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We investigate the proportion of the nontrivial roots of the equation ζ(s) = a, which lie on the line R s = 1/2 for a ∈ C
not equal to zero. We show that at most one-half of these points lie on the line R s = 1/2. Moreover, assuming a

spacing condition on the ordinates of zeros of the Riemann zeta-function, we prove that zero percent of the nontrivial

solutions to ζ(s) = a lie on the line R s = 1/2 for any nonzero complex number a.

1 Introduction

Let s = σ + it be a complex variable, ζ(s) be the Riemann zeta-function, and a be a nonzero complex number.
The solutions to ζ(s) = a, which we will denote by ρa = βa + iγa, are called a-points, and their distribution has
been widely studied. For principal references see [16], [9], and [13].

For every a there is a n0(a) so that for all n ≥ n0 there is an a-point of ζ(s) quite close to s = −2n.
Moreover, in the half-plane σ ≤ 0 there are only finitely many other a-points; and we call the a-points with real
part ≤ 0 trivial a-points. The remaining a-points all lie in a strip 0 < σ < A, where A depends on a, and are
called nontrivial a-points. Let ρa = βa + iγa denote a nontrivial a-point. The number of these is given by

Na(T ) =
∑

1<γa≤T

1 =
T

2π
log

T

2π
− T

2π
+O(log T ), (1.1)

for a 6= 1 (this holds for a = 0 as well). In the case a = 1 there is an additional −(log 2)T/(2π) term on the
right-hand side of the equation (see Levinson [9]).

By analogy with the case a = 0, it is natural to investigate the distribution of the nontrivial a-points. Let

Na(σ1, σ2;T ) =
∑

0<γa≤T
σ1<βa<σ2

1.

For fixed 1/2 < σ1 < σ2 < 1 and a 6= 0 Borchsenius and Jessen [5] showed there exists a constant C(a, σ1, σ2) > 0
such that

Na(σ1, σ2;T ) = C(a, σ1, σ2)T + o(T ) (T →∞). (1.2)

As for the case a = 0, it is well-known that there can be at most � T θ(σ1), with θ(σ1) < 1, in such a strip (for
instance, see Chapter IX of [16]).

Levinson [9] studied a-points near the critical line and showed that for any δ > 0∑
0<γa≤T

1/2−δ<βa<1/2+δ

1 =
T

2π
log T +Oδ(T ),

where the implied constant depends on δ. From (1.1), it immediately follows that Na(T )(1 + o(1)) a-points of
ζ(s) lie in the strip 1/2− δ < σ < 1/2 + δ, 1 < t < T , for any fixed δ. Therefore, the a-points of ζ(s) cluster
near the critical line σ = 1/2.
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Selberg also studied the distribution of the a-points of ζ(s) near the critical line. Under the assumption
of the Riemann hypothesis, Selberg, in unpublished work, showed for c > 0 and σ = 1/2− c

√
π log log T/ log T

that ∑
1<γa≤T
βa>σ

1 =

∫ ∞
−c

e−πx
2

dx Na(T )(1 + o(1))

(a proof may be found in Tsang’s thesis [17]). By this we see that, assuming the Riemann hypothesis, about 1/2
of the a-points of ζ(s) lie to the left of the line σ = 1/2 at distances of order

√
log log T/ log T . Taking c→ 0+

slowly, it follows that
Na(0, 1/2;T ) ≥ 1

2 ·Na(T )(1 + o(1)). (1.3)

Understanding the distribution of the remaining one-half of the a-points seems to be quite difficult. Selberg
[13] states that most of these points lie quite close to the critical line at distances of order not exceeding
(log log log T )3/(log T

√
log log T ) away from the critical line. Moreover, he conjectured that approximately one

half of these lie to the left of the line σ = 1/2 while the other half lie to the right. That is, three-quarters of the
nontrivial a-points lie to the left of the critical line σ = 1/2, while the remaining one-quarter lie to the right of
the line.

On the critical line σ = 1/2 we expect that there are very few a-points. In fact, Selberg [13] has conjectured
that there are at most only finitely many a-points on the critical line. Observe that for almost all a there are no
a-points of ζ(s) with βa = 1/2. This is because the set {ζ( 1

2 + it) : t ∈ R} ⊂ C, has two-dimensional Lebesgue
measure zero. Recently, Banks et. al [1] have shown that the curve {ζ( 1

2 + it) : t ∈ R} has countably many self-
intersections. From this, it immediately follows that there are only countably many numbers a for which more
than one a-point lies on the critical line. On the other hand, for every complex number a we have from (1.3)
that the Riemann hypothesis implies that no more than one-half of the a-points can lie on the line σ = 1/2.

We will investigate the number of a-points that lie on the line σ = 1/2 both unconditionally and under
the assumption of a spacing condition on the ordinates of zeros of the Riemann zeta-function. Unconditionally,
we show that for any nonzero complex number a at most one-half of the nontrivial a-points of the Riemann
zeta-function lie on the critical line. Furthermore, under the assumption of a spacing condition we prove that
almost all of the a-points of ζ(s) do not lie on the line σ = 1/2.

2 Main Results

Let us first introduce Hardy’s Z-function in the form

Z(t) = eiθ(t)ζ( 1
2 + it),

where θ(t) is the Riemann-Siegel theta function and is given by

θ(t) = arg Γ( 1
4 + i t2 )− log π

2
t.

Next, for any nonzero a ∈ C we write a = |a|eiφ with −π < φ ≤ π and let g = g(φ) be a solution to

θ(t) ≡ −φ (mod π).

We call the points, g, shifted Gram points and for any n ∈ Z we call the unique g = gn that satisfies
θ(gn) = πn− φ the nth shifted Gram point.

Let
Ψ = 1

2 log log T.

