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Abstract

In this thesis I investigate the effects of positive and negative connec-

tions on social and organization networks, and the presence and role of

homophily in networks of scientific collaborations and citations through

the combination of methodologies borrowed from complexity science,

statistics, and organizational sciences.

In the first part of the thesis, I study the differences between patterns

of positive and negative connections among individuals in two online

signed social networks. Findings suggest that the sign of links in a social

network shapes differently the network’s topology: there is a positive

correlation between the degrees of two nodes, when they share a posi-

tive connection, and a negative correlation when they share a negative

connection.

I then move my focus to the study of a dataset on start-ups from which

I construct and analyse the competition and mobility networks among

companies. Results show that the presence of competition has negative

effects on the mobility of people among companies and on the success of

the start-up ecosystem of a nation.

Competitive behaviours may also emerge in science. Therefore, in the

second part of this thesis, I focus on a database of all papers and authors

who have published in the American Physical Society (APS) journals.

Through the analysis of the citation network of the APS, I propose a

method that aims to statistically validate the presence (or absence) of

a citation between any two articles. Results show that homophily is an

important mechanism behind the citation between articles: the more two

articles share similar bibliographies, i.e., deal with similar arguments, the

more likely there is a citation between them.
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In the last chapter, I investigate the presence of homophily in the APS

data set, this time at the level of the collaboration network among sci-

entists. Results show that homophily can be responsible in fostering

collaboration, but above a given point the effect of similarity decreases

the probability of a collaboration. Additionally, I propose a model that

successfully reproduces the empirical findings.
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Chapter 1

Introduction

“Pleasures are dear and difficult to get.

Feasting the eye, fat grapes hung in the arbour,

That the fox could not reach, for all his labour,

And leaving them declared, they’re not ripe

yet.”

— La Fontaine, The fox and the grape

“One can state, without exaggeration, that the

observation of and the search for similarities

and differences are the basis of all human

knowledge.”

— Alfred Nobel

Understanding how individuals’ behaviour is affected by social relations has always

been one of the main concerns of social theories. In the literature, two main schools

of thought can be identified that try to explain how economic action or individual

behaviour depends on the underlying social structure. On the one hand, a promi-

nent role has been played by the intellectual tradition that is firmly grounded in a

microscopic or atomised point of view on the structure of society and human ac-

tion. On the other, in contrast to this undersocialised view, an opposing perspective

on human action has embraced a macroscopic or oversocialised approach to social

behaviour [1].
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The undersocialised point of view on atomised actors has been embraced pri-

marily in classical and neo-classical economics [2–4]. This perspective is based on

the utilitarian tradition according to which social structure and social relations are

assumed a priori not to have any impact on the production or consumption of

goods. On the contrary, social relations, bargaining, negotiation, and mutual ad-

justment have been seen as a burden that could undermine the smooth functioning

of competitive markets.

The oversocialised conception of human action is based on the fact that each

individual action is strongly affected by social norms and values, the broad cultural

and social traditions, and the opinions and behaviour of other individuals [5–7].

Society itself creates the set of rules and social norms that are consensually accepted

and followed by each individual. According to this perspective, conformity to rules

is not perceived as an encumbrance, because it has already been internalised through

processes of socialisation.

Even if prima facie both conceptions seem to be conflicting, as Granovetter [1]

suggested,

“both have in common the conception of action and decision carried out

by atomized actors.” (p. 6)

According to the microscopic point of view, actors aim to satisfy their own interests

and are therefore unaffected by social relations; in the macroscopic point of view,

norms and social rules have been created in common accordance, are adhered to

and internalised by all actors, and are therefore only marginally affected by ongoing

social relations.

If our aim is to understand how human beings act, we should abandon the

implicit atomisation of actors. Social context inevitably has an impact upon indi-

viduals’ decisions, but is in turn influenced by the way individuals behave, make

decisions, and interact with one another. As also suggested by Granovetter [1], a

way to fruitfully integrate the micro and macro perspectives can be found in the so-

called meso point of view that regards individuals’ social relations and behaviour as

inherently embedded within a social structure. According to this integrated meso-

perspective, individuals are enabled and constrained by the social structure within

which they act, and, at the same time, they contribute towards its emergence by
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interacting with one another. The mesoscopic point of view is what over the last

few decades has contributed towards the emergence and development of the social

network perspective. The studies carried out in this thesis will take this mesoscopic

point of view.

1.1 Complex networks

Many systems can be represented as networks, in which nodes (or vertices) are con-

nected through links (or edges). The concept of networks boasts a long intellectual

tradition in the social sciences and beyond. Anthropologists, psychologists, sociolo-

gists, and molecular biologists have used network-based theories and methods since

the 1950s. One of the first works in which the concept of network was proposed

dates back to the 1930s [8].

Most networks have typically been included under the broad category of complex

networks to emphasise the fact that their collective properties and behaviour at the

global level are neither irreducible, predictable from, or explainable in terms of the

properties of its constituent components (i.e., the nodes) [9–11]. It is the interaction

among constituents that plays the role of the emergence mechanism that transforms

patterns at the micro level into higher-level emergent patterns (e.g., the small-world

properties or the presence of a community structure in social networks).

To gain an understanding of the macro properties of a networked system, the

underpinning structure of links among the components thus needs to be fully taken

into account. Moreover, complex networks spontaneously evolve over time without

any centralised control, and typically display an internal order resulting from a self-

organization prompted by local mechanisms at the node level. In most cases, this or-

der may, in turn, underpin the emergence of a number of peculiar functional proper-

ties such as robustness against external attacks or internal errors. For example, even

though cells are not designed by an external “architect”, their metabolic network

keeps on working and survives even during attacks or environmental changes [12].

The study of complex networks has been mainly the domain of a branch of

discrete mathematics known as graph theory, and has attracted the interest of the-

oretical physicists as well as scientists from other disciplines only in recent times.

The main aim of studying networks is to investigate the mechanisms governing their
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topology and the dynamics of phenomena and processes taking place on it. Tools

from statistical mechanics can offer a useful way for studying both network topology

and dynamics [13]. A network-based approach to the study of a complex system is

characterised by a special emphasis on the interactions among the elements of the

system rather than on the detailed properties of the individual elements themselves.

From this perspective, research on complex networks began with the aim of defining

new concepts and measures to characterise network topology [13–15]. One of the

main results has been the identification of a number of unifying principles and sta-

tistical properties that are shared by the majority of the real-world networks. This

means that different systems can be viewed as different realisations of the same com-

mon principles. In network terms, for example, the spread of a computer virus can

be compared to a process of flu spreading in a social environment or to information

diffusion within an organization; similarly, hacking a router may generate the same

effects of the extinction of a species in an ecosystem.

When the nodes of the network represent individuals, groups of people, firms, or

organizations and the links between nodes represent the nature of the relationship

between nodes, we are dealing with social networks. The social network perspective

is distinctively characterised by the emphasis it places on the importance of social

relationships among interacting actors and by the systematic attempt to express

theories, models, and applications in terms of relational concepts [16]. In particular,

there seems to be consensus among scholars that the social network perspective can

be described in terms of the following paradigmatic orientations:

1. the analysis focuses on the relations between actors, instead of trying to sort

actors into categories defined by their inner attributes;

2. social structure is operationalised in terms of relations among actors and is re-

garded as emerging from regularities or patterns generated by the interactions

among actors;

3. behaviour is explained in terms of the structural context within which it is

embedded rather than in terms of inner forces within actors; that is, patterned

relationships among multiple actors are seen as jointly affecting (i.e., enabling

or constraining) network members’ behaviour;
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4. structure is developed over different networks strata (i.e., multiplex or network

of networks) that may or may not be partitioned into discrete groups: thus,

it is not assumed a priori that tightly bounded groups are, intrinsically, the

building blocks of the structure; and

5. analytic methods deal directly with the patterned, relational nature of social

structure in order to supplement mainstream statistical methods that demand

independent units of analysis.

In particular, a major conceptual building block upon which this intellectual tradi-

tion has developed a number of theories is the so-called ego network. This represents

a network centred around an individual focal actor surrounded by neighbours. In

an ego network, the focal actor is typically referred to as ego, while the set of actors

with which ego is connected as alters. The ensemble of ego, its alters, and all ties

between ego and alters as well as among alters is called the ego network.

1.1.1 The network perspective in organization theory

Recently, the term “network” has often been used in order to describe an organi-

zational form [17–19]. At the same time, the concept of networking has become

an attractive concept that underlines the importance for individual firms to create

linkages with one another that can be used to their own advantage. According to

Nohira [20], the recent use of the network perspective in the literature can be justi-

fied by three main reasons: (i) the emergence of the so-called new competition [21],

which represents a new form of competition among small entrepreneurial firms that

differs from the old form mainly because of lateral and horizontal exchanges and

relations within and among firms; (ii) recent technological developments, which en-

able firms to better coordinate internal operations and inter-firm transactions; and

(iii) the development of network analysis into a sound methodological apparatus,

and its spread among scholars in academia, initially within the boundaries of the

social sciences in the early 1970s [22] and subsequently across other interdisciplinary

research domains.

The network perspective may help to identify the origin of power [17], to un-

derstand the factors that facilitate or impede the creation of a new venture, and to
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examine strategies for the creation of inter-firm alliances [23, 24]. A brief yet com-

prehensive review of some of the major research streams in organizational network

scholarship can be found in Borgatti [25]. A number of theories and concepts have

been proposed and developed through the social network perspective, examples of

which are social capital and network organization theory.

Social capital refers to the value that individuals, organizations, or firms can

extract from the underlying social network of connections within which they are so-

cially embedded [26]. One of the seminal works on social capital has been conducted

by Burt [27], who identified social capital in the lack of ties among an actor’s alters.

Burt typically refers to this topological configuration as structural holes. He argues

that the spanning of structural holes can be regarded as the social mechanism that

underpins Granovetter’s theoretical argument on the strength of weak ties [28].

The other network-based concept that has witnessed increasing popularity over

recent years is the so-called “network organization”. This includes organizational

forms characterised by repetitive exchanges among organizations based on trust and

embedded social relationships aiming to protect transactions and reduce costs [29–

31]. Scholars suggest that as commerce become much global and highly competitive,

both markets and hierarchies show their limitation by displaying inefficiencies [19,

32]. A network organizational form has emerged to face these limitations, able to

balance the flexibility of markets with the predictability of traditional hierarchies.

In this thesis I will focus my attention to a particular organization network: the

network of start-ups. In particular, I will evaluate the effects of competition on both

the mobility of employees between companies and on the success of the nation in

which start-ups are located. I will create two networks of start-ups: one in which

two start-ups are connected if there is a relationship of competition among them,

and a second in which two companies are connected if there has been, over time, an

exchange of employees between them. For both analysis I will make use of a network

approach.

1.2 Signed social networks

One of the main building blocks of my research is the concept of signed social net-

works. A social network is “signed” when relationships can have either a positive or
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a negative connotation. For instance, positive relationships may refer to friendship,

love, trust, collaboration, or advice. By contrast, examples of negative relationships

are enmity, hatred, distrust, or competition. In such cases, it is possible to associate

each link between nodes with either a positive symbol, such as “+”, or a negative

one, such as “−”. In principle, one could also consider varying degrees and combi-

nations of the positive and the negative relationships, but for the sake of simplicity

in this thesis I shall consider as signed social networks only those networks where

each link has been associated with a positive or a negative sign. The absence of a

link between any two actors means that the actors nurture neither a positive nor a

negative feeling towards each other.

One of the seminal theoretical achievements that marked the study of signed

social networks over the last decades is balance theory. Originally proposed by

Heider [33], balance theory is based on the notion of balanced relations: a relation

between two actors is defined as balanced if the signs of the two links connecting the

actors in both directions are the same, i.e., the two actors are connected through

a bidirectional and reciprocal link associated with the same positive or negative

connotation in both directions. Empirical work has consistently reported that an

abundance of social relations are indeed balanced. As a result, over the years scholars

have proposed a number of theories that attempt to explain this recurrent empirical

regularity, and in particular why and how social relationships tend to develop into

a balanced state.

Balance theory is based on the psychological concept of cognitive dissonance

proposed by Festinger [34]. The idea is that people have a motivational drive to

reduce the number of dissonant elements (e.g., incoherent ideas or behaviour) by

altering their cognitive world, modifying the environment or replacing old beliefs

with new consistent ones. Individuals are engaged in a process Festinger defined

as dissonance reduction [34]. Balance theory suggests that if people recognise a set

of cognitive elements as being a system, they will have a preference to maintain a

balanced state among these elements, and therefore will tend to reduce the cognitive

dissonance afflicting them. One of the most famous example of cognitive dissonance

is given in the fable “The Fox and the Grapes” by Aesop. In the story a fox sees a

bunch of grapes inaccessible for its height; at the end of the story, the fox convinces

itself that the grapes are probably not worth eating. This is a clear example of
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the fact that when one desires something and finds it unattainable, it is possible to

reduce the generated dissonance by re-evaluating it and changing one’s own mind.

Heider’s [35] theory was initially developed in order to understand individual’s

cognition or perception of social situations. Heider focused on a single individual,

and in particular he was concerned about the individual’s attitudes or opinions

and their relations with the attitudes or opinions of other individuals. Specifically,

Heider [35] claimed that:

“In the case of two entities, a balanced state exists if the [ties] be-

tween them [are] positive (or negative) in all aspects [...] In case of three

entities, a balanced state exists if all ties are positive in all respects, or

if two are negative and one positive.” (p. 110)

For example, we can consider two individuals, and their opinions about a statement.

If both actors are connected by a positive relation, then they should react similarly

to a given statement (i.e., both of them should either oppose or favour it). We have

a balanced state if the two actors act in the same way, and perceive this to be the

case. By contrast, if they hold conflicting attitudes towards the same statement, we

have an unbalanced state, and each of the two individuals involved will perceive a

cognitive dissonance.

The concepts proposed by Heider have been operationalised and mathematically

represented using graph theory by Cartwright and Harary [36] and Davis [37]. In

particular, cognitive balance has inspired the development of structural balance the-

ory, which does not focus on the individual, but rather on a set of individuals or

groups. According to the structural balance theorem, once all relationships within a

network are balanced, all network members either become friendly with one another,

or divide themselves into two opposing camps [36]. Subsequently Davis [37] provided

a generalisation of the structural balance theorem to cases in which individuals split

into more than two mutually hostile groups.

The central idea behind structural balance is that configurations of signed local

groups of actors in a network containing positive and/or negative ties are socially

and psychologically more stable than other non-balanced configurations, and are

therefore more likely to be found in real-world social networks. To illustrate this

point, the four triads at the top of Fig.1.1 are balanced and are allowed in a struc-
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Figure 1.1: Examples of balanced and unbalanced triads

turally balanced network, while the four triads at the bottom are unbalanced and

unlikely to occur in reality. For instance, real-world social networks have been found

to be characterised by an abundance of positive triads in which triplets of actors

contain either three positive links, or one positive and two negative links. This has

been summarised with the two-fold hypothesis that “the friend of my friend tends

to be my friend”, and “the enemy of my enemy tends to be my friend”. Conversely,

social networks have been found to exhibit paucity of unbalanced connected triads,

namely triads containing an odd number of negative links. In turn, this has been

referred to as the hypothesis that the enemy of my enemy is likely to be my enemy,

and the friend of my friend is likely to be my enemy.

Structural balance has been tested in many empirical applications, including the

study of international relations among nations, where relations typically refer to

political alliances during times of warfare [38, 39], and the study of politicians or

community elites as actors involved in positive and negative relations [40]. The goal

of these studies has been to examine the underlying social structure, and to uncover

how much tension was caused by the interplay of negative and positive relationship

among subsets of actors.

In this thesis I will explore in which measure the presence of balance (or unbal-

ance) affects the topological structure of signed social networks. In particular, I will
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propose a model in which I will make use of structural balance in order to reproduce

empirical findings concerning the topological differences generated by positive and

negative connections among social actors.

1.3 Homophily and heterophily: Revisiting their

interplay

Balance theory has consistently been used to derive a set of testable hypotheses re-

garding how individuals create, modify, or sever social relationships in order to avoid

or mitigate dissonant feelings. As such, balance theory has contributed towards a

better understanding of how social networks evolve over time as a result of the way

individuals interact with one another.

Over the last few decades, the literature has suggested a number of network

growth mechanisms to explain how social relationships are forged and severed over

time. For example, the principle of social embeddedness, proposed by Coleman [41],

refers to the hypothesis that, because social capital originates from closed social

structures, individuals tend to cluster into tightly knit groups that are rich in third-

party social relationships. In a similar vein, the mechanism of triadic closure [37]

formalises the idea that, given a triplet of connected nodes, such that node i is

connected to node j and node l, it is more likely that nodes j and l are also con-

nected with each other than would be the case if nodes j and l did not share i

in common. Another well documented network growth mechanism is cumulative

advantage, namely the hypothesis that once an individual gains a small advantage

over other individuals, that advantage will compound over time into an increasingly

larger advantage. This effect has been widely investigated in many empirical do-

mains, and is typically referred to by the literature as the principle that “the rich

get richer” [42] or, more recently, as the principle of “preferential attachment” [14].

Among these network growth mechanisms, a key role is played by homophily,

the principle that similarity breeds connection (“birds of a feather flock together”)

[18, 43]. In particular, homophily can be seen as the general network principle that

subsumes a number of more specific empirical regularities, such as the tendency of

social networks to exhibit degree correlations. In fact, if the creation of a relation-
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ship is based on the principle that similar individuals are more likely to connect with

each other than dissimilar ones, then the resulting network will partition into a num-

ber of heterogeneous communities, each composed of similar individuals that share

similar ideas, beliefs or interests. Individuals are thus expected to forge most of

their social relationships with other individuals within their own community, while

only a minority of links will be established with other individuals that belong to

different communities. Because the degree (i.e., number of connections) of nodes

is constrained by the size of the community to which they belong, the implication

of homophily and the subsequent partition of the network into communities is that

the average number of connections (i.e., the degree) of an individual’s nearest neigh-

bours is likely to be correlated with the individual’s degree. This leads precisely to

assortativity, i.e., the network property concerning the positive correlation between

a node’s degree and its neighbors’ degree. We can conclude that the network com-

munity structure is a key factor in determining assortativity. Being homophily one

of the main determinants of the emergence of communities [44], in order to properly

understand how and why assortativity occurs in social networks, it is fundamental

to investigate the presence of homophily in social networks.

Homophily has been empirically documented in a variety of domains, including

marriage, friendship, work advice, social support, and information transfer. McPher-

son et al. [43] distinguishes two types of homophily: (i) status homophily, which

refers to the hypothesis that social relationships are likely to occur between indi-

viduals that are similar in terms of a number of socio-demographic characteristics,

such as race, ethnicity, gender, age, religion, formal or informal status, and (ii) value

homophily, which is expressed in terms of similarity among individuals based on cog-

nitive attitudes, including values, beliefs, goals, and the moral and ethical principles

that are supposed to affect or guide behaviour.

Geographic propinquity, affiliations with families and organizations, and isomor-

phic positions in social systems have been found to create suitable contexts in which

homophilous relationships are likely to emerge. Among the various forms of value

homophily, cognitive homophily suggests that social interactions between individu-

als arise precisely as a result of their similarity and convergence on the same ideas,

beliefs, interests, and mental attitudes. Moreover, ties between non-similar indi-

viduals are likely to dissolve at a higher rate than ties between similar ones, which

11



sets the stage for the formation of cliques (i.e., localised positions) within the social

space [43].

Homophily in organizations reflects the fact that usually individuals are likely to

create and belong to many small groups where a given feature is shared among the

members of the same group. For example, a person may be a football supporter, a

student, and of Italian nationality, and may find himself drawn towards people of

each of these different groups. Such behaviour in organizations may lead to problems

of social fragmentation. Employees that share similar characteristics may spend

most of their time with each other, disregarding the need to cultivate relationships

with the rest of their (dissimilar) colleagues [45]. In this sense, homophily is a double-

edged sword: it induces the creation of tightly knit communities and reinforces

relationships and trust among people within the communities, but it also leads

to a scarce circulation of new information and knowledge beyond and across the

boundaries of the communities [46].

Even if homophily has placed emphasis on similarity and its consequences for tie

creation, there has been also an substantial body of literature in the social sciences

that has underlined the importance of forging relationships between dissimilar peo-

ple. The principle that describes the tendency of dissimilar individuals to interact

with one another is typically referred to as heterophily. One of the leading expo-

nents of the heterophily theory has been Georg Simmel [47], increasingly regarded

as one of the pioneers of network analysis. The benefits that individuals can extract

from their dissimilarity have fruitfully been articulated by Simmel in his sociological

theory of the stranger. Simmel describes the stranger as someone who “comes today

and stays tomorrow” [47, p. 126]. That is, the stranger does not have or know his

or her role in society; he or she is near, yet far away from the group to which he or

she belongs. People can trust the stranger because he or she knows no one else in

that specific society, and so they can feel free to talk to her in confidence and trust

that he or she will not judge them or reveal their personal accounts to anyone else.

The role of the stranger is to bring innovation, news, and information to the groups

to which he or she is connected. He or she brokers relations between the groups

within which people dwell and the groups with which he or she maintains distant

relations. The strength of the stranger is in his or her weak ties or, in other words,

in the inter-group relationships through which he or she can channel and spread
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information. From this perspective, and drawing on this theoretical argument, it

has been conjectured that an individual may be more likely to connect with others

that are dissimilar in order to gather new information or resources than with those

that are similar, who cannot offer information or resources that the individual does

not already possess.

The two main works based on heterophily are Granovetter’s contribution of the

strength of weak ties [28,46] and Burt’s theory of structural holes [27,48,49]. Those

two contributions are deeply connected to each other. They are both concerned

with theorising the antecedents of social capital, which is premised on the idea that

investments in social relations yield expected returns in the marketplace, including

the community, the economic, financial, political, and labour markets. In a social

network, the intensity of a tie among two individuals may assume different values

that are proportional, as Granovetter has suggested, to “the amount of time, the

emotional intensity, the intimacy, and the reciprocal services which characterize the

tie” [28, p. 3]. Strong ties are conducive towards local connections and sustain

the creation of closed, trustful but separate groups of individuals [50]. Information

within these groups tends to be rather identical and repetitive, thus losing its value

for the members of the groups. The only way in which these members can obtain

new information is by creating new bridging ties that enable them to reach other

individuals that belong to different groups. These bridging ties are emotionally

weak, in that they tend to be characterised by low intensity, frequency and intimacy.

However, they are structurally strong, in that they enable actors to extract social

capital from their underlying network, and on a global scale they allow information

to flow throughout the network.

Building upon Granovetter’s work, Burt has investigated how social capital can

originate from brokerage opportunities associated with structural gaps in the net-

work. Burt has defined a structural hole as the “separation between non-redundant

contacts, a relationship of non-redundancy between two contacts, a buffer” that en-

ables the two contacts to “provide network benefits that are in some degree additive

rather than overlapping” [27, p. 18]. A broker can exploit his or her structural

position as the gatekeeper between contacts at the opposite sides of the hole. There

are two types of benefits associated with this position: (i) information benefits that

originate from the fact that, in structures rich in structural holes (i.e., open struc-
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tures), connections with otherwise disconnected individuals or groups tend to be

weak [28], and are likely to bring the focal actor (i.e., the broker) closer towards

people with different ideas, interests, new opportunites and perspectives; and (ii)

social control benefits that result from the broker’s ability to negotiate his or her

relationships with otherwise disconnected others and turning their “forces combined

against him into action against one another” [47, p. 162].

There is a clear analogy between Burt’s conception of the broker and the Sim-

melian “stranger”, and both are conceptually consistent with Granovetter’s idea on

the benefits of weak ties for social capital. Both the broker and the stranger are ac-

tors that are weakly connected to different, otherwise disconnected groups of people,

and for this reason may offer and receive new information, as well as fresh insights,

and new perspectives. In this sense, both concepts of the broker and the stranger

point to the salience of heterophily as a principle governing social relationships. If

individuals want to extract social capital from their underlying social network by

gathering and combining different pools of new information, it is more likely that

they will forge relationships with dissimilar others than similar ones.

1.3.1 Social dependence

I have shown two apparently opposing social mechanisms responsible for the cre-

ation of social ties: one based on the hypothesis that the more similar we are the

more likely we are to connect with one another; the other based instead on the hy-

pothesis that we are inclined to connect with dissimilar others. In what follows, my

aim is to draw on the relevant literature in order to explain the dynamic interplay

between the two principles of homophily and heterophily. I shall do so by regarding

heterophily as a form of social dependence between individuals. In so doing, I shall

put forward the hypothesis that homophily and heterophily go hand-in-hand, such

that if individuals are similar, they are more likely to interact than if they are dis-

similar (i.e., homophily), but at the same time individuals seek connections precisely

in order to satisfy each others’ needs through the dissimilar resources they possess

and can offer (i.e., heterophily). In this sense, while homophily remains expressed in

terms of socio-demographic and cognitive characteristics, heterophily is predicated

in terms of the material (e.g. goods) or immaterial (e.g. information) resources that
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individuals possess and exchange.

This idea is not new. organizational ecologists have long suggested that similar-

ity can also lead to competition for scarce resources. According to this strand of

research, similarity and competition go hand-in-hand: high concentration of similar

organizations can lead to competition for scarce resources [51–54]. For example,

Ahuja et al. [51] have investigated the alliances involving 97 global chemical firms.

They have argued that poorly embedded firms are more likely to participate in

ties characterised by social asymmetry than in ties characterised by structural ho-

mophily. Indeed, beyond a certain threshold, a firm’s centrality (i.e., the number of

connections to other firms) was found to create a disincentive for potential collabo-

rations, thus diminishing the likelihood that two firms with an equally large value

of centrality will form an alliance.

In the organizational literature, it is possible to identify two chief forms of social

interdependence [55]: one that originates from collective action and the horizontal

sharing of common resources [56]; the other that can be explained in terms of vertical

forms of exchanges or transactions among units [54,57].

Among the horizontal forms of social dependence, scholars have identified the

so-called pooled interdependence. This refers to those forms of dependence aris-

ing from the fact that all individuals involved provide a contribution to a common

achievement, or make use of common resources, and in turn can benefit on a pro-

portional basis. Considering as an example the different departments of the same

organization; in this type of interdependence, each organizational department carry

out separate tasks. Even though each department work independently and do not

directly depend on each other, in the “pooled interdependence model”, each does

contribute individual pieces to the same overall puzzle. This kind of social interde-

pendence is usually important for firms that share the same market target and whose

activities rely upon the same pooled resources, such as technologies, competencies

or administrative structures.

Another type of horizontal interdependence is the so-called intensive interde-

pendence. This form has been proposed by Thompson [54] in his seminal work on

social dependence. This kind of interdependence is based on the joint cooperation of

specialised actors that need to share complex knowledge in order to solve a common

problem. A suitable example is the medical team during surgical interventions.
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The other major type of social dependence is the vertical one that regulates

exchanges among actors. The primary example of this form is referred to by the lit-

erature as sequential interdependence. This represents a form of connection between

two activities such that the output of one activity is the input for the other. It rep-

resents the simplest case of transactional interdependence, where there is a transfer

of goods or services through a given interface from one activity to another [57].

