal is sometimes referred to as condition throughout the text.

The conjunction of conditions on the left side of the rule is called antecedent, the single

literal predicted by the rule is called consequent.

31
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While rule de�nition used in Fürnkranz et al. [2012, page 25] is restricted to conjunctive

rules, other de�nitions, e.g. the formal de�nition given by Slowinski et al. [2006, page 2]

allows also negation and disjunction as connectives. In the practical part of the thesis

(crowdsourcing experiments in Chapter 5 and software framework in Part II) we adhere to

the conjunctive de�nition. The analytical part (Part I) discusses also the implications that

the inclusion of disjunction and negation would have on the comprehensibility of rules.

Rules on the output of rule learning algorithms are most commonly characterized by

the following two parameters: con�dence and support. The con�dence of a rule is de�ned

as a/(a + b), where a is the number of correctly classi�ed objects, i.e. those matching

rule antecedent as well as rule consequent, and b is the number of misclassi�ed objects,

i.e. those matching the antecedent, but not the consequent. The support of a rule is

de�ned either as a/n, where n is the number of all objects (relative support), or simply as

a (absolute support).

Some rule learning frameworks, in particular association rule learning [Fürnkranz et al.,

2012, page 14], which we build upon in Part II of the thesis, require the user to set

thresholds for minimum con�dence and support. Only rules with con�dence and support

values meeting or exceeding these thresholds are included on the output of rule learning

and presented to the user.

3.1.2. Inductively Learnt Rules vs Rules in Cognitive Science

Inductively learned rules are a commonly embraced model of human reasoning in cogni-

tive science [Smith et al., 1992, Nisbett, 1993, Pinker, 2015]. Rules also closely relate to

Bayesian inference, another frequently used model of human reasoning.

Inductively learnt rule �IF A AND B THEN C� can be interpreted as a hypothesis

corresponding to the logical implication A ∧ B ⇒ C. We can express the plausibility of

such hypothesis in terms of Bayesian inference as the conditional probability P (C|A,B).

This corresponds to the con�dence of the rule, a term used in rule learning, and to strength

of evidence, a term used by cognitive scientists [Tversky and Kahneman, 1974].1

Given that P (C|A,B) is a probability estimate computed on a sample, another relevant

piece of information for determining the plausibility of the hypothesis is the robustness

of this estimate. This will correspond to the number of observed instances for which

the rule is true. The size of the sample (typically expressed as ratio) is known as rule

support in machine learning and as weight of the evidence in cognitive science [Tversky

and Kahneman, 1974].

1In the terminology used within the scope of cognitive science [Gri�n and Tversky, 1992], con�dence
corresponds to the strength of the evidence and support to the weight of the evidence. Interestingly,
this problem was already mentioned by Keynes [1922] (according to Camerer and Weber [1992]) who
drew attention to the problem of balancing the likelihood of the judgment and the weight of the evidence
in the assessed likelihood.
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3.2. Cognitive Bias

In the introduction, we loosely de�ned cognitive biases as seemingly irrational reasoning

patterns that allow humans to make fast and risk averse decisions. In this section, we

further elaborate the de�nition of this pivotal concept.

3.2.0.1. Cognitive Bias (Illusion)

According to the Encyclopedia of Human Behavior [Mata, 2012], the term cognitive bias

was introduced in the 1970s by Amos Tversky and Daniel Kahneman, and is de�ned as:

Systematic error in judgment and decision-making common to all human be-

ings which can be due to cognitive limitations, motivational factors, and/or

adaptations to natural environments.

The research on cognitive biases and heuristics is considered as the most important psy-

chological research done in the past 40 years [Mata, 2012].

The narrow initial de�nition of cognitive bias as a shortcoming of human judgment was

criticized by German psychologist Gerd Gigerenzer, who started in the late 1990s the �Fast

and frugal heuristic� program to emphasize ecological rationality (validity) of cognitive

biases. If cognitive bias is applied in the right environment, it results in �frugal� rather

than �erroneous� judgment.

As for terminology, the concept of cognitive bias includes many cognitive phenomena,

multiple of which are not called �biases� but instead heuristics (e.g. Representativeness

heuristic), e�ects (e.g. Mere exposure e�ect), fallacies (e.g. Conjunction fallacy), illusions

(e.g. Illusionary correlation) or otherwise.

Three types of cognitive biases are recognized in the recent authoritative work of Pohl

[2017]: those relating to thinking, judgment and memory. Within this thesis, we focus on

cognitive biases2 falling into the thinking and judgment categories.

3.3. Objectives and Contribution

According to the seminal work of Michalski [1983] the goal of inductive rule learning is to

create models that are comprehensible to humans. Previous e�orts to improve comprehen-

sibility of machine learning results have concentrated on making models smaller, mainly

following the proposition that smaller models take less human time to process and provide

less opportunities for errors. The problem of cognitive biases a�ecting comprehension of

rule-based models has not yet been studied. However, there are several successful studies of

the e�ect of cognitive biases on human interaction with other types of information [Kunda,

1999, Serfas, 2011].

In the following, we will introduce the goals of the present research:

2Called cognitive illusions in [Pohl, 2017].
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1) Analyze results of prior research to determine e�ect of selected cognitive biases

on interpretability of rules discovered from data (Chapter 4). Our objective is to

identify applicable research from cognitive psychology and relate it to the problem of

human interaction with rule learning results. Since model length is one of the few generic

parameters that a particular learning algorithm can in�uence, and has thus been subject

of most previous studies of comprehensibility of machine learning models, our research will

also focus on model length. Since we decided to work with rule-based algorithms, we will

speci�cally study how the e�ect of cognitive biases will vary depending on rule length.

2) Experimentally determine e�ect of selected cognitive biases on interpretability of

rules discovered from data (Chapter 5). The aim of our experiments is to verify the

e�ect of selected cognitive biases when actual human users are faced with rules discovered

from real data. This is achieved by performing user study. Based on statistical analysis of

the results we determine which cognitive biases a�ect interpretation of rules learnt from

data. Particular attention will be paid to the problem of length of rules.

3) Create concise model for e�ect of cognitive biases on interpretability of rules dis-

covered from data (Chapter 6). The last objective of the �rst part of the thesis is to

merge the results of the qualitative analysis and obtained empirical results into one model.

The outcome of this research is a list of implementable recommendations for designers of

machine learning algorithms and interfaces.

4) Propose machine learning algorithm that learns more comprehensible rule models

(Part II). The conclusion of research related to the previous objectives was that indeed

shorter length of the model provides less opportunities for various cognitive biases to be

triggered. The �nal objective of the thesis is to propose a machine learning algorithm

that will re�ect this �nding to improve understanding of rule-based classi�cation models

discovered from data. A detailed de�nition of this objective is deferred to the �rst chapter

of Part II of the thesis (Chapter 8).

Note that the ful�llment of these objectives leading to the list of contributions is sum-

marized in the Conclusions (Chapter 11).



4. Analysis of Cognitive Science

Literature

This chapter reviews selected cognitive biases (illusions) described in the �eld of cognitive

science and applies them to the problem of human comprehension of rules discovered from

data. The aim of this work is to understand the deviations between how the rule learning

algorithm �means� a speci�c rule on its output and how humans perceive it.

Focus of the analytical work. The �rst objective of this thesis is to evaluate the e�ects

of selected cognitive biases on interpretation of rules mined from data. Since these can

demonstrate in multiple ways, we chose a narrow problem of the e�ect on the perceived

plausibility of rules depending on their length, while we also pay attention to other e�ects.

The advantages of focusing on rule length are:

• Rule length is one of few directly measurable properties common to all rules.

• Through selection of appropriate learning heuristic, the rule induction learning algo-

rithm can in�uence the length of rules on its output. The experiments presented by

Stecher et al. [2014] show that the length of rules is inversely related to the number

of rules on the classi�er output. It is open question what is more understandable to

users: whether a smaller number of longer rules or larger number of shorter rules.

• Change in comprehension of rules depending on their length is measurable (this

property will be used in the following chapter devoted to empirical analysis).

• According to our preliminary analysis, the e�ect of most biases is related to the

length of the rules: increased length of the rule means extra stimuli the subject is

exposed to.

While we mainly focus on the relation of the e�ect of biases to rule length, we also in-

vestigate the triggering of selected biases by other properties of rules, especially con�dence

and support (cf. the example in the box on page 36).

Chapter organization. Section 4.1 discusses the functions and environmental validity of

cognitive biases and the way in which we work with them in our analysis. Section 4.2 spec-

i�es the selection criteria for inclusion of cognitive biases into our analysis and enumerates

applicable cognitive biases and heuristics. The list of selected cognitive biases along with a

short summary is presented in Section 4.3. The detail analysis of the implications of twenty

35
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individual cognitive biases and heuristics for plausibility of inductively learned rules is split

into three sections: Section 4.4 (biases relating to thinking), Section 4.5 (biases relating to

judgment) and Section 4.6 (not categorized biases). Finally, Section 4.7 summarizes the

results for all three types of biases and provides link to the following chapter focused on

empirical evaluation.

Example. (The signi�cance of insensitivity to sample size e�ect for inter-

pretation of rules discovered from data)

Consider the following two rules:

• IF a film is released in 2006 AND the language of the film is

English THEN Rating is good, confidence = 80%, support = 10%.

• IF a film is released in 2006 AND the director was John Smith THEN

Rating is good, confidence = 90%, support = 1%.

It is well known in machine learning that rules with high con�dence can appear on

output of rule learning by chance [Azevedo and Jorge, 2007]. For this reason, the

rule learning process typically outputs both con�dence and support for the analyst to

make an informed choice about merits of each rule. In our example both rules are

associated with values of con�dence and support to inform about the strength and

weight of evidence for both rules. While the �rst rule is less strong (80% vs 95%

correct), its weight of the evidence is ten times higher than of the second rule.

According to the insensitivity to sample size e�ect [Tversky and Kahneman, 1974]

there is a systematic bias in human thinking that makes humans put higher weight on

the strength of evidence (con�dence) than on the weight of evidence (support). It has

been shown that this bias is applicable also to statistically sophisticated psychologists

[Tversky and Kahneman, 1971] and thus can be applicable to the widening number of

professions that are using rule learning to obtain insights from data.

The second bias that we consider is base rate fallacy, according to which people are

unable to correctly process conditional probabilities. The conditional probability in

our example is the con�dence value, which is a probability of good rating on the

condition of release in 2006 and the �lm being in English.

The analysis of relevant literature from cognitive science not only reveals applicable

biases, but also provides in some cases methods for limiting their e�ect (debiasing).

The common way to express rule con�dence and support metrics is to use ratios,

as in our example. Extensive research has shown that if natural numbers are used

instead then the number of errors in judgment drops [Gigerenzer and Goldstein, 1996,

Gigerenzer and Ho�rage, 1995]. Re�ecting these suggestions, the �rst rule in our

example could be presented as follows:

• IF a film is released in 2006 AND the language of the film is

English THEN Rating is good. In our data, there are 100 movies

which match the conditions of this rule. Out of these, 80 are

predicted correctly as having good rating.
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4.1. Functions and Environmental Validity

In the introduction, we brie�y characterized cognitive biases as �seemingly irrational rea-

soning patterns that are thought to allow humans to make fast and risk averse decisions.�

In fact, the function of cognitive biases is subject of scienti�c debate. According to the

review of functional views in Pohl [2017], there are three fundamental positions among re-

searchers. First group considers them as dysfunctional errors of the system, second group

as faulty by-products of otherwise functional processes and the third group c) as adaptive

and thus functional responses. According to Pohl [2017] most researchers are in the second

group, where cognitive biases (illusions) are consider to be �built-in errors of the human

information-processing systems�.

It follows that biases and heuristics that humans apply are not generally interpreted

as a lack of rational reasoning. Instead, these are considered as strategies that evolved

to improve the �tness and chances of survival of the individual in particular situations.

This stand in defense of biases is succinctly expressed by the in�uential work of Haselton

and Nettle [2006]: �Both the content and direction of biases can be predicted theoretically

and explained by optimality when viewed through the long lens of evolutionary theory.

Thus, the human mind shows good design, although it is design for �tness maximization,

not truth preservation.� In our analysis of cognitive biases, we adopt this �built-in error�

view and we try to identify measures that can correct the error by proposing debiasing

techniques.

Empirical evidence also shows that cognitive biases are triggered or their e�ect strength-

ened by environmental cues and context [Haselton and Nettle, 2006]. However, as also

follows from the quotation above, the application of cognitive biases comes at the cost of

distorted perception of truth.

The interpretation of machine learning results and statistical hypotheses represents a

new type of environment to which humans had only tiny bit of evolutionary time to adapt.

It is therefore natural that when interpreting machine learning results, the human mind

applies many of the heuristics and biases inappropriately. It follows that cognitive biases

will not demonstrate in all humans and in all situations equally (or many times even at

all). For this reason, in our analysis we put special attention to identifying groups of people

who are (not)susceptible to the speci�c bias where this information is available. Also, we

report the success rates � the number of people committing a fallacy corresponding to a

speci�c bias in an experiment � if the information is available.

4.2. Selection Criteria and Limitations

Number of cognitive biases have been discovered. As Pohl [2017] in a recent authoritative

book on cognitive illusions states: �There is a plethora of phenomena showing that we

deviate in our thinking, judgment and memory from some objective and arguably correct

standard.� As a response to the high number of biases being discovered, several categoriza-

tions for their organization were proposed [Stanovich, 2009, Pohl, 2017]. In this chapter,
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we opted to adhere to the three categories (thinking, judgment, memory) used by Pohl

[2017], the most comprehensive review of cognitive biases to date. Furthermore, we focus

on biases relating to judgment and thinking. While biases relating to memory are applica-

ble to rule learning, they are mostly general phenomena with little speci�c bond to rules

as subject of our study.

There are at least 51 di�erent biases falling into the thinking and judgment categories

[Evans et al., 2007, Pohl, 2017]. To select twenty biases into our review the author used his

prior experience gained in the domain of designing machine learning algorithms [Kliegr,

2009, Kliegr et al., 2014], elicitation and handling of domain knowledge from experts for

the purpose of improving machine learning results [Kliegr et al., 2011], interfaces for rule

learning algorithms [�krabal et al., 2012], designing systems for implicit learning of human

preferences [Kucha° and Kliegr, 2013, Kliegr and Kucha°, 2014, Kucha° and Kliegr, 2014,

Kliegr and Kucha°, 2015, Kucha° and Kliegr, 2017] and their empirical validation [Leroy

et al., 2014].

One limitation of our analysis is that we do not consider the correlation between individ-

ual cognitive biases. For example, it is known that a number of cognitive biases (such as

conjunction fallacy, base rate neglect, insensitivity to sample size, confusion of the inverse)

can all be attributed to a more general phenomenon called representativeness heuristic

[Ballin et al., 2008]. To our knowledge, the correlation between cognitive biases has not

yet been systematically studied. Since in our analysis we built upon prior research in cog-

nitive science, we decided also not to address this problem. In our review, we thus include

multiple biases even though they may be correlated.

The list of the cognitive biases that we identi�ed as important for interpretation of rule

learning results follows.

4.3. Selected Cognitive Biases

This section contains a list of selected cognitive biases along with short description grouped

by categories presented in Pohl [2017]. Not all of the included biases are assigned a category

(Thinking, Judgment, Memory) by Pohl [2017]. These are listed under the �Other� category

as the author does not have the con�dence to assign these biases to any speci�c category.

Thinking.

• Base rate neglect [Kahneman and Tversky, 1973, Bar-Hillel, 1980]. Insensitivity to

the prior probability of the outcome, violating the principles of probabilistic reason-

ing, especially Bayes' theorem.

• Con�rmation bias and positive test strategy [Nickerson, 1998]. Seeking or interpreta-

tion of evidence so that it conforms to existing beliefs, expectations, or a hypothesis

in hand.

• Conjunction fallacy and representativeness heuristic [Tversky and Kahneman, 1983].

Conjunction fallacy occurs when a person assumes that a speci�c condition is more
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probable than a single general condition in case the speci�c condition seems as more

representative of the problem at hand.

Judgment.

• Availability heuristic [Tversky and Kahneman, 1973]. The easier it is to recall a piece

of information, the greater the importance of the information.

• E�ect of di�culty [Gri�n and Tversky, 1992]. If two mutually exclusive alternative

hypotheses are evaluated and telling which one is better is di�cult � both are nearly

equally probable � people will grossly overestimate the con�dence associated with

their choice. This e�ect is also sometimes referred to as overcon�dence e�ect [Pohl,

2017].

• Mere-exposure e�ect [Zajonc, 1968]. Repeated encounter results in increased prefer-

ence.

Other.

• Ambiguity aversion [Ellsberg, 1961]. People tend to favour options for which the

probability of a favourable outcome is known over options where the probability of

favourable outcome is unknown. Some evidence suggests that ambiguity aversion has

a genetic basis [Chew et al., 2012].

• Averaging heuristic [Fantino et al., 1997]. Joint probability of two events is estimated

as an average of probabilities of the component events. This fallacy corresponds to

believing that P (A,B) = P (A)+P (B)
2 instead of P (A,B) = P (A) ∗ P (B).

• Confusion of the inverse [Plous, 1993]. Conditional probability is equivocated with

its inverse. This fallacy corresponds to believing that P (A|B) = P (B|A).

• Context and tradeo� contrast [Tversky and Simonson, 1993]. The tendency to pre-

fer alternative x over alternative y is in�uenced by the context � other available

alternatives.

• Disjunction fallacy [Bar-Hillel and Neter, 1993]. People tend to �nd it as more likely

for an object to belong to a more characteristic subgroup than to its supergroup.

• Information bias [Baron et al., 1988]. Distorted evaluation of information: believing

that more information the better, even if the extra information is irrelevant for the

decision.

• Insensitivity to sample size [Tversky and Kahneman, 1974]. Neglect of the following

two principles: a) more variance is likely to occur in smaller samples, b) larger

samples provide less variance and better evidence.
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• Recognition heuristic [Goldstein and Gigerenzer, 1999]. If one of two objects is rec-

ognized and the other is not, then infer that the recognized object has the higher

value with respect to the criterion.

• Negativity bias [Kanouse and Hanson Jr, 1987]. People weigh negative aspects of an

object more heavily than positive ones.

• Primacy e�ect [Thorndike, 1927]. This e�ect can be characterized by words of Ed-

ward Thorndike (1874-1949), one of the founders of modern education psychology, as

follows: �other things being equal the association �rst formed will prevail� [Thorndike,

1927].

• Reiteration e�ect [Hasher et al., 1977]. Frequency of occurrence is a criterion used

to establish validity of a statement.

• Unit bias [Geier et al., 2006]. People tend to consider each condition as a unit of

equal weight at the expense of detailed scrutiny of the actual weight of the condition.

• Weak evidence e�ect [Fernbach et al., 2011]. Presenting weak, but supportive evi-

dence makes people less con�dent in predicting a particular outcome than presenting

no evidence at all.

The cognitive biases listed above are in detail analysed with respect to their e�ect on

interpretability of rule learning results in the following Sections 4.4-4.6. For all cognitive

biases, we include a short description and a paragraph, which quanti�es the e�ect of the

cognitive bias and, where this information was available, we state the proportion of sub-

jects committing it. As noted earlier, the particular problem that we study is perceived

plausibility of rules depending on their length. For all cognitive biases we suggest a de-

biasing technique that could be e�ective in the rule learning context. The suggestions

are based on empirical results obtained by psychologists, we indicate when these are our

conjectures that are in need of further validation.

4.4. Thinking

This section discusses the cognitive biases in the Thinking category.

4.4.1. Base-rate Fallacy

The base-rate fallacy indicates that people are unable to correctly process conditional

probabilities.

4.4.1.1. Success Rates

In the original experiment reported in Kahneman and Tversky [1973] more than 95% of

psychology graduate students committed the fallacy.
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4.4.1.2. Implications for Rule Learning

The application of the base rate fallacy suggests that when presented with two otherwise

identical rules with di�erent values of con�dence and support metrics, analyst's preferences

will be primarily shaped by the con�dence of the rule.

It follows that by preferring higher con�dence, base-rate fallacy will generally contribute

to positive relation between rule length and plausibility, since the longer rule can better �t

a particular group in data and thus have a higher con�dence than a more general shorter

rule. At the same time, the more speci�c longer rule will have smaller value of support.

4.4.1.3. Debiasing Techniques

Literature review provides a valuable input for addressing base-rate fallacy. Gigerenzer

and Ho�rage [1995] show that representations in terms of natural frequencies, rather than

conditional probabilities, facilitate the computation of cause's probability. To the author's

knowledge, con�dence is exclusively presented as ration in current software systems. The

support rule quality metric is sometimes presented as a ratio and sometimes as a natural

number. It would foster correct understanding if analysts are consistently presented with

natural frequencies in addition to ratios.

4.4.2. Con�rmation Bias and Positive Test Strategy

Con�rmation bias is the best known and most widely accepted notion of inferential error

of human reasoning [Evans, 1989, p. 552].1 This bias refers to the notion that people tend

to look for evidence supporting the current hypothesis, disregarding con�icting evidence.

Research suggests that even neutral or unfavourable evidence can be interpreted to sup-

port existing beliefs, or as Trope et al. [1997, p. 115-116] put it �the same evidence can

be constructed and reconstructed in di�erent and even opposite ways, depending on the

perceiver's hypothesis.�

A closely related heuristic is the Positive Test Strategy (PTS) proposed by Klayman and

Ha [1987]. This heuristic suggests that when trying to test a speci�c hypothesis, people

examine cases which they expect to con�rm the hypothesis rather than the cases which

have the best chance of falsifying it. The di�erence between PTS and con�rmation bias is

that PTS is applied to test a �candidate� hypothesis while the true con�rmation bias tests

hypotheses that are already established [Pohl, 2004, p. 93].

Regarding PTS, experimental results of Klayman and Ha [1987] show that under realistic

conditions it can be a very good heuristic for determining whether a hypothesis is true or

false, but it can also lead to systematic errors if applied to an inappropriate task.

Finally, it should be noted that according to review performed by Klayman and Ha

[1987] this heuristic is used as a �general default heuristic� in situations where either there

is absence of speci�c information that identi�es some tests as more relevant than others or

when the cognitive demands of the task prevent a more careful strategy.

1Cited according to Nickerson [1998].



4.4. Thinking 42

4.4.2.1. Success Rates

According to Mynatt et al. [1977, p. 404] in 70% of cases subjects did not abandon

falsi�ed hypotheses in an experiment that simulated research environment.2 This success

rate is particularly relevant for the problem of comprehending rule learning results as

the simulated research environment is close to our target domain of analysts interpreting

discovered rules.

4.4.2.2. Implications for Rule Learning

This bias can have signi�cant impact depending on the purpose for which the rule learning

results are used. If the analyst had some prior hypothesis before she obtained the rule

learning results, according to the con�rmation bias she will �cherry pick� the rules con�rm-

ing this prior hypothesis, disregarding rules that contradict it. Given that output of some

rule learners contains contradicting rules, the analyst can select only the rules conform-

ing to the hypothesis disregarding applicable rules with opposite conclusion, which would

otherwise be considered as more relevant.

Using evidence gathered using MRI brain scans Westen et al. [2006] explain con�rmation

bias by emotions related to the favoured hypothesis. The evidence that challenges this

hypothesis is suppressed. The experiments in this study were conducted by presenting

information that challenged the moral integrity of the politician that the subject favoured.

While it could be argued that data analysts interpreting the rule learning results are free of

emotional bond with the problem and additionally trained to correctly interpret machine

learning results, the con�rmation bias may still apply to them:

• Stanovich et al. [2013] show that incidence of myside bias, which is closely related to

con�rmation bias, is surprisingly not related to intelligence. This suggests that even

highly intelligent analysts can be a�ected.

• Some research can be interpreted so that data analysts can be even more susceptible

to the myside bias than the general population. Experiment reported by Wolfe and

Britt [2008] shows that subjects who de�ned good arguments as those that can be

�proved by facts� (this stance, we assume, would also apply to many data analysts)

were more prone towards the myside bias.3

4.4.2.3. Debiasing Techniques

Tweney et al. [1980] successfully tested a modi�cation of the Wason's 2,4,6 task. In the

original Wason's 2,4,6 task participants try to �discover� the rule according to which the

sequence 2,4,6 was created (for details cf. Section 2.5.2). The correct answer is ascending

sequence of numbers. In the modi�cation by Tweney et al. [1980] participants were asked

2Result for experiment performed in �complex� environment.
3This tendency is explained as follows: �For people with this belief, facts and support are treated uncriti-
cally. The intended audience is not part of the schema and thus ignored. More importantly, arguments
and information that may support another side are not part of the schema and are also ignored.�
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to search for two rules (�any ascending sequence of numbers� and �all other sequences�)

instead of one rule (�ascending sequence of numbers�). Following this, the response format

was changed from positive and negative to whether the rule belongs to the �rst category

�DAX� or the second category �MED�, which improved performance in the task. This

relabeling of categories from positive and negative to something more neutral can possibly

help to debias the analysts interpreting rule learning results in binary rule learning tasks.

Albarracín and Mitchell [2004] suggest that the susceptibility to the con�rmation bias

can dependent on one's personality traits. This publication also presents a diagnostic

tool called �defense con�dence scale� that can identify individuals prone to con�rmational

strategies.

Wolfe and Britt [2008] successfully experimented with providing the subjects with ex-

plicit guidelines for considering evidence both for and against the hypothesis. While this

research is not directly related to hypothesis testing, providing explicit guidance combined

with modi�cations of the user interface of the system presenting the rule learning results

could prove as an e�ective debiasing technique.

4.4.3. Conjunction Fallacy and Representativeness Heuristic

Human-perceived plausibility of hypotheses has been extensively studied in cognitive sci-

ence. The most well-known cognitive phenomenon related to our focus area of the in�uence

of the number of conditions in a rule on its plausibility is the Conjuctive fallacy. This fal-

lacy falls into the research program on cognitive biases and heuristics carried out by Amos

Tversky and Daniel Kahneman since approximately 1970s'. The outcome of this research

program can be succinctly summarized by a quotation from Kahneman's Nobel Prize lec-

ture which was delivered at Stockholm University on December 8, 2002 [Kahneman, 2003]:

. . ., it is safe to assume that similarity is more accessible than probability,

that changes are more accessible than absolute values, that averages are more

accessible than sums, and that the accessibility of a rule of logic or statistics

can be temporarily increased by a reminder.

This heuristic relates to the tendency to make judgments based on similarity, based on

rule �like goes with like�, which is typically used to determine whether an object belongs to

a speci�c category. According to Gilovich and Savitsky [2002] representativeness heuristic

can be held accountable for number of widely held false and pseudoscienti�c beliefs, in-

cluding those in astrology or graphology.4 It can also inhibit valid beliefs that do not meet

the requirements of resemblance.

4Gilovich and Savitsky [2002] give the following example: resemblance of the physical appearance of the
sign, such as crab, is related in astrology with personal traits, such as appearing tough on the outside.
For graphology, the following example is given: handwriting to the left is used to indicate that the
person is holding something back.
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4.4.3.1. Linda Problem

Conjunctive fallacy is in the literature often de�ned through the �Linda� problem [Tversky

and Kahneman, 1983, page 299], which was �rst used to demonstrate it.5

Linda is 31 years old, single, outspoken, and very bright.

She majored in philosophy. As a student, she was deeply

concerned with issues of discrimination and social justice,

and also participated in anti-nuclear demonstrations.

Which is more probable?

(a) Linda is a bank teller.

(b) Linda is a bank teller and is active in the

feminist movement.

Figure 4.1.: Linda problem

In the Linda problem (Figure 4.1), subjects are asked to compare conditional proba-

bilities P (F&B|L) and P (B|L), where B refers to �bank teller�, F to �active in feminist

movement� and L to the description of Linda [Bar-Hillel, 1991].

Multiple studies have shown that humans tend to consistently select the second, longer

hypothesis, which is in con�ict with the elementary law of probability: the probability of

a conjunction, P (A&B), cannot exceed the probability of its constituents, P (A) and P (B)

[Tversky and Kahneman, 1983]. In other words, it always holds for the Linda problem that

P (F&B|L) ≤ P (B|L).

Preference for alternative F&B (option b in Figure 4.1) is thus always a logical fallacy.6

Conjunction fallacy has been shown to hold across multiple settings (hypothetical scenar-

ios, real-life domains), as well as for various kinds of subjects (university students, children,

experts, as well as statistically sophisticated individuals) [Tentori and Crupi, 2012].

4.4.3.2. Cause of Conjunctive Fallacy - Representativeness Heuristic and Other

Explanations

The results of the conjunctive fallacy experiments manifest according to Tversky and Kah-

neman [1983] that conjunction can be more representative than one of its constituents.

Conjunctive fallacy is a symptom of a more general phenomenon, in which people have a

5Note that the paper [Tversky and Kahneman, 1983] contains also di�erent set of eight answer options
for the Linda problem on page 297. The two option version on page 299 is prevalently used as a
canonical version of the Linda problem in subsequent research (cf. the seminal paper of Gigerenzer
[1996, page 592]), and is referred to by Daniel Kahneman as the �more direct version� of the Linda
problem [Kahneman, 2003, page 712].

6P (F&B|L) is a notation used in cognitive science (e.g. Bar-Hillel [1991]). In computer science a
corresponding notation would be P (F,B|L).
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tendency to overestimate the probabilities of representative events and underestimate those

of less representative ones. The reason is attributed to the application of the representa-

tiveness heuristic [Tversky and Kahneman, 1983]. This heuristic provides humans with

means for assessing a probability of an uncertain event. This is used to answer questions

such as �What is the probability that object A belongs to class B? What is the probability

that event A originates from process B?� According to the representativeness heuristic,

probabilities are evaluated by the degree to which A is representative of B, that is by the

degree to which A resembles B [Tversky and Kahneman, 1974].

Representativeness heuristic is not the only explanation for the results of the conjunc-

tive fallacy experiments. Hertwig et al. [2008] hypothesized that the reason is caused by

�a misunderstanding about conjunction�, in other words by a di�erent interpretation of

�probability� and �and� by the subjects than assumed by the experimenters. The validity

of this alternate hypothesis has been subject to criticism [Tentori and Crupi, 2012], never-

theless the problem of correct understanding of �and� exists and is of particular importance

to machine learning. Another proposed hypothesis for explaining the conjunctive fallacy

is the averaging heuristic [Fantino et al., 1997].

4.4.3.3. Success Rates

Tversky and Kahneman [1983] report that 85% of the subjects indicate (b) as the more

probable option for the Linda problem, which is de�ned in Figure 4.1. It should be noted

that the actual proportion may vary, 83% are reported when the experiment was replicated

by Hertwig and Gigerenzer [1999], and 58% when replicated by Charness et al. [2010].

4.4.3.4. Implications for Rule Learning

Rules are not composed only of conditions, but also of an outcome (value of a target vari-

able). A higher number of conditions generally allows the rule to �lter a purer set of objects

with respect to the value of the target variable than a smaller number of conditions. This

means that conjunctive fallacy does not directly manifest when interpreting rule learning

results since it cannot be stated that selection of a longer rule is a reasoning error in the

rule learning context, even in cases when the set of conditions of the longer rule subsumes

the set of conditions of the shorter rule. Nevertheless, application of representativeness

heuristic can a�ect human perception of rule plausibility.

4.4.3.5. Debiasing Techniques

Number of factors that decrease the ratio of subjects exhibiting conjunctive fallacy � as an

undesired consequence of representativeness heuristic when its application is not rational

� has been identi�ed:

• Charness et al. [2010] found that the number of committed fallacies is reduced under

monetary incentive. Addition of a monetary incentive is reported to drop the fallacy
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rate to 33 %. The observed rate under a monetary incentive better hints at smaller

importance of this problem for real-life decisions.

• Zizzo et al. [2000] found that unless the decision problem is simpli�ed neither mone-

tary incentive nor feedback ameliorate the fallacy rate. Reducing task complexity is

a precondition for monetary incentives and feedback to be e�ective.

• Stolarz-Fantino et al. [1996] observed that the number of fallacies is reduced but still

strongly present when the subjects receive training in logics.

• Gigerenzer and Goldstein [1996], Gigerenzer and Ho�rage [1995] show that the num-

ber of fallacies can be reduced or even eliminated by presenting the problems in terms

of frequency rather than probability.

4.5. Judgment

This section discusses the cognitive biases in the Judgment category.

4.5.1. Availability Heuristic

The availability heuristic is a judgmental heuristic in which a person evaluates the fre-

quency of classes or the probability of events by the ease with which relevant instances

come to mind. This heuristic is explained by its discovers, Tversky and Kahneman [1973],

as follows: �That associative bonds are strengthened by repetition is perhaps the oldest law

of memory known to man. The availability heuristic exploits the inverse form of this law,

that is, it uses the strength of the association as a basis for the judgment of frequency.�

To determine availability, it is su�cient to assess the ease with which instances or asso-

ciations could be brought to mind � it is not necessary to perform the actual operations

of retrieval or construction. An illustration of this phenomenon by Tversky and Kahne-

man [1973] is: �One may estimate the probability that a politician will lose an election by

considering the various ways he may lose support.�

4.5.1.1. Success Rates

Success rates for availability heuristics are very varied and depend greatly on the experi-

ment setup. Among other factors, they depend on the ease of recall [Schwarz et al., 1991].