Also, write 1S(x) for the indicator function of the set S; that is 1S(x) equals one if x ∈ S and equals zero
otherwise. A result of Selberg states for α < β that

1

T

∫ 2T

T

1[α,β]

(
log |ζ( 1

2 + it)|Ψ−1/2
)
dt =

1√
2π

∫ β

α

e−x
2/2dx+O

( (log Ψ)2

√
Ψ

)
(see [13] and [17]). Since shifted Gram points are regularly spaced (see Lemma 3.4) it seems reasonable to expect
that log |ζ( 1

2 + ig)|Ψ−1/2 is normally distributed at the shifted Gram points T < g ≤ 2T . In fact, Selberg, in

unpublished work, proved that arg ζ( 1
2 + ig)Ψ−1/2 has a normal limiting distribution.

However, there are extra considerations that need to be accounted for when estimating the real part of
the logarithm. For instance, the possible existence of Landau-Siegel zeros could cause the ordinates of zeros of
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ζ(s) to be distributed according to the Alternative Hypothesis as stated in [6]. Hence, the presence of Landau-
Siegel zeros could imply that a positive proportion of the shifted Gram points T < g ≤ 2T are equal to, or at
least extremely close to, ordinates of zeros of ζ(s). This would show that log |ζ( 1

2 + ig)|Ψ−1/2 is not normally
distributed at these points.

For this reason we assume

Hypothesis S. For any n ∈ N

lim
ε→0+

lim sup
T→∞

|{T < γ, γ′ ≤ 2T : | (γ−γ
′) log T
2π − n| < ε}|

T log T
= 0,

where γ, γ′ are ordinates of zeros of the Riemann zeta-function.

We note that this spacing hypothesis is similar to other spacing hypotheses made in [3], [7], and [4].
Additionally, we observe that if Montgomery’s Pair Correlation Conjecture is true then so is Hypothesis S.

Montgomery’s Pair Correlation Conjecture. For fixed α < β as T →∞

1

N(T )

∑
0<γ,γ′≤T

2πα
log T ≤γ−γ

′≤ 2πβ
log T

1 ∼
∫ β

α

1−
( sinπx

πx

)2

dx+ 1[α,β](0).

To calculate the distribution function of log |ζ( 1
2 + ig)|Ψ−1/2 at the shifted Gram points T < g ≤ 2T we will

assume the truth of Hypothesis S. However, using the method of B. Hough [8] we can unconditionally establish
an upper bound for the distribution function.

Theorem 2.1. For fixed α ∈ R we have as T →∞

1
T
2π log T

∑
T<g≤2T
g 6=γ

1[α,∞)

(
log |ζ( 1

2 + ig)|Ψ−1/2
)
≤ 1√

2π

∫ ∞
α

e−x
2/2dx+ o(1).

Assuming Hypothesis S we show the upper bound is best possible.

Theorem 2.2. Assume Hypothesis S. For fixed α < β

lim
T→∞

1
T
2π log T

∑
T<g≤2T
g 6=γ

1[α,β]

(
log |ζ( 1

2 + ig)|Ψ−1/2
)

=
1√
2π

∫ β

α

e−x
2/2dx.

Establishing an upper bound on the rate of convergence to the Gaussian distribution in Theorem 2.2 would
immediately lead to an improvement in Corollary 2.4. However, we are unable to do so. The limitation in our
argument arises solely from Hypothesis S.

Recall that it follows from the work of Selberg (see [13] and [17]) that assuming the Riemann hypothesis
at most one-half of the nontrivial a-points can lie on the critical line σ = 1/2. From Theorem 2.1 we have that
this holds unconditionally.

Corollary 2.3. For every nonzero complex number a we have

1

Na(T )

∑
0<γa≤T
βa=1/2

1 ≤ 1

2
+ o(1) (T →∞).

That is, at most one-half of the nontrivial a-points of the Riemann zeta-function lie on the critical line.

Similarly, by Theorem 2.2 we have
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Corollary 2.4. Assume Hypothesis S. For every nonzero a ∈ C, zero percent of the nontrivial a-points of ζ(s)
lie on the critical line. That is,

lim
T→∞

1

Na(T )

∑
0<γa≤T
βa=1/2

1 = 0.

By computing a mollified second moment of ζ( 1
2 + ig)− a one may be able to to give an alternative proof

that a positive proportion of the a-points do not lie on the line σ = 1/2. However, due the constraint on the
length of the mollifier we believe that this would give an inferior result to Corollary 2.3.

As previously mentioned, an additional assumption on the zeros of ζ(s) is necessary for the conclusion of
Theorem 2.2 to hold. We wonder if it is possible for the zeros of ζ(s) to be distributed in such a way so that
a positive proportion of the nontrivial a-points lie on the line σ = 1/2, for some a 6= 0. For instance, if the
Alternative Hypothesis as stated in [6] is true then does the conclusion of Corollary 2.4 still hold? It is possible
to give examples of functions f(s) that are analytic in 0 < σ < 1, whose zeros are regularly spaced, lie on the
line σ = 1/2, and for which many of the solutions to f(s) = a also lie on the line σ = 1/2. Simple examples of

such functions are f(s) = a sinh(s− 1
2 ) and f(s) = |a|

2 χ(s) + a
2 with t > 10 (here χ is the functional equation

factor). It would be interesting to determine what other functions also have these properties.
We now prove the corollaries.

Proof of Corollary 2.3. For any nonzero a ∈ C write a = |a|eiφ with −π < φ ≤ π. Note that by the functional
equation for ζ(s) it follows that Z(t) is real. Thus, at an a-point of the form ρa = 1/2 + iγa, we have
Z(γa) = eiθ(γa)a = ei(θ(γa)+φ)|a|. Since Z(γa) is real we have that

θ(γa) ≡ −φ (mod π),

which implies that γa is a shifted Gram point. Hence,∑
T<γa≤2T
βa=1/2

1 ≤
∑

T<g≤2T
|ζ( 1

2 +ig)|=|a|

1. (2.1)

Next, let A = | log |a|| and note that for any ε > 0, if T is sufficiently large, then 2A < ε
√

Ψ. Thus,∑
T<g≤2T

|ζ( 1
2 +ig)|=|a|

1 ≤
∑

T<g≤2T
g 6=γ

1[−2A,2A]

(
log |ζ( 1

2 + ig)|
)

≤
∑

T<g≤2T
g 6=γ

1[−ε,ε]

(
log |ζ( 1

2 + ig)|Ψ−1/2
)

≤
∑

T<g≤2T
g 6=γ

1[−ε,∞)

(
log |ζ( 1

2 + ig)|Ψ−1/2
)
.

