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Abstract

The subject of this thesis is the asymptotic behaviour of generating func-

tions of di�erent combinatorial models of two-dimensional lattice walks

and polygons, enumerated with respect to di�erent parameters, such as

perimeter, number of steps and area. These models occur in various ap-

plications in physics, computer science and biology. In particular, they

can be seen as simple models of biological vesicles or polymers. Of partic-

ular interest is the singular behaviour of the generating functions around

special, so-called multicritical points in their parameter space, which cor-

respond physically to phase transitions. The singular behaviour around

the multicritical point is described by a scaling function, alongside a small

set of critical exponents.

Apart from some non-rigorous heuristics, our asymptotic analysis mainly

consists in applying the method of steepest descents to a suitable integral

expression for the exact solution for the generating function of a given

model. The similar mathematical structure of the exact solutions of the

di�erent models allows for a uni�ed treatment. In the saddle point analysis,

the multicritical points correspond to points in the parameter space at

which several saddle points of the integral kernels coalesce. Generically,

two saddle points coalesce, in which case the scaling function is expressible

in terms of the Airy function. As we will see, this is the case for Dyck and

Schröder paths, directed column-convex polygons and partially directed
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self-avoiding walks. The result for Dyck paths also allows for the scaling

analysis of Bernoulli meanders (also known as ballot paths).

We then construct the model of deformed Dyck paths, where three saddle

points coalesce in the corresponding integral kernel, thereby leading to an

asymptotic expression in terms of a bivariate, generalised Airy integral.
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1 Introduction

The objects of study of this thesis are di�erent classes of two-dimensional

lattice polygons and one-dimensional lattice walks. These models can be

seen as combinatorial objects which are interesting in their own right, but

they also occur in many applications in computer science, queuing theory,

physics and biology. The fundamental question one is interested in is how

a typical object �looks� like.

As a prototypical example, take the model of Dyck paths, also known

as Bernoulli excursions, which are going to be introduced formally in

Chapter 4. Roughly, a Dyck path is a one-dimensional random walk

(X(t))mt=0 of m ∈ Z≥0 steps on Z≥0, starting and ending at the point

0, i.e. X(0) = X(m) = 0, with steps ±1. An example is shown in Fig. 4.1

on page 54. Dyck paths are related to a continuous stochastic process

called the Brownian excursion, a one-dimensional Brownian motion B(t),

conditioned to B(0) = B(1) = 0 and B(t) > 0 for t ∈ (0, 1). More precisely,

the Brownian excursion is the scaling limit of Dyck paths. Informally this

means that if one picks random Dyck path trajectories of increasing num-

ber of steps and rescales them to �t their graph on one sheet of paper, then

eventually the Dyck paths �look like� a Brownian excursion. The area of

the Dyck path (X(t))mt=0 is roughly the sum
∑m

t=0X(t), and corresponds

to the integral
∫ 1

t=0
B(t)dt in the scaling limit.

There exists a huge body of literature on the statistical properties of both
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Chapter 1. Introduction

Dyck paths and Brownian excursions. For example, a natural question

one can ask is the following. Put all Dyck path trajectories of a given

number of steps m into a bag and draw one at random. What is the

probability distribution of the area of the trajectory you picked? In the

limit m → ∞, the appropriately rescaled area was shown in [65] to be

(area) Airy distributed. This is the probability distribution of the integral

of the Brownian excursion [40, 20]. The (area) Airy distribution appears

in a variety of contexts, particularly, it is also the area law of many other

lattice polygons and walks [27, 22, 59, 60, 62].

In this thesis, we are interested in a di�erent, but related question. We

de�ne the generating function

G(x, q) =
∞∑
m=0

∞∑
n=0

pm,nx
mqn, (1.1)

where pm,n is the number of Dyck paths with 2m steps and area n. On the

one hand, this generating function can be seen as a formal object, where

x and q are merely symbols to keep track of the indices of the counting

coe�cients. On the other hand, it can also be bene�cial to see G(x, q) as an

analytic object where x and q take complex values, since the location and

type of the singularities determining the radius of convergence of a power

series re�ect the asymptotic growth of its coe�cients. This is the viewpoint

of analytic combinatorics [29]. For example, if we see G(x, q) as a series in

q with coe�cients depending on x, then the radius of convergence qc(x) is 1

for 0 < x ≤ 1
4
and decreases smoothly for x > 1

4
. The point x = 1

4
, at which

the radius of convergence starts to decrease, is called a tricritical point. For

a qualitative picture of the radius of convergence, see Fig. 2.3. As we will

show, around the tricritical point, the generating function G(x, q) satis�es
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Chapter 1. Introduction

a simple scaling relation. Precisely, if we set x = 1
4
− sε 2

3 , where s ∈ R and

q = 1− ε, then in the limit of ε→ 0+,

G(x, q) ∼ 2 + ε
1
3F (s) +O(ε

2
3 ). (1.2)

Here, F (s) is called the scaling function and is expressible in terms of the

Airy function. The symbol `∼' indicates asymptotic equality and will be

introduced formally in Subsection 2.2.1. Among other things, the scaling

function contains information about the asymptotic probability distribu-

tion of the area of Dyck paths in the limit of an in�nite number of steps.

We note here that the term `scaling function' is used in two di�erent ways

in the literature. On the one hand, the scaling function is a function the

asymptotic expansion of which contains the information about the limit

distribution of the area of a Dyck path. For a detailed account of this

viewpoint, see [57]. In that sense, the scaling function of Dyck paths was

known before this thesis. Here, on the other hand, the scaling function

is an analytic object, describing the scaling behaviour of the generating

function around the tricritical point. The scaling function is the same in

both cases, but the analytic result is new and will be derived in Chapter 4.

Dyck paths appear in di�erent applications, for example, Takács re-

lated them to a queuing problem in railway tra�c [66]. Moreover, there

exist combinatorial bijections between Dyck paths and other models, for

example, rooted plane (ordered) trees, where the area of the Dyck path

corresponds to the total height of the tree, that is the sum of the distances

of each vertex of the tree to the root [65]. In this thesis we see a Dyck

path as a one dimensional membrane, attached to an impenetrable sub-

strate at its end points, subject to a pressure acting on it from outside. In
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Chapter 1. Introduction

the tradition of other works [25, 48], we refer to this system as a vesicle.

The generating function G(x, q) can be interpreted as a physical partition

function, where the parameter q corresponds to the pressure acting on the

vesicle and x is a perimeter fugacity. If on the one hand there is a positive

net pressure acting onto the outside of the membrane, then the surface

tends to stay close to the substrate. In that case, the average area grows

asymptotically proportional to the number of steps of the Dyck path, and

the distribution is concentrated around the mean value. A vesicle of this

shape is called de�ated. On the other hand, if there is a net pressure

acting on the membrane from the inside, then the vesicle maximises its

distance from the substrate and the average area grows quadratically with

the number of steps of the Dyck path. The vesicle is then called in�ated,

and again, the distribution is concentrated. A non-trivial area distribution

is only observed when the pressure acting onto the vesicle vanishes. The

phase transition between the de�ated and the in�ated regime is described

by the scaling relation (1.2).

Apart from Dyck paths, we are going to analyse the asymptotic be-

haviour of the generating functions of generalised Motzkin paths, directed

column-convex polygons, Bernoulli meanders, and interacting partially dir-

ected walks (IPDSAW). The model of IPDSAW stands out slightly, since

here, we do not consider a notion of area but the number of self-interactions

of the walk as a parameter, and the walks are seen as a toy model for direc-

ted polymer chains. The mathematical treatment is, however, very similar

to the other models. For generalised Motzkin paths, we will use a heuristic

approach, relying on a detailed balance argument, subject to a conjecture

on the asymptotic form of the generating function. For the other models,

we will employ a rigorous technique which is based on applying the saddle
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Chapter 1. Introduction

point method to suitable integral representations for the generating func-

tions. To this end, we will also derive general results on the asymptotic

behaviour of q-hypergeometric series in Chapter 5. The tricritical points

which mark the phase transitions of the models correspond mathematically

to points of coalescence of saddle points. In the generic case, two saddle

points coalesce, leading to asymptotic expressions expressible via the Airy

function.

It is natural to ask whether there exist similar lattice models where more

than two saddle points coalesce in the kernel of the associated integral

representation of the generating function. We discuss the asymptotics of

the generating function of a model which we call deformed Dyck paths, that

is a model of Dyck paths with one additional step allowed. For a special

value of the weight of this additional step, three saddle points coalesce in

the corresponding integral kernel, leading to an asymptotic expression in

terms of generalised Airy integrals.

We outline a further generalisation of this model to obtain lattice walk

models for which the asymptotic expressions of the generating function

involve generalised Airy integrals of arbitrary numbers of variables.
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2 Background

2.1 Formal power series and generating functions

Formal power series (fps) can be seen as generalisations of polynomials in

that a formal power series can have in�nitely many terms. More precisely,

a fps P (x) over a ring R is the object

P (x) =
∞∑
m=0

pmx
m,

where (pm)∞m=0 is a sequence of elements of R and x is a formal symbol. We

also say that P (x) generates the sequence (pm)∞m=0, or that P (x) is the gen-

erating function of this sequence. For two series A(x) and B(x) generating

the sequences (am)∞m=0 and (bm)∞m=0, respectively, the sum A(x) +B(x) is

de�ned as the series generating the sequence (am + bm)∞m=0; the product

A(x) · B(x) generates the sequence (
∑m

k=0 akbm−k)
∞
m=0

. In this way, the

set of fps over a given ring R is itself a ring, denoted by R[[x]]. If P (x)

generates the sequence (pm)∞m=0 then for k ∈ Z≥0, the element pk of the

sequence is denoted by [xk]P (x). The degree of a fps P (x) is de�ned as

degP (x) = min
{
k
∣∣ [xk]P (x) 6= 0

}
. The coe�cient [x0]P (x) is also de-

noted as P (0). If for a given fps A(x), A(0) 6= 0, then there exists a fps

B(x) such that A(x) ·B(x) = 1 ≡ 1 · x0 +
∑∞

m=1 0 · xm.

The composition (A ◦B)(x) of two fps A(x) =
∑∞

m=0 amx
m and B(x) =

16



Chapter 2. Background

∑∞
m=0 bmx

m is denoted by A(B(x)) and de�ned as

A(B(x)) =
∞∑
m=0

cmx
m,

where cm =
∑∞

n=0 an
∑∑

kj=m

∏n
j=1 bkj . The composition exists if A(x) is

a polynomial or B(0) = 0.

The ring R[[x]] can be endowed with a distance d, de�ned for two fps

A(x) =
∑∞

m=0 amx
m and B(x) =

∑∞
m=0 bmx

m as d(A(x), B(x)) = 0 if

A(x) = B(x) and otherwise d(A(x), B(x)) = 2−k, where k = min{m | am 6=

bm}. Since the metric space (R[[x]], d) is complete, it is possible to prove

the uniqueness of �xed points of functional equations for formal power

series. For example, consider the ring Z[[x]], and the map ϕ : Z[[x]] →

Z[[x]], de�ned for A(x) ∈ Z[[x]] as

ϕ(A) = 1 + xA2.

From the de�nition of multiplication of fps one easily veri�es that ϕ is

strictly contractive with respect to d, precisely, for any A(x), B(x) ∈ Z[[x]],

d(ϕ(A(x)), ϕ(B(x))) ≤ 1

2
d(A(x), B(x)).

From this we can conclude via the Banach �xed-point theorem [4] that the

functional equation A(x) = 1 + xA(x)2 has a unique solution in Z[[x]].

Formal power series of more than one variable can be de�ned in a re-

cursive way. For example, a bivariate fps generating a double sequence

(cm,n)∞m,n=0 is a fps

C(x, y) =
∞∑
m=0

Cm(y)xm,
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Chapter 2. Background

where for all m, Cm(y) =
∑∞

n=0 cm,ny
n.

The use of formal power series makes it possible to talk in a clean way

about series, without initially having to worry for which values they con-

verge. But of course, the above de�nitions of addition and multiplication

are compatible with the sum and product of two convergent series. For

further references on fps, we refer to [1, Chapter 2] or [29, Appendix 5].

2.2 Methods of asymptotic analysis

In this section we will give the theorems which we will use in our asymptotic

analysis of q-hypergeometric series. First we need to de�ne our notation.

2.2.1 Notation

For the following standard notation see [46] or [21, §2.1].

Let f and g be two functions from R to C, and let x0 ∈ R.

(i) We say that f is asymptotically equivalent to g in the limit x→ x0,

denoted by

f(x) ∼ g(x) (x→ x0), (2.1)

if and only if limx→x0 f(x)/g(x) = 1.

(ii) We say f is of order less than g in the limit x→ x0, denoted by

f(x) = o
(
g(x)

)
(x→ x0), (2.2)

if limx→x0 f(x)/g(x) = 0.

18
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Chapter 2. Background

(iii) We say f is of order not exceeding g in the limit x→ x0, denoted by

f(x) = O
(
g(x)

)
(x→ x0), (2.3)

if there is a constant C ≥ 0 and a value δ > 0 such that
∣∣f(x)/g(x)

∣∣ ≤
C for all x ∈ (x0 − δ, x0 + δ).

The above de�nitions can be adapted mutatis mutandis to the cases x→

±∞ and limits taken strictly from above or below, denoted by x→ x+0 and

x→ x−0 , respectively. We occasionally use the symbols O, o and ∼ without

specifying the associated limit point x0, if it is clear from the context which

limit we are referring to. Note that if for x → x0, f(x) = o(g(x)), then

f(x) = O(g(x)), but not g(x) = O(f(x)).

Let (an)∞n=1 be a sequence of real numbers and
(
ϕn(x)

)∞
n=1

a sequence

of functions from R to C such that, for n ∈ N, ϕn+1(x) = o(ϕn(x)) as

x → x0. Then
(
ϕn(x)

)∞
n=0

yields an asymptotic expansion of a function

f as x → x0 if for N ∈ N, f(x) =
∑N

n=1 anϕn(x) + RN+1(x), where

RN+1(x) = O(ϕN+1(x)) (x→ x0). This is denoted by

f(x) ∼
∞∑
n=1

anϕn(x) (x→ x0). (2.4)

Note that the asymptotic series
∑∞

n=1 anϕn(x) need not converge.

2.2.2 Asymptotic approximation of integrals

In this subsection we give a collection of results which we will apply in the

main part. Despite its importance, the following result is called a lemma.

Lemma 2.2.1 (Watson's Lemma [21, §2.4]). Let g : (0,∞) → R such
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Chapter 2. Background

that for x→ 0+,

g(x) ∼
∞∑
k=0

pkx
(k+λ−µ)/µ, (2.5)

where λ, µ > 0. Then for ε→ 0+,

∫ ∞
0

exp
(
−v
ε

)
g(v)dv ∼

∞∑
k=0

Γ

(
k + λ

µ

)
pkε

(k+λ)/µ. (2.6)

With Watson's Lemma, the following theorem can be proven.

Theorem 2.2.1 ([21, §2.4]). Let C be a contour in the complex plane.

Consider the integral

I(ε) =

∫
C

e
1
ε
f(z)g(z)dz, (2.7)

where ε > 0, f and g are analytic on C, and the maximum of Re(f(z)) on

C is assumed on an interior point z0. If f ′(z0) = 0 and f ′′(z0) 6= 0, then

for ε→ 0+,

I(ε) = 2 exp

(
1

ε
f(z0)

)√
π

g(z0)√
−2f ′′(z0)

ε
1
2 +O(ε

3
2 ). (2.8)

Here, the branch of ω0 = arg(−f ′′(z0)) has to be chosen such that |ω0 +

2ω| ≤ 1
2
π, where ω is the limiting value of arg(z − z0) when z → z0 from

the end point of C.

The above theorem can be generalised to cases in which the function f

has a saddle point of higher order, for example if f ′(z0) = f ′′(z0) = 0 and

f ′′′(z0) 6= 0.

If the function f has a further parameter t such that for a given value

t0 of t, the order of the saddle point in the integral (2.7) changes from one

to two, then the above theorem does not yield an asymptotic expression
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Chapter 2. Background

which is valid uniformly for a range of values of t including t0, since the

RHS of Eq. (2.8) diverges for t = t0. To obtain a uniform asymptotic

expression, one uses the following theorem, which was proven in [19].

Theorem 2.2.2 ([19]). Let f(z, t) be an analytic function of z and t and

suppose f has two ordinary saddle points z1 and z2, coalescing for t = t0

in the point zc. De�ne the functions

α =

{
3

4

(
f(z2, t)− f(z1, t)

)} 2
3

and β =
1

2
(f(z1, t) + f(z2, t)) . (2.9)

For a given choice of the root for α, there exists a unique transformation

T : z 7→ u(z), such that

f(z, t) =
u3

3
− αu+ β, (2.10)

which is analytic and bijective if z and t are in small disks centred at z0

and t0, respectively. Under the transformation T, the saddle points z1 and

z2 are mapped onto +
√
α and −

√
α, respectively.

By applying a theorem by Levinson [39], Theorem 2.2.2 was generalised

in [73] to arbitrarily many coalescing saddle points. Below we give the

special case of three coalescing saddle points.

Theorem 2.2.3 ([73]). Let f(z, s, t) be an analytic function of z, s and

t and suppose f has three ordinary saddle points z1, z2 and z3, coalescing

for t = t0 and s = s0 in the point zc. Then there exists a transformation

T : z 7→ u(z) such that

f(z, s, t) =
u4

4
− αu2 − βu+ γ (2.11)
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is analytic and bijective if z, s and t lie in small disks centred at zc, s0

and t0, respectively. The image domain of T in the u-plane contains a

small disk centred at the origin and the coe�cients α, β and γ are analytic

functions of s and t for all s, t in the relevant region.

2.3 Airy function and Airy distribution

The Airy function Ai(z) [21, Chapter 9] is de�ned for complex z as the

integral

Ai(z) =
1

2πi

∫ e
iπ
3 ∞

e−
iπ
3 ∞

exp

(
u3

3
− zu

)
du. (2.12)

It is a solution of the ODE

y′′ − zy = 0. (2.13)

The Airy distribution occurs in many models studied in this thesis. In [27]

it is de�ned as follows.

De�nition 2.3.1. The Airy distribution (of the area type) is the prob-

ability distribution of a random variable X with moments

E[Xk] = −
Γ(−1

2
)

Γ((3k − 1)/2)
Ωk (k ≥ 1), (2.14)

with the constants Ωk being determined by the recurrence

2Ωk = (2k − 4)kΩk−1 +
k−1∑
j=1

(
r

j

)
ΩjΩk−j (k ≥ 1) (2.15)

and Ω0 = −1.

The fact that the Airy distribution is determined uniquely by its mo-
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ments was proven in [27] via an application of Carleman's condition [29,

Appendix C]. In [66], also an expression for the density of the Airy distri-

bution in terms of the con�uent hypergeometric function was given. The

distribution owes its name to the fact that the logarithmic derivative of

the Airy function has the asymptotic expansion

Ai′(z)

Ai(z)
∼

∞∑
k=0

Ωk

2k
(−1)kz−

3k−1
2

k!
(z → +∞). (2.16)

The Airy distribution of area type appears in a variety of contexts. The

word area in its name is due to the fact that it is the distribution of

the area A =
∫ 1

t=0
X(t)dt of a Brownian excursion X(t), that is a one

dimensional Brownian motion such that X(0) = X(1) = 0, conditioned

to satisfy X(t) > 0 for 0 < t < 1 [40]; the integrals of related processes

have similar distributions [67, 69, 18]. Consistently with this, it is the limit

distribution of the (appropriately rescaled) area of Dyck paths, which we

are going to consider in Chapter 4 [65]. It is also the conjectured limit

distribution of the area of self-avoiding polygons which will be introduced

below [59, 60] and has been shown to be the limit distribution of the area

of several subclasses of self-avoiding polygons and one dimensional lattice

paths [22, 44, 62]. It is also the probability distribution of the total height

of the nodes of random binary trees [68]. Further, the Airy distribution is

the limit distribution of the total displacement in parking sequences or the

construction cost of hash tables [28]. The moments of the Airy distribution

also appear in the asymptotic formula for the number of labelled connected

graphs on n nodes and n + k − 1 edges, where k is �xed [75, 36, 64]. In

[42], it was shown that the Airy distribution function is the distribution of

the maximal height in a model of �uctuating interfaces.
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The Airy function also appears in the Tracy-Widom distribution, de-

scribing the density of the largest eigenvalues in certain random matrix

ensembles [70] and the Airy distribution of map type for the size of the

largest connected component in random maps [6]. For further occurrences

of the Airy function in physics, in particular in optics and quantum mech-

anics, see [74].

2.4 Self-avoiding walks and polygons

In this thesis we are not going to consider the general models of self-

avoiding walks and polygons. However, we deem it useful to begin with

the de�nitions of the most general combinatorial classes, in order to give

a better understanding of the broader background of our work.

A self-avoiding walk of lengthm on a given lattice is a sequence of points

such that two consecutive points are nearest neighbours on the lattice

and no two points are visited twice. To �x ideas, consider the lattice Z2,

also referred to as the square lattice. Then we have the following formal

de�nition.

De�nition 2.4.1. For m ∈ Z≥0, a self-avoiding walk (SAW) of length

m on the square lattice is a sequence of points (rj)
m
j=0 on Z2 such that for

0 ≤ j < m, ‖rj+1 − rj‖ = 1, where ‖ · ‖ denotes the Euclidean norm, and

rj 6= rk for 0 ≤ j < k ≤ m.

In Fig. 2.1 we show an example of an SAW. For a detailed account on

the mathematical understanding of the model, in particular its properties

in higher dimensions, we refer to the book [41].

Self-avoiding walks are closely related to self-avoiding polygons (SAP).

Informally, an SAP is obtained by taking an SAW which ends at a nearest-
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Figure 2.1: A self-avoiding walk (SAW) of length 47 with 9 interactions.

neighbour site of its origin and then connecting the end point with the start

point to obtain a polygon. We again consider the square lattice, in which

case SAP are formally de�ned as follows.

De�nition 2.4.2. For m ∈ N, a self-avoiding polygon on the square

lattice of perimeter m is a sequence of points (rj)
m−1
j=0 such that (rj)

m−1
j=0 is

a self-avoiding walk and ‖rm−1 − r0‖ = 1.

Figure 2.2 shows an SAP of perimeter 52. We consider two self-avoiding

polygons identical if they are the same up to translation. In other words,

if for a given m ∈ N, (vj)
m−1
j=0 and (wj)

m−1
j=0 are self-avoiding polygons,

then we consider them equal if there exists a k ∈ Z2 such that (vj)
m−1
j=0 =

(wj + k)m−1j=0 . If we consider self-avoiding polygons which are not rooted,

then the above self-avoiding polygons are also identi�ed if they are the same

up to cyclic shift of indices, meaning that there exists a d with 0 < d < m

such that

vj =

 wj+d for 0 ≤ j < m− d, and

wj−m+d for m− d ≤ j < m.

On the other hand, for rooted self-avoiding polygons, this identi�cation is

not made, meaning that two polygons which have di�erent start points but
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Figure 2.2: A self-avoiding polygon (SAP) of perimeter 52 and area 37.

contain the same points of the lattice, are not identi�ed. In other words,

the perimeter of a rooted self-avoiding polygon contains one distinguished

point.

We mention that self-avoiding polygons form a subset of the bigger set

of polyominoes, which comprises all collections of unit cells of the square

lattice [32]. Informally, a self-avoiding polygon is a polyomino without

holes.

Both self-avoiding walks and polygons are combinatorial objects which

are interesting in their own right, but they are also used in many applic-

ations. Apart from the interpretation of SAW and SAP as polymers and

vesicles explained in the following subsections, interacting self-avoiding

walks can, for example, also model the trajectories of passengers in a pub-

lic transport network [77] and self-avoiding polygons are related to the

so-called O(n) lattice spin model [13].

2.4.1 Self-avoiding walks as polymers

A polymer is a large molecule, consisting of small molecular units called

monomers, aligned in a chain, held together by strong physical bonds.

26



Chapter 2. Background

Apart from the bonds between monomers which are neighbours along the

chain, non-consecutive monomers can interact via weaker forces if they are

spatially close to each other.

Self-avoiding walks have long been used as models for polymer chains

which incorporate the e�ect of excluded volume, that is, the fact that

a polymer cannot intersect itself [30, 24]. If a polymer is modelled by

an SAW, then the sites visited by the walker represent the monomers, and

sites visited consecutively correspond to nearest neighbours in the polymer

chain.

With the physical application in mind, we de�ne an interaction of an

SAW (rj)
m
j=0 as any pair of indices j, k with 0 ≤ j < k − 1 < m, such that

‖rj − rk‖ = 1. For example, the SAW shown in Fig. 2.1 has 9 interactions.

Assume we have a polymer of �xed length, �oating in a large heat bath of

temperature T, where non-nearest neighbours of the polymer chain attract

or repulse each other via van der Waals forces if they are su�ciently close.

We model this polymer chain by an SAW of �xed length m, and assign an

energy ε to each interaction of the walk. Let wm,n be the number of SAW

starting at the origin of the lattice with length m and n interactions. The

canonical partition function of this polymer system is then given by

Zm =
∞∑
n=0

wm,ne
−βnε =

∞∑
n=0

wm,nω
n, (2.17)

where β = 1
kB T

, with kB ' 1.38 · 10−23 J K−1 being Boltzmann's constant,

and ω = e−βε. The relevance of the partition function is due to the fact

that in thermal equilibrium, one expects the probability that the polymer
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has ν interactions to be given by (see e.g. [8])

P(# interactions = ν) =
wm,νe

−βνε

Zm
.

From the partition function, one can derive the statistics of interesting

quantities. For example, the expectation value of the number of interac-

tions of a polymer chain is given by

E(# interactions) =
1

Zm

∞∑
n=0

nwm,nω
n = ω

d

dω
ln(Zm).

To analyse the behaviour of the SAW model for varying lengths of the

chain, one also considers the bivariate power series

W (x, ω) =
∞∑
m=0

∞∑
n=0

wm,nx
mωn. (2.18)

Physically, this function can be interpreted as the partition function of a

polymer system in which both the length of the chain and the number of

interactions are allowed to �uctuate.

In the limit in which the length is going to in�nity, the polymer un-

dergoes a phase transition as the interaction energy ε is varied. Precisely,

the polymer is spatially extended when the interaction energy ε is low and

collapsed for large ε. Critical exponents related to the phase transition in

between the extended and the collapsed phase were conjectured in [23].