In one of the original experiments (judgment of word frequency) presented by Tversky and

Kahneman [1973], the number of wrong judgments was 105 out of 152 (70%). The task

was to estimate whether letter �R� appears more frequently on �rst or third position in

English texts. The reason why most subjects incorrectly assumed the �rst position is that

it is easier to recall words starting with R than words with R on the third position.
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4.5.1.2. Implications for Rule Learning

The application of availability heuristic is based on the perceived association between the

literals in the antecedent and the consequent of the rule. The stronger this perceived

association, the higher the perceived con�dence of the rule. It is our opinion this heuristic

will favour longer rules, since they have higher chance to contain a literal which the analyst

perceives as associated with the predicted label.

It is true that the longer rule is also more likely to contain literals not perceived as asso-

ciated. It can be argued that while the remaining weakly associated literals will decrease

the preference for the longer rule, this e�ect can be attributed to the weak evidence heuris-

tic rather than the availability heuristic. However, according to our literature review, the

availability heuristic can have only positive e�ect on preference.

4.5.1.3. Debiasing Techniques

Our initial review did not reveal any debiasing strategies. From the broader perspective,

availability is associated with the associative System 1, which can be corrected by the

rule-based System 2 [Kahneman, 2003]. Therefore, inducing conditions known to trigger

engagement of System 2 could be e�ective.

4.5.2. E�ect of Di�culty

When an analyst is supposed to give a preference judgment between two competing hy-

potheses, one of the factors used in the decision making process is the di�culty of the

problem and the corresponding con�dence that is related to the judgment.

Gri�n and Tversky [1992] developed a model that combines the strength of evidence

with its weight (credibility). Their main research �nding is that people tend to combine

strength with weight in suboptimal ways, resulting in the decision maker being too much

or too little con�dent about the hypothesis at hand than would be normatively appropriate

given the information available. This discrepancy between the normative con�dence and

the decision maker's con�dence is called overcon�dence or undercon�dence. Research has

revealed systematic patterns in overcon�dence and undercon�dence:

• If the estimated di�erence between the two hypotheses is large, it is easy to say which

one is better, then there is a pattern of undercon�dence.

• As the degree of di�culty rises (the di�erence between the normative con�dence of

two competing hypotheses is decreasing), there is a strengthening pattern of over-

con�dence.

People use the provided data to assess the hypothesis at hand but they insu�ciently regard

the quality of the data. Gri�n and Tversky [1992] illustrate this manifestation of bounded

rationality as follows: �If people focus primarily on the warmth of the recommendation with

insu�cient regard for the credibility of the writer, or the correlation between the predictor

and the criterion, they will be overcon�dent when they encounter a glowing letter based on
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casual contact, and they will be undercon�dent when they encounter a moderately positive

letter from a highly knowledgeable source.�

4.5.2.1. Success Rates

Gri�n and Tversky [1992] used regression to analyze the relation between the strength

of evidence and weight of evidence. The conclusion was that the regression coe�cient for

strength was larger than the regression coe�cient for weight for 30 out of 35 subjects, which

was found statistically signi�cant. The median ratio of these coe�cients was established

to be 2.2 to 1 in favour of strength.

4.5.2.2. Implications for Rule Learning

The strongest overcon�dence was recorded for problems where the weight of evidence is

low and the strength of evidence is high. This directly applies to rules with high value of

con�dence and low value of support. These are typically the longer rules. The empirical

results related to the e�ect of di�culty therefore suggest that the predictive ability of such

rules will be substantially overrated by analysts.

4.5.2.3. Debiasing Techniques

We conjecture that this e�ect can be ameliorated by �ltering out rules that do not pass

a statistical signi�cance test from the output and informing the users on the value and

meaning of the value of statistical signi�cance.

4.5.3. Mere Exposure E�ect

According to this heuristic (e�ect), repeated exposure to an object results in an increased

preference for that object.

Mere exposure e�ect and recognition heuristic are according to Pachur et al. [2011] two

separate phenomena, because unlike the former the mere exposure e�ect does not �require

that the object is recognized as having been seen before�.

4.5.3.1. Success Rates

As with other biases, the success rates for mere exposure e�ect are very varied and depend

greatly on the experiment setup. Among other factors, they depend on whether the stimuli

the subject is exposed to is exactly the same as prior exposure or similar to it [Monahan

et al., 2000]. Instead of selecting one particular success rate from a speci�c experiment,

we can refer to the well-established �nding that when a concrete stimulus is repeatedly

exposed, preference for that concrete stimulus is increased logarithmically as a function of

the number of exposures [Bornstein, 1989].
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4.5.3.2. Implications for Rule Learning

Already the initial research of Zajonc [1968] included experimental evidence on the corre-

lation between word frequency and a�ective connotation of the word. From this it follows

that a longer rule � as measured by word length rather than the number of conditions �

will have a greater chance of containing a word that the analyst had been strongly exposed

to. Additionally, the exposure e�ects of individual words may possibly be combined. This

leads to the conclusion that mere exposure e�ect will increase plausibility of longer rules.

4.5.3.3. Debiasing Techniques

While our limited literature review did not reveal any debiasing techniques, we conjecture

that similarly to the related recognition heuristic the knowledge of the criterion variable

could ameliorate the mere exposure e�ect: presenting information on the semantics of the

literal as well as on its covariance with other literals may suppress the heuristic.

4.6. Other

This section discusses the cognitive biases not included in the categorization of cognitive

biases present in Pohl [2017].

4.6.1. Ambiguity Aversion

Ambiguity aversion corresponds to the �nding that humans tend to prefer known risks over

unknown risks.

Ambiguity aversion is not a reasoning error. Consider the following comparison with

conjunctive fallacy. When a typical subject is explained the conjunctive fallacy they will

recognize their reasoning as an �error�, and as Al-Najjar and Weinstein [2009] put it the

subjects �feel embarrassed� for the irrational choice. This contrasts with the ambiguity

aversion, as for example demonstrated by the Ellsberg paradox [Ellsberg, 1961].7

As follows from the research of Camerer and Weber [1992], ambiguity aversion is related

to the information bias: demand for information in cases when it has no e�ect on deci-

sion can be explained by the aversion to ambiguity � �people dislike not having missing

information�.

4.6.1.1. Success Rates

As noted by Camerer and Weber [1992], Ellsberg did not perform careful experiments.

According to the same paper, follow-up empirical work can be divided into three categories:

replication of the Ellsberg's experiment, determination of psychological causes of ambiguity

and study of ambiguity in applied setting. The most relevant to the focus of our work are

7Ellsberg paradox: Humans tend to systematically prefer a bet with known albeit very small probability
of winning over a bet with not precisely known probability of winning, even if it would in practice mean
a near guarantee of winning.
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experiments focusing on the applied setting. Curley et al. [1984] describe experiment in

medical domain where 20% of subjects avoided ambiguous treatments.

4.6.1.2. Implications for Rule Learning

The ambiguity aversion may have profound implications for rule learning. The typical

data mining task will contain a number of attributes the analyst has no or very limited

knowledge of. The ambiguity aversion will manifest by preference for rules that do not

contain ambiguous (unknown) attributes or literals.

Ambiguity aversion steers the analyst to shorter rules as these can be expected to have

lower chance of containing an ambiguous literal.

4.6.1.3. Debiasing Techniques

We conjecture that this bias would be alleviated if textual description of the meaning of

all the literals is made easily accessible to the analyst.

4.6.2. Averaging Heuristic

While the representativeness heuristic is the most commonly associated heuristic with the

conjunctive fallacy, the averaging heuristics provides an alternate explanation: people eval-

uate the probability of a conjuncted event as the average of probabilities of the component

events [Fantino et al., 1997].

The implications for conjunctive fallacy are succinctly summarized in Zizzo et al. [2000]:

�Assume that P(A) = 20% and P(B) = 30%. Then the average is 25%, and any slight

random deviation (by 5%) may make the subject not commit the fallacy (by choosing 20%

or less). Assume now that P(A) = 20% but P(B) = 80%. Then the average is 50%, and

one requires a random tremble of 30% in order for the conjunction fallacy not to occur.�

4.6.2.1. Success Rates

As reported by Zizzo et al. [2000]: �approximately 49% of variance in subjects' conjunctions

could be accounted for by a model that simply averaged the separate component likeli-

hoods that constituted a particular conjunction.� This high success rate suggests that the

averaging heuristic may be an important subject of further study within machine learning.

4.6.2.2. Implications for Rule Learning

Applied to the rule learning scenario, if the antecedent consists of conditions rated about

equally likely, then the incidence of misinterpretation is low, since the average is close (or

identical) to the correct computation of joint probability by multiplying the probabilities.

However, should the conditions have substantially di�erent probability, the application of

the averaging heuristic can lead to larger divergence of the perceived probability and true

probability.
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The averaging heuristic can be interpreted to increase preference for longer rules. The

reason is that longer rules are more likely to contain literals with low probability. Due to

the application of the averaging heuristic the analyst may not fully realize the consequences

of the presence of a low-probability literal for the overall likelihood of the set of conditions

in the antecedent of the rule.

4.6.2.3. Debiasing Techniques

Experiments presented in Zizzo et al. [2000] showed that prior knowledge of probability

theory, and a direct reminder of how are probabilities combined, are e�ective tools for

decreasing the incidence of conjunctive fallacy, which is the hypothesized consequence of

the averaging heuristic.

4.6.3. Confusion of the Inverse

This e�ect corresponds to confusing the di�erence between the con�dence of the rule �

corresponding to P (consequent|antecedent) � with P (antecedent|consequent). This con-
fusion may manifest itself strongest in the area of association rule learning, where an

attribute can be of interest to the analyst both in the antecedent and consequent of a rule.

4.6.3.1. Success Rates

In a study referenced from Plous [1993] this fallacy was committed by 95% of physicians

involved.

4.6.3.2. Implications for Rule Learning

We do not see a systematic bias the confusion of the inverse would pose for perceived

plausibility of rules depending on their length.

4.6.3.3. Debiasing Techniques

Edgell et al. [2004] studied the in�uence of the e�ect of training of analysts in probabilistic

theory with the conclusion that it is not e�ective in addressing the confusion of the inverse

fallacy. Our literature review did not reveal any other applicable work.

4.6.4. Context and Tradeo� Contrast

Tversky and Simonson [1993] developed a theory that combines background context de�ned

by prior options with local context which is given by the choice problem at hand. The

contributions of both types of context are additive. While additivity is considered as not

essential for the model, it is included because it �provides a good approximation in many

situations and because it permits a more parsimonious representation�. The analyst adjusts

the relative weights of attributes in the light of tradeo�s implied by the background.

The reference application scenario for tradeo� contrast is that selection of one of the

available alternatives, such as products or job candidates, can be manipulated by the
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addition or deletion of alternatives that are otherwise irrelevant. Tversky and Simonson

[1993] attribute the tradeo� e�ect to the fact that �people often do not have a global

preference order and, as a result, they use the context to identify the most 'attractive'

option.�

4.6.4.1. Success Rates

In one of the experiments described by Tversky and Simonson [1993], subjects were asked

to choose between two microwave ovens (Panasonic priced 180 USD and Emerson priced

110 USD), both third o� the regular price. The number of subjects who chose Emerson

was 57% and 43% chose Panasonic. Another group of subjects was presented the same

problem with the following manipulation: A more expensive Panasonic valued at 200 USD

(10% o� the regular price) was added to the list of possible options. The newly added

device was described to look as inferior to the other Panasonic, but not to the Emerson

device. After this manipulation, only 13% chose the more expensive Panasonic, but the

number of subjects choosing the less expensive Panasonic rose from 43% to 60%.

It should be noted that according to Tversky and Simonson [1993] if people have well-

articulated preferences, the background context has no e�ect on the decision.

4.6.4.2. Implications for Rule Learning

In rule learning context manipulation will not likely be deliberate but a systematic result

of the algorithmic process. It will manifest by presence of redundant rules or attributes

within rules on the output.

The in�uence of context can be manifested by preference towards longer rules. The

reason is that if a rule contains a literal with unknown predictive power and multiple

other literals with known (positive) predictive power for the consequent of the rule, these

known literals create a context which may make the analyst believe that also the unknown

literal has positive predictive power. By doing so, the context provided by the longer

rule can soften the e�ects of ambiguity aversion, which would otherwise have made the

analyst prefer the shorter rule (cf. Subsection 4.6.1), and through the information bias (cf.

Subsection 4.6.6) further increase the preference for the longer rule.

4.6.4.3. Debiasing Techniques

We conjecture that similarly to other e�ects, the in�uence of context can be suppressed

by reducing the number of rules the analyst is presented and removal of irrelevant literals

from the remaining rules.

4.6.5. Disjunction Fallacy

Disjunction fallacy is demonstrated by assessing probability P (X) as higher than proba-

bility P (Z), where Z is a union of event X with another event Y. Bar-Hillel and Neter
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[1993] explain the disjunction fallacy with preference for the narrower possibility over the

broader one. In case the narrower category is unlikely, the broader possibility is preferred.

In experiments reported by Bar-Hillel and Neter [1993], X and Z were nested pairs of

categories, such as Brazil and Latin America. Subjects were assigned problems such as:

�Writes letter home describing a country with snowy wild mountains, clean streets, and

�ower decked porches. Where was the letter written?� It follows that since Latin America

contains Brazil, the normative answer is Latin America. However, Brazil was the most

likely answer.

4.6.5.1. Success Rates

The rate of the disjunction fallacy in experiment presented by Bar-Hillel and Neter [1993]

averaged 64%. The authors o�er two explanations for why this is a lower fallacy rate than

for the conjunction fallacy. The �rst one is that the disjunction rule is more compelling

than the conjunction rule. The second favoured explanation is that the Linda experiments

in Tversky and Kahneman [1983] used highly non-representative categories (bank teller),

while in [Bar-Hillel and Neter, 1993] both levels of categories (Brazil and Latin America)

were representative.

4.6.5.2. Implications for Rule Learning

In data mining context, it can be the case that the feature space is hierarchically ordered.

The analyst can thus be confronted with rules containing attributes (literals) on multiple

levels of granularity. Following the disjunction fallacy, the analyst will generally prefer

rules containing more speci�c attributes, which can result in preference for rules with

fewer backing instances and thus weaker statistical validity.

The disjunction fallacy can be generally expected to bias the analysts towards longer

rules since these have a higher chance of containing a literal corresponding to a narrower

category.

4.6.5.3. Debiasing Techniques

We conjecture that disjunction fallacy could be alleviated by making the analysts aware of

the taxonomical relation of the individual attributes and educating them on the bene�ts

of larger supporting sample, which is associated with more general attributes.

4.6.6. Information Bias

Information bias relates to the tendency of people to consider more available information

to improve the perceived validity of a statement even if the additional information is not

relevant. The typical manifestation of the information bias is evaluating questions as

worth asking even when the answer cannot a�ect the hypothesis that will be accepted

[Baron et al., 1988].
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4.6.6.1. Success Rates

Experiments 1-4 performed by Baron et al. [1988] show the e�ect of information bias. For

example, in their Experiment 4 subjects were asked to assess to what degree a medical test

is suitable for deciding which of the three diseases to treat using scale 0 to 100. The test

detected a chemical �Tutone�, which was with certain given probability associated with

each of the three diseases. This probability was varied across the cases. There were ten

cases evaluated, the test could normatively help only in two of those (no. 2 and 9) � the

correct answer for the remaining eight was thus 0. For example, in case no. 1 and 10 the

probability of Tutone being associated with all three diseases was equal � the knowledge

of Tutone presence had no value for distinguishing between the three diseases � and the

normative answer was 0. Even for these simple cases, the mean rating was 21 and 9 instead

of 0. The normative answer for cases 2 and 9 was equal at 24, while the subjects assigned

61 and 75 respectively.

4.6.6.2. Implications for Rule Learning

Rules often contain redundant, or nearly redundant conditions. By redundant it is meant

that the knowledge of the particular piece of information represented by the additional

condition (literal) has no or very small e�ect on rule quality. According to information

bias, rule containing the additional (redundant) literal will be � following the information

bias � considered as more preferred to a rule not containing this literal. The information

bias clearly steers the analyst towards longer rules.

4.6.6.3. Debiasing Techniques

We conjecture that this bias would be alleviated by a visualization of the information value

(e.g. by predictive strength) of individual conditions in the rule.

4.6.7. Insensitivity to Sample Size

This e�ect implies that analysts are unable to appreciate the increased reliability of the

con�dence estimate with increasing value of support.

Unlike base-rate fallacy, this e�ect assumes that the size of the sample is understood:

base-rate fallacy deals with the more complex case when people are presented with prob-

abilistic information, but are unable to understand it correctly. Insensitivity to sample

size is a connecting problem that relates to people underestimating the increased bene�t

of higher robustness of estimate made on a larger sample.

Another bias to which insensitivity to sample size is connected is the frequency illusion,

which relates to overestimation of the base rate of an event as a result of selective attention

and con�rmation bias.
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4.6.7.1. Success Rates

When the insensitivity to sample size e�ect was introduced by Tversky and Kahneman

[1974], it was supported by experimental results from the Hospital problem. This problem

is formulated so that the subjects are asked which hospital is more likely to record more days

when more than 60 percent of the babies born are boys. The options are larger hospital,

smaller hospital or about the same. The correct expected answer � the smaller hospital

� was chosen only by 22% of subjects, the fallacy rate is thus 78%. The experimental

subjects were 95 undergraduate students.

4.6.7.2. Implications for Rule Learning

Given that longer rules can �t speci�c regions of data, they can be higher on con�dence

and lower on support. This implies that if confronted with two rules, one of them will have

slightly higher con�dence and the second rule higher support, the analyst will according to

this cognitive bias prefer the longer rule with higher con�dence (all other factors equal).

4.6.7.3. Debiasing Techniques

In our opinion, one possible approach for mitigation of this bias in rule learning research

is using the value of support to compute con�dence (reliability) intervals for the value of

con�dence. This con�dence interval might be better understood than the original �raw�

value of support.

4.6.8. Recognition Heuristic

De�nition according to Pachur et al. [2011] is: �For two-alternative choice tasks, where one

has to decide which of two objects scores higher on a criterion, the heuristic can be stated

as follows: If one object is recognized, but not the other, then infer that the recognized

object has a higher value on the criterion.�

The recognition heuristic can be di�erentiated from the availability heuristic as follows:

�To make an inference, one version of the availability heuristic retrieves instances of the

target event categories, such as the number of people one knows who have cancer compared

to the number of people who have su�ered from a stroke [Hertwig et al., 2005]. The

recognition heuristic, by contrast, bases the inference simply on the ability (or lack thereof)

to recognize the names of the event categories.� [Pachur et al., 2011].

4.6.8.1. Success Rates

An experiment performed by Goldstein and Gigerenzer [1999] focused on estimating which

of the two cities in the presented pair is more populated. The estimates were analysed with

respect to the recognition of the cities by subjects. The median proportion of judgments

complying to the recognition heuristic was 93%. It should be noted that the application

of this heuristic is in this case ecologically justi�ed since recognition will be related to how
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many times the city appeared in a newspaper report, which in turn is related to the city

size [Beaman et al., 2006].

4.6.8.2. Implications for Rule Learning

The recognition heuristic can manifest itself by preference for rules containing a recognized

literal or attribute in the antecedent of the rule. Since the odds that a literal will be

recognized increase with the length of the rule, the recognition heuristic generally increases

the preference for longer rules.

One could argue that for longer rules, the odds of occurrence of an unrecognized literal

will also increase. The counterargument is the empirical �nding that � under time pressure

� people assign a higher value to recognized objects than to unrecognized objects. This

happens also in situations when recognition is a poor cue [Pachur and Hertwig, 2006].

4.6.8.3. Debiasing Techniques

As to the alleviation of e�ects of recognition heuristic in situations where it is ecologically

unsuitable, Pachur and Hertwig [2006] note that suspension of the heuristic requires ad-

ditional time or the direct knowledge of the �criterion variable�. This coincides with the

intuition that the interpretation of rule learning results by experts should be less prone to

recognition heuristic. However, in typical real-world machine learning tasks the data can

include a high number of attributes that even subject-matter experts are not acquainted

with in detail. When these recognized � but not understood � attributes are present in the

rule model even the experts are liable to the recognition heuristic. We therefore conjecture

that the experts can strongly bene�t from easily accessible information on the meaning of

individual attributes and literals.

4.6.9. Negativity Bias

According to this bias8 negative evidence (or things) have greater e�ect than neutral or

positive evidence of equal intensity.

4.6.9.1. Success Rates

Extensive experimental evidence for negativity bias was summarized by Rozin and Royz-

man [2001] for a range of domains. The most relevant to our focus appears to be the

domain of attention and salience. In the experiments reported by Pratto and John [2005],

it was investigated whether the valence of a word (desirable or undesirable trait) has e�ect

on the time required to identify the color in which the word appears on the screen. The

result was that the subjects took 29 ms longer to name color of undesirable word than for

desirable word (679 vs 650 ms). As for the number of subjects a�ected, for 9 out of the 11

subjects the mean latency was higher for desirable words. The fact that the response time

8Sometimes referred to as �e�ect�.



4.6. Other 57

was higher for undesirable words is explained by Pratto and John [2005] by the undesirable

trait obtaining more attention.

4.6.9.2. Implications for Rule Learning

There are two types of e�ects that we discuss in the following: 1) e�ect of negated literal

in the antecedent and 2) e�ect of negative class in the consequent.

1. Some rule learning algorithms are capable of generating rules containing negated

literals. For example, male gender can be represented as not(female). According to

the negativity bias, the negative formulation of the same information will be given

higher weight.

2. Considering a binary classi�cation task, when one class is viewed as �positive� and

the other class as �negative�, the rule model may contain a mix of rules with the

positive and negative class in the consequent. According to the negativity bias rules

with the negative class in the consequent will be given higher weight. This bias can

also manifest in the multiclass setting, when one or more classes can be considered

as �negative�. This e�ect can manifest also in the subsequent decision making based

on the discovered and presented rules, because according to the principle of negative

potency [Rozin and Royzman, 2001] and prospect theory [Kahneman and Tversky,

1979] people are more concerned with the potential losses than gains.

An interesting discovery applicable to both negation in antecedent and consequent shows

that negativity is an �attention magnet� [Fiske, 1980, Ohira et al., 1998]. This implies

that a rule predicting a negative class will obtain more attention than a rule predicting a

positive class, which may also apply to appearance of negated literals in the antecedent.

Also, research suggests that negative information is better memorized and subsequently

recognized [Robinson-Riegler and Winton, 1996, Ohira et al., 1998].

We hypothesize that negativity bias will result in greater preference for longer rules,

since there is higher odds that a longer rule will contain a negation than a shorter rule.

4.6.9.3. Debiasing Techniques

We conjecture that rule learning systems can mitigate the e�ects of the negativity bias by

avoiding the use of negation: use gender=male instead of not(gender=female).

4.6.10. Primacy E�ect

Once humans form initial assessment of plausibility (favourability) toward an option, sub-

sequent evaluations of this option will favour the initial disposition.

4.6.10.1. Success Rates

Bond et al. [2007] investigated to what extent changing the order of information which is

presented to a potential buyer a�ects the propensity to buy. If the positive information
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(product description) was presented as �rst, the number of participants indicating they

would buy the product was 48%. When the negative information (price) was presented

�rst, this number decreased to 22%. Participants were 118 undergraduate students.

Additional experimental evidence was provided by Shteingart et al. [2013].

4.6.10.2. Implications for Rule Learning

Following the primacy e�ect the analyst will favour rules that are presented as �rst in the

rule model.

4.6.10.3. Debiasing Techniques

A machine learning application can take advantage of the primacy e�ect by presenting

rules that are considered as most plausible based on observed data as �rst in the resulting

rule model. Some rule learning algorithms, such as CBA [Liu et al., 1998], are natively

capable of taking advantage of the primacy e�ect, since they naturally create rule models

that contain rules sorted by their strength.

4.6.11. Reiteration E�ect

The reiteration e�ect describes the phenomenon, which makes repeated statements more

believable [Hertwig et al., 1997, Pachur et al., 2011].

4.6.11.1. Success Rates

The experiment performed by Hasher et al. [1977] presented subjects with general state-

ments and asked them to asses their validity on 7-point scale. The experiment was per-

formed in several sessions, in subsequent sessions some of the statements repeated. Part

of the statements were false and part were true. The average validity of repeated true

statements rose between Session 1 and Session 3 from 4.52 to 4.80, while for non-repeated

statements it dropped slightly. Similarly, for false statements, the validity rose from 4.18

to 4.67 for repeated statements and dropped for non-repeated statements. In this case

repeating of false statements increased the subjectively-perceived validity by 11%.

4.6.11.2. Implications for Rule Learning

In the rule learning context, �the repeated statement which becomes more believable�

corresponds to the entire rule or possibly a �sub rule� consisting of the consequent of the

rule and a subset of conditions in its antecedent. A typical rule learning result contains

multiple rules that are substantially overlapping. If the analyst is exposed to multiple

similar statements, the reiteration e�ect will increase the analyst's belief in the repeating

�sub rule�. In the rule learning context the bias behind the reiteration e�ect may not be

justi�ed. Especially in the area of association rule learning, a very large set of redundant

rules � covering the same, or nearly same set of examples � is routinely included in the

output.
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When considering the in�uence of the reiteration e�ect on preference depending on rule

length, our conclusion is that the reiteration e�ect will increase the preference for longer

rules. The reason is that the longer rule is more likely to contain more �sub rules� of other

rules in the rule model.

4.6.11.3. Debiasing Techniques

A possible remedy for the reiteration e�ect can be performed already on algorithmic level

by ensuring that rule learning output does not contain redundant rules. This can be

achieved by pruning algorithms [Fürnkranz, 1997]. We also conjecture that this e�ect can

be alleviated by explaining the redundancy on rule learning output to the analyst, for

example by clustering rules.

4.6.12. Misunderstanding of �and�

The misunderstanding of �and� is a phenomenon a�ecting syntactic comprehensibility of

the logical connective �and�. As discussed by Hertwig et al. [2008], �and� in natural language

can express several relationships, including temporal order, causal relationship, and most

importantly, can also indicate a collection of sets instead of their intersection.9

4.6.12.1. Success Rates

According to the two experiments reported in Hertwig et al. [2008], the conjunction �bank

tellers and active feminists� used in the Linda problem (cf. Section 4.4.3) was found by

about half of the subjects as ambiguous � they explicitly asked the experimenter how �and�

is to be understood. The experiment involved determining understanding of �and� based

on shading of Venn diagrams. The results indicate that 45 subjects interpreted �and� as

intersection and 14 subjects as a union. The fallacy rate is thus 23%. Two thirds of

subjects were university students and one third of subjects were professionals.

4.6.12.2. Implications for Rule Learning

This e�ect will increase the preference of longer rules for reasons similar to those discussed

for the conjunctive fallacy (cf. Subsection 4.4.3).

4.6.12.3. Debiasing Techniques

According to Sides et al. [2002] �and� ceases to be ambiguous when it is used to connect

propositions rather than categories. The authors give the following example of a sentence

which is not prone to misunderstanding: �IBM stock will rise tomorrow and Disney stock

will fall tomorrow.� Similar wording of rule learning results may be, despite its verbosity,

preferred. We further conjecture that representations that visually express the semantics

of �and� such as decision trees may be preferred over rules, which do not provide such

visual guidance.

9As in �He invited friends and colleagues to the party�
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4.6.13. Weak Evidence E�ect

According to this e�ect presenting weak evidence in favour of an outcome can actually

decrease the probability that a person assigns to it. In an experiment in the area of forensic

science reported by Martire et al. [2013], it was shown that participants presented with

evidence weakly supporting guilt tended to �invert� the evidence, thereby counterintuitively

reducing their belief in the guilt of the accused.

4.6.13.1. Success Rates

Martire et al. [2013] performed an experiment in the judicial domain. When the presented

evidence provided by the expert was weak, but positive, the number of responses incon-

gruent with the evidence provided was 62%. When the strength of evidence was moderate

or high the corresponding average was 13%. The subjects were undergraduate psychology

students and Amazon Mechanical Turk workers (altogether over 600 participants).

4.6.13.2. Implications for Rule Learning

The weak evidence e�ect can be directly applied on rules: the evidence is represented

by rule antecedent; the consequent corresponds to the outcome. The analyst can intu-

itively interpret each of the conditions in the antecedent as a piece of evidence in favour

of the outcome. Typical of many machine learning problems is the uneven contribution

of individual attributes to the prediction. Let us assume that the analyst is aware of the

prediction strength of the individual attributes. If the analyst is to choose from a shorter

rule containing only the strong predictor and a longer rule containing a strong predictor

and a weak (weak enough to trigger this e�ect) predictor, according to the weak evidence

e�ect the analyst should choose the shorter rule.

4.6.13.3. Debiasing Techniques

Our review did not reveal any debiasing strategies. This is related to the fact that the

weak evidence e�ect is a relatively recent discovery. Our conjecture is that this e�ect can

be alleviated by intentional omission of weak predictors from rules either directly by the

rule learner or as part of feature selection.

4.6.14. Unit Bias

This cognitive bias manifests by humans tending to consider each condition as a unit of

equal weight at the expense of detailed scrutiny of the actual e�ect of the condition [Geier

et al., 2006].

4.6.14.1. Success Rates

The e�ect of this bias was evaluated in Geier et al. [2006] on three food items: Tootsie

Rolls, pretzels and M&Ms. These food items were o�ered in two sizes/scoops (on di�erent
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days) and it was observed how this will a�ect consumption. For Tootsie Rolls and M&Ms

the larger unit size was 4x the smaller one and for pretzels 2x the smaller one. It follows

from the �gure included in [Geier et al., 2006] that increasing the size of the unit had about

50% e�ect on the amount consumed.

We were unable to �nd other experiment more closely related to the rule learning domain.

4.6.14.2. Implications for Rule Learning

From the technical perspective, the number of conditions (literals) in rules is not important.

What matters is the actual discriminatory power of the individual conditions, which can

vary substantially. However, following the application of unit bias, the number of conditions

has e�ect on subjective perception of discriminatory power of the antecedent as a whole.

Under the assumption that the analyst will favour rule with higher discriminatory power,

this heuristic will clearly contribute to preference for longer rules, since these contain more

literals considered as �units�.

Unlike other modes of communication humans are used to, rules resulting from algo-

rithmic analysis of data do not provide clues relating to the importance of individual

conditions, since rules often place conditions of vastly di�erent importance side-by-side,

not even maintaining the order from the most important to the least important. Such

computer-generated rules violate conversational rules or �maxims�, because they contain

conditions which are not informative or relevant.10

In summary, the application of the unit bias in the context of rule learning can result in

gross errors in interpretation. When domain knowledge on the meaning of the literals in

the rule is absent, the unit bias can manifest particularly strongly.

4.6.14.3. Debiasing Techniques

We conjecture that informing analysts about the discriminatory power of the individual

conditions (literals) may alleviate unit bias. Such indicator can possibly be generated auto-

matically by listing the number of instances in the entire dataset that meet the condition.

Second, rule learning algorithms should ensure that literals are present in the rules in the

order of signi�cance, complying to human conversational maxims.

4.7. Summary

The conclusions of our analysis are presented in Table 4.1. Most heuristics and biases that

we reviewed suggest that longer rules can be considered as more plausible. In summary, it

could be concluded that the longer length of the rule gives more opportunities for various

cognitive biases to be triggered. For example, more conditions present in the rule can make

the rule more representative of the target class. Out of the biases and heuristics included in

10The relevance maxim is one of four conversation maxims proposed by philosopher Paul Grice, which was
brought to relation with the conjunctive fallacy in the work of Gigerenzer and Ho�rage [1999] (see also
[Mosconi and Macchi, 2001]).
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our review, only the weak evidence e�ect and ambiguity aversion point in the direction of

the shorter rule. Out of these, weak evidence e�ect is the most recently discovered bias in

our review and requires further veri�cation. There are two biases (confusion of the inverse

and primacy e�ect) that do not seem to have direct relevance to rule length.

Interestingly, there are also biases independent of the content of the antecedent of the

rule, which can bias the analyst towards the longer rule. These are base rate fallacy,

insensitivity to sample size and e�ect of di�culty. These biases are triggered by imbalance

between strength and weight of evidence, which correspond to rule con�dence and support.

The following chapter is devoted to the empirical analysis of selected biases, focusing

on their e�ect triggered by three types of stimuli � rule length, con�dence and support

interest values and negation.
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5. Empirical Analysis � Crowdsourcing

Experiments

Based on the survey of related research it emerged that there are results from cognitive

psychology applicable to semantic understandability and plausibility of inductively-learned

rules. In this chapter, we report on our experimental evaluation of the e�ect of selected

cognitive biases on two domains: a) inductive rule learning and b) Linda problem and its

modi�cations.

The aim of our experiments is to verify the e�ect of selected cognitive biases when actual

human users process rules discovered from data. In the previous chapter, we established

that multiple individual cognitive biases should have e�ect on preference (plausibility) of

rules depending on their length. Within this chapter we empirically test this proposition.