(2.2)

Observe that by Theorem 2.1 we have

1
T
2π log T

∑
T<g≤2T
g 6=γ

1[−ε,∞)

(
log |ζ( 1

2 + ig)|Ψ−1/2
)
≤ 1√

2π

∫ ∞
−ε

e−x
2/2dx+ o(1) =

1

2
+ o(1)

since ε > 0 is arbitrary. Combining this with (2.1) and (2.2), we have∑
T<γa≤2T
βa=1/2

1 ≤
(1

2
+ o(1)

) T
2π

log T.

For any positive integer N observe that we have

∑
T

2N
<γa≤T

βa=1/2

1 =

N−1∑
k=0

∑
T

2k+1<γa≤
T

2k

βa=1/2

1 ≤
(1

2
+ o(1)

)(N−1∑
k=0

T

2k+1(2π)
log

T

2k+1

)
=
(1

2
+ o(1)

) T
2π

log T,
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since we may take N arbitrarily large. Recall that

Na(T ) =
∑

1<γa≤T

1 =
T

2π
log

T

2π
+O(T ).

From this we see that ∑
0<γa≤ T

2N

βa=1/2

1 ≤ Na(T/2N )� T

2N
log T = o(T log T ).

Corollary 2.3 now follows.

Proof of Corollary 2.4. The argument is similar to the previous proof. Assuming Hypothesis S we have by
Theorem 2.2 for any fixed ε > 0 that as T →∞

∑
T<g≤2T
g 6=γ

1[−ε,ε]

(
log |ζ( 1

2 + ig)|Ψ−1/2
)

=
T log T

(2π)3/2

(∫ ε

−ε
e−x

2/2 dx+ o(1)

)
= o(T log T )

since ε was arbitrary. Using this estimate in (2.2) we have by (2.1) that∑
T<γa≤2T
βa=1/2

1 = o(T log T ).

The proof is completed along the same lines as before.

3 Preliminary Lemmas

The following estimate is due to van der Corput and can be found in [16].

Lemma 3.1. Suppose that f(u) is real and twice differentiable and that f ′′(u) ≈ λ on an interval [a, b] with
b ≥ a+ 1. Then ∑

a<n≤b

exp(2πif(n))� (b− a)λ1/2 + λ−1/2.

Lemma 3.2. Let T ≥ 10. Then for positive x not equal to one

∑
T<g≤2T

xig �
(
T
| log x|
log T

)1/2

+

(
T

log3 T

| log x|

)1/2

+ | log x|.

Proof . Our first step will be to derive an approximate formula for gn. By Stirling’s formula, for t > 1,

θ(t)

π
+
φ

π
=

t

2π
log

t

2πe
− 1

8
+
φ

π
+O(1/t). (3.1)

We now let g̃n be defined via the equation

g̃n
2π

log
g̃n
2πe
− 1

8
+
φ

π
= n.

Next write Z = log(g̃n/(2πe)) so that
n

e
+

1

8e
− φ

πe
= ZeZ .

Writing, W (Z) for the Lambert W -function, which is the inverse function of ZeZ , we have W
(
n
e + 1

8e −
φ
πe

)
=

Z = log(g̃n/(2πe)), so that

g̃n = 2π exp

(
1 +W

(
n

e
+

1

8e
− φ

πe

))
.
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Now suppose that n > (θ(T ) + φ)/π, so that gn > T . By definition,(
g̃n
2π

log
g̃n
2πe
− 1

8
+
φ

π

)
−
(
θ(gn)

π
+
φ

π

)
= n− n = 0

and by (3.1),
θ(gn)

π
=
gn
2π

log
gn
2πe
− 1

8
+O(1/T ).

Consequently, ∣∣∣ gn
2π

log
gn
2πe
− g̃n

2π
log

g̃n
2πe

∣∣∣� 1/T.

Next consider the function f(x) = x log(x/(2πe)). For any x > y ≥ 10∫ x

y

f ′(t) dt ≥ (x− y) log
y

2π
.

Hence, if f(x)− f(y) ≤ X then x− y ≤ X/ log(y/2π). Thus, for n > (θ(T ) + φ)/π we have gn = g̃n +

O(1/(T log T )). Let A(t) = (θ(t) + φ)/π and note that for real a, b we have | exp(ib)− exp(ia)| = |
∫ b
a

exp(it)dt| ≤
|b− a|. Therefore, ∑

T<g≤2T

xig =
∑

A(T )<n≤A(2T )

xign =
∑

A(T )<n≤A(2T )

xig̃n +O(| log x|). (3.2)

Let F (u) = log x exp
(
1 +W

(
u
e + 1

8e −
φ
πe

))
and observe that exp(2πiF (n)) = xig̃n . Note that

W ′(u) =
1

exp(W (u))(1 +W (u))
=

W (u)

u(1 +W (u))
,

and W (u) ≈ log u. So that for u ≥ 10

F ′′(u) =
− log xW

(
u
e + 1

8e −
φ
πe

)(
u+ 1

8 −
φ
π

) (
1 +W

(
u
e + 1

8e −
φ
πe

))3 ≈ | log x|
u log2 u

.

We take a = A(T ), b = A(2T ), f(u) = F (u), and λ = | log x|/(T log3 T ). The result now follows from applying
Lemma 3.1 to the sum on the right-hand side of (3.2).