A scaling theory for the collapse transition of a class of geometric cluster

models, including interacting self-avoiding walks and the vesicle models

introduced below was presented in [12].
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2.4.2 The Fisher-Guttmann-Whittington vesicle

Physical vesicles in aqueous solution are closed membranes consisting of

lipid molecules composed of hydrophobic chains attached to hydrophilic

heads, aggregated in bilayers such that the hydrophilic heads are in con-

tact with the water. The thickness of the membranes is of the order of 10−9

m, but the size of the vesicles reaches the order of 10−4 m. Since the ex-

tension of the vesicles and the thickness of the membrane di�er by several

orders of magnitude, on mesoscopic scales the vesicles can be considered

as two-dimensional surfaces, embedded in three-dimensional space; these

surfaces can have both spherical and non-spherical geometry [63]. The un-

derstanding of the physical properties of vesicles is of relevance in biology,

since also the walls of biological cells consist of lipid bilayers [2]. Moreover,

vesicles are used in drug delivery, where they are called liposomes [3].

Depending on parameters such as temperature and the pressure act-

ing onto the membrane, the vesicles can be found in a large variety of

shapes. Experimentally, the pressure can be controlled by varying the

concentration of large molecules such as sugar, to which the membrane is

impenetrable, in the water. Subject to size and volume constraints, the

vesicles choose conformations which minimise the curvature energy of the

membrane.

In a two-dimensional setting, vesicles can be modelled as planar, self-

avoiding polygons, either on the continuum or on the lattice. In this case,

the surface area of the membrane becomes the perimeter of the polygon,

and the volume enclosed by the membrane is the area enclosed by the

perimeter. In [38], Leibler, Singh and Fisher studied the properties of two-

dimensional vesicles, modelled as self-avoiding chains in the continuum,
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depending on external pressure and bending rigidity via Monte Carlo sim-

ulations. In the case of zero bending rigidity, the dependence of the area

and radius of gyration of a vesicle on the pressure acting on the mem-

brane was investigated. The authors observed scaling behaviour for both

quantities. In particular, for positive pressure acting onto the outside of

the vesicles, the radius of gyration was found to scale as for branched

polymers.

In the subsequent work [25], Fisher, Guttmann and Whittington mod-

elled vesicles as self-avoiding polygons on the two-dimensional square lat-

tice. The Fisher-Guttmann-Whittington (FGW) vesicle is a vesicle with

zero bending rigidity, subject to an osmotic pressure acting on its wall.

Due to the absence of a bending rigidity, the relation to real vesicles is

somewhat loose and the model is mainly of mathematical interest.

The bivariate generating function of the FGW vesicle is de�ned as

V (x, q) =
∞∑
m=0

∞∑
n=0

vm,nx
mqn, (2.19)

where vm,n is the number of non-rooted self-avoiding polygons (on the two-

dimensional square lattice) of perimeter m and area n. Here, the area is

simply the number of unit cells of the lattice enclosed by the perimeter

of the polygon � for example, the SAP shown in Fig. 2.2 has area 37.

The variables x and q referred to as the perimeter and area-generating

variables, respectively.

For �xed x, the radius of convergence of V (x, q), seen as a series in q, is

denoted by qc(x). Based on the super-multiplicative inequality

vm1+m2,n ≥
n∑

n1=0

vm1,n1vm2,n−n1 , (2.20)
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Figure 2.3: The phase diagram of the Fisher-Guttmann-Whittington vesicle
model.

the qualitative behaviour of qc(x) as a function of x was studied in [25].

The authors showed that there exists a value xc > 0 such that for 0 <

x ≤ xc, qc(x) = 1, and such that for x > xc, qc(x) < 1 and qc(x) is a

continuous function of x approaching 0 in the limit x → ∞. The value

xc also determines the radius of convergence of the perimeter generating

function V (x, 1), and the point (x, q) = (xc, 1) is called a tricritical point.

Figure 2.3 shows the qualitative behaviour of qc(x). This is referred to as

the phase diagram of the model. For q > 1, vesicles of large area obtain a

high weight in the generating function (2.19). This is therefore referred to

as the in�ated phase. Contrariwise, for q < qc(x), the vesicles which have

a small area for a given perimeter are favoured; this is consequently called

the de�ated phase.

2.4.3 Tricritical scaling

In statistical physics, the so-called renormalisation group theory relates

phase transitions to �xed points of transformations which change the char-
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acteristic scales of the system while leaving the relevant quantities invari-

ant, and around the �xed points, the free energy of the system satis�es a

certain scaling relation. See [13, Chapter 3] for an introduction to the ideas

of renormalisation. This somewhat vague idea gives rise to the expectation

that in a region around the tricritical point (x, q) = (xc, 1), the singular

behaviour of the area-perimeter generating function of SAP is described

by a single variable scaling function and a small set of critical exponents

� see Fig. 2.3.

In [59, 60], Richard, Guttmann and Jensen investigated the scaling be-

haviour of the generating functions of rooted and unrooted SAP based on

exact enumeration data. Form,n ∈ Z≥0, there aremvm,n rooted SAP with

perimeter m and area n, hence the area-perimeter generating function of

rooted SAP is given by R(x, q) = d
dx
V (x, q). The numerical analysis in

[59, 60] lead to the conjecture that they satisfy a tricritical scaling rela-

tion characterised by three critical exponents and a single variable scaling

function around the point (x, q) = (xc, 1). The �rst exponent, γc, describes

the singular behaviour of the perimeter generating function R(x, 1) as the

value x = xc is approached. More precisely, for x→ x−c ,

R(x, 1) ∼ R(reg)(x, 1) + A(xc − x)γc , (2.21)

where R(reg)(x, q) is analytic at (x, q) = (xc, 1) and A is a constant. The

second exponent, θc, characterises the singular behaviour of R(xc, q). Pre-

cisely, for q = e−ε → 1−,

R(xc, q) ∼ R(reg)(xc, q) +Bεθc , (2.22)
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where B is another constant. The crossover between these two asymptotic

regimes is mediated by a scaling function F (s), such that for q = e−ε → 1−,

R(xc − sεφc , q) ∼ R(reg)(xc − sεφc , q) + εθcF (s), (2.23)

where φc is called the cross-over exponent. In the limit s→∞, the curve

(x, q) = (xc − s(1 − q)φc , q) approaches the horizontal line q = 1 for �xed

values of x. From this one gets that for s→∞, F (s) ∼ sγc and γcφc = θc.

The values of the exponents are conjectured as γc = 1
2
, θc = 1

3
and φc = 2

3
,

and the scaling function as

F (s) = b0
d

ds
ln
(

Ai(b1s)
)
, (2.24)

with positive constants b0 and b1. The conjectured scaling relation (2.23)

also implies that the limit distribution of the area of SAP is the (area) Airy

distribution. The singular behaviour of the generating function V (x, q)

of unrooted SAP is dominated by a logarithmic singularity in the region

around the point (x, q) = (xc, 1), and the scaling function is, up to pre-

factors, the logarithm of the Airy function [60].

Shortly after the paper [59], Cardy speculated in [14] that by introdu-

cing further interactions in the Fisher-Guttmann-Whittington vesicle, one

would be able to observe multicritical points of higher order, described by

multivariate scaling functions expressible via higher-order Airy integrals,

and a di�erent set of critical exponents.

The tricritical scaling behaviour and the area limit law of SAP are hard

to verify, due to the di�culty of rigorous proofs on the SAP problem. Pro-

gress can be made by considering subclasses of SAP which are analytically
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tractable by imposing conditions such as convexity and directedness onto

the model. Examples for subclasses of SAP for which the area-perimeter

generating function is known are rectangles, Ferrers diagrams, stack poly-

gons, staircase polygons and directed column-convex polygons. For precise

de�nitions of these models, we refer to [54, 9]. In the case of the �rst three

models, which are also referred to as stacking models, the area-perimeter

generating functions are easily obtained and were analysed in [54]; the

area-perimeter generating function of staircase polygons was derived in

[11]. For stacking models, the phase diagram is qualitatively di�erent to

the one of SAP shown in Fig. 2.3. On the other hand, for staircase poly-

gons, the phase diagram has the same qualitative properties as the one of

unrestricted SAP. This can be understood from the fact that the derivation

of the shape of the phase diagram of SAP in [25] relied on some general

properties of the model, including the inequality (2.20). The scaling beha-

viour of the area-perimeter generating function of staircase polygons was

shown in [52] to coincide, up to model-dependent prefactors, with the one

conjectured for rooted SAP.

The Airy distribution of area type is also the probability distribution of

the area of one-dimensional lattice paths such as Dyck paths and similar

models in the limit of in�nite perimeter, and they are therefore expected

to show the same tricritical scaling behaviour as rooted SAP and staircase

polygons.

2.5 Directed lattice paths

For given m ∈ N, a general lattice path is a sequence (r0, r2, . . . , rm) of

points of Z2. Geometrically, a lattice path is represented by polygonal lines
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obtained by connecting subsequent points by straight lines. Usually, one

�xes r0 = (0, 0) and considers lattice path models with a restriction on the

increments si = ri − ri−1 for 0 < i ≤ m. The points on the lattice and

the indices of the points are often thought of as positions in a discretised

space and time, respectively. If the restrictions on the increments do not

depend on the values of ri and the index i, then the path is said to be

space and time-homogeneous. The subset S ⊂ Z2 of allowed increments is

called the step-set of a given path. If the initial point of a lattice path is

�xed to r0 = (0, 0), then one can represent it by the sequence of increments

between successive steps.

A path becomes essentially one-dimensional if for any 0 < i ≤ m, the

increment si = ri − ri−1 = (xi, yi) satis�es xi > 0. In this case, the steps

of the path have the horizontal axis as a preferred direction of increase,

and the path is accordingly called a directed lattice path. Directed lattice

paths occur in many places in probability theory, computer science and

formal language theory.

The step-set of a directed path can be both �nite and in�nite. For

example, Dyck paths, which will be considered in Chapter 4 have step-set

S = {(1, 1), (1,−1)}, whereas the so-called �ukasiewicz paths have step set

S = {(1, k) | k ≥ 0}. These two examples satisfy the additional constraint

that they end on the horizontal axis and are restricted to the upper right

quarter plane. Paths satisfying this restriction are called excursions. Paths

which stay in the upper right quarter plane but do not have to end on the

horizontal axis are called meanders, and paths which are not restricted to

the upper right quarter plane but need to end on the horizontal axis are

called bridges. These types of lattice paths were studied in the paper [5]

by Banderier and Flajolet, with an emphasis on simple paths, that is paths
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with a step set S ⊂ {1}×Z. In this case, the x-coordinate of the last point

of the path is called its length. The authors characterised the generating

functions of directed simple paths, counted with respect to their length

and, where appropriate, y-coordinate of the �nal position, depending on

di�erent restrictions. The singularity structure of the generating functions

can be used to infer asymptotic properties of the underlying coe�cients,

and infer properties of the probability distributions of di�erent parameters,

such as �nal altitude and number of contacts with the horizontal axis �

see also [29, Part B]).

The area of an excursion or meander is roughly the area enclosed between

the polygonal line connecting the points of the path and the horizontal axis.

The asymptotic of the average area of a large class of paths was given by

Banderier and Gittenberger in [7]. Both this paper and the preceding work

[5] relied on the so-called kernel method of enumerative combinatorics.

Schwertfeger extended the results of [7] in [61] by considering directed

paths with a larger step set and by calculating full limit distributions of

the area. They involve the area laws of the Brownian excursion and the

Brownian meander. For particular step sets, these were already known due

to works by Takács [65, 69].
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Motzkin paths

3.1 Introduction

In this section, we are going to introduce a family of lattice walk models

called `-Motzkin paths. For a given `, an `-Motzkin path is a path on

the square lattice Z2 with steps (1, 1), (1,−1) and (`, 0), which starts at

the origin (0, 0), ends on the line y = 0 and stays above this line all the

time. The family of `-Motzkin paths has been studied for general ` before

in the combinatorics literature with a focus on bijections [51]. The cases

` = 1 and ` = 2 are known as (standard) Motzkin and Schröder paths,

respectively; the case ` =∞ can be identi�ed with the model of Dyck (or

Catalan) paths [1]. Dyck and Schöder paths will be considered again in

Chapters 4 and 6, respectively.

For a given `, we consider the ensemble of `-Motzkin paths, weighted

with respect to their width, their number of steps (1, 1) and (1,−1), and

their area. Since the model has the same super-multiplicative property

(2.20) as self-avoiding polygons, we expect that, for all `, the phase diagram

of `-Motzkin paths has the same qualitative features as the phase diagram

of the Fisher-Guttmann-Whittington vesicle. In particular, we expect that

there exists a tricritical point, around which the singular behaviour of the
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area-width generating function of `-Motzkin paths is described by a single

variable scaling function and three critical exponents. The scaling function

is, up to `-dependent factors, equal to the logarithmic derivative of the

Airy function, and the three critical exponents are (γc, θc, φc) = (1
2
, 1
3
, 2
3
).

Here, the exponent γc describes the singular behaviour of the generating

function when the area weight is set equal to one; θc describes the singular

behaviour of the generating function when the weight of the widths is set

to its critical value; φc is the so-called cross-over exponent.

Our approach consists of inserting the expected tricritical scaling form

into the derived functional equation for the area-width generating function.

By a dominant balance argument, this determines the critical exponents

uniquely and leads us to an ODE for the scaling function, which has a

unique solution satisfying the appropriate boundary conditions.

After de�ning the model more precisely, we will analyse the scaling be-

haviour of Dyck and Motzkin paths, before generalising our results to

`-Motzkin paths with arbitrary `. The results of our calculations lead to

Conjecture 3.3.1.

The approach as presented here is non-rigorous since it makes an as-

sumption on the asymptotic form of the singular part of the area-width

generating function when the tricritical point is approached. However,

the scaling ansatz used in this chapter forms part of a rigorous method

to analyse the area limit distributions of two-dimensional polygon models

[56, 57].

This chapter consists of joint work with Gregorz Siudem and Thomas

Prellberg, the results were published in the article [35].
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3.2 The model

De�nition 3.2.1 (`-Motzkin path). For ` ∈ N and s ∈ Z≥0, an `-

Motzkin path is a lattice walk (xk, yk)
s
k=0 on Z2, such that yk ≥ 0 for all

k ∈ [s], and x0 = y0 = ys = 0. Moreover, for 0 ≤ k < s, (xk+1, yk+1) is

either (xk + 1, yk + 1) or (xk + 1, yk − 1) or (xk + `, yk), which correspond

to an up-, down-, or horizontal step, respectively.

Figure 3.1: A Schröder path (` = 2) of width 12 with two horizontal steps,
three (2×1)-rectangles below these steps (hatched), four pairs of
up/down steps, area 12 below these steps, and thus total area 18.

For given `, we de�ne the generating function

G(s, u, p, r) =
∞∑
k=0

∞∑
l=0

∞∑
v=0

∞∑
w=0

ck,l,v,w s
k ul pv rw, (3.1)

where ck,l,v,w is the number of paths with k horizontal steps, l
2
pairs of up-

and down-steps, v (` × 1)-rectangles under all the horizontal steps, and

w unit squares under all the up- and down-steps (including the half unit

squares directly underneath these steps). Thus the weight u is associated

to the total number of up- and down-steps, r corresponds to the area

under these steps, measured in unit squares of the lattice, and s and p

weigh the number of horizontal steps and the number of (`× 1)-rectangles

directly underneath these steps, respectively. For example, the weight of

the trajectory shown in Fig. 3.1 is s2u8p3r12. Note that there is no explicit

`-dependence in G(s, u, p, r). Instead, the area-width generating functions
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for `-paths of di�erent ` are obtained by choosing appropriate values for s

and p, as will be explained below.

3.3 The conjecture

The results of the calculations done in this chapter lead us to the following

conjecture.

Conjecture 3.3.1. For ` ∈ N, let G(`)(a, x, q) = G(x`,
√
ax, q`, q), where

G(s, u, p, r) is de�ned in Eq. (3.1). De�ne for a > 0 and z ∈ R the function

F (z) ≡ F (`)(a, z) = b0
Ai′(b1z)

Ai(b1z)
, (3.2)

with

b0 =

(
2
√
a+ ` x`−1c

a2x3c

) 1
3

and b1 =
√
a b0, (3.3)

where xc ∈ (0, 1) satis�es the equation x`c = 1− 2
√
axc. Then we have for

a > 0 and z ∈ R such that Ai(b1z) 6= 0, Gc = (
√
axc)

−1 and q = 1−ε→ 1−,

G(`)(a, xc − zε
2
3 , 1− ε) = Gc + ε

1
3F (z) +O(ε

2
3 ). (3.4)

In the remaining sections of this chapter we are going to carry out the

calculations leading to Conjecture 3.3.1. We begin by deriving the func-

tional equation satis�ed by G(s, u, p, r).

3.4 Functional equation for G(s, u, p, r)

A functional equation for G(s, u, p, r) can be obtained by noting that for a

given `, the set of all `-paths can be divided into the following three subsets.
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= + +

Figure 3.2: Graphical interpretation of Eq. (3.5). An `-path either has length
0, or it starts with a horizontal step, followed by an `-path, or it
starts with an up-step, followed by an `-path, followed by a down-
step, followed by another `-path.

In Fig. 3.2 we graphically illustrate this decomposition. The �rst subset

only contains the trajectory of zero steps, which has weight 1. The second

subset consists of all paths which start with a horizontal step, followed by

a path (possibly of zero steps). The weight of a path in this set is thus the

weight s of the horizontal step at the beginning, times the weight of the

path attached to this initial step. Finally, the third subset contains all the

`-paths which start with an up-step. Their weight is given by the weight

u of this initial up-step times the weight u of its complimentary down-

step, times the weight of the path in between these two steps, times the

weight of the path following the down-step. Moreover, the two triangular

regions below the initial up-step and the corresponding down-step together

contribute one unit of area to the total area underneath the diagonal steps,

which is accounted for by a factor r. Since the path between the initial

up-step and its complimentary down-step is elevated by one, each up- or

down-step in between generates one further area of unit size, weighted by

r, and each horizontal step generates an (`× 1)-rectangle, weighted by p.

Summing over the weights of the paths in all three subsets, this leads to

the functional equation

G(s, u, p, r) = 1 + sG(s, u, p, r) + ru2G(ps, ru, p, r)G(s, u, p, r). (3.5)
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Note that by iteration of Eq. (3.5), we obtain the continued fraction rep-

resentation

G(s, u, p, r) =
1

1− s− ru2

1− ps− r3u2

1− p2s− r5u2

1− p3s− . . .

, (3.6)

which can be used to approximate G(s, u, p, r) numerically.

The width of an `-Motzkin path is the horizontal distance between its

starting and end point; the area of an `-Motzkin path is the total area

enclosed between the trajectory and the line y = 0, measured in unit cells

of the lattice. For example, the path in Fig. 3.1 has width 12 and area 18.

We will consider the generating function

G(`)(a, x, q) =
∞∑
k=0

∞∑
l=0

∞∑
m=0

pk,m,na
kxmqn, (3.7)

where pk,m,n is the number of paths with 2k diagonal steps, width m and

an area n enclosed between the trajectory and the bottom line, counted

in units of lattice cells. We will refer to G(`)(a, x, q) as the area-width

generating function. Note, however, that it has an additional parameter

a, which counts the number of pairs of up- and down-steps. Since each

horizontal step of an `-path increases the width of the path by ` and each

(`× 1)-rectangle increases the total area, measured in units of lattice cells,

by `, and each diagonal step increases the total number of pairs of diagonal

steps by 1
2
, we have the identity

G(`)(a, x, q) = G(x`, x
√
a, q`, q). (3.8)
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Substituting Eq. (3.8) into Eq. (3.5), we obtain the functional equation

G(`)(a, x, q) = 1 + x`G(`)(a, x, q) + aqx2G(`)(a, qx, q)G(`)(a, x, q). (3.9)

For q = 1, Eq. (3.9) is solved by

G(`)(a, x, 1) =
1− x` −

√
(1− x`)2 − 4ax2

2ax2
, (3.10)

and setting a = 1 in Eq. (3.10), we obtain the generating functions of the

Motzkin numbers for ` = 1 and the large Schröder numbers for ` = 2 [45,

A001006 and A006318]).

For a given ` ∈ N and real a > 0, we denote the smallest positive

value for which the discriminant (1−x`)2−4ax2 vanishes by xc and de�ne

Gc = G(`)(a, xc, 1). For all ` ∈ N and a > 0, xc ∈ (0, 1). From Eq. (3.10),

it follows that

Gc =
1− x`c
2ax2c

=
1√
axc

. (3.11)

If |x| < 1 and we let ` tend to in�nity, then the weight x` associated to

horizontal steps becomes zero, thus G(∞)(a, x, q) = G(0,
√
ax, 0, q) satis�es

the functional equation

G(∞)(a, x, q) = 1 + aqx2G(∞)(a, qx, q)G(∞)(a, x, q). (3.12)

In this case, the parameter x only appears in powers of the product ax2

and therefore a can be set equal to one without loss of generality. We

write G(∞)(x, q) ≡ G(∞)(1, x, q). Equation (3.12) is then readily identi�ed

as the functional equation for the area-width generating function of Dyck

paths [26]. If q = 1, it is solved by the generating function of the Catalan
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numbers [45, A000108]), and for general q, the solution can be found in

[26].

In the next section, we are going to analyse the scaling behaviour of

G(`)(a, x, q) around the point (a, x, q) = (a, xc, 1) by using a heuristic an-

satz. We will begin by considering the cases of Dyck paths (` = ∞) and

Motzkin paths (` = 1), before generalising our approach to arbitrary `.

3.5 Heuristic scaling ansatz

The heuristic approach consists in assuming that, in the vicinity of the

point (a, x, q) = (a, xc, 1), the area-width generating functions of `-Motzkin

paths satisfy a simple scaling relation. More precisely, we expect that there

is a value z− < 0 such that for z ∈ (z−,∞) and ε→ 0+,

G(`)
(
a, x(z, ε), 1− ε

)
= Gc + εθcF0(a, z) + ε2θcF1(a, z) +O(ε3θc), (3.13)

where x(z, ε) = xc− z εφc , θc and φc are positive, non-integer critical expo-

nents, and F0(a, z) is the (unknown) scaling function.

For better readability, we omit the index 0 and the dependence of a from

now on and write F0(a, z) ≡ F (z). We de�ne

G(`)
sc (a, z, ε) = Gc + εθcF (z) + ε2θcF1(z). (3.14)

For z = ξε−φc with 0 < ξ < xc, one gets x(z, ε) = xc − ξ, and the RHS

of Eq. (3.13) needs to converge to G(`)(a, xc − ξ, 1) in the limit ε → 0+.

It follows from the positivity of the coe�cients of the generating function
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that G(`)(a, xc − ξ, 1) < Gc. This implies that necessarily, for a > 0,

lim
z→∞

F (z) = −∞. (3.15)

Following [56], we now insert the RHS of Eq. (3.13) into the functional

equation Eq. (3.9). Using a dominant balance argument, this leads to an

ODE for the function F (z) and uniquely determines the values of θc and

φc.

We will begin by applying this approach to Dyck paths.

3.5.1 Dyck paths (` =∞)

The area-width generating function of Dyck paths satis�es Eq. (3.12),

where, as explained above, a can be set to one without loss of general-

ity. Substituting a = 1 and x` = 0 into the solution for q = 1 given in

Eq. (3.10), we obtain the critical values

xc =
1

2
and Gc = 2. (3.16)

Now we de�ne the function

Φ∞(z, ε) = 1−G(∞)
sc (z, ε)

+ (1− ε)x(z, ε)2G(∞)
sc (z + xcε

1−φc − zε, ε)G(∞)
sc (z, ε),

where G
(∞)
sc (z, ε) ≡ G

(∞)
sc (1, z, ε) is given by Eq. (3.14), with an unknown

function F (z). Under the assumption that Eq. (3.13) holds, it follows from

Eq. (3.12) that

Φ∞(z, ε) = O(ε3θc) (ε→ 0+). (3.17)
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Expanding Φ∞(z, ε) into a series in ε, we obtain

Φ∞(z, ε) = (1−Gc + x2cG
2
c)

+ εθc
(
(2x2cGc − 1)F (z)

)
+ ε2θc

(
(2x2cGc − 1)F1(z) + x2cF (z)2

)
+ εφc

(
−2xcG

2
cz
)

+ ε1−φc+θc(x3cGcF
′(z))

+ ε1−φc+2θc(x3c(F (z)F ′(z) +GcF
′
1(z))

+ εφc+θc(−4zxcGcF (z))

+ O(ε3θc).

The constant coe�cient and the one of order εθc are zero by virtue of

Eq. (3.16). For Eq. (3.17) to hold, the coe�cient of the order of ε2θc in the

above equation needs to be cancelled by another coe�cient, hence one of

the other exponents needs to equal 2θc. If 2θc = φc+θc, thus θc = φc, then

the term of order εφc in the above equation could not be cancelled by any

other term unless θc = 1, which is impossible by the assumption that θc is

not an integer. Likewise, it is impossible that 2θc = 1−φc+2θc, since φc is

assumed to be non-integer. The third possibility is that 2θc = φc, in which

case the only way to obtain a solution F (z) analytic for z ∈ (z−,∞) is to

also have 2θc = 1 − φc + θc. The critical exponents therefore necessarily

satisfy the equations

2θc − φc = 0 and θ + φc = 1,
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and thus θc = 1
3
and φc = 2

3
. Inserting these exponents and the values for

xc and Gc from Eq. (3.16), the above expansion gives us

Φ∞(z, ε) =

[
1

4
F ′(z) +

1

4
F (z)2 − 4z

]
ε
2
3 +O(ε).

From Eq. (3.17) we thus arrive at the Riccati type ODE

F ′(z) = Az −BF (z)2 (3.18)

for the scaling function F (z), where A = 16 and B = 1. In order to solve

Eq. (3.18), we linearise it by using the ansatz

F (z) = b0
f ′(b1z)

f(b1z)
, (3.19)

where

b0 =

(
A

B2

)1/3

and b1 = b0B. (3.20)

This leads to the second order ODE

f ′′(z)− zf(z) = 0, (3.21)

the general solution of which is given by

f(z) = λ1 Ai(z) + λ2 Bi(z), (3.22)

where λ1, λ2 ∈ R, and

Bi(z) = e−iπ/6 Ai(ze−2iπ/3) + eiπ/6 Ai(ze2iπ/3). (3.23)
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Inserting Eq. (3.22) into Eq. (3.19), we obtain the general solution of

Eq. (3.18) as

F (z) = b0
(λ+ 1) Ai′ (b1z) + (λ− 1) Bi′ (b1z)

(λ+ 1) Ai (b1z) + (λ− 1) Bi (b1z)
, (3.24)

where λ ∈ R. It now follows from the asymptotic behaviour of Ai(z),

Bi(z) and their derivatives ([21, §9.7]) that the only possible way to satisfy

condition (3.15) is to set λ = 1. Thus, F (z) has the form given in Eq. (3.2),

and inserting the values A = 16 and B = 1 into Eq. (3.20), we obtain

b0 = b1 = 2
4
3 . (3.25)

These coe�cients agree with those obtained from Eq. (3.3) upon substi-

tuting xc = 1
2
and letting `→∞.

