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Abstract

In an industrial experiment, the presence of Hard-to-Change factors may
force the experimenter to use a split-plot type experimental structure. The
corresponding Response Surface model then is a linear mixed model. Dif-
ferent design methodologies and estimation techniques are available in the
literature, for constructing a Response Surface split-plot design and for es-
timating the variance components of the model. We discuss the need for
developing a new design construction methodology and present an algorithm
for generating a D-optimal Response Surface split-plot design such that it
has pre-specified numbers of degrees of freedom for estimating the variance
components using the randomization based approach. An advantage of this
approach is that it gives pure-error estimates of the variance components.
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Chapter 1

Introduction

Split-plot designs were originally developed for use in agricultural studies.
These designs were basically the modified forms of randomized block de-
signs for use in a situation where it was not possible to perform all the field
operations on small plots. When conducting a field experiment, it is quite
possible, for practical convenience or because of technical reasons, that one or
more factors require a large area for application whereas some other factors
can be applied and tested on a relatively smaller field. This type of experi-
mental structure leads to split-plot designs. The large experimental unit is
called a whole-plot and a factor applied to this experimental unit is called a
whole-plot factor. The small experimental units are called sub-plots and the
factors applied to these experimental units are called sub-plot factors. An
early history of split-plot designs with their application can be seen in Yates
(1935)[29].

Suppose that, (Jones & Nachtsheim, 2009[19]), we are interested in test-
ing the effect of different irrigation systems and fertilizers on a crop yield. We
have two different irrigation systems and two different types of fertilizer to
test. Due to technical reasons, different irrigation systems cannot be applied
to an area smaller than a field but different types of fertilizer can effectively
be applied to a smaller area of the field. Further suppose that we have four
fields to conduct the experiment. In this situation, different levels of the
irrigation system are applied to the fields with complete randomization. One
way to perform the complete randomization is, as described by Bailey (2008,
p.147)[3], to write down a design on a paper where fields are numbered from
1 to 4 and each level of irrigation system is applied to an equal number of
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Figure 1.1: Experimental layout for field experiment

fields, that is 2 in this case. For example, one of the irrigation systems, say
a1, is applied to the fields numbered 1 and 2, while the other, say a2, is
applied to the fields numbered 3 and 4. Then we get a random permutation
of the numeric sequence by using a pack of cards or by generating random
numbers by a computer or calculator. Suppose that the random permutation
is 1, 4, 2, 3, then a1 will be applied on field 1 and 4 and a2 will be applied on
field 2 and 3. Similarly, different types of fertilizer are randomly applied to
the plots within each field and an independent randomization is performed
for every field (see fig. 1.1). Here, each field is a whole-plot and irrigation
system is the whole-plot factor whereas plots within each field are sub-plots
and fertilizer is the sub-plot factor and the whole experimental structure is a
split-plot design. More recent details on split-plot designs and several varia-
tions of such designs can be found in Montgomery (2008)[24]

The split-plot type experimental structure is common in industrial exper-
iments also. As noted by Cochran & Cox (1957)[9], one set of factors may
require a large amount of experimental material while another set of factors
might be tested on a smaller amount of material. For illustration consider an
example given by Bingham & Sitter (2001)[5]. A company wants to test the
effects of some factors on its final wood product. The manufacturing process
of the product consists of two stages. In the first stage, one set of factors
is combined with pieces of wood to form a large batch of wood, this batch
is then divided into four sub-batches and each sub-batch is then processed
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with another set of factors to produce the final product (sheet). Here, each
batch forms a whole-plot and the factors applied to produce a batch are the
whole-plot factors whereas each sub-batch forms a sub-plot and the factors
applied to these sub-batches are the sub-plot factors. Another situation that
leads to the use of a split-plot design is when there exist one or more factors
that require more time, cost or other resources for changing level settings
than other factors. These factors are called the Hard-to-Change (HTC) fac-
tors and the other factors are called the Easy-to-Change (ETC) factors. In
this situation, it is desired to change the level settings of the HTC factors
as infrequently as possible. This goal can be achieved by randomly applying
the HTC factors to larger experimental units and the ETC factors to small
experimental units. Here, a large experimental unit can be a physically large
experimental unit or it can be a longer period of time, such as a full day.
This situation is further explained with examples in section 1.3.

Many industrial experiments are conducted with an objective to deter-
mine the relation between the response and different level settings of factors
of interest, also called the input variables. It is believed that this relation
can be approximated by a linear regression model. The methodology to ap-
proximate the true relation between a response and a set of input variables
through a linear regression model is called Response Surface (RS) Method-
ology. RS methodology is a collection of statistical designs and techniques
useful for product optimization within a region of interest and it has now
become an important part of industrial experiments.

Because, in a split-plot design, we have two different types of experimen-
tal units, large and small, and randomization is performed independently at
two different levels, whole-plot level and sub-plot level, so we have two dif-
ferent sources of error. First, the whole-plot factors are randomly applied to
the whole-plots that generate whole-plot error and then sub-plot factors are
randomly applied to the sub-plots that generate the sub-plot error. So, the
RS model for a split-plot design is a linear mixed model that contains two
error terms, one for the whole-plot error and the other for the sub-plot error.
These terms are assumed to be random and uncorrelated having zero mean
and constant, but usually unknown, variances which are usually referred to
as the variance components of the model. These variance components are in-
volved in estimating the fixed effects of the model and their standard errors.
So, a careful estimation of the variance components is required for obtain-
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ing reliable results. The estimation of these variance components has been
of much interest in recent years. Different techniques are available in the
literature for estimating the variance components including Residual Maxi-
mum Likelihood (REML), a randomization based approach and a Bayesian
approach.

Another issue, when estimating the variance components, is the num-
bers of degrees of freedom available for estimation. It is important to have
appropriate numbers of degrees of freedom for obtaining good estimates of
the variance components because the estimates obtained by using only a few
numbers of degrees of freedom are not generally considered very reliable.
Some authors recommend the use of at least five degrees of freedom for ob-
taining good estimates of the error variance (Cox, 1958 p.167 [10]). Numbers
of degrees of freedom used to estimate the variance components also play an
important role in testing the significance of different effects and/or draw-
ing inferences about the model parameters. Higher numbers of degrees of
freedom help obtaining more precise estimates than those obtained by using
lower numbers of degrees of freedom.

Several design construction methodologies have been developed for con-
structing RS split-plot designs advocating different techniques for estimating
the variance components. But, as we will see later, hardly any of these
design construction methodologies generates efficient designs with the free-
dom of choosing the numbers of degrees of freedom for estimating variance
components. In this thesis we will address this problem by proposing an algo-
rithm that would generate a D-optimal RS split-plot design with pre-specified
numbers of degrees of freedom for estimating the variance components using
randomization based approach. This approach would give us unbiased pure
error estimates of the variance components. For a RS model, the variation
among the observed data due to experimental error can be partitioned into
pure error and lack-of-fit components. The pure error component is based on
the true replication of treatments (different combinations of factor levels).
The true replication of a treatment demands that if that treatment is ap-
plied to an experimental unit, the whole experimental process (changing of
factor levels) must be redone when the same treatment is applied to another
experimental unit. The randomization based approach suggests using a full
treatment model, by ignoring any treatment structure in a split-plot design.
So, we will be thinking of a split-plot design as a general incomplete block
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design considering whole-plots as blocks and sub-plots as experimental units
within blocks. We will assume that treatments having no particular struc-
tures are randomly allocated to experimental units within blocks each of the
same size. There are some standard results in the literature for estimating
the variance components for a general incomplete block design from a treat-
ment model with the related degrees of freedom. We will use and modify
these results to establish the theoretical basis for our algorithm.

In this chapter, we give an introduction to split-plot designs. Sections
1.1 and 1.2 contain some material on classical split-plot designs and their
analysis with a focus on agricultural experiments. In section 1.3, we discuss
the use of split-plot designs in industrial experiments.

1.1 Classical Split-plot Designs

Split-plot designs, like many other designs, were initially used in field exper-
iments. These designs can be used in the following two situations (Cox 1958,
§7.4 [10]).

1. When the number of treatment combinations exceeds the number of
homogeneous experimental units arranged in blocks.

2. When it is not possible to perform all experimental operations on
smaller experimental units.

When dealing with the first situation, one option could be to hold the levels
of one or more factors constant for a block so that the number of treatment
combinations reduces to a reasonable size. For illustration suppose that we
want to investigate the effect of 3 factors, A, B, and C, each with two levels,
on a crop yield. So, the number of treatment combinations is 8. Further
suppose that we have four fields for performing the experiment but each field
is divided into 4 plots. Since, the number of treatment combinations exceeds
the number of units in a block a Randomized Complete Block Design cannot
be used. So, to deal with this situation one option could be to hold the level
of factor A constant for each block, thus the number of treatment combina-
tions involving factors B and C will reduce to 4. Here each field will form
a whole-plot and A is the whole-plot factor. Whereas each plot will form a
sub-plot and factors B and C are sub-plot factors. But this approach should
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only be adopted if a classificatory factor, such as factor A in our example,
is included in the experiment only to get information about its interaction
with other factors and its main effects are of little interest.

The second situation is described in the example where we are interested
in investigating the effect of different irrigation systems and fertilizers on a
crop yield. There, the irrigation system could not be applied on smaller ex-
perimental units (plots) so the problem was addressed by applying each level
of the irrigation system to a larger experimental unit (field) and each level of
fertilizer to a smaller experimental unit (plot). Here the larger experimental
unit forms a whole-plot and the smaller experimental unit forms a sub-plot.

Split-plot designs can also be useful, and advantageous, in the situation
when there is a need to include an extra factor in the experiment. If an ex-
periment is planned to be executed such that one or more factors are applied
to the large experimental units then another factor that can be effectively
applied on relatively smaller experimental units can be included in the ex-
periment with little extra cost. Thus useful additional information can be
gained without much extra cost.

1.2 Design and Analysis

We go back to our example where we are interested in testing the effect of 2
different irrigation systems and 2 different types of fertilizer on a crop yield.
Let us denote the irrigation system as factor A and the fertilizer as factor
B. Two different levels of factor A are denoted by a1 and a2 and two differ-
ent levels of factor B are denoted by b1 and b2. We assume that we have 4
different fields to conduct the experiment. First, the levels of factor A are
applied to the whole-plots (fields) with complete randomization, as stated
earlier, and then different levels of factor B are applied, again with complete
randomization, to sub-plots (plots within each field). A possible experimen-
tal layout is then described in Fig. 1.1. Note that each whole-plot has equal
(single) replication of both sub-plot factor levels, thus all the whole-plots are
of the same size of 2. There is also an equal replication of whole-plot factor
levels.

For a split-plot design assuming one HTC factor (A) with a levels and one
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ETC factor (B) with b levels we write, following Hinkelmann & Kempthorne
(2008, p.538) [17], our model as

yijk = µ+ αi + γij + ηk + (αη)ik + εijk (1.1)

where i = 1, 2, ..., a, j = 1, 2, ..., r, k = 1, 2, ..., b, yijk is the response at the
jth replicate of the ith level of factor A and the kth level of factor B, µ is the
overall mean, αi is the fixed effect of the ith level of factor A, γij is the error
term for the jth replicate of the ith level of factor A, ηk is the fixed effect of
the kth level of factor B, (αη)ik is the fixed interaction effect of the ith level
of factor A and the kth level of factor B, and εijk is the error term for the jth

replicate of the combination of ith level of factor A and the kth level of factor
B.
Under complete randomization, we assume that E (γij) = 0, E (εijk) = 0,
cov (γik, εijk) = 0,

cov (εijk, εi′j′k′) =

{
σ2
ε if ijk = i′j′k′

0 otherwise,

and

cov (γij, γi′j′) =

{
σ2
γ if ij = i′j′

0 otherwise.

Note that there are two error terms in the model, one for the whole-plot
error and the other for the sub-plot error. This is due to the fact that we
are using two different types of experimental units and the randomization is
being performed independently at two different levels.

If the objective of the analysis is to check the significance of the effects of
whole-plot and sub-plot factors then this objective can be achieved by using
the ANOVA table. The ANOVA table for a split-plot design under model
(1.1), taken from Hinkelmann & Kempthorne (2008, p.536)[17], is given in
table 1.1.

The first part of the table contains the whole-plot analysis where the
whole-plot factor (factor A) is compared with the whole-plot error (Error 1).
And the second part of the ANOVA table shows the sub-plot analysis where
sub-plot factor (factor B) and whole-plot and sub-plot factor interactions
(AB) are compared with the sub-plot error (Error 2). By looking at the
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Table 1.1: ANOVA table for a split-plot design

Source DF SS E(MS)

Factor A a− 1 rb
∑

i (ȳi.. − ȳ...)
2 σ2

ε + bσ2
γ + rb

∑
α2

i

a−1

Error 1 a(r − 1) b
∑

i,j (ȳij. − ȳi..)2 σ2
ε + bσ2

γ

Factor B b− 1 ra
∑

k (ȳ..k − ȳ...)2 σ2
ε + ra

∑
η2

k

b−1

AB (a− 1)(b− 1)
∑

i,j,k (yijk − ȳij. − ȳi.k + ȳi..)
2 σ2

ε + r
∑

(αη)2ik
(a−1)(b−1)

Error 2 a(r − 1)(b− 1)
∑

i,j,k (yijk − ȳij. − ȳi.k + ȳi..)
2 σ2

ε

Total rab− 1
∑

i,j,k (yijk − ȳ...)2

ANOVA table, we can see that the numbers of degrees of freedom (DF) for
the sub-plot error are greater than those for the whole-plot error. This means
that the main effects of the whole-plot factor are less precisely estimated as
compared to the main effects of the sub-plot factor and sub-plot and whole-
plot factor interactions.

1.3 Industrial Split-plot Designs

As stated earlier, there are at least two situations that can lead to the use of
a split-plot design while conducting an industrial experiment. The first situ-
ation is when one set of factors is applied to a large amount of experimental
material and another set of factors is applied to a relatively small amount
of experimental material. The second situation is when one or more factors,
involved in the experiment, are HTC and some other factors are ETC. In this
situation it is not desirable to change the level settings of the HTC factors fre-
quently. So the HTC factors are applied to larger experimental units and the
ETC factors are applied to smaller experimental units. In the first situation,
the large amount of experimental material is physically divided into several
portions of a smaller amount of material and another set of factors is then
applied to these smaller amounts of experimental material. But in the sec-
ond situation, the large experimental unit is used for multiple experimental
runs under different settings of ETC factors but it is not necessarily divided
physically into several sub-units. The concept of the whole-plot is nearly the

11



same in both situations but there is a slight variation in the sub-plot concept.

We illustrate these two situations by giving some examples from the lit-
erature. The first two examples illustrate the situation where one set of
factors was applied to a large amount of experimental material, that large
experimental unit was then divided into several small units and a second set
of factors was then applied to those small experimental units. The last two
examples describe the situation where factors were classified as HTC and
ETC. The HTC factors were applied to a large experimental unit and that
large experimental unit was then used for multiple experimental runs with
different settings of the ETC factors.

Example 1 (Box & Jones, 1992) Consider the cake baking example given
by Box & Jones (1992)[7]. The manufacturer of a cake mix wants to find
out the the best recipe for his product according to a given criterion. The
product is sold in a box at market and recommended levels of time and tem-
perature to bake the cake in an oven are given on the box. It is known that the
temperature indicator in different ovens might not be 100% accurate. Also,
people do not always strictly follow the time recommendations for cake baking
and hence frequently undercook or overcook the cake. So, the manufacturer is
interested in finding a cake mix recipe that is robust to some minor changes
in recommended levels for time (S1) and temperature (S2) given on the box.
There are 3 factors involved in the product recipe: flour (W1), shortening
(W2) and egg powder (W3). So, in total there are 5 factors, 3 recipe factors
(W1, W2, W3) and 2 environmental factors (S1, S2) and each factor will
be used on two levels, say, high and low. The authors give three different
design strategies for conducting the experiment. All of those strategies lead
to the use of a split-plot type design but we mention here only one of those.
First, 8 large batches of cake mix are made using 8 different settings of the
recipe factors, then each of these large batches is divided into 4 sub-batches
and these 4 sub-batches (for every large batch) are then processed under 4
different settings of environmental factors.

In this design strategy, 3 factors, flour (W1), shortening (W2) and egg
powder (W3), are applied to a large amount of experimental material (large
batches of cake mix) and the other 2 factors are applied to a smaller amount
of experimental material (sub-batches). So, this experimental set-up is a
split-plot design where large batches of cake mix are whole-plots and factors
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applied to these experimental units are whole-plot factors while sub-batches
are sub-plots and the factors applied to these sub-plots are sub-plot factors.

Example 2 (Bingham et al, 2004) Consider another example from the
food industry given by Bingham et al (2004) [4]. An experiment was con-
ducted in a cheese-making factory. The objective of the experiment was to
study some quality characteristics of cheese production. The cheese produc-
tion process consists of two stages. At the first stage, the milk is processed
into a batch of curds and at the second stage these curds are processed into
the cheese. Experts identified 9 different factors that can affect the quality
characteristics of the cheese production under study. Two of the factors, say
W1 and W2, are thought to affect the production at the first stage while the
remaining factors, say S1, S2, S3, S4, S5, S6 and S7, affect the production at
the second stage. It was recommended to run the experiment at two stages. At
the first stage, a large amount of milk was processed in a tank under different
settings of factor W1 and W2. Then the processed milk from a single tank was
divided into several batches of curds and these batches were then processed
into cheese under different settings of the remaining 7 factors. This was a
case of a split-plot design where factors W1 and W2 were applied to a large
amount of experimental material so these are the whole-plot factors while
the remaining 7 factors were applied to a smaller amount of experimental
material so these 7 factors are the sub-plot factors.

Example 3 (Gilmour et al, 2000) Gilmour et al (2000) [12] reported the
freeze-dried coffee experiment. The objective of the experiment was to study
the effect of five factors on preserving the volatile compounds when freeze
drying the coffee. The five factors were: pressure (W1), solids content (S1),
slab thickness (S2), temperature (S3) and freezing rate (S4). Each factor was
to be tested at 3 different levels. It was known that the process would be
fairly variable between experimental runs but there would be more day to day
variation. Available resources could allow a maximum of 30 experimental
runs for the experiment and it was decided to run the experiment over 6
days and with 5 runs per day. However, it was not possible to execute all 30
experimental runs under complete randomization of all factor levels within
the given time frame because the factor pressure (W1) needed to be changed
manually and it took a long time when changing from one level to another.
In other words, pressure was a HTC factor. The experimenter wanted to
fix a level of the pressure factor for a full day and then randomly run the
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five different level settings of ETC factors. So, the design chosen was a
split-plot design where levels of the HTC factors were applied to days (large
experimental units) and levels of ETC factors were applied to the runs (small
experimental units) within each day. Hence, each day forms a whole-plot
and pressure is a whole-plot factor while each run forms a sub-plot and the
remaining 4 factors are sub-plot factors.

Example 4 (Jones & Goos, 2007) Jones & Goos (2007)[18] report an
experiment on Polypropylene. The experiment was run by four Belgian com-
panies to investigate the effect of several factors on the adhesive properties of
Polypropylene. The problem under study was the gas plasma treatment ap-
plied to the Polypropylene surface for glues and coatings to adhere well. The
experimenters were mainly interested in finding economical plasma treatments
that cause good adhesion properties of Polypropylene. Four factors related to
the plasma treatment, namely gas flow rate (S1), the power (S2), the reac-
tion time (S3) and the type of gas (S4), were selected by the engineers. In
addition to the factors that are related to the plasma treatment, seven addi-
tives in Polypropylene were also included in the experiment because the engi-
neers strongly believed that some of those additives had an effect on adhesive
properties of Polypropylene. Those additives were: ethylene propylene diene
monomer (EPDM) rubber (W1), ethylene copolymer content of the rubber
(W2), talc (W3), mica (W4), lubricant (W5), UV stabilizer (W6) and ethylene
vinyl acetate (W7). One of the four companies was responsible for producing
batches of Polypropylene and these batches would then be further processed in
the other three companies. For obtaining the required results, the experiment
needed 100 runs. However, it was not possible for the company to produce
100 different large batches of Polypropylene to conduct 100 independent ex-
perimental runs because it was a labour intensive job. So, it was agreed that
the company would produce 20 large batches of Polypropylene and these large
batches would be processed under 100 different gas plasma treatments.