Let

Ng(T ) =
∑

0<g≤T

1 =
T

2π
log

T

2πe
+O(1) and Ng(T, 2T ) = Ng(2T )−Ng(T ).

Lemma 3.3. Let 2 ≤ x ≤ T 1/4 and for each prime p let ap be a complex number. If

ap �
log p

p1/2 log x
,

then ∑
T<g≤2T

∣∣∣∣∑
p≤x

app
−ig
∣∣∣∣2 � T log T. (3.3)

Also, if

ap � 1,

then ∑
T<g≤2T

∣∣∣∣∑
p≤x

ap
p1+2ig

∣∣∣∣2 � T log T. (3.4)
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Proof . We begin by proving the first assertion. By Lemma 3.2,

∑
T<g≤2T

∣∣∣∣∑
p≤x

app
−ig
∣∣∣∣2 =Ng(T, 2T )

∑
p≤x

|ap|2 +
∑
p,q≤x
p 6=q

apāq
∑

T<g≤2T

(
p

q

)ig

�T log T

log2 x

∑
p≤x

log2 p

p
+ T 1/2 (log T )3/2

log2 x

∑
p,q≤x
p6=q

log p log q√
pq| log p

q |
.

(3.5)

Since ∑
p≤x

log2 p

p
� log2 x,

the first term above is � T log T . To estimate the second term on the right-hand side, observe that if p < q ≤ x

log q − log p =

∫ q

p

dt

t
≥ q − p

p
≥ 1

x
.

Hence, ∑
p,q≤x
p 6=q

log p log q√
pq| log p

q |
� x1/2

(∑
p≤x

log p
√
p

)2

� x3/2.

So that

T 1/2 (log T )3/2

log2 x

∑
p,q≤x
p 6=q

log p log q√
pq| log p

q |
� T 1/2x3/2 (log T )3/2

log2 x
� T.

Applying this in (3.5) yields the first assertion of the lemma.
As for the second assertion we argue similarly to obtain

∑
T<g≤2T

∣∣∣∣∑
p≤x

ap
p1+2ig

∣∣∣∣2 � T log T
∑
p≤x

1

p2
+ T 1/2(log T )3/2

∑
p,q≤x
p 6=q

1

pq
√
| log p

q |
,

which, as before, is seen to be � T log T .

Next, we have

Lemma 3.4. For any m, ` ∈ N satisfying Ng(T ) < m < ` ≤ Ng(2T ), we have

(g` − gm)
log T

2π
= (`−m)(1 +O(1/ log T )).

Proof . By Stirling’s formula, for Ng(T ) < ` ≤ Ng(2T )

` =
θ(g`)

π
+
φ

π
=
g`
2π

(log T +O(1)).

Differencing this with the analogous formula for m, we obtain

(`−m) = (g` − gm)
log T

2π
(1 +O(1/ log T )).

The next lemma is from K. M. Tsang’s PhD thesis [17] and follows from the zero density estimate∑
0<γ≤T
β>σ

1� T 1−(σ−1/2)/4 log T

due to Selberg [12].
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Lemma 3.5. Let 3 ≤ ξ ≤ T 1/8. For k ≥ 0 and 1/2 ≤ σ ≤ 1, we have∑
0<γ≤T
β>σ

(β − σ)kξβ−σ � T 1−(σ−1/2)/4(log T )1−k,

where the implied constant depends on k.

For X > 0 and t ≥ 2 we define the number

σX,t =
1

2
+ 2 max

(
β − 1

2
,

2

logX

)
, (3.6)

where the maximum is taken over ρ satisfying |t− γ| ≤ X3|β−1/2|/ logX.

Lemma 3.6. Let 3 ≤ ξ ≤ T 1/25 and X = T 1/100. Then for k ≥ 0 we have∑
T<g≤2T

(σX,g − 1
2 )kξσX,g−1/2 � T log1−k T,

where the implied constant depends on k.

Proof . By the definition of σX,t, if for some g we have σX,g > 1/2 + 4/ logX then there is a ρ0 such that
β0 > 1/2 + 2/ logX and |g − γ0| ≤ X3(β−1/2)/ logX. In particular, if T < g ≤ 2T , then 0 < γ0 ≤ 3T . Let

G(β + iγ) =
∣∣∣{T < g ≤ 2T : |g − γ| ≤ X3(β−1/2)

logX

}∣∣∣.
Then ∑

T<g≤2T

(σX,g − 1
2 )kξσX,g−1/2 �

∑
T<g≤2T

1

logkX
+

∑
0<γ≤3T

β>1/2+ 2
logX

(β − 1
2 )kξ2(β−1/2)G(β + iγ).

(3.7)

For any zero of ζ(s), we have that

G(β + iγ)� X3(β−1/2) log T

logX
,

because the points g are regularly spaced approximately (log T )−1 apart. Hence, the right-hand side of (3.7) is

� T
log T

logkX
+

log T

logX

∑
0<γ≤3T
β>1/2

(β − 1
2 )k(ξ2X3)β−1/2.

Applying Lemma 3.5, we see that both terms are

� T log1−k T.

Lemma 3.7. Let m ∈ N and 2 ≤ Y ≤ T 1/m. Then

1

T

∫ T

0

(∑
p≤Y

cos(t log p)

p1/2

)m
dt =

∫
[0,1]π(Y )

(∑
p≤Y

cos(2πθp)

p1/2

)m
dθ +O

(
T−1/2(cm)m/2

)
,

where dθ =
∏
p≤Y dθp and c is an absolute constant. If m = 0 this holds without the error term. Furthermore,

for m ∈ N we have

1

T

∫ T

0

∣∣∣∣∑
p≤Y

cos(t log p)

p1/2

∣∣∣∣m dt, ∫
[0,1]π(Y )

∣∣∣∣∑
p≤Y

cos(2πθp)

p1/2

∣∣∣∣m dθ � (Ψcm)m/2,

where c is a positive absolute constant.
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Proof . This is essentially Lemma 3.4 of [17].