Now we do the same analysis for (standard) Motzkin paths.

3.5.2 Motzkin paths (` = 1)

Setting ` = 1 and q = 1 in Eq. (3.10), we get the critical values for standard

Motzkin paths

Gc =
1 + 2

√
a√

a
and xc =

1

1 + 2
√
a
. (3.26)

Analogous to the case of Dyck paths, we de�ne Φ1(a, z, ε) from Eq. (3.5)

as

Φ1(a, z, ε) = 1−G(1)
sc (a, z, ε) + x(z, ε)G(1)

sc (a, z, ε)+

+ a(1− ε)x(z, ε)2G(1)
sc (a, z + xcε

1−φc − zε, ε)G(1)
sc (a, z, ε).
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Again, assumption Eq. (3.13) implies that Φ1(a, z, ε) = O(ε3θc) and re-

quires the critical exponents to be θc = 1
3
and φc = 2

3
. From the expansion

Φ1(a, z, ε) =
[
aGcx

3
cF
′(z) + ax2cF (z)2 − z(2aG2

cxc +Gc)
]
ε
2
3 +O(ε),

we are again lead to the ODE Eq. (3.18), now with the coe�cients

A =
2Gc

x2c
+

1

ax3c
and B =

√
a. (3.27)

The �nal form of the scaling function is given by Eq. (3.2) with

b0 =

(
2
√
a+ 1

a2x3c

) 1
3

and b1 =
√
a b0. (3.28)

We will now generalise this result to `-Motzkin paths with arbitrary `.

3.5.3 The case of general `

Now we assume ` to be any positive integer. In this general case, it is not

possible to give an expression for the critical value xc as a function of a,

so our results will be expressed in terms of xc.

As in the special cases, we de�ne

Φ`(a, z, ε) =1−G(`)
sc (a, z, ε) + x(z, ε)`G(`)

sc (a, z, ε) +

+a(1− ε)x(z, ε)2G(`)
sc

(
a, z + xcε

1−φc − zε, ε
)
G(`)
sc (a, z, ε) ,

(3.29)

and from the assumption that Φ`(a, z, ε) = O(ε3θc) one obtains θc = 1
3
and
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φc = 2
3
. Expanding the RHS of Eq. (3.29) in ε we get

Φ`(a, z, ε) =
[
aGcx

3
cF
′(z) + ax2cF (z)2 − (2aG2

cxc + `Gcx
`−1
c )z

]
ε
2
3 +O(ε),

which leads to Eq. (3.18) with

A =
2Gc

x2c
+
` x`−4c

a
and B =

√
a. (3.30)

The solution of this equation is given by Eq. (3.2) with the parameters

from Eq. (3.3). This motivates Conjecture 3.3.1.

Rearranging Eq. (3.13), one obtains

(
G(`)(a, xc − zε

2
3 , 1− ε)−Gc

)
ε−

1
3 = F (z) +O(εθc). (3.31)

From Eq. (3.6), it is possible to numerically evaluate G(`)(a, x, q) for any

`. In Fig. 3.3, we plot the LHS of Eq. (3.31) for the example of Schröder

paths (` = 2) and a = 1 as a function of z for di�erent values of ε. This

�gure shows the close agreement of scaling function and partition function

asymptotics for q close to one.

For the cases ` = 2 and ` = ∞, we are going to be able to prove

Conjecture 3.3.1 by applying the method of steepest descents in Chapters 4

and 6.

50



Chapter 3. Area-width scaling of generalised Motzkin paths

F(z)

z

Figure 3.3: Plot of the scaling function F (z) given by Eq. (3.2) with coe�cients
(3.3) for a = 1 and ` = 2 (black) against the approximation of
the scaling function obtained directly from the generating function
G(2)(1, x, 1− ε) and �xed values ε = 10−3 and 10−4 (grey).
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4 Uniform asymptotics of area-width

weighted Dyck paths

4.1 Introduction

The model of Dyck paths (also known as Bernoulli excursions) can be seen

as the discrete counterpart of the continuous Brownian excursion, which

describes a one-dimensional Brownian particle starting at the point y = 0

at time t = 0, ending at y = 0 at time t = T and staying above the

line y = 0 in between. It was �rst shown by Louchard and Darling in

[20, 40] that the integral of the Brownian excursion of �xed length is Airy

distributed. Takács calculated the moments of the area distribution of

Dyck paths and showed that in the limit of in�nite length, the distribution

of the area of Dyck paths is the Airy distribution of area-type. He also

pointed out other problems in which Dyck paths occur, including a problem

in railway tra�c, and the total height distribution of the vertices of random

planar trees [65, 66].

In this chapter, we are going to analyse the asymptotic behaviour of

the area-width generating function of Dyck paths, in the limit of the area-

generating variable tending towards one. We will obtain an asymptotic

expression which is valid uniformly for a range of values of the width-

generating variable, including the tricritical point of the model. In partic-
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ular, our result proves Conjecture 3.3.1 for the case ` =∞.

The method which we will apply is based on the method of steepest

descents, generalised to the case of two coalescing saddle points. This

method has been applied before to the model of staircase polygons by

Prellberg [52]. It requires a suitable exact expression for the area-width

generating function.

We will begin by de�ning Dyck paths and derive the functional equation

satis�ed by their area-width generating function in detail. This functional

equation di�ers from the one which we had in Chapter 3 for Dyck paths,

since we now use a slightly di�erent de�nition for the area of a Dyck path

than in that chapter, which is more suitable when considering Dyck paths

alone. The results for either of the de�nitions of area can, however, be eas-

ily translated into one another. The solution of this functional equation in

terms of q-hypergeometric series is known from [26]. Since its derivation is

very straightforward, we will repeat it here. The solution can be written

as a fraction of two q-hypergeometric series. We will express these series

as contour integrals and analyse the integrals asymptotically by using the

method of steepest descents. An asymptotic expression for the area-width

generating function is then obtained by taking the fraction of the asymp-

totic expressions for the two q-hypergeometric series. This expression is

uniform with respect to the width-generating variable and gives the scal-

ing behaviour of the singular part of the generating function in the vicinity

of the tricritical point. This proves Conjecture 3.3.1 for the limiting case

` =∞.

The results presented in this chapter are joint work with Thomas Prell-

berg, and were mostly published in the article [34].
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4.2 The model

Although the model of Dyck paths can be seen as a part of the family

of `-Motzkin paths considered in the last chapter, we once again de�ne it

explicitly.

De�nition 4.2.1 (Dyck path). For m ∈ Z≥0, a Dyck path (DP) is a

lattice walk (xk, yk)
2m
k=0 on Z2 such that (x0, y0) = (x2m, y2m) = (0, 0), and

yk ≥ 0 for all k ∈ [2m]. Moreover, for 0 ≤ k < 2m, (xk, yk) is either

(xk + 1, yk + 1) or (xk + 1, yk − 1), corresponding to an up- or down-step,

respectively.

y

x

Figure 4.1: A Dyck path of half-width 9 and area 10. The shaded squares have
unit area. The dotted grid shows the underlying lattice, and the
small arrows indicate the directions of the coordinate axes.

Since the start and end point of a DP are �xed, a DP can also be

represented by a sequence of steps, for example, the DP shown in Fig. 4.1

is represented by the sequence

↗,↗,↘,↗,↗,↘,↗,↗,↘,↘,↘,↗,↘,↗,↗,↘,↘,

where ↗ and ↘ stand for up- and down-steps, respectively.

In Fig. 4.1, we show an example for a DP. The width of a DP is the

number of steps it consists of, and the half-width is just the width divided

by two. Since the width of a DP is always even, the half-width is always an

integer. The trajectory shown in Fig. 4.1 has width 181. In this chapter,

1In [34], we used the word length instead of width.
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we de�ne the area of a DP as the number of squares congruent to the

square with corners (0, 1), (1, 2), (2, 1) and (1, 0) between the trajectory

and the trajectory of same width, consisting of an alternating sequence of

up- and down-steps (↗,↘, . . . ,↘). In Fig. 4.1, the squares contributing

to the area of the DP are shaded. Thus, the shown DP has area 10. As

mentioned above, this de�nition of area is di�erent to the one used in

Chapter 3, but results obtained using one or the other de�nition can be

translated into each other. We note that the area of a Dyck path is closely

related to the sum of the heights of the points of the path, where the

height of a point is its distance to the horizontal axis. The generalisation

of the area to sums of k-th powers of heights, called rank-k parameters, was

considered by Duchon [22] and the existence of a joint limit distribution

of these parameters was shown by Richard [58].

Let D denote the set of all Dyck paths, and for any d ∈ D, let h(d) be the

half-width and a(d) the area of d, respectively. The area-width generating

function of Dyck paths is the formal power series

G(x, q) =
∞∑
m=0

∞∑
n=0

pm,nx
mqn (4.1)

where pm,n is the number of all DP with half-width m and area n, i.e.

pm,n = #
{
d ∈ D

∣∣ h(d) = m ∧ a(d) = n
}
. (4.2)

For example, the DP in Fig. 4.1 contributes a weight x9q10 to G(x, q).

De�ning the univariate generating functions

Zm(q) =
∞∑
n=0

pm,nq
n and Qn(x) =

∞∑
m=0

pm,nx
m, (4.3)
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we can also write

G(x, q) =
∞∑
m=0

Zm(q)xm =
∞∑
n=0

Qn(x)qn. (4.4)

Note that pm,n = 0 for n > m2, therefore Zm(q) is a polynomial in q

for any �nite m, whereas, with the given de�nition of the area, Qn(x)

contains in�nitely many terms for any n. For example, for any m, there

exists exactly one trajectory of area 0, namely the �zigzag� trajectory ↗

,↘, . . . ,↗,↘. Therefore,

Q0(x) =
∞∑
m=0

xm =
1

1− x
. (4.5)

If we use Dyck paths as a two-dimensional model for biological ves-

icles, subject to an osmotic pressure acting on the wall of the vesicle, then

Zm(q) and Qn(x) are the �xed-width and �xed-area partition functions

of the model, respectively; the generating function G(x, q) is the parti-

tion function of the ensemble where both width and area are allowed to

�uctuate.

4.3 Functional equation for G(x, q)

To �nd a functional equation for the generating function de�ned in Eq. (4.1),

we again use a decomposition argument as in Section 3.4. To this end, we

�rst de�ne for a given DP, d, the associated elevated DP as ↗, d,↘. Now

note that a DP has either width 0, in which case it contributes a weight

1 to G(x, q), or it starts with an elevated DP, followed by a DP � this

decomposition is illustrated in Fig. 4.2. This means that if we call Em(q)
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the �xed-width partition function of elevated Dyck paths, then we have

Zm(q) =

 1 if m = 1∑m
k=1Ek(q)Zm−k(q) if m > 1.

(4.6)

Here, Zm(q) is the �xed-width partition function of DP, de�ned in Eq. (4.3).

If we substitute Eq. (4.6) into Eq. (4.4), this gives us

G(x, q) = 1 +
∞∑
m=1

(
m∑
k=1

Ek(q)Zm−k(q)

)
xm

= 1 +

(
∞∑

m1=1

Em1(q)x
m1

)(
∞∑

m2=0

Zm2(q)x
m2

)
,

where the left bracket in the last row is the area-width generating function

of elevated DP. If the weight of a DP is xmqn, then the associated elev-

ated DP has weight x(xq)mqn = xm+1qm+n, where the additional factor

of x is due to the two additional steps and the additional factor of qm is

due to the fact that each pair of steps adds an additional unit of area to

the area of the path. The generating function of an elevated DP is there-

fore xG(qx, q). Substituting this into the last equation, this gives us the

functional equation

G(x, q) = 1 + xG(qx, q)G(x, q). (4.7)

= +

Figure 4.2: Graphical interpretation of Eq. (4.7). A Dyck path either has
width 0, or it starts with an up-step, followed by an elevated DP,
followed by a down-step, followed by another DP.
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Equation (4.7) can be rearranged to

G(x, q) =
1

1− xG(qx, q)
, (4.8)

and from iterating this equation one obtains the continued fraction repres-

entation

G(x, q) =
1

1− x

1− xq

1− xq2

1− xq3

1− . . .

, (4.9)

which was also given in [26]. While this expression is useful for numer-

ical approximations, we need a di�erent expression to approximate G(x, q)

asymptotically in the limit q → 1−. In the next section, we will derive an

expression for G(x, q) in term of q-hypergeometric series.

4.4 Solution of the functional equation

First we note that for q = 1, Eq. (4.7) becomes the algebraic equation

G(x, 1) = 1 + xG(x, 1)2, (4.10)

which has the two solutions

G(x, 1) =
1

2x

(
1±
√

1− 4x
)
. (4.11)

The solution with positive sign diverges at x = 0, consistent with the fact

that the equation is solved by a unique formal power series. Therefore the

generating function of Dyck paths is the solution with negative sign, for
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which [x0]G(x, 1) = 1. For general q, the solution of Eq. (4.7) can be found

in [26]. Since the derivation is simple, we restate it here.

One makes the ansatz

G(x, q) =
φ(qx, q)

φ(x, q)
, (4.12)

where φ(x, q) is an unknown function. Inserting Eq. (4.12) into Eq. (4.7),

we get the linearised functional equation

xφ(q2x)− φ(qx) + φ(x) = 0, (4.13)

where we suppressed the explicit q-dependence of φ for better readability.

Note that the transformation (4.12) is similar to the linearisation of Riccati

di�erential equations (see e.g. [29, Chapter 9]). To solve Eq. (4.13), we

write

φ(x) =
∞∑
n=0

cnx
n, (4.14)

where the coe�cients cn depend on q. Upon substituting Eq. (4.14) into

Eq. (4.13), we get

0 =
∞∑
n=0

(
xcnq

2n − cnqn + cn
)
xn =

∞∑
n=1

(
cn−1q

2(n−1) − cnqn + cn
)
xn.

The series of the RHS of the above equation needs to vanish coe�cient-

wise. This gives us the recursion relation

cn = cn−1
q2(n−1)

qn − 1
(n ∈ N). (4.15)

The value c0 can be chosen arbitrarily, since it is cancelled out in Eq. (4.12).

We choose c0 = 1, since this coincides with the de�nition of q-hypergeometric
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series [31]. Iterating Eq. (4.15), we get

cn = (−1)n
qn

2−n

(q; q)n
(n ∈ N), (4.16)

where (q; q)n is the q-Pochhammer symbol, de�ned for n ∈ N as

(z; q)n =
n−1∏
k=0

(1− zqk). (4.17)

Inserting Eq. (4.16) into Eq. (4.14), we obtain

φ(x) =
∞∑
n=0

(−1)nqn
2−n

(q; q)n
xn = 0φ1

 −
0

; q,−x

 , (4.18)

where we use the standard notation for q-hypergeometric series from [31],

to be introduced in Chapter 5.

In the next section, we will derive a contour integral expression for φ(x).

4.5 Contour integral representation of φ(x).

We begin with the following lemma, which was already used in [52]. Here

we give a more detailed proof of it.

Lemma 4.5.1. For complex q with 0 < |q| < 1 and n ∈ Z≥0,

(−1)n+1q(
n
2)

(q; q)n(q; q)∞
= Res

z=q−n

(
1

(z; q)∞

)
. (4.19)

Proof. First we notice that, for |q| < 1, (z; q)∞ = limn→∞(z; q)n is an
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entire function of z. To see this, we use the formula [31]

(z; q)∞ =
∞∑
n=0

(−1)nq(
n
2)zn

(q; q)n
. (4.20)

From the ratio test for convergence, one sees that the radius of convergence

of this series is in�nite if |q| < 1. Since a function de�ned by a power series

is analytic everywhere inside its disk of convergence, (z; q)∞ is analytic for

all z ∈ C.

Let n ∈ Z≥0. We decompose (z; q)−1∞ into the product

1

(z; q)∞
=

1

(z; q)n
· 1

(1− zqn)
· 1

(zqn+1; q)∞
. (4.21)

The left and right factors of the RHS of the above equation are analytic

at z = q−n, whereas (1− zqn)−1 has a simple pole there. Therefore,

Res
z=q−n

(
1

(z; q)∞

)
=

1

(z; q)n

∣∣∣∣
z=q−n

[
Res
z=q−n

(
1

1− zqk

)]
1

(zqn+1; q)∞

∣∣∣∣
z=q−n

.

The proof is concluded by using that Res
z=q−n

((1− zqn)−1) = −q−n, and

1

(z; q)n

∣∣∣∣
z=q−n

=
1

(q−n; q)n
=

n−1∏
k=0

1

1− q−n+k
=

n−1∏
k=0

qn−k

qn−k − 1

=
n∏

m=1

qm

qm − 1
=

(
n∏

m=1

qm

)(
n∏

m=1

−1

1− qm

)
=

(−1)nq(
n+1
2 )

(q; q)n
.

Lemma 4.5.1 can be used to prove the following result.
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Lemma 4.5.2. For complex x 6= 0 and 0 < q < 1,

φ(x) = lim
N→∞

(q; q)∞
2πi

∮
CN

z
1
2
(logq(z)+1)−logq(x)

(z; q)∞
dz, (4.22)

where, for N ∈ N, the integration is performed once clockwise around the

curve CN de�ned in Eq. (4.23), with 0 < ρ < 1 and ψ, ϕ ∈ (0, π).

Proof. Assume that x 6= 0 and 0 < q < 1. De�ne, for N ∈ N, the contour

CN : [−1, 2)→ C,

CN(t) =


ρ− t(q−N+ 1

2 − ρ)e−iψ for t ∈ [−1, 0),

ρ+ t(q−N+ 1
2 − ρ)eiϕ for t ∈ [0, 1),

ρ+ (q−N+ 1
2 − ρ)ei[ϕ−(ψ+ϕ)(t−1)] for t ∈ [1, 2),

(4.23)

where 0 < ρ < 1 and ϕ, ψ ∈ (0, π). This contour surrounds exactly the N

leftmost poles of (z; q)−1∞ , which are located at z = q−n with n ∈ Z≥0. See

Fig. 4.3 for a sketch of C1.

1 q−1 q−2

Re(z)

Im(z)

ϕ

ψ

0 < ϕ < π

0 < ψ < π

ρ

Figure 4.3: The contour C1, surrounding the leftmost pole of (z; q)−1∞ . The
arrows indicate the direction of integration used in Eq. (4.22).

The function h(z) = z
1
2
(logq(z)+1)−logq(x) is analytic in C\(−∞, 0]. There-
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fore,

1

2πi

∮
CN

h(z)

(z; q)∞
dz =

N−1∑
n=0

h(q−n) Res
(
(z; q)−1∞ ; z = q−n

)
. (4.24)

Inserting Eq. (4.19), we obtain, for N ∈ N,

(q; q)∞
2πi

∮
CN

z
1
2
(logq(z)+1)−logq(x)

(z; q)∞
dz =

N∑
n=0

(−x)n

(q; q)n
qn

2−n, (4.25)

where the integration is performed once clockwise. This is accounted for

by a factor of (−1). Taking the limit N → ∞ in Eq. (4.25), we obtain

Eq. (4.22).

In the limit N →∞, the contour CN in Eq. (4.22) can be replaced by a

contour C. This is stated in the following proposition.

Proposition 4.5.1. For complex x 6= 0 and 0 < q < 1,

φ(x) =
(q; q)∞

2πi

∫
C

z
1
2
(logq(z)+1)−logq(x)

(z; q)∞
dz, (4.26)

where the integration is performed once clockwise around the contour C

de�ned in Eq. (4.27), with 0 < ρ < 1 and ψ, ϕ ∈ (0, π).

Proof. We need to show that in the limit N → ∞, the contribution of

the circle segment CN([1, 2]) to the contour integral (4.25) vanishes. In

that case, in the limit N → ∞, CN can be replaced by the contour C :

(−∞,∞)→ C, where

C(t) =

 ρ− te−iψ for t < 0,

ρ+ teiϕ for t ≥ 0,
(4.27)
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with 0 < ρ < 1 and ϕ, ψ ∈ (0, π) � see Fig. 4.4.

Re(z)

Im(z)

ϕ

ψ 11 q−1 q−2ρ

0 < ϕ < π

0 < ψ < π

Figure 4.4: The contour of integration C used in Eq. (4.26).

Assume 0 < q < 1; x ∈ C \ {0} and z ∈ CN([1, 2)). Hence, z =

ρ+ (q−N+ 1
2 − ρ)eiθ, where θ ∈ (−ψ, ϕ]. For N →∞, logq(z) = −N + 1

2
−

iθ
ε

+ o(1), where ε = − ln(q). Therefore,

logq
(
z(1+logq(z))/2−logq(x)

)
=
N2

2
+

(
iθ − ln(x)

ε
− 1

)
N +O(1). (4.28)

Moreover, we estimate for N ≥ 1,

∣∣(z, q)∞∣∣= ∣∣∣ ∞∏
n=0

(
1− [ρ+ (q−N+ 1

2 − ρ)eiθ]qn
)∣∣∣ ≥ ∣∣∣ ∞∏

n=0

(1− q−N+ 1
2
+n)
∣∣∣,

where we use that for v, w ∈ C, |v − w| ≥ ||v| − |w||. Further,

∣∣∣ ∞∏
n=0

(1− q−N+ 1
2
+n)
∣∣∣ =

∣∣∣(q 1
2 ; q−1)N+1(q

3
2 ; q)∞

∣∣∣ ≥ a
∣∣(q 3

2 ; q)∞
∣∣ N∏
k=0

q
1
2
−k,

where a > 0 is a constant independent of N and we used that for p > 1,
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∏∞
n=1

pn

pn−1 <∞. From the last expression we obtain

(z; q)∞ ≥ a
∣∣(q 3

2 ; q)∞
∣∣ q−N2−1

2 . (4.29)

Using Eqs. (4.28) and (4.29), we get

∣∣∣∣ h(z)

(z; q)∞

∣∣∣∣ ≤ b qN
2−N |x|N ,

where b > 0 is another constant independent of N . Taking the integral

over CN([1, 2)) leads to a further factor of (ψ + ϕ)q−N . We obtain the

estimation

1

2πi

∫
CN ([1,2))

∣∣∣∣ h(z)

(z; q)∞

∣∣∣∣ dz ≤ b(ψ + ϕ) qN
2−2N |x|N . (4.30)

For N → ∞, the RHS of Eq. (4.30) tends to 0. With this we conclude

that in the limit N → ∞, the contour CN in Eq. (4.25) can be replaced

by the contour C.

The principal branch of the Euler dilogarithm ([21, §25.2]), is de�ned

for z ∈ C as

Li2(z) = −
∫ z

0

ln(1− w)

w
dw, (4.31)

where the principal branch of the logarithm is taken in the integral and,

for x > 1,

Li2(x) = lim
δ→0−

Li2(xe
iδ). (4.32)

By this de�nition, Im(Li2(x)) < 0 for x > 1. This is consistent with the

de�nition of the function dilog(1− x) in Maple 18.

In [52], the following result on the asymptotics of (z; q)∞ was derived by

using the Euler-Maclaurin summation formula ([21, §2.4(i)]).
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Lemma 4.5.3 (Prellberg [52]). For complex z with |arg(1− z)| < π,

0 < q < 1 and m ∈ N,

ln(z; q)∞ =
1

ln(q)
Li2(z) +

1

2
ln(1− z)+

+
m−1∑
n=1

B2n

(2n)!
(ln q)2n−1

(
z
d

dz

)2n−2
z

1− z
+ (ln q)2m−1Rm(z, q), (4.33)

where the Bernoulli numbers (Bn)∞n=0 have the exponential generating func-

tion
∑∞

n=0Bn
tn

n!
= t

et−1 and the remainder term satis�es, for m ∈ N, the

bound ∣∣Rm(z, q)
∣∣ ≤ 2 |B2m|

(2m!)

∫ 1

0

∣∣∣∣∣
(
u
d

du

)2m−1
zu

1− zu

∣∣∣∣∣ duu . (4.34)

For m = 1, we get from Eq. (4.34) for z ∈ C \ R with arg(z) = ϕ,

∣∣R1(z, q)
∣∣ ≤ 1

6

∫ 1

0

∣∣∣∣ z

(1− zu)2

∣∣∣∣ du =
1

6

∫ |z|
0

1

|v − e−iϕ|2
dv

=
1

6 sin(ϕ)2

∫ |z|
0

1

1 +
(
v−cos(ϕ)
sin(ϕ)

)2dv
=

1

6 sin(ϕ)

(
arctan

(
|z| − cos(ϕ)

sin(ϕ)

)
+ arctan

(
cos(ϕ)

sin(ϕ)

))
=

1

6 sin(ϕ)

(
arctan

(
|z| − cos(ϕ)

sin(ϕ)

)
− ψ

)
, (4.35)

where ϕ = arg(z), ψ = ϕ± π
2
for ϕ ≶ 0, and for z < 1,

∣∣R1(z, q)
∣∣ ≤ |z|

1− z
. (4.36)

Since the RHS of Eq. (4.36) diverges for z → 1−, Eq. (4.33) does not yield

an asymptotic expression for (q; q)∞. For this separate case, the following
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formula is given in [52]. For q = e−ε → 1−,

ln(q; q)∞ = −π
2

6ε
+ ln

(√
2π

ε

)
+O(ε). (4.37)

The following lemma is the starting point of the asymptotic analysis of

φ(x) by means of the saddle point method.

Lemma 4.5.4. For complex x 6= 0, k ∈ Z and 0 < q = e−ε < 1,

φ(qkx) =
(q; q)∞

2πi

∫
C

exp

(
1

ε
f(z)

)
gk(z, q)dz, (4.38)

where the contour C is de�ned in Eq. (4.27) with 0 < ρ < 1 and ψ, ϕ ∈

(0, π),

f(z) = ln (x) ln(z) + Li2(z)− 1

2
ln(z)2, (4.39)

gk(z, q) =
1

zk

(
z

1− z

) 1
2

exp (εR1(z, q)) , (4.40)

and

R1(z, q) = −1

ε

(
ln
(
(z; q)∞

)
+

1

ε
Li2(z)− 1

2
ln(1− z)

)
. (4.41)

Proof. This follows immediately from inserting Eq. (4.33) with m = 1 into

Eq. (4.26).

Note that due to the bound (4.35), we have

φ(qkx) =
(q; q)∞

2πi

∫
C

exp

(
1

ε
f(z)

)
gk(z, 1)dz (1 +O(ε)) . (4.42)
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The integral (4.38) can be analysed via the method of steepest descents.