To limit the in�uence of a particular selection of target domain on the results, we decided

to include rules mined from three di�erent datasets. Our primary experiment performed

on authentic results of rule learning is complemented by an experiment more tightly con-

forming to the problem formulation and setup established in cognitive science.

Chapter organization. Section 5.1 presents the research propositions. Section 5.2 intro-

duces the crowdsourcing platform that we used to conduct the experiments. This section

also covers the datasets from which we extracted rules, attributes and literals used in the

instructions and questions that the subjects received. Section 5.3 describes the acquisition

of proxy variables. Section 5.4 describes the experiment with pairs of inductively learnt

rules. The description of experiments performed on the Linda problem and its modi�ca-

tions is con�ned to Section 5.5. Section 5.6 contains further discussion of selected results.

The following Chapter 6 presents a concise model that integrates the conclusions drawn

from the meta-analysis of prior research in Chapter 4 with empirical results obtained in

this chapter.

5.1. Research Propositions

A qualitative analysis of the e�ect of cognitive biases on rule length was performed in the

previous chapter. Within the review we identi�ed multiple cognitive biases that can impact

interpretation of inductively learned rules. We identi�ed three major types of stimuli that

can trigger the biases: rule length, con�dence and support values and negation in rules.

We concluded that 16 biases out of 20 in our review steer the analyst to favour the longer

rule and only two have the opposite e�ect.

64
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The �rst hypothesis that we empirically test is whether humans indeed prefer longer

rules. Then, to account preference to speci�c biases, we selected several biases for detailed

empirical evaluation. The criteria used to select cognitive biases for empirical validation

included our ability to devise a proxy variable [Clinton, 2004] that can represent the bias

and our subjective estimate of the size of the bias.

The empirical analysis will focus on the following list of research propositions and prob-

lems:

• P 1: Longer rules are more plausible than shorter rules

• P 2: Higher Plausibility of Longer Rules is Caused by Misunderstanding of �and�

• P 3: Accounting relation of plausibility and rule length to cognitive biases

• P 4: Availability heuristic

• P 5: Weak evidence e�ect

• P 6: Insensitivity to sample size

• P 7: Disjunction fallacy

• P 8: Mere exposure E�ect

• P 9: Replication of Linda Experiment

• P 10: E�ect of negation on representativeness heuristic

• P 11: Triggering information bias by unknown value

Propositions 1�8 are tested within Experiment 1 and proposition 9�11 within Experiment

2. An overview of these experiments is presented in the following.

5.1.1. Motivation for Experiment 1 on Rules discovered from data

Subjects within Experiment 1 were presented with rules and asked to rate their plausibil-

ity. The purpose of the experiment was to attribute the elicited preference judgments to

particular cognitive biases. A motivational example is included below.
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Example. (Motivation for Experiment 1)

Consider the following rule:

if the movie falls into all of the following group(s) (simultaneously)

American LGBT-related films and Englishlanguage Films

then the movie is rated as bad.

Applicable cognitive biases and their hypothesized e�ects on perceived plausibility of

this rule follow:

• Availability heuristic: what is the strength of association between genre and

movie rating?

• Recognition heuristic: does the subject recognize the speci�c genre LGBT?

• Disjunction fallacy: which condition is more speci�c English-language Films or

American LGBT-related �lms?

• Mere-exposure e�ect: what is the preference of the subject for �American LGBT-

related �lms� and �Englishlanguage Films� based on the number of previous

exposures to this type of movies?

• Weak evidence e�ect: is �American LGBT-related �lms� and �English-language

Films� considered as strong-enough evidence for bad rating?

variable proxy for primary bias

rule support � sample size insensitivity to sample size
PageRank (avg,max) ↑ number of exposures mere exposure e�ect
PageRank (min) ↓ speci�city of the concept disjunction fallacy
attribute Relevance** ↑ strength of association be-

tween predictor and target
availability

literal relevance (min*) ↓ low strength of evidence weak evidence e�ect

Table 5.1.: Hypothesized links between explanatory variables and cognitive biases. ↑ indi-
cates positive in�uence on plausibility with increasing value, ↓ indicates negative
in�uence, � indicates no e�ect. * We model weak evidence e�ect via the mini-
mum relevance associated with any literal in the rule. ** Even when controlled
for literal relevance.

The proxy variables that we need to obtain to measure the e�ect of these biases are

summarized in Table 5.1. Rule support is one of the direct products of rule learning. Val-

ues of PageRank [Page et al., 1998] can also be computed from data. Attribute relevance

corresponds to human perception of the ability of a speci�c attribute in rule antecedent

(�movie language�) to predict values of the attribute in rule consequent (�movie rating�).

Literal relevance goes one step further than attribute relevance by measuring human per-

ception of the ability of a speci�c literal (attribute-value pair such as �language is English�)
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to predict speci�c value of the attribute in rule consequent (�rating is good�). The values

of literal and attribute relevance are subjectively perceived and we elicit them empirically

from human subjects. These values are elicited in experiments with di�erent groups of

subjects than the main experiments used to verify our research propositions P 1 � P 11.

5.1.2. Motivation for Experiment 2 with Variations on the Linda Problem

5.1.2.1. Motivation for Replicating Linda

As follows from the data reported within the �Success Rates� sections in Chapter 4, most

results in cognitive science that we used in our analysis were obtained in experiments where

subjects were university students. In our empirical study we use crowdsourcing. Also, the

experimental setting is di�erent, because our questionnaire is distributed electronically,

while most prior experiments were directly administered by experimenters in laboratory

or classroom setting. Finally, the questions (rule pairs to assess) in Experiment 1 are

generated algorithmically rather than manually as is the norm in psychological research.

There are thus multiple elements that make the setup of Experiment 1 di�er from related

experiments performed in cognitive science research.

It has been shown that while results obtained with crowdsourcing contain noise, they can

be replicated in the controlled laboratory setting [Brown et al., 2014]. In particular, the

Linda problem has been previously replicated on the Amazon Mechanical Turk platform

by Paolacci et al. [2010] and the authors found the fallacy rate to be within bounds of what

has been previously published for the controlled laboratory setting. Overall, performing

psychological experiments on the Amazon Mechanical Turk has been relatively extensively

studied and no major di�erences compared to results obtained in the controlled laboratory

setting were found [Paolacci and Chandler, 2014].

Since the Amazon Mechanical Turk platform is not available in Europe, we opted for

another similar service, CrowdFlower.com. It is unclear to what extent the results of studies

performed on Amazon Mechanical Turk are applicable to this platform. To justify our

choice of crowdsourcing, and in particular of CrowdFlower as the experimental platform,

we replicated the Linda experiment within Experiment 2.

5.1.2.2. Motivation for Evaluating E�ect of Negation

While considerable amount of attention has been paid to the problem of the interpreta-

tion of �and�, less research has focused on the signi�cance of negation (�not�) as another

important, yet unary, logical connective. Under a particular interpretation of the repre-

sentativeness heuristic it is conceivable that a condition which is in its unnegated form

considered as representative could continue to be representative even after it has been

negated, and its meaning thus reversed. Many rule learning algorithms support negation,

and the correct interpretation of rules containing negation is thus vital for correct under-

standing of rule learning output. The instructions administered to the second group of

subjects provide data on how many people will �overlook� negation, evaluating the option

the same way as if negation was not there.

CrowdFlower.com
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5.1.2.3. Motivation for Evaluating E�ect of Unknown Value

Finally, we will use the Linda problem for analysis of the impact of the information bias.

According to this bias, inclusion of a piece of information with no relevance can increase

plausibility of a hypothesis. It is characteristic for the output of many � if not all � rule

induction algorithms to involve �redundant� conditions � the same literal is included in

multiple rules. Since whether a condition is redundant or not may be subject to personal

opinion, we decided to evaluate the information bias on a particular example of a redundant

condition � inclusion of a literal with unknown value. We use two modi�cations of the Linda

problem to test this proposition.

5.1.3. Relation to Results of Chapter 4

Given the lack of previous research, we are primarily concerned whether cognitive biases

selected from those included in Chapter 4 demonstrate when rules learned from data are

interpreted. In addition to identi�cation of biases relevant for rule learning, Chapter 4

also presents debiasing techniques. Out of these, within Experiment 1 (Proposition 2)

we evaluate the e�ect of clarifying �and�. Empirical validation of remaining suggested

debiasing techniques is left for future work (cf. Section 12.2).

5.2. Experimental Platform and Subject Domains

In this section, we brie�y introduce the crowdsourcing platform used for the experiments.

5.2.1. CrowdFlower

As the experimental platform, we used the CrowdFlower1 crowdsourcing service. Similar

to the better-known Amazon Mechanical Turk, CrowdFlower allows to distribute question-

naires to subjects in multiple countries around the world, who complete them for payment.

The selection of crowdsourcing as a means of acquiring data allows us to gather thousands

of responses in a manageable time frame while at the same time ensuring our results can

be easily replicated.

5.2.1.1. Overview of Experiment Setup in CrowdFlower

This subsection will brie�y introduce the work�ow of cognitive science experiment per-

formed in CrowdFlower, covering also di�erences in terminology from the traditional

laboratory-based experiment.

Subjects involved in experiments executed over crowdsourcing platforms are typically

called workers, which is a term originally used in the Amazon Mechanical Turk platform

[Paolacci and Chandler, 2014]. What is called an experiment in psychology corresponds to

a task in CrowdFlower. Task in CrowdFlower is administered in rows, where one row cor-

responds to a question. A minimum amount of work one subject can complete is one page.

1www.crowdflower.com

www.crowdflower.com
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The number of rows per page is set by the experimenter. An important di�erence between

experiments previously performed in psychology and the typical CrowdFlower setup is that

the number of subjects is not known before the crowdsourcing task �nishes, since each par-

ticipant can opt to �nish di�erent number of pages. What the experimenter sets instead

of the number of participants in the CrowdFlower system is the number of judgments per

row. CrowdFlower workers are always remunerated for their work. In CrowdFlower, the

experimenter sets price per page, from which a price per judgment follows.

An integral part of the crowdsourcing task is ensuring that only qualifying subjects take

part in the task and that they understand the instructions and stay motivated throughout

the task. In CrowdFlower, these goals are met by selecting the level of participating

subjects, the countries they are located at, by enabling test questions � administering a

quiz that the subject is required to pass to qualify for the task, and by placing hidden quiz

questions in the �work mode�. The number of test questions presented is automatically

managed by the platform. Test questions have the same structure as ordinary questions

but additionally contain the expected correct answer (or answers) as well as explanation for

the answer. The correct answer and explanation is shown after the subject had answered

the question. Respondents can continue to the main task only if they pass the quiz with

at least prede�ned level of accuracy. CrowdFlower also allows to specify speed trap �

minimum time it should take the subject to complete a page of work. On the positive side,

CrowdFlower gives the opportunity to reward the subjects with extra credit (bonus) after

they have �nished their work.

To allow replicability of all experiments, we report the following CrowdFlower-speci�c

information in the Methods sections, included separately for Experiment 1 and 2 in Sub-

section 5.4.1 and 5.5.1:

• number of rows per page,

• number of judgments per row,

• price per judgment,

• test questions and minimum threshold to pass (optional),

• bonus (optional),

• maximum number of judgments per worker within task,

• speed trap,

• country of residence,

• skill level.

Note that the last three parameters (in italics) were set in the same way in all experiments

as described in the following Subsection 5.2.1.2.
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5.2.1.2. Common Setup

In this section we describe the setup, which was common to both our experiments. Crowd-

Flower divides available workforce into three levels depending on the accuracy they ob-

tained on earlier tasks. As the level of the CrowdFlower workers we chose Level 2, which

is described as follows: �Contributors in Level 2 have completed over a hundred Test

Questions across a large set of Job types, and have an extremely high overall Accuracy.�2

Since the language of the assignment was English, we restricted the geographic eligibility

of the task to subjects residing in U.S., Canada and United Kingdom. As the threshold

for speed trap we used 180 seconds. If less than this amount of time to complete a page

was taken, the subject was removed from the job. Maximum time required to complete

the assignment was not speci�ed (the CrowdFlower platform did not allow this).

Concerning the appropriateness of the remuneration, Schnoebelen and Kuperman [2010]

give half-a-penny per question as the rule of thumb for payment on crowdsourcing services,

which our remuneration exceeded in all experiments. To further ensure that the pay is

appropriate, we checked the satisfaction scores reported in the �nal questionnaire by the

subjects. On a 1-5 Likert scale (1 worst, 5 is best), the average subject rating of their

remuneration for individual tasks was between 2.8 to 4.3. None of the jobs had pay rating

in the red band.3

5.2.1.3. Typical Procedure of Experiment Run with CrowdFlower

Crowdsourcing task performed in CrowdFlower consists of a sequence of the following steps:

1. The CrowdFlower platform recruits subjects for the task from among the cohort of its

workers, who match the level and geographic requirements set by the experimenter.

The workers decide to participate in the task based on the payment o�ered and the

description of the task.

2. Subjects are presented assignment containing an illustrative example.

3. If task contains test questions, each subject has to pass a quiz session with test

questions. Subjects learn about the correct answer after they pass the quiz mode.

Subjects have the option to contest the correct answer if they consider it incorrect.

4. Subject proceed to the work mode, where they complete the task assigned by the

experimenter. The task typically has a form of a questionnaire. If test questions

were de�ned by the experimenter, the CrowdFlower platform randomly inserts test

questions into the questionnaire. Failing prede�ned proportion of hidden test ques-

tions results in removal of the subject from the task. Failing the initial quiz or failing

a task can also reduce subjects' accuracy on the CrowdFlower platform. Based on

the average accuracy, subjects can reach one of the three levels. Higher level means

access to additional � possibly better paying � tasks.
2
http://crowdflowercommunity.tumblr.com/post/80598014542/introducing-contributor-performance-levels

3The CrowdFlower platform assigns three colour codes to the �nal scores (red, orange and green) to help
interpreting the questionnaire results.

http://crowdflowercommunity.tumblr.com/post/80598014542/introducing-contributor-performance-levels
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5. Subjects can leave the experiment at any time. To obtain payment for their work,

subjects need to submit at least one page of work. After completing each page of

work, the subject can opt to start another page of work. The maximum number of

pages that subject can complete is set by the experimenter.

6. If bonus was promised, qualifying subjects receive extra credit.

It is one of the characteristic traits of CrowdFlower that the number of judgments per

subject varies. The minimum number of judgments the subject had to provide corresponds

to number of rows per page, a parameter set by experimenter. Note that in rare cases, the

CrowdFlower platform may have asked the subject to provide lower number of judgments

than �ve in order to obtain the total number of judgments ordered.

5.2.1.4. The Crowdsourcing Worker

There is a number of di�erences between crowdsourcing and the controlled laboratory

environment previously used to run psychological experiments. The central question is

to what extent do the cognitive abilities and motivation of subjects di�er between the

crowdsourcing cohort and the controlled laboratory environment.

There is a paucity of data on the population of the CrowdFlower platform, which we use

in our research. In this subsection, we present data related to another platform, speci�cally

Amazon mechanical Turk, under the assumption that the descriptions of the populations

will not di�er substantially.4

The population of crowdsourcing workers is a subset of population of Internet users.

This population is described in a recent meta study by Paolacci and Chandler [2014] as

follows: �Workers tend to be younger (about 30 years old), overeducated, underemployed,

less religious, and more liberal than the general population.� While there is limited re-

search on workers' cognitive abilities, Paolacci et al. [2010] found �no di�erence between

workers, undergraduates, and other Internet users on a self-report measure of numeracy

that correlates highly with actual quantitative abilities.� According to a more recent study

by Crump et al. [2013], workers learn more slowly than university students and may have

di�culties with complex tasks. Possibly the most important observation related to the fo-

cus of our study is that according to Paolacci et al. [2010, page 417] crowdsourcing workers

�exhibit the classic heuristics and biases and pay attention to directions at least as much

as subjects from traditional sources.�

5.2.2. Datasets

For Experiment 1 we used three datasets generated from the Linked Open Data (LOD)

cloud and one dataset from the UCI repository. Overview of the LOD datasets (Tra�c,

Movies, Quality) is presented in Table 5.2 and additional details can be found in Ristoski

4This assumption is supported by the fact that until about 2014, CrowdFlower platform involved Amazon
Mechanical Turk (AMT) workers. As of 2017, these workers are no longer involved, because according
to CrowdFlower, the AMT channel was both slower and less accurate than other channels used by the
CrowdFlower platform [Harris, 2014].
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et al. [2016]. The dataset originating from the UCI repository is the Mushroom dataset,

which contains mushroom records drawn from Field Guide to North American Mushrooms

[Linco�, 1981]. It is possibly the most frequently used dataset in the rule learning research,

its main advantage are understandable attributes.

dataset source # rows # attributes target

Tra�c LOD 146 210 rate of tra�c accidents in a country
Movies LOD 2000 1770 movie rating
Quality LOD 230 679 quality of living in a country
Mushroom UCI 8124 23 mushroom poisonous/edible

Table 5.2.: Overview of experimental datasets. #rows denotes number of rows (instances)
and #attributes the number of attributes describing each instance

5.2.2.1. Relation between Experiments and Datasets

The workers in the CrowdFlower platform were invited to participate in individual tasks.

There were multiple tasks sharing the same instructions, since it was desirable to collect

preference data across multiple domains (datasets). In Experiment 1, which involved

multiple datasets, each participant received questions related only to one dataset within

the task. The CrowdFlower platform did not o�er means for experimenter to prevent one

subject to participate in multiple similar tasks. However, it is unlikely that this happens

at a larger scale. At the time our experiments were run, the CrowdFlower platform was

reported to have 5 million workers. The tasks were run at di�erent times of day over the

course of several months.

5.3. Acquisition of Proxy Variables

While we cannot directly observe the e�ect of individual biases, there are several variables

that we can measure and use to indirectly estimate their in�uence: the relevance of the

values and attributes appearing in the condition part of the rule for the prediction the

rule makes. In order to acquire these ratings, we had to perform several crowdsourcing

experiments. Additionally, we describe the role of PageRank which we use to model how

well-known a particular literal is.

5.3.1. Rule Plausibility

In Section 2.1, we analysed the concept of �model comprehensibility� as understood in

current research in the �eld of machine learning. We found that it relates to the concept

of syntactic simplicity.

Consequently, we introduced semantic comprehensibility, which relates to human abil-

ity to use domain knowledge to invent examples that would falsify the model. Finally,

pragmatic comprehensibility allows the decision maker to relate the hypothesis to prior
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hypotheses applicable to the subject. Plausibility is a result of pragmatic comprehension

of a hypothesis. Symbolically, we assume the following relation between plausibility and

the three levels of comprehensibility: syntactic comprehension → semantic comprehension

→ pragmatic comprehension → plausibility.

Our main proposition is that when comprehensibility of models produced by a speci�c

machine learning algorithm is tuned, the optimization criterion should be the highest,

pragmatic5, level of comprehension. This is a result of interplay of applicable domain

knowledge, human cognitive biases and judgmental heuristics.

While prior work has repeatedly noted that the syntactic size of the model is inadequate

to measure comprehensibility, alternate proposals remained also at the syntactic level. For

example, a frequently cited notion is the prediction-explanation size, which relates to the

number of conditions that need to be checked to predict a class value. In our experiments,

we elicit rule plausibility as a proxy variable for semantic comprehensibility of the rule.

Plausibility re�ects the syntactic level, as well as subject's domain knowledge on both

semantic and pragmatic level.

5.3.2. PageRank

We use PageRank [Page et al., 1998] to measure the general level of how well the given

concept is important or known. In this way, PageRank can be linked to the mere-exposure

e�ect as increasing value of PageRank can be used as a proxy variable for the number

of exposures to the concept. The examples depicted in Table 5.3 show that PageRank is

linked with how well-known the concept is, which can act as a proxy for how many times

the person has been exposed to the concept.

Also, lower value of PageRank can act as a proxy for the speci�city of the concept, thus

modelling the disjunction fallacy. Referring to the example in Table 5.3, it is clear that

�English language �lms� is a broad category and �Horror �lms from 1990� very narrow

category. This illustrates how PageRank can represent the speci�city of a concept.

It should be noted that our analysis is limited in that we neglect other heuristics and

biases that can correlate with PageRank, such as the recognition heuristic: the higher

the number of exposures, the higher the chance that the concept will be recognized (as

a binary event). Also, PageRank can be negatively correlated with the occurrence of

ambiguity aversion. Within the meaning of this heuristic, ambiguity is closely linked to

the fear of the unknown, and higher PageRank implies better knowledge of the concept in

question. Finally, it can be expected that speci�city is inversely related to the number of

exposures.

The PageRank values used in our analyses were precomputed for the experimental

datasets by Prof. Heiko Paulheim (cf. Statement of originality on page 2).

5In order to limit the scope of our research, we decided not to make distinction between pragmatic and
semantic comprehension.
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Table 5.3.: Illustration of value distribution for explanatory variables. For the reported
literal relevance values, , the highest corresponds to high quality (Quality), low
accidents (Tra�c), good rating (Movies), edible (Mushroom).

dataset lowest highest

PageRank

Tra�c MemberStatesOfMercosur MemberStatesOfTheUnitedNations
Quality PopulatedPlacesInGabon PopulatedCoastalPlacesInJapan
Movies X1990sHorrorFilms EnglishlanguageFilms

literal relevance

Tra�c SouthAsianCountries UkrainianspeakingCountriesAndTerritories
Quality RegionsOfNiger CoastalCitiesInAustralia
Movies X2000sHorrorFilms FilmsFeaturingABestSupportingActor-

AcademyAwardWinningPerformance
Mushr. foul anise

attribute relevance

Tra�c When the country was estab-
lished

Level of development

Mushr. population veil-color

5.3.3. Attribute Relevance

Attribute relevance serves us as a proxy variable for measuring the availability heuristic as

it captures the strength of association between explanatory and target attribute.

Referring to Figure 5.1, the second rule in the example can be expected to have lower

minimum attribute relevance than the �rst rule provided that date of release of a �lm is

less relevant for determining �lm's quality than its language.

Attribute relevance does not only re�ect availability heuristic, but also a level of recog-

nition of the explanatory attribute, which is a prerequisite to determining the level of

association with the target attribute. Example of a speci�c attribute that may not be

recognized is �Sound Mix� for a movie rating problem. This would contrast with attributes

such as �Oscar winner� or �year of release� � these are equally well recognized, but clearly

associated to a di�erent degree with the target attribute in rule consequent.

Attribute relevance judgment were collected using crowdsourcing experiment described

in the following.

5.3.3.1. Method

CrowdFlower Setup. For one judgment relating to one attribute we paid 0.04 USD. The

number of judgments per row for this experiment was 5. The number of rows per page

was set to 5. Test questions were not used. The quality bonus was provided after the

completion of the task if the reason for the answer was longer than 10 characters; this
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Rule 1: if the movie falls into all of the following group(s)

(simultaneously)

Englishlanguage Films

then the movie is rated as bad

Rule 2: if the movie falls into all of the following group(s)

(simultaneously)

Englishlanguage Films and

Films Released In 2005

then the movie is rated as bad

Which of the rules do you find as more plausible?

Figure 5.1.: Example rule pair included in our experiments

criterion was however not revealed to subjects.

The common setting for the CrowdFlower platform described in Section 5.2.1.2 applied:

the task was available to Level 2 workers residing in U.S., Canada and United Kingdom,

maximum number of judgments per contributor was not limited and as the threshold for

speed trap we used 180 seconds. Maximum time required to complete the assignment was

not speci�ed.

Material. Example wording of the attribute relevance elicitation task for the Mushroom

dataset is included in Figure 5.2.

The instructions for the attribute relevance experiment were prepared for two groups of

subjects � one obtained assignment generated for the Mushroom dataset, and the second

group assignment for the Tra�c dataset.

The text of the instructions followed the same template, but was customized according

to the underlying dataset. Unfortunately, for the Tra�c (LOD) dataset it was not possible

to automatically construct meaningful names of attributes. For example, if the literal was

�English speaking countries� we manually derived attribute �Language�. For some literals,

however, this choice was not as straightforward. After encountering these problems, we

decided not to perform attribute relevance experiments for the remaining LOD datasets.

The relevance judgments were collected in 1 to 10 range, where 1 meant that the attribute

is completely irrelevant for determining the value of the class attribute in the given dataset

and 10 meant very relevant.

The attribute relevance was the only type of experiment where we did not use test

questions at all, since we did not �nd a way to design test questions that would not have

the potential to bias the subjects. Instead, we provided 100% bonus for �quality�. The

only information subjects had available about the bonus is in Figure 5.2.
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We kindly ask you to assist us in an experiment that will help

researchers understand which properties influence mushroom

being considered as poisonous/edible.

Example task follows:

Property: Cap shape

Possible values: bell, conical, convex, flat, knobbed, sunken

What is the relevance of the property given above for

determining whether a mushroom is edible or poisonous?

Give a judgement on a 10 point scale, where:

1 = Completely irrelevant

10 = Very relevant

Obtaining further information

If the meaning of one of the properties is not clear, you can

try looking it up in Wikipedia.

BONUS

High quality responses will be rewarded by 100% of the original credit.

Thank you for your assistance !

Figure 5.2.: Mushroom attribute relevance experiment

Complete list of the questions (units) is presented in the supplementary material refer-

enced from the Appendix.

Procedure. Subjects were faced with a web-based user interface, which presented a ques-

tionnaire consisting of questions, where one question related to one attribute. The re-

sponses to mushroom and tra�c datasets were collected in separate tasks. An example

task assignment is in Figure 5.3.

5.3.3.2. Results

Elementary statistics describing the result of the attribute relevance experiment are shown

in Table 5.4. We collected �ve judgments for each of the 24 attributes. The last column of

Table 5.4 shows that the attributes in the Mushroom dataset were considered on average

as 53% more relevant than the attributes in the Tra�c dataset. This result can be at least

partly accounted to the fact that for the Tra�c dataset attribute names were manually
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Figure 5.3.: Attribute relevance experiment assignment. The bottom part of the �gure
shows one unit (question), four other units from the same dataset were dis-
played below, within the web page.

derived by the author, while for the Mushroom dataset they were already present in the

input data.

Complete raw data obtained within this experiment are present in the supplementary

material referenced from the Appendix.

5.3.4. Literal Relevance

We use literal relevance as a measure of the strength of evidence represented by the literal.

This can be used to model the weak evidence e�ect. Referring again to examples in Fig-

ure 5.1, literal relevance corresponds to the human-perceived predictive power of condition

�English-language �lms� for �bad� movie rating.

It should be noted that we consider the literal relevance to also embed the value of the

availability heuristic, since the literal (��lm released in 2001�) conveys also the attribute
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Table 5.4.: Attribute relevance experiment result. 0 is completely irrelevant, 10 is very
relevant. The avg. score attribute refers to the mean score assigned to attributes
in the dataset listed in the �rst column in each row.

dataset distinct att. example att. judgments avg. score

Mushroom 14 cap-shape 92 5.5
Tra�c 10 form of government 35 3.6

(�year of release�). In addition to the attribute name, literal also conveys a speci�c value,

which may not be due to its speci�city recognized. This raises the problem of recognition

as a prerequisite to association.

5.3.4.1. Method

CrowdFlower Setup. For one judgment relating to one literal we paid 0.07 USD. The

number of judgments per row for this experiment was 5. The number of rows per page was

set to 5. Test questions were used (details are given in the Material section below). Only

subjects achieving at least 70% accuracy on test questions could proceed to the main task.

The quality bonus was not provided. The common setting for the CrowdFlower platform

described in Section 5.2.1.2 applied: the task was available to Level 2 workers residing in

U.S., Canada and United Kingdom, maximum number of judgments per contributor was

not limited and as the threshold for speed trap we used was 180 seconds. Maximum time

required to complete the assignment was not speci�ed.

Material. Separate instructions were generated for all four datasets. Example wording

of the literal relevance elicitation task for the Mushroom dataset is included in Figure 5.4.

Figure 5.5 contains a sample test question; the correct answer is given in the caption of

the �gure.

The text of the instructions followed the same template, but di�ered based on the under-

lying dataset. It should be noted that there was a small di�erence in instructions for the

three LOD datasets and the Mushroom dataset. The former instructions did contain links

to Wikipedia for individual literals as these were naturally available from the underlying

dataset. For Mushroom dataset, no such links were available.

The instructions asked for judgments on a �ve-point nominal scale: strong negative,

weak negative, no in�uence, weak positive, strong positive. Unlike the attribute relevance

experiment, the range of literal relevance was centered around 0 (No in�uence).

Complete list of the test questions as well as the main questions (units) is presented in

the supplementary material referenced from the Appendix.

Procedure. Subjects were faced with a web-based user interface, which presented a ques-

tionnaire consisting of questions, where one question related to one literal. The responses
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to individual datasets were collected in separate tasks. An example task assignment and

one question is in Figure 5.4.

Figure 5.4.: Literal relevance experiment assignment. The bottom part of the �gure shows
one unit (question), four other units from the same dataset were displayed
below, within the web page .

5.3.4.2. Result

Elementary statistics describing the result of the literal relevance experiment are in Ta-

ble 5.5. The last column in Table 5.5 reports the average relevance of literals in the

individual datasets. Most relevant literals are in the Quality and Mushroom datasets.

The nominal response values were coded as integers in range [−2; 2]. The meaning of

the codes was aligned with the target value of the rule pair, in which the literal appeared.

For example, if the rule predicted good movie rating, relevance of literals in the antecedent

of the rule was coded so that value 2 corresponded to good rating. If the same literal

appeared in a rule with bad rating in the consequent, strong positive in�uence on movie

rating was coded as -2.6

6For the Quality dataset, there are �ve distinct target values: rules with highest, high and medium label
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We kindly ask you to assist us in an experiment that will help

researchers understand which factors can influence movie

ratings.

Example task follows:

Condition: Academy Award Winner or Nominee

The condition listed above will contribute to a movie being

rated as:

Good (Strong influence)

Good (Weak influence)

No influence

Bad (Weak influence)

Bad (Strong influence)

Select one option.

Obtaining further information

If the meaning of one of the conditions is not clear, you can

click on the condition to see explanation in Wikipedia.

For example, consider condition "Obtaining XYZ award."

If you are not sure what exactly award XYZ is, you should

click on the link to consult the Wikipedia article.

Thank you for your assistance !

Figure 5.5.: Movie rating literal relevance test question. Expected correct answers were
both Good (strong) or Good (weak).

Complete raw data obtained within this experiment are present in the supplementary

material referenced from the Appendix.

5.4. Experiment 1: Rule Learning

Following the analysis of applicable biases and heuristics in Chapter 4 we reached the

conclusion that longer rules will be considered as more plausible. This experiment aims to

provide empirical veri�cation of this proposition.

were considered as positive and rules predicting low and lowest quality as negative. Example of a rule
pair where the negative version would apply is shown in Figure 5.1 on page 75.
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Table 5.5.: Literal relevance experiment result, * positive or negative, the average (avg) is
computed by coding both positive and negative strong as 2, positive/negative
weak as 1, no in�uence as 0. The avg (average) column contains the mean score
assigned to literals in the dataset listed in the �rst column in each row.

dataset literals strong* weak* no in�uence total avg

Tra�c 58 16 47 227 290 0.27
Quality 33 20 73 72 165 0.68
Movies 30 7 34 109 150 0.32
Mushroom 34 14 34 102 150 0.41

5.4.1. Method

5.4.1.1. CrowdFlower Setup

The workers in the CrowdFlower platform were invited to participate in individual tasks.

For one judgment relating to one rule we paid 0.07 USD. The number of judgments per row

for this experiment was 5. The number of rows per page was set to 5. Test questions were

used (details are given in the Material section below). Only subjects achieving at least

70% accuracy on test questions could proceed to the main task. The quality bonus was not

provided. The common setting for the CrowdFlower platform described in Section 5.2.1.2

applied: the task was available to Level 2 workers residing in U.S., Canada and United

Kingdom, maximum number of judgments per contributor was not limited and as the

threshold for speed trap we used 180 seconds. Maximum time required to complete the

assignment was not speci�ed. The maximum number of judgments per worker was not

limited.

5.4.1.2. Material

The list of versions of instructions is presented in Table 5.6. In total, instructions were

prepared for 8 groups of subjects. The text of the instructions followed the same template,

but di�ered based on the underlying dataset. In the following we describe the procedure

that was used for all datasets to automatically generate the content (questions) that de-

pended on the dataset. This section describes in detail the working of software that we

designed to generate rules and instructions for the experiments. The other possibility is

to use the software that we designed and used, which has been made openly available (cf.

Appendix for details).

Rule-pair Generation. The basic element in the instruction is a pair of rules for which

preference is elicited. We based the rule pair generation on several principles:

• All rules are result of rule learning on given dataset.

• There is at least one instance in the dataset covered by both rules in the pair.

• Rules in the pair have the same consequent (they predict the same class).
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group dataset instructions min judgments max judgments

G1mo Movies V1 5 32
G1qu Quality V1 5 36
G1tr Tra�c V1 5 80
G2mo Movies V2 5 32
G2qu Quality V2 5 36
G2tr Tra�c V2 5 80
G2mu Mushroom V2 5 10
G3mo Movies V3 5 32

Table 5.6.: Versions of instructions � Experiment 1

• All literals in the rule are resolvable to a Wikipedia URL (applicable to LOD datasets

only).