Lemma 3.8. Let Y = T 1/Ψ4

. For |u| ≤ Ψ2 we have

1

T

∫ 2T

T

exp

(
iu
∑
p≤Y

cos(t log p)

p1/2
Ψ−1/2

)
dt =

∫
[0,1]π(Y )

exp

(
iu
∑
p≤Y

cos(2πθp)

p1/2
Ψ−1/2

)
dθ

+O
(
|u|e−Ψ5

)
,

where dθ =
∏
p≤y dθp.

Proof . We expand the exponential function to see that

1

T

∫ 2T

T

exp

(
iu
∑
p≤Y

cos(t log p)

p1/2
Ψ−1/2

)
dt =

N−1∑
n=0

(iuΨ−1/2)n

n!

1

T

∫ 2T

T

(∑
p≤Y

cos(t log p)

p1/2

)n
dt

+O

(
|uΨ−1/2|N

N !

1

T

∫ 2T

T

∣∣∣∣∑
p≤Y

cos(t log p)

p1/2

∣∣∣∣N dt).
By Lemma 3.7 we obtain

1

T

∫ 2T

T

exp

(
iu
∑
p≤Y

cos(t log p)

p1/2
Ψ−1/2

)
dt =

N−1∑
n=0

(iuΨ−1/2)n

n!

∫
[0,1]π(Y )

(∑
p≤Y

cos(2πθp)

p1/2

)n
dθ

+O

(
|u|N (cN)N/2

N !

)
+O

(
T−1/2

N−1∑
n=1

|u|n(cn)n/2

n!

)
.

This equals∫
[0,1]π(Y )

exp

(
iu
∑
p≤Y

cos(2πθp)

p1/2
Ψ−1/2

)
dθ +O

(
|u|N (cN)N/2

N !

)
+O

(
T−1/2

N−1∑
n=1

|u|n(cn)n/2

n!

)
.

We now take N = 2bΨ5c so that Y ≤ T 1/N , and note that |u| ≤ Ψ2. We then find that

|u|N (cN)N/2

N !
� |u|Ψ

2N−2(cN)N/2

N !
� |u|(cN−1Ψ4)N/2 � |u|e−Ψ5

,

by Stirling’s formula. The other O-term is estimated along the same lines.

Lemma 3.9. Let X = T 1/100. For |u| ≤ Ψ1/2/100, we have

1

T

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dt =e−u

2/2

(
1 +O

(
u2 log log log T

Ψ

))

+O

(
|u|
(

log log log T

Ψ

)1/2)
.

Proof . For real u, v, we have | exp(iu)− exp(iv)| = |
∫ u
v

exp(it)dt| ≤ |u− v|. Hence, letting Y = T 1/Ψ4

, we find
that

1

T

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dt

equals
1

T

∫ 2T

T

exp

(
iu
∑
p≤Y

cos(t log p)

p1/2
Ψ−1/2

)
dt+O

(
|u|

Ψ1/2

1

T

∫ 2T

T

∣∣∣∣ ∑
Y <p≤X3

cos(t log p)

p1/2

∣∣∣∣dt).
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To estimate the integral in the error term we apply Cauchy’s inequality and Montgomery and Vaughan’s mean
value theorem for Dirichlet polynomials [11] to see that∫ 2T

T

∣∣∣∣ ∑
Y <p≤X3

cos(t log p)

p1/2

∣∣∣∣ dt�T( ∑
Y <p≤X3

1

p

)1/2

�T
(

log
3 logX

log Y

)1/2

�T (log log log T )1/2.

Thus, by this and Lemma 3.8 it follows that

1

T

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dt =

∫
[0,1]π(Y )

exp

(
iu
∑
p≤Y

cos(2πθp)

p1/2
Ψ−1/2

)
dθ

+O
(
|u|e−Ψ5

)
+O

(
|u|
(

log log log T

Ψ

)1/2)
.

(3.8)

Next, observe that∫
[0,1]π(Y )

exp

(
iu
∑
p≤Y

cos(2πθp)

p1/2
Ψ−1/2

)
dθ =

∏
p≤Y

∫ 1

0

exp
(
iu

cos(2πθp)

p1/2
Ψ−1/2

)
dθp

=
∏
p≤Y

J0

(
u

(pΨ)1/2

)
,

(3.9)

where J0(z) =
∫ 1

0
eiz cos(2πθ)dθ is the zeroth Bessel function of the first kind. This function also has the series

expansion

J0(z) =

∞∑
n=0

(−1)n
( 1

2z)
2n

(n!)2
.

Consequently, for |z| ≤ 1 we have

J0(2z) = e−z
2

(1 +O(|z|4)).

It follows that ∏
p≤Y

J0

( u

(pΨ)1/2

)
= exp

(
− u2

4Ψ

∑
p≤Y

1

p

) ∏
p≤Y

(
1 +O

( u4

p2Ψ2

))
. (3.10)

A simple calculation shows that
∏
p≤Y (1 +O(u4/(p2Ψ2))) = 1 +O(u4/Ψ2). Next, note that

1

Ψ

∑
p≤Y

1

p
= 2

log log Y +O(1)

log log T +O(1)
= 2(1 +O(log log log T/ log log T )).

Thus, for |u| ≤ Ψ1/2/100, we have

exp

(
− u2

4Ψ

∑
p≤Y

1

p

) ∏
p≤Y

(
1 +O

( u4

p2Ψ2

))
= exp(−u2/2)

(
1 +O

(u2 log log log T

log log T

))
.

Therefore, by this, (3.8), (3.9), and (3.10) the result follows.

4 An Approximate Formula for log |ζ(12 + it)|

In [12] Selberg proves an explicit formula for S(t) = π−1 arg ζ( 1
2 + it) in terms of a Dirichlet polynomial

supported on prime numbers. The purpose of this section is to prove an analogous formula for log |ζ( 1
2 + it)|.