To this end, we �rst need to know more about the saddle point landscape

of the function f , which is also called the kernel of the integrand. In

particular, we are interested in the paths of steepest descent and ascent of

the function R(z) = Re(f(z)).

4.6 Saddle point landscape of the kernel f(z)

The kernel f de�ned in Eq. (4.39) is an analytic function of z if x 6= 0

for z ∈ C \ ((−∞, 0] ∪ [1,∞)). For x ∈ C \ (−∞, 0] it has the two saddle

points

z± =
1

2

(
1±
√

1− 4x
)
, (4.43)

which are the zeros of the derivative

f ′(z) =
1

z
ln

(
x

z(1− z)

)
. (4.44)

They thus satisfy the equation

z±(1− z±)− x = 0. (4.45)

The saddle points z± are real for real x < 1
4
and coalesce in the point

zc = 1
2
for x = xc = 1

4
. For x > 1

4
, z+ = z∗− and Re(z±) = 1

2
. The saddle

points are non-degenerate, i.e. f ′′(z±) 6= 0 unless x = 1
4
, in which case

zc = 1
2
is a double saddle point.

Now consider the surface de�ned by R(z) = Re(f(z)). It follows from

the general theory of analytic functions that for x ∈ C\(−∞, 0], two paths

of steepest descent and two paths of steepest ascent of R(z) originate
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from each of the two ordinary saddle points of f if x 6= 1
4
; if x = 1

4
,

then three paths of steepest descent and three paths of steepest ascent of

R(z) originate from the double saddle point zc = 1
2
(see e.g. [29, Chapter

8]). On the paths of steepest descent and ascent of R(z), the function

I(z) = Im(f(z)) is constant.

We aim to show that the integration contour C used in Eq. (4.38) can

be deformed into a contour connecting z+ with ±i∞ via paths of steepest

descent of R(z) for 0 < x ≤ 1
4
, and a composite contour connecting z+

and z− with 0 and ±i∞, respectively, if x > 1
4
. To this purpose, we need

to study the asymptotic behaviour of f(z) when |z| → ∞ and |z| → 0. As

a preliminary step, we state the following Lemma.

Lemma 4.6.1. For λ→∞, and 0 < |ϕ| ≤ π,

Li2(λe
iϕ) = −1

2
ln(λ)2 − iψ ln(λ)− π2 − 3ψ2

6
+O

(
1

λ

)
, (4.46)

uniformly with respect to ϕ, where ψ = ϕ± π for ϕ ≶ 0.

Proof. For z ∈ C \ [0,∞), the dilogarithm satis�es the identity ([21, eq.

25.12.4])

Li2 (z) = −π
2

6
− 1

2
(ln(−z))2 − Li2

(
1

z

)
. (4.47)

Since for |z| < 1,

Li2(z) =
∞∑
n=1

zn

n2
,

we have for ϕ ∈ (−π, π] and λ→∞,

Li2

(
e−iϕ

λ

)
= O

(
1

λ

)
(4.48)

uniformly with respect to ϕ. Setting z = λeiϕ in Eq. (4.47) and substituting
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Eq. (4.48), we arrive at Eq. (4.46).

From Eq. (4.46), we can derive the asymptotic behaviour of the function

f in the limits |z| → ∞ and |z| → 0, stated in the following lemma.

Lemma 4.6.2. For complex x 6= 0, we have the following.

(i) For λ→∞ and 0 < |ϕ| < π,

f(λ eiϕ) = − ln(λ)2 + (ln(x)− iγ) ln(λ) +O(1), (4.49)

uniformly with respect to ϕ, where γ = 2ϕ± π for ϕ ≶ 0.

(ii) For λ→ 0 and 0 ≤ |ϕ| < π

f(λ eiϕ) = −1

2
ln(λ)2 + (ln(x)− iϕ) ln(λ) +O(1), (4.50)

uniformly with respect to ϕ.

Proof. Let x ∈ C \ {0}.

For (i), assume 0 < |ϕ| < π. Using Eq. (4.46), we have for ϕ ≶ 0,

f(λeiϕ) = − 1

2
ln(λeiϕ)2 + ln(x) ln(λeiϕ) + Li2(λe

iϕ)

= − ln(λ)2 +
(

ln(x)− i(2ϕ± π)
)

ln(λ)

+ ϕ (i ln(x)± π)− 2π2

3
+O

(
1

λ

)
,

uniformly with respect to ϕ. This proves (i).
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For (ii), assume 0 ≤ |ϕ| < π. With Eq. (4.48), we have for λ→ 0,

f(λeiϕ) = − 1

2
ln(λeiϕ)2 + ln(x) ln(λeiϕ) +O (λ)

= − 1

2
ln(λ)2 + (ln (x)− iϕ) ln(λ) +

1

2
ϕ2 + iϕ ln(x) +O (λ) ,

leading to Eq. (4.50).

Due to the branch cut of the logarithm, the function f is not analytic

on the lines (−∞, 0] and [1,∞). For x > 0 and z = λeiϕ, we have

lim
ϕ→±π

Im(f(λeiϕ)) = ±π ln(x/λ) (λ > 0), (4.51a)

lim
ϕ→±0

Im(f(λeiϕ)) = ±π ln(λ) (λ > 1); (4.51b)

and

limϕ→±π Im(f ′(λeiϕ)) (λ > 0)

limϕ→±0 Im(f ′(λeiϕ)) (λ > 1)

 = ±π
λ
. (4.52)

Note also that for x > 0, the function f is real on the segment z ∈ (0, 1),

and therefore f(z)∗ = f(z∗) for z ∈ C \ ((−∞, 0) ∪ [1,∞)).

We now prove the main result of this section.

Lemma 4.6.3. For 0 < x ≤ xc = 1
4
, the two paths of steepest descent

of the function R(z) = Re(f(z)), originating from the saddle point z+ =

1
2

(
1 +
√

1− 4x
)
, end at ±i∞.

Proof. For 0 < x < 1
4
, z− and z+ are the local maximum and minimum

of f on the segment (0, 1), respectively, and I(z) = 0 on this line. Hence,

the paths of steepest descent of R(z) originating from z− end at 0 and z+,

respectively. From this it follows that the paths of steepest ascent origin-
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ating from z− and the paths of steepest descent originating from z+ meet

the real line at an angle of π
2
. According to Lemma 4.6.2, the imaginary

part of f tends to −∞ for |z| → 0 and |z| → ∞. Therefore, the paths of

steepest ascent originating from z− can only end on the lines (−∞, 0) or

[1,∞), where f is not analytic. Since Im(f(z)) = I(z) vanishes on these

contours, according to Eq. (4.51) they can only end at z = −x. Since

the paths of steepest descent originating from z+ cannot intersect with the

paths of steepest ascent originating from z−, the paths of steepest descent

originating from z+ necessarily end at in�nity. From the asymptotic beha-

viour of I(z) stated in Eq. (4.49), it follows that they end at ±i∞, since

the angle γ in that equation is zero for ϕ = ±π
2
. The statement remains

true for x = xc = 1
4
, in which case z− and z+ coalesce in zc = 1

2
.

−1 1

−1

1

Re(z)

Im(z)

r
z−

r
z+

(a) x = 1
5

−1 1

−1

1

Re(z)

Im(z)

r
zc

(b) x = 1
4

Figure 4.5: (a): The paths of steepest ascent of the function f connecting the
saddle point z− with the negative real line (thin) and the paths of
steepest descent (thick) connecting z+ with ±i∞ for x = 1

5 < xc.
(b): The paths of steepest ascent (thin) and the paths of steepest
descent (thick) connecting the double saddle point zc = 1

2 of the
function f with the negative real line and ±i∞, respectively, for
x = xc = 1

4 .
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Chapter 4. Uniform asymptotics of area-width weighted Dyck paths

In Fig. 4.5, the relevant paths of steepest descent and ascent originating

from the saddle points of f are plotted for x < xc and x = xc. For x > xc,

one obtains a di�erent picture. This is stated in the following lemma.

Lemma 4.6.4. For x > 1
4
, the paths of steepest descent of the function

R(z) de�ned in Eq. (4.39), originating from the saddle points z± = 1
2

(
1±

√
1− 4x

)
, end at 0 and ±i∞, respectively.

Proof. For x > 1
4
, z+ = z∗−, and Re(z±) = 1

2
. According to Eq. (4.52),

the imaginary part of f ′(z) is positive when the lines z < 0 or z > 1 are

approached from the positive half plane and negative when approached

from the negative half plane. From this it follows that no path of steep-

est descent can end on the negative real line or on the segment [1,∞).

Therefore, the two paths of steepest descent originating from z± necessar-

ily end at 0 and in�nity, respectively. Again, the asymptotic behaviour

of I(z), given by Eq. (4.49) determines that the end points at in�nity are

±i∞. In Fig. 4.6, we show the paths of steepest descent and ascent of

R(z) originating from the saddle points z± for x = 0.3 > xc.

The arguments of the above proof can be extended to complex values of

x. Here we only consider the case x > 0, since we are mainly interested in

the asymptotic behaviour for real x around xc = 1
4
.

4.7 Asymptotic analysis of φ(qkx)

From Lemma 4.6.3 it follows that for 0 < x ≤ 1
4
, the contour C used in

the integral representation (4.38) can be deformed into a contour connect-

ing the saddle point z+ of f with ±i∞ via paths of steepest descent of
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−1 1

−1

1

Re(z)

Im(z)

rz+
r z−

Figure 4.6: Paths of steepest descent (thick) and ascent (thin) originating from
the saddle points z± of the function f for x = 0.3 > xc = 1

4 .

R(z) = Re(f(z)); for x > 1
4
, C can be deformed into a composite con-

tour connecting z± with 0 and ±i∞ via paths of steepest descent of R(z),

respectively � see Figs. 4.5 and 4.6.

For x > 0 and x 6= 1
4
, the saddle points are separated and Theorem 2.2.1

can be applied. The result is stated in the following proposition.

Proposition 4.7.1. Let k ∈ Z, and de�ne

c
(±)
0 =

gk(z±, q)√
f ′′(z±)

, (4.53)

and h± = f(z±)− π2

6
. We have the following.

(i) For q = e−ε → 1− and x ∈ (0, 1
4
),

φ(qkx) = e
h+
ε c

(+)
0

(
1 +O

(
ε
))
, (4.54a)

uniformly for x ∈ [x1, x2] if 0 < x1 < x2 <
1
4
.
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(ii) For q = e−ε → 1− and x ∈ (1
4
,∞),

φ(qkx) =
(
c
(+)
0 e

h+
ε + c

(−)
0 e

h−
ε

) (
1 +O

(
ε
))
, (4.54b)

uniformly for x ∈ [x3, x4] if
1
4
< x3 < x4 <∞.

Proof. Let k ∈ Z and suppose x ∈ (0,∞) \ {1
4
}. In this case, the saddle

points of f in the integral (4.42) are separated and the ordinary method

of steepest descents can be applied. We can also use Eq. (4.37) for (q; q)∞.

We distinguish the two cases as in the statement of the proposition.

(i) If 0 < x < 1
4
, then according to Lemma 4.6.3 the integration contour

C in Eq. (4.22) can be chosen as the contour connecting the saddle

point z+ = 1
2
(1+
√

1− 4x) with ±i∞ via paths of steepest descent of

R(z). Therefore Theorem 2.2.1 can be applied to the integral where

ω = π
2
and therefore ω0 = −π. This leads to Eq. (4.54a).

(ii) For x > 1
4
, the saddle points z± are complex conjugates to each other,

and according to Lemma 4.6.4, the integration contour C can be

chosen as a contour containing both saddle points and connecting z+

with i∞ and 0 and z− with −i∞ and 0 via paths of steepest descent

of R(z). The saddle point analysis proceeds exactly analogously to

the case x < 1
4
, with the di�erence that now both saddle points

contribute to the asymptotics. With this we obtain Eq. (4.54b).

Remark. Note that limx→0+ e
h+
ε c

(+)
0 = 1 = φ(0). Therefore, the validity of

the asymptotic expression (4.54a) can be extended to x = 0.
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Since for x = 1
4
, f ′′(z±) = f ′′(zc) = 0, the coe�cients in Eq. (4.53)

diverge in this case. To obtain an asymptotic expression which is valid in

a region containing x = 1
4
, we apply the Chester-Friedman-Ursell method

[19]. This leads us to the following theorem.

Theorem 4.7.1. Let k ∈ Z and 0 < x1 <
1
4
. Then there exists a x2 > xc

such that for q = e−ε → 1−,

φ(qkx) = (q; q)∞ e
β
ε

(
pk Ai

(
α

ε
2
3

)
ε
1
3 − qk Ai′

(
α

ε
2
3

)
ε
2
3

)
(1+O(ε)), (4.55)

uniformly for x ∈ [x1, x2]. Here,

α =

(
3

4
(f(z−)− f(z+))

) 2
3

and β =
1

2

(
f(z+) + f(z−)

)
, (4.56)

where the root is chosen such that α is real; the coe�cients pk and qk are

given for x 6= 1
4
by

pk =
α

1
4

√
2

(
gk(z+, 1)√
f ′′(z+)

+
gk(z−, 1)√
−f ′′(z−)

)
, (4.57a)

qk =
α−

1
4

√
2

(
gk(z+, 1)√
f ′′(z+)

− gk(z−, 1)√
−f ′′(z−)

)
, (4.57b)

and pk = limx→ 1
4
pk and qk = limx→ 1

4
qk for x = 1

4
.

Proof. Let k ∈ Z. For x = 1
4
, the two saddle points z± of the kernel f

de�ned in Eq. (4.38) coalesce in the point zc = 1
2
, and f and gk are analytic

around this point. Let α and β be de�ned as in Eq. (4.56), with the root

being chosen such that α is real for positive values of x.

By using the relation

Li2(z) + Li2(1− z) =
π2

6
− ln(z) ln(1− z) (0 < z < 1), (4.58)
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the expression for β can be simpli�ed for 0 < x < 1
4
to

β =
ln(x)2

4
+
π2

12
. (4.59)

Theorem 2.2.2 states that there exists a unique transformation T : z 7→

u(z), such that

f(z) =
u3

3
− αu+ β = p(u), (4.60)

which is analytic and bijective if x and z lie in small regions around xc = 1
4

and zc = 1
2
, respectively, and u(z±) = ±

√
α.

Denote the part of C which lies in the region of analyticity of T by

Cc. Since Cc contains the saddle points of f , the error from restricting

the integration contour C to Cc in the integral (4.42) decays exponentially

as q = e−ε → 1−. For 0 < x ≤ 1
4
, T maps Cc onto a segment Dc of

the contour D in the u-plane connecting the point +
√
α with the points

∞e±iπ3 via paths of steepest descent. For x > 1
4
, Cc is mapped onto a part

Dc of the composite contour D connecting ±
√
α with −∞ and ∞e±iπ3 ,

respectively, via paths of steepest descent. The action of the mapping T

is illustrated in Fig. 4.7. The error from extending Dc to the complete

contour D decays exponentially in both cases when q = e−ε → 1−. We

therefore have

φ(qkx) =

(
(q; q)∞

2πi

∫ ∞ei π3
∞e−i

π
3

e
p(u)
ε gk(z(u), 1)

dz

du
du

)
(1 +O(ε)) . (4.61)

Now we insert the ansatz

gk(z(u), 1)
dz

du
= pk + uqk + (u2 − α)H(u), (4.62)
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into Eq. (4.61), where H(u) is some analytic function of u. Substituting

u = ±
√
α into the above formula, we get

gk(z±, 1)
dz

du

∣∣∣∣
u=±

√
α

= pk ±
√
αqk. (4.63)

To obtain expressions for dz
du

∣∣
u=±

√
α
, we take the second derivative of Eq. (4.60)

with respect to u and substitute u = ±
√
α. This gives us

f ′′(z±)

(
dz

du

∣∣∣∣
u=±

√
α

)2

= ±2
√
α, (4.64)

where we used that f ′(z±) = 0. With this we obtain

dz

du

∣∣∣∣
u=±

√
α

=

√
2
√
α

±f ′′(z±)
=

√
2
√
αz±x√

1− 4x
, (4.65)

where the positive branch of the root has to be chosen. Here, we used that

f ′′(z±) = (2z± − 1)/(z±x). Substituting Eq. (4.65) into Eq. (4.63) and

solving for pk and qk, we obtain Eq. (4.57).

With Eq. (4.62), the integral in Eq. (4.61) becomes

1

2πi

∫ ∞ei π3
∞e−i

π
3

e
p(u)
ε gk(z(u), 1)

dz

du
du

=
1

2πi

∫ ∞ei π3
∞e−i

π
3

e
p(u)
ε

(
pk + uqk + (u2 − α)H(u)

)
du

= ε
1
3pk Ai

(
α

ε
2
3

)
− ε

2
3 qk Ai′

(
α

ε
2
3

)
+

ε

2πi

∫ ∞ei π3
∞e−i

π
3

e
p(u)
ε H ′(u)du,

where we integrated partially by using the fact that p′(u) = u2 − α. In

the limit q → 1−, the asymptotic is dominated by the �rst two terms.

Substituting the above expression into Eq. (4.42), we obtain Eq. (4.55) if

x lies in a small neighbourhood of xc = 1
4
.
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To verify that Eq. (4.55) is valid uniformly in a bigger interval, we use

the asymptotic expressions ([21, §9.7])

Ai(z) =
e−ζ

2
√
πz

1
4

(
1 +O(ζ−1)

)
, and (4.66a)

Ai′(z) = − e−ζz
1
4

2
√
π

(
1 +O(ζ−1)

)
, (4.66b)

where ζ = 2
3
z

3
2 , valid uniformly for | arg(z)| ≤ π − δ with δ > 0. Upon

substituting the above expressions into Eq. (4.55) for x < xc, we recover

Eq. (4.54a). Hence, the asymptotic expression holds uniformly for x ∈

[x1, x2], where 0 < x1 <
1
4
and x2 >

1
4
, if x2 − 1

4
is su�ciently small (we

did not prove that α stays nonzero for x > 1
4
).

If Eq. (4.55) is valid in the interval [1
4
, x2], then upon substituting asymp-

totic expressions for Ai(z) and Ai′(z) valid for z → −∞, Eq. (4.54b)

needs to be recovered. With this argument, the region of validity of The-

orem 4.7.1 can be extended further. This way of continuing uniform asymp-

totic expansions was examined in [72].
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Chapter 4. Uniform asymptotics of area-width weighted Dyck paths

4.8 Uniform asymptotics and scaling function of

G(x, q)

With Theorem 4.7.1 we obtain an asymptotic expression for G(x, q).

Theorem 4.8.1. For 0 < x ≤ 1
4
and q = e−ε → 1−,

G(x, q) =

(
z

1
2
+ + z

1
2
−

z
3
2
+ + z

3
2
−

)
1 +

(
z

1
2
− − z

1
2
+

z
1
2
− + z

1
2
+

)
ε
1
3α−

1
2F
(
αε−

2
3

)
1 +

(
z

3
2
− − z

3
2
+

z
3
2
− + z

3
2
+

)
ε
1
3α−

1
2F
(
αε−

2
3

)
 (1 +O(ε))

(4.67)

uniformly for x ∈ [x1, xc] if 0 < x1 < xc, where α is de�ned in Eq. (4.56),

z+ = 1
2
(1 +

√
1− 4x)

z− = 1
2
(1−

√
1− 4x)

 ,

and F (s) = d
ds

ln (Ai(s)).

Proof. This follows directly from inserting Eq. (4.55) with k = 0 and k = 1

into Eq. (4.12) and simplifying the obtained expression.

In Fig. 4.8, the numerical approximation of G(x, q) obtained from taking

a �nite convergent of the continued fraction Eq. (4.9) and the asymptotic

expression (4.67) are plotted as functions of x for di�erent values of ε. The

picture shows the close agreement of the two curves.

From Theorem 4.8.1, we obtain the scaling behaviour of G(x, q) around

the tricritical point (x, q) = (1
4
, 1).

Corollary 4.8.1. Let s ∈ (s1,∞), where s1 ≈ −2.34 denotes the largest
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zero of the Airy function. Then for x = 1
4
(1− sε 2

3 ) and q = e−ε → 1−,

G(x, q) = 2

(
1 +

Ai′(s)

Ai(s)
ε
1
3 +

(
3

2

(
Ai′(s)

Ai(s)

)2

− s

2

)
ε
2
3 +O(ε)

)
. (4.68)

Proof. This follows from substituting x = 1
4
(1 − sε 2

3 ) into Eq. (4.67) and

using that α ∼ 1− 4x for x→ 1
4
. The asymptotic expression holds for all

s for which F (s) <∞, hence if Ai(s) 6= 0.

As mentioned before, in Chapter 3, a di�erent parametrisation of Dyck

paths was used, therefore di�erent parameters of the scaling function were

obtained there. The generating function considered here is related to the

one considered in Chapter 3 by the relation G(x, q) = G(∞)
(√

x/q,
√
q
)
.

One veri�es that both expressions are equivalent by substituting x→ qx2

and q → q2 into the result derived in Subsection 3.5.1. In this way, we

validate the result from the heuristic scaling ansatz given in Section 3.3

for the case of Dyck paths.

In the following chapter, we will generalise our analysis of φ(qkx) to

a wider class of q-hypergeometric series which appear in the generating

functions of other two-dimensional lattice models.
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7−→
T

Im(z)

Re(z)

Im(u)

Re(u)

(a) 0 < x < 1
4

7−→
T

Im(z)

Re(z)

Im(u)

Re(u)

(b) x > 1
4

Figure 4.7: Illustration of the mapping T de�ned by Eq. (4.60) in the subcrit-
ical case (a) and supercritical case (b). The bold segments of the in-
tegration contour C in the z-plane (left) are mapped onto the bold

segments of the paths of steepest descents of p(u) = u3

3 − αu+ β.
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0.125 0.25 0.375 0.5

0

1

2

x

Figure 4.8: Plot of G(x, q) (black) against the uniform asymptotic expression
(4.67) (grey) for ε = 10−2 and x ranging between 0.05 and 1

2 .
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5 General q-hypergeometric series

5.1 Introduction

In this chapter, which consists of joint work with Thomas Prellberg, we

are going to derive general results on q-hypergeometric series, which will

be used in the following chapters, and which generalise the results from

Chapter 4. We will begin by giving the basic de�nitions, before deriving the

functional equation satis�ed by a q-hypergeometric series. For a certain

range of parameters, we will then obtain a contour integral expression

which will be the starting point for the asymptotic analysis carried out in

the subsequent chapters.

In the following, we will write (aj)
n
j=1 for a sequence of n values aj. In

the case n = 0, (aj)
n
i=1 is the empty sequence, denoted by −. For a given

set S, we write (aj)
n
j=1 ∈ S if aj ∈ S for all j ∈ [n]. Here, [n] denotes the

set {1, 2, . . . , n}.

5.2 Basic de�nitions and notation

Recall the de�nition (4.17) of the q-Pochhammer symbol. The general

q-hypergeometric series is de�ned as follows.

De�nition 5.2.1 ([31]). For r, s ∈ Z≥0, complex (ak)
r
k=1,(bk)

s
k=1, q 6= 0,

and such that for all k ∈ [s] and n ∈ Z≥0, bk 6= q−n and qn 6= 1, the general
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q-hypergeometric series is de�ned as

rφs

 (ak)
r
k=1

(bk)
s
k=1

; q, x

 =
∞∑
n=0

(∏r
i=1(ai; q)n∏s
j=1(bj; q)n

)
xn
(

(−1)nq(
n
2)
)1+s−r

(q; q)n
. (5.1)

Remark. The series de�ned in Eq. (5.1) is seen as a formal object and not

necessarily convergent. For |q| < 1, it converges absolutely for all x ∈ C if

r < s+ 1 and for all x ∈ C with |x| < 1 if r = s+ 1.

To save space we also occasionally write rφs((ak)
r
k=1; (bk)

s
k=1; q, s) for the

series de�ned in Eq. (5.1).

The fraction

Φ(x) =
φ(qx)

φ(x)
, (5.2)

where

φ(x) = rφs

 (ak)
r
k=1

(bk)
s
k=1

; q, (−1)s−rx

 (5.3)

occurs in the generating functions of many combinatorial lattice models;

the case r = 0, s = 1 and b1 = 0 was considered in Chapter 4.

In the next section, we will �rst derive the functional equation satis�ed

by φ(x), before discussing its asymptotic behaviour in the limit q → 1−, if

the parameters (ai)
r
i=1, (bj)

s
j=1 and x satisfy certain conditions.

5.3 Functional equation for φ(x) and Φ(x)

For q ∈ C, we de�ne the operator σ : φ(x) 7→ φ(qx), and prove the

following.

Lemma 5.3.1. Assume that the parameters of φ(x) satisfy the condi-
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tions given in De�nition 5.2.1. Then it satis�es the functional equation

[
x

(
r∏
i=1

1− aiσ

)
σ1+s−r +

(
s∏
j=1

1− bj
q
σ

)
(1− σ)

]
φ(x) = 0. (5.4)

Proof. We de�ne, for n ∈ Z≥0,

cn = (−1)n

(∏r
i=1(ai; q)n∏s
j=1(bj; q)n

)
q(

n
2)(1+s−r)

(q; q)n
. (5.5)

Thus,

φ(x) =
∞∑
n=0

cnx
n =

∞∑
n=1

cn−1x
n−1. (5.6)

From Eq. (5.5), we obtain that, for n ∈ N,

cn = −

(∏r
i=1(1− aiqn−1)∏s
j=1(1− bjqn−1)

)
q(n−1)(1+s−r)

1− qn
cn−1. (5.7)

Inserting Eq. (5.7) into Eq. (5.6), we get

φ(x) = c0 +
∞∑
n=1

cnx
n

= c0 −
∞∑
n=1

(∏r
i=1(1− aiqn−1)∏s
j=1(1− bjqn−1)

)
q(n−1)(1+s−r)

1− qn
cn−1x

n. (5.8)
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From Eq. (5.8) one veri�es that

(
s∏
j=1

1− bj
q
σ

)
(1− σ)φ(x)

= −
∞∑
n=1

(
r∏
i=1

1− aiqn−1
)
q(n−1)(1+s−r)cn−1x

n

= −
∞∑
n=1

x

(
r∏
i=1

1− aiqn−1
)
q(n−1)(1+s−r)cn−1x

n−1

= − x

(
r∏
i=1

1− aiσ

)
σ1+s−rφ(x).

Hence we obtain Eq. (5.4).