Social dependence has been extensively investigated in organizational theory,

and has been the subject of long-standing debates among scholars, especially those

concerned with power in organization. For instance, Emerson [58], one of the pre-

eminent scholars interested in power, has suggested that social relations commonly

entail ties of mutual dependence between parties. This means that actor i depends

upon actor j if j has the appropriate resources or can help i to achieve his or her own

goals. Usually the dependence is found to be mutual, i.e., i must be in a position to

offer j something useful to j’s satisfaction. The power of i over j is typically defined

as the extent to which j is dependent on i [59]. Thus, actors who are able to control

desired resources increase others’ dependence on them and, through the process of

exchange, are able to acquire the necessary resources and bring about the outcomes

they desire [60,61].

In this thesis I draw on the concept of social dependence. The aim is to develop

a network model able to replicate the dynamics of tie creation that combines and

extends the homophily and heterophily/ecological arguments through the concept

of interdependence. This will enable me to investigate the non-linear effects of in-

creasing degrees of similarity on the probability of tie creation. My hypothesis of the

non-linear effects of homophily on tie creation can be described as follows; it is rea-

sonable to expect that the probability and strength of an interaction increases with

similarity between the interacting nodes, as suggested by the principle of homophily.

However, this increase is expected to occur only up to a certain critical threshold

value of similarity. Above this threshold, the effects of similarity reverse: individ-

uals highly similar are less likely to provide one another with the information and

resources they are looking for, and will thus direct their attention to other less sim-

ilar partners. In this sense, the model I will propose will be rooted in the interplay

between homophily and social dependence, and will formalise the hypothesis that

socially interdependent individuals that are too similar to each other are unable to

16



satisfy each other’s objectives, and thus tend to avoid their interaction. In so doing,

my aim is to develop a theoretical argument and a corresponding analytical model

that dovetails the interplay between the principles of homophily and heterophily.

Ultimately, my work will also contribute towards bridging the theoretical divide be-

tween these two apparently opposing principles that the literature has proposed to

explain the way social relationships are created and develop over time.

1.4 Outline of the thesis

In this thesis I will investigate the effects of positive and negative connections on

social and organization networks, and the presence and role of homophily in networks

of scientific collaborations and citations. I will start by analysing to which extent

connections with a positive or a negative nature shape the network topology of two

online social networks and I will propose a model based on balance theory intended

to reproduce the empirical findings.

Positive and negative connections may also be found in other type of networks,

such as organization networks, in which nodes represent companies or groups of

people. In particular, I will study the competition among start-ups. I will create the

competition network among start-ups, where nodes are start-ups and a connection

exists if there is a relationship of competition among two companies. Making use

of network techniques, I will quantify the effects of competition on the mobility of

employees among start-ups and on the success of national ecosystems of start-ups.

Competitive behaviours may appear also in the scientific domain. One way

to detect competition can be done by looking at the absence of a relevant citation

among two scientific papers. In fact, citations in science are an important instrument

to affirm the appreciation of a scholar’s work. Through the analysis of the citation

network among scientific papers published in the American Physical Society (APS)

journals, I will propose a method that aims to statistically validate the presence

(and the absence) of relevant citations. Specifically, I will show that citations follow

homophily: the more similar the bibliography of two papers is, the more likely we

will find a citation between them.

Finally, I will conclude this thesis with a study on the collaboration among sci-

entists in the APS dataset. I will define a measure to quantify a scientist’s scientific
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interests and I will analyse the evolution of his or her interests over time. Based

on this result, I will propose a measure of scientific similarity in order to test the

interplay between the two opposing mechanisms of homophily and heterophily in

forging scientific collaboration among scientists.

1.4.1 Thesis structure

The following chapters of the thesis are organized as follows:

Chapter 2 presents my study on the differences between positive and nega-

tive connections in social networks. In particular, I will analyse two online social

networks (epinions.com and slashdot.org) in which links between individuals can

be either positive (trust or friendship) or negative (distrust or enmity). I will de-

tect differences between positive and negative connections by looking at the degree

correlations of each node in respect to the degree of their neighbours. Findings

indicate that, when the sign of links is ignored, both networks are assortative, i.e.,

each of the two networks nodes with similar degree tend to connect with each other.

This result is in agreement with previous analyses that show social networks as

characterized by an assortative trend as compared to other type of networks (e.g.,

technological and biological ones), which on the contrary present a disassortative

trend, i.e., the tendency of nodes with dissimilar degree to connect with each other.

To study the impact of the sign of links on degree correlations, from both networks

I will extract the positive and negative subnetworks composed only by links of the

same sign. Results indicate that the sign of links has some bearing on the degree

correlations observed in social networks: the positive subnetworks are assortative

while the negative ones are disassortative. To shed light on this result, I will then

propose a network model in which I assign each node to one of two mutually ex-

clusive groups, and associate a positive sign to connections between nodes of the

same group and a negative sign to connections between nodes of different groups.

Results of numerical simulations are in accordance with the empirical findings when

a combination of three different conditions is met. I will investigate the role of each

of these conditions and different combinations of them, and extend the analysis by

studying the case in which the global unsigned network is disassortative and nodes

can be allocated to three or more mutually exclusive groups.
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Chapter 3 is devoted to the investigation of the effect of competition between

start-ups on the mobility of people between companies, and on the success of the

set of start-ups located in each nation. In the first two sections I will provide a

detailed description of the dataset and the methodology used to construct the net-

work of markets (or industry sectors) in which each company is involved. Unfortu-

nately, markets that are assigned to each company do not belong to any hierarchical

category, which makes it difficult to use at that level of detail. I will propose a

methodology based on a combination of network techniques to define macro market

categories to which each market will be assigned. I will then propose a measure to

asses the differences and similarities between national ecosystems start-ups based on

the activities of start-ups in each macro market category. In the third section I will

construct two start-up networks, namely the network of declared competitors among

start-ups and the mobility network of employees among start-ups. By studying the

overlap between these two networks it is possible to asses the effects of competition

on mobility. Results show that the presence of competition negatively impact both

the mobility of people between companies and the success of the national ecosystem

to which the start-ups belong.

Chapter 4 casts light on the salience of homophily, namely the principle that

similarity breeds connection, for knowledge transfer between papers. To this end, I

will asses the degree to which citations tend to occur among papers that are con-

cerned with seemingly related topics or research problems. Through analysis of the

citation network among physicists that have published in the American Physical So-

ciety (APS), I will propose a method that suggests the presence of relevant citations.

In the first two sections I will give an overview on the studies related to citation

networks and I will describe the APS dataset. In the third section I will present the

methodology used to quantify and assess the statistical significance of the similarity

between any two articles published in APS. Based on this measure, I will evaluate

the absence of relevant citations or the presence of irrelevant ones. Results show that

the more two articles share similar bibliographies, i.e., treat similar arguments, the

more likely there is a citation between them. By assuming the presence of relevant

missing citations as a lack of knowledge flow, I will propose to rank both different

areas of physics and the APS’ journals based on the lack of knowledge flow between

papers.
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Chapter 5 is devoted to the study of the evolution of physicists’ careers over

time and on the analysis of social mechanisms in forging collaboration among them.

In the first section I will provide a detailed description of different tie creation

mechanisms. In the second section I will present the dataset and the measure used

to evaluate the evolution of a physicist’s interests and specializations throughout his

or her career. The third section will focus on the study of the collaboration network

over time among physicists. In particular, I will look at whether the presence of a

collaboration is driven by scientific similarity among physicists. Results show that

the more two scientists are scientifically similar, i.e., specialised in similar topics, the

more likely they are to collaborate. This is true up to a given threshold, above which

the probability of a collaboration decreases. In section four, I will put forward the

hypothesis that this non-linear effect is driven by the presence of two opposing forces

that simultaneously act on two different levels: homophily and social dependence.

The combination of these two effects creates the reversed “U-shaped” trend that

emerges in the results. I will justify the hypothesis of the combination of these two

effects through the use of a model able to reproduce the empirical findings.

Finally, Chapter 6 is devoted to conclusions and discussion around possible

future work.
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Chapter 2

Signed social networks

“What loneliness is more lonely than distrust?”

— George Eliot
“Friends come and go but enemies

accumulate.”
— Arthur Bloch

Balance theory has been studied both locally, with an emphasis on dyadic relation-

ships [35], and globally, with a prominence on the whole network and its partition

into distinct groups [36, 37]. The work presented in this chapter is concerned with

the global implications of balance. In particular my aim is to investigate the degree

to which the presence of balance (or unbalance) affects relevant topological proper-

ties of social networks. Among these properties, one way to quantify the effect of

balance is by evaluating the network degree correlations.

Degree correlation is a network property that captures the extent to which a

node is likely to connect with other nodes that have a similar number of connections

(i.e., degree). In a social network, if an individual is connected with others that have

the same number of friends, the nodes’ degrees are positively correlated with the

degrees of their neighbours and the network is said to be assortative. In this case,

individuals with many friends are connected with individuals with many friends,

and individuals with few friends are connected with individuals with few friends.

If instead individuals with many friends are connected primarily with individuals

with few friends and vice versa, the nodes’ degrees are anti-correlated with their

neighbours’ degrees and the network is said to be disassortative.
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Focusing on degree correlations is a non-trivial task and has important implica-

tions for a better understanding of social networks. Indeed it has been showed by

scholars that what makes social networks different from other networks types are

two distinctive empirical regularities [62, 63]. First, in social networks actors that

share a common friend are likely to connect to each other and form closed triadic

relationships (which in turn contributes to an high clustering coefficient); second,

social networks tend to be assortative, i.e., they have been found to exhibit positive

degree correlations.

In non-social networks, nodes with a common neighbour are less likely to con-

nect to each other than in social networks (which contributes to a low clustering

coefficient), and the degrees of connected nodes tend to be anti- correlated (i.e.,

the networks are disassortative) [62]. Thus, by uncovering the implications that

structural balance has on degree correlations, I shall make a step forward towards

a better understanding of the antecedents of one of the structural properties that

have long been regarded as distinctively characterising social networks.

A thorough analysis of the literature and the empirical work so far conducted

on degree correlations suggests that correlations in negative social networks, i.e.

networks in which the relationship between actors is mediated by negative connota-

tions, still remain to be investigated. Negative social networks may indeed exhibit

correlation patterns that differ from those detected in positive social networks, and,

as a result, a relation may exist between the sign of the links and the type of de-

gree correlations of a social network. Do individuals who distrust many others tend

to distrust each other, or do they channel their negative feelings towards other in-

dividuals who distrust only very few others? Whether negative social ties, such

as distrust or hatred, tend to be forged primarily between actors characterised by

similar or dissimilar connections still remains largely unexplored. This chapter is

devoted to rectify this shortcoming. In particular, once I have uncovered the extent

to which the degree correlations of negative social networks differ from the correla-

tions of positive ones, I shall study how this divergence is likely to be due to the

presence or absence of structural balance in networks where positive relationships

are intermingled with negative ones.

The outline of the chapter is as follows. In Section 2.2, I introduce two signed

online social networks, and examine the degree distributions and correlations of
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the positive and negative sub-networks extracted from the data. In Section 2.4,

I propose a generative model of signed networks that polarize into two mutually

exclusive groups of nodes. Section 2.4.1 focuses on the case of random networks

with binomial degree distributions, whereas Section 2.4.2 deals with more realistic

cases of networks with power-law degree distributions. Finally, in Section 2.5 I

extend the modelling framework to networks in which nodes can split into three

(or more) hostile groups. In Section 2.6, I summarize my findings and discuss their

implications for research on signed complex networks.

2.1 Introduction

Over the last few years, an increasing interest in the study of social networks has

prompted physicists, mathematicians and computer scientists to join sociologists in

their endeavours to develop network models concerned with the antecedents, struc-

ture, and evolution of social interaction [14, 64, 65]. Recent studies have indicated

that social networks across many empirical domains display the typical signature of

complex networks, namely the long-tailed distribution of the degrees of nodes [14].

In addition to this, an attempt has been made to uncover the distinctive structural

features and empirical regularities that distinguish social networks from other types

of complex networks. While in most real non-social networks degrees of neighboring

nodes tend to be anticorrelated, research has suggested that social networks tend to

be characterized by the opposite correlation pattern [66,67]. The tendency of nodes

with similar degree to connect with each other is often referred to as “assortative

mixing by degree”, and has been observed in a number of social networks, including

very large-scale online social networks such as Facebook and Twitter [68].

A variety of models have been proposed by physicists, sociologists and computer

scientists to explain these distinctive properties of social networks. For instance,

assortative mixing has been related to the underlying community structure of so-

cial networks [67]. More recently, assortative mixing has been explained in terms

of transitivity [69] and homophily [70]. Sociologists have also uncovered distinctive

interaction patterns within social signed networks in which relationships can have

a positive (e.g., trust and friendship) or negative (e.g., distrust and enmity) conno-

tation. In particular, the theory of “structural balance” has long suggested that, in
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undirected signed social networks, individuals embedded within closed triads tend to

minimize cognitive tension: an individual tends to befriend a friend’s friend, distrust

a friend’s enemy, befriend an enemy’s enemy, and distrust an enemy’s friend [36,71].

In this chapter I focus my attention on the emergence of degree correlations

in signed networks, and how these correlations can be used to predict the sign of

links in cases where it is not known or cannot be assessed directly. Indeed, de-

spite the ubiquity and salience of negative relationships in a wide range of social

systems, the detection of mixing patterns by degree has been confined primarily

within the domain of unsigned networks or simply networks in which nodes were

assumed to be connected through positive links (e.g., scientific collaboration net-

works and interlocking directorate networks [67]). However, negative networks may

exhibit correlation patterns that differ from those detected in positive networks.

Do individuals who distrust many others tend to distrust each other, or do they

channel their negative feelings toward other individuals who distrust only very few

others? To address this problem, here I propose a class of simple models that help

uncover the relation between the sign of links and the type of degree correlations

characterizing a network.
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2.2 The data

I analyze two online social networks. The first is the network formed by the users

of Epinions (www.epinions.com), a website for user-generated reviews of various

products. Registered users of Epinions can declare their trust or distrust toward one

another, based on the comments they post. The second social network is formed

by the users of Slashdot (www.slashdot.org), a website devoted to the discussion of

technology-related news, and in which the Slashdot Zoo feature enables users to tag

one another as “friends” or “foes”. In both Epinions and Slashdot, connections are

directed and signed. The meaning of the sign of links is similar: a positive link

means that a user endorses another user’s comments, whereas a negative one means

that a user dislikes another user’s comments. Both network datasets are available

from the Stanford Network Analysis Project website [72].

Table 2.1 reports the number of nodes and links in the datasets [73,74]. Epinions

is composed of 131, 828 nodes and 841, 372 directed links. In particular, 717, 667 of

these links (i.e., 85.00%) are positive and represent the trust users accord to each

other. Moreover, links connecting 130, 162 (i.e. 15.47% of all links) pairs of nodes in

Epinions are reciprocated, of which only 1.8% are characterized by a combination of

a positive and a negative signs (i.e., node i points positively to node j, and j points

negatively to i). The Slashdot social network is composed of 82, 144 nodes and

549, 202 links, 425, 072 (i.e. 8.87% of all links) of which are positive (i.e., 77.40% of

the total number of links). Moreover, 48, 721 pairs of nodes are connected through

reciprocated links, of which only 4.0% are characterized by different signs.

To study the impact of the sign of social relationships on the network topology,

for each network dataset I filtered out and isolated the positive and the negative

subnetworks composed only by reciprocated links of same sign (see Fig.2.1). The

choice of considering only reciprocated links helps to identify in a clear way the na-

ture of the relationship among two individuals. Moreover, it allows to consider the

whole network as undirected and to study the implications that structural balance

(which is defined on undirected networks) has on degree correlations of the overall

signed network. In particular, from the Epinions social network two signed subnet-

works were extracted: the “trust” and “distrust” subnetworks in which all links are

positive and negative, respectively. Similarly, I created the Slashdot “friend” and
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Epinions Slashdot

Nodes 131,828 82,144
Links 841,372 549,202
Positive 717,667 425,072

(85.30%) (77.40%)
Negative 123,705 124,130

(14.70%) (22.60%)
Reciprocated 130,162 48,721

(15.47%) (8.87%)

Table 2.1: Nodes and links in Epinions and Slashdot.

“foe” subnetworks.

These four signed subnetworks are characterized by a power-law distribution

p(k) ' k−α, with an estimated value of the coefficient α of approximately 2.35 (see

Fig. 2.2). This value is similar to the one estimated for the power-law distribution

of the unsigned network with reciprocated links (see inset of Fig. 2.2).
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Figure 2.1: Extraction of the positive (b) and negative (c) subnetworks from a signed
network (a).

Figure 2.2: Degree distributions of the Epinions positive (“trust”) and
negative (“distrust”) subnetworks and of the Slashdot positive (“friend”)
and negative (“foe”) subnetworks. The inset shows the degree distributions of
the Epinions and Slashdot unsigned networks with reciprocated links.
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2.3 Degree correlations

Research has typically relied on two fundamental measures for detecting mixing

patterns by degree in complex networks. The first measure is the quantity Knn(k),

namely the average degree of the nearest neighbors of nodes with degree k, defined

in [75] as

Knn(k) =
∑
k′

k′p(k′|k). (2.1)

The transitional probability p(k′|k) can be defined as the the conditional probability

that a link emanating from a node of degree k is connected to a node of degree k′

p(k′|k) =
Ekk′∑
k′ Ekk′

≡ p(k, k′)

q(k)
, (2.2)

where Ekk′ is the entry of the symmetric matrix E that measures the number of

links between nodes of degree k and nodes of degree k′ for k 6= k′, and two times

that number for k = k′, p(k, k′) is the joint probability that a randomly chosen link

connects two nodes of degrees k and k′, q(k) is the probability that a randomly

chosen link is attached to a node with degree k

q(k) =
kp(k)

〈k〉
, (2.3)

p(k) is the degree distribution of the network, i.e., the probability that a node

chosen uniformly at random from the network has degree k, and 〈k〉 =
∑

k kp(k) is

the average degree over the whole network.

In uncorrelated networks, the joint probability p(k, k′) factorizes and can be

expressed in terms of the degree distribution, i.e., p(k, k′) = kk′

〈k〉2p(k)p(k′), thus

yielding

Knn(k) =
∑
k′

k′
p(k, k′)

q(k)
=
〈k2〉
〈k〉

. (2.4)

Thus, if there are no degree correlations, Knn(k) does not vary as a function of k:

regardless of the degree a node has, its nearest neighbors have on average the same

degree. By contrast, an increasing (decreasing) behavior of Knn(k) as a function of
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k indicates that the network is assortative (disassortative) by degree: as the degree

of a node increases, the degree of the node’s nearest neighbors tends, on average, to

increase (decrease).

The second method for detecting degree correlations relies upon the assortativity

coefficient, a measure originally proposed by Newman [66] that is a suitably modified

version of the standard Pearson correlation coefficient for measuring the correlation

between the degrees of adjacent nodes in a network. Given a randomly chosen node

that lies at the end of a randomly chosen link, one can define the excess degree of

that node as the number of links incident upon the node other than the one along

which the node was reached [76]. The excess degree of such node is distributed

according to

e(k) =
(k + 1)p(k + 1)

〈k〉
. (2.5)

The assortativity coefficient for detecting mixing by degree can now be defined as

r =
1

σ2
e

∑
kk′

kk′(e(k, k′)− e(k)e(k′)), (2.6)

where e(k, k′) is the joint probability that a randomly chosen link in the network

connects a node that has excess degree k with a node with excess degree k′, σ2
e =∑

k k
2e(k)− [

∑
k ke(k)]2 is the variance of the distribution e(k), and e(k)e(k′) is the

expected value of the quantity e(k, k′) in the case in which links are placed between

nodes uniformly at random regardless of the degrees of the connected nodes. The

values of r lie in the range −1 ≤ 0 ≤ 1, with r = 1 indicating perfect assortativity,

r = −1 perfect disassortativity, and r = 0 lack of degree correlations [66]. Table 2.2

shows the values of the Pearson coefficient r of various social networks and other

types of networks. As indicated by the Table, social networks exhibit a positive

value of r, while technological and biological networks a negative one.

I begin the analysis of degree correlations by uncovering mixing patterns from

the the unsigned Epinions and Slashdot networks with reciprocated links. Fig. 2.3

shows a positive trend for Knn(k), as was typically documented in social networks.

To analyze degree correlations in the signed subnetworks, I measured and plotted

Knn(k) for all four subnetworks. As shown in Fig. 2.4, two main distinct patterns

can be detected. The positive subnetworks show the typical structural signature
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Type Network Size n Assortativity r

Social physics co-authorship 52,909 0.363
biology co-authorship 1,520,251 0.127

mathematics co-authorship 253,339 0.120
film actor collaboration 449,913 0.208

inter-locking directorates 7,673 0.276
e-mail address books 16,881 0.092

Technological Internet 10,697 -0.189
World-Wide Web 269,504 -0.067

software dependencies 3,162 -0.016
Biological protein-to-protein interactions 2,115 -0.156

metabolic network 765 -0.240
neural network 307 -0.226

marine food web 134 -0.263
freshwater food web 92 -0.326

Table 2.2: Evidence of assortativity in unsigned or positive social networks
[63]

of social networks, namely the tendency of nodes to connect to other nodes with a

similar degree (assortative mixing by degree). By contrast, the negative subnetworks

display disassortative mixing by degree: high-degree nodes tend to be connected with

low-degree ones.

This finding is further corroborated by the values obtained for the correlation

coefficient r. These values are r+Ep = 0.219 and r−Ep = −0.017 for the positive and

negative Epinions subnetworks, respectively, and r+Sl = 0.162 and r−Sl = −0.114 for

the positive and negative Slashdot subnetworks, respectively.

These results are in qualitative agreement with, and generalize, a widely sup-

ported empirical regularity found in a variety of social networks: when links have a

positive connotation, or can be assumed to have a positive one, they tend to connect

nodes with similar degrees [66, 67]. However, findings also suggest that, when links

have a negative connotation, they tend to connect nodes with dissimilar degrees. In

Fig.2.5 is shown a subset of the Slashdot network. It is clear the structural difference

between the positive (green) links and the negative (red) ones.

Combined, these two sets of results undercut one of the arguments that the lit-

erature has proposed to explain degree correlations in social networks [67]. This
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Figure 2.3: Knn(k) for the Slashdot and Epinions unsigned networks with
reciprocated links. The observed positive trends are in qualitative agreement with
the assortative patterns found in many other social networks.

Figure 2.4: Knn(k) for the Epinions and Slashdot positive and negative
subnetworks. The positive subnetworks display a positive trend, while the negative
subnetworks display a negative trend.
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Figure 2.5: A portion of Slashdots network. Red links represent negative re-
lationships between nodes, while green links positive ones. From this picture it is
clear that the way which nodes connected is influenced by the nature of the rela-
tionships: nodes with many enemies are principally connected with nodes that have
few enemies, while the opposite happens for the positive relationships.
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argument is premised on the idea that assortative mixing is attributable to the

tendency of nodes to coalesce into distinct communities. However, because this

tendency can be detected in both the positive and negative subnetworks, commu-

nity structure would in itself be not sufficient for explaining the assortative mixing

patterns observed in the positive subnetworks. Other mechanisms are likely to be

responsible for these patterns.

In both Epinions and Slashdot, individuals cluster into communities based on

their common interests in the same products or news. However, the observed mixing

patterns seem to originate not simply from common interests, but more precisely

from the way individuals use the posted comments as cues for making positive

or negative judgements on one another. More generally, the comparison between

positive and negative subnetworks suggests that the observed degree correlations

depend on the sign of the links between nodes. To gain a better understanding of

this relation between sign of links and degree correlations, in what follows I will

propose a class of simple generative models of signed networks.
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2.4 Signed networks with degree correlations that

depend on the sign of the links

I begin by focusing on signed random networks with binomial degree distributions,

in which nodes can be split into two mutually exclusive groups. Subsequently, I will

refine the analysis by investigating the case of assortative and disassortative signed

networks with power-law degree distributions.

2.4.1 Signed random networks with binomial degree distri-

butions

I draw on, and extend, a model originally developed by Newman and Park for

undirected unsigned networks with multiple communities [67]. I create random

networks with N nodes that satisfy the following requirements:

1. degrees are homogeneously distributed across the nodes;

2. each node can be a member of one of two mutually exclusive groups;

3. there are no degree correlations prior to the attribution of signs to the links;

and

4. signs are associated with links in such a way that the resulting signed network

is structurally balanced.

To obtain such networks, I apply the following rules:

1. any pair of nodes are connected through a link with a uniform probability p,

and disconnected with probability 1− p;

2. given two groups, each node is assigned to one of them with probability m and

to the other with probability 1−m; and

3. connections between nodes within the same group are associated with a posi-

tive sign, while connections between nodes from different groups with a nega-

tive sign.
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A schematic representation of the polarization of a network into two distinct

groups according to our model is shown in Fig.2.6. The model generates random

uncorrelated networks with a binomial degree distribution. Notice that the original

model proposed by Newman and Park corresponds to the case in which there is

more than one community and m = 1 such that the resulting network is unsigned by

construction. In our case, for the sake of simplicity, I introduced only one community

as findings are qualitatively similar to those obtained with multiple communities.

Moreover, as m approaches the value of 0.5, the network becomes perfectly polarized

into two distinct groups of equal size. As m gets closer to either zero or one,

polarization gradually disappears, and the network becomes increasingly dominated

by one of the two groups [77].

Finally, to obtain a signed network, I attribute signs to links using an assignment

rule that discriminates between links within and across groups. According to the

structure theorem [36,78], the application of this rule of sign attribution ensures that

the resulting signed network is structurally balanced. In accordance with the defi-

nition originally proposed by Heider [71] and subsequently extended by Cartwright

and Harary [36], a network can be regarded as balanced when each of its cycles is

positive, i.e., it includes an even number of negative links [79]. In turn, the struc-

ture theorem ensures that this is precisely the case when the network is polarized

into two mutually exclusive subsets of nodes such that each positive link connects

two nodes of the same subset and each negative link connects nodes from different

subsets [36, 78].

As with the real networks, from the global signed network I extract two sub-

networks, each including only positive or negative links. I then test whether and

the extent to which network polarization has any critical role in the emergence of

non-trivial mixing patterns in the positive and negative subnetworks. To this end,

I simulate the model for an arbitrarily large value of N , and calculate the values

of the correlation coefficient r between the degrees of connected nodes within the

unsigned networks and the signed subnetworks obtained in correspondence of the

different values of the probability m.

As indicated by Fig. 2.7, the positive subnetwork displays an assortative mixing

by degree, as was observed in our two positive subnetworks as well as in many other

social networks documented in the literature [66, 67]. By contrast, the negative
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Figure 2.6: Network polarization and sign attribution. Schematic representa-
tion of the allocation of nodes into two mutually exclusive groups. Links between
nodes belonging to the same group are positive (green), whereas links between nodes
of different groups are negative (red).

subnetwork, like the ones extracted from both the Epinions and Slashdot networks,

displays a disassortative mixing pattern. The sign of the links or, more precisely,

the rules underpinning the attribution of sign to links, seem to be responsible for

the variation in the mixing patterns. In particular, results suggest that non-trivial

degree correlations of the signed networks would remain hidden and undetected if

they were simply assumed to be the same as the ones of the corresponding unsigned

networks obtained by removing or ignoring the signs of the links.