As input, we used the three LOD datasets described in Section 5.2.2. Before rule learning,

we performed only minimum preprocessing. The three LOD datasets originally contained

higher number of attributes than given in Table 5.2 on page 72, but these were pruned

so that only speci�c types according to the YAGO ontology7 were preserved. For the

Mushroom dataset we used all available attributes. For the Quality dataset, we binned the

numerical quality of living rank into �ve categories.8

The rules were generated for the LOD datasets by a standard implementation of the

Apriori algorithm for association rule learning [Agrawal et al., 1993, Hahsler et al., 2011]

and with inverted heuristic rule learner [Stecher et al., 2016]. For LOD datasets, the

consequent was constrained to contain only the class attribute. The minimum con�dence

threshold was set to 0.5, minimum length to 1 and maximum length to 5. The rules for

the Mushroom dataset were generated only by the inverted heuristic learner. The scripts

used for rule mining and data preprocessing as well as the rules produced are included in

the supplementary material (cf. Appendix).

Choosing Rules to Form Rule Pairs. For Tra�c dataset we generated several approx-

imately equally-sized groups of pairs of rules as depicted in Table 5.8. The �balancing�

was possible only on the Tra�c dataset, where there was su�ciently large number of rule

pairs to choose from. For Quality and Movies datasets all rule pairs were used. For the

Mushroom dataset, we selected rule pairs so that every di�erence in length is represented

(one to �ve).

The scripts used as well as the rule pairs produced are included in the supplementary

material (cf. Appendix). The size of the rule-pairs generated for the individual datasets is

given in Table 5.7.

For all datasets, the order of the rules in the rule pair was randomized.
7https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/

yago-naga/
8�Highest� for rank smaller than 46, �High� for rank smaller than 92, �medium� for rank smaller than
138, �low� for rank smaller than 184, and �lowest� for the remainder.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
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Table 5.7.: Overview of �nal rule-pair per dataset, * excluding test questions

dataset number of rule pairs*

Mushroom 10
LOD datasets 148
- Tra�c 80
- Quality 36
- Movies 32

Table 5.8.: Tra�c dataset rule selection groups

subsuming

di�erent-length rules, either antecedent of rule 1 is subset of antecedent of rule 2, or
antecedent of rule 2 is subset of antecedent of rule 1

di�erent length rules with disjunct attributes

di�erent-length rules, the antecedent of rule 1 is disjunct with antecedent of rule 2

same length rules non disjunct attributes

same-length rules, antecedent of rule 1 is not disjunct with antecedent of rule 2

same length rules disjunct attributes

same-length rules, antecedent of rule 1 is disjunct with antecedent of rule 2

di�erent length rules neither disjunct nor subsuming attributes

di�erent-length rules, the antecedent of rule 1 is not disjunct with antecedent of rule
2, antecedent of rule 1 is not subset of antecedent of rule 2, antecedent of rule 2 is
not subset of antecedent of rule 1

large di�erence in rule length

the di�erence between the lengths of the rules is at least 2 (selected only from inverted
heuristic pairs)

one di�erence in rule length

the di�erence between the lengths of the rules is exactly 1 (selected only from inverted
heuristic pairs)
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Translation of Rules into Human-friendly Form. All rule pairs were automatically trans-

lated into human friendly HTML-formatted text. Example rules for all four datasets are

depicted in Figure 5.6.

The computer scripts used to generate the pairs for instructions as well as the translated

rules are included in the supplementary material (cf. Appendix).

Figure 5.6.: Example translated rules for the four datasets

Test Questions. In CrowdFlower, test questions look the same as real questions but they

also contain the correct answer and explanation. We devised two types of test questions:

swap and intersection test question.

The swap test question contained two nearly identical rules. The only di�erence was a

swapped order of literals in the antecedent so that the rules looked di�erent. The subject

was expected to answer �no preference� to these test rule pairs. The purpose was to �lter

out subjects who were not paying attention to the task. Example swap test question is

depicted in Figure 5.7. Another example of a swap test question for di�erent dataset is

shown in Figure 5.8.

The intersection test questions were more di�cult. We put these test questions in place

to address the possible ambiguity of the and conjunction, which has been hypothesized

to cause the conjunctive fallacy by Hertwig et al. [2008]. In order to correctly answer

the intersection test question, the subject had to realize that the antecedent of one of the

rules contains mutually exclusive conditions. The correct answer was a weak or strong

preference for rule which did not contain the mutually exclusive conditions. Example of

an intersection test question is shown in Figure 5.9.

The test questions used are included in the supplementary material (cf. Appendix).

Manipulations � Versions of Instructions. The experiment was run in three versions

of instructions (not counting customizations for individual datasets), overview of which

is provided by Table 5.9. An important observation related to this table is that not all

instructions were applied in conjunction with all datasets. Example of task assignment for

the Mushroom dataset for Version 1, 2 is shown in Figure 5.10 on page 87. Figure 5.11
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Figure 5.7.: Example test question - Mushroom dataset (administrator view including per-
centage of correct and incorrect answers)

shows an example task assignment (Movies dataset) for Version 3.

version test questions quality shown datasets

1 intersection, swap no Movies, Quality, Tra�c
2 swap no Movies, Quality, Tra�c, Mushroom
3 swap yes Movies

Table 5.9.: Versions of the rule-length instructions

Version 1 removed subjects misinterpreting �and�: there were two types of test ques-

tions, easy swap test question were used to ensure that subjects pay attention to the task,

and more di�cult intersection test questions were used to remove subjects not understand-

ing �and�.

Version 2 kept subjects misinterpreting �and�: the intersection test questions were not

used.

Version 3 aimed at investigating the e�ect of explicitly revealed con�dence and support:

to suppress the e�ect of base-rate fallacy, we presented support as a natural number in our
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Rule 1: if the movie falls into all of the following group(s)

(simultaneously)

Englishlanguage Films and

Serial Killer Films and

Thriller Films Released In 2000s

then the movie is rated as bad

Rule 2: if the movie falls into all of the following group(s)

(simultaneously)

Serial Killer Films and

Englishlanguage Films and

Thriller Films Released In 2000s

then the movie is rated as bad

Which of the rules do you find as more plausible?

Figure 5.8.: Example swap test question (Movies dataset), the assumed correct answer is
no preference

Rule 1: if the movie falls into all of the following group(s)

(simultaneously)

Religious Horror Films and

Films Based On Children's Books

then the movie is rated as good

Rule 2: if the movie falls into all of the following group(s)

(simultaneously)

American LGBTrelated Films and

Englishlanguage Films

then the movie is rated as good

Which of the rules do you find as more plausible?

Figure 5.9.: Example intersection test question, the assumed correct answer is a weak or
strong preference for Rule 2
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experiment.

The di�erence between V1 and V2 was one manipulation. Instructions V2 did not

contain the intersection test questions present in V1. Likewise, the di�erence between V2

and V3 was one manipulation. Instructions additionally contained the values of con�dence

and support not present in V2 (or V1). This version was prepared only for the Movies

dataset. The reason was that for the other three datasets, the values of con�dence and

support within the rule pairs were either identical or very similar.

Figure 5.10.: Example of a task assignment for the Mushroom dataset (V1, V2)

5.4.1.3. Procedure

The subjects were faced with a web-based user interface, which presented a questionnaire

consisting of questions, where one question related to pairs of rules inductively mined from

data. For each pair, the subjects were asked to give a) judgment which rule in each pair

is more preferred and b) optionally a textual explanation for the judgment. Example of a

complete task assignment is depicted in Figure 5.10.
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Figure 5.11.: Task assignment for the Movies dataset (Setup Version 3). Version 1 and 2
did not contain the �Additional information� block.

5.4.2. Results

5.4.2.1. Description of Cohort

While some basic parameters of the subject cohort can be set by the experimenter, the exact

number of participants, their geographical location, as well as the average time required

to complete the task is available only after the crowdsourcing task �nishes. An overview

of these characteristics is provided in Table 5.10.

5.4.2.2. Data Preprocessing

Once we collected the results from crowdsourcing, we faced a choice whether to aggregate

the data before analysis or leave the data as is. We decided to work with the unaggregated

data: each preference judgment for a rule pair constituted one data point. The alternate

option was that each rule pair would appear just once in the dataset with the target variable

being the aggregation (average) of all judgments relating to the pair. By performing the

analysis at the level of individual judgments, also called micro-level, we avoided the possible

loss of information as well as the aggregation bias [Clark and Avery, 1976]. Also, as shown

for example by Robinson [1950] the ecological (macro-level) correlations are generally larger

than the micro-level correlations, therefore by performing the analysis on the individual
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Table 5.10.: Participant cohort in Experiment 1. Each line corresponds to one group of
subjects. The version column denotes the version of the instructions this group
received, judg the number of judgments collected, workers the total number
of unique subjects, usa/gbr/can the number of judgments from subjects from
United States of America/Great Britain/Canada, avg dur the average duration
the subject took to �nish one page of work in minutes and seconds and reasons
the number of textual reasons longer than 10 characters.

dataset version judg workers usa gbr can avg dur reasons

Tra�c 1 400 101 212 116 72 06:33 339
Quality 1 180 45 96 40 44 07:00 150
Movies 1 164 46 76 30 58 04:14 144
Mushroom 1 180 64 116 26 38 05:45 162
Tra�c 2 408 93 204 120 84 06:27 339
Quality 2 184 41 68 64 52 0 06:41 145
Movies 2 160 40 80 52 28 06:03 104
Mushroom 2 300 105 126 99 75 05:57 263
Movies 3 160 40 84 44 32 07:26 125

total 2136 575 1062 591 483 na 1771

level we obtain more conservative results.

5.4.2.3. Choice of Statistical Methods

We performed statistical analysis of the crowdsourcing results using the following methods:

rank correlation (Kendall's τ , Spearman's ρ) and semi-partial correlation.9 For all these

methods we tested whether the coe�cients are signi�cantly di�erent from zero. We will

refer to the values of Kendall τ as the primary measure of rank correlation, since according

to Gibbons and Kendall [1990] (cited according to Newson [2002]) the con�dence intervals

for Spearman's ρ are less reliable than con�dence intervals for Kendall's τ .

For all obtained correlation coe�cients we compute the p value, which is the probability

of obtaining a correlation coe�cient at least as extreme as the one that was actually

observed assuming that the null hypothesis is true. The typical cuto� value for rejecting

the null hypothesis is α = 0.05.

Finally, in line with the current recommendations of the American Statistical Association

on the use of p-values for supporting research hypotheses [Wasserstein and Lazar, 2016],

we aim for full reporting and transparency by providing an overview of all the major

hypotheses, including computed correlation coe�cients and p-values, that we investigated.

5.4.2.4. Response to Test Questions

Elementary statistics describing the result of the crowdsourcing experiment are in Ta-

ble 5.11.

9To evaluate the predictive power, we also did signi�cance testing on logistic regression coe�cients, but
this is not reported.
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Table 5.11.: Rule-length experiment statistics. units distinct number of rule pairs, judg
refers to the number of judgments, qfr refers to the quiz failure rate � the
percentage of subjects that did not pass the initial quiz.

ver. V1 V2 V3

dataset units judg qfr [%] judg qfr [%] judg qfr [%]
Tra�c 80 419 55 412 12
Quality 36 180 31 184 11
Movies 32 176 15 156 14 160 5
Mushroom 10 150 40 250 14

total 158 955 40 962 13 160 5

Version 1 of the instructions that included the �intersection� test questions was more

di�cult with average 40% of candidate subjects not passing the initial quiz. After the

intersection test questions were removed in Version 2 of the instructions, the failure rate

dropped to 13%. For Version 3 there was a further drop in the failure rate, which can be

attributed to the fact that in Version 3 the subjects got an additional clue that the rules

in �swap� test questions are identical: both rules had the same values of con�dence and

support.

The plausibility judgments were coded as integers between -2 (strong preference for Rule

2) to 2 (strong preference for Rule 1). As Table 5.11 shows we collected on average �ve

judgments (955 total) for each of the 158 rule pairs. Since we decided to perform micro-level

analysis, each judgment corresponded to one data point.

5.4.2.5. Enrichment of Data with Proxy Variables

The data were enriched with additional variables (Table 5.12). The values of these variables

were computed as the value of the corresponding metric for rule 1 minus the value for rule 2.

It should be noted that for the minimum variables, for example minimum literal relevance,

the order of the rules was reversed: value for rule 1 was subtracted from value for rule 2.

We also experimented with computing ratios instead of deltas of the values, but due

to methodological problems associated with the use of ratios in correlation and regression

analysis [Kuh and Meyer, 1955, Tu et al., 2004] we decided not to include ratios into the

�nal version.

5.4.2.6. P 1: Longer Rules are More Plausible than Shorter Rules

The proposition that we tested is: �Humans �nd longer rules (i.e. rules with more condi-

tions) as more plausible than shorter rules, all other things being equal.� The corresponding

null hypothesis is that there is no correlation between rule length and perceived plausibil-

ity. To investigate this proposition, we need to refer to results obtained for groups that

received V2 instructions on all four rule datasets. Recall that the V2 instructions included

swap test questions that veri�ed whether the subjects were paying attention to the task.

The intersection test questions were not included. Kendall's rank correlation coe�cient τ
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Table 5.12.: Independent (explanatory) variables

variable computation meaning

basic rule statistics (all datasets)
LenDelta r1-r2 Rule length ∆
SuppDelta r1-r2 Rule support ∆
ConfDelta r1-r2 Rule con�dence ∆

literal relevance (all datasets)
LitMax r1-r2 Max Literal relevance ∆
LitAvg r1-r2 Avg Literal relevance ∆
LitMin r2-r1 Min Literal relevance ∆

attribute relevance (Mushroom and Tra�c)
AttMax r1-r2 Max Attribute relevance ∆
AttAvg r1-r2 Avg Attribute relevance ∆
AttMin r2-r1 Min Attribute relevance ∆

literal PageRank (LOD datasets)
PRMax r1-r2 Max PageRank ∆
PRAvg r1-r2 Avg PageRank ∆

is used to measure ordinal association between the di�erence in length of rules in the pairs

and the di�erence in the level of preference (plausibility).

The relevant results are in the �rst two rows of Table 5.13 (groups that received V2

instructions). On the LOD datasets with V2 instructions there is a small but statisti-

cally signi�cant positive correlation between rule length and plausibility. The value of the

Kendall's τ is 0.06 (p < 0.05). However, individually on V2 Movies and V2 Tra�c datasets

the correlation coe�cient is not statistically di�erent from zero. Overall, the correlation is

strongest on the Mushroom dataset, where the Kendall's τ reaches 0.37 (p < 0.0001) and

the Spearman's ρ even 0.45 (p < 0.0001).
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Based on these results we can reject the null hypothesis that rule length and plausibility

are uncorrelated on two datasets (Mushroom and Quality), but not on the remaining two

(Movies and Tra�c). There is a marked di�erence between the absolute value of correlation

on V2 Quality and Mushroom datasets (0.2 vs 0.37), which we analyse within Proposition

2.

5.4.2.7. P 2: Higher Plausibility of Longer Rules Is Caused by Misunderstanding of

�and�

In order to gauge the e�ect of misunderstanding of �and�, we carried out a separate set of

experiments with V1 instructions. The only di�erence between V1 and V2 instructions were

the intersection test questions included in V1, but not included in V2. These test questions

were intended to ensure that all subjects in V1 version understand the and conjunction

the same way it is de�ned in the probability calculus. The analysis is focused on the

Mushroom and Quality datasets, because only on these two datasets we have observed

higher plausibility for longer rules.

The results for V1 setup, also depicted in the �rst two rows of Table 5.13, show that

the correlation coe�cient is statistically signi�cantly di�erent from zero for the Mushroom

dataset with Kendall's τ at 0.28 (p < 0.0001), but not for the Quality dataset which has τ

not di�erent from zero at p < 0.05. The remaining two datasets are not relevant, because

as follows from the results of Proposition 1, rule length and plausibility are not correlated

on these datasets even when misunderstanding of �and� is not controlled for (results of V2

instructions).

On the Quality dataset, we cannot reject the null hypothesis that the correlation coe�-

cient between rule length and plausibility is equal to zero. On the Mushroom dataset, the

correlation dropped but still remained statistically signi�cant, therefore we can reject the

null hypothesis. This suggests that on the Mushroom datasets there are other factors apart

from misunderstanding of �and� that cause longer rules to be perceived as more plausible.

Which factors these are is analysed within Proposition 3.

5.4.2.8. P 3: Accounting Plausibility of Longer Rules to Cognitive Biases

Our results for propositions P 1 and P 2 presented above indicate that preference for

longer rules is present with statistical signi�cance after the misunderstanding of �and� has

been controlled for only on the Mushroom dataset. Results of basic correlation analysis

are in the �rst two rows of Table 5.13. Here, we investigate whether this preference can

be explained by the following control variables: literal relevance, attribute relevance and

PageRank [Page et al., 1998]

We need to control for the e�ect of selected variables. We compute semi-partial corre-

lations between rule length and plausibility controlling for the e�ect of the various biases.

Semipartials10, denoted as r(y|z, x) remove the e�ect of control variable x (proxy for a spe-

10 Why semi-partial correlation and not partial correlation? We decided for semi-partial correlations be-
cause we wanted to measure the incremental variance rule length adds into rule preference (plausibility)
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ci�c bias) from the independent variable z (Rule length ∆), but not from the dependent

variable y (plausibility).

The analysis is performed on results for the V 1 instructions, which contain the �swap�

test questions ensuring that subjects pay attention to the task and also the intersection

test questions that ensure expected understanding of the �and� conjunction.

Controlling for the proxy variables on the Mushroom dataset decreases the value of τ .

The e�ect of the controls can be observed in the V1 Mushr. column of Table 5.13. The

strongest e�ect is recorded for minimum attribute relevance, a proxy for the availability

heuristics, which drops the value of τ to 0.12 (p = 0.026). Controlling individually for any

of the proxies does not reduce the correlation between plausibility and rule length to zero.

As the results in the bottom of the V1 Mush. column show, even controlling for multiple

biases does not decrease the correlation coe�cient below 0.12. The conclusion is that we

were able to account part of the plausibility of longer rules to the availability heuristic.

5.4.2.9. Methodological Considerations Relating to Results for P4 � P8

The validation of proposition P3 has shown that the availability heuristic can account

for part of higher plausibility of longer rules. This result was obtained with Version 1

instructions, which remove the e�ect of misunderstood �and�. However, the results in

Table 5.14 show a marked di�erence in correlations between Version 1 and Version 2. For

example, Kendall's τ for maximum literal relevance on the Quality dataset is at 0.31 for

Version 2 statistically signi�cant, and for Version 1 with τ = 0.06 statistically insigni�cant.

Similar drop in correlations can be observed for nearly all datasets and variables.

We are reluctant to explain this change in correlations solely based on the misunder-

standing of �and�, therefore it cannot be ruled out that the intersection test questions in

Version 1 might have introduced some unforeseen side-e�ect. For this reason, we opted to

perform the analysis in this section using Version 2 instructions, however, for comparison

we also report results for Version 1 in Table 5.14. An alternative analysis of the a�ect of

availability heuristic on Version 2 of the instructions is performed within P4. Version 2 will

also be used to evaluate the e�ect of the remaining cognitive biases (P5 - P7). The limita-

tion of basing the analysis on Version 2 instruction is that the results can be confounded

by the e�ect of misunderstanding of �and�. P 8 will be evaluated on Version 3 instructions,

which were speci�cally designed to evaluate the e�ect of con�dence and support.

5.4.2.10. P 4: Availability Heuristic

Proposition P 4 is focused on the availability heuristic, which uses attribute relevance as

a proxy. For this proxy variable, we have data from two datasets: Mushroom and Tra�c.

As justi�ed in Subsection 5.4.2.9, the analysis is performed using V2 instructions.

above and beyond the e�ect of the other variables � the proxies of cognitive biases and heuristics. In
contrast, the partial correlation would re�ect the situation when all observations would have the same
value of the controlled variable. It should be noted that the value of the semi-partial correlation is
always lower or equal to the value of the partial correlation. We used the implementation available in
the R ppcor package [Kim, 2015]



As follows from Table 5.14, the Kendall's τ between maximum attribute relevance and

plausibility reaches of 0.27 for the Mushroom dataset. This supports our hypothesis that

availability heuristic contributes to plausibility.

On the Tra�c dataset the correlation coe�cients between attribute relevance and plau-

sibility are not signi�cantly di�erent from zero. This can be explained by a design issue

in the corresponding experiment, since we attempted to construct the attributes for the

Tra�c dataset manually as they were not readily available in the data. This explanation

is supported by data in Table 5.4 on page 78, which shows that attributes for the tra�c

dataset were considered as less relevant than attributes of the Mushroom dataset.

5.4.2.11. P 5: Weak Evidence E�ect

For the analysis of weak evidence e�ect we use literal relevance proxy variable. This

variable is available for all LOD datasets. As justi�ed in Subsection 5.4.2.9, the analysis

is performed using V2 instructions.

We expected to obtain positive correlation between plausibility and average and max-

imum literal relevance. Such outcome would con�rm the normative way or reasoning:

increased strength of evidence results in increased plausibility. The weak evidence e�ect

should demonstrate through negative correlation with minimum literal relevance: a literal

with low relevance triggers the weak evidence e�ect.

Correlation values between literal relevance and plausibility as reported in Table 5.14

were congruent with our hypothesis on two LOD datasets: Quality and Movies. According

to our expectations, we obtained negative correlation between minimum literal relevance

and plausibility on all three LOD datasets. On the Quality dataset, this correlation was

statistically signi�cant (p ≤ 5%).

On the Mushroom dataset we obtained a positive correlation. This surprising result

can be explained above by the fact that on this dataset the shortest rules contained the

strongest literals. To shed some light on this phenomenon we included the actual rule

pairs in the Mushrooms dataset into Table 5.15. Out of the 10 rule pairs, there were �ve

pairs consisting of a discriminative rule of length 1 and a longer rule. The rules of length

1 consist of a single literal with relevance higher or equal to the maximum of the literal

relevance in the longer rule.

Our explanation for the unexpected values of correlation for maximum and average literal

relevance is that there were two e�ects in opposite direction, which largely neutralized each

other:

• Some subjects preferred shorter rules, because they contained the most relevant lit-

eral.

• Some subjects opted for longer rules because they considered the otherwise appealing

shorter rule as �oversimplistic�. Such explanation is congruent with other results and

opinions reported in the literature [Lavra£, 1998, Freitas, 2014, Elomaa, 1994].

Literal relevance turned out to have the highest correlation of all proxy variables with
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plausibility. The maximum τ at 0.31 (p < 0.001) was reached on the Quality dataset.

Overall, we obtained limited evidence in favour of the weak evidence e�ect. As further

elaborated in Section 5.6.2, the contradicting evidence obtained on the Mushroom dataset

can be attributed to explanations other than the weak evidence e�ect not demonstrating.

5.4.2.12. P 6: Insensitivity to Sample Size

In order to gauge the e�ect of con�dence and support, we refer to results obtained on

Version 3 of instructions (Figure 5.11, page 88), which included explicitly stated con�dence

and support. The only dataset where V3 instructions were applied is the Movies dataset,

since the di�erences in con�dence and support between the rules in the pairs were not large

enough for the remaining datasets.

Table 5.14 (bottom) presents the correlations between con�dence, support and rule

plausibility. The results show that the plausibility is related to con�dence (τ = 0.24,

p < 0.0001) but not to support (τ = −0.08, p < 0.36). The results also show that the

relationship between revealed rule con�dence and plausibility is causal. This follows from

con�dence not being correlated with plausibility on the V2 instructions, which di�ered

from V3 only by the absence of explicitly revealed rule quality. Overall, we found unan-

imous evidence in favour of the insensitivity to sample size e�ect. The limitation of this

�nding is that this result is based only on one dataset.

5.4.2.13. P 7: Disjunction Fallacy

We hypothesized that minimum PageRank associated with any literal in the antecedent of

a rule can serve as a proxy for the speci�city of the antecedent and thus can be used to

model the disjunction fallacy � the higher the value of the proxy variable the stronger the

disjunction fallacy. According to disjunction fallacy, the subjects will prefer rules with more

speci�c literals � literals with lower minimum PageRank. As justi�ed in Subsection 5.4.2.9,

the analysis is performed using V2 instructions.

Referring to Table 5.14, the correlation between minimum PageRank and plausibility

was found to be statistically signi�cantly positive (p < 0.05) for Quality and Movies. The

highest Kendall's τ of 0.22 was reached on the Movies dataset. The correlation coe�cient

for the Tra�c dataset was not di�erent from zero at p = 5%. Possible reasons are subject

of discussion in Section 5.6.2.

Overall, we found evidence for disjunction fallacy on two datasets and no evidence on

one dataset.

5.4.2.14. P 8: Mere Exposure E�ect

We hypothesized that average and maximum PageRank associated with any literal in the

antecedent of a rule can serve as a proxy for the number of prior exposures and thus can

be used to model the mere exposure e�ect � the higher the value of the proxy variables the

stronger the mere exposure e�ect and the higher the preference for the rule. As justi�ed

in Subsection 5.4.2.9, the analysis is performed using V2 instructions.
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None of the correlation coe�cients for PageRankDelta (Table 5.14) is statistically signif-

icantly di�erent from zero at α = 0.05. We thus found no evidence for the mere exposure

e�ect.

5.5. Experiment 2: Variations on Linda

In addition to Experiment 1 performed directly on inductive rule learning data, we also

prepared an experiment on the Linda problem [Tversky and Kahneman, 1983], which was

introduced in Subsection 4.4.3.1 and Figure 4.1 on page 44. The motivation for this

experiment is described in Subsection 5.1.2 on page 67. Three version of instructions were

prepared.

The �rst group of subjects in Experiment 2 received the Linda problem, which is likely

the most studied problem in the cognitive biases domain. The comparison of our results

with those that were previously published for the controlled laboratory and setting and for

Amazon Mechanical Turk can help judge credibility of our main empirical results obtained

within Experiment 1.

The second group of subjects received a modi�ed version of the Linda problem to test for

the e�ect of negation. Finally, two groups of subjects (there were two variation of instruc-

tions) participated in investigation of the e�ect of unknown value on the information bias.

It was not possible to test these e�ects within Experiment 1, since this was performed on

rules authentically discovered with rule learning algorithms that do not support negation.

Similarly, incorporation of unknown value would require changes to the data used within

this experiment. We found this therefore natural to use manually designed modi�cations

of the Linda problem to test for these e�ects.

5.5.1. Method

5.5.1.1. CrowdFlower Setup

The workers in the CrowdFlower platform were invited to participate in individual tasks.

The subjects were remunerated for their answer by 10 US cents (without bonus), which

exceeds the minimum amount of half-a-penny given in Schnoebelen and Kuperman [2010].

To further ensure that the pay is appropriate, we checked the satisfaction scores reported

in the �nal questionnaire by the subjects. On a 1-5 Likert scale (1 worst, 5 is best), the

average subject rating of their remuneration was between 3.6 to 4.2. This experiment

consisted of only one question (�row�). Answers were collected from 150 distinct subjects.

There were no test questions. Instead, we o�ered 50% bonus for quality to subjects who

provided reason for their answer longer than 10 characters. The subjects were informed

that 50% bonus for quality will be awarded but it was not conveyed that quality will

be measured by the length of the answer. For analysis, we used all data including the

answers with no or short reasons. Since the language of the assignment was English, we

restricted the geographic eligibility of the task to subjects residing in U.S., Canada and

United Kingdom. As the level of the CrowdFlower workers, we chose Level 2. For each of
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the four versions of instructions we collected 150 judgments. Participants were recruited

anew for each version of the instructions from among the cohort of CrowdFlower workers.

5.5.1.2. Material

We prepared four versions of instructions, with the following purpose:

1. Replicate the original results of Tversky and Kahneman [1983] using crowdsourcing.

2. Determine the e�ect of negated condition.

3A. Determine the e�ect of information bias related to inclusion of a condition with

unknown value.

3B. Determine the e�ect of information bias (a variation).

We prepared four versions of the experiment that di�ered only in the wording of the

options (the text between �Which is more probable?� and �BONUS) in the following:

Overview

We kindly ask you to assist us in an experiment which will help to

understand how humans perceive rules describing data.

Consider the following description of a person.

Jenny is 32 years old, single, outspoken, and very bright. She majored

in philosophy. As a student, she was deeply concerned with issues of

discrimination and social justice, and also participated in

anti-nuclear demonstrations.

Which is more probable?

Jenny is a bank teller.

Jenny is a bank teller and is active in the feminist movement.

BONUS

High quality responses will be rewarded by 50% of the original credit.

Thank you for your assistance !

In all our experiments, we replaced the name Linda used in the original paper with Jenny.

The reason for this modi�cation is to make it somewhat more di�cult for subjects to

quickly �nd the solution to the problem using a search engine. Due to the crowdsourcing



5.5. Experiment 2: Variations on Linda 101

setting, there was no restriction to the access to Internet. Otherwise, the wording of the

description of Linda is the same as given by Tversky and Kahneman [1983, page 297].

Jenny Version 1. The �rst version of instructions aimed to replicate the Linda exper-

iment. The options were thus the same as described by Tversky and Kahneman [1983,

page 299], except that the answers were not marked by �T� and �T&F�, but the subjects

were choosing the preferred answer by making a selection from a dropdown box with the

following options:

Jenny is a bank teller.

Jenny is a bank teller and is active in the feminist movement.

Jenny Version 2. The second version of instructions aimed to test the e�ect of negation.

In contrast to the original formulation of the Linda problem, the version used for this

experiment includes negation in the second answer option. The second option became:

�Jenny is a bank teller and is not active in the feminist movement.�

Jenny is a bank teller.

Jenny is a bank teller and is not active in the feminist movement.

Jenny Version 3A. The third version of instructions aimed to test the e�ect of unknown

value. We use a modi�ed version of the Linda problem to investigate the in�uence of

information bias on plausibility. The last option in these instructions involves a relevant

condition with unknown value (�it is not known if she is active in feminist movement�).

Jenny works as a cashier in a bank.

Jenny is not active in feminist movement.

Jenny is a bank teller and it is not known if she is active in the

feminist movement.

Both version A and B contain a �ller option �Jenny is not active in feminist movement.�

Jenny Version 3B. Tests the e�ect of unknown value (a variation). The order of option

1 and 3 is reversed and the terms cashier and bank teller are swapped.

Jenny works as a cashier in a bank and it is not known if she is

active in the feminist movement.

Jenny is not active in the feminist movement.
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5.5.1.3. Procedure

Subjects were faced with a web-based user interface, which presented description of Linda,

and asked the subjects to select one of the statements. The number and content of state-

ments depended on the version of instructions.

The responses to individual versions of instructions were collected in separate tasks.

Example instructions as shown to subjects in the CrowdFlower system are in Figure 5.12.

Figure 5.12.: Linda (Jenny) V1 Experiment Instructions. The text in the red rectangle was
varied across instructions (groups of subjects). Note that the red rectangle
was not part of the instructions.

The options and instructions in the Linda experiment were carried out as described by

Tversky and Kahneman [1983] with the following changes:

1. Quality control: subjects were promised a small monetary bene�t for �quality� an-

swers. The incorporation of the quality control is justi�ed by the observation reported
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by Grether [1992] according to which absence of �nancial incentive results in increase

of incoherent or nonsense responses by factor of three.11

2. In order to identify quality answers, we asked participants to give a short justi�cation

of their choice. We conjecture that this modi�cation could slightly decrease the

fallacy rate, because explicitly formulating the reason could make some subjects

realize their reasoning error.

3. We renamed Linda to Jenny to make it more di�cult to quickly �nd the correct

answer using a search engine.

5.5.2. Results

An overview of characteristics of the participant cohort recruited with crowdsourcing is

provided in Table 5.16.

Table 5.16.: Overview of cohort involved in Experiments 2. Each line corresponds to one
group of subjects. The v column denotes the version of the instructions this
group received, judg to the number of judgments collected, workers to the
total number of unique subjects, usa, gbr, can to number of judgments from
the United States of America, Great Britain and Canada, avg dur to the
average duration the subject took to �nish one page of work in minutes and
seconds and reasons number of textual reasons longer than 10 characters.

dataset v judg workers usa gbr can avg dur reasons

Linda 1 150 150 69 42 39 03:37 137
Linda 2 150 150 75 50 25 04:00 141
Linda 3a 150 150 77 40 33 04:30 139
Linda 3b 150 150 77 41 32 04:20 135

total 600 600 298 173 129 na 552

The frequency of responses for all versions of Jenny Experiments are given in Table 5.17.

5.5.2.1. P 9: Replicating Linda Experiment

The experiment VL1 resulted in fallacy rate of 68%. The Linda problem (the same version

with two possible answers) was replicated using Amazon Mechanical Turk by Paolacci

et al. [2010]. The fallacy rate of 72% that they report is slightly higher than our 68%.