The experiment consisted of two stages. At the first stage, large batches of
polypropylene were produced with additives and each of these large batches was
then used for multiple runs under different settings of gas plasma treatment.
Since the 7 additives were applied to large experimental units (batches of
Polypropylene) and every large experimental unit was used for multiple runs,
those factors were HTC factors and factors involved in runs were ETC fac-
tors. This experimental set-up exhibits a split-plot structure where each large

14



batch of Polypropylene forms a whole-plot and the 7 additives are whole-plot
factors whereas each run on a large batch forms a sub-plot and the 4 factors
involved at the run level are sub-plot factors.

In the remaining part of this thesis, we will discuss RS split-plot designs
and different methodologies and techniques already available in the litera-
ture for constructing RS split-plot designs. We also present a new design
methodology for constructing D-optimal RS split-plot designs. In the next
chapter, we will focus on the design and analysis of RS split-plot type ex-
periments after introducing the RS methodology and RS model for split-plot
designs. Then we will review different approaches available in the literature
for estimating the variance components of a RS model, with a focus on the
randomization based approach. In chapter 3, we review some of the design
construction methodologies available in the literature for generating RS split-
plot designs and discuss why there is a need for a new design methodology.
In chapter 4, we present a new design methodology, and give two different
computer search algorithms, for constructing a RS split-plot design. Then
we use our algorithm to generate designs for some of the design problems
already discussed in the literature and discuss the designs. In chapter 5, we
give concluding remarks.
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Chapter 2

Response Surface Split-Plot
Designs

In this chapter, we focus on the use of split-plot designs in RS experiments.
In section 1, we give a brief introduction to RS methodology, RS models and
parameter estimation. Section 2 describes the situations for RS experiments
that lead to the use of split-plot designs. We give the RS model for split-
plot designs and briefly state the method for estimating the fixed effects of
the model. In section 3, we review some of the techniques available in the
literature for estimating the variance components of the RS model for a split-
plot design. The analysis of a split-plot design as an incomplete block design
and the estimation of the variance components is described in section 4.

2.1 Response Surface Methodology

In many scientific investigations, the engineers and scientists study a system
or process where their interest lies in determining the relationship between
the output and the input of that process or system. The output is often
called the response and the input is usually called input variables or factors
that can affect the response. Suppose that the true relation between the
response and the input factors can be described as

y = g (X1, X2, ..., Xk) + ε, (2.1)

where y is the response, the X’s are the factors of interest, usually measured
on a continuous scale, g is a function of these factors and ε is a statistical
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error term that represents other sources of error not captured by the function
g. The function g is usually unknown and might be very complicated. So, the
research problem is to approximate this true but unknown function through
a linear regression model. Since, the relationship between the response and
input factors can be shown graphically as a surface lying over the range of
the input factors, it is also called a response surface study. A RS study is
usually carried out for two reasons.

1. To approximate the true relationship, between the response and the
input factors, through a regression model.

2. To find out the settings for input factors for which the response is
optimal (maximum or minimum.)

RS methodology is a strategy that can effectively be used to achieve these
objectives.

Response surface methodology is based on the idea that the true relation
between a response and the levels of one or more factors can be approximated
by a linear polynomial model through a Taylor series expansion of the true
function. The idea was originally developed by Box & Wilson (1951)[8]
and now has become an important part of industrial experiments. The RS
methodology is a collection of statistical designs and optimizing techniques
that can be effectively used to explore and optimize a product or process,
within a region of interest, when the factors involved in the experiment are
quantitative in nature. Sometimes it is convenient to transform the original
factors in, usually dimensionless, coded forms. The true unknown function
(2.1) then can be written as

y = g (x1, x2, ..., xk) + ε, (2.2)

where x1, x2, ..., xk are coded variables. The experiment is run under differ-
ent and pre-planned settings of factor levels and the response is measured
for each level setting, also called an experimental run. This information
(measured response) is then used to build an empirical model and this fitted
model is further explored, through a series of experiments, for attaining the
setting of factor levels where the response is optimum.

Most experimental designs used in the RS methodology are based on the
assumption of complete randomization. This assumes that the levels of the
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input factors are applied to the experimental units with complete randomiza-
tion as described in chapter 1. The assumption of complete randomization
also demands the re-setting of all factor levels for each and every experimen-
tal run even if the successive runs have the same settings for one or more
factors. For example, suppose that we are randomizing the two levels of a
factor, say oven temperature, along with some other factor levels. The two
levels are 40◦C (t1) and 60◦C (t2). The randomized sequence for application
is (t1t2t1t1t2t2....). Then, although the 3rd and the 4th experimental runs
have the same setting for the oven temperature, still we need to re-adjust
the temperature to the t1 level for the 4th experimental run otherwise the
corresponding error terms will not be uncorrelated which is an important
assumption in RS model fitting. Hence, under the assumption of complete
randomization the true relation is approximated by a linear polynomial model
and perhaps the most often used approximation is a second order model.

For example, suppose that we are studying a process with two input fac-
tors (in coded form) and one response. We wish to determine the relationship
between the input factors and the response. Different level settings of input
variables and corresponding responses are given in table 2.1. Further suppose

Table 2.1: Data set for the fictitious example

x1 x2 y
-1 -1 46.5
-1 1 45.5
1 -1 57.5
1 1 50.5
0 0 50.0
0 0 50.0

1.414 0 55.7
-1.414 0 44.4

0 1.414 47.2
0 -1.414 52.8

that it is known, from previous experience, that the true relation can be well
approximated by a second order polynomial model. Then a second order
polynomial model, for our example, with two input factors can be written as

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε, (2.3)
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where the β’s are model parameters and need to be estimated. Similarly, for
f input factors, the equation (2.3) can be generalized as

y = β0 +

f∑
i=1

βixi +

f∑
i=1

βiix
2
i +

f−1∑
i=1

f∑
j=i+1

βijxixj + ε. (2.4)

For computational ease, it is often convenient to write the model in matrix
form. For our example, we can write the model (2.3) as

y = Xβ + ε (2.5)

where the y is a vector of responses (column 3 of table 2.1), ε is a vector of
errors, β = [β0, β1, β2, β11, β22, β12]

′ and X = [1n x1 x2 x2
1 x2

2 x1x2],
where 1n is a column vector of 1’s of dimension n, n is the total number of
experimental runs and x1 and x2 are the first and second columns of table
2.1 respectively, x2

1 is the vector whose lth element is the square of the lth

elements of x1, x2
2 is the vector whose lth element is the square of the lth

elements of x2 and x1x2 is the vector whose lth elements is the product of the
lth elements of x1 and x2. X is also called the model matrix and is always
known. Then the general second order polynomial model given by equation
(2.4) can also be expressed in matrix form as (2.5)where y is an (n × 1)
vector of responses, X is a (n×p) known design matrix, β is a (p×1) vector
of unknown model parameters and ε is an (n × 1) vector of errors. Under
complete randomization, it is typically assumed that ε ∼ N(0, σ2In), where
In is an identity matrix of order n and σ2 ≥ 0.

The model parameters are then estimated using the ordinary least squares
method. If we write β̂OLS as the OLS estimator of β then, if X has a full
column rank,

β̂OLS = (X′X)
−1

X′y, (2.6)

and
V(β̂OLS) = (X′X)−1σ2, (2.7)

where V stands for the variance-covariance matrix. More details about
RS Methodology can be found in Box & Draper (2007)[6] and Myers et
al (2009)[25].
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2.2 RS Model for a Split-plot Design

For a split-plot design, with wp whole plots, the RS model can be written as

y = Xβ + Zγ + ε, (2.8)

where Z is a n× wp block incidence matrix of the form

Z =



1k 0 · · · 0

0 1k · · · 0

...
...

. . .
...

0 0 · · · 1k


,

with (i, j) element 1 if the ith experimental run is in the jth whole-plot and 0
otherwise, k is the whole-plot size, γ is a (wp× 1) vector of whole-plot errors
and ε is an (n × 1) vector of sub-plot errors. We assume ε ∼ N(0, σ2

ε In),
γ ∼ N(0, σ2

γIwp), cov(εi, γj) = 0 for i = 1, 2, ..., n and j = 1, 2, ..., wp and the
remaining terms have same meanings as in (2.5). The covariance matrix Σ
of the response vector y is of the form

V (y) = Σ = σ2
γZZ′ + σ2

ε In. (2.9)

The error variances (σ2
ε , and σ2

γ) are also called the variance components of
the model.

For a completely randomized design the model parameters are estimated
using OLS but it is no longer an appropriate estimation method for analysing
a split-plot design. Instead we use the generalized least squares method for
estimating β which is

β̂GLS = (X′Σ−1X)−1X′Σ−1y, (2.10)

and the variance-covariance matrix is given as

V(β̂GLS) = (X′Σ−1X)−1. (2.11)
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Usually the variance components (σ2
γ and σ2

ε ) are not known and therefore
cannot be used directly in (2.10) and (2.11). So these variance components
are first estimated and then these estimates are used in expressions (2.10)
and (2.11). In that case

β̂FGLS = (X′Σ̂
−1

X)−1X′Σ̂
−1

y. (2.12)

For more details on RS methods for split-plot designs see Letsinger et al
(1996)[20].

2.3 Estimation Techniques

The variance components are used in estimating the model parameters of
RS models and also in drawing inferences about these parameters. So the
estimates of the variance components should be as close to the true values
as possible. Different techniques are available for estimating these variance
components, we mention some of these.

Letsinger et al (1996)[20] suggested the use of residual maximum likeli-
hood (REML) for estimating the variance components of a RS model for a
split-plot design. After that, the use of REML for estimating the variance
components has become widely accepted. But different authors have pointed
out several issues related to this method for estimating the variance compo-
nents. For example Gilmour & Goos (2009)[11] discussed the Freeze-Dried
Coffee experiment that was originally reported by Gilmour et al (2000)[12]
and was also described in Example 3 of section 1.3. The original design
suggested by the authors is given in table 2.2. Gilmour & Goos (2009)[11]
showed that for this design and data, the REML estimate of the whole-plot
error variance turns out to be 0. The authors analysed the data given in
table 2.2 using several computer based packages for statistical analysis and
reported that all the packages estimated the whole-plot error variance to be
0. They also discussed the implication of different methods for determining
the degrees of freedom for estimating the whole-plot variance and reported
that different packages used different degrees of freedom for testing the pa-
rameter effects.

While explaining, the authors said that for a non-orthogonal split-plot
design whole-plot totals contain some information about the sub-plot model
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Table 2.2: The design given by Gilmour et al (2000) for the Freeze-Dried
Coffee experiment. Here y represents the response vector.

whole plot W1 S1 S2 S3 S4 y whole plot W1 S1 S2 S3 S4 y

1 1 0 0 0 1 66.0 4 1 0 0 -1 0 66.9
1 1 0 0 1 0 66.1 4 1 1 0 0 0 79.2
1 1 -1 0 0 0 57.8 4 1 0 0 0 -1 65.2
1 1 0 0 0 0 66.0 4 1 0 -1 0 0 73.8
1 1 0 1 0 0 51.9 4 1 0 0 0 0 67.9
2 0 0 0 0 0 70.9 5 -1 0 0 0 0 69.2
2 0 -1 1 -1 1 56.8 5 -1 1 1 -1 1 85.4
2 0 1 1 1 -1 62.4 5 -1 1 -1 1 -1 74.3
2 0 1 -1 -1 -1 83.6 5 -1 -1 1 1 -1 50.4
2 0 -1 -1 1 1 65.2 5 -1 -1 -1 -1 1 60.3
3 -1 0 0 0 0 71.4 6 0 1 -1 1 1 89.2
3 -1 1 1 1 1 97.9 6 0 0 0 0 0 68.5
3 -1 -1 1 -1 -1 54.9 6 0 1 1 -1 -1 75.6
3 -1 -1 -1 1 -1 61.7 6 0 -1 1 1 1 56.5
3 -1 1 -1 -1 1 80.4 6 0 -1 -1 -1 -1 68.4
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parameters. This information uses some of the degrees of freedom at the
whole-plot level and even sometimes, especially if there are only a few whole-
plots, leaves 0 degrees of freedom for estimating the whole-plot error variance
although some packages show that there are still some degrees of freedom
available. The authors concluded that since REML is based on asymptotic
results, it might not work well for small experiments. In this situation, the
authors suggested the use of a Bayesian approach where some prior beliefs
are made about the variance components. If the data contains enough in-
formation, the Bayesian approach might give similar results to REML and
prior beliefs might be overruled. But if the data do not contain enough in-
formation, the resulting estimates of the variance components would heavily
depend on the prior beliefs. However, one advantage of this approach is that
there would not be any problem for determining the number of the related
degrees of freedom.

2.4 Randomization Based Approach

Another method already available in the literature, for estimating the vari-
ance components, is called a randomization based approach. In this method,
we ignore the treatment structure in a split-plot design, i.e. we ignore that
some factors are HTC and the other factors are ETC, only to obtain the es-
timates of the variance components, and assume that the whole-plots formed
by the HTC factors are blocks and sub-plots formed by the ETC factors
are experimental units arranged in blocks. Then, in this situation, split-plot
designs are simply incomplete block designs where treatments are applied to
the experimental units arranged in blocks. The corresponding model is then
the full treatment model and the ANOVA table gives the estimates of the
variance components with related numbers of degrees of freedom. Suppose
that we want to apply t treatments to wp blocks each with k experimental
units, where t > k and treatment i is replicated ri times, (i = 1, 2, ..., t),
such that

∑t
i=1 ri = n. Then, following Hinkelmann & Kempthorne (2005,

p.329)[16], we can write our model for a general incomplete block design
(IBD) as

yijl = µ+ τi + γj + εijl, (2.13)

for (i = 1, 2, ..., t), (j = 1, 2, ..., wp) and (l = 0, 1, 2, ..., nij). Where yijl is
the response at the lth experimental unit that receives the treatment i in the
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jth block, µ is the overall mean, τi is the effect of the ith treatment, γj is
the random effect of the jth block, εijl is the error associated with yijl and
nij denotes the number of times treatment i appears in block j, E(εijl) = 0,
E(γj) = 0, cov(εijl, γj) = 0,

cov (εijl, εi′j′l′) =

{
σ2
ε if ijl = i′j′l′;

0 otherwise,

and

cov (γj, γj′) =

{
σ2
γ if j = j′;

0 otherwise.

We write model (2.13) in matrix form as

y = µ1n + Xττ + Zγ + ε, (2.14)

where y is an (n× 1) vector of the responses, 1n is an (n× 1) vector of 1’s,
Xτ is an (n× t) treatment incidence matrix with ith column having ri unity
elements and n − ri zero elements such that x′ixi = ri and x′ixj = 0 where
xi and xj is the ith and jth column of Xτ and i 6= j, τ is a (t × 1) vector
of treatment effects, Z is an (n×wp) block incidence matrix as described in
section 2.2, γ is a (wp×1) vector of random block effects, and ε is an (n×1)
vector of errors. Under complete randomization, we assume that E (ε) = 0,
V (ε) = σ2

ε In, E (γ) = 0, V (γ) = σ2
γIwp . Then the model given by (2.14)

is a full treatment model and the variance components of this model can be
estimated by, following Hinklemann & Kempthorne (2005)[16], Yates’ proce-
dure. This method suggest the fitting of the full treatment model assuming
fixed block effects then the block error variance can be estimated using extra
sums of squares for blocks given the treatments. Since the estimates of the
variance components taken from the full treatment model depend on the true
replication of treatments, these are also called the pure error estimates of the
variance components. These estimates of the variance components can then
be plugged in (2.12) to estimate the fixed effects of the RS model. Further-
more these pure error estimates can also be used to check the lack-of-fit of
a RS model. In the next section we explain how the pure error estimates of
the variance components can be obtained by using a full treatment model
for a split-plot design.

The analysis of an IBD is performed at two stages. At the first stage,
the analysis is performed using the standard ordinary least squares method
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Table 2.3: ANOVA Table for Model (2.14)
Source of Variation Degrees of freedom Sums of Squares

Xτ |1n t− 1 T′R−1T− G2

n
Z|1nXτ rank(C2) = d γ̂ ′Q2

Residual n− t− d by difference

total n− 1 y′y-
G2

n

for estimating the fixed effects of treatments and blocks. This is called the
Intra-Block analysis. At the second stage, the block effects are assumed to be
random and analysis is performed mainly on the basis of block totals rather
than of single observations. This is called the Inter-Block analysis. Here we
describe these two analyses, as given by Hinklemann & Kempthorne (2005,
Ch.1)[16].

2.4.1 The Intra-Block Analysis

The model for a general incomplete block design is given by (2.14). If we
write W = (1n Xτ Z), and Θ′ = (µ τ ′ γ ′), then

y = WΘ + ε. (2.15)

The normal equations for model 2.15 can be written as

(W′W) Θ = W′y, (2.16)

These equations are then solved to obtain the estimates for treatment effects
and block effects. Then the ANOVA table based on the model (2.14) is given
in table 2.3, where

C2 = K−N′R−1N, (2.17)

Q2 = B−N′R−1T,

C2γ̂ = Q2,

and
γ̂ = C−2 Q2.

Where N is a design incidence matrix with element i, j equal to the num-
ber of times treatment i is replicated in block j, T = Xτ

′y = [T1T2...Tt]
′
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and Ti represents ith treatment total, R = diag[r1 r2 ... rt], B = Z′y =
[B1B2...Bwp ]′ and Bj is the jth block total, K = kI, C−2 is a generalized in-
verse for C2, G = y′1 and d in the ANOVA table 2.3 is defined as rank(C2).

The sum of squares for the blocks given in the ANOVA table 2.3 is used
to estimate the block error variance with the related degrees of freedom given
as rank(C2).

2.4.2 The Inter-Block Analysis

The Inter-Block analysis of IBD’s is based on the argument that the block
totals also provide some information about the treatment comparisons. For
the Inter-Block analysis, consider the model (2.14)

y = µ1n + Xττ + Zγ + ε.

Now the γ is assumed to be a vector of random effects such that E(γ) = 0,
V(γ) = σ2

γI and γ and ε are uncorrelated. Since the Inter-Block analysis
deals with the block totals, pre-multiplying equation (2.14) by Z′ gives

Z′y = kµ1wp + N′τ + kIγ + Z′ε. (2.18)

That gives
E (Z′y) = kµ1wp + N′τ , (2.19)

V (Z′y) = k2σ2
γI + kσ2

ε I (2.20)

= kσ2
ε

(
I + k

σ2
γ

σ2
ε

I

)
(2.21)

= Lσ2
ε , (2.22)

where L = diag

(
k(1 + k

σ2
γ

σ2
ε

)

)
= diag(l). Then we use

z = L−1/2Z′y, (2.23)

as our response vector because

V(z) = σ2
ε I, (2.24)
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that satisfies the condition for using the ordinary least squares method. Now
from equation (2.19) we get

E(z) = L−1/2 (kµ1k + N′τ ) = L−1/2 (k N′)

[
µ
τ

]
, (2.25)

where k = k1n. Then the normal equations are[
k′

N

]
L−1 (k N′)

[
µ̃
τ̃

]
=

[
k′

N

]
L−1Z′y. (2.26)

Hinkelmann & Kempthorne (2005)[16] noted that, for wp < t, which is a
normal case for RS split-plot designs, the rank of the coefficient matrix would
be less than t so not all treatment contrasts would be estimable using block
totals. The authors suggested that the Intra and the Inter block information
can be combined additively into a single analysis to get the best information
about the treatment effects. This analysis is called the Combined analysis.