To further explore the conditions under which such degree correlations are likely

to emerge in signed networks, in the subsequent section I will extend our analysis by

using a number of more refined and realistic network generative models and by intro-

ducing additional combinations of structural properties of the networks. However,

before I proceed in that direction, Inow formalize the properties of our current model

in terms of the degree correlations displayed by the signed subnetworks. Given N

nodes, and two mutually exclusive groups A and B, I set NA to be the number of

nodes that belong to group A, and NB = N −NA the number of nodes that belong

to group B. The probability that in group A there are NA nodes can be expressed
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Figure 2.7: Correlation coefficient r plotted against the probability m of
being a member of one group. The graph shows the trends of r for the positive
and negative subnetworks obtained with the model, when N = 10, 000 and p = 0.01.
For each value of m, the correlation coefficient r is the average over 50 realizations
of the network.

as

p(NA) =

(
N

NA

)
mNA(1−m)N−NA . (2.7)

The “positive” degree kA,+ of a node in group A is the number of positive links

incident upon the node. The probability that a node that belongs to group A has

a “positive” degree kA,+ when the total number of nodes in group A is NA, is given

by

p(kA,+|NA) =

(
NA − 1

kA,+

)
pkA,+(1− p)NA−kA,+ . (2.8)

In Eq.2.8, p represents the independent probability of a link in the network, and kA,+

is the positive degree of nodes in group A (i.e., the number of links to other nodes

in A). I define KA,+
nn (kA,+) as the average positive degree of the nearest friends of

nodes of group A. Since, given a certain number of nodes in group A, the network

formed by the links between these nodes is a random network (i.e., uncorrelated),
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using Eq.2.4 I have

KA,+
nn (kA,+) =

∑
NA>0

p(NA)
〈(kA,+)2|NA〉
〈kA,+|NA〉

' Npm, (2.9)

where the average in Eq.2.9 is taken over the distribution p(kA,+|NA) defined in

Eq.2.8, P (NA) is defined in Eq.2.4.1, and where I have assumed N � 1.

I thus obtained a constant value for KA,+
nn (kA,+) that is independent of the posi-

tive degree kA,+. In the same way, if I evaluate KB,+
nn (kB,+), i.e., the average positive

degree of the nearest friends of nodes in group B, I obtain: KB,+
nn (kB,+) = Np(1−m),

which is also a constant function of kB,+. As to the negative subnetwork, I ob-

tain the same results for both groups of nodes. That is, KA,−
nn (kA,−) = Npm

is the average negative degree of the nearest enemies of nodes in group A, and

KB,−
nn (kB,−) = Np(1 −m) is the average negative degree of the nearest enemies of

nodes in group B. What differentiates the two groups in each signed subnetwork is

simply the mean degree of their nodes. For instance, if nodes of group A (or B) in

the positive subnetwork have an average positive degree of Npm (or Np(1 − m)),

in the negative subnetwork they have an average negative degree of Np(1−m) (or

Npm). In the case of m = 0.5, namely when groups are of equal size, it would not

be possible to distinguish between the two subnetworks (see Fig.2.7), and I thus

obtain the same results as in the case of the uncorrelated unsigned network.

As suggested by Eq.2.9, the polarization of a network with a binomial degree

distribution into two groups of heterogeneous size generates two distinct values of

Knn(k) for each of the two subnetworks, namely Nmp and (1 − m)Np. In other

words, the overall values of Knn(k) for each signed subnetwork result from the

different (and complementary) contributions of the two groups in which, in turn,

nodes have positive and negative degrees of different (and non-overlapping) values

(see Fig.2.8a). For instance, in the case of the positive subnetwork, and when

m > 0.5 and A is the larger group, the contribution to the overall K+
nn(k+) from

group A isK+
nn(k(A,+)) = Npm (which in turn corresponds to the larger values of k+),

while the contribution from group B is K+
nn(k(B,+)) = Np(1−m) (which corresponds

to the smaller values of k+). As indicated by Fig.2.8b, when the two contributions

are combined, K+
nn(k+) takes on two distinct constant values in correspondence of
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two distinct sets of values of the positive degree, thus yielding the positive trend

that signals the assortative mixing pattern of the positive subnetwork. Similarly, the

negative trend of K−nn(k−) for the disassortative negative subnetwork results from

the combination of the two distinct and complementary contributions from the two

groups: K−nn(k(A,−)) = Npm from group A in correspondence of the smaller values

of k−, and K−nn(k(B,−)) = Np(1−m) from group B in correspondence of the larger

values of k−.

These trends are primarily due to the value of m which, in turn, affects the

opportunity for nodes to create links within and across groups. Notice that, on

average, the value of the degree of a randomly chosen node from a network with

a standard binomial degree distribution is Np, regardless of which group the node

belongs to. However, the polarization of the network into two groups of unequal

size (i.e., m 6= 0.5), in combination with our rule of sign attribution, generates

heterogeneity across nodes in terms of the proportion between positive and negative

links incident upon them. Let us suppose that group A is the larger one. Each

node, regardless of the group it belongs to, is surrounded approximately (for large

N) by Nm potential neighbors from the dominant group (A) and (1−m)N potential

neighbors from the smaller group (B). Thus, each node, regardless of its affiliation,

is likely to direct most of its links toward the nodes that belong to the larger group.

This, in turn, has a direct bearing on the relative number of friends and enemies a

node can have, depending on the group it belongs to. Because a node that belongs

to the larger group has a higher chance than a node from the smaller group to direct

links toward nodes of its own group (i.e., A), then as a result of our rule of sign

attribution a node from the larger group also has a higher chance than a node form

the smaller group to create friends by forging positive links with others. By contrast,

a node from the smaller group (B) is more likely than a node from the larger group

(A) to create links across groups, which in turn leads the former node also to be more

likely to create more negative links than the latter. This difference in opportunity

of “signed interactions” is responsible for the two different values obtained for the

positive and negative Knn(k) attributable to the two groups of nodes, and can

ultimately explain the assortative and disassortative mixing patterns, respectively

of the positive and negative subnetworks.
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Figure 2.8: The positive and negative degree distributions p(k+) and p(k−)
and the trends of K+

nn(k+) and K−nn(k−) for a network with a binomial
unsigned degree distribution and polarization into two groups. A network
with a binomial degree distribution was created, with N = 10, 000, p = 0.01 and
m = 0.85, and in which A is the larger group. Panel (a) shows the positive and
negative degree distributions, p(k+) and p(k−). Findings indicate the two distinct
distributions for each signed subnetwork, one attributable to group A and the other
to group B. The inset shows the degree distribution of the unsigned network. Panel
(b) displays the trend of K+

nn(k+) and K−nn(k−), respectively for the positive and
negative subnetworks. For each subnetwork, the value of Knn(k) is constant within
the same group, i.e., 85 for group A and 15 for group B. The two panels indicate
that there are two corresponding gaps between values for Knn(k) and the signed
degree distributions. This is due to the fact that the minimum value of degree
in the unsigned network is 60 (see inset). Each node, regardless of the group it
belongs to, has on average 85% of its neighbors from group A. If the node with
degree 60 belongs to group A (B), it has, on average, k+ = 51 (k− = 9) in the
positive (negative) subnetwork. Similarly, the maximum negative (positive) degree
for a node in group A (B) would depend on the maximum value of the degree in
the unsigned network, i.e., 140, yielding k− = 21 (k+ = 119). This therefore causes
a gap between degrees ranging from 21 to 51, as shown in both panels. Panel (b)
indicates the positive and negative trends for Knn(k), respectively for the positive
and negative subnetworks, when both contributions from the two groups are taken
into account.
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2.4.2 Signed networks with power-law degree distributions

Previous empirical research has documented a large number of social networks char-

acterized by statistically heterogenous connectivity: while the majority of nodes

have only few connections, a minority have a disproportionally large amount of

links to other nodes [14]. For this reason, I now move beyond the case of random

networks with binomial degree distributions, and study the mixing patterns of more

realistic signed networks characterized by power-law degree distributions. To this

end, I introduce a generative model of scale-free signed networks. The choice of the

model is also motivated by the need to ensure that the resulting unsigned network

(i.e., the network obtained prior to the allocation of signs to links) is characterized

by non-trivial degree correlations. This, in turn, will serve a two-fold purpose. First,

it will help create networks with structural properties that are comparable to those

observed in a variety of real-world networks [66, 75, 80]. Second, it will allow us to

investigate whether the degree correlations of the unsigned network may be respon-

sible for the difference between the mixing patterns of the positive and negative

subnetworks.

I begin by constructing unsigned networks characterized by a power-law distribu-

tion and assortative mixing by degree. This will enable us to replicate the patterns

observed in both the Slashdot and Epinions unsigned networks (see Fig.2.3). Among

the models that satisfy the above requirements, in what follows I will use the copying

model [81] and an extension of the rewiring model proposed by Xulvi-Brunet and

Sokolov [82] based on the scale-free Barabási-Albert network [14].

First, the copying model begins with an initial connected network of n nodes.

At each step, a new node is added to the network and another incumbent node is

selected by chance: with a probability p the new node will create a link with one of

the neighbors of the selected node, and with a probability 1− p it will create a link

with a node selected at random. Second, the rewiring model [82] is suitably applied

to an initial network with a given scale-free degree distribution obtained by following

the rules of the Barabási Albert model [14]. The rewiring process is then modeled as

follows: (i) two links are selected at random; (ii) the four nodes connected through

these two links are sorted in increasing order of degree; (iii) if the first two nodes

and the last two nodes are not connected, links are rewired accordingly; otherwise,
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(iv) the two links are dismissed, and a new pair of links are selected. After several

iterations, an assortative network can be obtained. Both methods indeed generate an

unsigned, undirected and assortative network characterized by a power-law degree

distribution.

Drawing on these two generative models, I obtain unsigned networks that I then

transform into signed networks by applying the last two rules from the basic model

in Section 2.4, namely: (i) polarization of the network into two mutually exclusive

groups of nodes; and (ii) attribution of a positive sign to links within groups and

a negative sign to links across groups. Just as with the uncorrelated case, I then

extract the positive and negative subnetworks from the signed networks, detect the

mixing patterns of these subnetworks, and compare them with the patterns observed

in the unsigned network.

To shed light on the role of the sign of links in the emergence of mixing patterns,

I vary the rules governing network polarization and sign attribution, and extract and

assess the corresponding signed subnetworks. First, as with the uncorrelated case, I

manipulate network polarization by varying the degree to which the two groups differ

in size. To this end, I use different values of m, the probability that a node belongs

to one of two groups: as usual, at m = 0.5, the network is perfectly polarized, while

for values approaching zero and one, the network becomes increasingly homogeneous

and dominated by one single group [77].

Second, by manipulating our rule of sign attribution, I aim to vary the degree

to which the signed network is structurally balanced. Previous research has long

provided empirical evidence in favor of the tendency of individuals to avoid or al-

leviate cognitive tension by transforming an unbalanced structure into a balanced

one [83, 84]. Yet, a number of studies have equally suggested that many observed

signed structures for social groups are not structurally balanced, at least when they

are assessed at single points in time [85, 86]. To account for such empirically docu-

mented variations in structural balance, in what follows I test whether this property,

in combination with other conditions, is indeed necessary for the emergence of non-

trivial mixing patterns within signed networks that differ from those observed in

the corresponding unsigned networks. In this sense, I extend our previous analysis

by investigating whether the sign of links can still produce some effect upon degree

correlations also when the network is unbalanced.
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Notice that, as implied by the structure theorem [36, 78], to obtain structurally

unbalanced networks, it would not be possible to divide the population of nodes

into two even or uneven groups and then impose our homophily-based rule of sign

attribution (i.e, positive links within groups and negative links across groups). In-

deed, from the structure theorem it follows that this procedure would necessarily

generate a structurally balanced network. To obtain an unbalanced network, I there-

fore reshuffle the signs of the links within the corresponding balanced networks. In

this way, the random reallocation of signs to links transforms the network from a

balanced to an unbalanced state.

In summary, starting from assortative unsigned networks with a power-law degree

distribution, I create four distinct groups of signed networks and corresponding

subnetworks by combining the following structural conditions: (i) even versus uneven

allocation of nodes into two mutually exclusive groups; and (ii) balanced versus

unbalanced network structure. For the sake of simplicity, I label the four groups of

networks as follows:

Ass/Het/Bal: (i) The unsigned network is assortative; (ii) nodes are hetero-

geneously allocated to groups; and (iii) the signed network is balanced.

Ass/Hom/Bal: (i) The unsigned network is assortative; (ii) nodes are ho-

mogeneously allocated to groups; and (iii) the signed network is balanced.

Ass/Het/Un: (i) The unsigned network is assortative; (ii) nodes are hetero-

geneously allocated to groups; and (iii) the signed network is unbalanced.

Ass/Hom/Un: (i) The unsigned network is assortative; (ii) nodes are homo-

geneously allocated to groups; and (iii) the signed network is unbalanced.

Results are shown by Fig.2.9, in which the unsigned assortative networks were

generated through the copying model [81]. Each panel of Fig.2.9 shows the trends of

Knn(k) for the unsigned network, for the positive subnetwork, and for the negative

subnetwork obtained under each of the four combinations of structural conditions.

Findings clearly indicate that most signed subnetworks retain the assortative pattern

that characterizes their corresponding unsigned networks. There is, however, an

exception: as indicated by panel (a) of Fig.2.9, there is one case in which a decreasing
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Figure 2.9: Positive and negative subnetworks obtained from an assorta-
tive unsigned network with power-law degree distribution. The unsigned
network was generated through the copying model with N = 104 nodes. Findings
indicate that different mixing patterns for the positive and negative subnetworks are
obtained only when the assortativity of the unsigned network is combined with the
heterogeneous allocation of nodes into groups and with the presence of structural
balance.

trend ofKnn(k) for the negative subnetwork is associated with an increasing trend for

the unsigned network and the positive subnetwork. In particular, this opposite trend

in mixing patters occurs when the following three conditions are jointly satisfied:

1. the unsigned network is assortative;

2. nodes are unevenly allocated into two mutually exclusive groups; and

3. the signed network is structurally balanced.

Under the above conditions, the disassortative pattern of the negative subnet-

work would therefore remain hidden if the signs of links were removed from the

global signed network and the nature and intensity of the mixing patters were sim-

ply inferred from the resulting unsigned network. Similar results are obtained when
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the assortative unsigned network is created by applying the rewiring model by Xulvi-

Brunet and Sokolov [82] to the scale-free Barabási-Albert network [14]. In this case,

once again the negative subnetwork exhibits a variation in mixing patterns and

becomes disassortative when the unsigned network is assortative, the groups are

uneven in size, and the signed network is balanced.

I now test whether the mixing patterns in the positive and negative subnetworks

differ when the unsigned network is disassortative. To this end, I create an unsigned

network following the rules of the fitness model of growing networks, originally pro-

posed by Bianconi and Barabási [87]. The results from our simulations are shown

by Fig.2.10, in which the trend of Knn(k) is reported. If the unsigned network is

characterized by a disassortative pattern, the patterns for the positive and nega-

tive subnetworks will always have the same trend across any of the four possible

combinations of our two initial conditions. Subnetworks will always retain their

disassortativity, regardless of the structural balance of the global network and the

size of the groups.

Table 2.3 reports the correlation coefficient r of the degrees of connected nodes,

for each of the networks and subnetworks analyzed above. The Table clearly indi-

cates that there is only one case in which the mixing patterns of the positive and

negative subnetworks differ. This variation indeed occurs when the unsigned net-

work is assortative, the signed one is balanced, and groups differ in size. Under this

combination of structural conditions, the correlation coefficient becomes negative

for the negative subnetwork, while it remains positive for the positive one. Similar

results are obtained when the assortative unsigned network is created by using the

rewiring model by Xulvi-Brunet and Sokolov [82].

The reason for the opposite trends in the mixing patterns of the two signed

subnetworks is similar to the one that explains the transformation of an unsigned

uncorrelated random network into correlated signed subnetworks. As before, this

reason is two-fold. First, the polarization of the network into two groups of unequal

size is responsible for the heterogeneous distribution across nodes of opportunities

of creating links within and across groups. Second, the requirement of structural

balance (i.e., the rule of sign attribution) transforms these heterogeneous opportu-

nities of social contact into equally heterogeneous opportunities to create friends

or enemies. While a node of the larger group has a higher chance than a node
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Figure 2.10: Positive and negative subnetworks obtained from a disassor-
tative unsigned network. The unsigned network was obtained by removing the
signs from the links of the network generated through the fitness model of growing
networks, with N = 104 nodes. The unsigned network is characterized by a power-
law degree distribution. Results indicate that across all combinations of the three
conditions the mixing patterns for the positive and negative subnetworks have the
same trend. In all panels a log-binning plot was reported in order to obtained a
clearer trend for Knn(k).
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The case of two groups
Conditions Dis. Unsigned Network Ass. Unsigned Network

ru = −0.09413 ru = 0.16249
Het/Bal r+ = −0.09853 r+ = 0.15598

r− = −0.10864 r− = −0.3509
ru = −0.09413 ru = 0.16249

Hom/Bal r+ = −0.09199 r+ = 0.12062
r− = −0.09692 r− = 0.14804
ru = −0.09413 ru = 0.16249

Het/Un r+ = −0.093570 r+ = 0.15243
r− = −0.096497 r− = 0.08244
ru = −0.09413 ru = 0.16249

Hom/Un r+ = −0.09748 r+ = 0.12596
r− = −0.090807 r− = 0.13250

Table 2.3: Values of the correlation coefficient r for the case of polarization
of the network into two groups. The coefficient was calculated for each of the
four combinations of structural balance (Bal) and unbalance (Un), and even (Hom)
and uneven (Het) group size. Under each of the four combinations, the coefficient
was calculated distinctively for each of the two cases in which the unsigned global
network is assortative (and obtained through the copying model) and disassortative
(and obtained with the fitness model). The variation in sign of the correlation
coefficient between the positive and negative subnetworks occurs only when the
unsigned network is assortative, the signed network is balanced, and groups are of
unequal size.
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of the smaller group to create intra-group connections, the latter node will have a

higher chance to create inter-group connections than the latter. This imbalance of

opportunities will be translated into the differential propensity nodes will have to

create friends or enemies, depending on which group they belong to. It then follows

that, when the whole unsigned network is assortative (disassortative), the positive

subnetwork will remain assortative (disassortative) as it only includes intra-group

connections between nodes of comparable propensity to make friends. Conversely,

because the negative subnetwork only includes inter-group links, it will connect

nodes that differ in their propensity to make enemies. For this reason, it will always

remain disassortative, also when the unsigned network is assortative.
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2.5 Extending the model: The case of three groups

Following the theoretical avenue that led Davis [88] to generalize the formalization

of the theory of structural balance, I extend our model with network polarization to

also account for the case in which nodes can be allocated to three or more mutually

exclusive groups. As observed by Davis [88], individuals often split into more than

two mutually hostile groups. To take this into account, Davis provided a general-

ization of the structure theorem [36, 78] by uncovering the necessary and sufficient

condition for a signed network to be clusterable into two or more groups of nodes

such that links connecting nodes within the same group are positive, and links con-

necting nodes from different groups are negative. Such condition was identified in

the absence of cycles with exactly one negative link. It follows that all structurally

balanced networks are clusterable, but not vice versa. Whether clusterable networks

are also balanced depends on the number of disjoint groups of nodes.

The analysis carried out by Davis provides us with a theoretical backdrop against

which I can further refine our model. First, I investigate whether our model is robust

against the number of groups, namely whether the same results are obtained when

the network splits into more than two mutually exclusive groups, but still remains

structurally balanced. Second, I study our model in the more general case in which

the network is clusterable into more than two groups, but it is not balanced. In what

follows, I will focus our attention only on the case of three groups. The analysis can

easily be generalized to any number of mutually exclusive groups.

Fig.2.11 shows a schematic representation of a network that splits into three

mutually exclusive groups. The rule of sign allocation remains the same as before:

links between nodes of the same group are assumed to be positive, and links between

nodes from different groups negative. Let us assume that each node can belong to

one of the three groups with a given probability p. I then have four possible cases:

1. homogeneous allocation of nodes into groups of equal size, i.e., p1 = p2 = p3;

2. heterogeneous allocation of nodes into groups of uneven size, such that one

group dominates the other two, i.e., p1 > p2 ' p3;

3. heterogeneous allocation of nodes into groups of uneven size, such that two

equally sized groups dominate a less populated one, i.e., p1 ' p2 > p3; and
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Figure 2.11: The case of three mutually exclusive groups. Schematic rep-
resentation of the allocation of nodes into three groups such that links connecting
nodes of the same group are positive (green), and links between nodes from different
groups are negative (red).

4. heterogeneous allocation of nodes into groups of uneven size, such that, for

any two groups, one dominates the other, i.e., p1 > p2 > p3.

In what follows, I will concentrate on the first two cases. Results concerned with

the third case will not be reported here because they are qualitatively similar to what

is obtained with: (i) two equally sized groups, when the two dominant groups are

much larger than the third one; and (ii) three equally sized groups, when differences

in size become negligible. Similarly, the fourth case can be reduced to the previous

cases, depending on the difference in size between groups.

To create a structurally balanced network, I impose the following constraint.

When there is a (negative) link between two nodes that belong to two different

groups, the two connected nodes are not allowed to share a common enemy, that

is they are not allowed to be connected with the same node from the third group.

In this case, each of the two nodes will change the target of the link to the third

group, so as to avoid triangles in which all links are negative. In other words, two

nodes may share a common enemy either when they are not connected themselves,

or when they are connected and belong to the same group. In this sense, allowing

coalition formation against a common enemy to occur only between nodes of the

same group will preserve our rule of sign allocation that confines positive links only

within, but not across, groups.

The trend of Knn(k) for the case of three groups is similar to the one obtained
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with two groups. Fig.2.12 reports the value of Knn(k) for the unsigned network

and signed subnetworks under the joint conditions of assortative unsigned network,

structural balance, and uneven allocation of nodes into three groups (i.e., condition

2 above). As was the case with the two groups, the negative subnetwork, unlike the

positive one, is characterized by a disassortative mixing pattern. As before, these

opposite trends in mixing patterns do not emerge under all the other combinations

of conditions, and in particular when networks are clusterable yet unbalanced [88].

Results thus suggest that clusterability is not a substitute for balance: networks that

contain all-negative triangles connecting nodes from distinct groups do not display

correlation patterns that differ from those obtained from unbalanced networks.

Table 2.4 further corroborates the results from Fig.2.12. The Table reports

the values of the correlation coefficient r of the degrees of connected nodes in the

unsigned network and the signed subnetworks. Just as in the case of two groups, the

mixing pattern of the negative subnetwork differs from the patterns of the unsigned

network and positive subnetwork only when the unsigned network is assortative, the

signed network is balanced, and the three groups differ in size. Indeed under these

conditions, the correlation coefficient is negative for the negative subnetwork, while

it remains positive for the positive one.
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Figure 2.12: Positive and negative subnetworks obtained from an assorta-
tive unsigned network in the case of three groups. The unsigned assortative
network was obtained as in Fig.2.9. Panel (a) reports the different mixing pat-
terns for the positive and negative subnetworks obtained under the conditions of
structural balance and heterogeneous allocation of nodes into three groups. Panel
(b) reports results obtained for a network with groups of unequal size and that is
clusterable (Clust) but unbalanced.
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The case of three groups
Conditions Dis. Unsigned Network Ass. Unsigned Network

ru = −0.09413 ru = 0.16249
Het/Bal r+ = −0.08933 r+ = 0.19226

r− = −0.11434 r− = −0.2404
ru = −0.09413 ru = 0.16249

Hom/Bal r+ = −0.09234 r+ = 0.15685
r− = −0.09535 r− = 0.14271
ru = −0.09413 ru = 0.16249

Het/Un r+ = −0.092480 r+ = 0.15243
r− = −0.095247 r− = 0.07686
ru = −0.09413 ru = 0.16249

Het/Un/Clust r+ = −0.08364 r+ = 0.14912
r− = −0.09524 r− = 0.12176
ru = −0.09413 ru = 0.16249

Hom/Un r+ = −0.09338 r+ = 0.13252
r− = −0.09395 r− = 0.12230
ru = −0.09413 ru = 0.16249

Hom/Un/Clust r+ = −0.093371 r+ = 0.18380
r− = −0.094508 r− = 0.10900

Table 2.4: Values of the correlation coefficient r for the case of a network
that splits into three groups. The coefficient was calculated for each of the four
combinations of structural balance (Bal) and unbalance (Un), and even (Hom) and
uneven (Het) group size. Under each of the four combinations, the coefficient was
calculated distinctively for each of the two cases in which the unsigned global network
is assortative (and obtained through the copying model) and disassortative (and
obtained with the fitness model). The variation in sign of the correlation coefficient
between positive and negative subnetworks occurs only when the unsigned network
is assortative, the signed network is balanced, and the three groups are of unequal
size such that one dominates the other two. The coefficient was also evaluated for
the cases in which the network is clusterable (Clust) but unbalanced. Results are
in qualitative agreement with the values obtained when the network is unbalanced
and unclusterable.
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2.6 Conclusions

This study was prompted by the empirical analysis of two signed social networks

and by the observation that their mixing patterns by degree vary depending on

the sign of the link. In particular, findings indicates that negative subnetworks are

characterized by disassortative patterns, in sharp contrast with their corresponding

unsigned networks and the positive subnetworks. The emergence of opposite trends

of mixing patterns seems to be at variance with the widely accepted belief that so-

cial networks are predominantly assortative, possibly as a result of their tendency

to organize themselves into communities [67]. Because both the positive and nega-

tive subnetworks have an underlying community structure, it follows that the social

nature of links and the partition of nodes into communities are not, in themselves,

a sufficient reason that explains why some observed social networks exhibit positive

degree correlations. Results indeed seem to suggest that the pattern of such corre-

lations depends on the sign of the links between nodes, and thus ultimately on the

type of the social relationship between individuals.

To study the relation between sign of links and mixing patterns, I proposed a

class of simple models in which nodes split into two mutually exclusive groups. I

show the simple case of unsigned random uncorrelated networks, and then extended

the analysis by also investigating unsigned correlated networks with power-law de-

gree distributions, and cases in which the network is organized into three or more

groups. Upon attribution of signs to the links of an originally unsigned network,

two distinct signed subnetworks could be extracted, each including only links with a

positive or negative sign. The comparative assessment of the degree correlations in

these subnetworks suggested that, when the signed network is structurally balanced

and the groups differ in size, the negative subnetwork is always characterized by a

disassortative pattern, regardless of the correlation patterns displayed by the posi-

tive subnetwork and the corresponding unsigned network. In particular, under the

combined conditions of structural balance and uneven group size, the correlation

patterns of the two signed subnetworks differ when the unsigned network is either

uncorrelated or assortative. In either case, the positive subnetwork is assortative,

while the negative one is disassortative. In particular, the case of networks that split

into three or more mutually exclusive groups suggested that clusterability is not a
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substitute for balance: when networks are clusterable but unbalanced, both signed

subnetworks display the same degree correlations as the one in the corresponding

unsigned network.