This result con�rms our methodological assumption that we can use CrowdFlower instead

of Amazon Mechanical Turk without experiencing a strong di�erence in results. As for the

relative decrease of fallacy rate by 5.5% that we obtained � we hypothesize that this can

be accounted to the same reason used by Harris [2014] to explain the 3.5% improvement

in task accuracy on CrowdFlower as opposed to Amazon Mechanical Turk, which is that

CrowdFlower workers outperform Amazon Mechanical Turk in terms of accuracy. One

11This paper also states that data from scienti�c experiments with no �nancial incentives should be treated
as �possibly contaminated�.
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Table 5.17.: Frequency of responses in Jenny (Linda) experiments. The �rst column indi-
cates the version and option number within the version.

v/o text freq

VL1/1 Jenny is a bank teller 48
VL1/2 Jenny is a bank teller and is active in the feminist movement 102
VL2/1 Jenny is a bank teller 118
VL2/2 Jenny is a bank teller and is not active in the feminist move-

ment
32

VL3a/1 Jenny works as a cashier in a bank 37
VL3a/2 Jenny is not active in feminist movement 38
VL3a/3 Jenny is a bank teller and it is not known if she is active in

feminist movement
75

VL3b/1 Jenny works as a cashier in a bank and it is not known if she
is active in feminist movement.

65

VL3b/2 Jenny is not active in feminist movement 44
VL3b/3 Jenny is a bank teller 41

reservation regarding this conclusion is that the Amazon Mechanical Turk experiment

setup is not reported in su�cient detail by Paolacci et al. [2010] to rule out other causes

of the higher fallacy rate, such as absence of quality control in the setup of Paolacci et al.

[2010], the optional elicitation of reasons for judgment in textual form in our setup, or

di�erent level of participating workers.

Additional discussion of reasons for di�erent results obtained with crowdsourcing com-

pared to the standard laboratory environment is presented in Subsection 5.6.4.1.

5.5.2.2. P 10: E�ect of Negation on Representativeness Heuristic

We used a modi�ed version of the Linda problem to answer the question to what extent

do people semantically interpret negations. We expected a (considerable) proportion of

subjects to �overlook� negation and instead determine the answer based on the words that

have a direct connection to the description of Linda. In other words, we expected that

some subjects will associate the �feminist� word representative in answer option VL2/2

with Linda/Jenny description even though this word is negated.

Out of the 150 subjects, only 21% (32) preferred the longer option with negation as

opposed to 68% (102) for the longer �positive� option in the baseline experiment. The

di�erence in proportion is statistically signi�cant at p < 0.0001. The results show that the

negation was semantically interpreted and the term �not active in the feminist movement�

was understood as not representative of Linda description by most subjects. However,

the results also show that a considerable percentage of subjects (32%) chose the negated

option not representative of Linda, which may suggest that, at least for some of these

subjects, negation did not inhibit the representative e�ect of the property that followed

the negation.
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5.5.2.3. P 11: Triggering Information Bias by Unknown Value

The design of the third variation of Linda instructions was motivated by the following prob-

lem: we hypothesized that if rule includes a condition with unknown value, the perceived

plausibility of this rule compared to the same rule without this condition will increase. We

investigated this phenomenon using a more general formulation based on Linda instruc-

tions, rather than by designing a rule-based experiment. We hypothesized that making

a salient characteristic of Linda unknown in one of the answer options will, following the

representativeness heuristic, make this option more preferred. Similarly to the e�ect of

negation (P10) we hypothesized that a considerable proportion of subjects will �overlook�

the expression of missing value �not known if she is feminist� and will consider the answer

options containing the missing values as more representative of Linda than a shorter answer

option with equivalent meaning, but without the explicit �not known�.

Referring to Table 5.17, the corresponding null hypotheses are that a) proportion of

answer option VL3a/1 is not di�erent from the proportion of answer VL3a/3, b) proportion

of answer no. VL3b/1 is not di�erent from the proportion of answer VL3b/3. In both

versions of instructions, the option containing relevant condition with the unknown value

has the highest frequency. In variation VL3a, the frequency of option 3 is 107% higher than

the frequency of the baseline option 1, which is 37. In variation VL3b, the corresponding

increase is 59% (65 vs 41). In both cases, the di�erence in proportion is statistically

signi�cant at p < 0.001.

5.6. Summary of Results and Discussion

This section summary of results of for Experiment 1 and Experiment 2. The results are

organized according to the level of evidence that we obtained: from unspurious evidence

for insensitivity to sample size to no evidence for the mere exposure e�ect.

5.6.1. Biases with Unspurious Evidence

5.6.1.1. Insensitivity to sample size (P6)

We aimed to evaluate the e�ect of explicitly revealed con�dence (strength) and support

(weight) on rule preference. The insensitivity to sample size e�ect suggests con�dence

should be given preference over support. In real situations, rules on the output of induc-

tive rule learning have varying quality, which is communicated mainly by the values of

con�dence and support. Results obtained in cognitive science for the strength and weight

of evidence suggest that weight of evidence is systematically undervalued while the strength

of evidence is overvalued. This result is congruent with the hypothesis that insensitivity

to sample size e�ect is applicable to interpretation of inductively learned rules. In other

words, when both con�dence and support is stated, con�dence positively a�ects plausibility

and support is ignored.
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5.6.2. Biases with Limited Evidence

5.6.2.1. Availability Heuristic (P4)

The evidence for the availability heuristic is mixed. We obtained results supporting its

occurrence for the Mushroom dataset, but not for the Tra�c dataset (only for these two

datasets our proxy heuristic was available). The fact that it did not demonstrate on

the Tra�c dataset can be explained by a design issue in creating the proxy values for

this dataset, therefore the results on this dataset can be � with caution � disregarded.

Consequently, there are results on one dataset which support the availability heuristic.

5.6.2.2. Weak Evidence E�ect (P5)

As noted in the results section, we found limited con�rmation for the weak evidence e�ect

on the Quality dataset. The correlation between plausibility and minimum literal relevance

(the designated proxy for this e�ect) was also negative on the Movies dataset, but the size of

the correlation coe�cient was only marginally statistically signi�cant at α = 0.05 (p-value

= 0.072).

Literal relevance was not correlated with plausibility on the Tra�c dataset. We attribute

it to the fact that the relevance of literals in the Tra�c dataset is the lowest from all datasets

as follows from Table 5.5. The results for the Mushroom dataset were completely contrary

to our expectations: the correlation between maximum and average literal relevance and

plausibility negative, and the correlation with minimum literal relevance positive.

To conclude, we found evidence for the weak evidence e�ect on one dataset on interpre-

tation of rule learning results, but further research is required to verify our �ndings.

5.6.2.3. Disjunction Fallacy (P7)

The results supporting the incidence of disjunction fallacy were obtained on two of the

three datasets (Movies and Quality). On the Tra�c dataset the correlation between the

proxy for the bias and plausibility was not statistically signi�cantly di�erent from zero.

The reason why the e�ect of PageRank was most pronounced on the Movies dataset can

be attributed to the fact that on this dataset, the values of PageRank in our opinion best

represented the subjects' perception of the literal as no background geographical knowledge

was required (in contrast to the Tra�c dataset). While some geographical knowledge was

required for the Quality dataset, this was, we believe, lower than for the Tra�c dataset

(cf. Figure 5.6 on page 84 for examples drawn from all three datasets).

To illustrate the relation between minimum PageRank and plausibility on the Tra�c

dataset let us look at the following example.
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Example. (Disjunction fallacy)

• r1: RegionalCapitalsInSenegal=1.0 => Label=low. PageRankMin=1.15

• r2: PortCitiesInAfrica=1.0 AND CapitalsInAfrica=1.0 => Label=low. PageR-

ankMin=3.65

The �rst rule is more speci�c, has lower minimum PageRank, and therefore should be

found according to the disjunction fallacy as more preferred. The PageRankMinDelta

for this pair is 2.5.

Overall, the results support the hypothesis that disjunction fallacy a�ects interpretation

of rule learning results. The triggering of the fallacy is contingent on subjects possessing

the domain knowledge that allows them to evaluate speci�city of the concepts included in

the rules.

5.6.3. Biases with No Evidence

5.6.3.1. Mere Exposure E�ect (P8)

We found no evidence for the mere exposure e�ect using the designated proxy variables

derived from PageRank.

5.6.4. Linda Experiments

5.6.4.1. Replicating Linda Experiment with Crowdsourcing (P9)

The �rst version of our Jenny instructions aimed to verify that the crowdsourcing setting

yields similar results to those reported earlier for Linda in the literature. We found agree-

ment with prior results obtained with crowdsourcing. However, the fallacy rate that we

obtained is di�erent from what was obtained in the traditional laboratory environment. In

the following, we will try to identify the possible reasons.

The original fallacy reported by Tversky and Kahneman [1983] is based on experiment,

where answers were elicited from 88 students of University of British Columbia and no

incentives were provided. Charness et al. [2010] reported that providing an incentive de-

creased the fallacy rate to 33% (94 total subjects) and without incentive they report fallacy

rate of 58% (68 subjects). Charness et al. [2010] elicited answers from students of Univer-

sity of California, Santa Barbara. Based on these reports, we can expect the fallacy rate

to be between 33% and 85%.

In our experiment VL1 the fallacy rate was 68%, which is signi�cantly di�erent from the

original fallacy rate of 85% at p < 0.01 (test for equality of proportions). If we limit the

analysis to the outcome of the statistical test, we have not replicated the original results.

A critical analysis of our replication yields to the objection why we did not more strictly

adhere to the original setup of the experiment by Tversky and Kahneman [1983]. In other

words, was it necessary to provide incentives? In our opinion, the crowdsourcing envi-

ronment does not allow for verbatim replication of the original experiment, which did not
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provide any incentives to subjects. This position is supported by number of observations of

prior experimenters as summarized in Oleson et al. [2011]: �All authors agree that crowd-

sourcing requires explicit quality assurance mechanism to deal with scammers, insu�cient

attention and incompetent workers.�

Another possible criticism is that if we decided to provide incentives, then why not

compare the result with Charness et al. [2010], who provided incentives, rather than with

Tversky and Kahneman [1983], who did not. In this respect, Charness et al. [2010] provided

incentive of 4 dollars for correct answer, while we provided 5 cents for �quality answer�. As

follows from Schnoebelen and Kuperman [2010], such a high reward would be unusual for

crowdsourcing.

Our conclusion is that the fallacy rate that we obtained with crowdsourcing for Linda

problem with a small incentive is in the range reported in the literature for experiments

in the controlled laboratory setting and very closely matches previous results obtained on

another crowdsourcing platform [Paolacci et al., 2010].

5.6.4.2. E�ect of Negation on Representativeness Heuristic (P10)

We obtained convincing experimental evidence showing that negation is semantically in-

terpreted and a�ects the application of the representativeness heuristic. The results also

show that a considerable percentage of subjects (32%) chose the negated option not rep-

resentative of Linda, which may suggest that, at least for some of these subjects, negation

did not inhibit the representative e�ect of the property that followed the negation.

5.6.4.3. Triggering Information Bias by Unknown Value (P11)

The response rates that we obtained for Linda experiments suggest that inclusion of a con-

dition with no information value has e�ect on increasing plausibility of an option. However,

further analysis shows that the underlying reason is not entirely caused by representative-

ness heuristic triggered by �not known if she is active in feminist movement�, but instead

a di�erent interpretation of the short answer option �Jenny is a bank teller.� From rea-

sons given in the textual answers12 (justi�cations input the subjects) it follows that some

subjects chose the option with the unknown value because they interpreted �Jenny is a

bank teller� as �Jenny is a bank teller and NOT active in feminist movement.� Second, the

option �Jenny is a bank teller and it is not known if she is active in feminist movement� was

interpreted as �Jenny is a bank teller and she MIGHT be active in feminist movement.�

This roughly corresponds to observation of Hilton [1995], who analysed conjunction

errors for the answer option in Figure 5.13 reported by Tversky and Kahneman [1983].

According to Hilton [1995, p. 260], this option was interpreted as �Linda is a bank teller

even if she is a feminist.�

Considering our results, given that not being active in the feminist movement is not

representative of Jenny, while possibly being active is, the option with the unknown value

was considered as more representative.

12Refer also to point 8 of Subsection 6.1.2, where speci�c textual reasons given by subjects are presented.
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Linda is a bank teller whether or not she is active in the feminist movement.

Figure 5.13.: Related answer option used by Tversky and Kahneman [1983] to the one
tested in our Linda V3 instructions.

Number of earlier results (cf. Sides et al. [2002] for a reference list) showed that in

presence of alternative �B ∧ F �, alternative �B� is interpreted as �B ∧ ¬F � (B denotes

Bank teller and F feminist). In other words, �Linda is a bank teller� is interpreted as

�Linda is a bank teller and not a feminist.� Our results provide further con�rmation for

the observation that such interpretation is applied by some subjects to alternative �B� in

presence of alternative �B ∧ F is unknown�.

This type of misinterpretation can occur in rule learning context when the analyst con-

siders two rules, one not containing a literal and the second rule containing the literal

(possibly with unknown value). Rules thus should be presented in such a way that it is

made clear that the absence of a condition does not mean negation. The meaning of the

unknown value should also be clari�ed.



6. Conveying E�ect of Cognitive Biases

on Interpretation of Rules

Based on literature review and our experimental results presented in the previous chap-

ters, we propose a visual model of plausibility of rules describing which cognitive biases are

triggered when humans assess plausibility of inductively learned rules and whether they

in�uence plausibility in positive or negative way. This model is intended to raise awareness

about the e�ect of cognitive biases on perception of rule learning results among the de-

signers of machine learning algorithms and software.1 This visual model is complemented

with a list of practical recommendations for the same audience.

Chapter organization. Section 6.1 presents the visual model. Section 6.2 presents the

recommendations.

6.1. Visual Qualitative Model

In this section, we propose a visual model that summarizes the e�ect selected cognitive

biases have on human assessment of plausibility of rules discovered from data.

The model consists of two decision trees, which are presented in Figure 6.1. The �rst

tree captures the contributions of individual literals in the antecedent of the rule towards

increase or decrease of human perceived plausibility of the rule. The second tree shows

how the individual literal contributions are combined to perception of plausibility of the

complete rule. Subsection 6.1.1 describes the sources of evidence that we used to construct

the plausibility model. The �rst tree in the model is covered by Subsection 6.1.2 and

Subsection 6.1.3 covers the second tree.

6.1.1. Evidence

All nodes in the trees are numbered and described in the text under the corresponding

number. Additionally, for leaf nodes the following pieces of information are provided:

• EVIDENCE: a justi�cation for the value (positive or negative preference). We distin-

guish between insights obtained by qualitatively analysing the textual justi�cations

of the answers and statistical analysis.

• BIAS: responsible cognitive biases, heuristics, fallacies or similar e�ects described in

the literature.
1The prospective human users of rule learning models are called �analysts� in this chapter.

110



6.1. Visual Qualitative Model 111

• STRENGTH: our indicative estimate of the strength of the contribution.

6.1.1.1. Analysis of Textual Responses

As part of all experiments reported in Chapter 5, we asked subjects to provide a short ex-

planation for their answer. For some groups of subjects, these explanations were processed

to provide subjects who completed the explanation with a bonus. Beyond this automatic

processing, we decided not to perform more detailed analysis within Chapter 5, which

draws its conclusions based on statistical analysis of results as is the norm in prior research

of cognitive biases in psychology. The explanations provided by subjects are too varied to

allow for quantitative analysis. Nevertheless, analysis of content of the textual responses

can reveal reasons why subjects committed a speci�c fallacy, which is important for the

qualitative model described within this chapter. Here we use qualitative analysis of the

explanations to support our qualitative model.

Methodology. For selected elements (decision nodes) in the qualitative model, the author

went through all textual explanations and tried to identify those that support or refute

it. If any such responses were found, then several representative quotes were selected

and included as support evidence into the model. Such pieces of evidence are marked as

Evidence (textual explanations).

Amount of processed data. Only textual explanations from groups included in the Ex-

periment 1 were processed. This amounts to 1771 responses longer than 10 characters.

The breakdown of the number of responses elicited from individual groups of subjects is

included in Table 5.10 on page 89.

Supplementary material. The responses for all participants are available in supplemen-

tary material (cf. Appendix). The explanations cited in this chapter are featured in a

minimally edited form, including the original spelling errors, etc.

6.1.1.2. Statistical Analysis

The results that we include within Evidence (statistical analysis) have been in part sourced

from cognitive science research papers covered in Chapter 4. Our empirical results obtained

in Chapter 5 were used to provide evidence for nodes 4, 5, 7, 8, 10 of the �rst tree and for

nodes 16 and 17 in the second tree.
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Figure 6.1.: Proposed qualitative model for determining human-perceived plausibility of
inductively learned rules. �+� means increase, �-� decrease of plausibility. Some
leaf nodes are associated with hypothesized list of e�ective biases and heuristics
(in bold). Explanation of numbered nodes is in the text.
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6.1.2. Contribution of Individual Literals

Tree depicted in Figure 6.1A models a decision process that applies to individual literals

in the rule. This process largely depends on the domain knowledge of the analyst.

1: Is attribute perceived as relevant? The analyst evaluates if the attribute is considered

as relevant for the problem at hand. In order to assess attribute relevancy, analyst does

not need to possess knowledge on the speci�c values of the attribute or on their link to the

target variable.

Example (no): �There is nothing to determine whether the cap shape has any link to

poison.� Example (yes): /di�erent subject about cap shape/ �Mushrooms with caps that

are wide and look like an umbrella are poisonous and should be avoided.�

2: Is attribute value perceived as predictive of target? The analyst determines plau-

sibility based on the perceived correlation between the attribute value (literal) and the

target class.

Example (yes): �The smell of almond indicates poison (i.e. cyanide).� Example (no):

�there are many di�erent mushrooms with a brown cap colour this does not mean they are

poisonous�, �Without a book, I would have no idea� (the subject may consider gill size as

predictive, but does possess the speci�c knowledge). The literal can also have a missing

value, such as �IF odour=cinnamon and bruises=unknown THEN mushroom is poisonous�.

There is no real supporting answer of a subject, since we did not have such example in our

dataset.

3: Positive or negative correlation? If the attribute value is perceived as correlated

with the target class, the e�ect on plausibility will relate to the sign and strength of the

correlation. Example (weak): �Many mushrooms with narrow gills are edible and can be

found in the supermarket, but that is not to say that all mushrooms with narrow gills are

�t to eat.� Example (strong): �The colour red in mushrooms normally denoted poison.�

Example (unknown): �Without a book, I would have no idea� (relating to broad gill size).

4: Perceived positive contribution increases plausibility if strength exceeds threshold.

• Evidence (statistical analysis): Literal relevance is positively correlated with plausi-

bility on the LOD datasets.2

• Evidence (textual answers): For the mushroom dataset there is a number of responses

where the anise smell is explicitly given as reason for positive preference on the

grounds of prior experience: �Anise smells nice and usually nice smelling things

aren't poisonous�, �personal experience�. Similarly, for the Quality dataset: �Cities

in Switzerland tend to be nice�.

2For Mushroom dataset there is a negative correlation due to the artefact in discovered rules discussed
in Section 5.14.
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• Bias: None

• Strength: High. Literal relevance has the strongest correlation with rule preference

from all the available variables.

5: Perceived positive contribution decreases plausibility if strength below threshold.

• Evidence (statistical analysis): Negative correlation between minimum literal rele-

vance and plausibility on all LOD datasets.

• Evidence (textual answers): The literals were automatically added to the rule by

the rule learner on the basis of data and all were thus generally positive evidence

in favour of the predicted class. Despite this, there were responses associated with

preference for the rule not containing the weak evidence, such as: �logic be damned,

I know of no critically acclaimed LGBT �lms at all�, �The addition of western Asian

countries weakens the plausibility�.

• Bias: Weak evidence e�ect

• Strength: High

6: Perceived negative contribution decreases plausibility.

• Evidence (statistical analysis): not performed

• Evidence (text): We have not found any actual answers that use negative evidence

such as �this rule is not preferred because literal xyz actually gives contrary evidence�.

However, the absence of such answers has a limited importance, because we have not

designed our experiments to test for the e�ect of negative evidence.

• Biases: negativity bias, con�rmation bias.

• Strength: Weaker than positive evidence. While based on the application of the

negativity bias the e�ect of negative evidence on plausibility should be stronger than

the e�ect of positive evidence, there is also the opposite e�ect of the con�rmation

bias, according to which people tend to look for evidence supporting the hypothesis

at hand, disregarding con�icting evidence. Since in the textual responses we have not

observed cases where a decision would be made in favour of the alternate hypothesis

based on negative evidence, we hypothesize that the con�rmation bias is stronger

than the negativity bias. This proposition should be taken with caution, because

as noted at other places we have not generally designed our experiments to include

negative evidence. On the contrary, the rule learners in general included the literal

in the rule only if it provided evidence for the class predicted by the rule.
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7: Unknown relation between attribute value and target class increases plausibility.

• Evidence (statistical analysis): The results are spurious due to artefacts in the Mush-

room dataset.

• Evidence (text): Indicative analysis of the textual answers for the Mushroom dataset

reveals that the majority of answers refers to general properties of rules (number of

literals) rather than to speci�c values. These are responses such as �more evidence

in rule 1�, �more describing factors make identi�cation easier�. At the same time, the

Mushroom dataset had the strongest correlation between rule length and plausibility.

• Strength: ?

• Biases: Representativeness heuristic

8: Relevant attribute with missing value increases plausibility.

• Evidence (statistical analysis). Result of Linda V3 experiment: addition of a new

condition with unknown value �Jenny is a bank teller and it is not known if she is

active in feminist movement� increased preference over baseline option �Jenny is a

bank teller� (cf. Table 5.17).

• Evidence (text): The reasons given by subjects selecting the option with the unknown

value included the following: �It might be assumed that Jenny is active in the feminist

movement based on the information given about her. However, it is not known for

sure that she is, so I chose the 3rd option.�, �Jenny probably has a good job, and

it's reasonable that she may work in a bank. She takes part in demonstrations

and is concerned about discrimination issues, so she may be involved in a feminist

movement, but there is no information that would tell us either way, whether she

was or wasn't.�.

It follows from the following response that the absence of condition was interpreted

as negation: �Out of the three this is the most likely she might well be active in a

feminist movement given her background. She could be a bank cashier and if she

is she may well not want it to be known that she is active in a feminist movement.

To me this makes the third option more likely the reality is that she is likely to be

active in a feminist movement or at least an activist in another organisation. she is

unlikely to have left her past completely behind.�

• Strength: ?

• Biases: Representativeness heuristic

9: Unknown/unrecognized/implausible value decreases preference.

• Evidence (statistical analysis): Not performed.
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• Evidence (text): On the Mushroom dataset there are several pairs where the other

rule is preferred giving reason that the subject does not know the value �anise�

or �never heard of a mushroom smelling like anise.� Similarly, there were similar

responses such as �Could a mushroom smell of creosote?�, �It's hard to tell what

creosote smells like.�, �Rule 1 doesn't sound likely because I do not recall seeing green

mushrooms.� These arguments were given as reasons for selecting the alternative rule

not containing unknown value as more plausible.

• Strength: ?

• Biases: Ambiguity aversion.

10: Irrelevant attributes/values have positive e�ect on preference. By irrelevant at-

tribute we mean an attribute the value of which is considered as not predictive of the

target. If an attribute is considered as irrelevant, then any literals (attribute-value pairs)

derived from the attribute are also irrelevant. Also, this situation covers attributes which

are considered as relevant, but their particular value is not considered as relevant.

• Evidence (statistical analysis): The Tra�c dataset had lowest literal relevance (cf.

Table 5.5). We expected the weak evidence e�ect to manifest via negative correlation

between rule length and preference on this dataset, but instead we obtained near zero,

but positive, correlation for Tra�c V2 (τ = 0.05 in Table 5.13).

• Evidence (text): Textual answers for a selected rule pair are in Table 6.1.

• Strength: Weak.

• Biases: Information bias, Unit bias.

count preference reason

2 No preference �All European Countries are members of NATO�, �most Eu-
ropean countries are members of NATO anyway�

2 R 2 weak �Rule 2 includes more people�, �more to select from�
1 R 1 weak �Rule 1 seems more plausible because it only covers one

group�

Table 6.1.: Analysis of responses for rule pair selected from the Tra�c dataset: R1: NATO
Member→ low risk of accidents, R2: NATO Member AND EU Member→ low
risk of accidents.

6.1.3. Aggregation of Literal Contributions

Tree depicted in Figure 6.1B models the decision process that applies to aggregation of

plausibility values obtained for literals. This process largely depends on generic strategies

that the analyst applies when evaluating plausibility and these in turn depend on the ability

of the analyst to combine evidence rationally, suppressing the various cognitive biases.
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11: Number of literals? If rule has multiple literals, the preference values for individual

literals need to be combined. The second branch applies to rules with 0 or 1 literals.

12: Analyst's understanding of �and�? The way one interprets rules with two or more

attributes depends on the interpretation of the �and� connective joining the literals.

13: Analyst prefers speci�city or size of the group? It follows from the textual responses

that subjects had two fundamental types of preferences. In the absence of other deciding

factors, one group of subjects preferred longer rules on the grounds that these are considered

as more �descriptive�, �speci�c�, �less broad� or having �more data�. The second group of

subjects preferred shorter rules, giving reasons such as �less categories�, �less options�.

14: Preference for speci�city increases plausibility. If the analyst prefers speci�city and

at the same time is not liable to misunderstanding of �and�, she will tend to prefer the

longer rules, since more conditions make them more speci�c. This personal attitude could

demonstrate via preference for situation depicted in Figure 6.2B over situation depicted in

Figure 6.2A.

• Evidence (statistical analysis): not performed

• Evidence (text): Reasons given for higher plausibility assigned to a longer rule in-

cluded: �There's nothing that stands out as an "obvious" indicator of toxicity, so I've

gone for a weak preference for Rule 2 as it's describing a smaller number of species

than Rule 1 and thus likely to be the more accurate of the two.�, �more describ-

ing factors make identi�cation easier�, �more indicators means more certainty�, �You

need to have more information so should be more accurate.�. �Rule 1 has a much

tighter de�nition of what would constitute a poisonous mushroom with 5 conditions

as compared to rule 2 which only contains just 1 condition for the same result so rule

1 is a much higher plausibility of being believable�.

Some responses also exhibited misunderstanding of the task: �it's a narrower group

so it has fewer drivers and thus fewer accidents�.

• Strength: Medium. On the Mushroom dataset, there is a number of responses jus-

tifying the preference for speci�city, while on other datasets this ratio is lower. It

seems that the activation of this aggregation is conditioned by the absence of a literal

with known relation to the target that can serve as a deciding factor.

• Biases: Representativeness, information bias, disjunction fallacy, insensitivity to

sample size.

15: Preference for size of supporting group. Some subjects are aware of the fact that

small group size implies statistical unreliability of the rule. Indicative analysis of the fre-

quency of responses in both groups of subjects in our experiment suggests that the concern
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Figure 6.2.: Illustration of the relation between rule scope and hypothesis space, A) Hy-
pothesized rule H embeds the correct rule T. B) Correct rule embeds the
hypothesized rule. Adapted from Klayman and Ha [1987].

for the size of the supporting group is less prevalent than preference for speci�city. This

personal attitude could demonstrate via preference for situation depicted in Figure 6.2A

over situation depicted in Figure 6.2B.

• Evidence (statistical analysis): Not performed.

• Evidence (text): Responses such as �Less describing factors means more likely� or

�Rule 2 is clear and unambiguous. Rule 1 is too detailed to apply in practice.�, �Rule

2 demands more speci�city - both a capital city AND a port city, so weak preference

to rule 1.�, �Rule 1 would seem far broader, and thus more plausible. To expect

a European country to be simultaneously a member of the Mediterranean Union is

pretty speci�c.�

• Strength: Medium. Results on Version 3 instructions (Movies dataset) show that

explicitly conveyed size of group (rule support) has no e�ect on plausibility if com-

municated along with rule con�dence.

16: Analyst understands �and� as disjunction. Majority of analysts who misunderstand

�and� prefer longer rules. Analysis of responses show that the there are two fundamental

paths from misunderstood �and� to the preference of longer rules: i) if the analyst prefers

speci�city, the longer rule is more speci�c and thus more preferred, ii) if the analyst

prefers size of supporting group, the longer rule has more supporting examples if �and�

is interpreted as �or�, thus making the rule more preferred.

• Evidence (statistical analysis): Inclusion of intersection test questions in V1 instruc-

tions reduced preference for longer rules on all datasets. This indicates that some

subjects could understand �and� as disjunction.

• Evidence (text): Example responses: �Rule one contains twice as many properties as

rule 2 does for determining the edibility of a mushroom so that makes it statistically

twice as plausible, hence much higher probability of being believable�, �An extra

group increases the likelihood.�
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• Strength: ?

• Biases: Misunderstanding of �and� (if it can be considered as a bias)

17: Penalty for �oversimplicity�. If the antecedent contains only one or no literal, this can

make the rule appear untrustworthy, since it will be viewed as �too simple�. Remarkably,

we have not observed any reason in data that would disqualify a rule based on its excess

complexity. Oversimplicity was generally mentioned only for rules of length 1 according

to our analysis of textual responses. We assume oversimplicity would also apply to rules

with empty antecedent3, although we have not tested this empirically.

• Evidence (statistical analysis): Reverse than expected values for correlation between

plausibility and literal relevance on the Mushroom dataset. This dataset contained

a number of rule pairs in which the antecedent of the shorter rule with length 1

contained a strong predictor.

• Evidence (text): For example, for Movies dataset there were responses such as: �You

cannot blanket an entire genre as bad�, �All English language movies can't be bad.�,

�You cannot blanket an entire decade of movies as bad�.

For Mushroom dataset, consider responses to rule pair no. 10 in Table 5.15, where

the short Rule 1 can be summarized as �if odour is creosote then poisonous� and

the alternative long Rule 2 as �if veil colour is white and gill spacing is close and

does not have bruises and has one ring and population is several and cap surface is

smooth then poisonous�. Most subjects have considered Rule 2 as more plausible,

giving reasons such as: �much more speci�c than just odor�.

• Strength: ?

• Biases: �Oversimplicity bias� was not encountered in our review of cognitive sci-

ence literature, but it was earlier reported in scope of machine learning research that

�extreme simplicity is not acceptable for users� [Freitas, 2014]. A decision tree con-

taining only one node is reported to be unacceptable for medical doctors by Elomaa

[1994].

6.2. Practical Recommendations for Design of Machine

Learning Software

This section provides a concise list of recommendations that is aimed to help machine

learning practitioners to suppress e�ect of cognitive biases on comprehension of rule-based

models. We expect part of the recommendations to be useful also for other symbolic

machine learning models, such as decision trees. The list of recommendations follows.

3The rule with empty antecedent always corresponds to the case depicted in Figure 6.2A.
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1. Remove near-redundant rules and near-redundant literals from rules. Rule models

often incorporate output which is considered as marginally relevant. This can take

form of (near) redundant rules or (near) redundant literals in the rule. Our analysis

shows that these redundancies can induce a number of biases. For example, a fre-

quently occurring but otherwise not very important literal can � by the virtue of the

mere exposure e�ect � be perceived as more important than would be appropriate

given the data.

2. Represent rule quality measures as frequencies not ratios. Currently, rule interest

measures such as con�dence and support are typically represented as ratios. Exten-

sive research has shown that natural frequencies are better understood.

3. Make �and� conjunction unambiguous. There are several cognitive studies indicating

�and� is often misunderstood. The results of our experiments also support this con-

clusion. Machine learning software should thus make sure that the meaning of and

in presented rules is communicated unambiguously.

4. Present con�dence interval for rule con�dence. The tendency of humans to ignore

base-rates and sample sizes (which closely relate to rule support) is a well-established

fact in cognitive science, results of our experiments on inductively learned rules also

provide evidence for this conclusion. Our proposition is that this e�ect can be ad-

dressed by computing con�dence (reliability) interval for con�dence. In this way, the

�weight of evidence� will e�ectively be communicated through con�dence.

5. Avoid the use of negated literals as well as positive/negative class labels. It is an

established fact in cognitive science that negative information receives more atten-

tion and is associated with higher weight than positive information. There is re-

search indicating that recasting a yes/no attribute to two �neutral� categories (such

as �DAX/MED�) can improve human understanding.

6. Sort rules as well as literals in the rules from strongest to weakest. People have

the tendency to put higher emphasis to information they are exposed to �rst. By

presenting the important information as �rst, machine learning software can also

conform to these human conversational maxims. The output could also visually

delimit literals in the rules based on their signi�cance, which would again correspond

to humans using various non-verbal clues to convey signi�cance in the spoken word.

7. Provide explanation for literals in rules. There is a number of cognitive phenomena

that result from the lack of domain knowledge on literals in the rules. Some examples

include ambiguity aversion or unit bias. Providing the analyst with easily accessible

information on literals in the rules including their predictive power can prove as an

e�ective debiasing technique.

8. Explain di�erence between negation and absence of a condition. Prior results in

cognitive science as well as our experimental results show that absence of a condition
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can be misinterpreted as negation if the omitted condition is present in in other rules.

Consider Rule 1: IF bankteller=yes THEN class=A and Rule 2: IF bankteller=yes

AND feminist=yes then class=B. In presence of Rule 2, Rule 1 can be read as IF

bankteller=yes AND feminist=no THEN class=A.