2.4.3 The Combined Analysis

For the Combined analysis, we will use the same model as given by (2.14) and
with same assumptions i.e. we assume random block effects as we assume
for split-plot designs. Then

E(y) = µ1n + Xττ , (2.27)

and

Σ = V(y) = ZZ′σ2
γ + σ2

ε I = diag(V1,V2, ...,Vw)σ2
ε , (2.28)

where Vi = σ2

(
Ik +

σ2
γ

σ2
ε

1k1
′
k

)
. If we write W̃ = (1n Xτ ), and Θ̃

′
=

(µ τ ′), then the normal equations can be written, using the generalized
least squares methods, as(

W̃′Σ−1W̃
)

ˆ̃Θ = W̃′Σ−1y, (2.29)

where Σ−1 = diag
(
V−1

1 ,V−1
2 , ...,V−1

w

)
and V−1

i = σ−2
ε

(
Ik −

σ2
γ

σ2
ε + kσ2

γ

1k1
′
k

)
=

σ−2
ε (Ik − c1k1

′
k) , and c =

σ2
γ

σ2
ε + kσ2

γ

. Then the authors showed that the co-

efficient matrix for equation (2.29) does not have a full rank and the easiest
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Table 2.4: ANOVA Table for Model 2.14
Source E(SS)

Z|1nXτ dσ2
ε +

(
n−

∑
ij

n2
ij

ri

)
σ2
γ

Residual (n− t− d)σ2
ε

way to solve the normal equation is to put µ = 0. So, the normal equations
reduce to (

X′τΣ−1Xτ

)
ˆ̃τ = X′τΣ

−1y. (2.30)

Then the equation (2.30) can be also be written as[
R−NK−1N′ + NL−1N′

]
ˆ̃τ = T−NK−1B + NL−1B, (2.31)

which is a additive combination of Intra and Inter Block normal equations.

2.4.4 Yates’ Procedure

The variance components (σ2
γ) and (σ2

ε ) in equation (2.30) are usually un-
known and therefore need to be estimated. These estimated values of the
variance components are then used to estimate the treatment effects. One
method for estimating the variance components is called Yates Procedure.
For estimating the variance components using Yates Procedure, we will fit
the model (2.14) without assuming that block effects are random. We will
compute the sums of squares for treatments given the mean and for the blocks
given the mean and the treatments. Then we will find the expected values
of the mean squares assuming that the block effects are random. Thus σ2

γ is
estimated by the expected mean square for blocks given the mean and treat-
ments and σ2

ε is estimated by the expected residual mean square. Expected
sums of squares for the model (2.14) assuming random block effects (taken
from Hinkelmann & Kempthorne (2005)[16])are given in table 2.4.

From the table we get

E (MS Residual) = σ2
ε . (2.32)

So
σ̂2
ε = MS Residual. (2.33)
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E (MS [Z|1nXτ ]) = σ2
ε +

(n−
∑

ij

n2
ij

ri
)

d
σ2
γ

= E (MS Residual) +
(n−

∑
ij

n2
ij

ri
)

d
σ2
γ.

or

σ̂2
γ =

d(
n−

∑
ij

n2
ij

ri

) [MS (Z|1nXτ )− σ̂2
ε

]
. (2.34)

Thus (2.33) and (2.34) respectively give unbiased estimators of σ2
ε and σ2

γ.

If we ignore the treatment structure in a split-plot design and consider it
as a general incomplete block design where whole-plots serve a blocks then the
corresponding treatment model and model assumptions will be the same as
given for the combined analysis of a general incomplete block design. Hence,
using the Yates’ procedure we can estimate the variance components from
the treatment model and then these estimates can be used in the response
surface model.

We know, from table 2.3, that the numbers of degrees of freedom re-
lated to the sub-plot and the whole-plot error variances are n − t − d and
d respectively, where d = rank(C2). So the matrix C2 plays an important
role for determining the numbers of degrees of freedom for estimating the
pure error variance components. The rank of the matrix C2 can be deter-
mined by checking if the design is connected or not. For a connected design
rank(C2) = wp − 1 and for a disconnected design rank(C2) < wp − 1. We
will use the concept of a connected design to prove the theoretical results for
our new design methodology given in chapter 4. A connected design can be
defined as: two treatments are said to be connected if we can move from one
to another through a chain consisting alternately of treatments and blocks
such that every treatment is contained in the adjacent block. A design is said
to be connected if all the treatments are connected, otherwise it is called dis-
connected. We know, From equation (2.17), that the matrix C2 depends on
the design incidence matrix N. So, whether a design is connected or not
can also be checked by the design incidence matrix N. If two non-zero el-
ements of matrix N can be connected through vertical and horizontal lines
such that the vertices are at non-zero elements then the two treatments are
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connected. The design is connected if a given treatment is connected to all
other treatments. All the information given in this paragraph can be seen in
Hinkelmann & Kempthorne (2005, p.14-16)[16].

The information matrix, C2, and the concept of a connected design plays
an important role in our algorithm, given in chapter 4. We use the concept
of a connected design in section 4.4 to prove the theoretical results for the
new design methodology. In our algorithms, given in sections 4.5 and 4.6, we
construct matrix C2 and calculate its rank to determine the available numbers
of degrees of freedom for estimating the pure error variance components.
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Chapter 3

Design Construction
Methodologies

In this chapter we will look at some of the methodologies already available in
the literature for constructing RS split-plot designs. We will briefly explain
these methods giving some examples. In section 1, we discuss equivalent
estimation designs. Section 2 describes the methodology for generating D-
optimal RS split-plot designs. The methodology for constructing D-efficient
equivalent estimation designs is described in section 3. In section 4, we
describe a stratum-by-stratum construction method with an example.

3.1 Equivalent Estimation Designs

As we have described earlier, the analysis of a split-plot design using OLS
can be misleading, instead it is recommended to use GLS estimates of model
parameters. However, Letsinger et al (1996)[20] proved that for first order
split-plot designs OLS estimates can be equivalent to GLS estimates if ev-
ery whole-plot receives the same combinations of the sub-plot factor levels.
Later Vining et al (2005)[28] and Parker et al (2007a) [26] presented design
methodologies for constructing second order split-plot designs that allow the
equivalence of OLS and GLS estimates.
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3.1.1 General Condition for Equivalence of OLS and
GLS

A necessary and sufficient condition for the equivalence of OLS and GLS
estimates ( McElroy, 1967 [23]) is that there exists a nonsingular matrix F
such that

XF = ΣX, (3.1)

where X and Σ are the same as defined earlier. Parker et al (2007) developed
a general condition, valid only for the split-plot designs, for the equivalence
of OLS and GLS estimates. Here, we show how they derived that condition.
Putting equation (2.9) in (3.1) and pre-multiplying by (X′X)−1X′ we get

F = Qσ2
γ + Iσ2

ε , (3.2)

where
Q = (X′X)

−1
X′ZZ′X. (3.3)

Putting (3.2) in (3.1) we get

XQ = ZZ′X, (3.4)

Since (3.4) depends only on the model matrix X and the block incidence
matrix Z, it is possible to numerically check the equivalence of OLS and GLS
when generating a split-plot design using a computer based search algorithm.
By writing the model matrix X as,

X =


1k HD1 HQ1 ED1 EQ1

1k HD2 HQ2 ED2 EQ2
...

...
...

...
...

1k HDwp HQwp EDwp EQwP

 ,

where 1k is a unit vector of order k and represents the intercept term, HDi

contains all the columns that represent the main effects and two factor inter-
actions of the HTC factors in the design matrix, HQi contains the columns
that denote pure quadratic effects of the HTC factors, EDi contains the
columns that denote main effects and two factor interactions of the ETC
factors and ETC and the HTC factors interactions and EQi contains the
columns that denote the pure quadratic effects of the ETC factors, in whole-
plot i. We assume w HTC and s ETC factors.
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By considering a choice for the design matrix X for which

Q =


k 0′ 0′ 0′ v′0
0 kID 0 0 0
0 0 kIQ 0 Vw

0 0 0 0 0
0 0 0 0 Vs

 ,

and by putting matrix X, Q and Z in equation (3.4), the authors reduced
the equivalence condition to,

11′EDi
= 0, (3.5)

and
11′EQi

= 1nv
′
0 + HQi

Vw + EQi
Vs, (3.6)

for the design matrix X. Here ID and IQ are identity matrices of order (w×

w) and

([
w +

w(w − 1)

2

]
×
[
w +

w(w − 1)

2

])
respectively, Vs is a (s× s)

matrix, v′0 is a vector of length s and Vw is a (w × s) matrix. The equation
(3.5) and (3.6) are sufficient conditions for the equivalence estimation. The
first condition, expressed by (3.5), requires an orthogonal split-plot design
within each whole-plot so that that the column sums of the main effects
and two factor interactions in the split-plot design should be 0 within each
whole-plot. The second condition belongs to the pure quadratic effects of the
split-plot design and it is relatively difficult to satisfy. Here we discuss two
different techniques to construct equivalent estimation designs.

3.1.2 VKM Methodology

Vining et al (2005)[28] presented a design methodology that allows the modi-
fication of standard second order RS designs (e.g. Central Composite Designs
(CCD’s) and Box-Behnken Designs) to accommodate split-plot type experi-
ments. They also developed the conditions for these designs that, if satisfied,
allow the equivalence of OLS and GLS estimates of model parameters. Such
designs are now called the equivalent estimation Designs. Following Parker
et al (2007b)[26], we will call their construction method the VKM method.
Here we briefly describe the VKM design methodology and conditions for
the equivalence estimation.
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To modify a CCD into a split-plot design, a completely randomized CCD
is arranged in such a way that the levels of the HTC factors remain constant
for consecutive runs forming whole-plots of the experiment while the levels
of the ETC factors can be changed run to run forming the sub-plots within
each whole-plot. Experimental runs can be added or subtracted within each
whole-plot to achieve a constant whole-plot size. Then the experimental
design is further modified to achieve the property of equivalent estimation.
To construct equivalent estimation split-plot designs, they consider a choice
for the design matrix X for which v′0 = 0 and Vw = 0 in Q. Then the
condition for the equivalence given by (3.6) becomes

11′EQi
= EQi

Vs (3.7)

For a CCD, the authors defined Vs =
k

s
1s1

′
s, when s is a multiple of 2,

and showed that the equivalence condition given by (3.7) can be satisfied if
the whole-plot size is constant and all the sub-plot axial runs are in a single
whole-plot. So, based on (3.5) and (3.7), they stated three conditions to
obtain the equivalence of OLS and GLS estimates;

1. Every whole-plot has the same number of sub-plots.

2. The column sums of the ETC factors’ main effects and two factor in-
teractions are 0 in each whole-plot.

3. The axial runs of the ETC factors are run in a single whole-plot.

The authors further suggested the augmentation of a few whole-plots,
with all factors at the central level, to the design for obtaining pure error
estimates of the variance components. An equivalent estimation design, with
one HTC factor and two ETC factors, constructed by this approach, is given
in table 3.1.

These designs have some interesting properties. One property of these
designs is obviously the equivalence of OLS and GLS estimates of the model
parameters. This equivalence is independent of the model and holds for sub-
models as well. For example, an equivalent estimation design with 4 factors,
the equivalence property will hold even if the model if fitted by using only
2 or 3 factors only. Since this strategy allows the equivalence of OLS and
GLS estimates, it can be particularly useful for practitioners who do not have
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Table 3.1: An equivalent estimation design for 1 HTC and 2 ETC factors
constructed by the VKM methodology (Parker et al, 2007). Here α and α2

are the axial distances for the ETC and the HTC factors respectively.

Whole plot W1 S1 S2 Whole plot W1 S1 S2

1 -1 -1 -1 4 α2 0 0
1 -1 1 -1 4 α2 0 0
1 -1 -1 1 4 α2 0 0
1 -1 1 1 4 α2 0 0
2 1 -1 -1 5 0 -α 0
2 1 1 -1 5 0 α 0
2 1 -1 1 5 0 0 -α
2 1 1 1 5 0 0 α
3 -α2 0 0 6 0 0 0
3 -α2 0 0 6 0 0 0
3 -α2 0 0 6 0 0 0
3 -α2 0 0 6 0 0 0

access to modern statistical packages that can provide GLS estimates of the
model parameters using REML. But these designs are inefficient as pointed
out by Goos (2006)[13]. For example, if we look at the third and fourth
whole-plot of the design given in table 3.1, we can see that only a single
treatment is being replicated in every experimental run in each whole-plot.
This might not be the best use of the available resources. This becomes even
clearer if the number of ETC factors is not a multiple of 2. Table 3.2 repre-
sents an equivalent Estimation design with one HTC and three ETC factors.
The axial points of the experiment are run in whole-plots 3 to 7 and the last
whole-plot contains the centre point runs only. That means, only 9 of the
treatments are used for the last 48 experimental runs. It seems reasonable
to point out here that although these designs allow the estimation of model
parameters without estimating the variance components, to draw inferences
about the model parameters one has to estimate the variance components
because the variance-covariance matrix for the parameter estimates depends
on Σ.

Another property of this technique is that it gives pure-error estimates
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Table 3.2: An equivalent estimation design for 1 HTC and 3 ETC factors
constructed by VKM methodology. (Parker et al, 2007). Here α and α2 is
the axial distance for the ETC and the HTC factors respectively.

Whole plot W1 S1 S2 S3 Whole plot W1 S1 S2 S3

1 -1 1 -1 1 5 0 -α 0 0
1 -1 -1 1 1 5 0 α 0 0
1 -1 -1 -1 -1 5 0 -α 0 0
1 -1 1 1 -1 5 0 α 0 0
1 -1 -1 -1 1 5 0 -α 0 0
1 -1 1 1 1 5 0 α 0 0
1 -1 1 -1 -1 5 0 -α 0 0
1 -1 -1 1 -1 5 0 α 0 0
2 1 1 -1 1 6 0 0 -α 0
2 1 -1 1 1 6 0 0 α 0
2 1 -1 -1 -1 6 0 0 -α 0
2 1 1 1 -1 6 0 0 α 0
2 1 -1 -1 1 6 0 0 -α 0
2 1 1 1 1 6 0 0 α 0
2 1 1 -1 -1 6 0 0 -α 0
2 1 -1 1 -1 6 0 0 α 0
3 -α2 0 0 0 7 0 0 0 -α
3 -α2 0 0 0 7 0 0 0 α
3 -α2 0 0 0 7 0 0 0 -α
3 -α2 0 0 0 7 0 0 0 α
3 -α2 0 0 0 7 0 0 0 -α
3 -α2 0 0 0 7 0 0 0 α
3 -α2 0 0 0 7 0 0 0 -α
3 -α2 0 0 0 7 0 0 0 α
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
4 α2 0 0 0 8 0 0 0 0
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of the variance components. These estimates are obtained by adding some
replicated whole-plots, with all factors at central level, to the original design.
As the pure error estimates are based on several replications of only a single
treatment, it might not be the best option to use. This technique gives wr−1
degrees of freedom for estimating the whole-plot error variance where wr
denotes the number of times a whole-plot with all central points is replicated.
So, for every single degree of freedom, one would need to add k centre points
(all factors at 0 level) in the experiment. For example, consider the design
given in table 3.2. As we have discussed in the first chapter, some authors
recommend to use at least 5 degrees of freedom for estimating the error
variance. So, if we want to get 5 degrees of freedom for estimating the whole-
plot variance, we would need to add 5 more whole-plots, each containing 8
centre points only, to the experiment. This would add 40 extra runs into the
experiment given in table 3.2 and thus almost half of the experiment would
be based on the replication of centre point runs only. Furthermore, although
this technique gives freedom to choose the number of degrees of freedom
for estimating the whole-plot error variance, it does not give a pre-specified
number of degrees of freedom for estimating the sub-plot variance.

3.1.3 Minimum Whole-plot (MWP) Method

Parker et al (2007a)[26] presented another approach for constructing equiv-
alent estimation split-plot designs. That technique is called the Minimum
Whole-plot (MWP) method. This technique is also developed to modify a
CCD to accommodate a split-plot type structure with a minimum number
of whole-plots. For these designs, the number of whole-plots is equal to the
number of combinations of the HTC factor levels in a completely randomized
CCD. Again, a completely randomized CCD is arranged in such a way that
the levels for the HTC factors remain constant for several consecutive runs
while the levels of the ETC factors may change from run to run. This tech-
nique forms the whole-plots and sub-plots of the experiment. Experimental
runs within each whole-plot can be added or subtracted for a constant whole-
plot size. And the equivalence of OLS and GLS estimates is then achieved
by further modification.

To achieve the equivalence property, the authors considered a choice for
matrix Q as given before but with Vs = 0. Then the equivalence condition

37



given by (3.6) becomes

11′EQi
= 1nv

′
0 + HQi

Vw. (3.8)

The authors stated that in this case the equivalence condition will depend on
the values for α and α2, where α and α2 denote the distance from the centre
for the ETC factors and for the HTC factors respectively. This technique
allows the inclusion of centre runs of the ETC factors within each whole-plot
without damaging the property of equivalence estimation. An equivalent es-
timation design constructed by using this approach is given in table 3.3.

Table 3.3: An equivalent estimation design for 1 HTC and 2 ETC factors
constructed by the MWP methodology. (Parker et al, 2007). Here α and α2

are the axial distances for the ETC and the HTC factors respectively.

Whole plot W1 S1 S2 Whole plot W1 S1 S2

1 -1 -1 -1 4 α2 0 0
1 -1 1 -1 4 α2 0 0
1 -1 -1 1 4 α2 0 0
1 -1 1 1 4 α2 0 0
1 -1 0 0 4 α2 0 0
2 1 -1 -1 5 0 -α 0
2 1 1 -1 5 0 α 0
2 1 -1 1 5 0 0 -α
2 1 1 1 5 0 0 α
2 1 0 0 5 0 0 0
3 -α2 0 0
3 -α2 0 0
3 -α2 0 0
3 -α2 0 0
3 -α2 0 0

These designs are more or less similar to the designs described in the
previous section except that these designs include centre points for the ETC
factors within each whole-plot and need relatively fewer whole-plots mainly
because this approach does not allow the inclusion of a whole-plot with all
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factors at the centre level. This can be confirmed by comparing the two
designs given in tables 3.1 and 3.3. Although, the MWP design has one
fewer whole-plot than the VKM design, because it does not have a whole-
plot with all factors at 0 level, it has one more experimental run as compared
to those in the VKM design. So, as far as, the optimal use of the resources is
concerned, this approach might not be the best option available. Also, unlike
the VKM methodology, the equivalence property is model dependent and
does not work if pure quadratic effects are removed from the model. Another
difference is the estimation of the variance components. Since this approach
is based on the minimum number of whole-plots concept, it rarely allows
treatment replication between whole-plots. That means there will hardly be
any degrees of freedom available for obtaining the pure error estimates for
the whole-plot error variance. Although, it allows the inclusion of sub-plot
centre runs within each whole-plot that can generate degrees of freedom for
estimating the sub-plot pure error variance.

3.2 D-Optimal Designs

One approach for constructing a RS split-plot design is to use computer
based search algorithms for generating a D-optimal design. Such designs are
constructed by searching (within a region of interest) for the values of factor
levels for which the determinant of the variance matrix of the parameter
estimates is minimum. For a completely randomized design (CRD), the D-
optimality criterion minimizes the determinant of the variance matrix and it
is equivalent to maximizing |X′X|. The matrix X′X for a CRD is also called
the information matrix. For our thesis, we will use the D-optimality criterion
for maximizing the determinant of the information matrix. If we represent a
CRD by ξn, then its information matrix denoted by M(ξn) can be expressed
as

M(ξn) = X′X. (3.9)

A D-optimal design is one for which |M(ξ)| is maximum. The relative D-
efficiency of a CRD, ξn,1 with respect to another CRD, ξn,2, can be computed
as

DR.E =

[
|M(ξn,1)|
|M(ξn,2)|

]1/p

, (3.10)

where p is the number of the model parameters.
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For RS split-plot designs, the model parameters are estimated using GLS
and the GLS estimator and its variance matrix are given in equation (2.10)
and (2.11) respectively. So, a D-optimal RS split-plot design is for which
|X′Σ−1X| is maximum.