De�ning for given (aj)
r
j=1 and (bj)

s
j=1, k ∈ [r] and n ∈ [s],

αk = (−1)k
∑
S∈[r]k

∏
j∈S

aj and βk =
(−1)k

qk

∑
S∈[s]k

∏
j∈S

bj, (5.9)

where, for m,n ∈ Z≥0, [n]m is the set of m-subsets of [n], we can rewrite

Eq. (5.4) as

[
x

r∑
k=0

αkσ
1+s−r+k +

s∑
k=0

βkσ
k(1− σ)

]
φ(x) = 0. (5.10)

If we substitute

φ(qnx) = φ(x)
n−1∏
j=0

Φ(qjx) (5.11)

into Eq. (5.10), then we obtain the following Corollary.

Corollary 5.3.1. The function Φ(x) satis�es the functional equation

x

r∑
k=0

[
αk

(
s−r+k∏
j=0

Φ(qjx)

)]
+

s∑
k=0

[
βk

(
k−1∏
j=0

Φ(qjx)

)(
1− Φ(qkx)

)]
= 0.

(5.12)
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In the limit q → 1−, Eq. (5.12) yields

x

r∑
k=0

αkΦ(x)1+s−r+k +
s∑

k=0

βkΦ(x)k
(
1− Φ(x)

)
= 0. (5.13)

Our aim is to analyse the function φ(x) asymptotically in the limit q → 1−.

To this purpose, we will �rst derive a contour integral representation for

φ(x).

5.4 Contour integral representation of φ(x)

The following result is a generalisation of Lemma 4.5.2.

Lemma 5.4.1. Let r, s ∈ Z≥0, r ≤ s+1, 0 < q < 1, x ∈ C\{0}, |x| < 1

if r = s+ 1, and (ai)
r
i=1 ∈ (−∞, 1). Then,

φ(x) = lim
N→∞

A

2πi

∫
CN

(∏s
j=1(bj/z; q)∞∏r
i=1(ai/z; q)∞

)
z
s−r
2

(logq(z)+1)−logq(x)

(z; q)∞
dz, (5.14)

where for N ∈ Z≥0, the contour CN is de�ned in Eq. (5.16), with max ((ai)
r
i=1, 0) <

ρ < 1, ψ, ϕ ∈ (0, π), and

A = (q; q)∞

∏r
i=1(ai; q)∞∏s
j=1(bj; q)∞

. (5.15)

Proof. Let the parameters of φ(x) satisfy the conditions of the lemma.

This ensures that the series converges.
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De�ne for N ∈ N the contour CN : [−1, 2) 7→ C,

CN(t) =


ρ− t(q−N+ 1

2 − ρ)e−iψ for t ∈ [−1, 0),

ρ+ t(q−N+ 1
2 − ρ)eiϕ for t ∈ [0, 1),

ρ+ (q−N+ 1
2 − ρ)ei[ϕ−(ψ+ϕ)(t−1)] for t ∈ [1, 2),

(5.16)

where max ((ai)
r
i=1, 0) < ρ < 1 and ϕ, ψ ∈ (0, π). This contour surrounds

exactly the N leftmost poles of (z; q)−1∞ , which are located at z = q−n with

n ∈ Z≥0 � see Fig. 4.3 for the case N = 1.

Now we de�ne the function

h(z) = A

(∏s
j=1(bj/z; q)∞∏r
i=1(ai/z; q)∞

)
z
s−r
2

(logq(z)+1)−logq(x), (5.17)

where A is given by Eq. (5.15). Under the assumptions made, this function

is analytic inside the region surrounded by CN for arbitrary N . Therefore,

1

2πi

∮
CN

h(z)

(z; q)∞
dz =

N−1∑
n=0

h(q−n) Res
(
(z; q)−1∞ ; z = q−n

)
. (5.18)

For n ∈ Z≥0, we have

h(q−n) = A

(∏s
j=1(bjq

n; q)∞∏r
i=1(aiq

n; q)∞

)
q(

n
2)(s−r)xn

= (q; q)∞

(∏r
i=1(ai; q)n∏s
j=1(bj; q)n

)
q(

n
2)(s−r)xn,

Together with Lemma 4.5.1, we obtain for N ∈ N,

1

2πi

∮
CN

h(z)

(z; q)∞
dz =

N−1∑
n=0

(∏r
i=1(ai; q)n∏s
j=1(bj; q)n

)
(−x)n

(q; q)n
q(

n
2)(1+s−r), (5.19)

where the integration on the LHS is performed once clockwise, which is to
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be accounted for by a factor of −1. Taking the limit N → ∞, we obtain

Eq. (5.14).

Due to the limit occurring in Eq. (5.14), Lemma 5.4.1 does not yet give

an integral representation which we can use to analyse φ(x) asymptotically.

The following proposition states that there is a limiting contour C, such

that CN can be replaced by C in the limit N → ∞. This generalises

Prop. 4.5.1.

Proposition 5.4.1. Assume the parameters of φ(x) satisfy the condi-

tions of Lemma 5.4.1. Then,

φ(x) =
A

2πi

∫
C

(∏s
j=1(bj/z; q)∞∏r
i=1(ai/z; q)∞

)
z
s−r
2

(logq(z)+1)−logq(x)

(z; q)∞
dz, (5.20)

where the contour C is de�ned in Eq. (5.21), with max ((ai)
r
i=1, 0) < ρ < 1,

ψ, ϕ ∈ (0, π) and A is given by Eq. (5.15).

Proof. We need to show that in the limit N →∞, the contribution of the

circle segment CN([1, 2)) to the contour integral (5.19) vanishes. If this is

the case, then in the limit N →∞, CN can be replaced by the contour C,

de�ned as

C(t) =

 ρ− te−iψ for t < 0,

ρ+ teiϕ for t ≥ 0,
(5.21)

where max ((ai)
r
i=1, 0) < ρ < 1 and ϕ, ψ ∈ (0, π) � see Fig. 4.4.

Assume z ∈ C([1, 2)), hence, z = ρ+ (q−N+ 1
2 − ρ)eiθ, where θ ∈ (−ψ, ϕ].
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Then for N →∞,

logq(z) = −N +
1

2
− iθ

ε
+ o(1),

where ε = − ln(q). Therefore in this limit,

logq
(
z(s−r)(1+logq(z))/2−logq(x)

)
=

(
−N +

1

2
− iθ

ε

)(
s− r

2

(
−N +

3

2
− iθ

ε

)
+

ln(x)

ε

)
+ o(1)

=

(
s− r

2

)
N2 −

(
s− r +

ln(x) + iθ(r − s)
ε

)
N +O(1). (5.22)

Note that

lim
N→∞

∏s
j=1(bj/z; q)∞∏r
i=1(ai/z; q)∞

= 1. (5.23)

Using Eqs. (5.22) and (5.23) together with Eq. (4.29), we get

∣∣∣∣ h(z)

(z; q)∞

∣∣∣∣ ≤ b q
1+s−r

2
N2−(s−r)N |x|N ,

with an N -independent constant b > 0. Taking the integral over CN([1, 2))

leads to a further factor of q−N . We obtain the estimation

1

2πi

∫
CN ([1,2))

∣∣∣∣ h(z)

(z; q)∞

∣∣∣∣ dz ≤ b(ϕ+ ψ) q
1+s−r

2
N2−(1+s−r)N |x|N , (5.24)

For N →∞, the RHS of Eq. (5.24) tends to 0 for all complex x if r < s+1

and for |x| < 1 if r = s+1. With this we conclude that in the limitN →∞,

the contour CN can be replaced by C.

Now we are ready to prove the following lemma, which is the starting

point of the asymptotic analysis of φ(x) by means of the saddle point

method.
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Lemma 5.4.2. Assume r ≤ s + 1, 0 < q = e−ε < 1, k ∈ Z, x ∈ C,

(ai)
r
i=1, (bj)

s
j=1 ∈ (−∞, 1), and |x| < |q−k| if r = s+ 1. Then,

φ(qkx) =
A

2πi

(∫
C

exp

(
1

ε
f(z)

)
gk(z, q)dz

)
, (5.25)

where the contour C is de�ned in Eq. (5.21) with max((ai)
r
i=1, (bj)

s
j=1, 0) <

ρ < 1 and ψ, ϕ ∈ (0, π), A is de�ned in Eq. (5.15),

f(z) = ln (x) ln(z) + Li2(z)− s− r
2

ln(z)2+

+
r∑
i=1

Li2

(ai
z

)
−

s∑
j=1

Li2

(
bj
z

)
,

(5.26)

gk(z, q) =
1

zk

(
1

1− z

∏s
j=1(z − bj)∏r
i=1(z − ai)

) 1
2

exp
(
εS(z, q)

)
, (5.27)

and

S(z, q) = R1(z, q) +
r∑
i=1

R1

(ai
z
, q
)
−

s∑
j=1

R1

(bj
z
, q
)
, (5.28)

with R1 de�ned in Eq. (4.41).

Proof. With the de�nitions of the functions f and gk in Eqs. (5.26) and (5.27),

this follows directly from Prop. 5.4.1.

5.5 Saddle point landscape of the kernel f(z)

We will begin this section with a discussion of the asymptotic properties

of the function f de�ned in Eq. (5.26), thereby generalising Lemma 4.6.2.

The results from this discussion will be used to gain insights into how the

contours of steepest descent of the function R(z) = Re(f(z)) originating

from the saddle points of f lie in the complex plane.

Lemma 5.5.1. Assume r, s ∈ Z≥0, x ∈ C \ {0}, (ai)
r
i=0, (bj)

s
j=0 ∈ C and
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ϕ ∈ (−π, π). Then we have the following:

(i) For λ→∞,

f(λeiϕ) = − `
2

ln(λ)2 + (ln(x)− iγ) ln(λ) +O(1), (5.29)

uniformly with respect to ϕ, where ` = s− r + 1 and γ = `ϕ± π for

ϕ ≶ 0.

(ii) For λ→ 0,

f(λeiϕ) = −s0 − r0
2

ln(λ)2 +

[
ln

(
x

∣∣∣∣∣
∏

ai 6=0 ai∏
bj 6=0 bj

∣∣∣∣∣
)

+

+i

∑
ai 6=0

αi −
∑
bj 6=0

βj − (s− r)ϕ

 ln(λ) +O(1), (5.30)

uniformly with respect to ϕ, where αi = arg(−aie−iϕ) for i ∈ [r],

βj = arg(−bje−iϕ) for j ∈ [s], and r0 and s0 are the number of zeros

in (ai)
∞
i=0 and (bj)

∞
j=0, respectively.

Proof. We assume (ai)
r
i=0, (bj)

s
j=0 ∈ C, x ∈ C \ {0} and ϕ ∈ (−π, π).

(i) Let z = λeiϕ, where λ > 0 and 0 < |ϕ| < π. First note that it follows

from Eq. (4.48) that for λ→∞,

r∑
i=1

Li2

(ai
λ
e−iϕ

)
−

s∑
j=1

Li2

(
bj
λ
e−iϕ

)
= O

(
1

λ

)
, (5.31)

where the convergence is uniform for all ϕ ∈ (−π, π). Inserting the

above equation and Eq. (4.46) into Eq. (5.26), we get in the same
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limit,

f
(
λeiϕ

)
= − s− r

2
ln(λeiϕ)2 + ln(x) ln(λeiϕ)− 1

2
ln(λ)2−

− iψ ln(λ)− π2 − 3ψ2

6
+O

(
1

λ

)
= − s− r + 1

2
ln(λ)2+

+
(

ln(x)− i((s− r)ϕ+ ψ)
)

ln(λ) +O(1).

with ψ = ϕ ± π for ϕ ≶ 0 and where R(λ, ϕ) → 0 uniformly for all

ϕ ∈ (−π, π). This concludes the proof of the �rst part.

(ii) From Lemma 4.6.1 we have for a ∈ C \ {0}, λ→ 0 and ϕ ∈ (−π, π),

Li2

(a
λ
e−iϕ

)
= − 1

2
ln(λ)2 + (ln(|a|) + iα) ln(λ) +O(1), (5.32)

uniformly with respect to ϕ, where α = arg(−ae−iϕ). Inserting the

above expression into Eq. (5.26), we obtain

f(λeiϕ) = − s− r
2

ln(λeiϕ)2 + ln(x) ln(λeiϕ)+

+
∑
ai 6=0

(
−1

2
ln(λ)2 + (ln(|ai|) + iαi) ln(λ)

)
−

−
∑
bj 6=0

(
−1

2
ln(λ)2 + (ln(|bj|) + iβj) ln(λ)

)
+O(1)

= − s0 − r0
2

ln(λ)2 +

[
ln

(
x

∣∣∣∣∣
∏

ai 6=0 ai∏
bj 6=0 bj

∣∣∣∣∣
)

+

+ i

∑
αi 6=0

αi −
∑
βj 6=0

βj

 ln(λ) +O(1),

where αi = arg(−aie−iϕ) for i ∈ [r] and βj = arg(−bje−iϕ) for j ∈

[s], and r0 and s0 are the numbers of zeros in (ai)
r
i=0 and (bj)

s
j=0,
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respectively. This leads to the assertion.

Concerning the location of the saddle points, we have the following two

lemmas. Note that in the following, the function h is not the one used

above.

Lemma 5.5.2. Let r, s ∈ Z≥0, (ai)
r
i=1, (bj)

s
j=1 ∈ C, x ∈ C \ {0} and

z ∈ C \
(
{0} ∪ri=1 {ai} ∪sj=1 {bj}

)
. If f ′(z) = 0, then

χ(z) = x

(
r∏
i=1

z − ai

)
−

(
s∏
j=1

z − bj

)
(1− z) = 0. (5.33)

Proof. It can be assumed without loss of generality that ai 6= bj for all

(i, j) ∈ [r]× [s]. Taking the derivative of Eq. (5.26), we get

f ′(z) =
1

z

(
ln(x) +

r∑
i=1

ln
(

1− ai
z

)
−

s∑
j=1

ln

(
1− bj

z

)
− (s− r) ln(z)− ln(1− z)

)
. (5.34)

The RHS of the last expression evaluates to zero if

1

z
ln

(
x

zs−r(1− z)

∏r
i=1(1−

ai
z

)∏s
j=1(1−

bj
z

)

)
=

1

z
ln

(
x

1− z

∏r
i=1(z − ai)∏s
j=1(z − bj)

)
= 0,

and this is the case if and only if the argument of the logarithm equals

one, which is when Eq. (5.33) is satis�ed.

For z 6= 0, Eq. (5.33) can be rewritten as

x
r∑

k=0

αk
z1+s−r+k

+
s∑

k=0

βk
zk

(
1− 1

z

)
= 0, (5.35)
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where the (αj)
r
j=0 and (βj)

s
j=0 are de�ned in Eq. (5.9) with q = 1. Com-

paring this equation with Eq. (5.13), we see that for q = 1, Φ(x) is equal

to the inverse of a saddle point of f(z).

Lemma 5.5.3. Let r, s ∈ Z≥0, (ai)
r
i=1, (bj)

s
j=1 ∈ (−∞, 1), and de�ne µ =

max((ai)
r
i=1, (bj)

s
j=1, 0), with max(�) = −∞. Then we have the following:

(i) If µ = max((ai)
r
i=1), then for all x > 0, there exists a point z1 ∈ (µ, 1)

with f ′(z1) = 0 and this point is a local minimum of f(z) on the real

line.

(ii) If µ = max((bj)
s
j=1, 0), then there exists a value xc > 0 such that for

all 0 < x < xc, there exist two points z1, z2 ∈ (µ, 1) with z1 < z2,

f ′(z1) = f ′(z2) = 0, and where z1 is a local maximum and z2 is a

local minimum of f on the real line. For x = xc, there exists a point

zc with f ′(zc) = f ′′(zc) = 0 and for all x > xc, f
′(z) 6= 0 for all

z ∈ (µ, 1).

Proof. Assume the parameters satisfy the conditions stated in the lemma.

Note that it follows from the de�nition of f that one can assume without

loss of generality that ai 6= bj for all i ∈ [r] and j ∈ [s]. De�ne the value µ

as in the statement of the lemma. For z ∈ (µ, 1), f ′(z) is real and f ′(z) = 0

if and only if Eq. (5.33) is satis�ed. For x = 0, we have

χ(z) =

(
s∏
j=1

z − bj

)
(z − 1) , (5.36)

thus in that case χ(z) has zeros at z = 1 and z = bj < 1, where j ∈ [s].

Since z = 1 is a simple zero and the leading coe�cient of χ(z) is positive,

χ(z) changes from negative to positive at z = 1 and is negative for z ∈
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(max((bj)
s
j=1, 1). For arbitrary x, the derivative of χ(z) with respect to x

is

∂

∂x
χ(z) =

r∏
i=1

(z − ai). (5.37)

Now we distinguish the cases µ = max((ai)
r
i=1) and µ = max((bj)

s
j=1, 0).

(i) If µ = max((ai)
r
i=1) (implying that r > 0), then according to Eq. (5.34),

lim
z→µ+

f ′(z) = −∞ and lim
z→1−

f ′(z) =∞.

Since f ′(z) is continuous in (µ, 1), we conclude that there exists a z1

in (µ, 1) with f ′(z1) = 0, at which f ′(z1) changes from negative to

positive. Hence z1 is a local minimum of f on the real line.

(ii) If µ = max((bj)
s
j=1, 0), then the RHS of Eq. (5.37) is positive for

z ∈ (µ, 1), hence there is a c1 > 0 such that ∂
∂x
χ(z) > c1 for all

z ∈ (µ, 1). If we choose a c2 > 0 such that max
{

(1 − z)
∏s

j=1(z −

bj) | z ∈ (µ, 1)
}
< c2, then

χ(z) ≥ xc1 − c2. (5.38)

Now we de�ne

m(x) = inf
{
χ(z)

∣∣ z ∈ (µ, 1)
}
.

From Eq. (5.38) we know that χ(z) ≥ 0 for all z ∈ (µ, 1) if x > c2/c1,

hence the set
{
x > 0

∣∣m(x) ≤ 0
}
has a supremum. Since for all x >

0, χ(µ) > 0 and χ(1) > 0, it follows from the intermediate value

theorem that if m(x) < 0, then there are at least two values z1, z2
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with χ(z1) = χ(z2) = 0 and hence f ′(z1) = f ′(z2) = 0. Since

lim
z→µ+

f ′(z) =∞ and lim
z→1−

f ′(z) =∞,

the points z1 and z2 can be chosen such that z1 is a local maximum

and z2 is a local minimum of f , respectively, and z1 < z2. Ifm(x) = 0,

then there exists at least one point zc with f
′(zc) = f ′′(zc) = 0, which

is a local minimum of f on the real line. The assertion thus follows

with xc = sup
{
x > 0

∣∣m(x) ≤ 0
}
.

To analyse φ(x) asymptotically, we need to know how the paths of steep-

est descent and ascent of the function R(z) = Re(f(z)), originating from

the saddle points of f , lie in the complex plane. We begin by observing

the following.

Lemma 5.5.4. Let r, s ∈ Z≥0, (ai)
r
i=1, (bj)

s
j=1 ∈ (−∞, 1) and x > 0, and

de�ne the value of f(z) on the real line by its limit value when the real line

is approached from the upper half plane. Then we have

Im
(
f(z)

)
=



π
(∑

bj<z
ln
(
bj
z

)
−
∑

ai<z
ln
(
ai
z

)
+ ln

(
x

|z|s−r

))
(z < 0),

π
(∑

bj>z
ln
(
bj
z

)
−
∑

ai>z
ln
(
ai
z

))
(0 < z < 1),

π ln(z) (z ≥ 1).

Proof. This follows from the fact that for z = |z|eiϕ, |z| > 1 and ϕ→ 0+,

Im
(

Li2(z)
)

= π ln(z).

Using Lemma 5.5.4, we can now prove the following result.
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Lemma 5.5.5. For r ∈ Z≥0, s ∈ N, r < s + 1, (ai)
r
i=1 ∈ (−∞, 0] and

(bj)
s
j=1 ∈ [0, 1), there exists a xc > 0 such that for 0 < x ≤ xc, there is

a continuous and piecewise di�erentiable curve C : R → C \
(
(−∞, µ] ∪

[1,∞)
)
, where µ = max((bj)

s
j=1), with Im

(
f(C(t))

)
= 0 for all t ∈ R, and

lim
t→±∞

|C(t)| =∞, and lim
t→±∞

arg(C(t)) = ±π
`
,

where ` = 1 + s − r, and C(0) = z0, with z0 ∈
(
µ, 1
)
and f ′(z0) = 0.

Moreover, for all t 6= 0, Re
(
f(C(t))

)
< Re

(
f(z0)

)
, and for t→ ±∞,

Re
(
f(C(t))

)
∼ − `

2
ln(|C(t)|)2.

Proof. Assume the conditions of the lemma are satis�ed and de�ne µ =

max((bj)
s
j=1). Note that for this choice of parameters, one obtains from

Eq. (5.34) for λ > 0,

lim
ϕ→±π

Im
(
f ′(λeiϕ)

)
= ±π

λ

(s− r) +
∑
|ai|>λ

1

 . (5.39)

From Lemma 5.5.3 it follows that there exists a xc > 0 such that for

0 < x < xc, there are two points z1, z2 ∈ max(µ, 1), z1 < z2, with f
′(z1) =

f ′(z2) = 0, which are the local maximum and minimum of f on the real

line, respectively, and for x = xc, there is one point zc ∈ max(µ, 1) with

f ′(zc) = f ′′(zc) = 0, which is a local minimum of f(z) on the real line.

Because f(z) is real for z ∈ (µ, 1) if x > 0, it follows that f(z∗) = f(z)∗,

where the ∗ denotes complex conjugation. Therefore, it is su�cient to

consider the upper half plane.
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Since z1 is a local maximum of f(z) on the real line, it follows from the

general theory of analytic functions that there exists a path of steepest

ascent of R(z) = Re(f(z)) originating from z1 and leading into the upper

half plane. We call this path P1 in the following. On P1, the imaginary part

of f , denoted by I(z), is zero. Since r < s + 1, we see from Lemma 5.5.1

that R(z) tends to −∞ as |z| tends to ∞, and therefore P1 cannot end at

in�nity. Since f is analytic for z /∈ (−∞, µ]∪[1,∞), it therefore necessarily

ends in a point of the set (−∞, µ] ∪ [1,∞) where f is not analytic. Since

the paths of steepest ascent and descent are paths on which the imaginary

part of f is constant, it follows from the fact that I(z1) = I(z2) = 0

for 0 < x ≤ xc that the imaginary part of f needs to vanish at this end

point if f can be de�ned there as a limit value, or there needs to be a

contour of vanishing imaginary part leading into the end point, in case f

diverges there. The only point where f diverges is the origin z = 0. From

Lemma 5.5.4 we see that I(z) > 0 for z > 1. Therefore the possible end

points of P1 are on the line (−∞, 0] and z = 1.

The point z2 is a local minimum of f on the real line and therefore for

0 < x < xc, there exists a path of steepest descent of R(z) originating from

z2, leading into the upper half plane, the tangent of which is orthogonal to

the real axis at z2. We call this path P2. Now P2 can either end at in�nity,

at 0 or on the negative real line, but not at z = 1, since there is a path

of steepest ascent from z2 to 1, hence f(1) > f(z2), and therefore there

can be no path of steepest descent from z2 to 1. This also implies that P1

cannot end at z = 1, since this would result in an intersection with P2,

leading to a contradiction (at the point of intersection, the real part of f

would have to be both smaller and greater than R(z1)). To determine the

end point of P2 uniquely, we distinguish the following two cases.
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r < s. In this case, we see from Eq. (5.39) that the imaginary part of f ′(z)

is positive for all z slightly above the negative real axis. From this it

follows that the direction of steepest descent on a point slightly above

the negative real axis points away from the real axis. Therefore, a

path of steepest descent cannot end on the negative real axis, and

according to the discussion above, P2 either ends at 0 or in�nity, and

P1 either ends on the negative real axis or at 0. In both cases, the

path P2 then necessarily ends at in�nity, since P1 cannot intersect P2

and because 0 cannot be the end point of both paths. An example

for this case is shown in Fig. 4.5.

r = s. From Eq. (5.34) we see that again, f ′(z) has a positive imaginary part

slightly above the negative real axis if z lies between the minimum of

(ai)
r
i=1 and 0. Therefore, the path of steepest descent P2 cannot end

on that segment. If z is smaller than the minimal value of (ai)
r
i=1,

then according to Lemma 5.5.4, we have

Im
(
f(z)

)
= π ln(x).

From this it follows that neither P1 nor P2 can end at a point on the

segment z < min(ai)
r
i=1, unless x = 1 and unless the end point is a

saddle point, i.e. the real part of f ′(z) also vanishes at that point.

However, we see from Eq. (5.34) that for x = 1,

Re
(
f ′(z)

)
=

1

|z|

(
s∑
j=1

ln

(
1 +

bj
|z|

)

−
r∑
i=1

ln

(
1 +

ai
|z|

)
+ ln(1 + |z|)

) (
z < min(ai)

r
i=1

)
.
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Since this expression is strictly positive, it necessarily follows that P1

ends at 0 and P2 ends at in�nity. An example for this case is shown

in Fig. 5.1.

In both cases, P2 can be parametrised by a curve C as stated in the lemma,

and the asymptotic properties of C follow from the asymptotic behaviour of

R(z) = Re(f(z)), described in Lemma 5.5.1. Since P2 can possibly contain

further saddle points of f , the contour C may not be smooth everywhere.

-1 1

-1

1

Re(z)

Im(z)

P1

P2

r
z1

r
z2

(a) (aj)
r
j=1 = 0, (bj)

s
j=1 = 1

5 , x = 1
5

-1 1

-1

1

Re(z)

Im(z)

P1

P2

r
zc

(b) (aj)
r
j=1 = 0, (bj)

s
j=1 = 1

4 , x = 1
4

Figure 5.1: Paths of steepest descent and ascent if f satis�es the conditions
with r = s.

Lemma 5.5.5 ensures that the integration contour C used in Eq. (5.25)

can be deformed into a path of steepest descents of R(z), passing through

a saddle point of f on the real line, if the parameters satisfy certain con-

ditions. This makes it possible to apply the method of steepest descents

to obtain the asymptotic behaviour of φ(qkx). The case r = s + 1 is not

included in Lemma 5.5.5. In fact, there is no path of steepest descent con-

necting a saddle point on the segment of the real line where f is analytic
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with a point at in�nity in that case. However, it is still possible to apply

the method of steepest descents, since there does exist a suitable path of

descent. This fact is stated in the following lemma.