9. Elicit and respect monotonicity constraints. Research has shown that if monotonicity

constraints � such as that fuel consumption increases with increasing car weight �

are observed, the plausibility of the rule model increases.

10. Educate and assess human analysts. One perhaps surprising result related to con�r-

mation (myside) bias is that its incidence is not related to intelligence. Some research

even suggests that analysts, who think that good arguments are those that can be

�proved by facts�, are even more susceptible to myside bias than the general popula-

tion. There is a psychological test that can reveal the susceptibility of a person to

myside bias. Several studies have shown that providing explicit guidance and educa-

tion on formal logics, hypothesis testing and critical assessment of information can

reduce fallacy rates in some tasks.

These proposals are based on the results of our qualitative analysis summarized in Ta-

ble 4.1 on page 63, on our empirical results presented in Chapter 5, as well as on the textual

answers analysed within this chapter.
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Software Framework
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7. Related Algorithms

This chapter sets our work in the context of two groups of related machine learning algo-

rithms. The �rst group involves association rule-based models, which are basis of our �nal

approach, and the second group utility-based methods, that we initially worked on.

Chapter organization. Section 7.1 introduces association rule learning and the apriori

algorithm. A brief overview of association rule-based classi�cation, the basis of our frame-

work, is presented in Section 7.2. Utility models, which served as the initial inspiration for

the proposed algorithmic framework, are covered in Section 7.3.

7.1. Apriori and Association Rule Mining

Apriori algorithm [Agrawal et al., 1993] is an association rule learning approach well known

for its scalability. For example, it has been reported to be successfully used to mine massive

commercial databases with thousands of features and tens of million rows of data [Hastie

et al., 2001]. The Apriori algorithm has two stages. In the �rst stage, all one itemsets with

minimum coverage (support) are generated. Using this intermediate result two-itemsets

are generated etc. The generated one-, two-, etc. itemsets, also called frequent itemsets,

are a form of a frequent pattern [Toivonen, 2010]. For example, a frequent itemset of length

two can be �veil color=white, odor=foul�. If this itemset has support 2% it means that

two percent of all instances (rows) in the input dataset have both white veil color and foul

odor. In the second stage, rules are created from these itemsets. Only rules satisfying the

minimum con�dence threshold set by the user are generated. A concise description of the

algorithm is presented in Fürnkranz and Kliegr [2015].

7.1.0.1. Apriori Successors

A number of alternative algorithms, such as Eclat [Zaki and Gouda, 2003] or FP-Growth

[Han et al., 2004], have been proposed to speed up frequent itemset discovery originally

proposed within the Apriori algorithm. Mining for closed frequent itemsets proposed by

Pasquier et al. [1999] is another optimization. A frequent itemset P is closed if P is

included in no other itemset that has the same support as P .

In recent years there was a growing interest in approaches that support parallel execu-

tion of frequent itemset mining in order to harness modern multi-core architectures. PLCM

[Negrevergne et al., 2010] and MT-Closed [Lucchese et al., 2007] are parallel implementa-

tions of two fastest algorithms LCMv2 [Uno et al., 2004] and DCI Closed [Lucchese, 2004]

124



7.2. Association Rule-based Classi�ers 125

according to the FIMI'04 workshop1, which provided a benchmark of submitted frequent

itemset mining implementations. The recently proposed ParaMiner [Negrevergne et al.,

2014] algorithm yields comparable execution times to PLCM and MT-Closed, while it al-

lows to mine not only for closed frequent itemsets, but also for additional types of patterns

such as connected relational graphs and gradual itemsets.

For surveys of frequent set mining and association rule discovery we refer the reader to

[Aggarwal and Han, 2014, Fürnkranz et al., 2012].

7.2. Association Rule-based Classi�ers

Separate-and-conquer strategy described is common approach used in rule learning, which

can be, according to Fürnkranz [1999], traced back to the AQ algorithm [Michalski, 1969].

This strategy provides a basis for the seminal RIPPER algorithm [Cohen, 1995] as well as

for the state-of-the-art FURIA algorithm [Hühn and Hüllermeier, 2009]. Association rule

learning [Agrawal et al., 1993] is algorithmically di�erent approach, which was originally

designed to discover interesting patterns in very large and sparse instance spaces. Associ-

ation rule learning yields a set of rules that correspond to high density regions in the data.

Unlike in most separate-and-conquer approaches, cardinal features need to be discretized

prior to the execution of association rule learning. The resulting rules correspond to hy-

percubes in the transformed space. This transformation impairs precision of the rules, but

greatly reduces the combinatorial complexity thus allowing the algorithm to process even

large datasets.

Association rule learning was several years after its conception adopted also for classi-

�cation. The �rst Association Rule Classi�cation (ARC) algorithm dubbed CBA (Clas-

si�cation based on Associations) was introduced by Liu et al. [1998]. While there were

multiple follow-up algorithms providing marginal or small improvements in classi�cation

performance (e.g. CPAR [Yin and Han, 2003], CMAR [Li et al., 2001b] and MMAC [Thab-

tah et al., 2006]), the structure of most ARC algorithms follows that of CBA [Vanhoof and

Depaire, 2010]:

1. learn classi�cation association rules,

2. prune rules,

3. classify new objects.

In the following, this process will be discussed in detail for the CBA algorithm.

7.2.1. Classi�cation-based on Associations (CBA)

One-rule classi�cation and crisp rules make CBA classi�cation models possibly most com-

prehensible among all association rule classi�cation algorithms. In this section, we will

describe the building of the CBA classi�er from the conceptual perspective. For algorith-

mic details, please refer to Liu et al. [1998].
1http://fimi.ua.ac.be/fimi04/

http://fimi.ua.ac.be/fimi04/
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7.2.1.1. Learning Class Association Rules

In the �rst step of CBA a modi�ed version of Apriori [Agrawal et al., 1993] is used to learn

conjunctive classi�cation rules from data. The mining setup is constrained so that only the

target class values can occur in the consequent of the rules. The output of association rule

learning algorithms is determined by two parameters: minimum con�dence and support

thresholds on the training data. Let us brie�y remind the de�nition of these two metrics.

The con�dence of a rule is de�ned as a/(a+b), where a is the number of correctly classi�ed

objects, i.e. those matching rule antecedent as well as rule consequent, and b is the number

of misclassi�ed objects, i.e. those matching the antecedent, but not the consequent. The

support of a rule is de�ned as a/n, where n is the number of all objects (relative support),

or simply as a (absolute support).

The main obstacles for straightforward use of the discovered association rules as a clas-

si�er are the excessive number of rules discovered even on small datasets, and the fact

that contradicting rules are generated. ARC algorithms provide several extensions over

association rule learning algorithms which address exactly these issues. These algorithms

contain a rule pruning step, which signi�cantly reduces the number of rules, and de�ne a

con�ict resolution strategy for cases when one object is matched by multiple rules.

7.2.1.2. Pruning Candidate Rules

CBA adopts data coverage pruning [Vanhoof and Depaire, 2010]. This type of pruning pro-

cesses the rules in the order of their strength, removing transactions (instances, objects)

that the rule matches from the database. If rule does not correctly cover at least one in-

stance, it is deleted (pruned). Additionally, CBA incorporates optional pessimistic pruning

step, which is used in the �rst CBA phase when candidate association rules are generated.

In CBA, data coverage pruning is combined with �default rule pruning�: the algorithm

replaces all rules below the current rule with default rule if a default rule inserted at that

place would reduce the number of errors. Default rule is a rule with empty antecedent,

which ensures that a query instance is always classi�ed even if it is not matched by any

other rule in the classi�er.

The e�ect of pruning on the size of the rule model is reported by Liu et al. [1998],

who present evaluation on 26 UCI datasets. To illustrate the e�ect of pruning using data

coverage pruning in the CBA algorithm, the average number of rules per dataset without

pruning was 35,140, with pruning the average number of rules was reduced to 69 without

e�ectively impacting accuracy. Pessimistic pruning was found to have no e�ect on classi�er

accuracy (on average across multiple datasets).

7.2.1.3. Classi�cation

The original CBA algorithm performs �one rule� classi�cation. First, rules are sorted

according to their strength, which is determined based on the following criteria:

• con�dence,
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• support,

• rule length (shorter rule is placed higher).

Instance is assigned to the class in the consequent of the �rst rule with antecedent

matching the instance in the ordered list of rules. The advantage of one rule classi�cation

is that it is easily understandable, which provides advantages in some applications, such

as business rule learning [Kliegr et al., 2014].

7.2.2. Comparison of CBA and its Successors

The main bene�t of using a rule-based classi�er, as opposed to state-of-the-art sub-symbolic

method such as a deep neural network, should ideally be i) comprehensibility of the rule-

based model, ii) fast execution on large and sparse datasets, iii) accuracy comparable to

state-of-the-art �black-box� classi�cation models.

Individual ARC algorithms meet these aspirations to a di�erent degree. Table 7.1

presents a comparison between ten most well-known ARC algorithms (and closely related

approaches) in terms of key comprehensibility metrics, accuracy and performance.

We selected CBA as a basis for our framework, since as follows from Table 7.1 it produces

more comprehensible models than any of its successors while maintaining high accuracy

and fast execution times. The di�erence between accuracy of CBA model and accuracy

of state-of-the-art ARC algorithms such as FARC-HD is very small. In terms of accuracy,

CBA is outperformed only by FARC-HD (by 4%) and CPAR (by 2%). However, CPAR

has 4x times more rules on the output and less comprehensible multi-rule classi�cation.

FARC-HD outperforms CBA in terms of accuracy, and even more so in its evolved version

FARC-HD-OVO [Elkano et al., 2015]. On the other hand, this algorithm is more than

100x slower than CBA and produces less comprehensible fuzzy rules.

In addition to criteria in Table 7.1, CBA has also the advantage that it uses standard

(constrained) association rule learning in the �rst step. This makes work on postprocessing

CBA output �future-proof�, since the performance of CBA can be improved by replacing

Apriori with another association rule learning algorithm. For example, FP-Growth is

reported to be faster on most problems than the Apriori algorithm [Goethals and Zaki,

2003].

7.3. Utility-based Algorithms

As a representative of utility learning, in this section we will cover the UTA (UTilités

Additives) method [Jacquet-Lagreze and Siskos, 1982]. UTA is a time-tested method,

which is widely used as a basis for many recent utility-based preference learning algorithms

(e.g. Greco et al. [2007]).

UTA learns an additive piece-wise linear utility model. UTA takes a set of alternatives

ordered according to user's preferences, and it learns utility functions for each attribute.

Using these functions, the utility for individual attribute values are combined into the

overall utility for a given object.
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algorithm year single crisp det assoc acc rules time
CBA Liu et al. [1998] 1998 yes yes yes yes .80 185 35s
CBA 2 Liu et al. [2001] 2001 yes yes yes yes .79 184 2 m
2SLAVE González and Pérez [2001] 2001 no? no no no .77 16 22m
CMAR Li et al. [2001a] 2001 no yes yes yes .79 1419 6m
CPAR Yin and Han [2003] 2003 no yes yes yes .82 788 11s
LAFAR Hu et al. [2003] 2003 no no no yes .75* 47* 5h*
FH-GBML Ishibuchi et al. [2005] 2005 no no no no .77 11 3h
CFAR Chen and Chen [2008] 2008 yes no yes yes .71* 47* 17m*
SGERD Mansoori et al. [2008] 2008 no? no no no .74 7 3s
FARC-HD Alcala-Fdez et al. [2011] 2011 no? no no yes .84 39 1h 20m

Table 7.1.: Comparison between CBA and other association rule (or closely related) clas-
si�ers. single refers to single rule classi�cation, crisp to whether the rules
comprising the classi�er are crisp (as opposed to fuzzy), det. to whether the al-
gorithm is deterministic with no random element such as genetic optimization,
assoc corresponds to whether the method is based on association rules, acc,
rules and time is average accuracy, average rule count and average run time
across 26 datasets as reported by Alcala-Fdez et al. [2011]. * indicates that the
algorithm did not process all datasets

UTA aims at inferring one or more additive value functions from a given ranking (weak

ordering) on a reference set of objects. Each object is described by N attributes. The

method uses linear programming to �nd such N partial value functions ui that best explain

given preferences. The overall preference rating for an object o is computed as an average

of utility values for all attributes: u(o) =
∑N

i=1 ui(oi), where ui are non-decreasing value

functions and oi are attribute values.

The method expects that the input attributes are monotone with respect to preferences,

which not only requires manual input for each attribute, but also limits the applicability of

the method. The utility function for each attribute is either marked as cost (utility does not

increase with rising attribute value) or gain (utility does not decrease with rising value).

Since UTA method was originally developed as an algorithm for Multi-Criteria Decision

Making (MCDM), manually specifying whether an attribute is cost or gain was not an

issue. Also, in the MCDM setting it is possible to ensure that there are no ambivalent

attributes, which cannot be unanimously classi�ed to the cost or gain category for all

decision makers. If UTA is to be applied in wider machine learning context, such manual

approach to enforcing monotonicity is not feasible.

In previous work [Kliegr, 2009] we proposed a non-monotonic extension of UTA (UTA-

NM), which allows ui to change direction from ascending to descending. Every change of

the direction from gain to cost or vice versa within one partial utility function is penalized

to ensure that the resulting model is not overly complex and over-�tted to the data. An

illustration of the principle applied in non-monotone UTA is depicted at the following

example.
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Example. (Worker comfort) Consider the following preference learning problem:

determine worker utility (comfort) on 4 points scale of a worker based on temperature

and humidity of the environment. Figure 7.1A depicts the utility curve for the value of

the temperature attribute if humidity is 50%. At humidity 100%, the worker's utility

function will be di�erent (Figure 7.1B). However, it is unlikely that the worker's utility

function will look like depicted on Figure 7.1C at any humidity level: too many changes

of shape of the utility function are thus penalized in UTA-NM,

Figure 7.1.: Class label values associated with the Temperature attribute. A] humidity
50%, B] humidity 100%, C] improbable shape at any humidity level

Another option for dealing with non-monotonicity, based on a transformation of arbitrary

input attributes into a monotone space was presented in Eckhardt and Kliegr [2012].

Contrary to the initial plan, we decided not to base our framework on the extension of

the UTA method. The reason is that UTA and its derivatives impose too strong inductive

bias � the individual partial value functions are not only monotonic, piece-wise linear, but

also unconditionally additive: the total utility from an alternative is given by sum of partial

utilities. In UTA, the utility function relating to the temperature attribute is independent

of the value of the humidity attribute.

Also, learning an UTA model can be slow on large data due to the fact that the model

is a solution to a linear programming optimization problem.2 When working on UTA-NM

extension we also observed that the time complexity is very sensitive to the inclusion of

additional constraints to the optimization problem.

2Recently, Ghaderi et al. [2017] proposed modi�cation to our UTA-NM algorithm that result in improve-
ment of execution times.



8. Problem Statement

The results presented in the previous part of the thesis show that multiple cognitive biases

a�ect understanding of rules discovered from data. While these have di�erent causes and

e�ects, there is a clear pattern of �less is more� � the more concise the model presented to

the human user is, the less opportunities there will be for cognitive biases to be triggered.

In this part, we will focus on making a selected rule learning algorithm more compre-

hensible by implementing the �less is more� debiasing strategy.

Formal Problem De�nition

Let C be a classi�er composed of association rules. Let the classi�er adopt the one rule

classi�cation strategy: each training instance is covered by the rule with the highest prece-

dence among the rules that can cover the instance. The quality of the classi�er is evaluated

using two metrics: accuracy(C), as measured by the number of correctly classi�ed test in-

stances divided by the number of all test instances, and the size of the classi�er size(C) as
measured by the count of conditions in the antecedents of all rules in C.
The goal of this part of the thesis is to present a new postprocessing algorithm, which

takes on its input classi�er C and outputs a processed classi�er Ĉ, so that the following

holds:

• C adopts one rule classi�cation strategy

• accuracy(Ĉ) ≥ accuracy(C)

• size(Ĉ) ≤ size(C)

According to the Law of Conservation for Generalization Performance (LCG) [Scha�er,

1994] it holds that when taken across all learning tasks, the generalization performance of

any learner sums to 0. In light of this theorem, it is impossible to construct a learning

algorithm that has better accuracy than some other learning algorithm on all possible

problems. However, as discussed by Giraud-Carrier and Provost [2005], LCG does not

re�ect the higher probability with which certain learning tasks (functions to learn) occur

in the real world than other tasks. Therefore, we will focus on evaluating performance of

the proposed algorithm on a diverse set of real world datasets.
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9. Monotonicity-exploiting Association

Rule Classi�cation

Monotonicity-exploiting Association Rule Classi�cation (MARC) is a postprocessing algo-

rithm for association rule classi�cation algorithm CBA [Liu et al., 1998]. It uses original,

undiscretized numerical attributes to optimize the discovered association rules, re�ning

the boundaries of literals in the antecedent of the rules produced by CBA. Some rules as

well as literals from the rules can consequently be removed, which makes the resulting

classi�er smaller. One-rule classi�cation and crisp rules make CBA classi�cation models

possibly most comprehensible among all association rule classi�cation algorithms. These

viable properties are retained by MARC (QCBA).1 The postprocessing is conceptually fast,

because it is performed on a relatively small number of rules that passed data coverage

pruning in CBA.

Chapter organization. An overview of the framework is provided by Section 9.1. Sec-

tion 9.2 introduces key concepts and notation related to association rule learning, which

are referenced from the descriptions of the algorithms in the subsequent sections. The �rst

step of the framework � building of the classi�er � is covered by Section 9.3. The proposed

framework consists of a succession of the following optimization steps that postprocess the

CBA model: i) re�t, ii) literal pruning, iii) trimming, iv) extension, v) postpruning and

vi) default rule overlap pruning. These are described in this order in Sections 9.4 � 9.9.

9.1. Overview and Motivation

Current rule learning approaches can be divided into two categories depending on how they

learn rules and process numerical attributes: inductive rule learning, typically based on a

variation of separate-and-conquer approach natively supporting numerical attributes, and

association rule-based classi�cation approaches, which work only on nominal data. Largely

owing to this restriction, association rule-based algorithms can be very fast on datasets

with many instances and high dimensions.

The proposed framework is based on Association Rule-based Classi�cation (ARC). Cur-

rent mainstream ARC approaches can be applied on data with numerical attributes, but

only if these are discretized prior to mining. The disconnection between discretization

and model building is a source of ine�ciencies in the resulting classi�er � rule boundaries
1The software package with implementation of MARC used for evaluations in Chapter 10 is distributed
under the name �Quantitative CBA�, which we consider as more comprehensible to the target machine
learning audience.
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are not �t to the original continuous data, resulting in loss of accuracy and redundancies.

While recently several ARC approaches that support numerical data have been proposed,

these produce fuzzy association rules, containing fuzzy itemsets that deteriorate compre-

hensibility of the model.

9.1.1. CBA as Base Learner

The framework is conceived as a postprocessing algorithm for ARC classi�cation algorithm

CBA [Liu et al., 1998], which reverts to the original attribute space to �edit� discovered

association rules, re�ning the scope of literals (conditions) in the antecedent of the rules.

As a consequence, the �t of the individual rules to data improves, rendering some of

the rules and attributes redundant. These are removed, making the resulting classi�er

smaller. CBA models are rule lists with several properties that make them comprehensible,

such as one-rule classi�cation and crisp rules. Our preprocessing retains these favourable

properties. The postprocessing is conceptually fast, because it is performed on a relatively

small number of rules that passed the data coverage pruning in CBA.

9.1.2. Inspiration by Monotonicity Constraint

A key optimization step in our algorithm is inspired by the monotonicity constraint, which

was already mentioned within our review of prior research on comprehensibility in machine

learning in Section 2.4.3. In many classi�cation and regression problems it is often the case

that a domain of a predictor attribute has a � ceteris paribus � monotone relationship with

the target class label. An example of such monotonicity constraint is that within a certain

range subjective comfort level will be increasing with room temperature, all other variables

being equal.

Unlike our initial approach [Kliegr, 2009], which was based on the UTA method (cf.

Section 7.3), we do not aim to impose monotonicity as a hard or even soft constraint. This

would result in multi-objective optimization: a drop in standard rule quality metrics such as

con�dence will be accepted as long as monotonicity is ensured or at least improved. Instead

we readjust association rule output to re�ect monotonicity without adversely a�ecting these

metrics: association rule learning and classi�cation operates on prediscretized data, which

results in a learned rule often covering a narrower region than it could. We apply the

monotonicity constraint when readjusting the rules to better �t the raw data, detaching

them from the multidimensional grid, which is the result of the discretization. The intuition

behind our approach is brie�y exempli�ed in two dimensions in the following.



9.1. Overview and Motivation 133

(a) Discretized data space (b) Discovered association rule

(c) Query instance, data for extension (d) Rule after monotonic extension

Figure 9.1.: Illustration of monotonic literal extension
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Example. (Monotonic rule extension)

Figure 9.1a describes a discretized instance space corresponding to two originally con-

tinuous attributes (Temperature and Humidity) and a class label (Comfort, integer

from 1 to 4). After association rule learning with minimum con�dence threshold of

75% and minimum support of 3 instances, one of the discovered rules is depicted as

the yellow region in Figure 9.1a:

IF Humidity = [40,60) AND Temp = [25;30) THEN Comfort = 4, conf = 75%, supp = 3.

As Figure 9.1b shows there are four instances matched by the antecedent of the rule,

three of which indeed have class �4�. The con�dence of this rule is thus 3/4 = 75%

and the number of correctly covered instances is 3 (absolute support).

Figure 9.1c shows a query instance '?' with Humidity = 38 and Temperature =

28. This data point is not covered by our rule, however, applying the monotonicity

constraint we can expect the class label to remain 4 or to decrease to 3 in case humidity

of 38 feels to dry. A jump to comfort value of 2 or 1 would seem as unlikely.

Figure 9.1d shows a new rule exploiting this intuition about monotone relation of

comfort and humidity. The rule was created by lowering the boundary on humidity

to 38. The con�dence of the rule improves to 5/6:

IF Humidity = [38,60) AND Temp = [25;30) THEN Comfort = 4, conf = 83%, supp = 6.

In the simple example above we demonstrated the way in which our framework exploits the

non-decreasing/non-increasing parts of a monotone relationship (piece-wise monotonicity

assumption) between a predictor and target to adjust boundaries of conditions in asso-

ciation rules. From this follows the working name �Monotonicity-exploiting Association

Rule Classi�cation� (MARC). It should be noted that MARC does not take advantage of

ordinal structure of the class label even if it is available. On the other hand, the framework

incorporates a number of other optimizations to reduce the size of the model.

9.1.3. Work�ow

Classi�cation work�ow involving MARC consists of two main components. The �rst com-

ponent is a CBA implementation. The core of the framework is the second component,

which post-processes the discovered rules comprising the CBA classi�er. This second com-

ponent has two phases. In the �rst phase, individual rules are optimized. This increases

coverage of individual rules and reduces their length by removing redundant attributes. In

the second phase, three types of rule pruning are performed to reduce the number of rules.

A conceptual description of the algorithm follows:

1. Standard CBA classi�er building.

a) Discretization of numeric �elds in the dataset. Any discretization tech-

nique can be used. CBA is typically used with discretization based on the Min-

imum Description Length Principle (MDLP) [Fayyad and Irani, 1993], which

selects number of cut-points with the highest entropy gains.
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b) Discovery of candidate association rules. Class association rules can be

discovered using any base association rule learner (Apriori, FP-Growth, etc.)

c) Rules are sorted to create initial rule list. The sort criteria are con�dence,

support and rule length.

d) Data coverage pruning. Any of the CBA variant (M1 or M2 introduced in

Liu et al. [1998]) can be used.

2. Tuning of individual rules.

a) Re�tting rules to value grid. Literals originally aligned to borders of the

discretized regions are re�t to �ner grid with steps corresponding to all unique

attribute values appearing in the training data.

b) Literal pruning: Removal of redundant literals (attribute-value pairs) from

rules. Literal is considered redundant if its removal does not decrease rule

con�dence.

c) Trimming. Boundaries of literals in discovered rules are trimmed so that their

borders do not contain regions covering no training instances.

d) Extension. Ranges of literals in the body of each rule are extended. The

extension is accepted only if it does not deteriorate rule con�dence.

3. Pruning of the optimized rule list. Rules are resorted and since the regions they

cover could change, another iteration of pruning is performed to remove rules made

newly redundant:

a) Data coverage pruning. Once the rules have been extended, they match more

objects, which can make some of the rules redundant, therefore data coverage

pruning is performed to remove some of the newly redundant rules.

b) Default rule pruning. All rules below the current rule are replaced by default

rule if this reduces the number of errors on training data. Note that to preserve

more rules for MARC to work with, this pruning is skipped in CBA and is

performed at later point, after MARC optimized the rule list.

c) Default rule overlap pruning. Some rules that classify into the same class

as the default rule in the end of the classi�er can be removed.

Algorithm 1 depicts the succession of optimization steps in MARC and provides pointers

to individual algorithms described in detail in the following subsections.
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Algorithm 1 MARC marc()

Require: rules � input rule list generated by CBA
Ensure: optimized rules

1: rules← remove any rules with empty antecedent from rules. {CBA includes at least one such
rule as default rule in the end of the list.}

2: for rule ∈ rules do {process rules in the CBA sort order (Fig. 9.8)}
3: rule← refit(rule) {cf. Alg. 2}
4: rule← pruneLiterals(rule){cf. Alg. 3}
5: rule← trim(rule){cf. Alg. 4}
6: rule← extendRule(rule) {cf. Alg. 5}
7: end for

8: rules ← postprune(rules) {cf. Alg. 8, postpruning adds a new default rule, if postpruning is
disabled, MARC ensures that default rule is added at this point.}

9: rules ← drop(rules) {cf. Alg. 9 (transaction-based, Alg. 10 (range-based) version of default
rule overlap pruning}

10: return rules

9.2. Preliminaries

In the following we de�ne the main concepts relating to association rule learning. We also

introduce several extensions to the commonly used notation in order to preserve the link

between discretized and original data, which is required by the MARC framework.

De�nition 1. (training dataset) A training dataset T is a set of objects {o}, each object
described by vector 〈o1, . . . , on, c〉 ∈ A1× . . .×An×C, where Ai is the domain of attribute

Ai and C the domain of the target attribute (class label) C.

The training dataset is comprised of objects (instances) which are described by at-

tributes. We distinguish between two types of attributes: nominal and cardinal. An ordi-

nal attribute is not considered as a separate type, since it can be converted to a cardinal

attribute.

De�nition 2. (attribute in training dataset) A domain of an attribute A, denoted as

A is a set of all distinct values A = {v} of attribute A in the training dataset T . Attribute

can be either of a �nominal� or �cardinal� type.

1. If A is a nominal attribute then A, then every two di�erent values v1, v2 ∈ A are

incomparable.

2. If A is a cardinal attribute then A, then for every two di�erent values v1, v2 ∈ A it

either holds that v1 > v2 or v2 > v1.

A typical association rule learning setup involves discretization of all cardinal attributes

in the training dataset into bins. Nominal attributes with many distinct values can also be

binned, if a distance function is known. The result of preprocessing is a modi�ed training

dataset T, which contains a smaller number of distinct values. Assuming that an attribute

A with domain A = {v} was discretized and the result is attribute Ā with domain Ā = {v̄},
then each value v̄ ∈ Ā can be mapped to one or more values v ∈ A.
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A1 A′1 A2 A′2

a1,1, a1,2 → a′1,1 a2,1, a2,3 → a′2,1
a1,3, a1,4 → a′1,2 a2,2, a2,4 → a′2,2
a1,5, a1,6, a1,7 → a′1,3

Table 9.1.: Example of the discretization process

De�nition 3. (preprocessed training dataset) Let fi : Ai → Āi be a preprocessing

function for attribute Ai. Training set T consists of objects ō = 〈f1(o1), . . . , fn(on), c〉,
where o = 〈o1 . . . on, c〉 ∈ T.

In the following we assume that the rules are learned on the preprocessed dataset T

in the attribute space Ā1 × . . . × Ān × C. Each preprocessed value v̄ appearing in the

discovered rule, can be represented using one or more values from the original attribute

space. In the following, we will thus refer to the original attribute space and training set

T unless explicitly noted otherwise.

Example. (rule in original and preprocessed space) Consider the following rule

r1: A′1 = a′1,2 ∧ A′2 = a′2,1 → C = c1. The rule contains two literals de�ned over two

attributes: A′1 = {a′1,1, a′1,2, a′1,3} and A′2 = {a′2,1, a′2,2}. Attribute A′1 is created by

performing discretization of cardinal attribute A1 = 〈a1,1, a1,2, a1,3, a1,4, a1,5, a1,6, a1,7〉
in the original dataset, which is depicted in Table 9.1. The attribute A′2 is nominal,

and the bins were created by user-de�ned value merging.

In a dataset dealing with preferences of second-hand car buyers, A1 = {1 . . . 7} could
correspond to the age of the car in years and A2 = {yellow, brown,white, black} to
colour of the car, A′1 = 〈[1, 3), [3, 5), [5, 7]〉, A′2 = {light, dark}. The class c1 expresses

the value �highly preferred�.

MARC assumes that on the input it obtains association rules, which are composed of

literals.

De�nition 4. (literal) A literal l = (A, V ) is an association of attribute A with value

range V .

Algorithm Apriori, the de facto standard in association rule learning, outputs rules in

which one literal corresponds to one value (or as originally called, with some simpli�cation,

an item). In our framework, we assume that a literal may be associated with a value range,

which is a disjunction of multiple attribute values. The primary reason for extending the

de�nition of literal, as present in Yin and Han [2003], is that multi-value literals are on

the output of the MARC Extension procedure.

De�nition 5. (value range of literal de�ned on nominal attribute) Let l = (A, V )

be literal de�ned over a nominal attribute A. The value range V is a set of m ≥ 1 values:

V = {vi}, vi ∈ A, where A is the domain of attribute A in the training set.
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For literals created over a cardinal attribute, the literal values are a subsequence of the

domain of the attribute.

De�nition 6. (value range of literal de�ned on cardinal attribute) Let l = (A, V )

be literal de�ned over a cardinal attribute A. The value range V is a sequence of m ≥ 1

values: 〈x1, . . . , xi, . . . , xm〉, ∀i=1...mxi ∈ A, where A is the domain of attribute A in the

training dataset T . The sequence V has the property that among each two its consecutive

elements xj, xj+1 there is no element y ∈ A for which it would hold that xj < y < xj+1.

When a candidate rule is created during rule learning or when the rule is applied on test

objects, it is necessary to verify which objects match individual literals in the rule.

De�nition 7. (satisfaction of literal by object) An object o satis�es a literal l =

(Ai, V ) if and only if the value of the object in attribute Ai, denoted as oi, meets one of

the following conditions:

1. Ai is a nominal or cardinal attribute and ∃vi ∈ V : vi = oi

2. Ai is a cardinal attribute and ∃vu, vl ∈ V : vu ≥ oi ∧ vl ≤ oi

Condition (2) is applicable only in the test phase, since as follows from De�nition 6, the

value range 〈vl, . . . , vu〉 of a literal created over a cardinal attribute contains all values in

the domain of attribute A in the training dataset within this range, hence the check with

condition (1) is satisfactory.

De�nition 8. (rule) A rule r takes the form l1 ∧ l2,∧ . . . ∧ lm → c. The body of the

rule, denoted as body(r), consists of conjunction of literals l1, l2, . . . , lm, m ≥ 0. There

are no two literals li, lj in body(r) which are associated with the same attribute Ak. The

consequent of the rule consists of literal c, which is the class label (denoted as class(r))

of the rule. Rule is assigned con�dence (conf(r) ∈ [0; 1]) and relative support (denoted as

supp(r) ∈ [0; 1]).

Our de�nition of rule is compatible with rules that are learned with the Apriori algorithm,

on the condition that the head of the rule is constrained to contain only literals created

from the target (class) attribute. The values of con�dence and support for a rule are

computed by the rule learning algorithm from the training data.

De�nition 9. (satisfaction of rule body by object) An object o satis�es body(r) if

and only if it satis�es every literal in body(r). If body(r) contains zero literals, any object

satis�es it. If an object satis�es body(r), r predicts that the object is of class(r).

De�nition 10. (con�dence and support of a rule) Let r be a rule l1 . . . ∧ lm → c, T

a training dataset. Let S denote the set of all objects x ∈ T for which x satis�es body(r).

Con�dence is computed as:

conf(r) =
|o ∈ S : o has class label c|

|S|
. (9.1)
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Support as:

supp(r) =
|o ∈ S : o has class label c|

|T|
. (9.2)

Class association rule learning is executed on the training dataset T with C as the target

attribute. The output is a set of all rules that meet the prede�ned minimum support and

minimum con�dence thresholds (and possibly some other constraints and settings).

De�nition 11. (rule list) The output of class association rule learning is an ordered

sequence of rules R = 〈r1, . . . , rm〉.

9.3. CBA Model Building

The �rst step in building a CBA classi�er is learning a list of classi�cation association

rules. Association rule learning requires discretized data. Discretization splits the data

space into hypercubes. The discovered rule delimits one of the hypercubes and assigns a

class label to it. The CBA algorithm prunes the discovered rules and adds a default rule

to the end of the rule list.