By identifying the conditions under which degree correlations vary depending on

the sign of the links, this study suggests that ignoring the sign would result in a loss

of information on the structural properties of the network that would simply remain

hidden in the unsigned network. Moreover, findings indicate that assortativity, often

regarded as a characteristic signature of most social networks, can be justified not

simply by the social character of these networks, but more precisely by the positive

nature of the social relationships they embody. Indeed the broad category of social

networks typically subsumes a variety of relationships and interactions that are often

difficult to disambiguate and may, as result, intermingle with each other and remain

confounded in one single type of connection. In such cases, detecting assortativity in

a network may simply indicate either that the nature of the social relationships was

ignored or that their positive components outweigh the negative ones. Conversely,

disassortativity may indicate that the unsigned network is in itself disassortative or

that the negative components of the links outweigh the positive ones. Finally, a lack

of degree correlations may result simply from an unsigned uncorrelated network

or from cases in which the positive and negative components of the relationships

compensate each other out.

This analysis can be regarded as a platform for further studies of mixing patterns

in complex networks. If degree correlations vary according to the sign and nature of

the connections, this study suggests that the sign of the links could, in principle, be

inferred simply from the analysis of the structural properties of a network. From this

perspective, findings can help inspire the development of a quantitative measure for

uncovering the hidden sign of the links from the type of mixing patterns exhibited

by a network. This would prove to be useful especially in cases where the sign of

links could not be assessed directly or it would be too costly to do so. For instance,

gauging the collaborative or competitive properties of the relationships within and

between organizations is typically constrained by a number of biases originating from

the subjective, multiplex and complex nature of such relationships. These biases,

however, can easily be overcome when the sign and nature of the relationships can be

extracted directly from the degree correlations of the intra- and inter-organizational
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networks.
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Chapter 3

The nature of competition in

start-up ecosystems

“There is a book yearning to come out of me:

about how we can build the new collaboration

economy, and the role of ’openness’ in our

quest for efficient use of resources and as a

driver of innovation”

— Robin Chase, CEO of Zipcar

“I have been up against tough competition all

my life. I wouldn’t know how to get along

without it.”
— Walt Disney

In the previous chapter I have described how positive and negative connections

among individuals in social networks can shape the network topology. However,

positive and negative connections are not a prerogative of social networks. Other

networks such as organization networks, in which nodes represent groups of peo-

ple or companies, may exhibit positive (e.g. collaborative) and/or negative (e.g.

competitive) relationships as well.

In this chapter, I will focus on one particular type of organization network whose

nodes represent start-ups, i.e., early-stage and innovative companies. During the last
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decade we have witnessed an unprecedented growth in the interest of entrepreneurs

and governments in start-ups. Because of their large impact on the world’s economy

and society, studies related to start-ups have started to attract both the interest of

scholars, who aim to understand the mechanisms that lead companies to success,

and of investors, who see the opportunity to further their returns.

With the spread of start-ups around the world, websites such as CrunchBase.com

and Angel.co have started to collect information on start-ups with the intention to

discover industry and investment trends. Based on CrunchBase’s website, I have

constructed a database that contains information concerning the individuals that

are (or have been) working in each start-up and the location of the companies’

headquarters. This dataset will allow me to create different types of networks of

start-ups, to produce geographic analyses, and to study the movement of employees

from one company to another.

Moreover, each company registered on CrunchBase can declare one or more in-

dustry sectors (or markets) in which its business is involved. Unfortunately, this

information is unstructured and often imprecise. In order to make use of the infor-

mation related to market sectors, I will propose a method to group industry sectors

into different categories. The method rests on the construction of the network of

markets based on the co-occurrence of markets tags in each start- up. In order

to extract a hierarchical structure out of this network I will combine two network

analysis methodologies. As a result, I will create what I have defined as the mar-

ket macro categories. I will make use of these categories to study the similarities

and differences between nations (in which the start-ups’ headquarters are located)

through the use of a hierarchical clustering methodology.

The CrunchBase dataset also provides a list of companies that each start-up

declares as its direct competitors. I will evaluate the effects of competition on

both the mobility of employees between companies and on the success of the nation

in which they are located. In order to do so, in both cases, I will use a network

approach. Namely, I will use the information concerning the companies’ competitors

and their employees to create two start-up networks. In the first network (the

declared-competition) a start-up i is connected to a start-up j if i considers j as

its competitor. In the second network (the mobility network) two start-ups are

connected if there has previously been an exchange of employees between them.
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In order to evaluate the effects of competition on the mobility of employees

between companies, I will produce a third network as the overlap between nodes and

links among the declared-competition network and the mobility network. Results

indicate that the number of overlapping links between these two networks in respect

of the number of overlapping nodes is very small, suggesting that the presence of

competition has a negative impact on the flow of employees between competitors.

Finally, I will move on to the study of the effects of competition on the success of

the ecosystem of a nation, i.e., the set of start-ups whose headquarters are located

in a nation. I will propose to quantify the success of a nation as the ratio between

the number of start-ups that have either undergone an IPO, been acquired, and/or

acquired other companies, and the total number of companies that reside in the

same nation. In order to quantify the level of competition of a nation, I will define

a novel measure that I have named as the competition blocking coefficient. Results

indicate that the success of a nation anti-correlate with the presence of competition,

suggesting that the more a national ecosystem is competitive, the less successful it

is.

3.1 Introduction

3.1.1 Positive connections: collaboration and creativity among

organizations, a short review

I start this chapter with a brief digression concerning positive connections among

organizations. One of the best examples of combining the use of network analysis

and positive connections between organizations is the work of Brian Uzzi and Jar-

rett Spiro, titled “Collaboration and creativity: The small world problem” [89] in

which they analysed the effects of collaboration among artists on the “creativity” of

Broadway musicals between 1945 and 1989.

Creativity has long been studied in various fields across the social, behavioural,

and organizational sciences, both at the individual and the organization or team

level [90–92]. Social contexts are the environment within which creativity can benefit

from collaborations among different people or teams. Recently, there has been

an increase in interest in network perspectives on innovation in domains typically
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related to knowledge creation, and particularly scientific collaboration [76,93,94].

Collaboration across different domains or groups improves creativity as a result

of the matching and sharing of diverse ideas, creative materials, and ways of thinking

or behaving [47, 48]. This relates to the network foundations of social capital1 and

its effects on performance [1, 49, 95]. Over the last years, social network analysts

have become interested in the network foundations of the arts and creativity [96,97].

By creating and analysing a bipartite graph in which artists are connected to their

affiliations, Uzzi and Spiro found that the generated network has the properties of

a so called “small world” network, i.e., a network with a high clustering coefficient

and a small shortest path length (the average shortest path length grows as the

logarithm of the number of nodes). They realised that the presence of a small world

network has a significant impact on creativity and on performance (measured in

terms of financial and artistic success). In particular, they found that collaboration

has a non-linear effect on performance: the more the network exhibits collaboration,

the more performance benefits from it, but only up to a given threshold above which

the effects reverse.

Uzzi and Spiro argue that the presence of a small world network allows creative

ideas that are generated by teams (i.e., highly connected clusters) to diffuse towards

other teams, and to produce different and original material. However, if the whole

network becomes too connected, the set of ideas from which every team can draw

on (through their connections) becomes the same, and the novelty generated by the

recombination of other teams’ ideas ends up to be common material for all network

actors.

3.1.2 Negative connections: competition among organiza-

tions

Over the last decades, the way of running a small business has drastically changed

with the raise of start-ups all around the world. In the collective imagination there

is a myth that with a garage and the right idea, it is easy to make a billion dollars

company. Stories about the birth of Facebook, Apple, and Microsoft, where a geek,

a computer, and his or her idea were the starting point of a successful business,

1For a discussion on social capital, see Chapter 5.
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have reinforced the belief that these factors are the key ingredients behind success.

However, reality is often different. What is frequently omitted or rarely highlighted

in these stories is that the environment surrounding these “geniuses” and the network

of professional relationships that they constructed were fundamental in fostering and

nurturing their success. For instance, Steve Jobs was undoubtedly an innovator and

a visionary, but without the help of Stephen Wozniak, who was working at Hewlett-

Packard (HP) while they were creating the first Macintosh prototype, and was able

to bring pieces of hardware from HP to their garage, he would probably have had

difficulties creating his innovative computer, and today we might not be surrounded

by back-lighted bitten apples.

In a working paper, that I will not discuss in this thesis, my collaborators 2 and I

found that a key factor that leads start-ups to success is a “good” network position.

We propose a mathematical quantitative framework to define a good position and

to predict the success of a start-up by correlating its success with its position in

the network of professional relationships mediated by the social interactions among

individuals (e.g., inventors, employees, advisors, or founders). Thus the connections

created between start-ups can be interpreted as the transfer, recombination, and

exchange of knowledge or know-how between them.

Our findings indicate that the success of a start-up can be predicted based on

the company’s structural position in the network. The success rate of our prediction

method ranges between 30% and 50%, thus well above the rate typically achieved by

private investors (i.e., 10%3) through costly and labour-intensive screening processes.

We also find that the success of the prediction correlates with historical economic

trends and downturns. In order to define the success of a start-up we assign a

binary success variable to each start-up if they have either done an IPO, acquired

another company, or have been acquired by another company. If at least one of

these conditions is fulfilled, the start-up is considered successful.

Thanks to the availability of big data on start-ups and their employees, I am able

to extract and define two other start-up networks on a worldwide scale. The first

network I construct focuses on the relationships of competition between start-ups.

2Moreno Bonaventura, Pietro Panzarasa, and Vito Latora
3For example, the famous accelerator 500-Startups has an overall success rate of 10% with 1, 054

investments and only 120 companies acquired or publicly traded. (ref: crunchbase.com)
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The nature of competition among two companies is either direct or indirect. For a

start-up, direct competitors represent a higher obstacle than indirect ones. Direct

competitors derive from the same industry sectors, producing or selling the same

services or products. In order to survive the race of competition, new born compa-

nies are forced to create either innovative products or radically new industry sectors.

I will create what I defined as the declared-competition network based on the list of

companies that each start-up declares as their direct competitors. The second start-

up network draws on the movement of people from one company to another, which

I will define as the start-up mobility network. Combining the declared-competition

and the mobility networks I will show that competition strongly prevents the move-

ment of people between companies.

I then move to the analysis of innovative ecosystems, as the collection of start-ups

whose headquarters are based in a given nation. To define an innovative ecosystem,

the choice of a nation (or State in the case of the US) is an adequate unit of analysis

as it imposes physical boundaries and makes it possible to obtain a good statistics in

terms of the number of start-ups located in them. The flourishing of an innovative

ecosystem such as Silicon Valley has been, for many years, linked to a culture of

openness towards the free circulation of people between companies. I will propose a

quantitative, rigorous framework to correlate the presence of competition between

start-ups within national boundaries with the success of the overall set of companies

located within the national boundaries.

Before I start the analysis of the start-up networks, I will describe the dataset

from which I have retrieved the information on start-ups. Subsequently, I will show

the different industry sectors associated with each start-up. Unfortunately, the

information provided by CrunchBase is unstructured and often imprecise, which

brings to the creation of spurious market associations to each company. I will

propose a method to extract a hierarchical structure which associates each market

to a macro category. Based on these macro categories, I will propose a methodology

to characterise innovative national ecosystems and to outline their differences and

similarities through a hierarchical clustering technique.
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3.2 The data

The online publisher of technology industry news TechCrunch in 2007 created the

start-up database CrunchBase (www.crunchbase.com). CrunchBase is considered “a

minor miracle[...], a kind of stats based Wikipedia for start-ups” 4. The database

contains information about start-ups and the people who currently work or previ-

ously worked for them. Most of the information is manually managed by several

contributors affiliated with the CrunchBase platform, and voluntarily by founders

and investors. I collected the data from the Crunchbase.com Web API and subse-

quently stored them in a Neo4J database. Data in the local database is as at August

2016.

Geography - CrunchBase collects information about companies from all over

the world. For each company I have information concerning where its headquarters

are based. Locations are hierarchically structured, with information concerning the

city and the nation in which a start-up’s headquarters is located. A first analysis

shows that 55% of the registered companies are located in the U.S. The old continent

is the second bigger cluster in terms of the number of start-ups per nation led by the

United Kingdom and Germany. Another highly dense geographical cluster is Israel,

which, to date, is among the most prosperous and highly innovative start-up centre

in the world. Less dense concentrations of start-ups can be found in Australia, East

Asia, and South America, showing that the rising up of start-ups has become a

worldwide trend. The growth and spread of start-up ecosystems around the world

may appear similar: the trend for cities and nations is to economically invest start-

ups to help them to develop and grow while hoping that they will become successful.

But not all the national ecosystems are equal. In the next section I will propose a

method to evaluate similarities and differences among countries.

Mobility - Each start-up present a list of employees who are playing (or have

played) a role in it on their CrunchBase web-page. Each person is provided with a

profile page (similar to a Linkedin user page) in CrunchBase in which it is possible to

retrieve the list of companies that he or she is (or has been) involved in. Most of this

information is time-stamped. This allows a reconstruction of historical movements of

4http://www.forbes.com/sites/edmundingham/2014/11/05/crunchbase-is-such-a-valuable-
start-up-analysis-tool-but-the-problem-is-it-has-no-filter/#69b53be833c8
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people among start-ups to be produced. The data is sometime incomplete or presents

inconsistencies, such as a person’s role starting at a date prior to the company’s

foundation. In this case, I have removed the inconsistencies, preserving only the

most reliable information according to the trust-code value provided by CrunchBase

itself, which evaluates the “goodness” of the information provided. I will use of the

temporal information to describe the displacement of people from one company to

another, with which I will create the start-up mobility network (see Section 3.4).

Positions covered by the employees registered in CrunchBase spread on different

areas and levels. The most frequent job titles that appear in the dataset are reported

in Tab.3.1, and a pie chart representation is reported in Fig.3.1. Most of the people

registered in CrunchBase hold the title of Chief Executive Officer (CEO), founder,

co-founder, and/or vice-president. The job position rank is generated by aggregating

all positions covered by all people along their career.

Markets - Further information related to each start-up that can be retrieved

from CrunchBase data is the company’s industry sectors or markets. Each company

can indicate one or more industry sector through a free-text attribution method.

Unfortunately this approach may produce misspelled sectors and imprecisions which,

by consequence, generates the presence and the proliferation of spurious market

attributions. However, it is still possible to extract some meaningful insight from the

raw data. In fact, Tab.3.1 shows most used “market-tags” and in Fig.3.1 follows a pie

chart representation. The possibility to freely add new market-tags does not allow

CrunchBase to create a hierarchical classification of the markets. In the following

section I will construct the network of markets based on the co-occurrence of market

tags in each start-up. Through a combination of two network techniques I will show

the presence of a hierarchical structure with which I define market macro categories

to which each market will be assigned.

News - CrunchBase information is not just manually curated, it is also enriched

by bots which daily scrape the web looking for news about IPOs, acquisitions, and

funding rounds on other platforms. I am going to use this information in order to

assign a success binary variable to each start-up that has been acquired, and/or has

acquired other companies, and/or has undergone and IPO. Finally, I will use this

success variable in order to evaluate the success of a whole nation.

Competition - CrunchBase does not only provide information related to the
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Job title N. of entries Market sector N. of companies
CEO 48104 Software 23678
Founder 38816 Mobile 8936
Co-Founder 36428 E-Commerce 5692
Vice-President 29477 Curated web 4527
Board of Directors 19420 Healthcare 4071
Board Member 14591 Advertising 3876
President 13146 Enterprise Software 2769
CTO 9060 Education 2357
CFO 6295 Services 2030
Advisor 8118 Biotechnology 2007
COO 7923 Consulting 1931
Director 6857 Finance 1865
Chairman 3667 Social media 1599
Associate 2510 Information Technology 1459
Principal 2318 Games 1389
Consultant 2306 Manufacturing 1370
Software Engineer 2208 Financial Services 1364
Investor 1486 Analytics 1072

Table 3.1: Top job titles and the most used market tags in Crunchbase.

location, employees, and industry sectors of a company, but it also explicates the

relationship of competition between companies. Looking at the dictionary defini-

tion, two companies either belonging to the same (or similar) industry, or offering

similar products or services are defined as competitors. Crunchbase goes beyond

the usual definition of competition. In fact, competitors are not preassigned by the

co-occurrence of two companies in the same industry. On the contrary, companies

are free to explicitly indicate a list of other companies that they consider as their

direct competitors. Through the use of these competitive relationships, I can define

and study the start-up network of declared competitors with a worldwide coverage.
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Figure 3.1: Top job titles and industry sectors. (Top Figure) Most common
positions in the dataset. (Bottom Figure) Most common industry sectors in the
dataset.
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3.3 Extracting the market macro categories

Data on markets is not provided in a hierarchical structure, which makes it im-

practical to use it a as it is provided. I therefore apply the combination of two

network-based methodologies in order to extract a hierarchy out of the data, trough

creating market macro categories and assigning each single market to one of them.

3.3.1 The market network

First, I define asM the set of all markets in the dataset. Each start-up s is associated

with a subset of markets Ms ⊆ M such that Ms = {m1,m2, ...,mn|m ∈ M}. The

market network is described as a graph M (M,EM), where EM = { (m,m′)|m,m′ ∈
Ms,∀s ∈ N} is the set of connections between any two markets m and m′ that co-

occur in each start-up, and N represents the set of all start-ups in our database. The

resulting network is undirected and weighted, the weight being equal to the number

of times two markets appear in all the Ms subsets. The constructed network consists

of 812 nodes and 18560 links.

In order to extract a hierarchical structure and define the macro categories of

the start-ups’ markets, I first “clean” the network by performing a backbone analy-

sis [98]. This methodology consists of identifying the statistically relevant weighted

links that must be preserved. Given a node i, each link shared by i with its neigh-

bours is assigned with a normalized weight pij = wij/si, where wij represents the

weight of the link between i and j, and si =
∑

j wij represents i’s strength. Each

link is then associated with a probability αij = (1− pij)si−1. The backbone network

is populated by those links which satisfy αij < α, where α represents a confidence

level that can be tuned in order to obtain stronger or weaker filtering.

A natural way to classify nodes in a network is through the use of network algo-

rithms. The number of groups into which the nodes in the network will be divided is

not defined a priori, but arises from the network structure. A community detection

algorithm finds the most natural way to partition nodes into groups such that most

of the connections between nodes fall within the same group, and only few across

different ones. In this analysis, I chose to apply the Louvain Modularity community

detection algorithm [99]. This algorithm optimizes the “network modularity”, a

real number ranging between -1 and 1, which measures the density of links of nodes
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inside communities as compared to those outside. The optimisation of this value

generally leads to the best categorisation of nodes in communities.

By applying the Louvain Modularity community detection algorithm to the un-

filtered network, I obtain seven communities which show to be meaningless, i.e.,

market sectors that have nothing or very little in common appear to belong to

the same category. For instance, accounting, enterprise application, and call center

belong to the same community (or macro category).

When I apply the same algorithm to the extracted network’s backbone, for

α > 0.01 the number of communities ranges from 7 to 20, while for α ≤ 0.01

the number of communities becomes more stable, with a value around 21 that does

not significantly vary up to α = 10−5. The market tags that populate each of these

21 communities represent a meaningful node division. By increasing the statistical

threshold from α = 0.01 (i.e. decreasing α), the number of communities does not

change while the number of edges and nodes in the network decreases. Therefore, in

order to maximise the number of edges and nodes I choose as a statistical threshold

α = 0.01.

Of these 21 communities, nine of them present more than eight market tags.

I associate with each of these nine communities a macro category which I manu-

ally label based on the market tag populating each community with the following

names: Curated Web, Education, Software for Enterprises, Data Analysis Software,

E-commerce, Telecommunication, Finance, Advertising, and Leisure. I incorporate

all of the remaining smaller twelve communities into a broader category named

“Other”. A network representation with the different communities highlighted is

shown in Fig.3.2, in which the colours represent the communities found by the Lou-

vain Modularity detection algorithm and where nodes’ sizes are proportional to the

nodes’ degrees.

3.3.2 Nation (and State) characterization based on markets

How can we make use of the market macro categories? I suggest to use them in order

to characterize different nations based on the activity of start-ups located in them.

In the following analysis I am considering a subset of nations with at least 2000

registered start-ups. This choice is driven by the fact that this subset of nations is
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Figure 3.2: The market network backbone.
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Figure 3.3: Nations fingerprints based on markets. Each histogram represents
a nation fingerprint based on the market macro categories. In the figure are reported
four pairs of nations/states which share the most similar fingerprints. The similarity
is measured using the euclidean distance between all pairs of the 10-dimensional
vectors associated with each nation.

sufficiently homogeneous in terms of number of start-ups and a comparison between

them would result to be meaningful.

Given a national ecosystem, I assign each company’s market to the corresponding

market macro category (obtained from the community analysis on the backbone

network). I then calculate and associate with each national ecosystem a vector

containing the normalised distributions of macro market categories. An example of

the normalised distributions for different nations is shown in Fig.3.3. This process

enables a nation “fingerprint” to be identified, which reflects the unique pattern of

the national start-up market’s activity. In some nations, start-ups prefer to focus

on the advertisement industry sector (e.g., the light-blue peak of New York and

Illinois) while in other nations the major focus is on data analysis and software

(e.g., Ireland and North Carolina). What is interesting to observe is that whilst

nations show different fingerprints, geographically distant nations may show similar

patterns. Fig.3.3 shows four pair of nations that share similar profiles.

Results suggest the presence of clusters of nations based on the similarities (and

differences) of the market macro category distributions. Therefore, I compute the

euclidean distance between the 10-dimensional vectors associated with each nation.

To obtain an overview of all national ecosystem profiles, I produce a matrix in

which each row represents the nation vector. By associating a color with each cell,
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Figure 3.4: Average cluster fingerprints. Here are represented the average fin-
gerprints constructed by producing the average distribution of the fingerprints of
all nations that belong to the same cluster. The number in parenthesis (#X) indi-
cates the number of nations within each cluster. Notice that each cluster presents a
distinguished distribution that often are peaked around one of the market categories.

proportional to the cell value, I obtain the heat map shown in Fig.3.5. Storing

the distance between all pairs of national vectors in a distance matrix, I perform

a hierarchical clustering analysis. The clustering method used is complete linkage,

and the associated dendrogram is shown on the left hand side of Fig.3.5. Results

show four principal clusters.

The number of nation per cluster varies and it is reported next to the cluster

number in Fig.3.4. The resulting averaged clusters show different distributions,

with one or two leading market macro categories per cluster. For instance, cluster

1 (that includes New York and Illinois) is the less populated and shows a peak in

its distribution corresponding to a preference for the Advertisement market sector.

Cluster 2 (that includes Japan and Ireland) is the most populated cluster and has

an homogeneous distribution among the markets categories with a preference for

Data Analysis Software and Telecommunication Services. Cluster 3 (that includes

Germany and China) is quite homogeneous with three leading markets, such as

Telecommunication, Advertisement, and Data Analysis Software. Finally, Cluster 4

(that includes California and United Kingdom) is mostly focused in Data Analysis

Software, followed by an equal interest in both Curated Web and Advertisement.
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Figure 3.5: Nations heatmap and dendrogram on markets clusters.

72



3.4 Competition, mobility, and overlap networks

In this section I describe the construction of the two networks of start-ups and the

resulting network made from their overlap. I then discuss the effect of competition

on the mobility of employees among companies.

3.4.1 Declared-competition network

With the knowledge on the companies’ competitors, it is possible to create a network

in which a connection between a company i and a company j exists if the start-up i

considers the start-up j to be its competitor. The resulting network is directed and

it is possible to find that not all arcs are reciprocated. Such a network comprises

of N [1] = 39, 177 companies and E[1] = 74, 496 arcs. I refer to this network as

the declared-competition network. Data is aggregated over an observation period

ranging from 1980 to 2016. Other information concerning the declared-competition

network is reported in Table 3.2.

The total degree ktot of a node is expressed as ktot = kin + kout, being the sum

of a node in- and out-degree respectively. The ktot follows a power-law distribution

p(ktot) ∼ k−αtot with an estimated value of the coefficient α = 3.04 ± 0.08. Fig.3.6

shows the kin in-degree, kout out-degree, and the ktot total degree distributions with

their corresponding α exponents. Notice that the values of α are in the typical

ranges found in real world complex networks.

Moreover, I have measured and plotted the ktotnn(ktot), i.e., the average total degree

of the nearest neighbours of nodes with total degree ktot, of the declared-competition

network. In accordance with the results of Chapter 2, the trend is disassortative. In

fact, the ktotnn(ktot) negative trend is in agreement with what we would have expected

for a network with competitive, i.e., negative relationships.

3.4.2 Mobility network

The second network I construct from CrunchBase data is the mobility network. In

this network of start-ups, an arc from company i towards company j exists if at least

one person leaving company i joins company j subsequently in his or her career (see

left hand side of Fig.3.7). Such a network comprises ofN [2] = 104, 872 companies and
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Declared-competition network

Nodes 39, 177
Arcs 74, 496
Density 5× 10−5

max(ktotal) 580
max(kout), max(kin) 365 342

Mobility network

Nodes 104, 872
Arcs 158, 824
Density 1.4× 10−5

max(ktotal) 1367
max(kout), max(kin) 799 568

Overlap network

Nodes 16, 781
Arcs 280
max(ktotal) 14
max(kout), max(kin) 9 10

Table 3.2: Networks statistics.
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Figure 3.6: The declared-competition network degree distributions and the
disassortative trend. In figure are reported the in-degree distribution p(kin), the
out-degree distribution p(kout), the total-degree distribution p(ktot) and the ktotnn(ktot)
distribution which gives an insight of the network disassortative trend. The log
binned trend is shown in green.
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Figure 3.7: The mobility network.
Left hand side, top. Networks are created by considering the flow of employees
between any two companies. Starting with a two-mode graph (top left figure) where
companies are connected with their employees, I obtain the mobility network by
producing the one-mode projection of this graph (bottom left figure).
Left hand side, bottom. A company is connected to another if there is the
exchange of at least one employee. The resulting network is weighted, where the
weight is equal to the number of employees that moved from a company to another.
Right hand side. Degree distributions and weight distributions for the mobility
network.

E[2] = 158, 824 arcs. In this network arcs are weighted, where the weight is equal to

the number of people that moved from one company towards another over time. This

network is also characterized by a power-law total degree distribution p(ktot) ∼ k−αtot

with an estimated value of the coefficient α = 2.70± 0.03 (see Fig.3.7 for all degree

combinations and their exponent values). Other information concerning the mobility

network can be found in Tab.3.2.
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3.4.3 Overlap network

Do competitors exchange employees? In order to answer this question I produce the

overlap between the previous two networks. I define the set of overlapping nodes

as N ov = {N [1] ∩ N [2]} (where N [1] is the set of nodes of the declared-competition

network and N [2] is the set of nodes of the mobility one) and the set of arcs Eov =

{E[1] ∩ E[2]} (where E[1] is the set of arcs of the declared-competition network and

E[2] is the set of arcs of the mobility one). If a link (i, j) from company i and company

j exists in the mobility network but the link (j, i) does not and (j, i) exists in the

declared-competition network but (i, j) does not, a connection between company i

and j would not exist in the overlap network.

The resulting overlap network is constituted of |N ov| = 16, 781 nodes of which 76

belong to the weakly connected component with |Eov| = 107 arcs. A representation

of the weakly connected component is shown in Fig.3.8.