3.2.1 Constructing D-Optimal Designs

There are mainly two types of algorithm available in the literature for con-
structing a D-optimal design. The first type of algorithm is called sequential
algorithms. As the name suggests, these algorithms construct a D-optimal
design by either sequentially adding the candidate points to a starting design
or by sequentially deleting the design points from a starting design. These
procedures are also called forward and backward procedures. In a forward
procedure, a starting design is generated randomly with n0 experimental
runs where n0 < n. Then a D-optimal design with n experimental runs is
obtained by sequentially selecting a design point from the candidate set of
points that contributes the most in maximizing the determinant of the in-
formation matrix (a design point with the largest prediction variance) and
then adding it into the starting design. However, for a single starting design,
this approach may not necessarily end with a D-optimal design. Therefore,
this forward procedure is repeated for several starting designs and the best
design is then chosen for executing the experiment. The second procedure,
also known as the backward procedure, starts with a random starting design
with nc experimental runs, where nc > n and a D-optimal design with n
experimental runs is obtained by sequentially deleting the design points that
contribute the least in maximizing the D-criterion value (the design points
with the least prediction variance) from the starting design. Again this pro-
cedure is adopted for several starting designs and the best design with the
highest optimality criterion value is selected.

A second type of algorithm is called the exchange algorithm. These al-
gorithms are mainly used to improve a starting design with n experimental
runs. A design obtained from using a forward or backward procedure can
further be improved by using an exchange algorithm. Unlike forward or
backward procedures, exchange algorithms construct a D-optimal design by
making exchanges between the candidate set of points and a starting design
with n experimental runs. The exchange algorithms can further be clas-
sified into point exchange algorithms and coordinate exchange algorithms.
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Point exchange algorithms improve a starting design by exchanging the de-
sign points between the candidate set of points and the starting design. To
illustrate, consider that we have a starting design with n experimental runs
and we want to improve that design in order to get a D-optimal design. An
exchange algorithm will exchange the first design point with the first candi-
date point and calculate the D-criterion value. Then the first design point
will be exchanged with the second candidate point and the D-criterion value
would be calculated. This procedure will continue until the algorithm ex-
changes the first design point with the last candidate point and calculate the
D-criterion value. Similarly each and every design point is exchanged with
all candidate points one by one and the best exchange that maximizes the
D-criterion value is saved. If an increase in the D-criterion value is recorded
then this exchange procedure is performed again until there is no further in-
crease in the D-criterion value. Because the procedure allows the replication
of the design points so the selection is made with replacement i.e. a design
point selected in the design still remains available in the set of candidate
points and can be selected again at some point. A D-optimal design is found
by improving several starting designs. A second approach for an exchange
algorithm, also known as the KL exchange algorithm, does not consider all
possible exchanges between design points and candidate points. Instead only
a set of K design points with smallest prediction variances are exchanged
with a set of L candidate points with largest prediction variances.

Coordinate exchange algorithms are used to improve a random starting
design by exchanging the coordinates (levels of a single factor) of the design
points with all possible or available levels of that factor one by one. Again, for
illustration, just consider that we have a starting design generated randomly
with n experimental runs. Then the first coordinate of the first design point
is replaced one by one with all the available levels of that factor, the D-
criterion value is calculated and if there is any increase in the criterion value
then this exchange is saved. Then replace the second coordinate of the first
design point, calculate the D-criterion value and if there is any increase in the
criterion value save that exchange. Similarly keep exchanging the coordinates
of all the design points until the last coordinate of the last design point is
exchanged. If at least one improvement is recorded during this exchange
process, start the process again by exchanging the first coordinate of the
first design point. This exchange process continues until there is no further
increase in the D-criterion value. More details about sequential and exchange
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algorithms can be found in Atkinson et al (2007, Ch.12)[2].

3.2.2 Exchange Algorithm for Generating D-optimal
RS Split-plot Designs

Several papers have been published in recent years advocating the use of
the D-optimal designs and presenting exchange algorithms for generating D-
optimal RS split-plot designs. For a split-plot design the HTC factor levels
need to be constant for several experimental runs while the ETC factor lev-
els may change from run to run. This creates a difference when developing
a search algorithm for generating a RS split-plot design although the basic
technique is the same as described in the last section. Another issue is that
for a RS split-plot design the D-optimality criterion depends on the model
matrix X and the variance-covariance matrix Σ. This requires that the ex-
perimenter must have determined the RS model to be fitted and should also
have some knowledge about the values for the variance components. These
values for the variance components can be obtained if some experiments were
executed previously for the same research problem or by personal experience
or judgement of the experimenter. As a result, it is quite possible to obtain
different optimal designs for different values of the variance components.

Goos & Vandebroek (2001)[14] proposed a point exchange algorithm for
generating a RS split-plot design with n experimental runs without impos-
ing any restriction on the numbers of whole-plots or a fixed whole-plot size
although the authors claimed that such conditions can easily be included in
their algorithm. They proposed a search algorithm which takes into account
the presence of the variance-covariance matrix Σ in the optimality criterion
but it does not enforce the constant HTC factor levels for some consecu-
tive runs. The authors showed that, for a split-plot design, the information
matrix M can be written as

M = X′Σ−1X =
1

σ2
ε

(
wp∑
i=1

ki∑
j=1

f(wi, sij)f
′(wi, sij)−

wp∑
i=1

η

1 + kiη
(X′i1ki

)(X′i1ki
)
′

)
,

(3.11)
where ki is the ith whole-plot size, η = σ2

γ/σ
2
ε is the ratio of the variance

components, Xi is the model matrix that belongs to the whole-plot i, and
f ′(wi, sij) represents the factor level settings at the jth sub-plot of the ith

42



whole-plot and the HTC factor level settings are expressed by wi whereas
the ETC factor level settings are expressed by sij. The expression in (3.11)
makes it easier to update the information matrix after each exchange of the
design points. Because this algorithm does not have any restriction on the
number of whole-plots and sub-plots within each whole-plot, the generated
design does not necessarily look like a split-plot design with the levels of the
HTC factors constant for some consecutive runs. But different treatments
having the same combinations of the HTC factor levels can then be grouped
together to form the whole-plots of the experiment.

Later Goos & Vandebroek (2003)[15] gave another point exchange algo-
rithm for generating a RS split-plot design with n experimental runs with
given numbers of whole-plots and sub-plots within each whole-plot. The first
stage of their algorithm is to generate a starting design. The starting design
is generated by first randomly assigning the different settings, at least as
many as the number of the pure whole-plot model parameters, of the HTC
factors to the whole-plots. Then a starting design is generated by using a
forward procedure i.e. first a random number of design points are selected
at random from the set of candidate points and each of these design points
is allocated to the whole-plots with the corresponding whole-plot factor set-
tings and then the candidate points with the largest prediction variances are
sequentially added to complete the design. The improvement is made using
three different techniques. First by exchanging the design points with the
candidate points that have the same whole-plot factor settings. Then design
points are exchanged between whole-plots having same settings of the whole-
plot factors. And finally improvement is made by exchanging the whole-plot
factor settings between whole-plots. If an improvement is recorded, these
exchange processes are repeated until there is no further improvement in the
D-criterion value. A design generated by this approach is given in table 3.4.

Jones & Goos (2007)[18] presented a coordinate exchange algorithm for
generating a RS split-plot design. An advantage of their approach is that it
does not require a pre-specified set of candidate points instead it generates
a starting design by randomly choosing the required levels for the HTC and
the ETC factors. Since our algorithm is based on this approach, we will
discuss this algorithm in more detail in the next chapter. Arnouts & Goos
(2010)[1] gave mathematical formula for fast updating the determinant of the
information matrix for coordinate exchange algorithm for generating split-
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Table 3.4: A D-optimal design for 1 HTC and 4 ETC factors given by Goos
& Vandebroek (2003). Here W represents the HTC factor and Si denotes
the ith ETC factor.

Whole plot W1 S1 S2 S3 S4 Whole plot W1 S1 S2 S3 S4

1 -1 1 -1 -1 1 12 0 0 -1 1 1
1 -1 1 1 1 -1 12 0 1 1 1 -1
2 -1 -1 0 -1 -1 13 1 -1 -1 1 -1
2 -1 1 1 -1 1 13 1 1 1 -1 -1
3 -1 -1 1 1 1 14 1 -1 0 0 1
3 -1 1 1 -1 -1 14 1 1 1 1 1
4 -1 -1 -1 1 1 15 1 -1 -1 -1 -1
4 -1 1 -1 -1 -1 15 1 0 1 1 -1
5 -1 -1 -1 1 -1 16 1 -1 -1 1 1
5 -1 0 1 0 0 16 1 1 1 -1 1
6 -1 -1 1 -1 1 17 1 0 -1 -1 1
6 -1 1 -1 1 0 17 1 1 -1 1 0
7 -1 -1 -1 -1 1 18 1 -1 1 -1 -1
7 -1 -1 1 1 -1 18 1 1 0 0 1
8 -1 -1 1 -1 -1 19 1 -1 0 0 -1
8 -1 1 -1 1 -1 19 1 1 -1 -1 1
9 -1 -1 -1 0 0 20 1 -1 1 1 1
9 -1 1 0 1 1 20 1 1 -1 1 -1
10 0 0 0 -1 0 21 1 -1 1 -1 1
10 0 1 -1 0 1 21 1 1 -1 -1 -1
11 0 0 -1 0 -1
11 0 1 0 -1 0
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plot designs. But none of the above mentioned algorithms for generating
the D-optimal RS split-plot designs allows one to pre-specify the numbers of
degrees of freedom for estimating the pure error variance components.

3.3 D-Optimal Equivalent Estimation Designs

The idea of D-optimal equivalent estimation design was developed by Parker
et al (2007a)[26]. Since the equivalence condition given by equation 3.4 de-
pends only on the model matrix and block incidence matrix, it is possible
to numerically check if the condition is satisfied for a design. This makes
it possible to use a computer based search algorithm for constructing such
designs. Parker et al (2007a)[26] used the point exchange algorithm for gener-
ating D-optimal split-plot design proposed by Goos & Vandebroek (2003)[15]
to generate D-optimal equivalent estimation designs including the condition
for the equivalence in the algorithm. Later Macharia & Goos (2010)[21] pre-
sented a coordinate exchange algorithm for generating a RS split-plot design.
Their algorithm is basically based on the Jones & Goos (2007)[18] algorithm
but they add the equivalent estimation condition, described in (3.4), in their
algorithm. So, with every coordinate exchange, their algorithm computes
the D-optimality criterion value and checks if the equivalent condition is sat-
isfied. If there is an increase in the criterion value the algorithm stores the
new design as the optimal design and if the equivalence condition is also
satisfied that this design is also stored as an equivalent estimation design.
As a result, the algorithm gives two designs as output; one as the D-optimal
design and the other as the D-efficient equivalent estimation design. The
authors showed that for many design problems a D-optimal design is also
an equivalent estimation design. A D-efficient equivalent estimation design
given by Macharia & Goos (2010)[22] is given in table 3.5.

This approach joins two popular approaches for constructing RS split-plot
designs such that the generated design is D-efficient and equivalent estima-
tion. Although this approach gives equivalent estimation designs with opti-
mal use of the available resources, to estimate the variance components and
to draw inferences about the model parameters it rarely allows any degrees of
freedom for obtaining the pure error estimates of the variance components.
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Table 3.5: A D-efficient equivalent estimation design for 2 HTC and 1 ETC
factor given by Macharia & Goos (2010)[22].

Whole plot W1 W2 S1

1 -1 -1 -1
1 -1 -1 1
2 -1 1 -1
2 -1 1 1
3 -1 0 0
3 -1 0 1
4 0 1 -1
4 0 1 0
5 1 -1 -1
5 1 -1 1
6 1 -1 -1
6 1 -1 1
7 1 1 -1
7 1 1 1
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3.4 Stratum-by-Stratum Construction Method

Trinca & Gilmour (2001)[27] presented a methodology for constructing RS
designs in the presence of HTC factors. Their methodology can be used
to construct RS designs for more than two strata. In fact, their approach
can be used for constructing RS designs with any number of strata. Such
designs are called multi-stratum RS designs of which the split-plot design is a
special case with two strata. The approach is based on choosing a treatment
design at each stratum for the factors involved in that stratum and then
transforming the treatment design into a block design where the units of the
higher stratum serve as blocks. Then this block design is combined with the
treatment design in the higher stratum to obtain the final design.

3.4.1 Design Construction Methodology

Let us suppose that the factors are classified into groups according to the
level of difficulty for changing their level settings (for example, from the
Hardest-to-Change to the Easiest-to-Change). Then we say the unit struc-
ture is U1/U2/.../Um, where the Hardest-to-Change factors are applied in
the highest stratum U1 and the Easiest-to-Change factors are applied in the
lowest stratum Um. Let fi denote the numbers of factors applied at stratum
Ui. Then the design construction methodology can be described as:

1. Starting from the highest stratum, if fi > 0 choose a treatment design
for fi factors applied at Ui (i = 1, 2, ...,m). The treatment design can
be a regular design e.g. a factorial design, central composite design,
etc. This would help in obtaining good estimates of the coefficients of
the factors applied in stratum Ui.

2. Arrange the treatment design for Ui (i ≥ 2) obtained in 1, in blocks,
where units for the higher stratum Ui−1 serve as blocks, and obtain a
good block design. A computer search is usually required to obtain
a good block design under a pre-specified design criterion. Initially
the treatment design is randomly arranged in blocks and then this
initial design is improved, in terms of the given design criterion, by
interchanging the treatments between different blocks. The interchange
of treatments between blocks continues until there is no improvement
in the design. This improvement process is repeated for several initial
designs and the best available design is chosen.
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3. Combine the block design for stratum Ui, obtained in 2, with the treat-
ment design for the factors applied in stratum Ui−1. Again, a computer
search is used to obtain a good combined design that ensures the good
estimation of the coefficients of the interaction terms for the factors
applied in stratum Ui and Ui−1. The combined design is obtained by
initially assigning the blocks of the block design, obtained in 2, to dif-
ferent factor level combinations of the treatment design for Ui−1 and
then improving the initial design. The improvement is made under the
given design criterion and by exchanging the blocks between different
factor level combinations of the treatment design and then re-ordering
the blocks between the same factor level combinations of the treat-
ment design. The improvement process is repeated for several starting
designs and the best available design is chosen.

4. Step 3 is repeated for Ui−2, Ui−3, ..., Um.

This approach is open for using any suitable design criterion and gives a
design that is optimal (under the design criterion) within strata. But, like D-
optimal designs, it rarely allows the estimation of pure-error estimates of the
variance components and, unlike equivalent estimation designs, it does not
allow the equivalence of GLS and OLS estimates of the model parameters.

3.4.2 An Example

Trinca & Gilmour (2001)[27] give a step by step example for constructing
a multi-stratum RS design with 3 strata using a stratum-by-stratum con-
struction algorithm. An experiment involving four factors is to be run in five
blocks. Each block has three main units and each main unit has three sub-
units. Two of the factors (W1, W2) are to be applied in the second stratum
(to the main units) and remaining two factors (S1, S2) are to be applied in
the last stratum (to the subunits). So and f1 = 0, f2 = 2, f3 = 2 and each
factor is at three levels.

We discuss the same example but we consider that we need to construct
a split-plot design (a design with 2 strata) where two factors (W1, W2) are
defined as HTC and will be applied to the whole-plots (main units) and the
remaining two factors (S1, S2) are defined as ETC and will be applied to
the sub-plots (subunits) within each whole-plot. So, we ignore the highest
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stratum (blocks) in the original example. Then the step-by-step construction
of the design is described below.

1. The first step is to choose two treatment designs, one for the factors
applied to the whole-plot level and the other for the factors applied to
the sub-plot level. At the whole-plot level, we have two factors applied
to the 15 units. The design chosen was a 3 level CCD with the factorial
points replicated twice and 3 centre point runs. At the sub-plot level
we have two factors applied to the 45 units. The design chosen was the
full 32 factorial design replicated five times.

2. Once we have chosen the treatment design for both strata, the next
step is to arrange the treatment design, chosen at the sub-plot level,
in 15 blocks each of size 3. These 15 blocks are defined by the units
to which the HTC factors are applied. At this stage we would need
a design criterion and a computer based search algorithm. A good
block design, found by the authors under the weighted mean efficiency
criterion, is given in table 3.6.

3. After constructing a good block design at the sub-plot level, the next
step is to combine the treatment design chosen for W1, W2 with the
block design obtained in step 2. For this, it is necessary to take into
account the good estimation of the interactions between W1, W2 and
S1, S2 without affecting the estimation of the other terms of S1 and S2

obtained in the block design in step 2. The best combination can be
found by interchanging the 15 blocks between 15 different treatment
combinations of the factors W1, W2. Again, at this stage, we would
need a design criterion and a computer algorithm to search for the best
combination of the two designs. The best combination, found by the
authors under the weighted A-efficiency criterion, is given in table 3.7.
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Table 3.6: The design given by Trinca & Gilmour (2001) at Step 2.

Block S1 S2 Block S1 S2

1 -1 0 9 -1 0
1 0 -1 9 0 -1
1 1 1 9 1 1
2 -1 -1 10 -1 0
2 0 0 10 0 1
2 1 1 10 1 -1
3 -1 -1 11 -1 1
3 0 1 11 0 0
3 1 0 11 1 -1
4 -1 -1 12 -1 1
4 0 1 12 0 0
4 1 0 12 1 -1
5 -1 0 13 -1 -1
5 0 -1 13 0 0
5 1 1 13 1 1
6 -1 -1 14 -1 1
6 0 1 14 0 0
6 1 0 14 1 -1
7 -1 0 15 -1 1
7 0 1 15 0 -1
7 1 -1 15 1 0
8 -1 1
8 0 -1
8 1 0
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Table 3.7: Final Design given by Trinca & Gilmour (2001) and constructed
by using a stratum-by-stratum construction method.

Whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 -1 -1 -1 9 0 -1 -1 0
1 -1 -1 0 0 9 0 -1 0 1
1 -1 -1 1 1 9 0 -1 1 -1
2 -1 -1 -1 1 10 0 0 -1 0
2 -1 -1 0 0 10 0 0 0 -1
2 -1 -1 1 -1 10 1 0 1 1
3 -1 0 -1 -1 11 1 1 -1 1
3 -1 0 0 1 11 1 1 0 0
3 -1 0 1 0 11 1 1 1 -1
4 -1 1 -1 1 12 1 1 -1 -1
4 -1 1 0 -1 12 1 1 0 0
4 -1 1 1 0 12 1 1 1 1
5 -1 1 -1 0 13 1 -1 -1 1
5 -1 1 0 -1 13 1 -1 0 -1
5 -1 1 1 1 13 1 -1 1 0
6 0 0 -1 1 14 1 0 -1 -1
6 0 0 0 0 14 1 0 0 1
6 0 0 1 -1 14 1 0 1 0
7 0 0 -1 -1 15 1 -1 -1 0
7 0 0 0 1 15 1 -1 0 -1
7 0 0 1 0 15 1 -1 1 1
8 0 1 -1 0
8 0 1 0 1
8 0 1 1 -1
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Chapter 4

New Design Methodology

In this chapter we propose a new methodology for constructing RS split-plot
designs. In section 1, we specify the research problem we will be working on
in this chapter. In section 2, we mention the work that motivated our study.
Section 3 contains the new design methodology for constructing second order
D-optimal RS split-plot designs. Section 4 contains some theoretical results
that support our design methodology. In sections 5 and 6 we give two com-
puter algorithms for generating second order RS split-plot designs. Section
7 is the last section that contains some computational results.