Example (CBA model building). Let's introduce the �HumTemp� sample data

for this chapter (Figure 9.2a). There are two explanatory attributes (Temperature

and Humidity). The target attribute is preference (e.g. subjective comfort level). The

data were discretized using equidistant binning (Figure 9.2b). Given that there are

two attributes, the discovered rule can only correspond to a rectangular region with

borders aligned to the grid (Figure 9.2c). The color correspond to the class which is

predicted by the rule (red = 1, green =2, blue = 4). The rules are processed by CBA

to form a classi�er (Figure 9.2d). In this case, CBA only added a default rule (green

background) that ensures that all instances are classi�ed.
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(a) Input raw data (b) Discretized space

(c) Discovered rules in discretized space. (d) CBA model

Figure 9.2.: Illustration of CBA model building (HumTemp dataset)
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9.4. Re�t

As a �rst step, MARC re�ts rule boundaries to a �ner grid, which corresponds to all

unique attribute values actually appearing in the data (Algorithm 2). The re�t operation

is inspired by the way the C4.5 decision tree learning algorithm selects splitting points

for numerical attributes � it also searches for a value that is present in the training data

[Quinlan, 1993].

Algorithm 2 Re�t rule re�t()

Require: r � input rule learnt on discretized training data
Ensure: rule r with re�t literals

1: for literal = (A, V ) ∈ antecedent(r) do {V is a value range, e.g. interval [20;30) and A is
attribute, e.g. humidity}

2: A ← all unique values appearing in training data in attribute A.
3: left ← min(A ∩ V )
4: right ← max(A ∩ V )
5: r ← replace literal in r with new literal = (A,[left,right])
6: end for

7: return r

9.5. Literal Pruning

The literal pruning step removes redundant attributes (attribute-value pairs) from rules.

Literal is considered redundant if its removal does not decrease rule con�dence. Literal

pruning is depicted in Algorithm 3.

Example (Literal pruning). To demonstrate literal pruning, we need to use dataset

with higher number of attributes than the HumTemp dataset has. Let's use the

well-known Iris dataset [Fisher, 1936]. The model built without literal pruning is

in Figure 9.3 and the model with literal pruning is in Figure 9.4. As follows from

comparison of the individual rules, removal of the literals did not a�ect rule con�dence:

• From Rule 1 literal Petal.Length=[-Inf;Inf] was removed since it had no

discriminatory power due to boundaries [-Inf;Inf], which were result of the re�t

operation.

• From Rule 2 literal Sepal.Length=[6.1;Inf] was removed. Note that the

boundaries of the remaining literal created over Petal.Length attribute di�er.

The reason is that since literal pruning is performed as a second step in QCBA

after re�tting, the result of extension can a�ect the �nal boundaries. This is

also the reason why the support of the rule after literal pruning has decreased,

although a literal was removed.

• Rule is una�ected.
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## id rule support confidence

## 1 {Petal.Length=[-Inf;Inf],Petal.Width=[-Inf;0.6]} => {Species=setosa} 0.32 1.00

## 2 {Sepal.Length=[6.1;Inf],Petal.Length=[5.1;Inf]} => {Species=virginica} 0.27 1.00

## 3 {Sepal.Width=[-Inf;3.1],Petal.Width=[1.8;Inf]} => {Species=virginica} 0.20 1.00

## 4 {} => {Species=versicolor} 0.36 0.36

Figure 9.3.: Example QCBA model - no literal pruning (Iris Dataset)

## id rule support confidence

## 1 {Petal.Width=[-Inf;0.6]} => {Species=setosa} 0.32 1.00

## 2 {Petal.Length=[5.2;Inf]} => {Species=virginica} 0.25 1.00

## 3 {Sepal.Width=[-Inf;3.1],Petal.Width=[1.8;Inf]} => {Species=virginica} 0.20 1.00

## 4 {} => {Species=versicolor} 0.36 0.36

Figure 9.4.: Example QCBA model - with literal pruning (Iris Dataset)

Algorithm 3 Literal pruning pruneLiterals()

Require: r � input rule
Ensure: rule r with redundant attributes (literals) removed

1: attrRemoved ← false
2: repeat

3: for literal ∈ antecedent(r) do {Literals are iterated in arbitrary order}
4: r′ ← remove literal from r
5: if con�dence( r′) ≥ con�dence(r) then
6: r ← r′

7: attrRemoved ← true
8: break

9: else

10: attrRemoved ← false
11: end if

12: end for

13: until attrRemoved = false
14: return r

9.6. Trimming

The trimming operation processes all rules. Literal boundaries in the given rule are shaved

of any values that belong solely to instances that are misclassi�ed by this rule (Algorithm 4).

Example (Trimming). Figure 9.5b shows the result of trimming of rule in Fig-

ure 9.5a: rule is shaved of one misclassi�ed data point, con�dence rises from 0.6 to

0.75.
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(a) Original rule after re�t (b) Trimming applied

Figure 9.5.: Illustration of trimming algorithm in QCBA model building (HumTemp
dataset)

Algorithm 4 Rule trimming trim()

Require: r � input rule
Ensure: rule r with trimmed literals

1: corrCovByR ← training instances covered and correctly classi�ed by r
2: for literal = (A, V ) ∈ antecedent(r) do {Literals are iterated in arbitrary order}
3: corrCovByL ← training instances covered by literal
4: distValsL ← distinct values training instances have in attribute A
5: if size(distV alsL) ≤ 1 then

6: continue

7: end if

8: distV alsLinR← distinct values of attribute A in corrCovByR
9: V ′ ← [min(distV alsLinR),max(distV alsLinR)]
10: r ← replace literal in r with new literal = (A, V ′)
11: end for

12: return r

9.7. Extension

The extension process is depicted in Algorithm 5. The ranges of literals in the body of

each rule are attempted to be enlarged. The range of each literal is increased one literal

and one boundary at a time. The extension is generally accepted only if it improves rule

con�dence. To overcome local minima, the extension process can provisionally accept drop

in con�dence of intermediate result of extension compared to the seed rule.
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Algorithm 5 Rule Extension extendRule()

Require: train = {xl|l = 1, . . . , n} � n train objects, de�ned overm attributes: {Ai|i = 1, . . . ,m},
r � input rule, minImprovement ∈ (−1, 1) with 0 as default, minCondImprovement ∈ (−1, 0)
with -1 as default

Ensure: extended rule r

1: curBest ← r
2: directExtensions ← getExtensions(r,train)
3: repeat

4: extensionSuccessful← false
5: for cand ∈ directExtensions {Iteration in order according to criteria in Figure 9.8} do

6: ∆conf ← conf(cand) - conf(curBest), ∆supp ← sup(cand) - sup(curBest)
7: if crispAccept(∆conf ,∆supp,minImprovement) then
8: curBest← cand, extensionSuccessful← true
9: break

10: else if conditionalAccept(∆conf ,minCondImprovement) then
11: enlgmnt← cand
12: loop

13: enlgmnt ← getBeamExtension(enlgmnt)
14: if enlgmnt=∅ then
15: break

16: end if

17: ∆conf ← conf(enlgmnt) - conf(curBest), ∆supp ← sup(enlgmnt) - sup(curBest)
18: if crispAccept(∆conf ,∆supp,minImprovement) then
19: curBest← enlgmnt, extensionSuccessful ← true
20: break

21: else if conditionalAccept(∆conf ,minCondImprovement) then

22: continue {Extension in conditional accept band}
23: else

24: break

25: end if

26: end loop

27: if extensionSuccessful = true then
28: break

29: end if

30: else

31: continue {Improvement below conditional threshold, going to next candidate}
32: end if

33: end for

34: until extensionSuccessful = false
35: return curBest

First, for given seed rule r the algorithm retrieves all possible extensions. These are

generated by Algorithm 6 on page 145. The algorithm refers to the notion of direct exten-

sion presented in De�nition 12 on page 146. Candidate extensions are sorted according to

criteria applied by CBA, which are depicted in Figure 9.8 on page 148.
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Algorithm 6 Get Extensions getExtensions()

Require: train = {xl|l = 1, . . . , n} � n train objects, de�ned overm attributes: {Ai|i = 1, . . . ,m},
rule r

Ensure: up to two extensions of rule r

1: extendedRules ← ∅
2: for literal ∈ body(r) do
3: if type(literal)=nominal then {Nominal attributes are skipped}
4: continue

5: end if

6: neighbourhood ← direct extension of literal in train {See Def. 12}
7: for extendedLiteral ∈ neighbourhood do

8: extRule← replace literal in r with extendedLiteral
9: extendedRules← extendedRules ∪ extRule
10: end for

11: end for

12: return extendedRules

Algorithm 7 Beam Rule Extension getBeamExtension()

Require: rule {r}
Ensure: extended rule r or null

1: literal, extendType ← let r′ be a rule from which r was created by direct extension of
extendType={higher, lower, nominal} by replacing l ∈ R by literal

2: if extendType = nominal then
3: return ∅ {Extension is not applicable on nominal attributes}
4: else

5: extendedLiteral← direct extension of literal of type extendType
6: if extendedLiteral = ∅ then
7: return ∅ {Direct extension not found}
8: end if

9: extRule ← replace literal in r with extendedLiteral
10: end if

11: return extRule
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Example (Extension). Figures 9.6a-9.7d show on eight plots the progress of the

extension operation.

1.-6. Rule coverage is extended. Con�dence and support is una�ected.

7. Left boundary on Humidity conditionally extends - one additional misclassi�ed

instance and one correctly classi�ed instance are covered. Con�dence drops to

0.67.

8. Left boundary on Humidity conditionally extends - one additional correctly clas-

si�ed instance is covered. Con�dence increases to 0.71, but is still below 0.75.

9. Left boundary on Humidity extends - one additional correctly classi�ed instance

is covered. Con�dence returns 0.75.

10. Left boundary on Humidity extends. Con�dence and support is una�ected.

Final rule.

De�nition 12. (direct extension of literal de�ned over cardinal attribute) Let

l = (A, V ) be a cardinal literal, and V = 〈xi, . . . , xj , . . . , xk〉 a value range. A direct

extension of l is a set El of up to two literals derived from l: higher direct extension and

lower direct extension. A higher direct extension of l is a literal lH = (A, V ′), where

V ′ = 〈xi, . . . , xj , . . . , xk, xk+1〉. A lower direct extension of l is a literal lL = (A, V ′),

where V ′ = 〈xi−1, xi, . . . , xj , . . . , xk〉. If both higher and lower extension exist, El has two

elements, if only one exists, El has one element, if none of these extensions exists, El is

empty.

On line 7 of Algorithm 5, an extension is accepted if it meets criteria for crisp accept

(Figure 9.9). If the extension does not meet one of these conditions, it can still be con-

ditionally accepted on line 18 (Figure 9.10). The conditional accept sets a direction, on

which the algorithm �locks� the beam extension, and on lines 12-26 veri�es, whether this

direction will yield an unconditional accept, or not. The getBeamExtension procedure is

depicted in Algorithm 7. Note that the extension can also be accepted if the extension does

not cover any additional training instance, which results in con�dence as well as support

remaining unchanged after extension.

By default, extend is accepted if it does not deteriorate rule con�dence, which corre-

sponds to setting of the minImprovement meta-parameter to 0 by the user. This value

can be increased if the user desires to reduce the number of extensions tried, resulting

in performance improvement. As for the conditional accept process, by default all ex-

tensions in given direction are tried until all values are exhausted, which corresponds to

minCondImprovement = −1. The user may wish to decrease this value to obtain faster

failure of the conditional extension process, improving performance on datasets with many

distinct values (cf. Subsection 10.3.3).
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(a) Extension process � step 1 (b) Extension process � step 2

(c) Extension process � step 3 (d) Extension process � step 4

(e) Extension process � step 5 (f) Extension process � step 6

Figure 9.6.: Illustration of extension algorithm (HumTemp dataset)
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(a) Extension process � step 7 (b) Extension process � step 8

(c) Extension process � step 9 (d) Extension process � step 10

Figure 9.7.: Illustration of conditional extension algorithm (HumTemp dataset)

1. rule A is ranked higher if con�dence of rule A is greater than that of rule B,

2. rule A is ranked higher if con�dence of rule A is the same as con�dence of rule
B, but support of rule A is greater than that of rule B,

3. rule A is ranked higher if rule A has shorter antecedent (fewer conditions) than
rule B.

Figure 9.8.: Rule ranking criteria
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Crisp accept: rule is accepted if i) the support of the candidate does not drop below
the original rule and ii) con�dence improves at least by the prede�ned threshold.

1. if ∆conf ≥ minImprovement and ∆supp ≥ 0 then true

2. else false

Figure 9.9.: crispAccept(∆conf ,∆supp,minImprovement)

Conditional accept: rule is conditionally accepted if con�dence improves at least by
the prede�ned threshold.

1. if ∆conf ≥ minCondImprovement then true

2. else false

Figure 9.10.: conditionalAccept(∆conf ,minCondImprovement)

9.8. Postpruning

The previous steps a�ected individual rules, changing their coverage. The number of rules

can now be reduced using adaptation of CBA's data coverage and default rule pruning

(Algorithm 8). This will also add a default rule to the end of the rule list. We refer to

this second iteration2 of CBA as postpruning. Each rule is matched against the training

data. If a rule does not correctly classify any object, it is discarded. Otherwise, the rule is

kept. In any case, objects matching the rule are discarded. The data coverage pruning is

combined with default rule pruning, which determines the rule with the lowest number of

errors on training data if rules below it are replaced by a default rule, and performs this

replace.

Example (Postpruning). Figure 9.11a shows a CBA model. After re�t and exten-

sion have been performed, postpruning in MARC removed two rules from the CBA

model (9.11b). The default rule was recomputed, but still classi�es to green (Class 2).

2The result of the �rst iteration of data coverage pruning is the rule list on the input of MARC. We
obtained better results if default rule pruning is not performed during the �rst iteration (within CBA),
since in this way MARC is left with more rules to optimize.
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(a) Postpruning example (b) Postpruning example

Figure 9.11.: Illustration of postpruning algorithm (HumTemp dataset)

Algorithm 8 Postpruning postPruning()

Require: rules � output of extendRuleList(), set of training instances T
Ensure: pruned rules (some elements of input rule list removed, default rule added)
1:

2: cuto�Rule ← ∅
3: cuto�Class ← most frequent class in T
4: lowestTotalError ← |T | − |t ∈ T : class(t) = cuto�Class|
5: totalErrorsWithoutDefault ← 0
6: rules ← sort rules according to criteria in Fig. 9.8
7: defClass ← most frequent class in T
8: {Data coverage pruning}
9: for all r ∈ rules do

10: covered ← instances in T matched by antecedent(r)
11: corrCovered ← instances in T matched by antecedent(r) and consequent(r)
12: T := T \ covered {Remove instances covered by r from training data}
13: if corrCovered=∅ then
14: rules ← rules \ r {remove r from rules}
15: else

16: misclassi�ed ← covered - corrCovered
17: totalErrorsWithoutDefault ← totalErrorsWithoutDefault + misclassi�ed
18: defClass ← most frequent class in T
19: defaultRuleError ← |T | − |t ∈ T : class(t) = defClass|
20: totalErrorWithDefault ← defaultRuleError + totalErrorsWithoutDefault
21: if totalErrorWithDefault<lowestTotalError then

22: cuto�Rule, lowestTotalError, cuto�Class ← r, totalErrorWithDefault, defClass
23: end if

24: end if

25: end for

26: {Default rule pruning}
27: rules ← remove all rules below cuto�Rule from rules
28: rules ← append new default rule �{} → cuto�Class' at the end of rules
29: return rules
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## id rule support confidence

## 1 {Temperature=[21;45],Humidity=[82;95]} => {Class=1} 0.11 1.00

## 2 {Temperature=[34;45],Humidity=[33;58]} => {Class=2} 0.08 1.00

## 3 {Temperature=[29;34],Humidity=[29;48]} => {Class=4} 0.08 1.00

## 4 {Temperature=[19;26],Humidity=[29;53]} => {Class=2} 0.08 1.00

## 5 {Temperature=[37;45],Humidity=[53;95]} => {Class=1} 0.06 1.00

## 6 {Temperature=[34;40],Humidity=[29;47]} => {Class=3} 0.03 1.00

## 7 {Temperature=[17;24],Humidity=[82;95]} => {Class=2} 0.03 1.00

## 8 {Temperature=[29;34],Humidity=[29;68]} => {Class=4} 0.17 0.86

## 9 {Temperature=[22;31],Humidity=[33;70]} => {Class=4} 0.19 0.70

## 10 {Temperature=[17;21]} => {Class=2} 0.14 0.63

## 11 {} => {Class=3} 0.20 0.19

Figure 9.12.: Default rule overlap pruning example: initial rule list

9.9. Default Rule Overlap Pruning

Default rule overlap pruning (drop for short) iterates through all rules classifying into the

same class as the default rule. These rules all overlap with the default rule both in terms

of coverage and class assigned and are thus candidates for pruning. They can be removed

only if their removal will not change classi�cation of those instances in training data/in

the entire instance space that these rules correctly classify. This change in classi�cation

would be caused by rules that are between these rules and the default rule. We consider

two versions of drop: transaction-based and range-based.

The transaction-based version, depicted in Algorithm 9, removes rule if there is no trans-

action in the training data, which would be misclassi�ed as a result of removing this rule.

The range-based version analyzes overlaps in the range of literals in the pruning candidate

with respect to ranges in the potentially clashing rules (rules classifying to di�erent class)

below it. The pruning is con�rmed only if the potentially clashing rules cover di�erent

�geometric� regions (Algorithm 10). Range-based pruning thus guarantees a solution that

generalizes beyond the training data. Its potential disadvantage is that it removes less

rules, since it is stronger than the transaction-based pruning.

Example (Default Rule Overlap Pruning - Transaction-based). Let's us create

a di�erent classi�er from the HumTemp dataset by lowering the minimum support

threshold and disabling trimming (Figure 9.12). The default rule overlap pruning

removes rule #6. This rule assigns into Class 3 - the same class as the default rule in

the end of the classi�er (grey background). If we look at rules between #6 and the

default rule #11, we can observe that there is no rule below #6 that would prevent the

training instances covered by #6 from being classi�ed by the default rule (which has

the same class as #6). Figure 9.13a depicts rule #6 to #11 in the original classi�er

with default rule overlap pruning disabled. When default rule overlap pruning is

activated, rules such as #6 are removed and the area is left for classi�cation to the

default rule, which comes as last (Figure 9.13b).



9.9. Default Rule Overlap Pruning 152

(a) Initial rule list (b) Rule #6 removed

Figure 9.13.: Illustration of default rule overlap pruning algorithm (HumTemp dataset).
Class 2 is assigned green color, Class 3 grey, and Class 4 blue.

Algorithm 9 Default Rule Overlap Pruning (Transaction-based) drop-tr()

Require: rules, set of training instances T
Ensure: pruned rules (some elements of rules removed)

1: defRule ← default (last) rule in rules
2: for all prunCand ∈ rules do

3: if consequent(prunCand) 6= class(defRule) or prunCand = defRule then

4: continue

5: end if

6: corrCovered ← instances in T correctly classi�ed by prunCand
7: nonEmptyIntersection ← FALSE
8: for all candClash ∈ rules below prunCand in rules do

9: if consequent(candClash) = class(defRule) then

10: continue

11: end if

12: candClashCovered ← instances in T matching antecedent(candClash)
13: if candClashCovered ∩ corrCovered 6= ∅ then
14: nonEmptyIntersection ← TRUE
15: break

16: end if

17: end for

18: if nonEmptyIntersection = FALSE then

19: rules ← rules \ prunCand
20: end if

21: end for

22: return rules
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Algorithm 10 Default Rule Overlap Pruning (Range-based) drop-ra()

Require: rules, set of training instances T
Ensure: pruned rules (some elements of rules removed)

1: defRule ← default (last) rule in rules
2: for all prunCand ∈ rules do

3: if consequent(prunCand) 6= class(defRule) or prunCand = defRule then

4: continue

5: end if

6: literals ← literals in antecedent(prunCand)
7: attributes ← attributes appearing in antecedent(prunCand)
8: clashingRuleFound ← FALSE
9: for all candClash ∈ rules below prunCand in rules do

10: if consequent(candClash) = class(defRule) then

11: continue

12: end if

13: sharedAttributes ← attributes∩ attributes in antecedent(candClash)
14: if sharedAttributes = ∅ then
15: clashingRuleFound ← TRUE {No shared attribute with potentially disjunct ranges

results in the two rules overlapping on a subset of the data space}
16: break

17: end if

18: literalsInClashOnSharedAtt ← literals in antecedent(candClash) de�ned over attributes
in sharedAttributes

19: {if there is NO intersection on at least one of the shared attributes we have no CLASH}
20: attLeastOneAttDisjunct← FALSE
21: for all literalCC = (A, V ) ∈ literalsInClashOnSharedAtt do
22: literal← get literal in antecedent(prunCand), which is de�ned over attribute A
23: if V has empty intersection with value range of literal then
24: attLeastOneAttDisjunct← TRUE
25: break

26: end if

27: end for

28: if attLeastOneAttDisjunct = FALSE then

29: clashingRuleFound← TRUE
30: end if

31: end for

32: if clashingRuleFound = FALSE then

33: rules ← rules \ prunCand
34: end if

35: end for

36: return rules



10. Experiments

In this section, we present evaluation of the MARC (QCBA)1 framework on a number of

standard datasets. The evaluation focuses on comparison with CBA in terms of accuracy,

classi�er size and runtime. In order to verify the correctness of our CBA implementation,

the last subsection is devoted to comparison of results we obtained and those reported by

the CBA authors.

Chapter organization. Section 10.1 describes the datasets used for evaluation. Sec-

tion 10.2 presents the evaluation of various MARC (QCBA) setups. Section 10.3 presents

the results. Section 10.4 veri�es our reimplementation of CBA against earlier published

results. Finally, Section 10.5 explores the connection between the results obtained from

the experiments with results and models covered in Part I of the thesis.

10.1. Datasets

University of California provides at https://archive.ics.uci.edu a set of publicly avail-

able datasets, which are commonly used for benchmarking machine learning algorithms.

Several datasets come from visual information processing or signal processing domains

(ionosphere, letter, segment, sonar). The second strongly represented domain are medi-

cal datasets (colic, breast-w, diabetes, heart-statlog, lymph). Eleven datasets are binary

classi�cation problems, nine datasets are multi-class and two datasets have ordinal class

attribute (autos and labour).

10.1.1. Selection Criteria

We chose 22 datasets to perform the evaluation. The selection criteria were a) at least

one numerical predictor attribute, b) the dataset being previously used in evaluation of

symbolic learning algorithms in one of the following seminal papers: Alcala-Fdez et al.

[2011], Hühn and Hüllermeier [2009], Liu et al. [1998], Quinlan [1996]. Details of the

selected datasets are given in Table 10.1.

10.1.2. Preprocessing, Missing Value Treatment

Missing values in numerical attributes were replaced by mean. Missing values for categor-

ical attributes were not imputed. All datasets contain cardinal attributes, which needed

to be pre-discretized for CBA and QCBA. All numeric explanatory attributes with three

1As noted earlier, the MARC framework implementation, which we used for evaluation, is called QCBA.
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dataset att. inst. miss. class description

anneal 39 898 Y nominal (6) NA
australian 15 690 N binary credit card applications
autos 26 205 Y ordinal (7) riskiness of second hand cars
breast-w 10 699 Y binary breast cancer
colic 23 368 Y binary horse colic (surgical or not)
credit-a 16 690 Y binary credit approval
credit-g 21 1000 N binary credit risk
diabetes 9 768 N binary diabetes
glass 10 214 N nominal (6) types of glass
heart-statlog 14 270 N binary diagnosis of heart disease
hepatitis 20 155 Y binary hepatitis prognosis (die/live)
hypothyroid 30 3772 Y nominal (3) NA
ionosphere 35 351 N binary radar data
iris 5 150 N nominal (3) types of irises (�owers)
labor 17 57 Y ordinal (3) employer's contribution to health plan
letter 17 20000 N nominal (26) letter recognition
lymph 19 148 N nominal (4) lymphography domain
segment 20 2310 N nominal (7) image segment classi�cation
sonar 61 208 N binary determine object based on sonar signal
spambase 58 4601 N binary spam detection
vehicle 19 846 N nominal (4) object type based on silhouette
vowel 13 990 N nominal (11) NA

Table 10.1.: Overview of datasets involved in the benchmark. att. denotes number of
attributes, inst. number of instances (objects), miss. whether or not the
dataset contains missing observations.

or more distinct values were subject to discretization using the MDLP algorithm. Other

algorithms involved in the benchmark did not require prediscretization. The evaluation

was performed using a 10-fold strati�ed cross-validation. To ensure that all algorithm runs

will use exactly the same folds, the folds were materialized.

10.2. Experiment Setup

The CBA algorithm has three hyperparameters � minimum con�dence threshold, mini-

mum support threshold and the total number of candidate rules. In Liu et al. [1998] it

is recommended to use 50% as minimum con�dence, 1% as minimum support. For our

experiments, we used these thresholds. In Liu et al. [1998] 80.000 was used as the total

number of rules, however it was noted that the performance starts to stabilize already

around 60.000 rules. According to our experiments, there is virtually no di�erence be-

tween 80.000 and 50.000 threshold apart from the higher computation time for the former,

therefore we used 50.000.2 We also limited the maximum number of items per itemset to

5.

All results were obtained using open source CBA and MARC (QCBA) implementations

2In our best setup, we observed less than 0.1% improvement in average accuracy and 5% increase in
average rule count when the maximum number of rules was increased from 50.000 to 80.000.
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available at https://cran.r-project.org/web/packages/arc/ and https://github.com/

kliegr/qcba. All experiments can be directly replicated using the evaluation framework

published at https://github.com/kliegr/arc.

The MARC (QCBA) framework does not have any mandatory thresholds. The exten-

sion process (Algorithm 5) contains two numeric parameters, which were left set to their

default values minImprovement=0 and minCondImprovement=-1. These default values

have natural explanations (cf. Subsection 9.7) and the tuning of these thresholds can be

generally recommended only for improving runtime on larger datasets.

It should be noted that MARC (QCBA) takes on the result of CBA execution with

default rule pruning not performed, a variation of CBA not reported to be evaluated in

Liu et al. [1998] or in other prior research. Our CBA implementation, available in the arc

package, was thus adapted to allow deactivation of default rule pruning.

10.2.1. Evaluation Methodology

We evaluated several variations of the MARC (QCBA) setup. As a baseline, we use a

CBA run with default parameters. The purpose of this evaluation is to show the e�ect on

classi�cation performance and the size of the model.

Classi�cation performance is measured by accuracy, which is computed as correct/N ,

where correct is the number of correct predictions and N the total number of objects.

All results are reported using ten-fold cross validation with macro averaging. The average

accuracy for all 22 datasets is reported as an indicative comparison measure. For a more

reliable comparison, we included the won-tie-loss matrix, which compares two classi�ers

by reporting the number of datasets where the reference classi�er wins, loses or the two

classi�ers perform equally well. We include p-value for the Wilcoxon signed test, which is

recommended for comparison of classi�ers over multiple datasets in the authoritative work

of Dem²ar [2006].

We use three metrics to measure the size of the model: average antecedent length (num-

ber of conditions in the rule), number of rules per model and average number of conditions

per model computed as number of rules times average antecedent length.

Despite our implementation not being optimized for speed, we decided to include a

benchmark indicating how much processing power the postprocessing by MARC (QCBA)

requires. The build times reported were computed as an average of classi�er learning time

for 220 models (10 folds for each of the 22 datasets).

10.3. Results

Summary of results is presented in Table 10.2. The table presents baseline results for CBA

and then seven di�erent con�gurations for MARC (QCBA), which allow us to demonstrate

the e�ect of all individual postprocessing steps comprising MARC (QCBA). Con�guration

#1 corresponds to re�t optimization being performed on top of CBA, con�guration #2 to

re�t optimization and literal pruning, etc. Con�guration #6 and #7 correspond to the full

https://cran.r-project.org/web/packages/arc/
https://github.com/kliegr/qcba
https://github.com/kliegr/qcba
https://github.com/kliegr/arc
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MARC (QCBA), where (#6) used transaction-based default rule overlap pruning (drop)

and (#7) range-based version of default rule overlap pruning.

10.3.1. Accuracy

The MARC (QCBA) setup that produces the highest accuracy while achieving maximum

reduction in the size of the classi�er is con�guration #7, which includes all optimization

steps, very closely followed by #5, which excludes default rule overlap pruning. These

con�gurations have the same average accuracy as CBA and surpass CBA what concerns

the won-tie-loss metric: they win on 14 datasets while CBA wins on 7 datasets and there

is a draw3 on 1 dataset. The p-value for the Wilcoxon signed rank test indicates that

the change in the won-tie-loss matrix is not signi�cantly di�erent compared to CBA for

any of the MARC (QCBA) con�gurations. It should be noted that the p-value of 0.12 of

MARC (QCBA) con�gurations #5 and #7 is close to the 10% signi�cance level, marginally

improving on CBA results. The con�guration number #6 performs exactly equally well as

CBA winning on 11 datasets and loosing also on 11 datasets.

10.3.2. Classi�er Size

The models produced by the best-performing MARC (QCBA) con�guration #7 are smaller

than CBAmodels: there is a reduction of 21% in the number of rules and 18% in the average

number of conditions. These reductions combined amount to 35% reduction in model size

in terms of total number of conditions. Further reduction in model size can be achieved

by the transaction variant of default rule overlap pruning (#6), which reduces the size of

the model by 53% to the average of 133 conditions from 285 conditions in the original

CBA model. This additional improvement is o�set by incurring 1% drop in the average

accuracy. Overall, in terms of the won-tie-loss record, which is 11-0-11, the con�guration

#7 performs equally well as CBA.

As follows from comparison of #5 and #7, the range-based pruning was ine�ective on

this collection of datasets.

10.3.3. Runtime

The results for runtime are reported in the last two rows of Table 10.2. It can be seen

that the re�t, literal pruning and trimming optimizations take together roughly as much

time on average as learning a CBA model. The most computationally intensive operation

is extension. If we look at the median build times, we see that MARC (QCBA) prolongs

CBA execution by factor of 3.5.

The discrepancy between median and average build times for MARC (QCBA) can be

explained by several datasets for which MARC (QCBA) extension step takes excessive time

to complete, which increases the average runtime and leaves median run time una�ected.

Extension is particularly slow when there is a large number of distinct values in the dataset.

3Draw occurs when the accuracies on given dataset rounded to 0.1 percent match.
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con�guration cba #1 #2 #3 #4 #5 #6 #7

re�t na Y Y Y Y Y Y Y
literal pruning na - Y Y Y Y Y Y
trimming na - - Y Y Y Y Y
extension na - - - Y Y Y Y
postpruning na - - - - Y Y Y
def. rule overlap (tran.) na - - - - - Y -
def. rule overlap (range) na - - - - - - Y

wins/ties/losses vs CBA na 14-1-7 15-0-7 12-0-10 11-0-11 14-1-7 11-0-11 14-1-7
P-value (Wilcoxon) na 34% 57% 73% 61% 12% 32% 12%
accuracy (macro average) 81% 81% 81% 81% 81% 81% 80% 81%
avg conditions / rule 3.4 3.4 2.8 2.8 2.8 2.8 2.8 2.8
avg number of rules 84 92 92 92 92 66 48 65
avg conditions / model 285 311 260 260 260 184 133 184
build time [s] (median) 12.3 23.8 19.9 19.8 42.7 42.9 43.2 42.9
- normalized 1.0 1.9 1.6 1.6 3.5 3.5 3.5 3.5
build time [s] (average) 18.4 34.7 37.1 37.6 319.2 317.1 318.2 319.3
- normalized 1.0 1.9 2.0 2.0 17.4 17.3 17.3 17.4

Table 10.2.: MARC (QCBA) evaluation � aggregate results for 22 UCI datasets

CBA (baseline) CBA (Liu) MARC (#5) MARC (#7)
acc rules con acc rules acc rules con acc rules con

anneal .96 27 3.0 .98 34 .99 25 2.3 .99 25 2.3
australian .85 109 4.0 .87 148 .82 42 3.8 .87 74 3.8
autos .79 57 3.0 .79 54 .79 44 2.5 .78 50 2.5
breast-w .95 51 2.8 .96 49 .95 20 2.7 .95 31 2.7
diabetes .75 51 3.9 .75 57 .76 30 2.9 .77 40 3.0
glass .71 28 3.9 .73 27 .69 22 2.8 .69 24 2.8
hepatitis .79 32 3.9 .85 23 .82 22 3.0 .82 28 3.0
hypothyroid .98 29 3.1 .98 35 .98 15 2.4 .99 16 2.5
ionosphere .92 53 2.5 .92 45 .86 22 1.9 .88 40 1.9
iris .92 6 2.0 .93 5 .93 4 1.1 .93 5 1.2
labor .84 11 3.6 .83 12 .86 8 1.8 .88 11 1.6
lymph .81 38 3.7 .80 36 .79 37 2.9 .79 37 2.9
sonar .74 44 2.9 .76 37 .72 19 2.7 .77 35 2.8
vehicle .69 147 3.9 .69 125 .69 79 3.6 .71 106 3.7

average .84 49 3.3 .84 49 .83 28 2.6 .84 37 2.6

Table 10.3.: Comparison of our results (included as baseline in the table) with Liu et al.
[1998] (Liu). acc denotes accuracy, rules number of rules in the classi�er, con
number of conditions in rule antecedent
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The slowest datasets were segment, letter and spambase. The segment and letter datasets

contain various image metrics and spambase word frequency attributes. Such datasets are

not typical representatives of use cases, where interpretable machine learning models are

required. Nevertheless, the evaluation of the runtime indicates that the computational

optimization of the extension algorithm is one of the most important areas for further

work.