The tiny fraction of links should not be surprising. In fact, it is quite ordinary

that in a contract of employment there are restrictions which prevent the employee

from working for a competitor after leaving his current employment. This clause

generally goes under the name of restrictive covenant or restraint of trade. Usually,

a company is unable to hire an employee from one of its competitors for a limited

period and within a limited area of work. However, big companies represented in

Fig.3.8 (such as IBM, Oracle, Apple, Yahoo, and Google) do hire some employees

from their direct competitors.

In order to extract some relevant information from this network, I produce the

network measure defined as “attractiveness” [100]. De Domenico and Arenas have

defined in [100] the measure of node attractiveness in a mobility network of scientists.

This measure represents the ability of a nation (node) to attract people from its

neighbours considering both the people that flow into and outside of the nation.

Attractiveness is defined as

Ai =
sini − souti

souti

where sin and sout represents respectively the in-going and out-going strength of the

i-th node. The higher the attractiveness, the better a node is performing in respect

of the others.

I reproduce the measure in the overlap network on companies with stot = sin +
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sout > 10. In Fig.3.9 we observe that companies splits into two different blocks:

those with positive attractiveness (blue), i.e. sin > sout and those that have a

negative one (red), i.e. sin < sout. Based on the actual dataset of companies,

the inclusion of a temporal dimension in the study of attractiveness would have a

negative impact on the network analysis. In fact, a temporal analysis would further

filter the connections between companies, resulting in the creation of several sets of

dyadic relationships. For simplicity and meaningfulness of the results, I prefer to

report only a temporal aggregated analysis.

Google, HP, and Salesforce lead the ranking. It is reasonable to think that, based

on the results, employees find in Google a good workplace compared to its competi-

tors. Surprisingly, big companies like Apple, Yahoo, and IBM do not perform well

in terms of attractiveness as their negative attractiveness value can be interpreted

as the trend of employees in leaving the company in order to join a competitor.
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Figure 3.8: Overlap between mobility and competition network. Colours
and size of a node are proportional to the nodes’ ktot (blue corresponds to a high
ktot, red to a low one). The arc’s thickness is proportional to its strength.
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Figure 3.9: Companies attractiveness. Here are reported all companies belonging
to the weak connected component of the overlap network for which stot > 10. Notice
that companies splits into two different blocks: those with positive attractiveness
(blue), i.e. sin > sout and those that have a negative one (red), i.e. sin < sout.
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3.5 Competition and success in national ecosys-

tems

In this section, I move on to the analysis of national ecosystems, i.e., the set of

start-ups whose headquarters are located within the same nation. First, I examine

the flow of people into, out of, and inside each ecosystem. I then quantify the effects

of competition on the mobility of people within an ecosystem, and I correlate the

presence of a competitive environment with the success of the national ecosystems.

3.5.1 Flow of people among nations

For the following analysis I consider the set of nations and states (in the case of U.S.)

in which at least 100 start-ups are located. The choice of considering U.S. states

instead of the U.S. as a unique nation is driven by two main reasons: first, each state

presents different economic regulations for start-ups; second, as shown in Section

3.3.2, each state can be considered as a different ecosystem with a specific pattern

of start-up activity. Finally, a comparison between the U.S. and other nations

based on quantities that are a function of the number of companies would give

disproportionate (and less meaningful) results, being that the 55% of the registered

companies in CrunchBase are based in the U.S..

I define with Nν the set of start-ups whose headquarters reside in a nation ν as

Nν = {i|i ∈ ν}. Then, I construct φ, the weighted adjacency matrix of the mobility

network among nations. This matrix can be seen as a coarse-grained matrix of

the start-up mobility network. Each element represents the total flow of people

that move from a company belonging to the set of start-ups Nν towards a company

belonging to the set of start-ups Nµ defined as

φνµ =
∑
i∈Nν ,
j∈Nµ

wij

where wij represents the weighted adjacency matrix element of the start-up mobility

network. To express the flow of people that go from a nation ν towards other nations
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such that ν 6= µ I define

φoutν =
∑
µ

φνµ.

Similarly, I define with φinν the in-going flow of people from other nations towards

nation ν as

φinν =
∑
ν

φνµ.

Finally, I define with φνν the mobility of people within start-ups that belong to

the same nation ν. Fig.3.10 shows the relations between the three flow quantities.

In each figure the bisector is drawn (dashed line) in order to have an indicator of

“equilibrium” between different types of flow (for instance, a point on the bisector

in Fig.3.10 (a) has φoutν = φinν ). In Fig.3.10 (a) we observe an overall equilibrium

between φoutν and φinν with most of the national ecosystems lying on top the bisector.

Fig.3.10 (b) shows a common trend for the majority of the ecosystems, with a

predilection for most of the nations to have a φoutν > φνν . There are only a few

exceptions, among which is the state of California (top right point). A similar result

is shown in Fig. 3.10 (c) where, again, most nations have φinν > φνν .

These results show that when people change their work, the change happens

mostly across nations as opposed to within. This trend could be explained in view

of what was previously explained concerning the restrictive covenant which disallow

competitors from hiring an employee within a limited geographic area. However,

it is not surprising that California, which is considered the cradle of start-up busi-

ness with the Silicon Valley area, is more likely to offer people the possibility of

changing start-up within nation (state) boundaries thanks to the presence of many

and different start-ups, while in other nations the tendency is towards a change of

location.

3.5.2 Competition and success in national ecosystems

In the introduction of this chapter I have defined the success of a start-up by as-

signing to it a binary success variable. Success is defined as a start-up having either

undergone an IPO, acquired another company, or been acquired by another com-

pany. Here I extend the measure of success from a single start-up to the whole
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Figure 3.10: Nations flow trends.

national ecosystem.

With Sν I denote the set of successful start-ups in a nation ν defined as

Sν = {i ∈ Nν | i is successful}.

The most straightforward way to compare the success of different ecosystems would
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be using the number of successful start-ups in the ecosystem. However, this approach

would not allow us to understand which ecosystem is performing better in respect of

the others because it does not take into consideration the size of the ecosystem. As

a consequence, an ecosystem with only 10 start-ups of which 6 are successful would

result performing less than an ecosystem with 10 successful start-ups out of 1,000. A

natural way to evaluate the performance of an ecosystem considering its size could

then be done by evaluating the ratio sν of the number of successful start-ups in

respect of the total number of start-ups in that ecosystem Nν = |Nν |, i.e.

sν = |Sν |/Nν .

I want to quantify the extent to which the presence of competition between start-ups

is related to the success of a national ecosystem. To this end, I define the quantity

competition blocking C as the measure of how competitive a national ecosystem is

as

C(ν) =

∑
i,j∈Sν a

[1]
ij

Nν(Nν − 1)

where a
[1]
i,j is the matrix element of the declared-competition network adjacency

matrix, and the denominator represents the maximum number of connections that

companies can make in a network with Nν nodes. In network literature, this quantity

is called network density. In this case, I assume that the denser the declared-

competition network of a nation, the more competitive the ecosystem is.

I will now show that the previously defined quantity sν is not a suitable way to

compare national ecosystems of different sizes. First, we need to look at the relation-

ship between the number of successful start-ups Sν and the number of companies

Nν for each nation ν. Fig. 3.11 (a) shows that the relationship between these two

measures can be fitted by a power law as

Y (Nν) = Y0N
β
ν

where β is the scaling exponent and Y0 is a constant factor. The scaling exponent5

β = 1.26 shows a superlinear trend, i.e., β > 1. A superlinear trend indicates

5The exponent is statistically relevant with a p-value < 10−5

84



that the increase of a factor 10 in the number of start-ups in a nation ν is ex-

pected to result in an increase in the number of successful start-ups of a factor 10β.

For instance, in Fig.3.11 (a), the expected number of successful start-ups given a

national ecosystem composed by Nν = 1, 000 start-ups (which corresponds to the

value log(1, 000) = 3 on the x-axis in figure) is approximately |Sν | = 90 (which cor-

responds to the value log(90) = 2.8 on the y-axis in figure). Increasing the number

of companies in an ecosystem by 10 times, i.e., Nν = 10, 000, the expected number

of successful companies is |Sν | = 90 · 101.16 ' 1, 300, corresponding to the value 3.1

on the y-axis in figure. As a consequence, national ecosystems with Nν companies

that are shown to be above (below) the expected value Y (Nν) are over (under)

performing in respect of those whose value is Y (Nν).

The national ecosystem’s success rate sν does not properly take into account

the non linear effects that are a consequence of the size of a national ecosystem.

In fact, because of the presence of the superlinear trend, two national ecosystems

that have both a success rate sν = 10% may perform very differently in respect

of one another, based on the number of start-ups Nν . Moreover, we notice that

in Fig.3.11 (a) many ecosystems have either a positive or a negative discrepancy

between the expected value Y (Nν) (solid line) and the value |Sν | resulting from

the data (dots). As suggested by Bettencourt et al. in [101], the suitable measure

to compare entities of different sizes when dealing with superlinear scaling is the

deviation from the expected value defined as

ξν = log
|Sν |
Y0N

β
ν

which represents the performance of a nation ν compared to the one expected by

the superlinear trend. Figure 3.11(b) shows the trend between ξ and C. The two

quantities follow a negative trend with a statistically validated exponent6 β = −0.19.

The trend suggests that a well defined correlation between the two quantities exists:

the more competitive an ecosystem is, the less successful it is7. This result does not

6The exponent is statistically relevant with a p-value = 6× 10−4

7As stated at the beginning of the section, considering as a measure of success only the number
of successful start-ups in an ecosystem will give an incorrect representation of an ecosystem’s
performance due to the high heterogeneity of the ecosystems’ population sizes. Concerning the
quantity sν , i.e., the ratio between the number of successful start-ups and the total number of start-
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imply causation, but opens the discussion to interpret the role of competition within

an ecosystem.

ups in that ecosystem, I obtain a similar negative trend when correlating the measure with the
competition blocking. Here I report the measure proposed in [101] as an ecosystem’s performance
measure because it is a suitable quantity for observations that follow superlinear trends.
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Figure 3.11: Relations between number of start-ups, success, and compe-
tition blocking C.
(a) Superlinear scaling law (solid line) between the number of successful start-ups
(blue dots) and the size of a national ecosystem. The slope of the solid line has a
statistically relevant exponent β = 1.26.
(b) The negative trend between the residuals ξ versus the competition blocking
factor. The slope of the dashed line has a statistically relevant exponent β = −0.19.
Figure indicates that the higher the value of the competition blocking, the lower is
the performance of the ecosystem.
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3.6 Conclusions

In this chapter I have shown how, through the analysis of one of the most com-

plete databases on start-ups, it is possible to extract information, describe, and

characterise innovative ecosystems on a global scale. Start-ups represent a new and

innovative way of running business which often brings new solutions, services, and

products associated with markets that were not even imaginable a few decades ago

(e.g. the apps market, the mobile market, etc...). Moreover, start-ups play an im-

portant role in creating job positions, with “roughly two million to three million

new jobs created every year”8. Start-ups are distinguishable from larger compa-

nies by their investments in innovative technologies, while large companies prefer

to put money into less risky incremental technologies. The start-ups’ riskier strat-

egy, when successful, brings to start-ups’ investors a massive return on investment.

However, to date, only one out of ten start-ups makes it through. It is therefore of

key importance to understand what are the patterns that can help lead a start-up

to success.

When it comes to characterising start-ups on a worldwide scale, a problem lies

in the identification of the type of business or industrial sector in which they are

involved. CrunchBase’s dataset provides granular information (market tags) regard-

ing the industrial sectors in which start-ups run their business. As these tags are

produced by a free-text attribution method, they are often imprecise and possible

of misspell. To make use of the information on the industry sectors provided by

CrunchBase, I proposed a method to group market tags into macro categories. In

order to do so, I have created the “weighted market network”, a network in which

market tags are nodes and a connection represents the co-occurrence of two market

tags in at least one start-up. Finally, a weight is associated with each link equal to

the number of times the market tags appears in a single start-up.

I then combined two network techniques in order to remove statistically irrelevant

links (and nodes) and to identify the presence of network communities. By looking at

the communities found by the algorithm, I manually labelled each community based

on the industry sectors within it. These communities represent the market macro

category. Then, I have characterised each nation through a vector that describes

8https://www.forbes.com/sites/petercohan/2011/06/27/why-start-ups-matter/#d4f50323620a
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the distribution of markets associated with each start-ups that reside in it. Finally,

I have analysed differences and similarities between nations and I have distinguished

the various patterns of activity of different ecosystems, i.e. clusters of similar nations,

through a hierarchical clustering method.

In the second part of this chapter I focused on the effect that competition among

start-ups has on the mobility of employees between companies, and on the success of

an innovation ecosystem. I was able to create and analyse the topological properties

of start-up networks at a global level. I defined and created the declared-competition

network among start-ups in which companies are connected if there is a competi-

tive relationships among them, and the mobility network in which companies are

connected with one another if there has been a flow of employees going from one

company to the other. By performing the projection between these two networks I

showed that the mobility of people between competitors is an exception, not a reg-

ularity. This could be due to the nature of employee contracts which, quite often,

forbid employees from joining a direct competitor for a predetermined time.

Most importantly, I showed that the presence of competition between start-ups

and the success of a national ecosystem are anti-correlated: ecosystems negatively

perform in the presence of high competition within their national boundaries.

The approaches and methodologies developed in my research may be used to bet-

ter understand how to help an innovative ecosystem to flourish. The free circulation

of people between start-ups within an innovative ecosystem seems, when compared

to the possible obstruction due to the presence of a high number of competitors,

to play an important role in fostering success. In view of my results, nations and

governments may be encouraged to sustain start-ups that prefer to collaborate, e.g.

by removing some of the legal constraints against competitors in order to improve

the success of these early stage companies. A flourishing and successful ecosystem

may increase the capitalisation of start-ups, which could have a positive societal

impact.
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Chapter 4

Homophily and missing links in

citation networks

In the previous chapter we saw that competition is a salient property of organization

networks. However, competitive behaviour often emerges at the level of individuals.

In this chapter (and in Chapter 5), I will focus on scientific research from the point

of view of citations between scientific papers and collaboration among scholars.

In particular, in this chapter I will analyse the patterns of knowledge flow among

scientific articles based on the overlap of the articles bibliographies, focusing on the

citations among papers.

Citation networks have been widely used to study the evolution of science through

the analysis of knowledge flows among academic papers, authors, research sub-fields,

and scientific journals. Furthermore, citations in science are also an important in-

strument to affirm the appreciation of a scholar’s work. As a consequence, the

omission of relevant citations may represent a way to undermine the prestige of a

paper or even of an author. In this chapter I will propose a method that aims to

uncover the absence of relevant citations but also the presence of irrelevant ones.

In order to define when the presence (or the absence) of a citation is relevant, I

will analyse the citation networks of the American Physical Society (APS) journals

dataset. First, I will test the presence of homophily (the social mechanism whereby

the more similar two individuals are, the higher chance there is that they are con-

nected) for knowledge transfer among papers. In order to achieve this, I will analyse
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whether citations tend to occur between papers involved in similar topics or research

problems. Then, I will propose a method for measuring the similarity between ar-

ticles through the statistical validation of the overlap between their bibliographies.

Results suggest that the probability of a citation made by one article to another is

indeed an increasing function of the similarity between the two articles. This will

enable missing citations between pairs of highly related articles, to be uncovered

and may thus help identify barriers to effective knowledge flows.

By quantifying the proportion of relevant but missing citations, I will conduct

a comparative assessment of distinct journals and research sub-fields in terms of

their ability to facilitate or impede the dissemination of knowledge. Findings in-

dicate that Electromagnetism and Interdisciplinary Physics are the two sub-fields

in physics with the smallest percentage of missing citations. Moreover, knowledge

transfer seems to be more effectively facilitated by journals of wide visibility and

impact factor, such as Physical Review Letters, than by lower-impact ones. Hope-

fully, this study can have interesting implications for authors, editors and reviewers

of scientific journals, as well as public preprint repositories, as it provides a pro-

cedure for recommending relevant but missing references and properly integrating

bibliographies of papers.

4.1 Introduction

Among the broad category of information networks, including the Word Wide Web

[14], email exchange networks [102], and phone call networks [103], the networks of

citations between academic papers have been widely investigated to uncover patterns

and dynamics of knowledge transfer, sharing, and creation in science [104–107]. The

nodes of citation networks are academic papers, each containing a bibliography with

references to previously published work. Typically, a directed link is established

from one paper to another if the former cites the latter in its bibliography. Because

papers can only cite other papers that have already been published, all directed

links in citation networks necessarily point backward in time. Citation networks

are therefore directed acyclic graphs, i.e., they do not contain any closed loops of

directed links [108].

Since the seminal work by Derek de Solla Price on the distribution of citations
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received by scientific articles [106,107], citation networks have extensively been stud-

ied to shed light on the mechanisms underpinning the evolution, diffusion, recom-

bination, and sharing of knowledge over time [109, 110]. The reason why citation

networks are crucial to understanding and modelling scientific production is clear.

Although citations can serve different functions – for instance, they acknowledge the

relevance of previous work, they help the reader of a paper to gather additional in-

formation about a specific topic, they point to related work or, sometimes, they can

also express disagreement with, or level criticism against, a position endorsed in a

paper [111] – the number of citations received is generally regarded as an indication

of the relevance and quality of a paper as well as of its authors’ prestige and scientific

success [112]. Certainly, citation networks can be used to reconstruct the commu-

nication flows among different scientific communities and infer the relation among

different research topics and sub-fields [112]. Recent work on citation networks has

indeed proposed a new method for highlighting the role of citations as conduits of

knowledge. For instance, Clough et al. [113,114] have proposed reduction methods

to filter out the relevant citations preserving the causal structure of the underlying

network of knowledge flows.

In this chapter, I study citations from a different perspective. Here I focus on

citation networks to cast light on the salience of homophily, namely the principle that

similarity breeds connection, for knowledge transfer between papers. First, I assess

the extent to which the occurrence of a citation between two papers is driven by

the similarity between them. Specifically, I investigate empirically a large data set

of articles published in the journals of the American Physical Society (APS) [115],

and I measure the similarity between any two articles by drawing on, and extending,

a method originally proposed by Tumminello et al. in Ref. [116, 117] that enables

to statistically validate the overlap between the bibliographies of the two articles.

Results suggest that the number citations made by one article to another is indeed

an increasing function of the similarity between the two articles. My findings thus

indicate that the creation of links in citation networks can be seen as governed by

homophily [43,118–120].

Second, I propose a novel method for identifying missing links in citation net-

works. The gist of my argument is simple. I focus on pairs of articles characterised

by high degrees of similarity; if a citation between them is missing, I regard the lack
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of a directed link as a signature of a relevant yet unrecorded flow of knowledge in the

network. By uncovering pairs of published articles with missing citations, I rank the

APS journals and topics according to the incidence of missing data on knowledge

flows.

This method has important implications for the analysis not only of published

articles, but also of newly posted preprints on online archives, or of manuscripts

submitted to scientific journals. Specifically, this method can be used to suggest

interesting work and relevant literature that could, in principle, be included in the

bibliography of recently posted or submitted preprints. As I witness a continuously

increasing production of preprints and publication of new articles, it has become

particularly difficult for authors to keep abreast of scientific developments and rel-

evant works related to the domain of interest. As a result, lack of knowledge of

prior or current related work and missing relevant citations may occur quite often.

The method presented in this chapter can help the scientific community precisely

to address this problem. In particular, it can be used not only by authors to inte-

grate the bibliographies of their work, but also by editors of scientific journals to

uncover missing citations and identify the appropriate reviewers for the papers they

are considering for publication.

This chapter is organized as follows. In Section 4.2, I describe the data set In

Section 4.3, I introduce and discuss the method for evaluating similarity between

articles based on the statistical significance of the overlap between their respective

bibliographies. In Section 4.4, I apply the proposed method to all articles published

in the journals of the APS. I show that citations between articles are positively corre-

lated with their similarity, and I then identify missing links between similar articles

published in different fields and in different journals. In Section 4.5, I summarise

the findings and discuss implications, limitations, and avenues for future work.

4.2 The APS data set

The APS data set includes bibliographic information on all the articles published

by the American Physical Society between 1893 and 2009 [115]. The citation graph

G = (V,E) includes |V | = 450, 084 articles, and |E| = 4, 710, 547 directed links.

The citations refer only to articles that have been published on APS journals. For
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each article I extracted the publication date, the main research subject (according

to the PACS taxonomy), and its bibliography. Each article belongs to a specific

journal. I restrict the analysis to the seven major journals, namely Physics Review

A, B, C, D, E and Letter, which are specialised in different sub-fields of physics.

I performed the analysis at three levels, namely the entire citation network, the

sub-graphs of the citation network induced by articles in each of the ten main sub-

fields of physics, as identified by the highest levels of the PACS hierarchy, and the six

sub-graphs induced by articles published in Physical Review Letters and in Physical

Review A-E. In the analysis, I discarded articles that appeared in Review of Modern

Physics, which publishes almost exclusively review articles. In Table 4.1 I report

the description of the ten main categories in the PACS taxonomy and the topics

covered by each of the six journals here considered.

4.3 Quantifying similarity between articles

Similarity between two articles can be measured in a number of ways. A straightfor-

ward, yet labour-intensive way of comparing articles is to semantically analyse their

entire texts. Alternatively, similarity can be simply based on the co-occurrence of a

few relevant concepts or keywords in the titles or abstracts of the articles. Moreover,

similarity can be measured through the co-occurrence of classification codes, such as

those included in the Physics and Astronomy Classification Scheme (PACS), which

help identify the research areas to which each article belongs [121]. Here, I propose

an alternative measure of similarity based on the comparison between the biblio-

graphic lists of references included in two articles. The hypothesis is that, if two

articles are concerned with related aspects of the same discipline or research prob-

lem, then their bibliographies will exhibit a substantial overlap. I shall therefore

introduce a method for assessing the statistical significance of the overlap between

the lists of references of two articles, and I shall then use the statistically validated

overlap as as measure of the similarity between the two articles.
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Table 4.1: The scientific domains associated with the PACS codes and journals

PACS code Domain

00 General

10 The Physics of Elementary Particles and Fields

20 Nuclear Physics

30 Atomic and Molecular Physics

40 Electromagnetism, Optics, Acoustics, Heat Transfer,
Classical Mechanics, and Fluid Dynamics

50 Physics of Gases, Plasmas, and Electric Discharges

60 Condensed Matter: Structural, Mechanical
and Thermal Properties

70 Condensed Matter: Electronic Structure, Electrical,
Magnetic, and Optical Properties

80 Interdisciplinary Physics and
Related Areas of Science and Technology

90 Geophysics, Astronomy, and Astrophysics

Journal Domain

Physics Review A Atomic, molecular, and optical physics
Physics Review B Condensed matter and materials physics
Physics Review C Nuclear physics
Physics Review D Particles, fields, gravitation, and cosmology
Physics Review E Statistical, non-linear, and soft matter physics

Physics Review Letter Moving physics forward
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4.3.1 Overlap between reference lists as a measure of simi-

larity between articles

A natural way to quantify the overlap between two given sets Qi and Qj is the Jac-

card index, which is defined as the ratio between the cardinality of the intersection

in the two sets and the total number of elements in the union of the two sets:

Jij =
|Qi ∩Qj|
|Qi ∪Qj|

. (4.1)

Notice that, in general, if two sets share a higher number of elements, then their

Jaccard index will increase, and in particular Jij = 1 only if Qi ≡ Qj, while Jij = 0

if the two sets do not share any element. An example of the suitability of the

Jaccard index for measuring the similarity between the bibliographies of two articles

is provided in Fig. 4.1(a)-(b). Here the two sets Qi and Qj represent, respectively,

the articles in the two reference lists of the two articles i and j. Since article P1 and

article P2 share only one reference over a total of five, their Jaccard index is equal

to 0.2. Conversely, the two articles P3 and P4 in panel (b) have a Jaccard index

equal to 1.0, since the overlap between their reference lists is complete.

However, the use of the Jaccard index has some drawbacks. First, the value of

Jij is always bounded from above by
min(|Qi|,|Qj |)
|Qi|+|Qj | . This means that if the sizes of

the two sets are remarkably different, their similarity is primarily determined by

the size of the smallest of the two sets. As a consequence, large sets tend to be

characterised by relatively small values of similarities with other smaller sets. In

addition to this, the Jaccard index does not distinguish between pairs of identical

sets having different sizes. In particular, if I consider two identical sets (Qi, Qj) of

size N1 and two other identical sets (Qm, Qn) of size N2, then I have Jij = Jmn = 1,

regardless of the values of their sizes N1 and N2. For instance, the Jaccard index of

articles P5 and P6 is equal to 1.0 and is identical to that of articles P3 and P4, even

though P3 and P4 share a larger number of references. In the case of bibliographic

references, this degeneracy of the Jaccard index is very important. In fact, if I

interpret references as proxies for knowledge flows from cited to citing articles, then

it would be reasonable to associate a higher value of similarity to a pair of articles

that share a large number of references than to a pair sharing only few references,
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Figure 4.1: Quantifying the similarity between two articles based on their
bibliographies. The similarity between two articles can be defined in terms of the
overlap between their reference lists. The two articles P1 and P2 in panel (a) share
only one citation; they should therefore be considered less similar than articles P3
and P4 in panel (b) which share four citations. This difference can be captured by
the Jaccard index, which is equal to 0.2 in the former case and to 1.0 in the latter.
However, the Jaccard index is equal to 1.0 also for the two articles in panel (c), which
instead share only two citations. If citations are interpreted as proxies for knowledge
flows, then the similarity between article P7 and P8 in panel (d), which cite a highly-
cited article, should be smaller than the similarity between articles P9 and P10 in
panel (e), which instead are the only two articles citing P11. The similarity measure,
based on statistical validation, properly takes these heterogeneities into account.

since the former pair is expected to draw on a more similar scientific background.

In particular, I would expect the two articles in panel (b) to be assigned a value of

similarity larger than the two articles in panel (c).

Another drawback of a bare count of the number of common references is that

some citations can, in principle, be more important than others. Consider the two

cases depicted in Fig. 4.1(d)-(e). In panel (d), articles P7 and P8 have an identical

set of references, consisting in the citation to a single highly-cited article. Also in

panel (e), both articles P9 and P10 cite the same article. However, in this case the

cited article does not receive any citation from other articles. Now, since the aim

is to quantify the similarity between articles, a citation to a highly-cited article,

such as a review article, should be considered less relevant than a citation to a more

specialised or less visible article, which is cited only by articles concerned with a

certain specific topic. In other words, it would be preferable to associate a higher

relevance to the single citation shared by articles P9 and P10 in Fig. 4.1(e) than to

the citation to other highly cited articles shared by articles P7 and P8 in Fig. 4.1(d),
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and thus to conclude that articles P9 and P10 are more similar than article P7 and

P8.

4.3.2 Defining statistically significant bibliographic overlaps

The method I propose here allows to overcome the drawbacks of the Jaccard index

discussed above and illustrated in Fig. 4.1. The method is based on an extension of

the so-called Statistically Validated Network (SVN) approach to the case of directed

unipartite graphs. Statistically Validated Networks were introduced by Tumminello

et al. [116, 117] as a method to filter out statistically irrelevant information from

bipartite graphs, such as user-item networks deriving from purchase systems or

product reviews. In such systems, a set A of nodes (e.g., buyers, users) express

preferences over another set B of nodes (e.g., books, movies, services). Those pref-

erences or selections are represented by directed links from nodes in set A to nodes

in set B. The idea behind SVNs is that the similarity between two nodes i and j in

the set A can be expressed in terms of the co-occurrence of their selections of nodes

in B, and in particular that it is possible to attach a statistical significance, namely

a p-value, to each set of common selections made by i and j.