4.1 The Research Problem

As we have seen in the previous chapters, there are several techniques avail-
able for constructing RS split-plot designs and estimating the variance com-
ponents. Some design methodologies construct very efficient designs but
they rarely allow the estimation of pure error variance components with
pre-specified numbers of degrees of freedom. Instead these techniques rec-
ommend REML for estimating the variance components. We have already
discussed that REML might not work well for the non-orthogonal split-plot
designs with only a few whole-plots, because in this case the REML estimate
of the whole-plot error variance often turns out to be 0. Another design
methodology (equivalent estimation designs) allows the pure error estimates
of variance components but this methodology does not generate efficient de-
signs. Our aim is to develop a new design methodology that allows pure error
estimates of the variance components, making it possible to test the lack of
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fit of the RS model, and also generates efficient designs making optimal use
of the available resources. So, we state our research problem as

to develop a methodology for constructing a D-optimal RS split-plot de-
sign such that the generated design has the pre-specified number of degrees of
freedom for obtaining the pure error estimates of the variance component in
each stratum.

Our objective is to develop a general methodology that can be used to
generate a split-plot design for fitting a response surface model of any (first,
second or higher) order . So, as compared to the equivalent estimation design
methodology, that works only for the second order RS split-plot designs, our
design methodology would be more general.

4.2 Motivation

Jones & Goos (2007)[18] gave a coordinate exchange algorithm for gener-
ating D-optimal split-plot designs. This two stage algorithm first generates
a starting design by randomly generating all the required factor levels and
then it improves this starting design by the coordinate exchange procedure.
Fig 4.1 illustrates how the algorithm works. This motivated our work to de-
velop an algorithm that generates a D-optimal design with some restriction
on the numbers of degrees of freedom for estimating the pure error variance
components. Here we briefly describe their algorithm.

4.2.1 The Input Information

The algorithm assumes that the experimenter has the following information:
number of HTC and ETC factors, the number of whole-plots, the whole-plot
size, number of levels for each factor, a set of candidate values for factor levels,
e.g. −1, 0, 1, prior point estimate of the ratio of the variance components and
the model to be fitted.

4.2.2 Generating a Starting Design

The first stage of the algorithm is to generate a random starting design. A
starting design is generated by randomly generating the required levels for
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all the HTC and the ETC factors. Starting from the first whole-plot, a level
for the first HTC factor is generated randomly and that is assigned to the
first k rows of the first column of the design matrix. Similarly a level for the
second, third and, so on, for the wth HTC factor is randomly generated and
applied to the first k rows of the corresponding column of the design matrix.
Hence the levels for all the HTC factors are randomly generated and applied
to the first whole-plot. The same technique is then used to generate the levels
of the HTC factor for all the remaining whole-plots. Once all the required
levels for the HTC factors are generated then the algorithm generates the
levels for the ETC factors. Starting from the first experimental run, a level
for the first ETC factor is randomly generated, then for the second ETC
factor and so on until a level for the last ETC factor is generated. Hence,
all the required levels for the ETC factors in the first experimental run are
generated. Using the same procedure required levels of all the ETC factors
are randomly generated run to run and thus a random starting design is
generated. The starting design follows the split-plot structure where levels
of the HTC factors remain constant within a whole-plot whereas the levels of
the ETC factors may change run by run. The algorithm places the levels of
HTC factors in the first w columns of the design matrix and the levels of the
ETC factors in the last s columns of the design matrix. Then the D-criterion
value for this starting design is computed.

4.2.3 Improving the Design

The next stage is to improve the starting design and search for the best
possible design, in terms of the D-optimality criterion. The improvement
is made by exchanging each factor level with all the values listed in the
corresponding set of candidate values for those factor levels one by one. That
is, starting from the first whole plot, the level of the first HTC factor is
replaced by, say, -1,0,1 one by one, the D-criterion value is calculated with
each exchange and if there is any increase in the criterion value then this
exchange is saved otherwise no change is made. Similarly, the algorithm
continues exchanging the coordinates of all the design points until the last
coordinate of the last design point is exchanged and saved if there is an
increase in the criterion value. If at least one improvement is recorded during
this exchange process, the process of exchanging the coordinates starts again
from the first coordinate of the first design point. This exchange process
continues until there is no further increase in the D-criterion value. The
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process of improving a starting design is executed for several starting designs.

4.3 New Design Methodology

In this section, we present a new approach for constructing RS split-plot de-
signs. This technique allows the construction of a RS split-plot design that
is D-optimal and also it reserves the pre-specified numbers of degrees of free-
dom for obtaining the pure error estimates of the variance components. The
design methodology consists of the same two stages of generating a starting
design and then to improve the starting design. For generating a starting
design we would need all the information given in section 4.2.1. So, we as-
sume that the factors have been classified into ETC and HTC factors. The
number and different candidate values of factor levels, the number of whole-
plots and a fixed whole-plot size and the RS model to be fitted have also
been decided. Some additional information that would be required in this
situation is the pre-specified numbers of degrees of freedom for estimating
the variance components.

A starting design can be generated randomly, say for example, using
Jones & Goos algorithm. However, a starting design generated completely
randomly would not always guarantee the pre-specified numbers of degrees
of freedom for estimating the variance components. Consequently, it may
not be possible to get an improved design with at least the pre-specified
numbers of degrees of freedom. So, the key point is to generate a starting
design that has at least the pre-specified numbers of degrees of freedom for
estimating the variance components. As we will see later, the number of
degrees of freedom for estimating the sub-plot error variance can be raised
by replicating treatments within whole-plots and the number of degrees of
freedom for estimating the whole-plot error variance can be raised by repli-
cating the treatments between the whole-plots. So, the technique we suggest
to generate a random starting design with at least pre-specified numbers of
degrees of freedom is based on replicating the treatments within and over the
whole-plots.

Suppose that we need to generate a design with wp whole-plots each of
size k and the pre-specified numbers of degrees of freedom for estimating the
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Figure 4.1: Algorithm by Jones & Goos (2007)
(w = number of whole plot factors, s = number of sub plot factors, wp = number of whole plots, k = whole plot size,

b = number of factor levels, Fj = set of values for levels of jth factor, T = total number of starting designs, tc =
number of current starting design)
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whole-plot and the sub-pot error variances are u and v respectively, where
0 ≤ u ≤ (wp − pw − 1), 0 ≤ v ≤ (n − p − u), n is the number of total
experimental runs, p is the number of total parameters in the RS model and
pw is the number of parameters that belong to the HTC factors. Then, to
generate the required number of degrees of freedom for estimating the whole-
plot error variance, we replicate one of the treatments in u + 1 whole-plots.
This will give us at least u degrees of freedom for estimating the whole-plot
error variance. Then, for generating the pre-specified number of degrees of
freedom for estimating the sub-plot error variance, we replicate treatments
within the whole-plots. For this, we randomly replicate one of the treatments
in each whole-plot ai times such that it appears at least ai + 1 times in the
whole-plot, where 0 ≤ ai ≤ (k − 1), i = 1, 2, ..., wp and

∑wp

i=1 ai = v. This
technique will give us at least v degrees of freedom for estimating the sub-plot
error variance (see Lemma 2). Hence the starting design would give us at
least the pre-specified numbers of degrees of freedom for obtaining the pure
error estimates of the variance components. The remaining required levels
in the design for HTC and ETC factors can be generated randomly. Then
this starting design can be improved to obtain a D-optimal design with at
least the required numbers of degrees of freedom. The improvement is made
in terms of an increase in the optimality criterion value.

To suit our situation we slightly modify the optimality criterion. In our
situation, the optimality criterion could be

D∗ = D ×Du ×Dv, (4.1)

where
D = |X′Σ−1X|

is the usual D-optimal criterion and

Du =

{
1 if du ≥ u ;
1

(u−du)c1
otherwise,

and

Dv =

{
1 if dv ≥ v ;
1

(v−dv)c2
otherwise,

Here du and dv are the available numbers of degrees of freedom in the current
design for estimating the whole-plot and sub-plot error variance respectively
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and c1 and c2 can take values ≥ 1.

To compute the optimality criterion value, we first calculate the usual
D criterion value, denoted by D in our optimality criterion. Then, in the
second step, we calculate the available numbers of degrees of freedom in the
current design for estimating the variance components, denoted by du and
dv. This is done by constructing the C2 matrix and then by calculating its
rank, as described in chapter 2. Since the matrix C2 depends on the design
incidence matrix N, to construct C2, we first construct N using the design
matrix X then the matrix R can easily be constructed using the N matrix.
For a fixed whole-plot size, K = kI. Then, the C2 can be constructed using
the equation (2.17). Once the C2 matrix is constructed, we compute du and
dv and determine the values for Du and Dv. In the third step, we put the
values for D, Du and Dv in (4.1) and compute D∗.

Note that if a design has at least the required numbers of degrees freedom
then the D∗ criterion would be the usual D-optimal criterion and Du and Dv
will have no effect. But if a design has less than the required numbers of
degrees of freedom then Du and Dv would cause a decrease in the optimality
criterion value. The reason to include these terms in the optimality criterion
is that it is quite possible for a design with less than the required numbers
of degrees of freedom to have a higher usual D-criterion value as compare
to another design that has at least the required numbers of freedom. So,
in this situation, a design with less than the required numbers of degrees of
freedom would easily replace the design with the required numbers of degrees
of freedom which might not be acceptable at all or might be acceptable but
under some conditions. By introducing Du and Dv in the criterion we can
avoid this situation.

Now the question is to determine the values for c1 and c2. These values
can be determined under two different situations. First consider the situation
where the experimenter is interested to obtain a design with at least the
required the numbers of the degrees of freedom for estimating the variance
components. Any design with even one degrees of freedom less then the
required numbers of degrees of freedom is not acceptable at all. In this
situation, we need to determine those values for c1 and c2 that sufficiently
decrease the optimal criterion value of a design that has less than the required
numbers of degrees of freedom, regardless of how many degrees of freedom

58



are less than the required numbers, in order to ensure that it does not replace
a design that has the required numbers of degrees of freedom. For this we
can choose

c1 = c2 = D + 1.

In this case 0 ≤ D∗ < 1 and there will be no chances for a design with less
then the required numbers of degrees of freedom to replace another design
that has at least the required numbers of degrees of freedom.

Now consider the second situation where the experimenter might con-
sider choosing a design which has one less degree of freedom for estimating
the sub-plot (or whole-plot) error variance but it has c2 (or c1) times higher
criterion value than another design that has the required numbers of degrees
of freedom. Then we need to impose a condition that every single decrease in
numbers of degree of freedom would be considered as a proportional decrease
in the optimality criterion value and the values for c1 and c1 will depend on
the choice of the experimenter. For example, suppose that for a particular
experiment the experimenter wishes to have 3 degrees of freedom available
for estimating the whole-plot error variance and 10 degrees of freedom avail-
able for estimating the sub-plot error variance. Suppose that a design with
the required degrees of freedom has D-criterion value equals to 50. Then the
experimenter might like to use another design which has 3 degrees of free-
dom for estimating the whole-plot error variance and 9 degrees of freedom
for estimating the sub-plot error variance but its D-criterion value is greater
than 500. In this case c2 < 10.

4.4 Determining the Degrees of Freedom

In this section, we prove that our suggested approach for generating a starting
design ensures that the starting design has at least the required numbers of
degrees of freedom for estimating the variance components. In Chapter 2, we
discussed that a split-plot design can be considered as a general incomplete
block design if we ignore the treatment structure. Then, in this case, the
numbers of degrees of freedom for estimating the whole-plot error variance
are equal to the rank of the matrix C2, where C2 is defined in equation (2.17)
as

C2 = K−N′R−1N. (4.2)
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We use the following lemmas to prove that if a starting design is generated
using the approach suggested in section 4.3 then the starting design would
contain at least the required numbers of degrees of freedom for estimating
the variance components.

Lemma 1 In a split-plot design with wp whole-plots and fixed whole-plot size
(k), if w1 whole-plots have at least one treatment common between them then
dw ≥ w1 − 1, where 2 ≤ w1 ≤ wp and dw denotes the numbers of degrees of
freedom for estimating the whole-plot error variance.
Proof

We assume, without loss of generality, that the first w1 whole-plots have
at least one treatment in common and the next w2 = wp − w1 whole-plots
do not have any treatment common with the first w1 whole-plots. Under this
situation, the matrices N, K and R can be written as

N =

[
N1 0
0 N2

]
,R =

[
R1 0
0 R2

]
,K =

[
K1 0
0 K2

]
,

where N1 is a (t1 × w1) matrix, N2 is a (t2 × w2) matrix, K1 = kIw1, K2 =
kIw2, R1 = diag

[
r1 r2 · · · rt1

]
, R2 = diag

[
rt1+1 rt1+2 · · · rt

]
,

and t1 and t2 denote the numbers of distinct treatments applied to w1 and w2

whole-plots respectively. Then

N′R−1N =

[
N′1 0′

0′ N′2

] [
R−1

1 0
0 R−1

2

] [
N1 0
0 N2

]
(4.3)

=

[
N′1R

−1
1 N1 0′

0′ N′2R
−1
2 N2

]
, (4.4)

and

C2 = K−N′R−1N (4.5)

=

[
K1 −N′1R

−1
1 N1 0′

0′ K2 −N′2R
−1
2 N2

]
(4.6)

=

[
C1 0
0 C2

]
, (4.7)

where

C1 = K1 −N′1R
−1
1 N1,
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and
C2 = K2 −N′2R

−1
2 N2.

Then
rank(C2) ≥ rank(C1). (4.8)

The equality will hold if w2 whole-plots have different and distinct treatments.
In that case C2 will be a matrix of zeros and rank(C2) = rank(C1).

Now, the matrix N1 can be written as

N1 =



n11 n12 · · · n1w1

n21 n22 · · · n2w1

...
...

...

nt11 nt12 · · · nt1w1


.

By applying the definition of a connected design given by Hinkelmann &
Kempthorne (2005, p;14)[16], and also given in chapter 2 of this thesis, it can
be seen that N1 represents a connected design. For example, if we consider
the case when the w1 whole-plots have exactly one treatment in common, and
we assume that the ist treatment is common between the whole-plots, then all
the elements in the ith row of matrix N1 would be non-zero and it is easy to
check that it represents a connected design. From chapter 2, we know that
the rank of matrix C2 for a connected design with wa blocks is wa − 1. So,

rank(C1) = w1 − 1.

Then form equation (4.8) we get,

rank(C2) ≥ w1 − 1. (4.9)

Again, the equality will hold when w2 whole-plots have distinct and different
treatments.

In case where more than one treatment is common between the whole-
plots, the design would still be a connected design with rank(C1) = w1 − 1.
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Lemma 2 Suppose that a split-plot design has wp whole-plots, each of size
k, and w1 whole-plots have at least one treatment in common such that
dw = w1 − 1 = u. Then, if one of the treatments in whole-plot i appears
ai + 1 times within the whole-plot then ds ≥

∑wp

i=1 ai.

Here 2 ≤ w1 ≤ wp, 0 ≤ ai ≤ (k−1), i = 1, 2, ..., wp and dw and ds denotes
the numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

Proof
From chapter 2, we know that,

ds = n− t− rank(C2). (4.10)

So,
ds = n− t− u.

Since w1 = u + 1 whole-plots have at least one treatment common between
them, t ≤ n− u. Then from equation (4.10) we get

ds ≥ 0.

Now suppose that one of the treatments in the first whole-plot is replicated
a1 + 1 times, where 0 ≤ a1 ≤ (k− 1), then t = n− u− a1 and from equation
(4.10) we will get

ds ≥ a1

Now suppose that one of the treatments in the 2nd whole-plot is also replicated
a2+ times within the whole-plot. Then t = n − u − a1 − a2 and it will give
us,

ds ≥ a1 + a2.

Similarly suppose that ai + 1 represents the number of times one of the
treatment in whole-plot i is replicated within the ith whole-plot, where 0 ≤
ai ≤ (k − 1) and i = 1, 2, ..., wp, then t ≤ n− u−

∑wp

i=1 ai and from equation
(4.10) we will get

ds ≥
wp∑
i=1

ai.
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Next we present two different computer search algorithms that work under
the new approach for generating a RS split-plot design such that the design
has at least the pre-specified numbers of degrees of freedom for estimating
the pure error variance components. The first algorithm is a point exchange
algorithm and the second algorithm is a coordinate exchange algorithm.

4.5 A Point Exchange Algorithm

The point exchange algorithm, given in this section, searches for an optimal
design using a set of candidate points for the HTC and the ETC factors.
For our algorithm, we suppose that we have two different sets of candidate
points, one for the HTC factors and the other for the the ETC factors. In
this case, a set of candidate points can be a 3w or 3s full factorial design,
where w and s denotes the number of the HTC and the ETC factors involved
in the experiment. The algorithm first generates a starting design with the
required numbers of degrees of freedom and then improves the starting design
to obtain an optimal design. Here, we describe this two stage procedure.

4.5.1 Generating a Starting Design

Let Aw be a candidate set of points and nw be the number of candidate
points for the HTC factors only and let As be the candidate set of points
and ns be the number of candidate points for the ETC factors only. We call
an ETC candidate point to a point available in As and an HTC candidate
point to a point available in Aw. We suppose that any combination of the
candidate points (of HTC and ETC factors) is acceptable. We assume that
we have wp whole plots with fixed whole-plot size k and u and v are the
required numbers of degrees of freedom for estimating the variance compo-
nents, as mentioned before. Let w1 = min [(wp − u− 1), (nw − 1)]. Then we
randomly choose w1 candidate points from Aw and randomly assign those
points to w1 whole-plots such that every whole-plot receives a different can-
didate point. Then, for each of the w1 whole-plots, we randomly choose k
candidate points from As and randomly assign to the k sub-plots within each
whole-plot such that every sub-plot in a single whole-plot receives a differ-
ent candidate point. Hence, we construct a design of w1 whole-plots with a
single treatment replication. This will help to ensure that there are enough
numbers of degrees of freedom available for estimating the model parameters.
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Then we choose one candidate point from Aw, not assigned to any whole-
plot previously, and assign this point to all the remaining w2 = wp − w1

whole-plots. Then we choose a candidate point from As and assign it to the
kth sub-plot of each of the last u + 1 whole-plots such that the last u + 1
whole-plots now have the same combination of HTC and ETC factor levels
at the kth sub-plot. This will generate u degrees of freedom for estimating
the whole-plot error variance because the u+ 1 whole-plots receive the same
treatment combination. Then we randomly choose candidate points from As,
excluding the point already assigned to the kth sub-plot of each of the u+ 1
whole-plots, and assign them to the remaining sub-plots associated with the
w2 whole-plots with minimum possible replication of points. Let n2 = w2×k,
then if n2− u ≤ ns, then ETC candidate points can be applied with a single
replication. If n2 − u > ns, and let n0 = n2 − u − ns, then ns − 1 distinct
ETC candidate points are assigned to the first ns − 1 sub-plots associated
with the w2 whole-plots. Then we replicate one of the ETC candidate points
n0 times and assign it to the remaining sub-plots such that this candidate
point is now applied to a total of n0 + 1 sub-plots. This would generate
n0 degrees of freedom for estimating the sub-plot error variance. Now our
design has u degrees of freedom for estimating the whole-plot error variance
and 0 or n0 degrees of freedom for estimating the sub-plot error variance.
If n0 < v, the remaining v0 = v − n0 degrees of freedom for estimating the
sub-plot error variance will be generated by selecting ai treatments from the
ith whole-plot, such that 0 ≤ ai ≤ (k − 1),

∑w0

i=1 ai = v0, i = 1, 2, ..., w0, and
w0 = n0/k rounded to the next integer, and replacing these treatments by
the k treatment of the corresponding whole-plot.