For any real number t, let
ηt = min

γ
|t− γ|.
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For x ≥ 2 define

wx(n) =


1 if n ≤ x,
log2(x3/n)−2 log2(x2/n)

2 log2 x
if x < n ≤ x2,

log2(x3/n)
2 log2 x

if x2 < n ≤ x3,

0 if n > x3.

Next, write log+ x for the positive part of the logarithm, that is log+ x = log x if x > 1 and log+ x = 0 for
0 < x ≤ 1. Now, let

F (t;X) =
(X( 1

2−σX,t)/2

logX
+ (σX,t − 1

2 )
)(

(σX,t − 1
2 ) logX + log+ 1

ηt logX

)
(4.1)

where σX,t is defined in (3.6). Also, let

E1(t;X) =

∣∣∣∣ ∑
n≤X3

Λ(n)

nσX,t+it
wX(n)

∣∣∣∣. (4.2)

We now cite

Lemma 4.1. For T < t ≤ 2T and 2 ≤ X ≤ T 1/100 we have

log |ζ( 1
2 + it)| =

∑
n≤X3

Λ(n) cos(t log n)

nσX,t log n
wX(n) +O

(
F (t;X)

(
E1(t;X) + log T

))
.

Additionally, under the same hypotheses

log |ζ(σX,t + it)| =
∑
n≤X3

Λ(n) cos(t log n)

nσX,t log n
wX(n) +O

(
X( 1

2−σX,t)/2

logX

(
E1(t;X) + log T

))
.

Proof . The first statement is proved in K. M. Tsang’s PhD thesis (see Theorem 5.2 of [17]). The second formula
is due to A. Selberg (see equation (4.9) of [12]).

Lemma 4.2. For T < t ≤ 2T and 2 ≤ X ≤ T 1/100 we have

log |ζ( 1
2 + it)| =

∑
p≤X3

cos(t log p)

p1/2
+O

(
F (t;X) log T + E2(t;X) + E3(t;X)

)
+O

(
F (t;X)XσX,t− 1

2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
n≤X3

log p log pX

pu+it
wX(p)

∣∣∣∣du),
where F (t;T ) is defined in (4.1) and

E2(t;X) =

∣∣∣∣ ∑
p≤X3

(1− wX(p))

p1/2+it

∣∣∣∣ and E3(t;X) =

∣∣∣∣ ∑
p≤X3/2

wX(p2)

p1+2it

∣∣∣∣.
Additionally, under the same hypotheses

log |ζ(σX,t + it)| =
∑
p≤X3

cos(t log p)

p1/2
+O

((
X( 1

2−σX,t)/2

logX
+ (σX,t − 1

2 )

)
log T + E2(t;X) + E3(t;X)

)

+O

((
X(σX,t− 1

2 )/2

logX
+ (σX,t − 1

2 )XσX,t− 1
2

)∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
n≤X3

log p log pX

pu+it
wX(p)

∣∣∣∣du).
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Proof . We prove only the first assertion. The second statement follows from essentially the same argument.
From Lemma 4.1 we have that

log |ζ( 1
2 + it)| =

∑
n≤X3

Λ(n) cos(t log n)

nσX,t log n
wX(n) +O

(
F (t;X)

(
E1(t;X) + log T

))
We now split the sum into a sum over primes, a sum over squares of primes, and a sum over the higher prime
powers. In the sum over primes we replace the weight wX(n) with 1 and σX,t with 1/2. For the sum over squares
of primes we replace σX,t with 1/2, and the sum over the higher prime powers is estimated trivially. We also
use the inequality |R z| ≤ |z|. In this way we find that

∑
n≤X3

Λ(n) cos(t log n)

nσX,t log n
wX(n) =

∑
p≤X3

cos(t log p)

p1/2
+O

(∣∣∣∣ ∑
p≤X3

(1− wX(p))

p1/2+it

∣∣∣∣)

+O

(∣∣∣∣ ∑
p≤X3

wX(p)p−it(p−σX,t − p−1/2)

∣∣∣∣)+O

(∣∣∣∣ ∑
p≤X3/2

wX(p2)

p1+2it

∣∣∣∣)

+O

(∣∣∣∣ ∑
p≤X3/2

wX(p2)p−2it(p−2σX,t − p−1)

∣∣∣∣)+O

( ∑
pr≤X3

r>2

1

rpr/2

)
.

(4.3)

The first O-term is � E2(t;X) and the third O-term is � E3(t;X). Next, observe that∑
pr≤X3

r>2

1

rpr/2
� 1� (σX,t − 1

2 ) log T,

so the last error term in (4.3) is bound by F (t;X) log T . To bound the fourth O-term note that

∑
p≤X3/2

wX(p2)p−2it(p−2σX,t − p−1)�
∑

p≤X3/2

1− p1−2σX,t

p

�(σX,t − 1
2 )

∑
p≤X3/2

log p

p

�(σX,t − 1
2 ) log T,

which again is � F (t;X) log T .
To complete the proof there are two things to show. First, that the second error term in (4.3) is bounded

by

F (t;X)XσX,t−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+it
wX(p)

∣∣∣∣du. (4.4)

The second thing to show is that F (t;X)E1(t;X) is bounded by (4.4) plus F (t;X) log T .
To begin, observe that

∑
p≤X3

wX(p)

pit
(p−σX,t − p−1/2) =

∫ σX,t

1/2

∑
p≤X3

log p

pu+it
wX(p)du

�(σX,t − 1
2 )

∣∣∣∣ ∑
p≤X3

log p

pσ∗+it
wX(p)

∣∣∣∣,
where σ∗ = σ∗(t) lies between 1/2 and σX,t. Next, we see that if 1/2 ≤ σ ≤ σX,t, then∣∣∣∣ ∑

p≤X3

log p

pσ+it
wX(p)