Citation networks are not bipartite graphs. They are also different from user-

item networks because each article in general can only cite other articles that have

already been published, and can only receive citations from other articles that will

be published after its publication date. Nevertheless, it is possible to draw upon the

same idea used to construct bipartite statistically validated networks, and define a

similarity between two articles based on the overlap between their reference lists.

Let’s consider two sets of nodes, A and B. The set A contains all the articles

with more than zero outgoing citations, A = {i ∈ V | kouti > 0}, while the set

B contains all the articles that have received at least two citations, B = {i ∈
V | kini > 1}. It is worth noticing that A ∩ B 6= ∅, i.e., the two sets may share some

articles, since in general each article cites and is cited by other articles. I denote

by NA = |A| and NB = |B| the cardinality of the two sets. The method associates

a statistical significance to the similarity between a pair of nodes (i, j) in A by

comparing the number of co-occurrences of citations in their reference lists against

the null hypothesis of random co-occurrence of citations to one or more articles in
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B. In this way, the method allows to identify pairs of nodes in A characterised by

overlaps between citations to elements in B which are statistically different from

those expected in the null model.

The method works as follows. For each value k of in-degree observed in the

citation network, I consider the set of nodes Sk = SkB ∪ SkA, where SkB ⊂ B contains

all Nk
B = |SkB| articles with in-degree equal to k, and SkA ⊂ A contains all articles

that cite at least one element in SkB. Notice that the set Sk is, by construction,

homogeneous with respect to the in-degree of the elements belonging to the set B.

Then, for each pair of articles i, j ∈ SkA, I indicate by di and dj their respective

number of citations directed towards the elements of SkB. Under the hypothesis

that the articles i and j cite, respectively, di and dj distinct elements uniformly at

random from SkB, the probability that they select the same X articles is given by

the hypergeometricprobability function:

P(X |Nk
B, di, dj) =

(
di
X

)(
Nk
B−di
dj−X

)
(
Nk
B
dj

) . (4.2)

Thus, I can associate a p-value to each pair of nodes i, j ∈ SkA:

qij(k) = 1−
Nk
ij−1∑
X=0

P(X |Nk
B, di, dj), (4.3)

where Nk
ij is the measured number of references that i and j have in common in the

set SkB. The p-value, qij(k), is therefore the probability that the number of articles

in the set SkB that both i and j happen to jointly cite by chance is Nk
ij or more. I

repeat the procedure for all possible values of in-degree k from kmin to kmax, so that

each pair of articles (i, j) is, in general, associated with several p-values, one for each

value of in-degree k of the articles in their reference lists. Once all the p-values have

been computed, I set a significance threshold p∗ and validate all the pairs of nodes

that are associated with a p-value smaller than the threshold p∗. Given a value of

the statistical threshold, only the validated pairs of articles are considered similar

at that significance level.

However, because each pair of articles (i, j) can be associated with multiple p-

values, it is necessary to perform hypothesis-testing multiple times. In this case,
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if I choose a confidence level or significance threshold p∗, say 1% confidence level

(p∗ = 0.01), the various p-values associated with the same pair of nodes are not

compared directly with the chosen significance threshold p∗, but with a rescaled

threshold that appropriately takes the number of tests performed into account. As

a method for multiple testing I used the False Discovery Rate (FDR) [116,122] (see

Appendix for details).

The use of the hypergeometric probability function can be used to evaluate sta-

tistically significant citations in a citation network due to the heterogeneity of the

number of received citations k which follow a power-law distribution. This method-

ology could fail for networks in which links are homogeneously distributed such as

random networks.

Ultimately, I identify the set M(p∗) of all pairs of nodes whose similarity is

statistically significant at the confidence threshold p∗. In what follows, I shall denote

by M(p∗) = |M(p∗)| the cardinality of such set. In principle, since each pair of

articles (i, j) can belong to different sets Sk (and, as a result, can be associated with

several p-values qij(k)), it would be possible to define a similarity weight wij(p
∗) for

each pair (i, j) as the number of times that the pair is validated at the confidence

threshold p∗. In other words, wij(p
∗) would be the number of sets Sk for which

qij(k) passes the statistical test. However, I do not consider this possibility here,

but simply assume that a pair of articles (i, j) belongs to the set M(p∗) if at least

one of the p-values qij(k) passes the statistical test at the confidence threshold p∗.

Notice that the definition of the p-value associated with a pair of articles in terms

of the hypergeometric null model provided in Eq. 4.2 does not depend on the order in

which two articles are assessed. The resulting symmetric value of similarity between

any two articles is rooted in the invariance of the hypergeometric distribution in

Eq. 4.2 under permutation of the pair i and j, i.e., of the two quantities di, dj.

Moreover, Eq. 4.2 rectifies some of the problems of measures of similarity based

on a bare count of co-occurrences. In particular, two articles that share a small

number Nk
ij of citations will be assigned a higher p-value (i.e., a smaller statistical

significance of their similarity) than two articles sharing a large number of citations.

This means that, for instance, the p-value qP3,P4(2) associated with the pairs of

articles (P3, P4) in Fig. 4.1(b) will be smaller than the p-value qP5,P6(2) associated

with the pair of articles (P5, P6) in Fig. 4.1(c), since P3 and P4 share a larger
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number of references (namely, four instead of two) to other articles each receiving

two citations. Moreover, the p-value associated with the pair (P7, P8) will be larger

(i.e., the similarity between the pair is less statistically significant) than the p-value

associated with the pair (P9, P10). The reason lies in the fact that, according to the

hypergeometric null-model, the co-occurrence of a reference to a highly-cited article

is more likely to take place by chance than the co-occurrence of a reference to an

article with a relatively small number of citations.

4.4 Results

I now show how the proposed method for assigning a statistical significance level

to the similarity between any pair of articles based on the statistically validated

overlap between the respective bibliographies can indeed turn very useful and help

uncover important properties of a citation network.

As an example of the possible applications of the method, I analyse the citation

network among articles published in the journals of the APS during the period

between 1893 and 2009. The data set is described in detail in Section 4.2. I shall

start by studying empirically the probability Pi→j(p
∗) of the occurrence of a citation

from an article i to an article j validated at a certain statistical threshold p∗. I

shall then discuss how the method can be used to identify missing and potentially

relevant references and also to rank journals and scientific topics based on the relative

occurrence of missing citations.

4.4.1 Homophily in citation patterns

I start from the observation that if I consider progressively smaller values of the

statistical threshold p∗, the set M(p∗) will shrink and contain only pairs of articles

characterised by an overlap between bibliographies that is highly significant, since

it has passed a more stringent statistical test. Thus, small values of p∗ single out

pairs of articles that have a highly significant combination of common cited articles.

But if two articles share significantly similar bibliographies, then there is a high

probability that they are concerned with the same topic or research problem. As a

result, it would be reasonable to expect a citation to occur from the more recently
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published article to the one published at an earlier date. For each value of the

statistical threshold p∗, I computed the number of pairs of articles M(p∗) validated

at that threshold in the APS citation network, and the number K(p∗) of existing

citations between those validated pairs. Then, I define the probability Pi→j(p
∗) that

there exists a citation between any two articles whose similarity is validated at the

threshold p∗ as:

Pi→j(p
∗) =

K(p∗)

M(p∗)
. (4.4)

The obtained values of Pi→j(p
∗) are reported in Fig. 4.2 as a function of p∗. The

plot clearly suggests that the probability of finding a citation between two articles

characterised by a highly statistically significant overlap between the respective ref-

erence lists (i.e., the similarity between that pair of articles is validated at a small

value of p∗) is higher than the probability of finding a citation between articles whose

reference lists are only moderately significantly similar. For instance, a citation be-

tween a pair of articles (i, j) whose overlap between reference lists is validated at

p∗ = 10−2 occurs only with probability Pi→j ' 0.35, while citations occur within up

to 73% of the pairs of articles validated at p∗ = 10−7. In other words, the probabil-

ity that an article i cites another article j is an increasing function of the similarity

between the two articles.

In the social sciences, the principle that similarity breeds connection is tradition-

ally referred to as homophily. This principle has been documented in a variety of

empirical domains [43,118–120]. It is interesting to observe that homophily can also

be found to govern citation networks where it plays an important role in shaping

the structure and evolution of knowledge transfer between academic papers.

4.4.2 Suggesting missing references

The identification of a statistically significant similarity between two articles can be

used to uncover potentially missing references. For instance, the implementation

of a recommendation procedure based on statistically significant overlaps between

bibliographies might be useful to assist the editor of a scientific journal in suggesting

a list of possibly relevant (and missing) references to the authors of a submitted

paper.
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Figure 4.2: The probability Pi→j(p
∗) to observe a citation between two arti-

cles whose bibliographies overlap is statistically significant at the thresh-
old value p∗. Notice that Pi→j(p

∗) increases as the statistical threshold p∗ decreases.
That is, citations between pairs of articles characterised by a highly significant over-
lap tend to occur with a higher likelihood than citations between articles whose
reference lists are not significantly similar. The inset shows how the number of pairs
of articles characterised by a statistically significant similarity at a given threshold
p∗ varies with p∗.
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Fig. 4.3 shows a typical problem that could be fruitfully addressed through an

appropriate reference recommendation system based on the identification of statisti-

cally significant overlaps between bibliographies of papers. I report a subgraph of the

APS citation network consisting of several pairs of articles validated at p∗ = 10−7,

the highest statistical. Each article is represented as a node, and validated pairs

of nodes are connected through a link. The color of each link indicates whether

the older article was (green) or was not (red) cited by the more recent one. Note

that there is a prevalence of green links, which is consistent with the fact that, for

a significance level p∗ = 10−7, a citation between a validated pair of articles occurs

in more than 73% of the cases (see Fig. 4.2). However, I notice that article A has

a considerable number of missing citations, resulting from the fact that it was not

cited by any of the four articles that were published after its publication date and

with which it shares a statistically significant portion of its bibliography (namely,

nodes C, D, E, F). This could mean that either the authors of articles C-F were

not aware of the existence of article A, despite the substantial overlap between their

reference lists, or that article A was not particularly relevant to the topics addressed

in the other articles.

Surprisingly, a more in-depth analysis of the articles in Fig. 4.3 suggests that, not

only did all of them appear in the same journal (Physical Review E), but indeed they

are all concerned with the same topic (electric discharges) and share a relatively large

fraction of PACS codes (05.45.-a, 52.80.Hc). The high degree of similarity between

topics can also be easily inferred from the abstracts and introductions of these

articles. Interestingly, I found that articles B-F (yellow nodes) were all co-authored

by the same research group G1, while article A (the only blue node) was the result

of the work of a different research group G2. The fact that also article A does not

cite article B suggests that the researchers in group G1 were likely to be unaware of

the work conducted by group G2 in the same research field, and vice-versa.

In this particular case, the quantification of statistically significant overlaps be-

tween bibliographies could have been used to facilitate the flow of knowledge between

different research groups. For instance, the editor of Physical Review E or the se-

lected reviewers could have brought article B to the attention of the authors of

article A, and similarly, when articles C-F were submitted to the same journal, the

editor or the reviewers could have advised the authors of group G2 to include article
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Figure 4.3: Lack of knowledge flows. An example of several validated pairs of
articles in the APS citation network at p∗ = 10−7 (articles are reported in increasing
order of publication time, from left to right). The occurrence of a link indicates
that the pair of articles has passed the statistical test, while the colour of the link
indicates that the most recent article in the pair actually did (green) or did not
(red) cite the other one. In this case, all the articles represented as yellow nodes
are articles co-authored by researchers in the same group, while article A was co-
authored by another group. The identification of a large number of missing citations
suggests that the two groups might have been unaware of the work of their colleagues
in the same field.
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A in the bibliographies of their submitted papers.

In the example reported, I have chosen to analyse the presence (and absence) of

highly similar papers. The choice of filtering papers in respect to a single (specific)

value could be relaxed by using binned ranges of statistical thresholds which could

be defined, for example, as “high” similarity (e.g. p∗ ∈ (0, 10−6]), “medium high”

similarity (e.g. p∗ ∈ (10−6, 10−5]), and “medium low” similarity (e.g. e.g. p∗ ∈
(10−5, 10−4]). This qualitative association could possibly help in an automation of

the identification of relevant missing citations.

4.4.3 Ranking journals and disciplines by (lack of) knowl-

edge flows

So far the analysis has been focused on the whole APS citation network. Physics

is a very broad disciplinary area, including sub-fields as diverse as atomic physics,

astronomy, particle physics, statistical mechanics, just to mention a few [112]. It

is therefore reasonable to perform the analysis of the probability Pi→j(p
∗) at the

level of sub-fields. Specifically, I argue that the percentage Pi→j(p
∗) of citations

occurring between pairs of articles associated with a similarity that is validated

at the statistical threshold p∗ can serve as a proxy for the knowledge flows taking

place within a sub-field. In what follows I restrict the analysis to the six citation

sub-graphs induced by the articles published in each of the six research journals

published by APS (in order to quantify the ability of each journal to facilitate or

impede the dissemination of knowledge), and to the ten sub-graphs associated with

the highest levels in the PACS taxonomy (which could shed light on the typical

patterns of knowledge dissemination in different sub-fields). The lack of knowledge

flows within a journal or a sub-field at a certain confidence level p∗ can be quantified

by the fraction of missing links:

U(p∗) = 1− K(p∗)

M(p∗)
= 1− Pi→j(p∗). (4.5)

In general, the lower the value of U(p∗), the more likely it is that a citation

occurs between a pair of articles characterised by a similarity validated at the sta-

tistical threshold p∗. Fig. 4.4(a)-(b) shows how U(p∗) behaves as a function of p∗,

106



respectively, for all articles whose main PACS code is either in group 40 (Electro-

magnetism) or in group 50 (Gases and Plasmas), and for all the articles published

in Physical Review Letters and in Physical Review C. The figure clearly shows that,

even though in all cases U(p∗) decreases when p∗ → 0, different journals and different

sub-fields tend to be characterised by slightly different profiles of U(p∗), namely by

different propensities to obstruct knowledge flows between similar academic papers.

A comparative assessment of journals and sub-fields according to their typical abil-

ity to facilitate the dissemination of knowledge would, of course, be based on K(p∗)
M(p∗)

.

Moreover, the ranking will in general depend on the chosen value of the statistical

threshold p∗.

From a theoretical point of view, a suitable approach to the ranking would be

to compute the quantity:

U0 = lim
p∗→0

U(p∗), (4.6)

namely the limiting value of U(p∗) when I let the statistical threshold p∗ go to zero.

However, this quantity cannot be computed accurately for a finite network, since

for a certain value p∗ > 0 the number M(p∗) of validated pairs at p∗ will be equal

to 0, and the ratio K(p∗)
M(p∗)

would therefore be undetermined. Here I employ a simple

workaround, namely I consider the tangent at the curve U(p∗) at the smallest value

of p∗ for which the number of validated pairs is still large enough for the construction

of a network of a reasonable size (I found that 10−7 is an appropriate choice in this

case), and I compute the intercept at which this tangent crosses the vertical axis.

This method could fail in two cases (which were not encountered in this work): i)

if at p∗ = 10−7 there are no pairs of papers left, and ii) if the final part of the

curve trend is too steep (i.e. the tangent at the curve reaches p∗ = 0 when U(p∗)

is negative). In both cases a solution could be to use the smallest p∗ for which the

tangent at the curve gives a non-negative value of U(p∗).

The value obtained is denoted as Ũ0, and is used as an approximation of U0. The

procedure used to determine Ũ0 is sketched in Fig. 4.4(c).

In Fig. 4.4(d)-(e) I report the ranking induced by Ũ0 respectively for the ten high-

level families of PACS codes (panel d) and for the journals published by APS (panel

e). It is worth noticing that Electromagnetism and Interdisciplinary Physics are



the two sub-fields with the smallest percentage of missing links, i.e., those in which

knowledge flows effectively among articles (and authors), as would be expected if the

occurrence of citations were driven by overlaps between topics or research problems.

Interestingly, the rate of occurrence of missing citations in Physical Review C (Ũ0 '
0.27) is almost nine times as large as the one observed in Physical Review Letters

(Ũ0 ' 0.03), which is the APS journal with the widest visibility and largest impact1.

1Physical Review Letter has the highest impact factor (8.46 in December 2017) among the other
journals of physics published in APS, in which impact factors oscillate between 2.37 and 4.557. A
correlation analysis between the journals’ ranking proposed and the their impact factors would be
interesting to study for a wider selection of journals that have a more homogeneously distributed
impact factor, which is not the case in APS journals.
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Figure 4.4: Ranking journals and sub-fields by lack of knowledge flows.
The analysis of missing links restricted to specific sub-fields of physics or single APS
journals confirms that the tendency of a citation to occur between a pair of articles
increases with the similarity between the bibliographies of the two articles. Panels
(a)-(b) show the plots of U(p∗) = 1−Pi→j(p∗) for different sub-graphs corresponding
to (a) two families of PACS codes, namely 40 (electromagnetism) and 50 (Gases and
Plasmas), and (b) two APS journals, namely Physical Review Letters and Physical

Review C. In panel (c) I sketch the procedure adopted to compute the estimate Ũ0:
I consider the line tangent to the curve U(p∗) at the smallest value of the statistical
threshold p∗ for which I still have a relatively substantial number of validated pairs
(in this case, p∗ = 10−7), and I define Ũ0 as the value of the intercept at p∗ =
0 of that line. In panels (d) and (e) I show, respectively, the rankings of sub-

fields and APS journals based on the values of Ũ0. Notice that Electromagnetism
and Interdisciplinary physics are the two sub-fields with the smallest percentage of
missing links, i.e., those in which knowledge among articles flows effectively and as
would be expected if citations were driven by overlaps between topics or research
problems. Interestingly, the lack of knowledge flows between articles published in
Physical Review C (Ũ0 ' 0.27) is almost nine times as large as the one identified

in Physical Review Letters (Ũ0 ' 0.03), which is the APS journal with the widest
visibility and largest impact. 109



4.5 Conclusions

In this chapter I have proposed a novel method to quantify the similarity between

articles based on their bibliographies. The identification of a statistically signifi-

cant similarity between articles proposed in this chapter can be used to uncover

potentially interesting or relevant references that are missing from their bibliogra-

phies. This method can thus assist the authors of scientific papers in compiling a

list of relevant references, or the editors and reviewers of scientific journals in sug-

gesting otherwise neglected references to the authors of manuscripts submitted for

publication. Moreover, public preprint repositories, such as arXiv.org, could auto-

matically quantify the similarity between the bibliography of a newly posted paper

and the bibliographies of all other papers in their data set, and then propose a list

of papers that the authors might find relevant to their work. The implementation

of a recommendation procedure based on statistically significant overlaps between

bibliographies might also facilitate the dissemination of scientific results within a

scientific field. Problems such as the one shown in Fig. 4.3 can be aptly overcome

through the use of this method that enables missing and relevant references to be

promptly identified.

Notice that when similarity is evaluated between any two articles published in

two different years, all the articles published in the time interval between these two

years can only be cited by the more recent article. In principle, it would be possible

to modify the method in such a way that the evaluation of similarity would be

based only on articles published before the earlier one. However in this chapter I

opted not to take the difference in publication years into account in this similarity

measure, because this enables pairs of articles published in different years to be

more dissimilar than articles published at the same time, all else being equal. This

would result from different opportunities, research directions and resources provided

by the different time frames in which the two articles were published. This method

does indeed capture this time-induced dissimilarity between articles. Moreover,

since the analysis was based on the APS data set, the evaluation of the similarity

between any two articles was restricted to the overlap between the citations the two

articles made only to other articles published in the APS journals. The assessment

of similarity could not therefore reflect the entire bibliographies of the two articles.
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This limitation can be easily overcome through further analysis of other citation

networks extracted from different data sets, such as ISI Web Of Science, or arXiv.org.

Finally, this framework can be extended beyond the domain of citations between

academic papers, and used for uncovering missing and potentially relevant links in

other citation networks, such as those between patents [123,124] or between the US

Supreme Court verdicts [113,125,126].
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Chapter 5

Interdisciplinarity and homophily

in collaboration networks

Recently, scholars across several disciplines have started to analyse and study sci-

entists’ scientific performances based on their publications and their ability to win

grants or scientific prizes. This domain of research is known today as the “science of

science”. This chapter will be devoted to study the evolution of physicists’ interests

over time and in understanding the forces that drives scientific collaborations.

In Chapter 4, I have analysed a network of citations constructed from the Amer-

ican Physical Society (APS) dataset. In this chapter, I will analyse the same dataset

but under different perspective. In fact, I will focus on the collaboration between

authors. I am interested in understanding the forces that bring two scientists to

collaborate. Both homophily (the principle that similarity breeds connection) and

heterophily (the principle that connections are created between dissimilar people)

have been documented to play an important role in forging connections among in-

dividuals. Specifically, in this chapter I will test the interplay between these two

mechanisms in the domain of scientific collaboration. Because both principles rely

on a measure of similarity, I will propose a measure of “scientific similarity” among

scientists, i.e., a similarity based on the expertise and scientific production of each

scientist.

This similarity measure will rely on scientists’ research interests and expertises.

The APS dataset allows me to associate with each author a vector of topics which
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reflects the area of physics in which each scholar has published. This is possible

because in APS each paper is labelled with at least one, and up to four, codes which

reflect the topics treated by the paper. These codes are defined in the Physics and

Astronomy Classification Scheme (PACS) and are represented by six digits. By

considering the classification’s highest hierarchical level (i.e., the decade in which

the first two digits of the code fall), I will define ten distinctive areas of modern

physics. For each author I will generate a 10-dimensional vector of topics for different

time windows of same length, the elements of which will represent the author’s

contribution to each of the ten defined areas of physics.

The first part of this chapter will be dedicated to characterizing the evolution of

physics over time. In fact, the vector of topics will allow me to quantify the temporal

evolution of a single author’s career by looking at how his or her vector changes over

time. In doing so, I will propose a method to quantify the tendency of a physicist to

change his or her career towards specialisation or interdisciplinarity. Restricting the

analysis to a subset of 54 highly productive authors that have consistently published

between 1990 and 2007, I will study the career trajectory of each single author.

Results show that the career evolutions towards interdisciplinarity and specialisation

are represented in equal proportion. In a second analysis, I will enlarge the set of

authors to include those who have published at least five papers in the sliding fixed

length time window of five years, from 1990 to 2007. This aggregate analysis over

all authors and all area of physics shows that research in physics is evolving towards

interdisciplinarity.

In the second part of this chapter, I will study in which measure scientific collab-

orations are related to scientific similarities between authors. Given a fixed length

time window of five years, I will create a collaboration network where two authors

are connected if they have co-authored at least one paper in that time window.

I will then define a measure to evaluate the scientific similarity between any two

authors based on the overlap of the author’s topic vectors, and I will investigate

whether there is a positive correlation between scientific similarity and the pres-

ence of collaboration between authors. Results show a positive monotonic trend

which indicates that the more two authors are scientifically similar, the more likely

it is that a collaboration between them will be found. This is true up to a given

threshold, above which the effect reverses. I will put forward the hypothesis that
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scientists with highly similar expertise are less likely to provide each other with the

knowledge that they are looking for. As a consequence, scientists will redirect their

attention towards colleagues that are less scientifically similar, and therefore more

likely to posses a resource (or knowledge) that they may need. In the final part of

the chapter, I will propose a network model able to reproduce this non-linear trend.

5.1 Introduction

5.1.1 Authors’ career evolution

Scientists’ careers follow different trajectories. Among them, there are those who

prefer to spend their career on one subject or scientific area; those who progressively

shift from one topic to another; those who start with a wide range of interests

and end up focusing on one single subject (or vice versa); and those who embrace

interdisciplinarity throughout their career. Recently, the study of scientists’ careers

has become a popular scientific topic known as the “science of science” [127–130].

One of the reasons why this topic has started to attract the interest of many scholars

is because the study of research trends plays a major role in the orientation and

efficiency of scientific discoveries [131]. Simultaneously, research trends have a strong

role in the faculty job market, with major implications on faculties hiring systems

or funding allocations [132,133]. With the study of historical career paths, it is even

possible to identify patterns of scientific success based on the evolution of knowledge

and interests over time [128,129].

Different factors may influence the choice of a scientist’s career. However, quan-

titative frameworks that offer an overview of the general research trend of a specific

scientific domain remain limited. A first attempt to characterize the evolution of

research interests of individual physicists’ careers in macro physics areas has only

recently been proposed [134].

In this chapter I focus on the scientific domain of physics. I will describe a

methodology that provides a description of a scientist’s scientific interests in a given

time window and I propose a quantification of the extent of change of the physicist’s

career based on his or her scientific productivity. I will then extend the analysis to

the overall trend of all physicists. This will make it possible to understand if the
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community of physicists is evolving towards a more interdisciplinary approach or

towards a single specialization.

5.1.2 Tie creation mechanisms

Why we befriend, collaborate, or interact with someone is a deep and complicated

question to answer. Over the last century, many sociologists have tried to explain

the social mechanisms that promote and encourage people to connect with one

another. In almost all the mechanisms proposed, social networks have been central

to understand and explain the evolution of relationships among social actors.

One of the most elementary but fundamental mechanisms in explaining the cre-

ation of a single social tie, has been proposed by James Davis [37] and goes under

the name of triadic closure. Davis formalizes the idea that there are analogies be-

tween clustering and connectedness in a social network. His argument is simple: in

a triplet of connected nodes, such that node i is connected to node j and node l, it

is more likely that nodes j and l are also connected with each other than would be

the case if nodes j and l did not share the connection with i.

In a similar vein, the American sociologist James Samuel Coleman put forward

the idea of social embeddedness in which individuals tend to cluster into tightly knit

groups that are rich in third-party social relationship [41]. Coleman suggests that

the reason behind the creation of these clusters arises from the idea that a specific

form of capital, i.e., social capital, originates from social structures. The social

relationships of these clusters are shaped by the exchange of social capital among

individuals. In order to explain the meaning of social capital, Coleman distinguishes

three different typologies of capital: human, physical, and social. Human capital

is directly related to the skills, knowledge, and know-how of the single individual.

Physical capital is represented by the material and personal goods of the individual;

and social capital results from a combination of physical and human capital in which

the underlying structure of the social network plays a central role. The onset of social

relations among individuals is driven by reciprocity, trust, and cooperation and the

overall behaviour is primary led towards a common good. In fact, social capital is

directly linked to the investment in the social network in which the capital resides.

In this way the outcome of a social exchange will be beneficial not only for the
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single individual, but it will influence all people taking part in that particular social

structure.

Another well documented network growth mechanism is cumulative advantage.