Thus, the starting design will have exactly the pre-specified numbers of
degrees of freedom. A design generated by this approach can be partitioned
into two designs. One design consisting on first w1 whole-plots where every
whole-plot has a different HTC design point and the second design consists
on the last w2 whole-plots where each whole-plot has the same (but different
from the first design) HTC design point and at least one common ETC de-
sign point.
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4.5.2 Examples of Starting Designs

In this section we give a couple of examples to show how a starting design
with the required numbers of degrees of freedom for estimating the variance
components is generated using the point exchange algorithm given in the
last section. We will consider two different design problems to illustrate two
different cases. The first case is when w1 = wp − u − 1 and the second case
is when w1 < wp − u− 1.

Example 5 Suppose that we have 2 HTC and 2 ETC factors, each at three
levels, the number of whole-plots is 9, each whole-plot has 3 sub-plots, the
model to be fitted is a second order RS model and pre-specified numbers of
degrees of freedom for estimating the whole-plot and sub-plot error variances
are 3 and 6 respectively. We assume that the set of candidate points in each
case (for the HTC and for the ETC factors) is a 32 full factorial design. So
nw = ns = 9, w1 = wp − u− 1 = 9− 3− 1 = 5 and w2 = 9− 5 = 4.

First we choose 5 HTC candidate points from Aw and assign these can-
didate points to the first 5 whole-plots such that every whole-plot receives a
different candidate point. Then, for each of these 5 whole-plot, we randomly
choose 3 candidate points from As and assign these points to the sub-plots
such that every sub-plot within a single whole-plot receives a different candi-
date point. The design at this stage is given in table 4.1.

In the second step, we generate degrees of freedom for estimating the pure
error whole-plot variance. The desired number of degrees of freedom for esti-
mating the whole-plot variance is 3. So, we apply one of the HTC candidate
point (1,1), not applied before, to all of the remaining 4 whole-plots. Then we
apply one of the ETC candidate points (1,1) to the 3rd sub-plot of each of the
4 whole-plots. Thus one of the treatments (1,1,1,1) is being replicated in all
of the last 4 whole-plots. This will generate 4− 1 = 3 degrees of freedom for
estimating the whole-plot variance. Now, we have (k−1)×w2 = 2×4 = 8 re-
maining sub-plots associated with the last 4 whole-plots and 32−1 = 9−1 = 8
ETC candidate points to assign these sub-plots. So we assign the 8 ETC can-
didate points to the 8 sub-plots such that every sub-plot receives a different
candidate point. The design at this stage is given in table 4.2. As given in
chapter 2, we construct the matrix C2 for calculating the available numbers of
degrees of freedom for estimating the variance components. So, the matrices
N, R and C2, for this design, are given as,
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Table 4.1: A starting design at the first stage with 5 whole-plots.

whole plot W1 W2 S1 S2

1 -1 0 -1 0
1 -1 0 0 1
1 -1 0 0 0
2 0 -1 0 -1
2 0 -1 1 -1
2 0 -1 0 1
3 0 0 1 1
3 0 0 -1 1
3 0 0 1 0
4 1 -1 1 -1
4 1 -1 0 1
4 1 -1 0 0
5 1 0 -1 1
5 1 0 -1 -1
5 1 0 1 1

N =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1



,
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Table 4.2: A starting design at the second stage with the required numbers
of degrees of freedom for estimating the whole-plot error variance.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 0 -1 0 6 1 1 0 -1
1 -1 0 0 1 6 1 1 -1 1
1 -1 0 0 0 6 1 1 1 1
2 0 -1 0 -1 7 1 1 0 0
2 0 -1 1 -1 7 1 1 -1 0
2 0 -1 0 1 7 1 1 1 1
3 0 0 1 1 8 1 1 0 1
3 0 0 -1 1 8 1 1 1 0
3 0 0 1 0 8 1 1 1 1
4 1 -1 1 -1 9 1 1 -1 -1
4 1 -1 0 1 9 1 1 1 -1
4 1 -1 0 0 9 1 1 1 1
5 1 0 -1 1
5 1 0 -1 -1
5 1 0 1 1
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R = diag
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
)
,

and

C2 =



0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0.75 −0.25 −0.25 −0.25
0 0 0 0 0 −0.25 0.75 −0.25 −0.25
0 0 0 0 0 −0.25 −0.25 0.75 −0.25
0 0 0 0 0 −0.25 −0.25 −0.25 0.75


.

Here,
rank(C2) = 3,

so this design gives 3 degrees of freedom for estimating the whole-plot error
variance. Also, for this design t = 24 and

ds = n− t− rank(C2) = 27− 24− 3 = 0.

So, this design gives us 0 degrees of freedom for estimating the sub-plot error
variance.

Now, we need to generate 6 degrees of freedom for estimating the sub-plot
error variance without losing any of the 3 degrees of freedom for estimat-
ing the whole-plot error variance generated previously. For this we randomly
choose ai treatments from the ith whole-plot such that 0 ≤ ai ≤ (k − 1),∑wp

i=1 ai = v and i = 1, 2, ..., 9 and replace these treatments by the 3rd treat-
ment of the corresponding whole-plot. For this example we have ai = 1 for
i = 1, 4, 5, 9, ai = 2 for i = 3 and ai = 0 for i = 2, 6, 7, 8. So, we replace
one treatment from each of the whole-plot number 1, 4, 5 and 9 and two treat-
ments from the whole-plot number 3 by the 3rd treatment of the corresponding
whole-plot. This will generate v = 6 degrees of freedom for estimating the
sub-plot error variance. The design at this stage is given in table 4.3 and the
matrices N, R and C2 for this design are given as,
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Table 4.3: The starting design at the final stage with the required numbers
of degrees of freedom for estimating the variance components.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 0 -1 0 6 1 1 0 -1
1 -1 0 0 0 6 1 1 -1 1
1 -1 0 0 0 6 1 1 1 1
2 0 -1 0 -1 7 1 1 0 0
2 0 -1 1 -1 7 1 1 -1 0
2 0 -1 0 1 7 1 1 1 1
3 0 0 1 0 8 1 1 0 1
3 0 0 1 0 8 1 1 1 0
3 0 0 1 0 8 1 1 1 1
4 1 -1 1 -1 9 1 1 -1 -1
4 1 -1 0 0 9 1 1 1 1
4 1 -1 0 0 9 1 1 1 1
5 1 0 -1 1
5 1 0 1 1
5 1 0 1 1
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N =



1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 2
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



,

R = diag
(

1 2 1 2 3 1 1 1 1 2 1 1 5 1 1 1 1 1
)
.

C2 =



0 0 0 0 0 0.0 0.0 0.0 0.0
0 0 0 0 0 0.0 0.0 0.0 0.0
0 0 0 0 0 0.0 0.0 0.0 0.0
0 0 0 0 0 0.0 0.0 0.0 0.0
0 0 0 0 0 0.0 0.0 0.0 0.0
0 0 0 0 0 0.8 −0.2 −0.2 −0.4
0 0 0 0 0 −0.2 0.8 −0.2 −0.4
0 0 0 0 0 −0.2 −0.2 0.8 −0.4
0 0 0 0 0 −0.4 −0.4 −0.4 1.2


.

Here,
rank(C2) = 3,

so this design still gives 3 degrees of freedom for estimating the whole-plot
error variance. But, now t = 18 and

ds = n− t− rank(C2) = 27− 18− 3 = 6.
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So, this design gives us 6 degrees of freedom for estimating the sub-plot error
variance. Thus the starting design now has the required numbers of degrees
of freedom for estimating the variance components.

Note the structure of the matrix C2 in all three cases. In step 1, the
matrix C2 will always be a zero matrix while in step 2 and 3 matrix C2 will
always be of the form

C2 =

(
0 0
0 Cc

)
,

where Cc is a matrix of order (w2 × w2).

Example 6 We consider another design problem where there are 2 HTC
and 2 ETC factors, wp = 12, k = 4, u = 2, v = 22, the model to be fit-
ted is a second order RS model and a set of candidate points in each case
(for the HTC and for the ETC factors) is a 32 full factorial design. Here
w1 = min [(wp − u− 1), (nw − 1)] = nw − 1 = 8. So, first we choose 8 can-
didate points from Aw and randomly apply these points to the first 8 whole-
plots. Then for each of the 8 whole-plots, we choose 4 candidate points from
As and randomly assign to the sub-plots associated with the whole-plot such
that each sub-plot ina single whole-plot receives a different ETC candidate
point. The design at this stage is given in table 4.4.

Now, we come to the remaining w2 = wp − w1 = 12− 8 = 4 whole-plots.
First we apply one of the HTC candidate points, not applied to the first 8
whole-plots, to each of the remaining 4 whole-plots. Then we choose one ETC
candidate point and assign it to the 4th sub-plot of each of the last u+ 1 = 3
whole-plots such that last 3 whole-plots now have the same combination of
the HTC and the ETC factor levels at the 4th sub-plot. This will generate 2
degrees of freedom for estimating the whole-plot error variance. Now we have
16 − 3 = 13 remaining sub-plots associated with the last 4 whole-plots and
ns− 1 = 8 distinct ETC candidate points to assign to these 13 sub-plots. So,
we randomly apply the 8 distinct ETC candidate points to the first 8 sub-plots
associated with the last 4 whole-plots and then we randomly choose a ETC
candidate point, replicate it 13 − 8 = 5 times and assign it to the each of
the remaining 5 sub-plots. The design at this stage is given in table 4.5 and
matrices N, R and C2 for this design are given as,
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Table 4.4: A starting design at the first stage with w1 = 8 whole-plots.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 1 -1 1 1 7 -1 0 1 0
1 1 -1 0 0 7 -1 0 1 1
1 1 -1 0 -1 7 -1 0 -1 -1
1 1 -1 1 -1 7 -1 0 0 1
2 0 1 0 -1 8 -1 1 1 0
2 0 1 0 0 8 -1 1 -1 1
2 0 1 -1 -1 8 -1 1 0 1
2 0 1 1 -1 8 -1 1 -1 -1
3 0 0 1 -1
3 0 0 -1 -1
3 0 0 0 -1
3 0 0 -1 1
4 0 -1 0 1
4 0 -1 -1 1
4 0 -1 -1 0
4 0 -1 1 1
5 -1 -1 0 -1
5 -1 -1 -1 0
5 -1 -1 1 0
5 -1 -1 1 -1
6 1 0 -1 1
6 1 0 1 1
6 1 0 0 0
6 1 0 -1 0
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Table 4.5: A starting design at the second stage.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 1 -1 1 1 7 -1 0 1 0
1 1 -1 0 0 7 -1 0 1 1
1 1 -1 0 -1 7 -1 0 -1 -1
1 1 -1 1 -1 7 -1 0 0 1
2 0 1 0 -1 8 -1 1 1 0
2 0 1 0 0 8 -1 1 -1 1
2 0 1 -1 -1 8 -1 1 0 1
2 0 1 1 -1 8 -1 1 -1 -1
3 0 0 1 -1 9 1 1 0 1
3 0 0 -1 -1 9 1 1 0 -1
3 0 0 0 -1 9 1 1 -1 1
3 0 0 -1 1 9 1 1 1 0
4 0 -1 0 1 10 1 1 -1 0
4 0 -1 -1 1 10 1 1 0 0
4 0 -1 -1 0 10 1 1 -1 -1
4 0 -1 1 1 10 1 1 1 1
5 -1 -1 0 -1 11 1 1 1 -1
5 -1 -1 -1 0 11 1 1 1 -1
5 -1 -1 1 0 11 1 1 1 -1
5 -1 -1 1 -1 11 1 1 1 1
6 1 0 -1 1 12 1 1 1 -1
6 1 0 1 1 12 1 1 1 -1
6 1 0 0 0 12 1 1 1 -1
6 1 0 -1 0 12 1 1 1 1
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N =

(
N1 0
0 N2

)
,

where

N1 =



14 0 0 · · · 0

0 14 0 · · · 0

...
...

. . .
...

0 0 0 · · · 14


(32×8)

,

and

N2 =



1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 1 1
0 0 3 3


,

R =

(
R1 0
0 R2

)
,

where R1 is an identity matrix of order (32× 32) and

R2 = diag
(

1 1 1 1 1 1 1 3 6
)
,

and

C2 =

(
0 0
0 C2

)
,

where

C2 =


0 0 0 0
0 0.667 −0.333 −0.333
0 −0.333 2.167 −1.833
0 −0.333 −1.833 2.167

 .
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Here rank(C2) = 2 and t = 41. So, the design at this stage generates
2 degrees of freedom for estimating the whole-plot error variance and 48 −
41− 2 = 5 degrees of freedom for estimating the sub-plot error variance. We
have 17 less than the required degrees of freedom for estimating the sub-plot
error variance. For generating 17 more degrees of freedom for estimating
the split-plot error variance we randomly select 1, 1, 3, 1, 3, 3, 2 and 3 (total
17) treatments from whole-plot number 1, 2, 3, 4, 6, 7, 8 and 10 and replace
these treatments with the 4th treatment of the corresponding whole-plot. The
design incidence matrices N, R and C2 for this design are given below and
the design is given in table 4.6.

N =

(
N1 0
0 N2

)
,

where

N1 =



2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 1



,
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Table 4.6: The starting design at the final stage with the required numbers
of degrees of freedom for estimating the variance components.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 1 -1 1 -1 7 -1 0 0 1
1 1 -1 0 0 7 -1 0 0 1
1 1 -1 0 -1 7 -1 0 0 1
1 1 -1 1 -1 7 -1 0 0 1
2 0 1 1 -1 8 -1 1 -1 -1
2 0 1 0 0 8 -1 1 -1 -1
2 0 1 -1 -1 8 -1 1 0 1
2 0 1 1 -1 8 -1 1 -1 -1
3 0 0 -1 1 9 1 1 0 1
3 0 0 -1 1 9 1 1 0 -1
3 0 0 -1 1 9 1 1 -1 1
3 0 0 -1 1 9 1 1 1 0
4 0 -1 1 1 10 1 1 1 1
4 0 -1 -1 1 10 1 1 1 1
4 0 -1 -1 0 10 1 1 1 1
4 0 -1 1 1 10 1 1 1 1
5 -1 -1 0 -1 11 1 1 -1 -1
5 -1 -1 -1 0 11 1 1 1 -1
5 -1 -1 1 0 11 1 1 1 -1
5 -1 -1 1 -1 11 1 1 1 1
6 1 0 -1 0 12 1 1 1 -1
6 1 0 -1 0 12 1 1 1 -1
6 1 0 -1 0 12 1 1 1 -1
6 1 0 -1 0 12 1 1 1 1
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and

N2 =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 4 1 1
0 0 3 3

 .

R =

(
R1 0
0 R2

)
,

where

R1 = diag
(

2 1 1 2 1 1 4 2 1 1 1 1 1 1 4 4 3 1
)
,

and
R2 = diag

(
1 1 1 1 6 6

)
.

C2 =

(
0 0
0 C2

)
,

where

C2 =


0 0 0 0
0 1.333 −0.667 −0.667
0 −0.667 2.333 −1.667
0 −0.667 −1.667 2.333

 .

Here rank(C2) = 2 and t = 24. So, the design at this stage generates
2 degrees of freedom for estimating the whole-plot error variance and 48 −
24 − 2 = 22 degrees of freedom for estimating the sub-plot error variance.
Hence the starting design has the required numbers of degrees of freedom for
estimating the variance components.

4.5.3 Improving the Starting Design

Once a starting design is generated, its optimality criterion value is computed
and then an improvement in terms of an increase in the optimality criterion
value is searched by exchanging the design points with the candidate points.
The improvement procedure is performed whole-plot by whole-plot. First,
the HTC design point in the first whole-plot is replaced by all the points in
Aw one by one. For each replacement, the algorithm calculates the num-
bers of degrees of freedom, in the new design, for estimating the variance
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components by generating the C2 matrix and then computes the optimality
criterion value. If there is an increase in the optimality criterion value, the
replacement is saved as a new design otherwise no change is made. Then the
ETC design point in the first sub-plot of the first whole-plot is replaced by
all the points in As one by one, the optimality criterion value for each re-
placement is computed and if there is any improvement the change is saved.
The same procedure is repeated for the second, third and so on, for the kth

sub-plot of the first whole-plot. Hence all the design points in the first whole-
plot and the corresponding sub-plots are replaced by all of the corresponding
candidate points. Then the same process is repeated for the second, third
and so on, for the last whole-plot. Thus the first round of the improvement
phase is completed. If at least one improvement in the optimality criterion
value is recorded in one complete round then the whole improvement proce-
dure is performed again. When no improvement is recorded in a complete
round the algorithm will stop and the best design in terms of the optimality
criterion value would be given as the output.

This two stage procedure of generating and then improving a starting
design is repeated several times and the best available design with the highest
optimality criterion value is selected.

4.5.4 The Algorithm

We assume that we have, the number of whole-plots (wp), fixed whole-plot
size (k), a set of candidate points for HTC factors (Aw), the number of HTC
candidate points (nw), a set of candidate points for the ETC factors (As), the
number of ETC candidate points (ns), the number of total experimental runs
(n), the required number of degrees of freedom for estimating the whole-plot
error variance (u), the required number of degrees of freedom for estimating
the sub-plot error variance (v) and a point estimate of the ratio of the variance
components. Then the algorithm can be described as:

1. Set

(a) w1 = min ((wp − u− 1), (nw − 1))

(b) n1 = k × w1

(c) w2 = wp − w1

(d) n2 = n− n1
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2. Generate a Starting Design

(a) Randomly choose w1 distinct points from Aw and assign these
points to first w1 whole-plots such that each whole-plot receives a
different candidate point.

(b) For each of the first w1 whole-plots, randomly choose k distinct
points from As and assign these points to the k sub-plots of the
corresponding whole-plot such that every sub-plot within a single
whole-plot receives a different candidate point.

(c) Randomly choose a single point from Aw, not used in Step 2.(a),
and assign this point to each of the remaining w2 whole-plots.

(d) Randomly choose s0, where s0 is a point in As, and assign this
point to the kth sub-plot of each of the last u+ 1 whole-plots.

(e) Set m0 = min ((n2 − u), (ns − 1)).

(f) Randomly choose a set of m0 distinct points from As (excluding
s0) and call this set Asa .

(g) Compute n0 = n2 − u− ns.
(h) If n0 > 0, set w0 = wp−wa, v0 = v−n0 and go the Step 2.(i), else

set w0 = wp, v0 = v and go to the step 2.(j). (Here wa = n0/k
rounded to the next integer).

(i) Randomly choose a point from Asa , replicate this point n0 times
and add these replicated points in Asa .

(j) Randomly assign the candidate points in Asa to all the sub-plots
associated with the w2 whole-plots, excluding the kth sub-plot of
each of the last u+ 1 whole-plots.

(k) If v0 > 0, go to the next step else go to Step 3.

(l) For (i = 1, 2, ..., w0), randomly choose ai treatments from the ith

whole-plot such that 0 ≤ ai ≤ (k − 1) and
∑w0

i=1 ai = v0, then re-
place those treatments with the kth treatment of the corresponding
whole-plot.

3. Compute the optimality criterion value and call it D∗

4. Improve the Starting Design

(a) Set κ = 0.
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(b) Set i = 1.

(c) Set j = 1.

(d) Replace the HTC design point in the ith whole-plot with the jth

candidate point in Aw.

(e) Compute the optimality criterion value for the new design and
call it D0.

i. Compute D, the usual D criterion value

ii. Construct matrices N, R and C2 to compute du and dv and
determine the values for Du and Dv

iii. Compute D0 = D ×Du ×Dv
(f) If D0 > D∗, set D∗ = D0, κ = 1 and save this change.

(g) If j < nw, set j = j + 1 and go back to Step 4.(d)

(h) Set l = 1.

(i) Set j = 1.

(j) Replace the ETC design point in the lth sub-plot of the ith whole-
plot by the jth point in As.

(k) Compute the optimality criterion value for the new design and
call it D0.

i. Compute D, the usual D criterion value

ii. Construct matrices N, R and C2 to compute du and dv and
determine the values for Du and Dv

iii. Compute D0 = D ×Du ×Dv
(l) If D0 > D∗, set D∗ = D0, κ = 1 and save the change in the design.