Lemma 5.5.6. For s ∈ N, r = s + 1, ai = 0 for i ∈ [r] and (bj)
s
j=1 ∈

[0, 1), there exists a xc > 0 such that for 0 < x ≤ xc and x < 1, there is

a continuous and piecewise di�erentiable curve C : R → C \
(
(−∞, µ] ∪

[1,∞)
)
, where µ = max((bj)

s
j=1), such that

lim
t→±∞

|C(t)| =∞, and lim
t→±∞

arg(C(t)) = ±π,

with C(0) = z0, with z0 ∈
(
µ, 1
)
and f ′(z0) = 0. Moreover, for all t 6= 0,

Re
(
f(C(t))

)
< Re

(
f(z0)

)
, and for t→ ±∞,

Re
(
f(C(t))

)
∼ ln(x) ln(|C(t)|).

Proof. If the parameters satisfy the named conditions, then as in the case

considered in the previous lemma there is a xc > 0 such that for 0 < x <

xc, there are two saddle points z1, z2 ∈ (µ, 1), where µ = max((bj)
s
j=1),

with z1 and z2 being the local maximum and minimum of f(z) on the

real line, respectively, and z1 < z2, which coalesce in one saddle point

of order greater than one for x = xc. The path of steepest ascent of

R(z) = Re(f(z)) originating from z1 and the path of steepest descent

originating from z2 and lying in the upper half plane are again called P1

and P2, respectively.

It follows from Lemma 5.5.1 that neither P1 nor P2 can end at a point

at in�nity, since Im(f(z)) 6= 0 for |z| → ∞. Since r0 > s0, P1 can end at 0.
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The only possible end point of P2 is z = − 1
x
, the point on the negative real

line at which, according to Lemma 5.5.4, the imaginary part of f vanishes

� see Figures 5.2(a) and (b) for the case r = 2, s = 1, b1 = 1
5
and x = 3

4

and x = xc = 4
5
, respectively. This means that there exists a curve C̃ :

(−1, 1)→ C \
(
(−∞, µ) ∪ [1,∞)

)
with C̃(0) = z2 and limt→±1 C̃(t) = − 1

x
,

and Im(f(C̃(t)) = 0 for all t ∈ (−1, 1).

-1 1

-1

1

Re(z)

Im(z)

P1

P2

r
A
A
AAK

z1

r
z2

(a) x = 3
4

-1 1

-1

1

Re(z)

Im(z)

P1

P2

r
zc

(b) x = 4
5

Figure 5.2: Paths of steepest descent and ascent of f if r = 2, s = 1, a1 = a2 =
0, b1 = 1

5 and x = 3
4(a) and x = xc = 4

5 (b). The latter value is
the critical value of x, for which the two saddle points z1 and z2
coalesce in the point zc.

Now we de�ne for a small δ > 0 the point

wδ = min
z∈P2

(
Re(z)

∣∣ Im(z) = iδ
)

+ iδ,

which exists if δ is chosen to be su�ciently small, the value

tδ = max
(
0 < t < 1

∣∣ C̃(t) = wδ
)
,
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and the contour C : R→ C \
(
(−∞, µ) ∪ [1,∞)

)
,

C(t) =


w∗δ + t+ tδ for t ∈ (−∞,−tδ),

C̃(t) for t ∈ [−tδ, tδ],

wδ + tδ − t for t ∈ (tδ,∞).

(5.40)

In Fig. 5.3, an example of C is shown, if the parameters of f are the same

as in Fig. 5.2(a) and δ ≈ 0.04. To see that C has the properties stated,

note that we have from Eq. (5.34) for z < 0,

Re
(
f ′(z)

)
=

1

z

(
ln(x)−

s∑
j=1

ln

(
1− bj

z

)
+ ln

(
|z|

1 + |z|

))
. (5.41)

This expression is positive for z < 0 if x < 1 and (bj)
s
j=1 ≥ 0. Therefore, if

0 < x ≤ xc and x < 1, the curve C is a path of descent connecting z2 with

in�nity.

-1 1

-1

1

Re(z)

Im(z)

C

r
z2

rwδ r

Figure 5.3: The curve C de�ned in Eq. (5.40) for r = 2, s = 1, a1 = a2 =
0, b1 = 1

5 , x = 3
4 and δ = 0.04.
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It is found that many q-hypergeometric series occurring in the combin-

atorics of lattice polygons satisfy the conditions of Lemmas 5.5.5 and 5.5.6.

In this case, φ(qkx) can be analysed by using the method of steepest des-

cents.

5.6 Asymptotic analysis of φ(qkx)

The next proposition generalises Prop. 4.7.1. We formulate the following

condition. Recall that R(z) = Re(f(z)).

Condition 5.6.1. The contour C in Eq. (5.25) can be chosen such that

it passes through an ordinary saddle point z0 of f , which is a local minimum

of f on the real line, and R(z0) > R(z) for all z 6= z0 on C.

Subject to the above condition, the following proposition holds.

Proposition 5.6.1. Assume that the parameters of φ(qkx) are such that

there exists a xc > 0 such that for 0 < x < xc, Condition 5.6.1 is satis�ed.

Then for 0 < x < xc and q = e−ε → 1−,

φ(qkx) = e
h0
ε (c0 +O(ε)

)
, (5.42)

uniformly for x ∈ [x1, x2] if 0 < x1 < x2 < xc, with

c0 =
gk(z0, 1)√
f ′′(z0)

, (5.43)

and

h0 = f(z0)−
π2

6
−

r∑
j=1

Li2(aj) +
s∑
j=1

Li2(bj). (5.44)
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Proof. If Condition 5.6.1 is satis�ed, then Theorem 2.2.1 can be applied to

the integral representation (5.25). Substituting the asymptotic forms given

by Eqs. (4.33) and (4.37) into the prefactor A, this leads to the result.

If the saddle point z0 ceases to be a saddle point of order one for x = xc,

then Prop. 5.6.1 breaks down at this point, as can be seen from the fact

that the coe�cient c0 diverges. If the following condition is satis�ed, then

an asymptotic expression which is valid uniformly for a range of parameters

including xc can be obtained in terms of generalised Airy integrals.

Condition 5.6.2. The function f is real for z ∈ (µ, 1), where 0 < µ < 1

and z0 is a local minimum of f on the real line. For x = xc, the saddle z0

coalesces with other saddle points of f to form a saddle point zc of order

n ≥ 2, and the contour C in Eq. (4.38) can be chosen to pass through zc

such that on C, R(z) < R(zc) for z 6= zc.

Theorem 5.6.1. Let the parameters of φ(qkx) be such that conditions

5.6.1 and 5.6.2 with n = 2 are satis�ed, and relabel z0 = z2. Let the

saddle point z1 with which z2 coalesces for x = xc be real and z1 < z2 for

0 < x < xc. Then for 0 < x ≤ xc and q = e−ε → 1−,

φ(qkx) = Ae
β
ε

(
pk Ai

(
α

ε
2
3

)
ε
1
3 − qk Ai′

(
α

ε
2
3

)
ε
2
3

)(
1 +O(ε)

)
, (5.45)

uniformly for x ∈ [x1, xc] if 0 < x1 < xc, where A is de�ned in Eq. (5.15),

α =

(
3

4
(f(z1)− f(z2))

) 2
3

and β =
1

2

(
f(z1) + f(z2)

)
, (5.46)
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and pk and qk are given for x < xc by

pk =
α

1
4

√
2

(
gk(z1, 1)√
f ′′(z1)

+
gk(z2, 1)√
−f ′′(z2)

)
, (5.47a)

qk =
α−

1
4

√
2

(
gk(z2, 1)√
f ′′(z2)

− gk(z1, 1)√
−f ′′(z1)

)
, (5.47b)

and pk = limx→x−c pk and qk = limx→x−c qk for x = xc.

Proof. Let the assumptions of the statement of the theorem be satis�ed.

Thus for x = xc, the ordinary saddle points z1 and z2 coalesce in the

point z = zc. Theorem 2.2.2 states that for x close to xc, there exists a

transformation T : z 7→ z(u), such that

f(z(u)) =
u3

3
− αu+ β = p(u), (5.48)

which is analytic and bijective if z lies in a small region containing zc, and

where the coe�cients are given by Eq. (5.46). Since z2 is assumed to be

a local minimum of f on the real line, z1 is a local maximum. We can

therefore choose a root for α which is positive for 0 < x ≤ xc. Under the

transformation T, z1 and z2 are mapped onto the points −|
√
α| and |

√
α|

in the u-plane, respectively. The part Cc of the contour C which lies in the

domain in which T is regular and bijective is mapped onto a segment Dc of

the contour D connecting the point |
√
α| with∞e± iπ3 via paths of steepest

descent of Re(p(u)) � see Fig. 4.7. Since f(z) and p(u) are maximal inside

Cc and Dc, respectively, the relative error from extending the integration

to the complete contours decays exponentially in the limit q = e−ε → 1−.
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We therefore have

φ(qkx) =

(
A

2πi

∫ ∞ei π3
∞e−i

π
3

e
p(u)
ε gk(z(u), 1)

dz

du
du

)
(1 +O(ε)) . (5.49)

Now we proceed analogously as in Chapter 4. Inserting the ansatz

gk(z(u), 1)
dz

du
= pk + uqk + (u2 − α)H(u), (5.50)

into Eq. (4.61), whereH(u) is some analytic function of u, and substituting

u = ±
√
α into the above formula, we get

gk(z1,2, 1)
dz

du

∣∣∣∣
u=±|

√
α|

= pk ± |
√
α|qk, (5.51)

with the + sign for z2 and the − sign for z1. From taking the second

derivative of Eq. (5.48) with respect to u, we get

dz

du

∣∣∣∣
u=±|

√
α|

=

√
2|
√
α|

±f ′′(z1,2)
, (5.52)

where the positive branch of the root has to be chosen, again with the +

sign for z2 and the − sign for z1. Substituting this into Eq. (5.51) and

solving for pk and qk, we obtain Eq. (5.47). The integral Eq. (5.49) can

then be evaluated, giving Eq. (5.45) for x su�ciently close to xc.

To show that the expression holds for all 0 < x ≤ xc, one proceeds

as in Chapter 4. For 0 < x < xc, the coe�cient α is strictly positive,

therefore the asymptotic expressions given in Eq. (4.66) can be inserted into

Eq. (5.45). Upon also inserting Eqs. (4.33) and (4.37) into the prefactor

A, we recover the result given in Prop. 5.6.1. This shows that Eq. (5.45)

holds uniformly in the stated region.
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6 Uniform asymptotics of further

models

In this chapter, we are going to consider three further models of lat-

tice polygons and paths, whose area-width, area-perimeter or interaction-

length generating functions can be expressed in terms of q-hypergeometric

series, satisfying the conditions of Theorem 5.6.1. Asymptotic expressions

for these series in the limit q → 1− are therefore provided by this theorem.

The three models we analyse are Schröder paths, directed column-convex

polygons (DCCP) and partially directed self-avoiding walks (PDSAW).

Schröder paths are included in the family of generalised Motzkin paths

which were considered in Chapter 3, where their area-width scaling beha-

viour was investigated heuristically. With the asymptotic result derived

in the following, we are going to rigorously validate Conjecture 3.3.1 for

the case ` = 2. To this end, we will �rst give a straightforward exact

solution for the area-width generating function of the model in terms of

q-hypergeometric series, which was derived in [47] via a di�erent method.

Partially directed self-avoiding walks (PDSAW) are self-avoiding random

walks on Z2 where the walker is not allowed to step in one direction. This

model slightly stands out from the other models considered in this thesis,

as here we do not consider a notion of area, but the number of adjacent

sites of the trajectory of the walker which are not visited directly after
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one another. The mathematical methodology, however, is in line with

the one employed for area-weighted polygon models. We will see that the

scaling function of PDSAW, weighted with respect to the length of the walk

and the number of interactions, is given by the inverse of the logarithmic

derivative of the Airy function.

Directed column-convex polygons (DCCP) are self-avoiding polygons

whose upper perimeter consists of a PDSAW and the lower perimeter con-

sists of a fully directed random walk, where a fully directed random walk is

a self-avoiding walk where the walker cannot step in two non-opposite dir-

ections. This model is a generalisation of the model of staircase polygons,

in that it contains staircase polygons as a subset. The model is exactly

solvable and a uniform asymptotic approximation of the area-width gen-

erating function is obtainable by using the general results of Chapter 5.

6.1 Schröder paths

6.1.1 Model de�nition and functional equation

As mentioned before, Schröder paths are included in the class of models

called generalised Motzkin paths which we considered in Chapter 3, where

they corresponded to the case ` = 2. Below we de�ne them once again

explicitly.

y

x

Figure 6.1: A Schröder path with 3 horizontal steps, width 18 and area 44.

De�nition 6.1.1 (Schröder path). For m ∈ Z≥0, a Schröder path (SP)
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is a lattice walk (xk, yk)
m
k=0 on Z2 such that x0 = y0 = ym = 0, and yk ≥ 0

for all k ∈ [m]. Moreover, for 0 ≤ k < m, (xk, yk) is either (xk+1, yk+1),

(xk + 1, yk − 1), or (xk + 2, yk), which corresponds to an up-, down- or

horizontal step, respectively.

Figure 6.1 shows an example for a Schröder path. The width of a SP

is the x-coordinate of its �nal position, and the area of a SP is de�ned as

in Chapter 3 as the total area between the trajectory and the line y = 0,

measured in unit cells of Z2. Thus the example shown in Fig. 6.1 has width

18 and area 44.

We consider the generating function

S(a, x, q) =
∞∑
k=0

∞∑
m=0

∞∑
n=0

sk,m,na
kxmqn, (6.1)

where sk,m,n is the number of Schröder paths with k pairs of up- and down-

steps, width m and area n. Substituting ` = 2 into Eq. (3.9), we obtain

the functional equation

1 + (x2 − 1)S(x) + aqx2S(qx)S(x) = 0, (6.2)

where we abbreviate S(a, x, q) = S(x). Thus, the parameter a controls the

relative weight between diagonal and horizontal steps of the walk, and x

and q are the weights conjugate to the width and area of the trajectory,

respectively.

In the next subsection, we will provide a straightforward derivation of

the exact solution for S(x) in terms of q-hypergeometric series.
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6.1.2 Solution of the functional equation

Analogous to the solution for the functional equation for Dyck paths, a

solution for S(a, x, q) = S(x) can be obtained by using the ansatz

S(x) =
φ(qt)

φ(t)
, (6.3)

where t = x2. This leads to the linear equation

[
t(1 + aqσ)σ + (1− σ)

]
φ(t) = 0, (6.4)

with σφ(t) = φ(qt). Comparing the above equation with Eq. (5.4), we see

that it is solved by the q-hypergeometric series

φ(aq, t, q) = φ(t) = 1φ1

 −aq
0

; q, t

 . (6.5)

6.1.3 Uniform asymptotics and scaling properties

For a > 0, Lemma 5.4.2, provides the integral representation

φ(a, qkt, q) =
A

2πi

∫
C

exp

(
f(z)

ε

)
gk(z, q)dz (6.6)

with the contour C being de�ned in Eq. (5.21) with 0 < ρ < 1, ψ, ϕ ∈

(0, π), A = (−a; q)∞(q; q)∞,

f(z) = ln(t) ln(z) + Li2(z) + Li2(−a/z), and (6.7)

gk(z, q) =
1

zk

(
z

(1− z)(z + a)

) 1
2

exp (εR(z, q)) . (6.8)
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Here, R(z, q) = R1(z, q)+R1(−a/z, q), whereR1(z, q) is de�ned in Eq. (4.41).

This remainder is bounded by a constant independent of q for all z on C.

From the �rst derivative

f ′(z) =
1

z
ln

(
t(z + a)

z(1− z)

)
, (6.9)

we get the two saddle points

z1 =
1

2

(
1− t−

√
d
)

and z2 =
1

2

(
1− t+

√
d
)
, (6.10)

where d = (1− t)2− 4at. The points z1 and z2 are the local maximum and

minimum of the function f on the real line, respectively. For 0 < t < tc =

1 + 2a − 2
√
a2 + a, both saddle points are real and 0 < z1 < z2 < 1, and

they coalesce in the point zc =
√
a2 + a− a for t = tc. Since for a > 0, the

parameters of f satisfy the conditions of Lemma 5.5.5, the contour C can be

chosen to connect the saddle point z2 with the points∞ exp (±iπ) via paths

of steepest descent of R(z) = Re(f(z)). The conditions of Theorem 5.6.1

are therefore satis�ed and hence this theorem provides the asymptotic

expression (5.45) for φ(a, qkt, q) for 0 < t ≤ tc. Since the asymptotics is

uniform for a ∈ [a1, a2] if 0 < a1 < a2 < ∞ and t ∈ [t1, tc] if 0 < t1 < tc,

it also holds when a is replaced by aq. From substituting the asymptotic

expressions for φ(aq, qx, q) and φ(aq, x, q) into Eq. (6.3), we obtain an

asymptotic expression for S(a, x, q) which is uniform in the same range of

parameters.

The coe�cient α is a regular function of x =
√
t around x = xc =

√
tc

with a non-vanishing �rst derivative α′. Setting x = xc − sε
2
3 , we obtain
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for s ≥ 0 in the limit q = e−ε → 1−,

S(a, x, q) =
1

zc

(
1 +

(
q(0)

p(0)
− q(1)

p(1)

)
Ai′(α′(xc)s)

Ai(α′(xc)s)
ε
1
3 +O

(
ε
2
3

))
, (6.11)

where the coe�cients are given by Eq. (5.47). This result is equivalent to

the one obtained in Chapter 3 for ` = 2, thereby proving Conjecture 3.3.1

in this case. Equation (6.11) can be extended to negative values of s as

long as Ai(α′(xc)s) 6= 0.

6.2 Interacting partially directed self-avoiding walks

6.2.1 Model de�nition and generating function

Partially directed self-avoiding walks (PDSAW) form a subset of the model

of self-avoiding walks (SAW) in that a PDSAW is an SAW, where the ran-

dom walker is not allowed to step in one direction. The precise de�nition

is the following.

De�nition 6.2.1. A partially directed self-avoiding walk (PDSAW) of

length m is a lattice walk (xk, yk)
m
k=0 on Z2, such that (x0, y0) = (0, 0),

(xi, yi) 6= (xj, yj) for i 6= j, and such that for 0 ≤ k < m, (xk+1, yk+1) is

either (xk + 1, yk), (xk, yk + 1) or (xk, yk − 1).

For a PDSAW (xk, yk)
m
k=0, we de�ne as an interaction any pair of points

ri = (xi, yi) and rj = (xj, yj) on the trajectory such that |i − j| > 1, and

|ri − rj| = 1. This terminology stems from the use of self-avoiding walks

as physical models of chain molecules. In these models, the points on the

trajectory of an SAW represent small molecular units, called monomers,

which are linked together to form a chain. If two non-neighbouring parts of

the chain are spatially close to each other, they interact physically, and this
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x
y

Figure 6.2: A partially directed self-avoiding walk (PDSAW) of length 20 with
the underlying lattice (dotted) and arrows indicating the directions
of the coordinate axes. The springs mark the self-interactions of
the chain. Thus, there are 6 interactions in this example.

is taken into account by including an interaction energy in the partition

function describing the system. In Fig. 6.2, we show an example PDSAW

of length 20 with 4 interactions. The critical behaviour and the scaling

behaviour of interacting PDSAW was studied in [49, 55] and again in the

recent works [43, 16, 17].

The interaction-length generating function of PDSAW is de�ned as

P (x, y, ω) =
∞∑

mx=0

∞∑
my=0

∞∑
n=0

cmx,my ,nx
mxymyωn, (6.12)

where cmx,my ,n is the number of PDSAW trajectories with mx horizontal

and my vertical steps and n interactions. In [49], the solution

P (x, y, ω) =
y − q

2y(Φ(x(q − y))− 1) + (y − q)(1− x)
(6.13)

was derived, where q = yω, and

Φ(x) =
φ(qx)

φ(x)
(6.14)
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with

φ(x) =
∞∑
n=0

qn(n−1)/2(−x)n

(y; q)n(q; q)n
= 1φ1

 0

y
; q , x

 . (6.15)

This q-hypergeometric series is in the class satisfying the conditions of

Theorem 5.6.1, but its asymptotics were also analysed in [52], since it also

appears in the exact solution for the area-perimeter generating function of

staircase polygons, which is given by

S(x, y, q) = y

(
1φ1(0; qy; q; q2x)

1φ1(0; qy; q; qx)
− 1

)
. (6.16)

6.2.2 Uniform asymptotics and scaling properties

Theorem 5.3 of [52] states that for 0 < x, y < 1 and q = e−ε → 1−,

S(x, y, q) =
1

2

(
1− x− y +

2ε
1
3 Ai′(αε−

2
3 )

α
1
2 Ai(αε−

2
3 )
d

1
2

)
(1 +O(ε)), (6.17)

where d = d(x, y) = 1
4

((1− x− y)2 − 4xy) and α = α(x, y) is given by

4

3
α

3
2 = ln(zm +

√
d) ln(1− zm +

√
d)

− ln(zm −
√
d) ln(1− zm −

√
d) + Li2(zm −

√
d)+

+ Li2(1− zm −
√
d)− Li2(zm +

√
d)− Li2(1− zm +

√
d), (6.18)

with zm = 1
2
(1− x− y), and for d→ 0,

α ∼
(

4

1− (x− y)2

) 4
3

{(
1− x− y

2

)2

− xy

}
. (6.19)

The asymptotic expression (6.17) is uniform for x and y lying in compact

subsets of (0,∞) and (−∞, 1), respectively. Therefore, it also holds upon
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substituting q−1x(q − y) for x and q−1y for y. By using the relation

Φ(x(q − y)) =
q

y
S
(
q−1x(q − y), q−1y, q

)
+ 1, (6.20)

we obtain for d̃ = d(q−1x(q − y), q−1y) ≥ 0 and q = e−ε = yω → 1−,

P (x, y, ω) =
(y − 1)α̃

1
2

2ε
1
3 d̃

1
2

Ai(α̃ε−
2
3 )

Ai′(α̃ε−
2
3 )

(1 +O(ε)) , (6.21)

with α̃ = α(q−1x(q − y), q−1y)). This expression is valid in particular in

the scaling limit where d̃ → 0 and q = e−ε → 1− such that α̃ε
2
3 is held

constant.

6.3 Directed column-convex polygons

6.3.1 Model de�nition and generating function

As already mentioned in the introduction, directed column-convex poly-

gons (DCCP) form a subset of self-avoiding polygons which includes the

set of staircase polygons. To de�ne them, recall the de�nition of a par-

tially directed walk (PDSAW) from the last section. Fully directed walks

(FDW) are de�ned analogously, with the di�erence that from a point (x, y)

on the trajectory of a FDW, the walker can only step towards (x + 1, y)

or (x, y + 1). Thus, an FDW is an SAW where steps in two non-opposite

directions are forbidden. Now DCCP are de�ned as follows.

De�nition 6.3.1. A directed column-convex polygon (DCCP) is a poly-

gon on the square lattice Z2 with a fully directed walk as lower perimeter

and a partially directed walk as upper perimeter, which only meet at their

start and end points.
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Figure 6.3: A directed column-convex polygon of area 18, horizontal perimeter
14, vertical perimeter 20 and thus total perimeter 34.

The horizontal (vertical) perimeter of a DCCP is the number of steps

in x-direction (y-direction) which one needs to take to travel around the

polygon once, and the area of a DCCP is the number of unit cells of Z2

enclosed by its perimeter � Fig. 6.3 shows an example.

The area-perimeter generating function of DCCP is de�ned as

C(x, y, q) =
∞∑

mx=0

∞∑
my=0

∞∑
n=0

cmx,my ,nx
mxymyqn, (6.22)

where cmx,my ,n is the number of DCCP with horizontal perimeter 2mx,

vertical perimeter 2my and area n.

In [53], the functional equation

0 = C(q2x)C(qx)C(x) + yC(q2x)C(qx) + yC(q2x)C(x)

− (1 + q)C(qx)C(x) + y2C(q2x)− y(1 + q)C(qx)

+ q(1 + qx(y − 1))C(x) + yq2x(y − 1), (6.23)

was derived, where C(x, y, q) is abbreviated as C(x). For q = 1, one gets

from Eq. (6.23) the cubic algebraic equation

C(x)3 + 2(y − 1)C(x)2 + (y − 1)(y + x− 1)C(x) + yx(y − 1) = 0.
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In the same reference, a solution for C(x) was derived as

C(x) = y

(
H(qx)

H(x)
− 1

)
, (6.24)

where

H(x) =
∞∑
n=0

q(
n
2)(−qx(1− y))n

(y; q)n(qy; q)n(q; q)n
= 2φ2

 0, 0

y, qy
; q, qx(1− y)

 . (6.25)

The asymptotic behaviour of C(x, y, q) in the limit q → 1− will be studied

in the next subsection.

6.3.2 Uniform asymptotics and scaling properties

Using that (qy; q)n = (1−yqn)(y;q)n
1−y in Prop. 5.4.1 and applying Lemma 5.4.2,

we get for ξ > 0, y < 1 and 0 < q = e−ε < 1 the integral representation

2φ2(0, 0; y, qy; q, qkξ) =
(1− y)(q; q)∞

2πi(y; q)2∞

∫
C

exp

(
1

ε
f(z)

)
gk(z, q)

1− y
z

dz, (6.26)

where the functions f and gk are given by Eqs. (5.26) and (5.27) with

r = s = 2, a1 = a2 = 0 and b1 = b2 = y, and the contour C is de�ned

in Eq. (5.21) with (ψ, ϕ) ∈ (0, π) and y < ρ < 1. For 0 < y < 1, the

parameters of f satisfy the conditions of Lemma 5.5.5, hence there is a

value ξc > 0 such that C can be chosen as a contour connecting a saddle

point of f lying on the segment (y, 1) with two points at in�nity via paths

of steepest descents of the function R(z) = Re(f(z)). The saddle points

of f are the zeros of the polynomial

s(z) = ξz2 − (z − y)2(1− z). (6.27)
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For 0 < y < 1 and 0 < ξ < ξc, the function f has three real saddle

points 0 < z3 < y < z1 < z2 < 1, and z1 and z2 coalesce for ξ = ξc.

The asymptotic behaviour of 2φ2(0, 0; y, qy; q, qx(1− y)) for 0 < x ≤ xc =

ξc/(1 − y) is therefore given by Theorem 5.6.1, with the function gk(z, q)

replaced by gk(z, q)/(1− y
z
).