This principle also goes under the name of the “Matthew effect”, or the “rich get

richer, the poor get poorer” [42]. This mechanism is based on the hypothesis that

once an individual gains a small advantage over other individuals, that advantage

will grow over time into a larger advantage. The usage of this term usually refers

to issues of popularity or prestige. From a network point of view, it is possible

to correlate the fame or social status of an individual with the number of connec-

tions (friendships, followers, etc...) that the individual possesses. This effect has

been widely investigated in many empirical domains. More recently, in the com-

plex network domain, the famous Barabasi-Albert model [14] has been proposed in

order to reproduce the typical power-law degree distribution of nodes in complex

networks. Barabasi and Albert argued that the scale-free nature of real networks is

rooted in two generic mechanisms: growth and preferential attachment. For what

concerns the growth, most real-world networks describe open systems that grow by

the continuous addition of new nodes; the preferential attachment is a mechanism

which tries to replicate the behaviour of a complex network, such as a social one:

the likelihood of a node to connect to another node in the network depends on the

node’s degree. This principle reproduces the effect of cumulative advantage: nodes

that have many connections are more likely to receive more connections over time

while nodes with few connections are less likely to grow (in terms of their degree).

5.1.3 Homophily

Among these network mechanisms, a key role is played by homophily, the princi-

ple that similarity breeds connection (better known as the common saying “birds

of a feather flock together”) [18, 43]. Homophily has been empirically documented

in a variety of domains, including marriage, friendship, work advice, support, and

information transfer [43]. McPherson distinguishes between two different forms of

homophily: status homophily, based on the similarity of socio-demographic charac-

teristics, and value homophily, based on the convergence of similar ideas, beliefs, or

mental attitudes among people [43].
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A direct connection between the work performed in Chapter 2 and homophily is

explained as follows: in addition to clique generation, the literature has long regarded

assortative mixing by degree as a possible implication of homophily [44]. In fact,

if the creation of a connection is based on the principle that similar individuals

are more likely to connect than dissimilar ones, then the resulting network will

partition into a number of heterogeneous communities, each composed of similar

individuals that share similar ideas, beliefs, or interests. Individuals are expected to

forge most of their links with other individuals within their own community, while

only a minority of links will be established with other people that belong to different

communities. Because the number of social connections of a single individual are

constrained by the size of the community to which he or she belongs to, the presence

of a community structure implicitly implies that the average number of connections

of an individual’s nearest neighbours is likely to be correlated with the individual’s

ones. This leads to assortativity. Thus, because the network community structure is

a key factor in determining assortativity, and because one of the main underpinning

determinants of the emergence of communities is homophily, if we want to properly

understand how and why assortativity occurs in social networks, we need to redirect

our focus on homophily.

While homophily boasts a long intellectual tradition in the social sciences, orga-

nizational ecologists and economists have simultaneously suggested that similarity

can also lead to competition for scarce resources. According to organization theory,

similarity and competition go hand-in-hand: high concentration of similar organi-

zations can lead to competition for scarce resources [51–54].

5.1.4 Heterophily

There is a strand of literature that has studied the importance of forging rela-

tionships within dissimilar people: the theory of heterophily. One of the leading

exponents of the heterophily theory has been the sociologist Georg Simmel [47] with

his sociological theory centred on the figure of the “stranger”. The stranger is an

individual that is not aware of his role in society. He or she is physically present

with the people but his or her mind is not with them, but far away. The role of

the stranger is to bring innovation, and information among the groups with which
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he or she is connected. The reason why people may be more likely to connect with

someone who is dissimilar to them could lie in the fact that this connection may

help them to gather new information or needed resources (which otherwise might

not be found). The strength and importance of the stranger are in his or her weak

ties : via these ties he or she can canalize and spread information more efficiently.

The strength of social ties has been deeply analysed by Mark Granovetter in his

highly cited paper [28]. Granovetter defines the strength of a connection through

the investment of emotion, time, and intimacy that two individuals put into their

(reciprocated) relationship. He categorizes social ties in three ways: strong, weak,

and absent. A strong tie is the kind of relationship that connects an individual with

his or her siblings, parents, and friends with which he or she spends most of his/her

time. An absent tie, as suggested by the word itself, is related to the absence of

social connection between any two people. A weak tie can be interpreted as an

acquaintances, rather than a real friendship, between any two people.

The presence of weak ties in a social network is essential for information flow

between communities: a weak tie often takes the role of bridging social communities,

i.e., it corresponds to a connection “which provides the only path between two points

( [135] p.198 )” of a network. A weak tie is often a means to spread innovation, as

innovators are often seen to belong to the margins of society. To better understand

this, imagine the following situation. An actor A needs knowledge that he is not able

to reach among his or her friends. If B has a strong connection with A, it is because

of the strong overlap of features between the two (homophily), and simultaneously, it

will be reasonable to think that B’s clique is the same as A’s. Thus, B’s friends can

offer to A only similar resources which end up being unhelpful to A. The strong tie

with B gives only minor new resources to draw from. But if A and C share a weak

tie, many of C’s friends are likely to be strangers (in terms of Simmel’s definition) to

A, and are more likely to posses needed resources for actor A, inasmuch the overlap

in terms of shared knowledge will be as little as possible. This example can help to

understand and justify why it is not unlikely to find a connection between people

that differ from one another.
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5.1.5 The hypothesis

In this Chapter, I want to advance and test the hypothesis that homophily and

heterophily are mechanisms that go hand-in-hand in affecting tie creation: if two

individuals are similar they are likely to interact (homophily) but they also choose

to connect if the social interaction serves their needs (social dependence). That

is, if they are sufficiently diverse so as to possess, and be able to exchange, the

resources needed to satisfy their objectives (heterophily), a connection is then forged.

Homophily would be more likely to impact on a cultural level, based on socio-

demographic characteristics (such as gender, ethnicity, age etc.) while heterophily

would be more likely to impact at a resource level (being material or intangible ones,

such as information or know-how) that each individual possesses and may exchange.

However, in my analysis and model, these two mechanisms will act on the same

level, with resources and cultural traits representing the same object.

Considering the presence of social dependence among actors, the effects of ho-

mophily on tie creation may as a result be mitigated or even reversed. Therefore my

aim is to understand and quantify the degree to which social dependence interacts

with homophily to affect the way social relationships are created over time. In par-

ticular, I shall investigate whether there are non-linear effects of increasing degrees

of similarity on the probability of tie creation in collaboration networks. Finally, in

the last section of this chapter I propose a model of network creation that combines

and extends theoretical arguments of homophily and social dependence.

5.2 The evolution of physics over the years

I start this section with the characterization of the career of a single author. This

will be followed by an analysis of the relationships between physicists in Section 5.3.

The career characterization is central to define key concepts which I will use for the

similarity measure that I will propose in order to evaluate the presence of homophily

and heterophily in the collaboration between physicists.
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5.2.1 The Dataset

The following study draws on the publicly available database on scientific collabo-

rations of the American Physical Society (APS) journals. The analysis focuses on

physicists who published and co-authored on the scientific papers within the jour-

nals of the APS. Data extends over 34 years (1980-2014), with 136, 871 authors and

380, 913 articles. For each paper I have access to the authors name and the year of

publication. Each article published after 1980 is associated with at least one, and up

to four codes defined by the Physics and Astronomy Classification Scheme (PACS)

which is a hierarchical partitioning of disciplinary fields within physics based on six

characters label. PACS codes consist of ten macro categories which split up into two

further levels (for a description of the PACS codes macro categories see the Table

in Chapter 4). As an example, the PACS code “81.05.uf” belongs to the broader

category of Interdisciplinary physics (PACS 80-89), which is part of the sub cate-

gory Materials science (PACS 81) focused on research on Graphite. Authors that

publish in APS must assign PACS codes based on the list provided on the APS

website and these are then approved by reviewers and the editorial office during

the revision process. I restricted the analysis only to articles associated with PACS

codes, i.e., published after 1980. I have also filtered out all the articles authored

by more than 10 co-authors, typically resulting from large experiments in particle

physics and high-energy physics.

5.2.2 The vector of topics

The following analysis is based on the reasonable assumption that a paper is the

reflection of a scientist’s expertise in a given field. Therefore, it is reasonable to

expect that each author develops his or her expertise in one or more fields of physics

based on the papers that he or she has published. In order to evaluate the physics

fields in which an author has published, I look at the PACS codes associated with

the papers that he or she has authored. One way to define an author’s expertise is

to look at the cumulative number of PACS codes in a given time-window. The first

two digits of a PACS code are represented by a number that ranges between 00 to

99. I define the set of all PACS codes p such that p corresponds to the collection of
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PACS that fall in a given decade1 with P = {p1, p2, ..., p10}.
The P set represents a broad categorization of physics research areas. I quantify

the specialization of an author a in a specific domain of physics through the PACS

codes p associated with the authored papers within a time window t as

P a
t (p) =

ma
t (p)

10∑
p=0

ma
t (p)

where ma
t (p) represents the author a’s multiplicity of PACS codes p, i.e., the number

of PACS codes p cumulated in the time window t. The authors’ specialization P a
t (p)

represents a way to quantify the expertise of an author in a physics field. For

example, the author a has published in a time window t a set of papers associated

with the following PACS codes {12, 13, 13, 55, 89}t. The multiplicity ma
t (p) for each

set of PACS code p will then be: ma
t (p = 10) = 3, ma

t (p = 50) = 1, ma
t (p = 80) = 1,

and ma
t (p) = 0 otherwise. Finally, a’s specializations in the time window t are

quantified as follow P a
t (10) = 3

5
, P a

t (50) = 1
5
, P a

t (80) = 1
5
, and P a

t (p) = 0 otherwise.

This procedure generates for each physicist a 10-dimensional vector of topics,

the elements of which represent the normalized weighted occurrence in each physics

area over a given time window. A one year time window will often be too small to

analyse a physicists’ career with the APS dataset. In fact, even if a physicist has

a high productivity, it is possible that he or she does not only only publish in the

APS journals and, as a consequence, it may be that in one year none of his or her

papers have been published in APS. Therefore, in order to track the career evolution

of a physicist in more detail it would be necessary to use other data sources (which

is outside of the scope of analysis done in this chapter). To try to overcome this

problem I use a five year time window which will help to: i) collect a sufficient

number of papers to give a good representation of an author’s production, and ii)

cover academic cycles (scientific projects, fellowships, PhD, post-docs, etc..). From

this point forward, for each measure, I consider a time window of five years.

Cumulating all authors’ topic vectors for a time window t, we can rank the

most common topic vectors by counting the number of times the same vector is

1For instance, the the collection of PACS codes p = 20 refers to the broaden category of Nuclear
Physics and considers all the PACS codes that belong to the set p = {20, 21, ..., 29}.
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Figure 5.1: Most frequent topic vectors over time. Each heatmap represents
the 10 most frequent topic vectors among authors for a time window of five years
starting with the year written in each title.

repeated across all authors. Fig.5.1 represents six heatmaps that show the 10 most

used profiles by physicists that have published in APS across different time windows

(1980, 1985, 1990, 1995, 2000, and 2005). The colours go from dark blue (P a
t (p) = 0)

to dark red (P a
t (p) = 1). We observe that the 10 most frequent profiles vary over

time and the most prevalent attitude is towards the specialization of authors in one

area.

5.2.3 Single author’s career evolution

In the following study I consider only those authors who have, during the period

between 1980-2014, published at least five papers in each time window (i.e., an

average of at least one publication per year). Given an author a, I create the career

matrix M of a, which is a 10×27 matrix, where 10 represents the number of physics

fields and 27 represents the number of time windows from 1980 to 2014. Each column

represents the vector of topics. Moving along each row, we move across different

time windows. On the left hand side of Fig.5.2 are represented three authors’ career

matrices through a heatmap representation. This representation helps to highlight
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the evolution of an authors’ career over time. Moreover, by the use of the Shannon

entropy

et = −
∑
p

P a
t (p) log(P a

t (p))

it is possible to evaluate the evolution of the career profile of each single author

during each time window when plotted over time. A growing entropy trend indicates

an author’s propensity to spread his or her interests towards a more interdisciplinary

career, while a decreasing one reflects an author’s propensity to change his or her

career towards specialization A flat trend represents an author’s fidelity towards the

same type of interests over time. On the right hand side of Fig. 5.2 the entropy

values calculated for each author over their careers are reported; the straight blue

lines represent the linear fit y = αx+β of the entropy evolution. The slope coefficient

α allows to characterize the careers evolution of each author: a positive coefficient

represents the propensity of a scientist to change from a specialized career towards

interdisciplinarity, while a negative coefficient reflects the tendency of a scientist to

change from an interdisciplinary career towards a more specialised one.

In Fig.5.3 the distribution of all the α slopes calculated for each considered

authors is represented. The α coefficient distribution shows the presence of two

different trends, with a balance between authors that started their careers as spe-

cialized and ended up with an interdisciplinary career and the opposite trend. Only

a small percentage of authors remain constant over time.

This method is limited to authors’ career evolutions which follow a linear trend.

However, the use of overlapping time windows helps smooth the evolution of a

scholar’s career over time, minimising the effect of non linear evolutions.

Another limitation of the methodology proposed is that it is unable to diver-

sify between trends that are flat over time and that are associated with authors

specialised in one field (i.e. specialised authors) in respect to those authors that

publish on different areas (i.e. interdisciplinary) and that do not change their spe-

cialisations over time. To distinguish between these cases, a different measure that

combines both the slope coefficient α (which represents the tendency over time to

change) and the intercept β (which may help to understand the level of heterogeneity

of interests of an author) could be considered. Both limitations can be considered

for future works.
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Figure 5.2: Career evolution. The first author starts his or her career in an
interdisciplinary manner and ends up being more specialized. Author 2 did not
change his or her expertise over time. The bottom author starts his or her career
in two fields and end up spreading his or her interests. The right hand side graphs
represent the entropy trends (blue lines) and their linear fit (green line).

124



Figure 5.3: Linear fit coefficient of the entropy trends. The image shows the
different values of the linear fit slope α for the evolution of the entropy trends of
each author (see Fig.5.2 green line). We observe two different zones: the red zone,
i.e. α > 0, populated by authors that start their career as specialized and end up
being more interdisciplinary, and the blue zone, i.e. α < 0, in which authors start
their career with spread interests and end up being more specialized.
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5.2.4 Evolution towards interdisciplinarity

In the previous section I studied the career evolution of single authors, and we ob-

served a balance between the two possible career evolutions. The evolution towards

either a specialized or an interdisciplinary career appears to be equally preferred by

highly productive physicists. By extending the analysis over all authors that have

published in APS I can outline the overall trend among physicists.

First, I define the time window t global entropy E as

Et = −
Nt∑
a=1

∑
p

P a
t (p) log(P a

t (p)).

This is a measure of all authors’ entropies based on their topic vectors in a given

time window. A suitable measure to evaluate the entropy evolution over time would

then be

〈et〉 = Et/Nt.

The 〈et〉 entropy reflects the averaged entropy of all authors in the time window

t. Results are reported in Fig.5.4. The graph shows a positive linear trend, which

reflects a general tendency over time for all authors to spread their interests towards

more areas, i.e., follow a more interdisciplinary career. See Appendix Chapter 5 for

a more in depth analysis.

In the previous section, I was focusing only on highly productive and experienced

authors and we observed an almost perfect equilibrium between the two possible

career evolutions. However, when we include all the authors, we observe that the

overall trend in physics is to follow an interdisciplinary approach. This result shows

that physics is an evolving field where authors are increasingly starting to mix

expertises in order to produce new and innovative results.

One way to embrace interdisciplinarity for scientists is to study new fields, the-

ories, and methodologies used by other experts outside of their domains. Another

way, probably the most used, is by collaborating with experts in other fields. In the

next section I will then study the collaboration network among authors that have

published in APS.
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Figure 5.4: Average entropy. By evaluating the average entropy 〈et〉 among all
authors in a time window t, we observe a positive growing trend that reflects an
increasing propensity among physicists towards interdisciplinarity. Standard errors
on averages are also reported as bars.
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5.3 Evaluating scientific similarity

5.3.1 The collaboration network

I will now focus my attention on the relationships between authors. The suitable

way to study the nature of relationships between scholars is through a network

approach. In order to create a network of collaboration among physicists from

the APS dataset I first collect all articles published over a time window of five

years. Second, I produce a two-mode network in which all the authors that have

published at least five articles within the considered time window are connected

with the articles that they authored. From the two-mode network, I create the

one-mode projection in which any two authors are connected with each other if they

co-authored at least one paper. The one-mode network represents the collaboration

network among physicists that have published in APS journals. This network can be

described as a graph C (N,Ec)t, where N represents the set of authors considered in

the time window t, and Ec is the set of collaborations in the time window t. Figure

5.5 gives a graphical representation of how the one-mode projection is obtained from

the two-mode network.

Homophily has been largely documented to play a key role in the sociological

process of ties creation. If homophily were the only or main social mechanism that

explains the presence of collaboration between two scholars, then I would expect

to find none or very few pairs of authors that have a high scientific similarity and

do not collaborate. Consequently, once the collaboration networks are created for

different time windows, I evaluate the scientific similarity of each pair of authors.

This similarity measure must be based on the authors’ field(s) of expertise, i.e., their

vectors of topics.

Knowledge is typically regarded as a resource that accumulates over time [136].

For each pair of authors that have published at least five articles in the time window

of five years, I define the scientific similarity S(a, b)ti of author a in respect to author

b as

S(a, b)ti =

|P|∑
p

P a
ti

(p)δb(p)

where and δb(p) = 1 if and only if author b has published at least one paper belonging
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Figure 5.5: The collaboration network construction. Scholars that collaborate
on the same paper are assumed to be connected in the collaboration network. In
doing so, the two- mode network can be transformed into a one-mode projection.

to the PACS category p.

By definition, this measure of scientific similarity is asymmetric, i.e. S(a, b)t 6=
S(b, a)t. To better understand this measure, let’s consider the following example

in which two authors have published a given number of articles in a time window

ti. I define with A and B respectively the sets of PACS codes of author a and

b as A = {10, 10, 10, 10, 10, 20, 20, 30} and B = {10, 10, 20, 20, 40, 40, 40, 40, 50}.
Author a is a specialist of domain 10, while author b has focused more in domain

40. Nevertheless, because both authors have worked in domains 10 and 20, but in

different proportions, they are similar in a different way. In fact, S(a, b)ti = 5+2
8

=

0.875 while S(b, a)ti = 2+2
9

= 0.44. The proposed similarity measure takes into

account both the author’s “specializations” and the spread of interests of an author

in respect to all the physics domains and the possibility to interact with one another

and with other authors.

The use of a symmetric measure, such as the Jaccard index, would not be able to

quantify the differences in specialization between authors (and would not be able to

consider the multiplicity of PACS codes, which is of key importance for the definition

129



of an author’s specialization). For example, if A = {10} and B = {10, 20, 30, 40},
the similarity of the two authors would be in terms of the Jaccard index of 1/4. It is

therefore impossible to highlight any differences between the two authors in terms of

knowledge that they could offer to one another or to other authors (that is instead

well defined with the proposed measure S(a, b) = 1 and S(b, a) = 1/4).

5.3.2 Quantifying collaboration in different fields of physics

Given a time window t, I define with Ec the set of all connections generated by a

missing collaboration between any two authors in which their scientific similarity

is equal to 1 and that is reciprocated, i.e., Ec = {e := (a, b)|(e /∈ Ec) ∧ S(a, b) =

S(b, a) = 1} where a and b are two authors.

Given the two sets of edges Ec and Ec, I consider a new network represented by

the graph G (N,E)t in which E = {Ec ∪ Ec}. Given this network, it is possible to

study the evolution of the collaboration in physics within different fields. I associate

a collaboration coefficient C(p) with each field in physics similarly to what was done

in the previous chapter in order to evaluate the lack of knowledge flow. The score

is then based on the ratio between the number of collaborations among authors

that have similarity S = 1 and the overall number of pairs of authors that have

similarity S = 1 (which comprises all pairs of authors that have or do not have a

collaboration).

Given the graph G (N,E)t at a time t, I collect the subset of authors Np that

have published in the physics field p. The generated sub-graph H (Np, Ep) describes

the network in which Ep = {e := (a, b)|e ∈ E, a, b ∈ Np∧S(a, b) = S(b, a) = 1}. For

simplicity, I denote with E+
p = {e := (a, b)|e ∈ {Ep ∩ Ec}} the set of collaborations

that took place in the graph H . The collaboration coefficient C(p) for the physics

field p at the time window t is then defined as

C(p) =
|E+

p |
|Ep|

.

When C(p) = 1, all authors that share the same interests collaborate with one

another and, therefore, there are no missing collaborations; when C(p) = 0, in the

field p there are no collaborations but only “solo” authors that could potentially
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Figure 5.6: Evolution of the collaboration in physics domains. The left
picture shows the evolution of the collaboration coefficient C(p) for each PACS code
p. The picture on the right shows the values of the slope coefficient α′ for each
linear fit performed on the C(p) curve. The red area corresponds to an increasing
collaboration over time, while the blue zone corresponds to a tendency to decrease
collaboration within a physics field.

collaborate with similar scholars.

To characterize the overall trend in each physics domain, in Fig.5.6 are reported

the evolution in terms of collaborations in all physics fields. Running a linear fit

y = α′x+β′ for each C(p)t curves, it is possible to highlight two different behaviours:

increasing or decreasing collaboration within a physics field. Results are reported

in the right hand side picture of Fig.5.6.

The areas that show an increase in terms of collaboration are p = 20, 30, 70,

and 50, i.e., respectively Atomic and Molecular Physics, Condensed Matter: Elec-

tronic Structure, Electrical, Magnetic, and Optical Properties. Conversely, the fields

p = 00, 80, 90, and 40 which represent General Physics, Interdisciplinary Physics,

Geophysics, Astronomy, and Astrophysics, and Electromagnetism respectively, show

a decrease in their collaboration coefficient. The other fields P = 10, 60, i.e., Physics

of Elementary Particles and Condensed Matter: Electronic Structure do not show

a significant change over time.
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In this analysis I was interested in showing the absence of collaborations between

scholars that are completely similar, which goes against the homophily principle and

opens new interpretation of the creation of collaboration that I will explain the next

sections. A slightly different measure able to create a more sophisticated ranking

between fields should take into consideration the number of authors per field. This

is out of the scope of the problem treated in this chapter and is left for future works.

5.3.3 Homophily and heterophily: two opposing mechanisms

in forging collaboration

Running the similarity measure over time, I showed that many scholars with high

similarity do not collaborate. The presence of highly similar scholars without any

collaboration may lead us to think that homophily is not the only social mecha-

nism responsible for the creation of social connections in the analysed collaboration

networks. However, homophily may encourage the development of a collaboration

in a subsequent time window: two authors that have not collaborated in a time

window ti may decide to collaborate in the subsequent time window ti+1 because of

the overlap of their interests. Fig.5.7 represents an example of this mechanism.

Thus, in order to understand to which degree homophily is a driving force to

create future collaborations I shall:

• measure authors’ scientific similarity for all time intervals ti (e.g. 1980 - 1984);

• detect whether each couple has co-authored a paper in the subsequent time

window ti+1 (e.g. 1985 - 1989).

When I consider the set of authors in the time window ti and those in the subsequent

time window ti+1 I measure the similarity between authors that have at least five

publications in both time windows. In doing so, nodes in the network at time ti are

the same of the ones of the network at time ti+1.

Choosing only those authors that have at least five publications in both time

windows helps to filter out authors that have published only sporadically in APS

and enables us to focus on those that have been highly active in both time windows.

In doing so, the overall trend arising from the study will be much cleaner and easier

132



Figure 5.7: Homophily in fostering future collaborations. This figure shows
how homophily is tested as a mechanism in creating a future collaboration: similarity
is measured in the first time window, the presence of a collaboration is evaluated in
the subsequent time window.

to interpret. The same study has been performed with a one year and three year time

window, obtaining similar results. With a non-time window approach we should take

into consideration the inclusion of other effects and the use of other methodologies

to explain the creation of a collaboration between two scholars, which is outside of

the scope of the analysis performed. Moreover, the choice of using time windows

of same length makes it possible to easily compare different time periods over the

entire observation period.

In order to avoid strong bias among pairs of scholars that have collaborated at

the time window ti, when I measure the similarity between any two authors that in

the previous time window have co-authored a paper, I do not consider the PACS

codes arising from papers co-authored by them while measuring their similarity.

Homophily is then tested by evaluating the ratio between the number of col-

laborations |Ec(s)|ti+1
between all pairs of authors associated with a given value of

scientific similarity s and the number of all possible pairs |E(s)|ti with that given

value of similarity.
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Figure 5.8: Empirical results. The figure shows the trend of the ratios between
the number of collaborations |Ec| in a time window ti and the number of pairs of
authors |E| with a given similarity at time ti function of their scientific similarity
in the time window ti−1. Curves represent different time windows of 5 years. The
reversed “U-shaped” trend is similar in all the represented years. In the inset is
pictured the similarity distribution |E| among all authors.

The measure is repeated for all different time windows ti, in which I calculate the

ratio |Ec|ti+1
/|E|ti function of the similarity. By comparing the ratios for different

value of similarity s, I obtain a trend of connections based on similarity. If homophily

were the only force governing tie creation, we should expect an increasing monotone

function reflecting the fact that the probability of tie creation is related to scientific

similarity. In other words, authors that are similar are more likely to collaborate

with one another than those that are dissimilar.

Empirical results are reported in Fig.5.8. Findings suggest that homophily is a

driving force in shaping the relationships among scholars but only up to a certain

threshold, beyond which the effects of similarity reverse: if two scholars are too

similar, the likelihood of a collaboration decreases. Therefore, it is reasonable to

assume that some other concurrent mechanism combines with homophily to affect

tie creation. In the next section, I shall propose a model in order to understand
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and reproduce the mechanisms that may be responsible for the observed reversed

U-shaped effect.
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5.4 Modelling the interaction between homophily

and heterophily

5.4.1 Axelrod and Centola models

In the vast literature on social interactions and influence, a prominent role has

been played by the model introduced by Axelrod [137]. Axelrod’s model provides

a platform for studying the dynamic interplay between homophily and social de-

pendence, and at the same for understanding how this interplay is also affected by

social influence. Just as with the majority of social influence models, each individual

is assumed to possess a culture vector C that represents the individual’s personal

features, where the i-th element of the vector represents the cultural trait of the

individual. Each cultural trait in turn takes one of the available q values. Nodes are

distributed on a lattice and connected with the neighboring nodes located at the

corresponding four cardinal points (N-S-W-E)2. The interaction between any two

connected nodes happens with a probability proportional to the number of over-

lapping cultural features divided by the cardinality of C’s set. The simultaneous

combination of homophily and social influence creates a mechanism that leads to

local cultural homogenization. One of the strongest results of Axelrod’s work was

on the transformation of the overall societal culture. Based on the length of the

culture vector C and on the availability of the number of cultural traits q, the syn-

thetic society ends up in two possible scenarios with same length of cultural traits

C: on the one hand, when q is small, we face the emergence of a globally polarized

social culture, i.e., all the nodes (or the vast majority) share the same components

of the culture vector C; on the other hand, when the q is large, the system presents

multicultural states with coexistence of different cultural groups.

Another interesting model, based on Axelord’s model, has been proposed by

Centola et al. [138]. Centola’s model uses the same previous mechanisms, but it

adds a new rule: if two nodes have a zero overlap of their cultural features, then

their connection is removed and replaced with the opportunity, made from one of

the two considered nodes, to create a new connection with a non-neighboring node.

2There is the exception for the nodes that are located at the edges of the lattice that can only
have three connections, or two.
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With this new rule, both topology and cultural traits evolve over time. Similarly

to Axelrod’s results, the system evolves either towards a complete homogeneity

(in terms of shared cultural traits), or towards multicultural states. However, a

main result of the analysis of this model is that, if the system evolves towards

multicultural states, the topology of the “society” reflects the cultural separation.