(m) If j < ns, set j = j + 1 and go back to Step 4.(j).

(n) If l < k, set l = l + 1 and go back to Step 4.(i).

(o) If i < wp, set i = i+ 1 and go back to Step 4.(c).

(p) If κ > 0, go back to Step 4.(a).

5. Repeat Step 2 to Step 4.(p) T times, where T is the number of total
starting designs.
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4.6 A Coordinate Exchange Algorithm

This algorithm is based on Jones & Goos algorithm and generates a start-
ing design by randomly generating the required levels for the HTC and the
ETC factors without using a set of candidate points. However, a random
starting design generated by Jones & Goos algorithm does not always guar-
antee the required numbers of degrees of freedom for estimating the variance
components. So, we modify their algorithm to generate required numbers
of the degrees of freedom in a starting design. The improvement strategy is
essentially the same as given in Jones & Goos algorithm except that we use
a different optimality criterion.

4.6.1 Generating a Starting Design

For generating a starting design we need all the information given in sec-
tion 4.2.1 and pre-specified numbers of degrees of freedom for estimating the
variance components. Suppose that we want to generate a design with wp
whole-plots, fixed whole-plot size k and the pre-specified numbers of degrees
of freedom for estimating the whole-plot and sub-pot error variances are u
and v respectively. Then, we first generate a starting design by randomly
selecting the levels of the ETC and the HTC factors as suggested by Jones
& Goos. Then to generate the required number of degrees of freedom for
estimating the whole-plot variance, we choose the ith treatment of the jth

whole-plot where 1 ≤ i ≤ k, 1 ≤ j ≤ wp and i and j are chosen randomly.
Then we randomly choose u whole-plots, excluding the jth whole-plot from
which the ith treatment was chosen previously, and replace the ith treatments
in each of the u whole-plot by the previously selected treatment. So, one of
the treatments now appears in at least u + 1 whole-plots. This will give us
at least u degrees of freedom for estimating the whole-plot error variance.

Then, for generating the pre-specified number of degrees of freedom for
estimating the sub-plot error variance, we replicate treatments within the
whole-plots. For this, we randomly choose ai treatments from each of the
whole-plots, excluding the treatments that were previously replaced for gen-
erating the required numbers of degrees of freedom for estimating the whole-
plot error variance, such that 0 ≤ ai ≤ (k− 1), i = 1, 2, ..., wp and

∑wp

i=1 ai =
v. Then within each whole-plot, we replace the selected ai treatments, by
another treatment in the same whole-plot such that in each whole-plot one
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of the treatments appears at least ai + 1 times. This technique will give
us at least v degrees of freedom for estimating the sub-plot error variance.
Hence the starting design has at least the pre-specified numbers of degrees
of freedom for obtaining the pure error estimates of the variance components.

Note that in this approach we first generate a random starting design
and then, assuming that the random starting design does not have any de-
gree of freedom available, use two different techniques for generating the
pre-specified numbers of degrees of freedom for estimating the variance com-
ponents. However, if a random starting design already has some degrees
of freedom available, these techniques can generate more than the required
numbers of degrees of freedom for estimating the variance components. This
could possibly result in a singular starting design which does not have enough
numbers of degrees of freedom for estimating the model parameters. So, to
avoid this situation, we impose a condition in the algorithm that ensures
that, in a starting design, there are enough degrees of freedom available for
estimating the model parameters. This problem is more likely to occur in
relatively small designs where n is not much greater than the number of the
model parameters.

Here we give an example to show how a starting design is generated such
that it has the pre-specified numbers of degrees of freedom for estimating the
variance components.

4.6.2 An Example of a Starting Design

Here, we give a step-by-step example to show how our coordinate exchange
algorithm generates a starting design with at least the required numbers of
degrees of freedom.

Example 7 Suppose we want to generate a second order RS Spit-plot design
with 2 HTC and 2 ETC factors each with 3 levels, the number of whole-plots
is 9 with a fixed whole-plot size 3 and required numbers of degrees of freedom
for estimating the whole-plot and sub-plot error variances are 3 and 6 respec-
tively. Note that, we do not need a prior point estimate of η for generating a
starting design. Although, we will need that when we compute the optimality
criterion value of a starting design and also at the improvement stage when
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we make exchanges and compute the optimality criterion value for the new
design.

Then, in the first step, we generate a random starting design (given in
table 4.7) using Jones & Goos algorithm. The matrices N, R and C2 for this
starting design are given as,

Table 4.7: Step 1. Random starting design by Jones & Goos algorithm

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 1 1 -1 6 -1 0 0 -1
1 -1 1 -1 0 6 -1 0 0 0
1 -1 1 1 0 6 -1 0 -1 1
2 -1 0 0 -1 7 0 0 -1 1
2 -1 0 -1 -1 7 0 0 0 -1
2 -1 0 1 1 7 0 0 0 0
3 1 1 0 0 8 0 -1 1 -1
3 1 1 -1 -1 8 0 -1 0 1
3 1 1 1 1 8 0 -1 0 0
4 1 0 0 -1 9 0 0 1 1
4 1 0 1 -1 9 0 0 1 1
4 1 0 1 1 9 0 0 1 0
5 -1 1 0 -1
5 -1 1 0 0
5 -1 1 1 1
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N =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 1



,

R = diag
(

1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
)
,

and

C2 =



0 0.0 0 0 0 0.0 0 0 0
0 0.5 0 0 0 −0.5 0 0 0
0 0.0 0 0 0 0.0 0 0 0
0 0.0 0 0 0 0.0 0 0 0
0 0.0 0 0 0 0.0 0 0 0
0 −0.5 0 0 0 0.5 0 0 0
0 0.0 0 0 0 0.0 0 0 0
0 0.0 0 0 0 0.0 0 0 0
0 0.0 0 0 0 0.0 0 0 0


.
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Here n = 27, t = 25 and rank(C2) = 1. So the starting design gives 1
degree of freedom for estimating the whole-plot error variance and 1 degree
of freedom for estimating the sub-plot error variance. Hence the available
numbers of degrees of freedom for estimating the variance components are
less than the required numbers.

Then, in the second step, we generate the required numbers of degrees of
freedom for estimating the whole-plot error variance by randomly choosing a
treatment from a whole-plot and then replicating that treatment in 3 other
whole-plots. For our example, we randomly chose the first treatment of the
5th whole-plot and then we randomly chose whole-plot number 1, 4 and 9
and the first treatment in each of these whole-plots is replaced by the first
treatment of whole-plot number 5. This technique would give us at least 3
degrees of freedom for estimating the whole-plot error variance. The design
at this stage is given in table 4.8 and matrices N, R and C2 for this design
are given as

Table 4.8: Step 2. Replicating a treatment between whole-plots for generat-
ing degrees of freedom for estimating the whole-plot error variance.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 1 0 -1 6 -1 0 0 -1
1 -1 1 -1 0 6 -1 0 0 0
1 -1 1 1 0 6 -1 0 -1 1
2 -1 0 0 -1 7 0 0 -1 1
2 -1 0 -1 -1 7 0 0 0 -1
2 -1 0 1 1 7 0 0 0 0
3 1 1 0 0 8 0 -1 1 -1
3 1 1 -1 -1 8 0 -1 0 1
3 1 1 1 1 8 0 -1 0 0
4 -1 1 0 -1 9 -1 1 0 -1
4 -1 1 1 -1 9 -1 1 1 1
4 -1 1 1 1 9 -1 1 1 0
5 -1 1 0 -1
5 -1 1 0 0
5 -1 1 1 1
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N =



1 0 0 1 1 0 0 0 1
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0



,

R = diag
(

4 1 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
)
,

C2 =



1.25 0.0 0 −0.25 −0.25 0.0 0 0 −0.75
0.00 0.5 0 0.00 0.00 −0.5 0 0 0.00
0.00 0.0 0 0.00 0.00 0.0 0 0 0.00
−0.25 0.0 0 1.42 −0.58 0.0 0 0 −0.58
−0.25 0.0 0 −0.58 1.42 0.0 0 0 −0.58
0.00 −0.5 0 0.00 0.00 0.5 0 0 0.00
0.00 0.0 0 0.00 0.00 0.0 0 0 0.00
0.00 0.0 0 0.00 0.00 0.0 0 0 0.00
−0.75 0.0 0 −0.58 −0.58 0.0 0 0 1.92


.

Here rank(C2) = 4. So we now have the required numbers of degrees of
freedom for estimating the whole-plot error variance.
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Next, we generate the required number of degrees of freedom for estimating
the sub-plot error variance by replicating treatments within the whole-plots.
The required number of degrees of freedom for estimating the sub-plot error
variance is 6. So we randomly choose ai treatments from each of the whole-
plots such that 0 ≤ ai ≤ 2, i = 1, 2, ..., wp, and

∑wp

i=1 ai = 6 and then these
treatments are replaced by the first treatment of the corresponding whole-plot.
In our example we select 2, 2, 1, 1 treatments from whole-plot number 1, 4, 5
and 9 respectively and replace these treatments by the first treatment in each
whole-plot. This would give us at least 6 degrees of freedom for estimating
the sub-plot error variance. The design at this final stage is given in table
4.9 and the matrices N, R and C2 are given as

Table 4.9: Step 3. The starting design at the final stage.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 1 0 -1 6 -1 0 0 -1
1 -1 1 0 -1 6 -1 0 0 0
1 -1 1 0 -1 6 -1 0 -1 1
2 -1 0 0 -1 7 0 0 -1 1
2 -1 0 -1 -1 7 0 0 0 -1
2 -1 0 1 1 7 0 0 0 0
3 1 1 0 0 8 0 -1 1 -1
3 1 1 -1 -1 8 0 -1 1 -1
3 1 1 1 1 8 0 -1 0 0
4 -1 1 0 -1 9 -1 1 0 -1
4 -1 1 0 -1 9 -1 1 0 -1
4 -1 1 0 -1 9 -1 1 1 0
5 -1 1 0 -1
5 -1 1 0 -1
5 -1 1 1 1
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N =



3 0 0 3 2 0 0 0 2
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



,

R = diag
(

10 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1
)
,

and

C2 =



2.1 0.0 0 −0.9 −0.6 0.0 0 0 −0.6
0.0 0.5 0 0.0 0.0 −0.5 0 0 0.0
0.0 0.0 0 0.0 0.0 0.0 0 0 0.0
−0.9 0.0 0 2.1 −0.6 0.0 0 0 −0.6
−0.6 0.0 0 −0.6 1.6 0.0 0 0 −0.4
0.0 −0.5 0 0.0 0.0 0.5 0 0 0.0
0.0 0.0 0 0.0 0.0 0.0 0 0 0.0
0.0 0.0 0 0.0 0.0 0.0 0 0 0.0
−0.6 0.0 0 −0.6 −0.4 0.0 0 0 1.6


.

Here rank(C2) = 4, t = 16. So,

dw = rank(C2) = 4,

and
ds = n− t− rank(C2) = 27− 16− 4 = 7.

Thus, the starting design has the pre-specified numbers of degrees of freedom
for obtaining the pure error estimates of the variance components.
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4.6.3 Improving the Starting Design

First, the optimal criterion value for the starting design is computed. Then
an improvement in the optimality criterion value is searched by replacing
each factor level by all the values, listed in the set of candidate values for
those factor levels, one by one. After each replacement, the optimality cri-
terion value is calculated and if there is an improvement the new design
replaces the previous design otherwise no change is made. The improvement
process is performed whole-plot-by-whole-plot i.e. first all the levels in the
first whole-plot are replaced by all the candidate values for those levels one
by one and an improvement in the optimality criterion value is searched and,
if found, saved. Then the improvement process is performed for the second,
third, and so on, for the last whole-plot. Within a whole-plot, the improve-
ment process starts from the first HTC factor and continues until the level
of the last HTC factor is replaced by all the candidate values. Then the im-
provement is searched for the first ETC factor in the first sub-plot and this
search continues until the level of the last ETC factor in the first sub-plot
is replaced by all the candidate values. Then, using the same technique, the
improvement is searched in the second, third, and so on, in the k sub-plot of
the whole-plot. One round of the improvement process completes when all
the levels, from the first HTC in the first whole-plot to the last ETC factor in
the last experimental run, are replaced by their candidate values. If at least
a single improvement is recorded in one round, the improvement process is
repeated again. Thus, the improvement process continues until there is no
further increase in the optimality criterion value.

This two stage procedure, first generating a starting design and then
improve it, is repeated for several random starting designs and the best design
in terms of the optimality criterion value is chosen at the end.

4.6.4 The Algorithm

For our algorithm we need all the information mentioned in section 4.6.1
as the input information. Then a D-optimal design with the pre-specified
numbers of degrees of freedom for estimating the variance components can
be generated by following these steps.

1. Generate a random starting design.
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2. Randomly choose tij, where tij denotes treatment i in whole-plot j.
Then randomly choose u other whole-plots, excluding the jth whole-
plot chosen before, and in each of the u whole-plots replace the ith

treatment by tij.

3. Randomly chose al treatments from whole-plot l, excluding the ith

treatment, such that 0 ≤ al ≤ (k − 1), l = 1, 2, ..., wp, and
∑wp

l=1 al = v
and replace these treatments by the ith treatments of the corresponding
whole-plot.

4. Compute du and dv. If u ≤ du ≤ (wp−pw−1) and v ≤ dv ≤ (n−p−du)
then go step 5 otherwise go back to step 1.

5. Compute the optimality criterion value (D∗).

6. Improve the starting design.

7. Repeat step 1− 6 T times.

Note that, in the above algorithm u and du respectively denote the pre-
specified and available number of degrees of freedom in the design for es-
timating the whole-plot error variance, v and dv respectively denotes the
pre-specified and available number of degrees of freedom in the design for es-
timating the sub-plot error variance, T denotes the total number of starting
designs and subscript i has a fixed value in steps 2 and 3.

As stated earlier, our algorithm is a modified form of Jones & Goos al-
gorithm. So in step 1 and 6 of our algorithm, where we generate a random
starting design and improve it, we basically follow the same procedure as
given by Jones & Goos and described in fig 4.1 except that in step 6 we
compute the value for the optimality criterion given in (4.1). For each co-
ordinate exchange, we not only compute the usual D criterion value for the
new design but we also compute the available numbers of degrees of free-
dom, for estimating the pure error variance components, in the new design
by constructing the C2 matrix.

4.7 Computational results

In this section, we consider some of the design problems already given in the
literature for generating a second order RS split-plot designs. We use our
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algorithm to generate a design for each of these design problems and then
make comparison between the design generated by our algorithm and the
design generated by a different methodology. We have chosen three different
designs generated by three different approaches for constructing RS split-plot
designs. We give the original design and then we generate another design for
the same design problem using our design methodology.

4.7.1 A D-Optimal Design

Macharia & Goos (2010)[22] gave a second order D-optimal design with one
HTC factor and two ETC factors each at three levels. The design has 5
whole-plots and the fixed whole-plot size is 3. Their design is given in table
4.10.

Table 4.10: A D-optimal design for 1 HTC and 2 ETC factors given by
Macharia & Goos (2010)

whole plot W1 S1 S2

1 -1 -1 0
1 -1 0 1
1 -1 1 -1
2 -1 -1 1
2 -1 -1 -1
2 -1 1 0
3 0 -1 1
3 0 0 0
3 0 1 1
4 1 -1 -1
4 1 0 1
4 1 1 -1
5 1 -1 1
5 1 0 -1
5 1 1 1

This design was generated for η = 1, where η = σ2
γ/σ

2
ε , and gives 0

degrees of freedoms for estimating the whole-plot or sub-plot pure error vari-
ances. Using this design as a benchmark, we generated different designs to
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see that to what extent the optimality of a design was affected if we forced
it to generate some degrees of freedom for obtaining the pure error estimates
of the variance components. We generated 15 designs using the same value
for η that was used to generate the benchmark design but with different pre-
specified numbers of degrees of freedom and checked their D-efficiency. These
designs were generated using the statistical software package R. To compare
the computing time, we used both of the algorithms (the point exchange al-
gorithm and the coordinate exchange algorithm) for generating each design
and for each design we used 5000 iterations. The point exchange algorithm
executed 5000 iterations in approximately 4 hours whereas the coordinate
exchange algorithm took around 2 hours and 30 minutes. So, the coordinate
exchange algorithm worked much faster than the point exchange algorithm.
The relative D-efficiencies of the designs as compared to the optimal design
are given in table 4.16 and the designs are given in tables 4.11 to 4.15.

The results in table 4.16 show that the optimality criterion value (and
hence the relative D-efficiency) of a design decreases as we increase the num-
bers of degrees of freedom for estimating the variance components. But the
increase in the sub-plot error degrees of freedom causes more decrease in the
optimality criterion value than the increase in the whole-plot error degrees
of freedom. For example, we compare design 6 and 8 with design 4. Design
4 was generated for u = v = 1. The relative D-efficiency of this design (as
compared to the benchmark design) is 98.02%. Design 8 has v = 2 and
u = 1, so this design has one more degree of freedom for estimating the
sub-plot error variance as compared to design 4. With a single increase in v
the relative D-efficiency decreases to 93.36%. Design 6 has v = 1 and u = 2.
So, this design has the same v as compared to the design 1 but has one more
degree of freedom for estimating the whole-plot error variance. The relative
D-efficiency for this design, as compared to the design 1 is 95.62% which is
greater than the relative D-efficiency of design 8. The same trend can be seen
if we compare other designs in the same pattern. The relative D-efficiency
decreases more with a single degree of freedom increase in v as compared to
the single degree of freedom increase in u. Finally, we compare designs 12, 14
and 15. These three designs have the maximum possible number of degrees
of freedom for estimating the variance components i.e. u + v = 5. Among
these three designs, design with the maximum possible number of whole-plot
error degrees of freedom, design 12, has the greater relative D-efficiency as
compared to the other two designs whereas the design with the maximum
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Table 4.11: D-optimal designs with pre-specified numbers of degrees of free-
dom for estimating the variance components. Here, u and v denote the
numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

u = 0, v = 0 u = 1, v = 0 u = 2, v = 0
whole plot W1 S1 S2 W1 S1 S2 W1 S1 S2

1 -1 -1 1 -1 -1 1 -1 -1 1
1 -1 0 -1 -1 0 -1 -1 1 -1
1 -1 1 1 -1 1 1 -1 1 1
2 -1 -1 -1 -1 -1 0 -1 -1 -1
2 -1 0 1 -1 0 1 -1 0 0
2 -1 1 -1 -1 1 -1 -1 1 1
3 0 -1 0 0 -1 -1 0 0 1
3 0 0 1 0 0 1 0 -1 -1
3 0 1 -1 0 1 0 0 1 0
4 1 -1 -1 1 -1 1 1 -1 0
4 1 -1 1 1 1 -1 1 1 -1
4 1 1 0 1 1 1 1 1 1
5 1 -1 0 1 -1 -1 1 -1 1
5 1 1 -1 1 0 0 1 0 -1
5 1 1 1 1 1 1 1 1 1
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Table 4.12: D-optimal designs with pre-specified numbers of degrees of free-
dom for estimating the variance components. Here, u and v denote the
numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

u = 0, v = 1 u = 0, v = 2 u = 0, v = 3
whole plot W1 S1 S2 W1 S1 S2 W1 S1 S2

1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 1 -1 1 1 -1 1 1
1 -1 1 1 -1 1 1 -1 1 1
2 -1 0 0 -1 -1 1 -1 -1 1
2 -1 -1 1 -1 0 0 -1 -1 1
2 -1 1 -1 -1 1 -1 -1 1 -1
3 0 0 1 0 0 1 0 -1 0
3 0 -1 -1 0 0 1 0 0 1
3 0 1 0 0 1 0 0 0 1
4 1 -1 1 1 -1 0 1 -1 -1
4 1 -1 -1 1 0 -1 1 0 0
4 1 1 -1 1 1 1 1 1 -1
5 1 -1 0 1 -1 -1 1 -1 1
5 1 0 -1 1 -1 1 1 0 -1
5 1 1 1 1 1 -1 1 1 1
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Table 4.13: D-optimal designs with pre-specified numbers of degrees of free-
dom for estimating the variance components. Here, u and v denote the
numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

u = 0, v = 4 u = 0, v = 5 u = 1, v = 1
whole plot W1 S1 S2 W1 S1 S2 W1 S1 S2

1 -1 -1 1 -1 -1 0 -1 0 1
1 -1 0 0 -1 0 1 -1 -1 -1
1 -1 1 -1 -1 0 1 -1 1 0
2 -1 -1 -1 -1 0 -1 -1 1 -1
2 -1 1 1 -1 1 0 -1 0 0
2 -1 1 1 -1 1 0 -1 -1 1
3 0 0 -1 0 0 0 0 1 1
3 0 0 -1 0 0 0 0 -1 0
3 0 1 0 0 1 1 0 0 -1
4 1 -1 1 1 -1 1 1 1 -1
4 1 -1 1 1 -1 1 1 -1 1
4 1 1 -1 1 -1 -1 1 -1 -1
5 1 -1 -1 1 1 -1 1 -1 -1
5 1 -1 -1 1 1 1 1 1 1
5 1 1 1 1 1 -1 1 -1 1
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Table 4.14: D-optimal designs with pre-specified numbers of degrees of free-
dom for estimating the variance components. Here, u and v denote the
numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

u = 1, v = 2 u = 1, v = 3 u = 1, v = 4
whole plot W1 S1 S2 W1 S1 S2 W1 S1 S2

1 -1 1 -1 -1 -1 1 -1 1 -1
1 -1 -1 0 -1 -1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1 1 1
2 -1 1 0 -1 -1 -1 0 -1 1
2 -1 0 1 -1 1 1 0 0 -1
2 -1 -1 -1 -1 0 0 0 1 0
3 0 0 0 0 0 -1 0 -1 1
3 0 -1 1 0 0 -1 0 0 -1
3 0 0 0 0 -1 0 0 1 0
4 1 1 1 1 -1 -1 1 -1 -1
4 1 -1 -1 1 -1 1 1 0 0
4 1 1 -1 1 1 -1 1 0 0
5 1 -1 1 1 -1 1 1 1 1
5 1 -1 -1 1 1 1 1 1 -1
5 1 1 -1 1 -1 -1 1 1 1
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Table 4.15: D-optimal designs with pre-specified numbers of degrees of free-
dom for estimating the variance components. Here, u and v denote the
numbers of degrees of freedom for estimating the whole-plot and sub-plot
error variances respectively.