For example, in the symmetric case x = y, the saddle points z1 and z2

coalesce for x = xc = (10
2
3 − 4)/3 in the point

zc =
10

2
3 − 4

10
1
3 − 1

(6.28)

For s ≥ 0 and q = e−ε → 1−,

C(xc − sε
2
3 , xc − sε

2
3 , q) = xc

(
1

zc
− 1

)
+ b0

Ai′(b1s)

Ai(b1s)
ε
1
3 +O(ε

2
3 ), (6.29)

where b0 ≈ 0.29 and b1 = α′(xc) ≈ 6.89. From considering the imaginary

part of the function f at the saddle point z2, it is possible to extend the

region of validity of the above equation to negative values of s, as long as

Ai(b1s) 6= 0.
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7 Area-length scaling of Bernoulli

meanders

7.1 Introduction

Bernoulli meanders (or ballot paths) are lattice walks de�ned similarly to

Dyck paths, the only di�erence being that a Bernoulli meander need not

end on the line y = 0. Thus, the model contains Dyck paths as a special

case, and an expression for the area-length generating function of Bernoulli

meanders in terms of the area-width generating function of Dyck paths

can be obtained via a construction explained below. Using this expression,

asymptotic results for the meander generating function can be obtained

from the results for Dyck paths which were derived in Chapter 4.

The probability distribution of the area under a Bernoulli meander in

the limit of the length of the walk tending towards in�nity was derived by

Takács in [69].

The reason for choosing the word length in this section rather than

width is due to the fact that, contrary to the generalised Motzkin paths

considered in Chapter 3, for Bernoulli meanders no confusion is possible

between the number of steps of the trajectory and the horizontal distance

between its end points.

We begin by de�ning the model precisely and derive an expression for
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the generating function which we consider. Then we will state the �nal

result of our computations, and the rest of the chapter contains the steps

leading to this result.

The results in this chapter were obtained with Christoph Richard.

7.2 The model

Bernoulli meanders are de�ned as follows.

De�nition 7.2.1 (Bernoulli meander). For m ∈ Z≥0, a Bernoulli me-

ander of length m is a lattice walk (xk, yk)
2m
k=0 on Z2 such that (x0, y0) =

(0, 0), and yk ≥ 0 for all k ∈ [m]. Moreover, for 0 ≤ k < 2m, (xk, yk)

is either (xk + 1, yk + 1) or (xk + 1, yk − 1), corresponding to an up- or

down-step, respectively.

y

x

Figure 7.1: A Bernoulli meander of length 18 and area 49. The shaded squares
have unit area. The dotted grid shows the underlying lattice, and
the small arrows indicate the directions of the coordinate axes.

An example for a Bernoulli meander is shown in Fig. 7.1. We will refer to

them as meanders from now on. The length of a meander is the number of

steps it consists of and the area is here de�ned as the sum of the heights of

all points on the trajectory. Here, the height of a point is its y-coordinate.
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7.3 Functional equation and area-length generating

function

First we note that the de�nition of the area as the sum of heights of all

points on the trajectory coincides for Dyck paths with the total area under

the path measured in units of lattice cells. Thus, the area-length generating

function

D̃(x, q) =
∞∑
m=0

∞∑
n=0

dm,nx
mqn, (7.1)

where dm,n is the number of Dyck paths with length m and area n, de�ned

as the sum of heights of all points on the trajectory, was already con-

sidered in Chapter 3. Here we use the tilde to distinguish this generating

function from the function D(x, q) considered in Chapter 4, where a di�er-

ent parametrisation was used. Accordingly, D̃(x, q) satis�es the functional

equation

D̃(x, q) = 1 + x2qD̃(qx, q)D̃(x, q). (7.2)

Comparing the above equation with Eq. (4.7), we see that D̃(x, q) =

D(qx2, q2). Hence, we obtain from Eq. (4.12) the exact solution

D̃(x, q) =
φ(q3x2, q2)

φ(qx2, q2)
, (7.3)

where φ(x, q) = 0φ1(−; 0; q,−x).

Now we consider the generating function

M(x, q) =
∞∑
m=0

∞∑
n=0

bm,nx
mqn, (7.4)

where bm,n is the number of meanders of lengthm and area n. A functional

equation forM(x, q) is obtained by noting that a meander is either a Dyck
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+=

Figure 7.2: Graphical interpretation of Eq. (7.5). A meander is either a Dyck
path, or a Dyck path followed by an up-step followed by a meander.

path, or a Dyck path followed by an up-step, followed by a meander. This

leads to the functional equation

M(x, q) = D̃(x, q) + xqD̃(x, q)M(qx, q), (7.5)

which was also given in [44]. Here the factor of q in the �rst argument ofM

on the rhs accounts for the fact that the meander is elevated by one, and

the factor xq represents the weight connecting Dyck path and meander.

Figure 7.2 shows a graphical interpretation of Eq. (7.5). Setting q = 1 in

this equation and using D̃(x, 1) = 1
2x2

(1−
√

1− 4x2), we obtain the length

generating function M(x, 1) = M(x) of meanders as

M(x) =
1√
1
2
− x

1√
1
2

+ x+
√

1
2
− x

. (7.6)

Hence for x→ 1
2

−
, M(x) = (1

2
−x)−

1
2 +O(1). For arbitrary q, iterations

of Eq. (7.5) yield

M(x, q) =
∞∑
h=0

xhq(
h+1
2 )

h∏
k=0

D̃(qkx, q), (7.7)

where each summand of the in�nite series represents the generating func-

tion of meanders with a �xed height of the end point. Upon substituting
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Eq. (7.3) into the above expression, we get after simpli�cation

M(x, q) =
1

φ(qx2, q2)

∞∑
h=0

φ(q2h+3x2, q2)xhq(
h+1
2 ). (7.8)

7.4 The main result

We denote the integral of the Airy function Ai for x ∈ R as

I(x) =

∫ x

−∞
Ai(y)dy. (7.9)

In ([21, §9.10(iv)]), the values I(0) = 2
3
and limx→∞ I(x) = 1 are given.

The following is the main result of this chapter.

Proposition 7.4.1. For s ∈ (s0,∞) and x = 1
2

(
1− sε 2

3

)
,

M(x, e−ε) =
F (s)

ε
1
3

+O(1) (ε→ 0+), (7.10)

where s0 ≈ 2−
1
3a0, with a0 ≈ −2.34 being the largest zero of Ai(s), and

F (s) = 2
2
3

1− 3 I(2
1
3 s)

Ai(2
1
3 s)

, (7.11)

with I(s) de�ned in Eq. (7.9).

In the following sections we will carry out the calculations leading to

this result.
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7.5 Uniform asymptotics of M(x, q)

With φ2(x, q) = φ(q2x, q), Eq. (7.8) can be rewritten as

M(x, q) =
1

φ2(q−3x2, q2)

∞∑
h=0

φ2(q
2h−1x2, q2)xhq(

h+1
2 ). (7.12)

The motivation for this step is that insertion of the asymptotic expression

for φ(q2x, q) will lead to an expression with the structure of a Jackson

integral [37]. From Theorem 4.7.1, we de�ne the leading asymptotic con-

tribution to φ(q2x, q) in the limit q = e−ε → 1− as

φas
2 (x, q) = (q; q)∞ exp

(
β(x)

ε

)
H(x, q), (7.13)

where α(x) and β(x) are de�ned in Eq. (4.56) and

H(x, q) = p2(x)ε
1
3 Ai

(
α(x)

ε
2
3

)
+ q2(x)ε

2
3 Ai′

(
α(x)

ε
2
3

)
, (7.14)

with the coe�cients p2 and q2 given in Eq. (4.57). Theorem 4.7.1 asserts

that in the limit q = e−ε → 1−,

φ2(x, q) = φas
2 (x, q)(1 +O(ε)), (7.15)

and there exists a x2 >
1
4
such that the asymptotics are uniform for x ∈

[x1, x2] if 0 < x1 < x2. With this we prove the following result.

Lemma 7.5.1. For x ∈ (0, 1
2
] and q = e−ε → 1−,

M(x, q) =

(
∞∑
h=0

H(q2h−1x2, q2)

H(q−3x2, q2)

qh+1

x

)
(1 +O(ε)), (7.16)

uniformly for x ∈ [x1,
1
2
] if 0 < x1 <

1
2
.
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Proof. Let x ∈ (0, 1
2
] and δ ∈ (0, x). Then qhx < δ if h ≥ h0(q), where

h0(q) =

⌈
1

ln(q)
ln

(
δ

x

)⌉
. (7.17)

Now we consider the sum

M (t)(x, q) =
∞∑

h=h0(q)

φ2(q
2h−1x2, q2)

φ2(q−3x2, q2)
xhq(

h+1
2 ) (7.18)

Since D̃(x, 1) ≤ 2 for x ≤ 1
2
, we see from Eq. (7.7) that

M (t)(x, q) ≤ 2
∞∑

h=h0(q)

q(
h+1
2 ) = 2q(

h0+1
2 )

∞∑
k=0

qkh0+
k2

2
− k

2

≤ 2 q
h20
2

∞∑
k=0

qk ≤ 2
e−

1
2ε

ln( δ2)
2

1− q
(7.19)

with h0 = h0(q) and ε = − ln(q). The right term in the second line tends

to 0 exponentially as q → 1−. SinceM(x, 1) ≥ 1 for x ∈ (0, 1
2
], this implies

M(x, q) =

h0(q)∑
h=0

φ2(q
2h−1x2, q2)

φ2(q−3x2, q2)
xhq(

h+1
2 )

(1 + o(ε)
)
. (7.20)

Since q2h−1x2 > δ2 > 0 for 0 ≤ h ≤ h0(q), in the limit q = e−ε → 1−,

φ2(q
2h−1x2, q2)

φ2(q−3x2, q2)
=
φas
2 (q2h−1x2, q2)

φas
2 (q−3x2, q2)

(1 +O(ε)) , (7.21)

uniformly for all h ∈ [0, h0(q)]. Inserting Eq. (7.13) into this expression

and using Eq. (4.59) for β = β(x), we arrive at Eq. (7.16).

For x > 0 and a bounded function f : [0, x] 7→ R, the Jackson integral
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is de�ned in [37] to be

∫ x

0

f(y)dqy = x(1− q)
∞∑
n=0

f(qnx)qn. (7.22)

If f is continuous, then in the limit q → 1−, the Jackson integral converges

towards the Riemann integral,

lim
q→1−

∫ x

0

f(y)dqy =

∫ x

0

f(y)dy. (7.23)

Concerning the di�erence between Jackson and Riemann integral, we have

the following Lemma.

Lemma 7.5.2. For x > 0, q ∈ (0, 1) and f : [0, x] 7→ R di�erentiable,

∣∣∣∣∫ x

0

f(y)dy −
∫ x

0

f(y)dqy

∣∣∣∣ ≤ x2(1− q)2
∞∑
n=0

|f ′(ξn)|q2n, (7.24)

where for n ∈ Z≥0, ξn ∈ [qn+1x, qnx] .

Proof. For continuous f , we have

∫ x

0

f(y)dqy −
∫ x

0

f(y)dy =
∞∑
n=0

(
xqn(1− q)f(qnx)−

∫ qnx

qn+1x

f(y)dy

)
.

If f is also di�erentiable, then according to the mean value theorem [21],

there exists for each n ∈ Z≥0 a ηn ∈ [qn+1x, qnx], such that

∫ qnx

qn+1x

f(y)dy = xqn(1− q)f(ηn). (7.25)

Hence, we obtain that

∫ x

0

f(y)dy −
∫ x

0

f(y)dqy = x(1− q)
∞∑
n=0

(f(qnx)− f(ηn))qn. (7.26)
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Again it follows from the mean value theorem that for each n ∈ Z≥0, there

exists a ξn ∈ [ηn, q
nx], such that f(qnx)− f(ηn) = f ′(ξn)(qnx− ηn), hence

∫ x

0

f(y)dy −
∫ x

0

f(y)dqy = x(1− q)
∞∑
n=0

f ′(ξn)(qnx− ηn)qn. (7.27)

Taking the absolute values on both sides of Eq. (7.27) and estimating

qnx− ηn ≤ qn(1− q), we obtain Eq. (7.24).

Now we de�ne for x ∈ (0, 1
4
] and q = e−ε ∈ (0, 1) the functions

g(x, q) = p2(x) Ai

(
α(x)

ε
2
3

)
and h(x, q) = q2(x) Ai′

(
α(x)

ε
2
3

)
. (7.28)

Comparing the de�nition of the Jackson integral with Eq. (7.16), we see

that for q = e−ε → 1−,

M(x, q) =

∫ x

0

(
g(q−1y2, q2)− h(q−1y2, q2)(2ε)

1
3

)
dqy

x2(1− q)
(
g(q−3x2, q2)− h(q−3x2, q2)(2ε)

1
3

)(1 +O(ε)), (7.29)

The following Lemma gives an estimate of the error made when the Jackson

integral in Eq. (7.29) is replaced by a Riemann integral.

Lemma 7.5.3. For x ∈ (0, 1
2
] and q = e−ε → 1−,

∫ x

0

g(q−1y2, q2)dqy =

∫ x

0

g(q−1y2, q2)dy +O(ε) (7.30a)∫ x

0

h(q−1y2, q2)dqy =

∫ x

0

h(q−1y2, q2)dy +O(ε) (7.30b)

uniformly with respect to x.

Proof. Since f(z−) > f(z+) for x ∈ (0, 1
4
), we have α(q−1y2) > 0 for
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y ∈ (0,
√
q

2
), and in the limit y → 0+,

α(q−1y2) ∼
(

3

2

) 2
3

ln(y)
4
3 and α′(q−1y2) = O

(
y−2 ln(y)

1
3

)
. (7.31)

From Eq. (4.57), we get in the same limit,

p2(q
−1y2) = O(y−2 ln(y)

1
3 ) and p′2(q

−1y2) = O(y−4 ln(y)
1
3 ). (7.32)

Substituting the above estimation for p2(q
−1y2) and the asymptotic ex-

pression (4.66) for the Airy function into Eq. (7.28), we conclude that for

q < 1,

lim
y→0+

g(q−1y2, q2) = 0,

and since for y ∈ (0, 1
2
), g(q−1y2, q2) → 0 pointwise for q → 1−, this

implies that the Riemann integral on the RHS of Eq. (7.30a) is bounded

by a constant for all x ∈ (0, 1
4
] and q ∈ (0, 1).

For the remainder we get from Lemma 7.5.2

∣∣∣∣∫ x

0

g(q−1y2, q2)dqy −
∫ x

0

g(q−1y2, q2)dy

∣∣∣∣
≤ x2(1− q)2

∞∑
n=0

∣∣g′(q−1ξ2n, q2)∣∣q2n, (7.33)

where g′(q−1y2, q2) = ∂
∂y
g(q−1y2, q2) and ξn ∈ [qn+1x, qnx] for n ∈ Z≥0. We

need to �nd a su�cient bound for this derivative, which is given by

g′
(
y2

q
, q2
)

=
2y

q

[
p′2

(
y2

q

)
Ai

(
α(q−1y2)

(2ε)
2
3

)
+

+ p2

(
y2

q

)
Ai′

(
α(q−1y2)

(2ε)
2
3

)
α′(q−1y2)

(2ε)
2
3

]
. (7.34)
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Using the estimations (7.31) and (7.32) in Eq. (7.34), we obtain that for

q ∈ (0, 1), limy→0+ g
′ (q−1y2, q2) = 0. Moreover, since α(x) ∼ 1 − 4x for

x→ 1
4
, we have for y = 1

2
(1− εφ′) 1

2 with 0 < φ′ < 2
3
, and q = e−ε → 1−,

α(q−1y2)

ε
2
3

∼ εφ
′− 2

3 →∞.

From Eq. (4.66) it follows that g′(q−1y2, q2) is bounded by a constant if

y ∈
(
0, 1

2
(1 − εφ′) 1

2

]
where 0 < φ′ < 2

3
. For y ∈

[
1
2
(1 − εφ′) 1

2 , 1
2

]
, we have

the weaker bound g′(q−1y2, q2) = O(ε−
2
3 ) as q = e−ε → 1−.

Now assume 0 < φ′ < 2
3
. We split up the sum on the RHS of Eq. (7.33)

as

∞∑
n=0

∣∣g′(q−1ξ2n, q2)∣∣q2n =
N−1∑
n=0

∣∣g′(q−1ξ2n, q2)∣∣q2n +
∞∑
n=N

∣∣g′(q−1ξ2n, q2)∣∣q2n,
where N = N(q) is chosen such that ξn <

1
2
(1 − εφ′) 1

2 if n > N(q). Since

ξn ∈ [qn+1x, qnx], this is satis�ed if

xqn <
1

2
(1− εφ′)

1
2 , (7.35)

which certainly holds if n > N(q) =
⌈
εφ
′−1⌉. With this we get

N−1∑
n=0

∣∣g′(q−1ξ2n, q2)∣∣q2n = Nc1ε
2
3 = O(ε−1), and (7.36a)

∞∑
n=N

∣∣g′(q−1ξ2n, q2)∣∣q2n ≤ ∞∑
n=0

c2q
2n = O(ε−1), (7.36b)

where c1 and c2 are constants. Substituting the above bounds into Eq. (7.33),

we conclude the proof of Eq. (7.30a). In a completely analogous way, one

also shows Eq. (7.30b).
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With the de�nition of the function I in Eq. (7.9), we now formulate the

following result.

Lemma 7.5.4. For s ∈ R, x = 1
2
(1− sε 2

3 ) and q = e−ε → 1−,

∫ x

0

g(q−1y2, q2)dy =
(2ε)

2
3

√
2

(
1

3
− I(2

1
3 s)

)(
1 +O(ε

2
3 )
)
, (7.37a)∫ x

0

h(q−1y2, q2)dy = −(2ε)
2
3

2
3
2

Ai
(

2
1
3 s
)(

1 +O(ε
2
3 )
)
. (7.37b)

Proof. From the de�nition (2.12) of the Airy function we get, by applying

Fubini's theorem,

∫ x

0

g(q−1y2, q2)dy =

∫ x

0

p2(q
−1y2) Ai

(
α(q−1y2)

(2ε)
2
3

)
dy

=
1

2πi

∫ ei
π
3∞

e−i
π
3∞

e
u3

3

[∫ x

0

p2(q
−1y2) exp

(
−α(q−1y2)

(2ε)
2
3

u

)
dy

]
du. (7.38)

Since α(q−1y2) is monotonic for y ∈
(
0, 1

2

]
, the integral in the second line

of Eq. (7.38) can be transformed by setting t = α(q−1y2). This gives us

∫ x

0

p2(q
−1y2) exp

(
−α(q−1y2)

(2ε)
2
3

u

)
dy

= −
∫ ∞
α(x2)

p2(y(t)2) exp

(
−tu
(2ε)

2
3

)
dy

dt
dt. (7.39)
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Applying Watson's Lemma (2.2.1), we get for x = 1
2
(1− sε 2

3 ),

∫ ∞
α(x2)

p2(y(t)2) exp

(
−tu
(2ε)

2
3

)
dy

dt
dt.

=

(
p2(x

2)
dy

dt

∣∣∣∣
t=α(x2)

∫ ∞
α(x2)

exp

(
−tu
(2ε)

2
3

)
dt

)(
1 +O(ε

2
3 )
)

=

(
1√
2

∫ ∞
2sε

2
3

exp

(
−tu
(2ε)

2
3

)
dt

)(
1 +O(ε

2
3 )
)

=

(
(2ε)

2
3

√
2

∫ ∞
2
1
3 s

exp (−vu) dv

)(
1 +O(ε

2
3 )
)
, (7.40)

where we used in the third line that p2(
1
4
) = 2

√
2 and α(x)2 ∼ 1− 4x2 for

x→ 1
2
, and therefore

p2(x
2)
dy

dt

∣∣∣∣
t=α(x)2

=
1√
2

(
1 +O(ε

2
3 )
)

(ε→ 0+). (7.41)

Inserting Eq. (7.40) into Eq. (7.38), and reversing the order of integration

again, we arrive at Eq. (7.37a). By using q2(
1
4
) = −

√
2, one similarly

obtains Eq. (7.37b).

From Lemma 7.5.2 it follows that the Jackson integrals in Eq. (7.29)

can be replaced by Riemann integrals in the scaling limit where x = 1
2
(1−

sε
2
3 ) and q = e−ε → 1−. Inserting Eqs. (7.14), (7.37a) and (7.37b) into

Eq. (7.29), we arrive at Prop. 7.4.1. We note that this result can also be

checked for consistency by inserting it into the functional equation Eq. (7.5)

and using the known result for the scaling behaviour of Dyck paths.
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8 Higher-order Airy scaling in

deformed Dyck paths

8.1 Introduction

In the previous chapters we considered di�erent models of directed two-

dimensional polygon and walk models. As a common property, these mod-

els showed a tricritical point in their phase diagram, around which their

area-length (or -width) generating functions admit a simple scaling form.

For Dyck and Schröder paths and directed column-convex polygons, the

associated scaling function was found to be the logarithmic derivative of

the Airy function, and on the basis of exact enumeration data, Richard,

Guttmann and Jensen conjectured the same kind of scaling behaviour to

also hold for unrestricted, rooted self-avoiding polygons [59].

In [14], it was postulated that for SAP, there exists an entire hierarchy of

higher-order scaling functions given for k ≥ 3 by the logarithmic derivative

(∂/∂s1)Θk(s1, . . . , sk−2), where for s1, s2, . . . , sk−2 ∈ C, and

Θk(s1, . . . , sk−2) =
1

2πi

∫ eiπ/k∞

e−iπ/k∞
exp

(
uk

k
−

k−2∑
j=1

sju
j

)
du (8.1)

([21, §36.2]). This function can be seen as a generalised Airy function,

since Θ3(s) = Ai(s). We present here the �rst concrete example of a

lattice polygon model with a higher-order multicritical point characterised
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Chapter 8. Higher-order Airy scaling in deformed Dyck paths

by the two-variable scaling function

Φ(s1, s2) =
∂

∂s1
ln
(

Θ4(s1, s2)
)
, (8.2)

where Θ4(s1, s2) is also called a Pearcey function which also appears in

the context of random matrix theory and determinantal processes [71].

It consists of a deformed version of Dyck paths (DDP), where additional

to the steps (1, 0) and (0, 1) allowed for (standard) Dyck paths, `jump'

steps in the direction (−1, 1) are allowed. We note that there also exists

a bijection between DDP and rooted plane ordered binary-ternary trees,

analogously to the bijection between Dyck paths and rooted plane ordered

binary trees [65].

In Section 8.2, we will de�ne DDP precisely and derive the functional

equation for their generating function, weighted with respect to their area,

length and number of jumps. An expression for the generating function in

the form of a fraction of two basic hypergeometric series will be obtained

in Section 8.3. The main result is given in Section 8.4, and the remaining

sections contain the steps of its derivation. A contour integral represent-

ation for the series occurring in the generating function of DDP which in

the limit q → 1− has a leading contribution in the form of a saddle point

integral is provided by the general results from Chapter 5. The location

of the relevant saddle points depending on the parameters w and t is dis-

cussed in Section 8.6, and the geometry of the paths of steepest descent

originating from them is investigated in Section 8.7. In Section 8.8, the

integral expression for the basic hypergeometric series is then transformed

into a canonical form, and the asymptotic behaviour of the coe�cients

of this transformation around the multicritical point is analysed. The
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Chapter 8. Higher-order Airy scaling in deformed Dyck paths

asymptotic expression for the basic hypergeometric series is then obtained

by evaluating the transformed integral in Section 8.9, which directly leads

to Theorem 8.4.1.

This chapter consists of joint work with Adri Olde Daalhuis and Thomas

Prellberg.

8.2 The model

The model of DDP is de�ned as follows.

De�nition 8.2.1. For m, s ∈ Z≥0 and s ≥ 2m, a deformed Dyck path

(DDP) of half-width m is a walk (xk, yk)
s
k=0 on Z2, such that (x0, y0) =

(0, 0), (xs, ys) = (m,m) and yk ≥ xk for all 0 ≤ k ≤ s. Moreover, if

(xk, yk) = (x, y) for 0 ≤ k < s, then (xk+1, yk+1) is either (x, y + 1) or

(x + 1, y) or (x − 1, y + 1), which we call an up-step, a down-step or a

jump, respectively.

We consider the generating function

G(w, x, q) =
∞∑
k=0

∞∑
m=0

∞∑
n=0

pk,m,nw
k xm qn, (8.3)

where pk,m,n is the number of DDP with k jumps, half-width m and area

n, with the area being de�ned as the number of full lattice cells enclosed

between the path and the main diagonal of the lattice. Figure 8.1 shows

an example of a DDP with half-width 9, 3 jumps and area 12.

To obtain a functional equation for G(w, x, q), we use the following fac-

torisation argument. A DDP has either half-length zero, or it starts with

an up-step followed by a DDP followed by a down-step and then another

DDP, or it starts with a jump followed by a DDP followed by a down-step
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Figure 8.1: A DDP of half-width 9, 3 jumps and area 12. The lattice is rotated
such that its main diagonal lies horizontally in the image.

followed by another DDP followed by a down-step and then another DDP

� see Fig. 8.2 for an illustration.

+ +=

Figure 8.2: Graphical decomposition of the set of DDP, leading to Eq. (8.4).

From this decomposition we obtain

wxG(q2x)G(qx)G(x) + xG(qx)G(x)−G(x) + 1 = 0, (8.4)

where G(w, x, q) = G(x) for brevity. Equation (8.4) has a unique solution

analytic at x = 0. For w = 0, it is satis�ed by the generating function

of Dyck paths, weighted with respect to their area and half-length, which

was considered in Chapter 4.

We also note that every DDP can be mapped onto a (standard) Dyck

path by replacing every jump step by two consecutive up-steps. In this

way, each Dyck path represents a family of DDP � see Fig. 8.3. The func-

tion G(w, x, q) can therefore alternatively be interpreted as the generating

function of Dyck paths, weighted with respect to their half-length and

their area, with an additional weight Fk(w/x, 1/q) associated to each se-

quence of k consecutive up-steps, followed by a down-step. Here, Fk(s, q)

is the generating function of appropriately weighted dimer coverings of an

interval of length k (for q = 1, see [76]).
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Figure 8.3: A Dyck path (top) and the family of DDP representing it, together
with the corresponding dimer coverings.