In fact, if in Axelrod the network topology cannot vary over time and, we might

have two individuals that are completely different in terms of social traits but still

share a social connection, in Centola the network evolve into different separated

communities in which the individuals share the same culture.

5.4.2 Homophily versus heterophily in Axelrod and Cen-

tola’s models

By reproducing the two previous models and calculating the ratio between the num-

ber of connections and the number of pairs with a given similarity s I will be able

to understand if these two models are able to reproduce the previous empirical find-

ings. However, knowing the final states of Axelrod’s model, we end up with two

possible similarity values: s = 0 and s = 1. This is due to the fact that the nodes

are connected only with nodes that share exactly the same cultural traits (s = 1)

or with nodes that are completely different (s = 0). In Centola’s model, if we give

enough time to the system to evolve and reach a stationary state, we end up with

only one similarity value, i.e., s = 1. In fact, nodes are only connected to nodes

that share the same cultural traits, but there are no connections with nodes with

different cultural traits.

5.4.3 The modified Centola model

In order to reproduce the previous empirical results we can try to use Centola’s model

and “force” pairs of nodes to break connections when their similarity is equal to 1. In

doing so, we are introducing a new process into the connection mechanism. Starting

with a random network of 2, 500 nodes, average degree 〈k〉 = 4, and |C| = 10, after

105 iterations, we obtain the results showed in Fig. 5.9.

At the top of Fig.5.9 are represented the results of the ratio between the number
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Figure 5.9: Results on the modified Centola’s model. The top figure shows
the trends for the ratio between the number of connected nodes |Ec| and the number
of all pairs of nodes function of the similarity for different cultural features q values.
The model is the modified Centola model, in which two nodes that have similarity
s = 1 will break their connection and one of the two nodes looks for a new neighbor.
In the bottom figure are plotted the similarity distributions for different values of q.

of connections |Ec| and the number of pairs |E| with a given similarity s. Results

show three different trends: for a low number of cultural traits (q = 10, 20) there is

a growing trend (like the one we would expect in perfect homophily); for q = 105,

there is a reversed U-shaped trend with a maximum at s = 0.1; for q = 103 we

have a trend which is similar to the empirical results, i.e., a U-shaped trend with a

maximum at s = 0.9.

At the bottom of Fig.5.9 are represented the number of nodes with a similarity

s. As expected, for small q we have a binomial-like distribution centered in s = 0.8.

The same distribution appears for larger q but with the maximum shifted to the left

at s = 0.

Even though for a combination of parameters the model seems to reproduce the

empirical findings, a serious drawback of this model is the simulation time. In fact,

with a longer simulation time, e.g. after 106 iterations, results are similar to what

we would expect for the Axelrod model. There are always two values s = 0 and
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s = 1 (except for the case of q = 10 in which we have 3 possible values and in the

case of q = 20, in which we have only one value), as it is shown in Fig. 5.10. Trends

are similar for different q values.

Figure 5.10: Results on the Centola model with removal for longer simu-
lation time.

5.4.4 The Homophily and Heterophily (HH) model

I now propose another model which is slightly different from the previous ones. I

start with a set of N isolated nodes. This is a major difference between my model

and those previously discussed. This model is not initialised with a pre-assigned

network.

For simplicity, each node is associated with the coordinates (x, y) that falls on

the unit circle3. The assigned coordinates represent both the cultural trait and the

resource that a node can offer to any other node. I want to model the following

mechanism: each node is looking for a different resource (heterophily/social depen-

3I could use a similar approach to the Axelrod and Centola models by assigning to each node a
cultural vector. I believe that, for the sake of simplicity, the following model description is simpler
with the use the unit circle. The transposition to a cultural vector is easily done.
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dence) that it can obtain from another node with which they can interact given that

they are similar (homophily).

Figure 5.11: Example of cultural traits association

In order to reproduce this mechanism, I impose that the probability that a connec-

tion is created between two nodes i and j is proportional to their similarity, i.e., the

angle between them. The similarity between any two node is a number that fall in

the interval [0, 1] evaluated as

S(i, j) =
(180− arcos((xi · xj) + (yi · yj))180π )

180

where (xi, yi) represent the coordinates of node i. Two nodes have S(i, j) = 1 if

θ = 0 and S(i, j) = 0 if θ = 180.

Empirical results show that homophily is the leading mechanism in creating a

collaboration. In fact, the reversing trend is observed only for very highly similar

scholars. Therefore, the mechanism of tie creation that I propose must strongly

rely on homophily and, less frequently, on both homophily and a social dependence

mechanism: with a chosen probability p, two nodes connect only if they are similar

enough, i.e., S(i, j) > r1 (homophily), otherwise, with a probability 1 − p a con-

nection is forged if S(i, j) > r1 and S(i, j) < r2 (the presence of both social depen-

dence/heterophily and homophily are acting simultaneously) where r∗ = rand(0, 1)

and r1 < r2.

In this model, the property associated with each node represents simultane-
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ously a proxy to test the homophilous and the social dependence mechanism. The

probability p acts as a “noise” factor, in which the creation of a connection is either

triggered only by homophily (or heterophily), or is a combination of both homophily

and heterophily. Two conflicting forces are acting concurrently, as in the hypothesis

we want to test. The simulations ran over N = 1, 000 nodes and each node will try

to connect with all other nodes (therefore there are n = 1/2 ·N · (N − 1) attempts

of forging a connection).

Finally, once the network is created, I measure for each similarity value s the ratio

between the number of connection |Ec(S = s)| and the possible ones |E(S = s)|.
If the probability p is absent and a connection is created only when S(i, j) > r1

and S(i, j) < r2 (homophily and heterophily mechanism are balanced), I obtain a

reversed U-shaped trend symmetric with a maximum in s = 0.5.

Why should we add the probability p in order to obtain results close to the

empirical ones? Previous results show that the main force behind a collaboration is

homophily. But this is true up to a given threshold, above which an heterophilous

effect takes place decreasing the occurrences of tie creation. If the two effects have

the same weight, we end up with a “U-shaped” trend in which the curve drops

at S∗ = 0.5. If homophily takes the lead, then the curve will starts to drop at

S∗ > 0.5. The more unbalanced the two effects are in respect to the homophilous

(heterophilous) effect, the higher (the lower) the S∗ value.
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Figure 5.12: The HH model simulations. The figure shows the trends for the
ratio between the number of connected node |Ec| and the number of all pairs of
nodes function of the similarity for different values of the parameter p. In the inset
are represented the distributions of |Ec| and the distribution of |E| (grey line).
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5.5 Conclusions

In this chapter I have proposed a method to quantify the research interests of physi-

cists and the evolution of their interests over time, and I have analysed the driving

forces that forge collaborations among physicists.

For each scientist, I have defined a vector of topics which reflects the area(s) of

physics in which they have published over a five year time window. This was possible

thanks to the presence of the PACS codes, i.e., alphanumerical labels associated with

each paper in the APS dataset analysed. In fact, through the use of PACS codes,

I was able to (i) define general domains of physics into well defined sub-domains

and (ii) measure the evolution of physicists’ interests along their careers. Empirical

findings show that, looking at a selection of fifty-four highly productive physicists

in the whole observation period of 1980-2013, there are two possible evolutions in

a scientist career: one towards specialisation, in which a scientist started his or

her career by publishing papers in more than one domain and ended up focusing

his or her publications in just one domain, and another towards interdisciplinarity,

in which a scientist started his or her career publishing papers in one domain and

ended up to spread his or her publications in more than one. This analysis shows

a balance between the interdisciplinary and the specialised career evolution when

considering the trend of all fifty-four authors. However, by including all authors

that have published in a given time window, it becomes clear that there is a general

tendency in physics towards an interdisciplinary approach.

The methodology I have proposed to analyse the authors’ career evolution shows

potential for future work. When I characterise an author’s interests into different

domains, I associate with him or her a vector which includes the distribution of

interests in each area of physics. By doing so, I am assuming that the domain

treated by a paper is representative of the author’s interests. This is justified by

the significant differences between physics areas. However, in a collaborative work,

authors may be interested in different aspects and problems of a given domain.

Therefore, it would be worthwhile to quantitatively diversify the interests of each

author in a single paper on which they collaborate.

The second part of this chapter is devoted to the analysis of the collaboration

network among physicists. A number of network growth mechanisms have been sug-
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gested to explain how social connections are forged and severed over time. Among

them, a key role is played by homophily, the principle that similarity breeds con-

nection. However other studies in the social sciences have pointed in the opposite

direction. For example, organizational ecologists have suggested that similarity can

lead to competition for scarce resources. According to this research tradition, com-

petition among organizations using similar strategies, of similar size, and in geo-

graphical proximity with one another tends to be stronger than competition among

dissimilar organizations. I extend the ecological argument to the domain of scientific

collaboration and examine the effects that similarity has on tie creation among sci-

entists. My findings suggest that homophily seems to affect tie creation, but only up

to a certain threshold, beyond which the effects of similarity reverse. I put forward

the hypothesis that actors with high scientific similarity are not likely to provide

each other with the resource(s) they are seeking, and therefore they redirect their

attention to other less similar collaborators. In order to cast light on these mixed

effects of homophily and heterophily on tie creation and to reproduce the empirical

findings, I have proposed a model that integrates homophily and social dependence

into a unified growth mechanism underpinning the evolution of a social network over

time.

To demonstrate the universality of these results, future work should extend the

analysis towards other scientific sectors and consider to include scientists’ cultural

attributes such as gender, ethnicity, age, the geographical location of the institutions,

the popularity of the scientific community, and many others. It would be interesting

to investigate whether there is any correlation between the particular evolution of

the scientific career of a scholar, the way he or she selects his or her collaborators,

and the scholar’s success measured by standard indicators such as the number of

citations received or the author’s h-index. These results would be important to

understand the key components that have a major impact on the short or long term

success of a scientist’s career.
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Chapter 6

Conclusions and future work

“I never think of the future - it comes soon

enough.”

— Albert Einstein

“Science... never solves a problem without

creating ten more.”

— G.B. Shaw

This thesis has dealt with two main research topics. In the first part (Chapters 2

and 3), I have analysed the effects of positive and negative relationships on the topo-

logical structure of social networks, focusing on the effect that negative relationships

have on the success of organization networks. In the second part (Chapters 4 and

5), I have analysed the presence of homophily as a mechanism behind the creation

of citations among scientific papers and its interplay with heterophily in fostering

collaboration among scholars.

In Chapter 1, I have carried out a review of the scientific literature in the domains

of complexity sciences, social sciences, and organizational sciences. Throughout my

thesis I have shown how the theories and methodologies provided by these research

domains can be integrated to produce innovative and interdisciplinary approaches

to the study of signed networks and tie creation mechanisms.

In Chapter 2, I have conducted a review of how networks are classified based on

their topology. In the complex network literature, social networks are considered to
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be different from technological or biological ones, not just for the dissimilar intrin-

sic nature of their nodes, but also for topological reasons. In fact, social networks,

i.e., networks composed by individuals and the relationships connecting them, are

characterised by the presence of two main properties: (i) a community structure,

i.e., groups of nodes in which most of the nodes’ connections are shared between one

another and (ii) by the presence of a high clustering coefficient, i.e., closed triadic

relationships. Both these properties contribute to make the network “assortative”,

i.e., a network in which nodes are connected to other nodes that share, on average,

the same amount of connections. Conversely, biological and technological networks

are characterised by the absence of a community structure and by an abundance of

open triadic connections among nodes (i.e., a low clustering coefficient). The com-

bination of these two properties contributes to make the network “disassortative”,

i.e., nodes with many connections are more likely to connect with nodes with few

connections and vice versa.

To explain these distinctive properties of social networks, a variety of models

from physics, sociology, and computer science domains have been proposed by other

scholars: assortative mixing has been related to the underlying community struc-

ture of social networks [67], transitivity [69], and homophily [70]. However, the

study of mixing patterns by degree has been mainly investigated in unsigned social

networks in which nodes are assumed to be connected through positive links [67].

Relatively little attention has been devoted to the emergence of degree correlations

in signed networks, and particularly in negative social networks, where individuals

are connected through links with a negative connotation, such as distrust, enmity,

and competition. In my study, I have focused my attention on the emergence of de-

gree correlations in signed social networks, i.e., social networks in which connections

are characterised to possess either a positive or a negative nature (e.g., friendship

and enmity, or trust and distrust). Therefore, I have analysed two signed social

networks, in which individuals express their trust or distrust toward each other.

Empirical findings indicate that negative subnetworks, i.e., the subset of nodes con-

nected only by negative links, are characterized by disassortative patterns, while

the overall unsigned network and the positive subnetworks are characterised by an

assortative pattern.

In Chapter 3, I have analysed the effects of negative connections in the domain of
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organization networks. Specifically, I have studied the effect of competition (negative

connections) on both the mobility of employees among start-ups, and on the success

of the national ecosystem of start-ups. Drawing on a large dataset of start-ups I

have constructed two networks: (i) the network of declared competition, in which

a connection from a start-up i towards a start-up j exists if i declares j as its

competitor, and (ii) the mobility network, in which a connection from a start-up

i towards a start-up j exists if an exchange of employee took place from start-up

i to start-up j. Making use of network techniques, I have quantified the effects of

competition on the network topology, resulting in a disassortative trend, as seen in

the case of social networks with only negative connections. Looking at the overlap

between the two start-up networks, the number of resulting connections is very little.

This indicates that the exchange of employees between competitors is quite rare.

I have then moved my analysis to a national level, aggregating start- ups whose

headquarters are based in the same nation. I have defined these sets as national

ecosystems. Based on findings related to the effects of competition as an obstructive

power for people to move between companies, I have studied the correlation between

the success of a national ecosystem and the presence of competition. Empirical

findings indicate that these two quantities are anti-correlated, which is interpretable

as the more competitive a national ecosystem is, the less successful it is.

In Chapter 4, the study of competition moves from the domain of start-ups to

the scientific one. One way to detect competition among scientists is to look for

the absence of relevant citation among two scientific papers. In fact, citations in

science are an important instrument to affirm the appreciation of a scholar’s work.

To this end, I have focused on citation networks to cast light on the salience of

homophily (namely the principle that similarity breeds connection) for knowledge

transfer between papers. Therefore, I have defined the degree to which citations

tend to occur between papers that are concerned with seemingly related topics or

research problems. Drawing on a large data set of articles published in the American

Physical Society (APS) journals, I have proposed a novel method for measuring the

similarity between articles through the statistical validation of the overlap between

their bibliographies. I have defined the probability Pi→j(p
∗) that a citation between

any two articles i and j whose similarity is validated at the threshold p∗ exists as

the ratio between the number of pairs of articles validated at that threshold and the
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number of existing citations between those validated pairs. Results suggest that the

probability of a citation made from one article to another is indeed an increasing

function of the similarity between articles. This study can help to uncover missing

citations between pairs of highly related articles, and may thus help identify barriers

to effective knowledge flows. By quantifying the proportion of missing citations,

I have conducted a comparative assessment of distinct journals and research sub-

fields in terms of their ability to facilitate or impede the dissemination of knowledge.

Findings indicate that knowledge transfer seems to be more effectively facilitated

by journals of wide visibility, such as Physical Review Letters, than by lower-impact

ones.

Chapter 5 has been devoted to the analysis of the same APS dataset with the

authors as subject. I have proposed a method to quantify patterns of the evolution of

physicists’ research interests during their career. First, I have collected for different

time windows papers published by each author. Second, for each time window, I

have associated a 10-dimensional vector of topics with each author, the elements of

which represent the authors productivity in each of the 10 domain of physics defined

by codes assigned to papers. Finally, I have analysed the career evolution of each

author in terms of the transformation of his or her interests over different domains,

looking at the temporal changes of his or her vector of topics. Results indicate

that the overall trend in physics is to move towards interdisciplinarity: there is a

growing tendency for physicists to spread their interests over more than one domain

along their career. In the second part of Chapter 5, I have analysed the creation

and evolution over time of collaboration among physicists. Through the definition

of a measure of scientific similarity based on the overlap of the authors’ vectors of

topics, I have proposed a method to associate a collaboration coefficient with each

physics area for each time window. I have then studied the temporal evolution of

collaboration within a physics field looking at how this coefficient changes over time.

Findings show that 60% of physics fields had an increase in terms of collaborations

over time and only the 40% had a decrease. Furthermore, I have analysed the

correlation between scientific similarity and the collaborations among physicists over

time. Findings show a reverse U-shaped trend, which I have interpreted as the

combination of two opposing mechanisms: homophily and social dependence. The

more two authors are scientifically similar, the more likely it is to find a collaboration
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between them. This is true up to a given threshold, above which the effect reverses.

Finally, in order to justify this hypothesis I have proposed a network model able

to reproduce the non linear trend. The model proposed is an attempt to interpret

the way individuals choose to collaborate in a scientific environment based on the

combination of the two social mechanisms of homophily and heterophily.

Key contributions

The key contributions brought in this thesis are as follows:

1) In Chapter 2, I have shown that positive and negative relationships differ

not only by their intrinsic nature, but also in how they affect the network

topology. In fact, the study on two online signed social networks shows a

positive correlation between the nodes’ degree and their neighbours’ degree

when sharing a positive relationship, and an anti-correlation in the case of a

negative relationship. This is the first time that the presence of anti-correlated

degrees in a social network has been connected to the negative relationships

shared by individuals. I have also proposed a network model able to reproduce

the empirical findings.

2) Through the analysis of the CrunchBase dataset, in Chapter 3, I have analysed

the effects of competition on the mobility of employees among start-ups and

on the success of the start-up ecosystem of a nation using network approaches.

I have created two start-up networks on a worldwide scale: the declared com-

petition network and the mobility network. Empirical findings suggest that

(i) competition is an obstructive power for the circulation of people among

companies and that (ii) the more competitive a national ecosystem is, the less

successful it is.

3) In addition and in accordance with the findings of Chapter 2, the network of

declared competition is shown to be disassortative, showing that (i) the type

of connection produces effects on a network’s topology not only for social net-

works but also in organization networks, and that, in particular, (ii) negative

connections seem to generally produce a disassortative trend.
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4) Another contribution from Chapter 3 is related to the use of network tech-

niques in order to extract a hierarchical structure from unstructured data. I

have combined two networks techniques (the network backbone analysis and

the community detection algorithm) in order to extract meaningful informa-

tion from the CrunchBase dataset concerning start-ups’ market sectors. Char-

acterising each nation with start-up activity into the identified macro industry

sectors, allowed me to reveal differences and similarities between nations and

distinguish the various patterns of activity of different start-up ecosystems.

5) In Chapter 4, I have analysed the citation network among papers published

in the American Physical Society (APS) journals and I have proposed a novel

method to identify the absence of statistically relevant citations. Results show

that the more two papers share a significant overlap in their bibliographies, the

more likely there is to be a citation between them. In other words, homophily

has been found to be an important mechanism in citation networks shaping

the structure and evolution of knowledge transfer between academic papers.

Finally, I have proposed a way of ranking physics areas and journals based on

the number of missing citations among their papers.

6) In Chapter 5, I have proposed a method to quantify the research interests of

physicists and the evolution of their interests over time. I have then measured

the tendency of physicists to change their career towards either interdisci-

plinarity or a specialisation. Results show that in physics the tendency over

the last 30 years is to move towards an interdisciplinary approach.

7) In the second half of Chapter 5, I have put forward and tested the hypothesis

that two opposing mechanisms such as homophily and heterophily contribute

in forging connections among scholars in the domain of scientific collaboration.

Findings suggest that homophily seems to affect tie creation but only up to a

given threshold, beyond which the effects of similarity reverse. I have then put

forward the hypothesis that highly similar individuals are less likely to provide

each other with a resource (material or immaterial, such as knowledge or skills)

that the scholar is looking for. As a consequence he or she will redirect his or

her attention to other, less scientifically similar collaborators. Finally, I have
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proposed a network model based on both homophily and heterophily able to

reproduce the empirical findings.

Future works

My work open to future works and has various implications for research.

First, findings on signed social networks can be regarded as a platform for further

studies of mixing patterns in complex networks. In fact, my study suggests that the

sign of the links could, in principle, be inferred simply from the analysis of the

structural properties of a network. From this perspective, findings can help inspire

the development of a quantitative measure to uncover the hidden sign of the links

from the type of mixing patterns exhibited by a network.

The approaches and methodologies developed in Chapter 3 may become a frame-

work to help build innovative ecosystems, showing that a competitive environment

can damage rather than foster the success of the whole national ecosystem. This

could be done by helping the free flow of people within national boundaries and

by subsidising companies that encourage collaboration and exchange of personnel

between companies.

The analysis proposed on citation networks (Chapter 4), on authors’ careers

evolution, and on scientists’ collaboration networks (Chapter 5) could be extended

to other scientific domains, using larger dataset such as the ISI Web Of Science. As

we witness a continuously increasing production of preprints and publication of new

articles, it has become particularly difficult for authors to keep abreast of scientific

developments and relevant works related to the domain of interest. As a result,

lack of knowledge of prior or current related work and missing relevant citations

may occur quite often. The method presented in Chapter 4 can help the scientific

community precisely to address this problem. In particular, it can be used not

only by authors to integrate the bibliographies of their work, but also by editors of

scientific journals to uncover relevant missing citations and identify the appropriate

reviewers for the papers they are considering for publication.

Concerning the study of scientists’ career evolutions (Chapter 5), it would be of

great interest to quantitatively measure the similarities and differences of distinct

scientific areas and understand what are the overall trends in each specific domain.
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This kind of information could be used by funding bodies to quantitatively evaluate

the expertise of the projects’ coordinators based on their career paths. Finally, the

study on collaboration among physicists should extend to investigating the presence

of any correlation between a scholar’s success and the way he or she selects his or

her collaborators. These results will represent an important step forward to unveil

the key components that have a major impact on the short or long term success of

a scientist’s career.
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Appendix Chapter 4

Effect of time on citations

In order to understand the effect of time on the methodology, I report the effect of

time (age of the paper) on papers’ citations. Specifically, I plot the average age of

the citing and the cited papers function of the k in-degree of each Sk subsets.

Figure 1: Papers ages function of the in- and out-degree citations.

In the left hand side figure we observe that there is no temporal dependence for

the citing papers over the different subsets Sk. From the right hand side figure,

we observe that the average age is only slightly growing as the number of incoming

citations k grows. These two figures show that the subsets Sk do not show any

relevant bias in respect to time.
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False Discovery Rate (FDR) statistical test

The validation of a given pair (i, j) in the FDR method is performed as follows [122].

We set a statistical threshold p∗ and we assume that there are in total Nt tests. Then,

the p-values of different tests are first arranged in increasing order (q1 < q2 < ... <

qNt), and the rescaled threshold is obtained by finding the largest tmax such that

qtmax <
p∗tmax
Nt

, (1)

where Nt is the number of tests. In this specific case, Nt is the number of distinct

pairs of articles that are tested over all the sets Sk of in-degree classes in the citation

network. Then we compare each p-value qij(k) with the rescaled threshold, and we

validate the pair (i, j) if qij(k) < p∗ tmax/Nt.
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Appendix Chapter 5

Averaging entropies

The analysis performed in Section 5.2.4 shows a positive linear trend which reflects

an average tendency over time for all authors to spread their interests over more

than one area of research, thereby following a more interdisciplinary career.

This study is made on the assumption that the distribution average is repre-

sentative of the entropies distribution. This could be the case if, for example, the

entropies are normally distributed. For each time window considered, the entropies

follow similar probability density distributions as the one shown in Fig. 2(a). The

overall distribution follows a normal distribution except for the pick in e = 0, which

represents the specific case of specialised authors. Therefore, the resulting entropy

distribution seems to show two different behaviours: one for specialised authors, i.e.

e = 0, and one for “interdisciplinary” authors, i.e. e 6= 0.

To better understand the general tendency in physics for authors’ pursuit of

a specialised or an interdisciplinary career, I can study separately the evolution

of the relative percentage of specialised authors over time and the evolution of

the average distribution of entropy given for the interdisciplinary authors (without

considering the contribution arising from specialised authors). Figure 2(b) shows

that the relative percentage of specialised authors is decreasing over time. Results

show that the relative number of specialised authors has diminished passing from a

21% in 1980 of the relative population to the 12% in 2007. Based on these results we

can argue that, in physics, there is a tendency for authors to become less specialised

over time.

156



Figure 2: Topic entropy evolution over time. (a) Entropy distribution of all
the authors for the time window of five years starting on 2004. The pick in e = 0
represents the authors that have published in only one physics field. The rest of
the distribution (e ∈ (0, 1]) follows a normal distribution. (b) Relative percentage
of specialised authors over time. This figure represents the relative percentage of
authors that are specialised (e = 0) in each year. We observe a decreasing trend
over time that shows a tendency for authors to become less specialised over time.
(c) Average entropy over time without considering specialised authors.

Moreover, in accordance with what is shown in Section 5.2.4, the average of the

entropy distribution over time follows again an increasing trend (Fig.2(c)). This

figure differs from Fig.5.4 because I am only considering the average arising from

the distribution of the entropies without considering specialised authors.
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Presented work

During my PhD, the projects I have worked on have also been presented to various

conferences. In particular, the work on degree correlations in signed social networks

(Chapter 1) has been presented to:

• international conference on network science NetSci14, in Berkeley, California

(2014);

• XXXV international Sunbelt social network conference, in Brighton, United

Kingdom (2015); and

• Complex Systems Digital Campus 2015, at the World e-Conference.

Second, the work in Chapter 2 on the nature of competition in start-up ecosystems

has been presented at:

• the cross-disciplinary workshop Data Natives, in London, United Kingdom

(2017); and

• the 2017 Pint of Science event in London.

Both presentations have integrated the results and the analysis made also in the

submitted paper Predicting success in the worldwide start-up network.

Third, the work on Homophily and missing links in citation networks (Chapter 3)

has been published and presented in:

• the conference on complex systems (CSS16), in Amsterdam, Netherlands (2016);

• the 2nd Imperial College SIAM chapter annual conference, in London, United

Kingdom (2016) for which I won the best talk award;
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• the cross-disciplinary workshop Data Natives, in London, United Kingdom

(2016); and

• has been accepted but, unfortunately, has not been presented at the interna-

tional Conference on Network Science (NetSci16), at Seoul, Korea (2016).

Fourth, the project on homophily and tie creation in social networks presented in

Chapter 4 has been presented on different forms in many conferences. In particular:

• the Thirteenth mathematics of networks meeting, at the Imperial College,

London, United Kingdom (2014);

• cross-disciplinary workshop, at the London Institute for Mathematical Sciences

(LIMS)(2015);

• cross-disciplinary workshop Data Natives, in London, United Kingdom (2015);

• ARS15, Capri, Italy (2015);

• the international conference on network science (NetSci15), in Zaragoza, Spain

(2015);

• the international conference on computational social science (ICCSS), in Helsinki,

Finland (2015); and

• has been accepted but has not been presented to CompleNet 2016 conference

in Dijon, France (2016).

In addition to the projects mentioned in this thesis, I have also work on a project

that examines the effects of collaboration among theatres on creativity, economic,

and popularity performances. I presented the results of this project to the 2nd

annual international conference on computational social science (IC2S2 2016), in

Evanston, IL, USA.
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