u = 2, v = 1 u = 2, v = 2 u = 2, v = 3
whole plot W1 S1 S2 W1 S1 S2

1 -1 -1 -1 -1 1 1 -1 -1 -1
1 -1 1 0 -1 0 0 -1 -1 1
1 -1 0 1 -1 -1 -1 -1 1 0
2 -1 1 0 -1 0 0 -1 -1 -1
2 -1 0 -1 -1 1 -1 -1 -1 1
2 -1 -1 1 -1 -1 1 -1 1 0
3 0 0 0 0 0 1 0 -1 0
3 0 1 1 0 0 1 0 0 1
3 0 1 -1 0 1 0 0 1 -1
4 1 -1 -1 1 -1 1 1 -1 -1
4 1 -1 1 1 1 1 1 0 0
4 1 1 1 1 -1 -1 1 1 1
5 1 -1 -1 1 -1 1 1 -1 1
5 1 -1 1 1 1 -1 1 0 0
5 1 1 -1 1 1 1 1 1 1
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Table 4.16: Relative D-efficiency for different designs generated for pre-
specified numbers of degrees of freedom for estimating the variance compo-
nents. Here, u and v denote the numbers of degrees of freedom for estimating
the whole-plot and sub-plot error variances respectively.

Design v u DR.E

1 0 0 100.31%
2 0 1 99.74%
3 0 2 98.25%
4 1 1 98.02%
5 1 0 97.20%
6 1 2 95.62%
7 2 2 93.61%
8 2 1 93.36%
9 2 0 93.25%
10 3 1 89.66%
11 3 0 89.41%
12 3 2 86.11%
13 4 0 83.57%
14 4 1 77.15%
15 5 0 65.60%
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possible number of sub-plot error degrees of freedom, design 15, has the min-
imum relative D-efficiency.

Although all the designs, given in this section, were generated using η = 1,
we have done a robustness study of these designs for different values of η.
We generated designs for η = 5 and η = 10 and all the designs (design 2
to 15 but not design 1) are robust to these changes in the η value. Some
other similar robustness studies for RS split-plot designs are given by Goos
& Vandebroek (2001)[14] and Goos & Vandebroek (2003)[15].

4.7.2 The Strength of the Ceramic Pipe Experiment

Vining et al (2005)[28] gave an example involving ceramic pipes. An engineer
wishes to estimate the relation of the strength of ceramic pipes (response vari-
able) with some other factors of interest (the explanatory variables). Those
factors are temperature 1, temperature 2, amount of binder in the formula-
tion and grinding speed of the batch. Among these four factors, temperature
1 (W1) and temperature 2 (W2) are the HTC factors and amount of binder
in the formulation (S1) and grinding speed of the batch (S2) are the ETC
factors. The authors present a second order RS split-plot design with 12
whole-plots and a fixed whole-plot size of 4 for performing the experiment.
The design is given in table 4.17.

Some interesting properties of this design are that the OLS and GLS es-
timates of the regression coefficients are identical and the design provides
2 degrees of freedom for obtaining pure error estimates for the whole-plot
error variance and 21 degrees of freedom for sub-plot error variance. They
estimated σ2

ε = 0.09348 and σ2
γ = 0.52828.

We used our coordinate algorithm to generate two different designs for
this design problem using the same values of the variance components as
estimated by Vining et al (2005). For each design, we used 5000 iterations
and our programme (written in R language and run on a laptop machine)
took approximately 24 hours to execute 5000 iterations. These designs are
given in tables 4.18 and 4.19. The design given in table 4.18 gives 4 degrees
of freedom for estimating the whole-plot error variance and 21 for estimating
the sub-plot error variance. So, our design has more degrees of freedom for
obtaining the pure error estimates of the variance components as given in

99



Table 4.17: An equivalent estimation design for 2 HTC and 2 ETC factors
given by Vining et al (2005)

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 -1 -1 -1 6 0 -1 0 0
1 -1 -1 1 -1 6 0 -1 0 0
1 -1 -1 -1 1 6 0 -1 0 0
1 -1 -1 1 1 6 0 -1 0 0
2 1 -1 -1 -1 7 0 1 0 0
2 1 -1 1 -1 7 0 1 0 0
2 1 -1 -1 1 7 0 1 0 0
2 1 -1 1 1 7 0 1 0 0
3 -1 1 -1 -1 8 0 0 -1 0
3 -1 1 1 -1 8 0 0 1 0
3 -1 1 -1 1 8 0 0 0 -1
3 -1 1 1 1 8 0 0 0 1
4 1 1 -1 -1 9 0 0 0 0
4 1 1 1 -1 9 0 0 0 0
4 1 1 -1 1 9 0 0 0 0
4 1 1 1 1 9 0 0 0 0
5 -1 0 0 0 10 0 0 0 0
5 -1 0 0 0 10 0 0 0 0
5 -1 0 0 0 10 0 0 0 0
5 -1 0 0 0 10 0 0 0 0
6 1 0 0 0 12 0 0 0 0
6 1 0 0 0 12 0 0 0 0
6 1 0 0 0 12 0 0 0 0
6 1 0 0 0 12 0 0 0 0
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the design proposed by Vining et al (2005). But the relative D-efficiency
of our design is 166.46% when compared to their design. The second de-
sign given in table 4.19 gives 6 degrees of freedom (maximum possible) for
estimating the whole-plot error variance and 21 degrees of freedom for esti-
mating the sub-plot error variance. The relative D-efficiency of our design,
with the maximum possible number of degrees of freedom for estimating the
whole-plot error variance, is 173.84% when compared to the original design.
One might think that the equivalent estimation design has an extra quality
of equivalence of OLS and GLS estimates that our design does not have but
this property might not be very appealing for an experimenter who is inter-
ested in more efficient use of resources. Furthermore, as we have mentioned
before, in order to draw inferences about the model parameters one would
have to estimate the variance components because the variance-covariance
matrix of the model estimates depends on the variance components.

4.7.3 The Freeze-Dried Coffee Experiment

Gilmour et al (2000)[12] reported the dried coffee experiment that is de-
scribed in Example 3 of section 1.3. The design suggested by the authors is
given in table 2.2. This design, generated by using the algorithm by Trinca
& Gilmour (2001)[27], gives 3 degrees of freedom for estimating the whole-
plot error variance and 0 degrees of freedom for estimating the sub-plot er-
ror variance, under the randomization based method. We used our coor-
dinate exchange algorithm to generate two different designs (with different
pre-specified numbers of degrees of freedom for estimating the variance com-
ponents) for the same design problem. For each design we used η = 1 and
run 5000 iterations. Our algorithm (written is R language and executed on
a laptop machine) took around 26 hours to run 5000 iterations. For the first
design, the required numbers of degrees of freedom for estimating the whole-
plot and sub-plot error variances are 3 and 3 respectively and for second
design the required numbers are 3 and 4. The two designs are given in table
4.20. The Relative D-efficiency for the first design with respect to the design
given by Gilmour et al (2000)[12] is 140.52% and the relative D-efficiency for
the second design is 139.96%. This should not be a surprise because their
design was not constructed by using the D-optimality criterion.
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Table 4.18: A D-optimal design for 2 HTC and 2 ETC factors with u = 4
and v = 21.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 -1 1 1 7 0 1 -1 1
1 -1 -1 1 -1 7 0 1 -1 1
1 -1 -1 -1 -1 7 0 1 -1 1
1 -1 -1 -1 1 7 0 1 1 0
2 -1 -1 1 -1 8 1 -1 -1 -1
2 -1 -1 1 1 8 1 -1 -1 1
2 -1 -1 -1 1 8 1 -1 1 1
2 -1 -1 -1 -1 8 1 -1 1 -1
3 -1 0 -1 1 9 1 -1 1 -1
3 -1 0 -1 1 9 1 -1 1 1
3 -1 0 -1 1 9 1 -1 -1 -1
3 -1 0 -1 1 9 1 -1 -1 1
4 -1 1 -1 -1 10 1 0 0 -1
4 -1 1 0 0 10 1 0 0 -1
4 -1 1 0 0 10 1 0 0 -1
4 -1 1 1 1 10 1 0 -1 0
5 -1 1 1 1 11 1 1 1 -1
5 -1 1 0 0 11 1 1 1 1
5 -1 1 1 -1 11 1 1 0 1
5 -1 1 -1 -1 11 1 1 -1 -1
6 0 0 0 -1 12 1 1 0 1
6 0 0 -1 0 12 1 1 -1 -1
6 0 0 -1 0 12 1 1 1 -1
6 0 0 -1 0 12 1 1 1 1
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Table 4.19: A D-optimal design for 2 HTC and 2 ETC factors with u = 6
and v = 21.

whole plot W1 W2 S1 S2 whole plot W1 W2 S1 S2

1 -1 -1 1 1 7 0 1 0 -1
1 -1 -1 -1 -1 7 0 1 0 -1
1 -1 -1 0 0 7 0 1 -1 0
1 -1 -1 1 -1 7 0 1 1 1
2 -1 -1 -1 -1 8 1 -1 -1 -1
2 -1 -1 0 0 8 1 -1 1 -1
2 -1 -1 1 -1 8 1 -1 1 1
2 -1 -1 1 1 8 1 -1 -1 1
3 -1 0 -1 1 9 1 -1 1 -1
3 -1 0 -1 1 9 1 -1 -1 -1
3 -1 0 1 0 9 1 -1 1 1
3 -1 0 -1 -1 9 1 -1 -1 1
4 -1 0 1 0 10 1 -1 -1 1
4 -1 0 -1 -1 10 1 -1 1 -1
4 -1 0 1 0 10 1 -1 1 1
4 -1 0 -1 1 10 1 -1 -1 -1
5 -1 1 0 1 11 1 1 1 1
5 -1 1 -1 0 11 1 1 -1 -1
5 -1 1 0 1 11 1 1 -1 1
5 -1 1 1 -1 11 1 1 1 -1
6 0 1 1 1 12 1 1 -1 -1
6 0 1 0 -1 12 1 1 -1 1
6 0 1 -1 0 12 1 1 1 -1
6 0 1 -1 0 12 1 1 1 1
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Table 4.20: Two new designs with pre-specified numbers of degrees of freedom
for estimating the variance components for the Dried Coffee experiment

u = 3, v = 3 u = 3, v = 4
whole plot W1 S1 S2 S3 S4 W1 S1 S2 S3 S4

1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1
1 -1 -1 -1 1 1 -1 1 1 1 -1
1 -1 -1 1 -1 1 -1 -1 1 1 1
1 -1 -1 1 1 -1 -1 -1 1 -1 -1
1 -1 1 1 1 1 -1 1 -1 1 1
2 -1 -1 1 -1 1 0 1 -1 0 0
2 -1 1 -1 -1 1 0 0 1 0 -1
2 -1 1 1 1 1 0 0 0 -1 -1
2 -1 1 -1 1 -1 0 -1 0 1 0
2 -1 1 1 -1 -1 0 -1 1 -1 1
3 0 -1 1 -1 -1 -1 1 -1 1 1
3 0 0 1 0 0 -1 1 -1 -1 -1
3 0 -1 -1 1 0 -1 1 1 -1 1
3 0 -1 0 0 1 -1 -1 1 -1 -1
3 0 1 -1 -1 0 -1 -1 -1 -1 1
4 0 0 0 -1 1 1 -1 -1 -1 -1
4 0 0 1 0 0 1 1 0 1 -1
4 0 -1 -1 1 0 1 0 1 -1 0
4 0 -1 1 -1 -1 1 1 -1 -1 1
4 0 1 -1 0 -1 1 1 1 1 1
5 1 -1 0 0 0 1 -1 -1 1 1
5 1 0 -1 -1 -1 1 -1 1 1 -1
5 1 1 1 1 -1 1 1 1 -1 -1
5 1 1 -1 1 1 1 1 1 1 1
5 1 1 1 -1 1 1 0 -1 1 -1
6 1 -1 -1 -1 1 1 -1 -1 1 1
6 1 -1 -1 1 -1 1 -1 1 1 -1
6 1 1 -1 1 1 1 -1 0 0 1
6 1 1 0 -1 -1 1 1 0 1 -1
6 1 -1 1 1 1 1 -1 -1 -1 -1
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Chapter 5

Concluding Remarks

in this thesis, we noted that for many industrial experiments the interest
lies in getting some understanding of a process and (or) its optimization.
These objectives are often achieved by estimating the relationship between
the input (factors) and the output (response) of that process through a linear
regression model. A second order linear regression model is often used for
this purpose. Most of the designs of experiments available to cope with this
situation assume that for every experimental run each factor level is re-set.
But there might be a situation where it is not possible for some of the in-
put factors to change their level settings after each experimental runs. Such
factors are called the Hard-to-Change factors and the others are called the
Easy-to-Change factors. So, a Split-plot type experimental structure is then
used when the levels of the HTC factors are applied to large experimental
units and the levels of the ETC factors are applied to small experimental
units such that, for several consecutive runs, the levels of the HTC factors
remain constant forming the whole-plots of the experiment while the levels
of the ETC factors can change from run to run forming the sub-plots of the
experiment. The corresponding model in this case is the linear mixed model.

We further discussed that the variance components of that model are
used to estimate the model parameters and also to draw inferences about
the model parameters. So, the estimation of the variance components plays
an important role. Different estimation techniques are available in the liter-
ature for estimating the variance components. A general approach is to use
REML, however, as pointed out by some authors, it might not work well for
non-orthogonal Split-plot design with only a small number of whole-plots,
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because in that case there are often no degrees of freedom available for es-
timating the whole-plot error variance and hence it is estimated as 0 which
can lead to erroneous results. This leads us to think of a better alternative
that is called the randomization based approach. This approach gives us the
unbiased pure error estimates of the variance components using a full treat-
ment model and, hence, can be used to check the lack of fit of the response
surface model.

We also discussed the role of the numbers of degrees of freedom for esti-
mating the variance components. The estimates obtained by using 5 or more
degrees of freedom are generally considered more reliable then those obtained
by using only a few degrees of freedom. Also, the numbers of degrees of free-
dom play a role in testing the significance of the model parameters. So, it is
recommended to use appropriate numbers of degrees of freedom for estimat-
ing the variance components.

Then we looked at some of the design construction methodologies already
available in the literature for constructing RS Split-plot designs. The equiv-
alent estimation design methodology allows the equivalence of the OLS and
the GLS estimates of the model parameters. Two different techniques, for
constructing equivalent estimation designs are available. The VKM design
methodology gives the pure error estimates of the variance components but
constructs inefficient designs. The MWP design methodology constructs de-
signs with the minimum number of whole-plots but does not provide pure
error estimates of the variance components. D-optimal, D-efficient equiva-
lent estimation and a stratum-by-stratum design construction methodologies
generate efficient designs but rarely allow the estimation of the pure error
variance components. We noted that none of these design methodologies
allows the estimation of the pure error variance components with the pre-
specified numbers of degrees of freedom. So, we have discussed the need of a
design construction methodology that can allow the pure error estimates of
the variance components with the pre-specified numbers of degrees of free-
dom but with the efficient use of the resources.

We described that, by ignoring the treatment structure, Split-plot designs
can be seen as general incomplete block designs where the whole-plots now
serve as blocks. We found some standard results in the literature, known as
Yates’ procedure, for obtaining the pure error estimates of the variance com-
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ponents of the model for general Incomplete block designs with the related
numbers of degrees of freedom. We used and modified those results to de-
velop a new design construction methodology that would generate a second
order D-optimal RS Split-plot design such that it has the pre-specified num-
bers of degrees of freedom for estimating the pure error variance components.

We presented two different computer based search algorithms for gen-
erating second order D-optimal RS Split-plot designs with the pre-specified
numbers of degrees of freedom for estimating the pure error variance com-
ponents. The first algorithm is a point exchange algorithm while the second
one is a coordinate exchange algorithm. The point exchange algorithm first
generates a starting design and then improves the starting design using a
set of candidate points for the HTC factors and one for the ETC factors.
The coordinate exchange algorithm generates a starting design by randomly
generating all the required levels and then improves the starting design using
the set of candidate values for factor levels.

Then, we used our design methodology to generate designs for some of
the design problems already available in the literature and compare our de-
sign with the previously generated designs. When compared to a D-optimal
design, we found that the relative D-efficiency of the design decreased when
we increased the numbers of degrees of degrees of freedom for estimating the
variance components. However, the increase in the number of sub-plot error
degrees of freedom caused more decrease in the relative D-efficiency of the
design then the increase in the number of whole-plot error degrees of free-
dom. Sometimes, an increase in the number of whole-plot error degrees of
freedom resulted in an increase in the relative D-efficiency of the design. Al-
though, the designs, generated by our algorithms with different pre-specified
numbers of degrees of freedom for estimating the variance components, were
generated for η = 1, we checked their robustness to different values of η and
we found that these designs were robust for η = 5 and also for η = 10.

Comparison with an equivalent estimation design showed that our al-
gorithm generated a much more efficient design with a greater number of
degrees of freedom for estimating the variance components. Although our
design did not allow the equivalence of the OLS and the GLS estimates of
the model parameters, we noticed that one had to estimate the variance
components in order to draw inferences about the model parameters. In that
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case, the equivalence property might not be very appealing for an experi-
menter who is interested in the efficient use of the resources. Comparison
with a design constructed by a stratum-by-stratum design methodology also
revealed a greater relative D-efficiency for our design with a greater num-
bers of degrees of freedom for estimating the variance components, however,
the stratum-by-stratum design was not constructed using the D-optimality
criterion.
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