The q-Fibonacci polynomials Fk(s, q) ≡ Fk satisfy the recurrence

F0 = F1 = 1 , Fn = Fn−1 + qn−1sFn−2 for n ≥ 2 (8.5)

and are given explicitly by

Fk(s, q) =

bk/2c∑
l=0

[
k − l
l

]
q

ql
2

sl , (8.6)

see [15]. Using the dimer interpretation, a decomposition of Dyck paths by

their left-most rise leads to an alternative functional equation forG(w, x, q) =

G(x),

G(x) =
∞∑
k=0

xkq(
k
2)Fk(w/x, 1/q)

k−1∏
l=0

G(qlx) . (8.7)

For q = 1, it follows from Viennot's Inversion Lemma [76] and the asymp-

totic behaviour of the number of dimer coverings [10] that Fk(w/x, 1) ≥ 0

for w/x ≥ −1/4.
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8.3 Solution of the functional equation

Analogous to the case of Dyck and Schröder paths [26, 35], inserting the

ansatz

G(w, x, q) =
H(w, qx, q)

H(w, x, q)
, (8.8)

into Eq. (8.4) leads to the linearised functional equation

(
x(1 + wσ)σ2 + (1− σ)

)
H(x) = 0, (8.9)

where H(x) = H(w, x, q) and σnH(x) = H(qnx) for n ∈ Z≥0. Comparing

this equation with Eq. (5.4), we see that for w, x, q ∈ C and |q| < 1,

Eq. (8.9) is solved by the basic hypergeometric series

H(w, x, q) = 1φ2(−w; 0, 0; q,−x) =
∞∑
n=0

(−w; q)n
(q; q)n

(−x)nqn
2−n. (8.10)

In the following we write 1φ2(−w; 0, 0; q,−x) = φ(w, x, q). For q → 1−,

both φ(w, x, q) and φ(w, qx, q) diverge and it is therefore not immediately

clear which value G(w, x, q) takes in this limit. But if we substitute q = 1

into Eq. (8.4), then we obtain a cubic equation for G(w, x, 1), which is

readily solved. In the special case w = −1
9
, the radius of convergence of

G(w, x, 1) is determined by a cubic root singularity at x = 1
3
and around

this value we therefore expect an area-length scaling behaviour which is

qualitatively di�erent from the Airy function scaling found for Dyck and

Schröder paths and staircase polygons. In order to analyse the asymptotics

of the generating function in the vicinity of the point w = −1
9
, x = 1

3
as

q → 1−, we apply the method of steepest descent, generalised to the case

of several coalescing saddle points.
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8.4 The main result

The principal result of this chapter is stated in the following theorem,

which is an immediate consequence of Prop. 8.9.1.

Theorem 8.4.1. Let q = e−ε, δ = O
(
ε1/2
)
and ξ = 3

2
δ + O

(
ε3/4
)
as

ε→ 0+. Then

G

(
δ − 1

9
,
1

3
− ξ, q

)
= 3

(
1 + 21/4 Φ(s1, s2) ε

1/4 +O
(
ε1/2
))
, (8.11)

as ε→ 0+, for all s1, s2 ∈ R such that |Φ(s1, s2)| <∞, where

s1 = 3
4
√

2

(
ξ − 3

2
δ

)
ε−3/4 and s2 =

27
√

2

8

(
δ +

1

40
ξ2
)
ε−1/2, (8.12)

and where Φ(s1, s2) is de�ned in Eq. (8.2).

For example, Theorem 8.4.1 gives for all s such that |Φ(s, 0)| <∞,

G

(
−1

9
,
1

3

(
1− sεφc

)
, q

)
= 3

(
1 + F

(
s
)
εθc +O

(
ε1/2
))

(8.13)

as q = e−ε → 1−, with F (s) = 4
√

2Φ( 4
√

2s, 0), θc = 1
4
and φc = 3

4
.

The exponents θc and φc, together with γc = θc
φc

= 1
3
characterise the

singular behaviour of G(−1
9
, x, q) around the multicritical point (w, x, q) =

(−1
9
, 1
3
, 1). The singular behaviour of G

(
−1

9
, 1
3
, 1− ε

)
as ε→ 0+ is determ-

ined by θc, γc describes the singular behaviour of G(−1
9
, x, 1) as x → 1

3

−
,

and φc is called the crossover exponent of the model.

The multicritical point for w = −1
9
is the endpoint of a line of tricritical

points (w, x, q) = (w, xc(w), 1) for w > −1
9
, which are characterised by the

exponents θc = 1
3
, γc = 1

2
and hence φc = 2

3
. The special case w = 0 was

analysed in Chapter 4. In Table 8.1 we summarise the values of the critical
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w γc θc φc

−1
9

1
3

1
4

3
4

> −1
9

1
2

1
3

2
3

Table 8.1: The critical exponents characterising the singular behaviour of the
generating function of DDP around the multicritical point, depend-
ing on the value of w.

exponents for w = −1
9
and w > −1

9
.

8.5 Contour integral representation of φ(a, qkx, q)

For k ∈ Z, Lemma 5.4.2 gives a contour integral representation of the

function φ(qkx) ≡ φ(a, qkx, q) = 1φ2(a; 0, 0; q,−qkx). In this special case,

the functions in Eq. (5.25) are

f(z) = ln (x) ln(z) + Li2(z)− 1

2
ln(z)2 + Li2

(a
z

)
, (8.14)

gk(z, q) =
1

zk

(
z2

(1− z)(z − a)

) 1
2

exp
(
εS(z, q)

)
, (8.15)

where ε = − ln(q) and S(z, q) is bounded on the contour C. For 0 < a < 1,

f(z) and gk(z, q) are real on the segment a < z < 1, therefore in this

case, f(z∗) = f(z)∗ and gk(z
∗, q) = gk(z, q)

∗, and f(z) is analytic for

z ∈ C \
(
−∞, a

]
∪
[
1,∞

)
. In Section 5.5, the saddle point landscape of a

class of q-hypergeometric series was considered. In the following section,

we provide a more detailed discussion for the speci�c series φ(a, qkx, q).
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8.6 Location of the saddle points

The saddle points of the function f given in Eq. (8.14) are the zeros of the

derivative

f ′(z) =
1

z
ln

(
x (z − a)

z2(1− z)

)
, (8.16)

which coincide with the zeros of the polynomial

s(z) = z3 − z2 + x z − x a. (8.17)

Hence, f(z) has (up to multiplicity) three saddle points zi (i = 1, 2, 3),

which satisfy

z1 + z2 + z3 = 1

z1z2 + z2z3 + z3z1 = x

z1z2z3 = xa

 . (8.18)

If the parameter x takes one of the two values

x±c =
1

8

(
1 + 18a− 27a2 ± (1− 9a)

√
9a2 − 10a+ 1

)
, (8.19)

then two saddle points coalesce in one of the points

z±c =
1

4

(
3a+ 1±

√
9a2 − 10a+ 1

)
. (8.20)

In Fig. 8.4 we show the dependence of the two critical values x±c as functions

of a. Concerning the location of the saddle points z1, z2 and z3 in the

complex plane, we distinguish the following 5 cases.

(i) If a < 0, then two saddle points coalesce for x = x+c < 1/4, while the

third one is negative.
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a0
0

ξ

δ

x−c

x+c

1
3

1
4

x

1
9

Figure 8.4: Plot of the critical values x±c as functions of a. The picture also
shows the orientation of the natural coordinates ξ = 1/3 − x and
δ = 1/9− a which will be used later on.

(ii) If a = 0, then one saddle point is constantly zero while the other two

coalesce in zc = 1/2 for x = x+c = 1/4.

(iii) If 0 < a < 1/9, then two saddle points are mutually complex conjug-

ates for 0 < x < x−c < 1/3 and coalesce on the positive real line for

x = x−c in the point z−c , where a < z−c < 1/3. For x−c < x < x+c , all

three saddle points are real and for x = x+c < 1/3, two saddle points

coalesce in the point 1/3 < z+c < 1/2. For x > x+c , again one saddle

point is real and the other two are mutually complex conjugates.

(iv) If a = 1/9, then x−c = x+c = 1/3, hence all three saddle points

coalesce in the same point, z−c = z+c = 1/3.

(v) If a > 1/9, then there is no saddle point coalescence for x > 0.
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8.7 Geometry of the paths of steepest descent

In this section we are going to discuss the geometry of the paths of steepest

descent of f since, for a > 0, this case is not covered by Lemma 5.5.5.

Note that for real z, real x > 0 and 0 < a < 1,

Im(f(z)) =



π ln(x/|z|) (z < 0)

π ln(z/a) (0 < z ≤ a)

0 (a ≤ z ≤ 1)

−π ln(z) (z ≥ 1)

. (8.21)

From the sign of the imaginary part of f ′(z), we can conclude that paths

of steepest descent of the function R(z) = Re(f(z)) cannot end at the

branch cut of the logarithm. Using Lemma 5.5.1 we prove the following

result.

Lemma 8.7.1. For real a ≤ 1/9 and 0 < x ≤ x+c (a), there exists a

continuous curve c : R → C, with c(0) = z3 and Im
(
c(λ)

)
≷ 0 for λ ≷ 0,

such that

I(z) = Im
(
f
(
c(λ)

))
= 0 (8.22)

for λ ∈ R, |c(λ)| → ∞ for λ→ ±∞ and

lim
λ→±∞

arg
(
c(λ)

)
= ±π

2
. (8.23)

Proof. Assume a ≤ 1/9 and 0 < x ≤ x+c (a). According to the discussion

above, we label the saddle points in such a way that z1 and z2 are mutually

complex conjugates for x < x−c (a) with Im(z1) > 0 while z3 is real, and z2
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coalesces with z3 for x = x+c (a). From the asymptotic behaviour of f(z)

stated in Lemma 5.5.1, we can conclude that paths of steepest descent

of R(z) = Re(f(z)) can only end in z = 0 or at ∞ exp(±iπ/2). Since

f(z∗) = f(z)∗, it is su�cient to consider the paths of steepest ascent

and descent which lie in the upper half-plane. There are two cases to be

distinguished.

1. 0 < x < x−c (a). In this case, z3 is real while Im(z1) > 0. One of the

two paths of steepest descents originating from z1 ends in z = 0,

while the other one ends at in�nity. Since paths of steepest descent

of R(z) can only cross in saddle points, it follows that the path of

steepest descent emerging from z3 necessarily ends at ∞ exp(iπ/2).

Figure 8.5 (a) shows an example for this case.

2. x−c (a) ≤ x ≤ x+c (a). In this case, all three saddle points are real.

The path of steepest descent originating from z1 necessarily ends at

zero, while the path of steepest ascent of R(z) originating from z2

ends in the point z = −x. Again it follows that the path of steepest

descent of R(z) originating from z3 ends at ∞ exp(iπ/2). Figure

8.5 (b) shows an example for x−c (a) < x < x+c (a) for a < 1/9 and

(c) shows the special case a = 1/9, for which the three saddle points

coalesce.

For 0 < x ≤ x+c (a), I(f(z3)) = 0. Since the paths of steepest descent

are the contours on which the imaginary part of f(z) is constant, the

union of the two paths of steepest descent originating from z3 and ending

at ∞ exp(iπ/2) and ∞ exp(−iπ/2) respectively, has the properties of the

curve c(λ).
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Im(z)

Re(z)

(a) a = 0.11, x = 0.31

Im(z)

Re(z)

(b) a = 0.11, x = 0.3317

Im(z)

Re(z)

(c) a = 1/9, x = 1/3

Im(z)

Re(z)

(d) a = 0.11, x = 0.34

Figure 8.5: The saddle points of the function f(z) de�ned in Eq. (8.14)
(marked by small black dots) and the paths of steepest descent
and ascent of R(z) = Re(f(z)) originating from them. The case
(d) is shown for completeness, though not considered in the text.
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8.8 Transformation of f(z) into a canonical form

As we discussed in Section 8.6, for a = 1/9, the three saddle points of f(z)

coalesce in the point zc = 1/3 for x = x+c (1/9) = 1/3. We now de�ne the

natural coordinates

ξ =
1

3
− x and δ =

1

9
− a, (8.24)

and consider f(z) and gk(z, q) as functions of z, ξ and δ from now on.

Theorem 2.2.3 states that there is a map z 7→ u(z), such that

f(z) =
1

4
u4 − αu2 − β u+ γ = p(u), (8.25)

which is regular and bijective if z−zc, ξ and δ are su�ciently close to zero.

The coe�cients α, β and γ are regular functions of ξ and δ. Thus,

α =
∞∑

j,k=0

αj,kξ
jδk ; β =

∞∑
j,k=0

βj,kξ
jδk ; γ =

∞∑
j,k=0

γj,kξ
jδk. (8.26)

Note that α and β are not unique, since the form of the RHS of Eq. (8.25)

is invariant under rotations about the angle kπ/2, where k ∈ Z.

We denote the three saddle points of the polynomial p(u) by u1, u2 and

u3, hence

p′(u) = u3 − 2αu− β = (u− u1)(u− u2)(u− u3). (8.27)
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From Eq. (8.27) it follows that

u1 + u2 + u3 = 0, (8.28a)

u1u2 + u2u3 + u3u1 + 2α = 0, (8.28b)

u1u2u3 − β = 0. (8.28c)

As a necessary condition for the transformation de�ned in Eq. (8.25) to

be regular, the saddle points of of f(z) need to be mapped onto the saddle

points of p(u). For ξ = δ = 0, the three saddle points of f(z) coalesce and

it follows from Eq. (8.28a) that u1 = u2 = u3 = 0. With this we obtain

from Eqs. (8.28b) and (8.28c) that α0,0 = β0,0 = 0.

If we label the saddle points of p(u) such that u(zj) = uj for j = 1, 2

and 3, then from Eq. (8.25) it follows by di�erentiating twice that

dz

du

∣∣∣∣
u=ui

=

(
3u2i − 2α

f ′′(zi)

) 1
2

, (8.29)

for (ξ, δ) 6= (0, 0). For ξ = δ = 0, we get by taking higher derivatives that

dz

du

∣∣∣∣
u=0

=
2

1
4

3
,

d2z

du2

∣∣∣∣
u=0

=
2

1
2

3
and

d3z

du3

∣∣∣∣
u=0

=
2

3
4

6
. (8.30)

Since u3j = 2αuj + β for j = 1, 2 and 3, we have

f(zj) = −1

2
αu2j −

3

4
β uj + γ. (8.31)

Using Eqs. (8.28a) to (8.28c) and Eq. (8.31), we obtain the following set
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of equations, where Σ(k) =
∑3

j=1 f(zj)
k for k = 1, 2 and 3:

3γ − 2α2 = Σ(1) (8.32a)

3γ2 +
9

2
αβ2 − 4α2γ + 2α4 = Σ(2) (8.32b)

3γ3 − 81

64
β4 +

27

2
αβ2γ − 6α2γ2 − 51

4
α3β2 + 6α4γ − 2α6 = Σ(3). (8.32c)

From Eqs. (8.32a) to (8.32c) we derive

2α4 +
27

2
αβ2 = 3Σ(2) −

(
Σ(1)

)2
(8.33a)

α6 − 135

8
α3β2 − 729

128
β4 =

(
Σ(1)

)3
+

9

2

(
Σ(3) − Σ(1)Σ(2)

)
. (8.33b)

With Eqs. (8.32a) to (8.32c), (8.33a) and (8.33b) we are now going to

calculate the leading coe�cients of the power series expansions (8.26). We

will begin by considering the cases δ = 0 and ξ = 0 separately.

8.8.1 Coe�cient asymptotics for ξ → 0 and δ = 0

From the above discussion we know that for δ = 0 and ξ → 0, α ∼ αrα,0ξ
rα

and β ∼ βrβ ,0ξ
rβ , where rα, rβ ∈ N and αrα,0, βrβ ,0 6= 0.

To determine rβ, we take the third derivative of Eq. (8.25) with respect

to u and insert the saddle point values. This gives us

f ′′′(zj)

(
dz

du

∣∣∣∣
uj

)3

+ 3f ′′(zj)
dz

du

∣∣∣∣
uj

d2z

du2

∣∣∣∣
uj

= 6uj (8.34)

for j = 1, 2 and 3. Expanding both f ′′(zj) and f
′′′(zj) as series in ξ shows

that for ξ → 0+, f ′′(zj) = o(ξ1/3). Moreover, for k = 1, 2 and 3,

f ′′′(zk) = c0 exp

(
2kπi

3

)
ξ

1
3 +O(ξ

2
3 ), (8.35)
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where c0 = 81 · 61/3, and from this it follows together with (8.30) that

uk = u0 exp

(
2kπi

3

)
ξ

1
3 +O(ξ

2
3 ), (8.36)

where u0 = 6
1
3/2

1
4 . From Eq. (8.28c) we therefore conclude that rβ = 1.

With this we can now determine rα. From Eq. (8.33a), we obtain for δ = 0

and ξ → 0

2α4 +
27

2
αβ2 =

6561

320
ξ4 +O(ξ5). (8.37)

It follows by the following dominant balance argument that rα = 2. There

are three possibilities to be distinguished. The �rst possibility is that

α4 = o(αβ2), from which it would follow that rα + 2 = 4, hence rα = 2.

The second possibility is that αβ2 = o(α4), from which it would follow that

4 rα = 4, hence rα = 1. However, this would mean that rα + 2 = 3, which

stands in contradiction to the assumption that αβ2 = o(α4). The third

possibility is that the leading terms of α4 and αβ2 cancel each other. In

that case, 4 rα = rα + 2, hence rα = 2/3, which is impossible. We conclude

that rα = 2.

Expanding the RHS of Eq. (8.32a) for δ = 0 in ξ, we get

γ0,0 = 2 Li2

(
1

3

)
+

1

2
ln(3)2, (8.38)

and using Eq. (8.37) and expanding Eq.(8.33b) in ξ for δ = 0, we obtain

α1,0β
2
1,0 and β

4
1,0. Choosing the real positive root for β1,0, we arrive at

α2,0 =
27
√

2

320
and β1,0 = 3

4
√

2. (8.39)

One can easily calculate further expansion coe�cients, but here we will
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only give the results for the leading orders.

8.8.2 Coe�cient asymptotics for δ → 0 and ξ = 0

It follows from an argument analogous to the one given in the previous

subsection that for ξ = 0 and δ → 0, α ∼ α0,1δ and β ∼ β0,1δ, where

α0,1, β0,1 6= 0.

Again using Eqs.(8.33a-b), we obtain the values for α0,1β
2
0,1 and β4

0,1.

Since in the previous subsection we have chosen the positive root for β1,0,

we need to make sure to choose the correct root for β0,1. Setting δ = −ξ

and expanding the RHS of Eq. (8.33b) in ξ, we get β1,0−β0,1 = (15/2) 4
√

2.

From this it follows that we need to choose the real negative root for β0,1.

We obtain

α0,1 =
27
√

2

8
and β0,1 = −9

2
4
√

2. (8.40)

Combining Eqs. (8.39) and (8.40), we get that for (ξ, δ)→ (0, 0),

α ∼ 27
√

2

8

(
δ +

1

40
ξ2
)

and β ∼ 3
4
√

2

(
ξ − 3

2
δ

)
. (8.41)

8.9 Asymptotics of φ(a, qkx, q)

It follows from Lemma 8.7.1 together with Cauchy's theorem that for

0 < x ≤ 1/3 and a ≤ 1/9, we can replace the integration contour in

Eq. (5.25) by a contour C0 originating from ∞ exp(−iπ
2
), passing through

the real valued saddle point z3 of f(z) and ending at∞ exp(iπ
2
), such that

Im f(z) = 0 on this contour and Re f(z) is maximal at z3.

The correction due to restricting C0 to the central part C ′0 on which

the transformation de�ned in Eq. (8.25) is regular decays exponentially in

the limit ε → 0+. The segment u(C ′0) is the central part of the contour
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given by the union of the two paths of steepest descent of p(u) ending

at ∞ exp(±iπ/4). Extending the integration to the complete contour, we

obtain

φ(a, qkx, q) =
A(a, q)

2πi

∫ c+∞

c−∞
exp

(
1

ε
p(u)

)
G(k)(u)

(
1 +O(ε)

)
du, (8.42)

where c± = exp
(
±iπ

4

)
, and

G(k)(u) =
g0(z(u))

z(u)k
dz

du
. (8.43)

In order to calculate the leading asymptotic contribution to φ(a, qkt, q),

we use the ansatz [73]

G(k)(u) = P (k) + uQ(k) + u2R(k) + (u3 − 2αu− β)S(k)(u), (8.44)

where S(k)(u) is an analytic function of u, ξ and δ and P (k), Q(k) and R(k)

are analytic functions of ξ and δ. Inserting the saddle point values into

Eq. (8.44), we get for j = 1, 2 and 3,

G(k)(uj) = P (k) + ujQ
(k) + u2jR

(k). (8.45)

Evaluating Eq. (8.44) and the �rst and second derivative with respect to

u at u = 0 for ξ = δ = 0 gives together with (8.30) for ξ = δ = 0,

P (0) =
21/4
√

3

6
, Q(0) =

√
6

4
, R(0) =

5 23/4
√

3

24
,

P (1) =
21/4
√

3

2
, Q(1) =

√
6

4
, R(1) =

23/4
√

3

8
.

(8.46)
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From Eq. (8.1) we de�ne the functions

Θ
(1)
4 (x, y) =

∂

∂x
Θ4(x, y) and Θ

(2)
4 (x, y) =

∂

∂y
Θ4(x, y). (8.47)

Note that Θ4(x, y) is related to the Pearcey integral

P(x, y) = 2 exp

(
iπ

8

)∫ ∞
0

exp
(
−u4 − yu2

)
cos(xu)du, (8.48)

the asymptotics of which have been studied in [50], via the formula

P(x, y) =

√
2 π

exp
(
iπ
8

) [Θ4

(
1− i

2
x,
iy

2

)
+ iΘ4

(
1 + i

2
x,
−iy

2

)]
. (8.49)

Applying Theorem 2 from [73], we can now formulate the following result.

Proposition 8.9.1. For k ∈ Z≥0, there exist constants da, dx > 0 such

that for a ∈
[
1
9
− da, 19 + da

]
and x ∈

[
1
3
− dx, 13 + dx

]
and q = e−ε → 1−,

we have

φ(a, qkx, q) = A(a, q) exp
(γ
ε

) [
P (k) ε1/4 Θ4

(
β

ε3/4
,
α

ε1/2

)
−

−Q(k) ε1/2Θ
(1)
4

(
β

ε3/4
,
α

ε1/2

)
−R(k) ε3/4 Θ

(2)
4

(
β

ε3/4
,
α

ε1/2

)](
1 +O(ε)

)
,

(8.50)

uniformly, where the coe�cients α, β, γ and P (k), Q(k), R(k) are regular

functions of a and x and A(a, q) = (q; q)∞(a; q)∞.

Substituting Eq. (8.50) into Eq. (8.8) for k = 0 and 1 and a = −w,

we obtain the scaling behaviour of G(w, x, q) around the critical point

(w, x, q) = (−1
9
, 1
3
, 1) as stated in Theorem 8.4.1. In Fig. 8.6, we show the

convergence of the asymptotic approximation of F (s) obtained by rearran-
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ging Eq. (8.13) against the exact scaling function.

s

Figure 8.6: Plot of the scaling function F
(

4
√

2 s
)

= Φ
(

4
√

2 s, 0
)
(black) and the

asymptotic approximation obtained from rearranging Eq. (8.13)
for ε = 10−4, 10−5, 10−6 (grey, the smallest value corresponds to
the closest approximation).

As discussed in Lemma 8.7.1, for a < 1
9
and 0 < x < x+c (a), the integra-

tion contour C used in Eq. (5.25) can be deformed such that it consists of

two paths of steepest descent, connecting a saddle point on the real axis

with in�nity, and the asymptotics of φ(a, qkx, q) can be obtained via the

ordinary method of steepest descent. According to Section 8.6, the relev-

ant saddle point coalesces with another saddle point for x = x+c (a) < 1
3
.

At this point, φ(a, qkx, q) can be approximated in terms of Airy functions,

with the special case a = 0 having been treated in Chapter 4.
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In Chapter 3, we made a conjecture on the tricritical scaling behaviour

of the area-width generating function of a class of generalised Motzkin

paths, subject to the assumption that their generating functions satisfy

a certain scaling relation around the tricritical point. This class includes

in particular Dyck paths, (standard) Motzkin paths and Schröder paths.

Our argument consisted in substituting the conjectured asymptotic form of

the generating function into the functional equation satis�ed by it, leading

to the unique determination of the tricritical exponents and the scaling

function. For all models within the class of generalised Motzkin paths,

the tricritical exponents were determined as (γc, θc, φc) = (1
2
, 1
3
, 2
3
), and

the scaling function is, up to model-dependent prefactors, the logarithmic

derivative of the Airy function.

In Chapter 4 we used an expression for the area-width generating func-

tion of Dyck paths in terms of a fraction of q-hypergeometric series to

obtain an asymptotic expression of it in terms of the Airy function and

its derivative in the limit when the area generating variable tends to 1.

The asymptotic expression is uniform for a range of values of the width

generating variable, in particular in the region around the tricritical point.

This con�rmed in particular the scaling behaviour of Dyck paths derived

non-rigorously in Chapter 3.

The asymptotic analysis of the q-hypergeometric series involved in the
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area-width generating function of Dyck paths was generalised in Chapter 5

to a class of q-hypergeometric series. In Chapter 6 we used the general res-

ults to obtain asymptotic expressions for the area-width generating func-

tion of Schröder paths, the area-perimeter generating function of directed

column-convex polygons and the length-interaction generating function of

interacting partially directed self-avoiding walks. In all three cases, the

expressions involve the Airy function and its derivative, and for Schröder

paths, the scaling relation conjectured in Chapter 3 is con�rmed.

In Chapter 7, we use the asymptotic expressions derived in Chapter 4

to analyse the scaling behaviour of the area-length generating function

of Bernoulli meanders in the vicinity of the tricritical point. Here, the

tricritical exponents are (γc, θc, φc) = (−1
2
,−1

3
, 2
3
) and the scaling function

is expressible in terms of the Airy function and its integral.

In Chapter 8, we de�ned a model of Dyck paths with an enriched step set,

which we called deformed Dyck paths. Precisely, apart from the diagonal

steps allowed for Dyck paths, `jumps' orthogonal to the preferred direction

of the path are allowed. We considered the generating function of DDP,

weighted with respect to their width, their number of jumps and their area.

As in the previous chapters, we used the method of steepest descents to

the q-hypergeometric series involved in the exact solution of the generating

function. For a given set of values of the weights of the model, three saddle

points coalesce in the kernel of the associated integral. This leads to an

asymptotic expression for the generating function in terms of a bivariate,

higher-order Airy function.

The obvious continuation of this thesis is to consider further models

in statistical physics and combinatorics which are amenable to our set of

methods. More concretely, the model of DDP can be extended further
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by introducing jumps of di�erent height. The generating function of these

paths, which are weighted with respect to their width, their area and where

additionally, the jumps obtain di�erent weights according to their heights,

has a solution in terms of q-hypergeometric series, of the same structure as

the one of Dyck paths and DDP. The asymptotic analysis of this multivari-

ate generating function in the limit of the area weight tending towards one

can again be done via the method of steepest descents. For special val-

ues of the weights of the jumps, arbitrarily many saddle points coalesce

in the corresponding integral kernel. This leads to asymptotic expressions

in terms of generalised, multivariate Airy integrals. The details, however,

require some more care. Technically, the biggest problem is to show that

the paths of steepest descent of the integral kernel behave in a suitable

way.
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