∣∣∣∣ =

∣∣∣∣Xσ−1/2

∫ ∞
σ

X1/2−u
∑
p≤X3

log p logXp

pu+it
wX(p)du

∣∣∣∣
≤XσX,t−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p logXp

pu+it
wX(p)

∣∣∣∣du. (4.5)
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Combining these two estimates, we see that∑
p≤X3

wX(p)

pit
(p−σX,t − p−1/2)� (σX,t − 1

2 )XσX,t−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

wX(p) log p logXp

pu+it

∣∣∣∣du.
Finally, to complete the proof we bound F (t;X)E1(t;X) by (4.4) plus F (t;X) log T . To do this observe

that

F (t;X)

∣∣∣∣ ∑
n≤X3

Λ(n)

nσX,t+it
wX(n)

∣∣∣∣ ≤F (t;X)

∣∣∣∣ ∑
p≤X3

log p

pσX,t+it
wX(p)

∣∣∣∣
+ F (t;X)

∣∣∣∣ ∑
p≤X3/2

log p

p2σX,t+i2t
wX(p2)

∣∣∣∣+O(F (t;X)).

Trivially, the second and third terms on the right-hand side above are� F (t;X) log T . Finally, by (4.5) we have∣∣∣∣ ∑
p≤X3

log p

pσX,t+it
wX(p)

∣∣∣∣� XσX,t−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

wX(p) log p logXp

pu+it

∣∣∣∣du.

We now cite an inequality due to B. Hough. This enables us to establish an unconditional upper bound on
the distribution function of log |ζ( 1

2 + ig)|Ψ−1/2.

Lemma 4.3. Suppose t > 10. For t 6= γ we have

log |ζ( 1
2 + it)| ≤ log |ζ(σX,t + it)|+ 1

2 (σX,t − 1
2 ) log t+O(1).

Proof . See Proposition 4.1 of [8]. We have applied Stirling’s formula to the gamma function term.

Hough’s inequality is similar to one of Soundararajan [14] (see the main proposition). Crucially, the bound
here does not depend upon the truth of the Riemann hypothesis.

5 Controlling the Error Term in the Approximate Formula

In the error term in the approximate formula for log |ζ( 1
2 + it)|, the term log+(1/(ηt logX)) will be quite large

when t is near an ordinate of a zero of ζ(s). Consequently, the error in approximating log |ζ( 1
2 + ig)| may be

quite large for any given g. However, in this section we will show that Hypothesis S implies that this can only
happen for at most o(T log T ) of the shifted Gram points with T < g ≤ 2T . We then show that for the remaining
T < g ≤ 2T , the error term in the approximate formula for log |ζ( 1

2 + ig)| is relatively small on average.
We first introduce some notation. We denote by g∗ any g satisfying ηg ≥ 1/(log(|g|+ 2) log log(|g|+ 3)).

We denote all other g by g∗.

Lemma 5.1. Assume Hypothesis S. Then as T →∞∑
T<g∗≤2T

1 = o(T log T ).

Proof . The proof is by contradiction. Suppose for some integer M ≥ 2 there is a sequence {Tn} such that
Tn →∞ as n→∞, and that for each n

1

Ng(Tn, 2Tn)

∑
Tn<g∗≤2Tn

1 ≥ 1

M
. (5.1)

Let
Ag∗ = Ag` = {g`, . . . , g`+M}.
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By Lemma 3.4 if Tn < g′∗ < g∗ ≤ 2Tn and Ag∗ ∩Ag′∗ 6= ∅ then there is an m ∈ N with 1 ≤ m ≤M such that∣∣∣(g∗ − g′∗) log Tn
2π

−m
∣∣∣ ≤ Cm

log Tn
= ε1,

where C is an absolute constant. Thus, for all sufficiently large n,

M∑
m=1

∑
Tn<g∗,g′∗≤2Tn

1[m−ε1,m+ε1]

(
(g∗ − g′∗)

log Tn
2π

)
≥

∑
Tn<g∗,g

′
∗≤2Tn

g′∗<g∗, Ag∗∩Ag′∗ 6=∅

1. (5.2)

To obtain a lower bound for the sum on the right-hand side, we begin by noting that by inclusion-exclusion,∣∣∣ ⋃
Tn<g∗≤2Tn

Ag∗

∣∣∣− ∑
Tn<g∗≤2Tn

|Ag∗ |+
∑

Tn<g∗,g
′
∗≤2Tn

g′∗<g∗

|Ag∗ ∩Ag′∗ | ≥ 0.

We have |Ag∗ | = M + 1, |Ag∗ ∩Ag′∗ | ≤M for g∗ 6= g′∗, and | ∪Tn<g∗≤2Tn Ag∗ | ≤ Ng(Tn, 2Tn) +M . Thus,

M
∑

Tn<g∗,g
′
∗≤2Tn

g′∗<g∗, Ag∗∩Ag′∗ 6=∅

1 ≥
∑

Tn<g∗,g
′
∗≤2Tn

g′∗<g∗

|Ag∗ ∩Ag′∗ | ≥ (M + 1)
∑

Tn<g∗≤2Tn

1−Ng(Tn, 2Tn)−M.

From this and (5.1) we obtain ∑
Tn<g∗,g

′
∗≤2Tn

g′∗<g∗, Ag∗∩Ag′∗ 6=∅

1 ≥ 1

M2
Ng(Tn, 2Tn)− 1.

Combining this with (5.2) we now see that

M∑
m=1

∑
Tn<g∗,g′∗≤2Tn

1[m−ε1,m+ε1]

(
(g∗ − g′∗)

log Tn
2π

)
≥ 1

M2
Ng(Tn, 2Tn)− 1. (5.3)

By the definition of g∗ we know that there is an ordinate of a zero of ζ(s) γ so that |g∗ − γ| ≤
1/(log Tn log log Tn) = ε2 for g∗ > Tn. Hence, for Tn < g∗, g

′
∗ ≤ 2Tn∣∣∣∣(g∗ − g′∗) log Tn

2π
− (γ − γ′) log Tn

2π

∣∣∣∣ ≤ 1

π log log Tn
.