10.4. Veri�cation of Results

The o�cial implementation by authors of CBA [Liu et al., 1998] is not publicly available.

We used our implementation to obtain the baseline results for CBA to support the central

assertion that MARC (QCBA) reduces model size of CBA classi�ers while keeping accuracy

una�ected. In order to verify that our implementation is correct, we compared accuracy

and number of rules4 reported in Liu et al. [1998] for 14 datasets with results that we

obtained. As noted earlier, we used nearly identical CBA setting as Liu et al. [1998]

reports.

Detailed results are present in Table 10.3. While there are small variations for individual

datasets, the overall average accuracy for our CBA implementation and the o�cial one is

equal at 84%. Regarding number of rules, original CBA has on average 49 rules, which is

also exactly the same number as for our baseline implementation.

The precise match of the results came as a surprise, because our implementation of CBA

does not include the optional pessimistic pruning step used in Liu et al. [1998], which is

used in the �rst CBA phase when candidate association rules are generated.5 According

to results reported in Liu et al. [1998], the absence of pessimistic pruning has no e�ect on

classi�er accuracy, which is congruent with our results. While our results also indicate that

this pruning has no e�ect on the number of rules in the classi�er, the account of its e�ects

in Liu et al. [1998] suggests that pessimistic pruning could be still an e�ective technique

for reducing the time required to build the model.

In summary, comparison of our results with those reported by Liu et al. [1998] con�rms

the conclusion that MARC (QCBA) reduces the number of rules in CBA-built model while

not negatively a�ecting the accuracy of the classi�er.

10.5. Debiasing properties of MARC (QCBA) models

This section succinctly summarizes the connection between the results reported above and

the analysis presented in Chapters 2 and 4.

The conclusions drawn from the crowdsourcing experiments presented in Chapter 5 are

that several biases indeed occur during interpretation of the output of rule learning. As

shown in Chapter 2, current research focusing on improving comprehensibility of machine

4The average length of the rules was unfortunately not reported in Liu et al. [1998].
5Note that Liu et al. [1998] explicitly marks pessimistic pruning step in CBA as optional. We could thus
use standard association rule learner to obtain candidate rules.
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learning models aims at reducing the size of the models. The results of the review of

applicable cognitive biases in Chapter 4 showed that there are many speci�c e�ects that

in�uence plausibility of rules requiring the designers of machine learning algorithms and

software to adopt multiple speci�c debiasing strategies. However, our review also showed

that the reduction of the size of the model presented to the analyst can help mitigate

most biases, especially those linked to the representativeness heuristic. Each additional

information in the model can trigger a range of biases, it is therefore essential to keep the

models concise.

The CBA algorithm mitigates cognitive biases in the following ways:

• Rules do not contain negation. This can help prevent the negativity bias.

• Rules are sorted from the strongest to weakest. This ameliorates the primacy e�ect.

• Only the �rst rule in sort order is applied to score an instance.

One-rule classi�cation and crisp rules make CBA classi�cation models possibly most com-

prehensible among all association rule classi�cation algorithms.

The postprocessing of CBA models with MARC (QCBA) framework further improves

comprehensibility by reducing model size by approximately 50%. Removal of literals or

complete rules from the rule list can help reduce the e�ect of multiple biases (cf. Table 4.1

on page 63). The favourable properties of CBA models are retained after MARC (QCBA)

postprocessing. Model accuracy remains on the same level as for CBA.
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11. Summary of Contributions

The analysis presented in Chapter 4 is to the author's knowledge �rst systematic study of

the impact of cognitive biases on interpretation of machine learning results. Based on a

novel methodology for assessing model plausibility, we performed an empirical study using

crowdsourcing. The results, presented in Chapter 5, validate the manifestation of selected

biases in the rule learning domain. The results are integrated into a qualitative model of

plausibility presented in Chapter 6. A practical result of our research are recommendations

for the design of rule learning software.

Second, we aimed to re�ect selected �ndings in the design of chosen machine learning

algorithm in order to mitigate the e�ect of cognitive biases when models produced by this

algorithm are interpreted. As a basis of our framework we chose the association rule clas-

si�cation algorithm CBA. Compared to most other machine learning models, rules have

the advantage of being intuitively well understandable. They are also a commonly used

knowledge representation in cognitive science. The association rule learning approach was

selected over the more common separate and conquer approach for its ability to scale to

large data. The proposed algorithm is described in Chapter 9. Empirical validation pre-

sented in Chapter 10 showed that the proposed framework ful�lls the expectations � it

reduces the number of rules in the classi�er while maintaining accuracy. This improves

model understandability and decreases possibilities for triggering of multiple cognitive bi-

ases derived from the representativeness heuristic.

Chapter organization. This chapter discusses the contributions in the order in which

they appear in the thesis. In Section 11.1 we highlight the results of our literature review

on cognitive biases. Section 11.2 presents the main contributions of the experimental

study of the e�ect of cognitive biases on interpretation of rules discovered from data.

Section 11.3 presents the proposed qualitative model of plausibility and summarizes the

practical consequences of our study for the design of rule learning applications. Section 11.4

presents the main contributions of the proposed software framework.

11.1. Literature Review and Analysis (Chapters 2,4)

In the following, we summarize the main results of our literature review, focusing on

�ndings that we consider as novel or not very well known in machine learning.
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11.1.1. Review of Syntactic Comprehensibility in Machine Learning

Research

In prior works in the area of machine learning, model comprehensibility relates to human

understanding of the model in terms of its syntactic representation. We contrast this

syntactic comprehensibility with semantic and pragmatic comprehensibility, which is a

deeper level of understanding where people align the result of machine learning with their

domain knowledge and reasoning patterns.

Emerging research moves in the direction of adjusting learning algorithms so that the

syntactic comprehensibility of learned models is improved. Prior research has mostly fo-

cused on comparing entire representations (such as decision trees vs. decision rules) or

on e�ects of hyperparameters (branching factor of a decision tree) on comprehensibility.

Regarding domain knowledge, there is work on the importance of conformation to domain

constraints and importance of semantic cohesion of attributes in inductively learned rules.

Our contribution is a review of prior research relating to syntactic comprehensibility

in machine learning. We found that semantic comprehensibility, including the e�ect of

cognitive biases, has not yet been studied.

11.1.2. Identi�cation of Factors Reported To A�ect Model Plausibility

The results pertaining to plausibility were scattered in articles dealing with other topics.

To our knowledge, plausibility of machine learning models has not yet been systematically

studied. Our contribution is identi�cation of the following two factors that have been

reported to a�ect plausibility of machine learning models:

1. Oversimplicity avoidance. Several authors have mentioned that domain experts

have not trusted very simple machine learning models, such as a decision tree with

a single inner node.

2. Observation of domain constraints. Perceived model plausibility depends on

whether the model complies to domain constraints. The most studied are monotonic-

ity constraints. An example of a monotonicity constraint on a numerical attribute

is that the likelihood of whether a person will buy a product (target attribute) will

increase with increasing product price. There is empirical evidence showing that

domain experts do not �nd rules that contain conditions violating prior domain

knowledge as plausible.

11.1.3. Analysis of Twenty Cognitive Biases

To our knowledge, cognitive biases have not yet been discussed in relation to interpretation

of machine learning results. We thus initiated the review of research published in cognitive

science with the intent to give psychological basis to changes in inductive rule learning

algorithms which would foster better understanding of learning results. Our review iden-

ti�ed twenty cognitive biases, heuristics and e�ects that can give rise to systematic errors
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when inductively learned rules are interpreted. We propose to divide these heuristics and

biases into two groups:

• Triggered by domain knowledge related to attributes and values in the rules. An

example is aversion to ambiguous information.

• Generic strategies applied when evaluating alternatives. An example is insensitivity

to sample size, which implies that rule con�dence is considered as more important

than rule support.

For most biases and heuristics involved in our study, psychologists have proposed �debias-

ing� measures. Our contribution is that we related these to machine learning, proposing

how they could be applied to improve understanding of inductively learned rules.

11.1.4. Smaller Models Suppress Cognitive Biases

�Smaller is better� theories in machine learning are based on the Occam's razor principle.

Minimizing the size of the model communicated to the analyst helps to improve inter-

pretability and understanding of the model. However, in our review of literature from

cognitive science, we did not identify results that would support this view. The only prac-

tical constraint are human cognitive capabilities � humans can process only 3-7 pieces of

information at a time.

What our analysis did reveal is a number of cognitive phenomena that would make longer

rules (or generally descriptions) more likely to trigger various cognitive biases than would

shorter rules (descriptions). An example of such bias is the information bias � preference

for more information even if it does not help to address the problem at hand. Overall,

the analysis showed that most of the identi�ed cognitive biases increase plausibility of

longer rules (or generally descriptions). To summarize our contribution, we found indirect

support in psychology for the �Smaller is better� paradigm used in many machine learning

algorithms. While small models may not necessarily be found as more plausible by humans

than larger models, smaller models provide less opportunities for cognitive biases to be

triggered, leading to better, more truthful, comprehension. Additional discussion relating

to limitations of these conclusions are present in Section 12.4.

11.2. Overview of Experimental Results (Chapter 5)

Given that we performed a �rst empirical validation of its kind, we had to invent a method-

ology for evaluating e�ect of cognitive biases on interpretation of rule learning results. We

performed two crowdsourcing experiments. The �rst experiment directly targeted authen-

tic rules discovered from data, relying on the proposed methodology. The second experi-

ment was based on modi�cations of the Linda problem, which is frequently used as a basis

for studying e�ects of cognitive biases related to the representativeness heuristic.



11.2. Overview of Experimental Results 165

11.2.1. Measuring E�ect of Cognitive Biases on Interpretation of Rules

Relevant research in cognitive science largely focuses on experiments demonstrating whether

a speci�c bias occurs or not, quantifying the the proportion of subjects committing the

bias, and describing the conditions that induce it. In our work, we proposed and validated

a new methodology that allows to quantify the strength of the bias as well as attribute it

to speci�c variables.

First, we generate pairs of equally good alternatives, and ask the subject to indicate

strong/weak preference for one of the alternatives, answering �no preference� is also possi-

ble. These alternatives are described by observable quantitative proxy variables for cogni-

tive biases and heuristics. For our study of plausibility, we used the proxies summarized

in Table 5.1 on page 66. In the last step, we analysed the e�ect of individual variables

controlling for the e�ect of other variables using semipartial rank correlation (Kendall's τ).

Correlation coe�cient signi�cantly di�erent from zero between given proxy variable and

elicited preference indicates an evidence for bias or heuristic linked to that proxy variable.

To the best of our knowledge, our contribution is the �rst methodology for measuring

quantitative impact of cognitive biases on interpretation of machine learning results. The

limitations of the proposed methodology are summarized in Section 12.2.

11.2.2. Cognitive Biases Supported by our Empirical Results

The main results based on the empirical experiments performed:

• Shorter rules are not considered as more plausible. We obtained positive correlation

between rule length and plausibility on some datasets. We have not observed statis-

tically signi�cant negative correlation between plausibility and rule length on any of

the datasets.

• Misunderstanding of �and�. Our results support the conjecture that misunderstand-

ing of �and� connective in inductively learned rules a�ects interpretation of rule learn-

ing results.

• Insensitivity to sample size e�ect. Our results show that when both con�dence and

support are stated, con�dence positively a�ects plausibility and support is ignored.

We obtained also some preliminary results in support of the following propositions:

• Weak evidence e�ect

• Availability heuristic

• Disjunction fallacy (preference for speci�city)

We have not identi�ed any prior work that would do purposeful empirical investigation

of the e�ect of cognitive biases on interpretation of machine learning results.
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11.2.3. Contributions of Experiments with Linda and its Variations

So called Linda problem is a seminal experiment performed in cognitive science for demon-

stration of conjunctive fallacy.

In addition to replication of Linda, we performed two other experiments with the mod-

i�cations of the original problem. Our contribution are the following �ndings:

• The fallacy rate of 68% that we obtained for the Linda problem using the Crowd-

Flower crowdsoucing platform is very close to earlier replication on the Amazon Me-

chanical Turk platform (fallacy rate of 72% in Paolacci et al. [2010]). This supports

the choice of CrowdFlower for execution of our main empirical experiments.

• We obtained convincing experimental evidence showing that negation is mostly se-

mantically interpreted and suppresses the application of the representativeness heuris-

tic.

• Number of earlier results showed that in presence of alternative �B ∧ F �, alterna-
tive �B� is interpreted as �B ∧ ¬F �. Our results con�rm that a similar pragmatic

interpretation is applied to alternative �B� in presence of alternative �B ∧ F is un-

known�. This may a�ect understanding of rule learning results, since it is common

for discovered rules to contain rules containing literals with unknown value.

11.3. Plausibility Model and Recommendations (Chapter 6)

The �rst part of the thesis culminates with a proposal for a qualitative model for assessing

plausibility of rules. The model is based on our analysis of literature in machine learning

and cognitive science, empirical results, as well as on our prior experience with designing

rule learning algorithms and applications.

Our literature review identi�ed twenty cognitive biases and heuristics that have the

potential to distort the understanding of inductively learned rules. Application of prior

empirical results obtained in cognitive science allowed us to propose several methods that

could be e�ective in suppressing these cognitive phenomena when machine learning models

are interpreted. These proposals are in full covered in Chapter 4 with Table 4.1 on page 63

providing a quick overview, here we summarize the most important contributions.

11.3.1. Visual Model of E�ect of Cognitive Biases on Rule Interpretability

The qualitative model that we designed is depicted on page 112. Figure 6.1A of the model

shows that the e�ect of the individual literals in the rule largely depends on the domain

knowledge of the person inspecting the model. In contrast, the way the contribution of the

literals is aggregated into a �nal plausibility score in Figure 6.1B depends on the general

information processing style and preferences of the person. While domain knowledge may

be di�cult to change, systematic errors in reasoning can be often avoided. One example is

making the person aware of the fact that low rule support in�uences the reliability of the

rule con�dence estimate.
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To our knowledge, our contribution is the �rst model for describing the e�ect of cognitive

biases on interpretation of rules discovered from data.

11.3.2. Practical Recommendations for Rule Learning Software

Our literature review identi�ed twenty cognitive biases and heuristics that have the poten-

tial to distort the understanding of inductively learned rules. Application of prior empirical

results obtained in cognitive science allowed us to propose several methods that could be

e�ective in suppressing these cognitive phenomena when machine learning models are in-

terpreted.

As follows from the survey of machine learning literature presented in Chapter 2, we

contributed the �rst set of guidelines for re�ecting cognitive biases in the design of machine

learning algorithms and software.

11.4. Software Framework (Chapters 7 - 10)

11.4.1. First non-fuzzy ARC Approach for Numerical Data

The presented framework ameliorates one of the major drawbacks of association rules,

the adherence of rules comprising the classi�er to the multidimensional grid created by

discretization of numerical attributes. The novel aspect in MARC (QCBA) compared to

other CBA-inspired association rule classi�cation algorithms is that our framework reverts

to the original attribute space to �edit� the discovered association rules, extending the

scope of rule literals. To the best of our knowledge, all other association rule classi�cation

algorithms treat the rules discovered in their rule learning phase as atomic.

All previous adaptations of association rule classi�cation for numerical data known to

the author were fuzzy approaches. For example, the state-of-the-art FARC-HD associ-

ation rule classi�er outputs rules with fuzzy regions. This makes FARC-HD rules less

comprehensible than the crisp rules output by CBA. MARC (QCBA) is, to the author's

knowledge, the �rst non-fuzzy association rule classi�cation algorithm supporting quanti-

tative attributes. MARC (QCBA) reuses some of the central concepts in CBA, such as

data coverage pruning, but introduces several new optimization and pruning steps (espe-

cially trimming, extension, default rule overlap pruning). While similar algorithms may

have been used in other symbolic learning algorithms, their use in the context of associ-

ation rule learning and classi�cation is � as to the author's knowledge � novel. MARC

(QCBA) design avoids introduction of new data-speci�c thresholds for the user to set or

optimize, which constitutes a certain advancement over previous quantitative association

rule learning approaches such as QuantMiner or NAR-Discovery. MARC (QCBA) does,

however, contain several parameters that can be changed to speed up model building.

11.4.2. Smaller CBA models

While CBA [Liu et al., 1998] is the �rst association rule classi�cation approach, it is

according to our review still the best association rule-based classi�cation algorithm what
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concerns balance between comprehensibility of the model, predictive power and scalability.

Numerous enhancements to CBA have been proposed since the seminal paper of Liu et al.

[1998]. According to our review in Chapter 7, the modi�cations in all the succeeding

association rule classi�cation approaches negatively a�ect comprehensibility of the resulting

rule-based model, yielding none or very small improvement in accuracy.

Our conclusions suggest that reduction of the size of the model presented to the person

can help mitigate most biases, especially those linked to the representativeness heuristic.

Each additional information in the model can trigger a range of biases, it is therefore

essential to keep the models concise. To achieve this, our framework postprocesses CBA

models in order to reduce their size.

Benchmark of our MARC (QCBA) approach on 22 UCI datasets shows average 53%

decrease in the total size of the postprocessed CBA model as measured by the total number

of conditions in all rules. Model accuracy remains on the same level as for CBA.



12. Limitations and Future Work

This chapter presents limitations of our approach and an outlook for future work.

Chapter organization. The discussion is organized according to chapters of the thesis.

Section 12.1 covers our review and analysis of cognitive biases, Section 12.2 their empirical

analysis and Section 12.3 the �nal plausibility model. Finally, Section 12.4 presents the

proposed software framework including the experiments performed.

12.1. Chapters 2,4: Review and Analysis of Cognitive Biases

12.1.1. Limited Backing For Some Debiasing Techniques

We aimed to validate whether cognitive biases a�ect interpretation of machine learning

models and propose remedies if they do. Since this �eld is untapped from the machine

learning perspective, we tried to approach this problem holistically. Our work yielded a

number of partial contributions, rather than a single profound result. We mapped appli-

cable cognitive biases, identi�ed prior works on their suppression and proposed how these

could be transfered to machine learning. All the shortcomings of human judgment per-

taining to interpretation of inductively learned rules that we have identi�ed are based on

empirical cognitive science research. To relate them to machine learning, for each bias we

had to provide a justi�cation of how the bias would relate to machine learning. Due to

absence of applicable prior research, this justi�cation is subjective and mostly based on

prior experience of the author in the �eld of machine learning.

Also, due to paucity of prior research, there is a lack in understanding between computer

scientists of how human ways of thinking and judgment can a�ect interpretation of machine

learning results. We felt compelled to help address this by providing an actionable result

from our analysis � a list of �debiasing techniques�. Those recommendations in this list

that are drawn based on very limited evidence are marked as so.

12.1.2. Incorporating Additional Biases

There are about 24 cognitive biases covered in the authoritative overview of cognitive biases

by Pohl [2017] and even 51 di�erent biases are covered by Evans et al. [2007]. While doing

the initial selection of cognitive biases to study we tried to identify those most salient for

machine learning research. This is the reason why we included the weak evidence e�ect,

which has been discovered only recently and is not yet included into the latest edition

of Cognitive Illusions [Pohl, 2017]. In the end, our review focused on a selection of 20

169
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cognitive biases (e�ects, illusions). Future work might focus on expanding the review with

additional relevant biases, such as labelling and overshadowing e�ects [Pohl, 2017, page

373].

12.1.3. Applicability of Results on Wason's 2-4-6 problem

In order to study semantic comprehension of models, we relied on research performed in

cognitive science over last �ve decades. According to our review, the results obtained in

cognitive science have only exceptionally been integrated or aligned with research done

in machine learning. As our review also showed, there is a number of interesting and

applicable results. Remarkably, since 1960 there is a consistent line of work done by

psychologists on the problem of studying cognitive processes related to rule induction,

which is centred around the so called Wason's 2-4-6 problem.

To our knowledge1, cognitive science research on rule induction in humans has been

so far completely unnoticed in the rule learning sub�eld of machine learning. It was

out of the scope of the objectives of this thesis to perform analysis of the signi�cance of

results obtained for the Wason's 2-4-6 problem for rule learning, nevertheless we belief such

investigation could bring interesting insights for cognitively-inspired design of rule learning

algorithms.

12.2. Chapter 5: Empirical Analysis � Crowdsourcing

Experiments

12.2.1. Incomplete Explanation of Higher Plausibility of Longer Rules

Our results suggest that whether plausibility relates to rule length depends on the char-

acteristics of the dataset. Misunderstanding of �and� seems to a�ect plausibility on all

datasets involved in our research, generally increasing preference for longer rules. How-

ever, the data indicate that there are also other factors � the individual biases and heuristics

� that also mostly favour the longer rule. It should be noted that we cannot rule out that

the drop in correlation between our V1 and V2 instructions (for Experiment 1) was not

caused by other e�ect than misunderstanding of �and�. This other confounding e�ect can

be attributed to the inclusion of intersection test questions in the V1 instructions. It is a

matter of further independent veri�cation to exclude other causes.

While we have not observed higher preference for longer rules on all datasets, on the

Mushroom dataset we did � even after misunderstanding of �and� was eliminated by using

V1 instructions. We were unable to explain higher preference for longer rules on the

Mushroom dataset by cognitive biases for which we had proxies available. There might be

many possible causes, including:

• High variance in attribute and literal relevance values, since these were computed

from a small number of responses.

1Based on our analysis of cited reference search in Google Scholar for [Wason, 1960].
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• Restriction of our analysis to only several biases.

• Not robust enough estimates of literal and attribute relevance as these were computed

from relatively small samples of responses.

• Lack of account for the varying level of domain knowledge that subjects possessed in

relation to the datasets.

Our conjecture is that the last point is of particular relevance, since indeed from the

analysis of textual answers we observed that the subjects had the required domain knowl-

edge for LOD datasets but not for the Mushroom dataset. Such explanation would also

be congruent with observation reported by Allahyari and Lavesson [2011] that preference

for more complex models depends on the availability of domain knowledge.

12.2.2. Evaluating Debiasing Techniques

The empirical validation has primarily focused on determining whether selected cognitive

biases demonstrate when rule learning results are interpreted. Out of the debiasing tech-

niques proposed in Chapter 4 only misunderstanding of �and� was evaluated. It is a matter

of future work to evaluate remaining proposed debiasing techniques directly on rule models.

12.2.3. Limited Strength of Evidence

Chapter 5 empirically investigated a number of cognitive biases. For one bias, our exper-

iments provided unspurious result � the insensitivity to sample size e�ect. For several

biases � availability heuristic, weak evidence e�ect and disjunction fallacy we collected

some, yet limited, evidence. In these cases, additional research is required to con�rm our

hypothesis that they a�ect interpretation of rule learning results. Finally, the empirical

data that we collected for the mere exposure e�ect do not support the hypothesis that it

a�ects rule learning results.

The experiment with negation that we performed by manipulating the Linda instruc-

tions had a modest and predictable outcome of verifying that negation will inhibit repre-

sentativeness heuristic. Other e�ects of negation remain to be investigated. Of particular

importance in the rule learning context is the empirical result obtained by Pratto and John

[2005] that negation increases attention. To which direction and to what extend negation

would e�ect plausibility of rules is a viable direction of future work.

While we obtained convincing results for the information bias on the Linda problem,

the analysis of the textual responses showed that the results are partly a�ected by the

answer option with missing information a�ecting understanding of other options. As an

alternative to the analysis of textual answers, which poses methodological challenges, we

suggest that any future variation on this experiment directly elicits con�dence judgments.

Additionally, what would be interesting to investigate is the e�ect of ambiguity aversion.

According to this bias, missing information should result in decreased plausibility. While

our experiment was not designed to evaluate ambiguity aversion, and the results do not
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suggest that the ambiguity aversion occurred at larger scale, it is conceivable that in a

di�erent setting literal with missing information will trigger the ambiguity aversion.

12.2.4. Transferability of our Crowdsourced Results to other Populations

According to our assumptions the observed deviation from normatively correct judgments

should be attributed to speci�c cognitive biases and e�ects. Both the degree of deviation

from normatively correct judgments as well as the distribution of reasons (inferences) that

lead to the judgments are speci�c to our cohort of crowdsourcing workers.

Most data scientists have a university degree; therefore the traditional sample of univer-

sity students might be representative of this occupation. According to results presented

in Paolacci et al. [2010] crowdsourcing users are not less able to handle quantitative tasks

than university students. Most importantly, this study found the fallacy rate for Linda

problem to not di�er strongly between crowdsourcing and the standard student cohort.

It follows that there is no evidence that our results should not be applicable for the data

science occupation.

The European Union's new General Data Protection Regulation, which is proposed to

take e�ect as law across the EU in 2018, which will e�ectively create a �right to explanation�

that will allow the users of services relying on machine learning to request explanation of

decisions that were made about them [Goodman and Flaxman, 2016]. The second group

for which our results could be relevant is thus general computer literate population in

Europe. We were unable to �nd any research that would analyze the di�erences between

crowdsoucing and general population in terms of cognitive abilities in quantitative tasks

and fallacy rates of cognitive biases.

12.2.5. Learning Within Crowdsourcing Task

All subjects had to pass the quiz ensuring basic understanding of the task before they

started working on the main questions within our Experiment 1. The crowdsourcing plat-

form also put hidden test questions within the �work mode� to ensure high consistency of

the answers. Given these two layers of test questions, there was relatively low space for

learning within the task. We therefore decided not to perform the analysis of the change in

rates of errors over time. This means that we do not expect learning to notably a�ect error

rates, not that learning did not occur. It is possible that subjects who decided to provide

judgment for a higher number of rule pairs in Experiment 1 exhibited a di�erent response

pattern in terms of the preference for longer rules in their �nal responses as opposed to

their initial ones. As a recommendation for further experiments we would suggest that the

maximum number of preference judgments elicited from a particular subject is decreased

substantially, possible even to one.
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12.3. Chapter 6: Plausibility Model

Chapter 6 introduced a qualitative model of plausibility of rules, which provides a possible

explanation of cognitive processes that are triggered and aggregated when humans assess

plausibility of rules discovered from data.

12.3.1. Strength of Evidence

The purpose of our qualitative model is to empower machine learning practitioners with a

schematic view of various biases and their interaction. While each node in the model is jus-

ti�ed, the amount and strength of evidence vary. While some nodes have certain statistical

backing, other nodes are based on a small number of textual responses. Nevertheless, we

believe that the qualitative model can be used as a useful heuristic that can warn machine

learning practitioners against possible misinterpretations that rule-based models are liable

to.

12.3.2. Expanding to Quantitative Model

The qualitative model was designed speci�cally for evaluating plausibility of rules, other

types of knowledge representations are not considered. What the qualitative model also

does not provide is a quantitative prediction of plausibility of a speci�c rule.

As for future work, it is conceivable to expand the model to handle more general decision-

making problems. Another direction is further elaboration of the existing model in terms of

transition to a quantitative model, which would be able to numerically predict plausibility

level within certain interval.

12.4. Chapters 9, 10: Software Framework

12.4.1. Contesting Views for �Smaller is More Comprehensible�

The elementary assumption for our enhancements of CBA models is that smaller models

are more comprehensible. As our review in Chapter 2 shows this view is largely accepted

in the machine learning community. However, there are also several works that contest

this. In particular, there is the notion of characteristic rules, which is used in descriptive

data mining for concept characterization. A characteristic rule should provide �concise and

succinct� summary of a concept [Han et al., 2012, p. 16, 166]. In contrast, the evaluation

metrics of classi�cation algorithms, such as CBA or MARC (QCBA), are concerned with

how good the rules are in terms of concept comparison.

While any representative empirical study showing that longer rules are more understand-

able than shorter rules has not yet been to our knowledge done, Stecher et al. [2016] in

article entitled �Shorter Rules Are Better, Aren't They?� argue that �longer rules may in

many cases be more understandable than shorter rules� and they back up their assertion

with several examples. Gabriel et al. [2014] and Stecher et al. [2016] present algorithms

for learning classi�cation models composed of characteristic rules. The implications of this
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line of research for our work on making association rule classi�cation models smaller is that

by decreasing the average rule length in MARC (QCBA) models, the rules in the models

may become less comprehensible in terms of their ability to characterize the concepts they

predict.

12.4.2. Future Work on Algorithmic Framework

The most imminent future work is improvement of the proposed algorithms in terms of

scalability. The evaluation of the runtime indicates that the �extension� algorithm in

MARC (QCBA) can be slow on datasets containing attributes with many distinct values.

Improvements can include incorporation of the pessimistic pruning, using the M2 version

of data coverage pruning proposed in Liu et al. [1998] instead of the M1 version and

optimization of the extension algorithm, which is according to the results of the runtime

benchmark the biggest bottleneck on some datasets.

Currently, the framework processes only numerical attributes, however, it would be

relatively straightforward to extend it to ordinal attributes. Eckhardt [2010] described

representants algorithm for ordering the domain of a nominal attribute based on training

data. Another related algorithm for performing this type of attribute transformation is

the Value Di�erence Metric, described e.g. by Wilson and Martinez [1996]. Experiments

performed with the UTA method reported in [Eckhardt and Kliegr, 2012, Eckhardt, 2010]

suggest that preprocessing with the representants algorithm could be e�ective.

The core optimization in MARC is rule extension. Analogously, one could perform rule

shrinkage, which would remove values from the value bins if it would improve accuracy.

Another promising area of future development would be using Bayesian con�rmation mea-

sures instead of con�dence and support as the interestingness (rule quality) measures as

proposed in Brzezinski et al. [2016]. This could improve descriptive qualities of the result-

ing classi�er, since Bayesian con�rmation measures have been shown to have number of

desirable properties to this e�ect [Brzezinski et al., 2016].

12.4.3. Expanding Experimental Evaluation

The empirical validation of the proposed MARC (QCBA) framework has been performed

on 22 standard datasets. The purpose of this benchmark was to show that MARC (QCBA)

provides and improvement over CBA, which this validation, in our opinion, achieved. For

practical use cases, it might be desirable to extend this benchmark so that other symbolic

algorithms are included. Such work would be particularly useful if it is complemented by

analysis of reasons why one algorithm performs on a given dataset better than another

one. This could help deciding which algorithm is most suitable for given type of data.

Another viable line of research might involve an empirical study focused on evaluation of

comprehensibility of the learned models. Are indeed the more succinct models learned by

MARC (QCBA) more comprehensible than those created by CBA? Such research could,

with some adaptations, reuse methodology proposed for evaluation of comprehensibility of

decision trees in Piltaver et al. [2016].



Appendix

This thesis is accompanied by the following software and data repositories.

• https://github.com/kliegr/rule-length-project. Data and software related to

crowdsourcing experiments reported in Chapter 5. Release version 1.0.

• https://github.com/kliegr/arc. The arc R package with M1 implementation of

the CBA rule learner and several enhancements. Also available at CRAN as https:

//cran.r-project.org/web/packages/arc/. Release version 1.1.2.

• https://github.com/kliegr/qcbaMARC (QCBA) framework installable as R pack-

age qCBA. Release version 0.2.

• https://github.com/kliegr/arcbench. Benchmark suite for the MARC (QCBA)

framework used for evaluations reported in Chapter 10. Release version 1.1.2.

Additional details regarding the arc and qCBA packages follow.

arc and qCBA R Packages

This package uses a discretization algorithm based on the minimum description length

principle (MDLP) [Fayyad and Irani, 1993] as implemented in the R's discretize package

[Kim, 2012]. All numeric explanatory attributes with three or more distinct values are by

default subject to discretization.

Association rule learning step in CBA is handled by the C implementation of Apriori

[Agrawal and Srikant, 1994], which is accessed via arules package [Hahsler et al., 2011].

The package implements the M1 version of the CBA-CB algorithm [Liu et al., 1998].

The pruning steps in M1 were implemented in a novel way using multiplication of sparse

matrices exposed by the arules package. The computationally intensive operations are

performed using C code in the Matrix package [Bates and Maechler, 2017]. Out of the

two pruning algorithms (data coverage pruning and pessimistic pruning) described in Liu

et al. [1998], the arc package implements only the data coverage pruning. According to

evaluations presented in Liu et al. [1998] and the discussion in Section 10.4 pessimistic

pruning provides only limited bene�ts.

The arc package can be used as a standalone implementation of the CBA algorithm.

The package can be easily integrated to R work�ows, because it supports the standard

predict() interface. The package documentation is available in Kliegr [2016] and addi-

tional information is available at https://github.com/kliegr/arc.

MARC (QCBA) method is implemented in Java 8 in the qCBA R package. This provides

a wrapper for the R ecosystem and integrates this package with the arc package.
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