Now let ε3 = ε1 + 1/(π log log Tn). We have∑
Tn<g∗,g′∗≤2Tn

1[m−ε1,m+ε1]

(
(g∗ − g′∗)

log Tn
2π

)
≤

∑
Tn−ε2<γ,γ′≤2Tn+ε2

1[m−ε3,m+ε3]

(
(γ − γ′) log Tn

2π

)
. (5.4)

Note that ∑
Tn−ε2<γ,γ′≤2Tn+ε2

1[m−ε3,m+ε3]

(
(γ − γ′) log Tn

2π

)
=

∑
Tn<γ,γ′≤2Tn

1[m−ε3,m+ε3]

(
(γ − γ′) log Tn

2π

)
+O(log2 Tn),

(5.5)

since N(t+ 1)−N(t) = O(log(|t|+ 2)) (see [16] Chapter IX). Now let ε > 0. Then for all n sufficiently large,
we have ∑

Tn<γ,γ′≤2Tn

1[m−ε3,m+ε3]

(
(γ − γ′) log Tn

2π

)
≤

∑
Tn<γ,γ′≤2Tn

1[m−ε,m+ε]

(
(γ − γ′) log Tn

2π

)
. (5.6)

By (5.4), (5.5), and (5.6) we see that∑
Tn<g∗,g′∗≤2Tn

1[m−ε1,m+ε1]

(
(g∗ − g′∗)

log Tn
2π

)
≤

∑
Tn<γ,γ′≤2Tn

1[m−ε,m+ε]

(
(γ − γ′) log Tn

2π

)
+O(log2 Tn).
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Applying this in (5.3) we see that

M∑
m=1

∑
Tn<γ,γ′≤2Tn

1[m−ε,m+ε]

(
(γ − γ′) log Tn

2π

)
≥ 1

M2
Ng(Tn, 2Tn)(1 + o(1)).

By Hypothesis S it follows from this that

1

M2
≤ lim
ε→0+

(
lim sup
n→∞

M∑
m=1

1

Ng(Tn, 2Tn)

∑
Tn<γ,γ′≤2Tn

1[m−ε,m+ε]

(
(γ − γ′) log Tn

2π

))

=

M∑
m=1

lim
ε→0+

(
lim sup
n→∞

|{Tn < γ, γ′ ≤ 2Tn : | (γ−γ
′) log Tn
2π −m| < ε}|

Ng(Tn, 2Tn)

)
= 0,

so we have reached a contradiction.

The following lemma will allow us to show that the error term in the approximate formula for log |ζ(1/2 +
ig∗)| with T < g∗ ≤ 2T is relatively small on average.

Lemma 5.2. Let X = T 1/100 and F (t;X) be as defined in (4.1). Then∑
T<g∗≤2T

F (g∗;X)� T log log log T

and ∑
T<g∗≤2T

X2σX,g∗−1F (g∗;X)2 � T
(log log log T )2

log T
.

Proof . Recall that

F (t;X) =
(X(1/2−σX,t)/2

logX
+ (σX,t − 1

2 )
)(

(σX,t − 1
2 ) logX + log+ 1

ηt logX

)
.

By definition ηg∗ � 1/(log T log log T ) for T < g∗ ≤ 2T and σX,t ≥ 1/2 + 4/ logX. So that

F (g∗;X)� (σX,g∗ − 1
2 )2 logX + (σX,g∗ − 1

2 ) log log log T.

Both assertions of the lemma now follow from Lemma 3.6.

6 The Proofs of Theorem 2.1 and Theorem 2.2

Let
N∗g (T, 2T ) =

∑
T<g≤2T
g 6=γ

1

and

FT (v) =
|{T < g ≤ 2T, g 6= γ : log |ζ( 1

2 + ig)|Ψ−1/2 ≤ v}|
N∗g (T, 2T )

.

Note that FT (v) is a distribution function. It also follows that the characteristic function corresponding to FT (v)
is given by

φT (u) :=

∫ ∞
−∞

eiuv dFT (v) =
1

N∗g (T, 2T )

∑
T<g≤2T
g 6=γ

exp
(
iu log |ζ( 1

2 + ig)|Ψ−1/2
)
.

Similarly, the distribution function for log |ζ(σX,g + ig)|Ψ−1/2 at the points T < g ≤ 2T has the corresponding
characteristic function

ϕT (u) =
1

Ng(T, 2T )

∑
T<g≤2T

exp
(
iu log |ζ(σX,g + ig)|Ψ−1/2

)
.
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(By the definition of σX,t we know that σX,g + ig is not a zero of ζ(s).)
Given distribution functions F1,F2, . . . and the corresponding characteristic functions φ1, φ2, . . . Lévy’s

continuity theorem states, in particular, that if φn converges pointwise on R to a function φ that is continuous
at 0 as n→∞ then Fn converges weakly to a distribution function F as n→∞. Moreover, the characteristic
function of F is φ. See Billingsley [2] Theorem 26.3 or Theorem 3 from Chapter III.2 of Tenenbaum [15]. Also,
note that an analogue of Lévy’s continuity theorem holds when one replaces {Fn} by {FT : T > T0} and {φn}
by {φT : T > T0} for constant T0.

We shall prove

Proposition 6.1. Let X = T 1/100. For |u| ≤ Ψ1/2/100, we have

1

Ng(T, 2T )

∑
T<g≤2T

exp
(
iu log |ζ(σX,g + ig)|Ψ−1/2

)
= e−u

2/2

(
1 +O

(
u2 log log log T

Ψ

))

+O

(
|u|
(

log log log T

Ψ

)1/2)
+O

( 1

log T

)
.

Moreover, under the assumption of Hypothesis S we shall prove

Proposition 6.2. Assume Hypothesis S. Then for |u| ≤ Ψ1/2/100, we have

1

N∗g (T, 2T )

∑
T<g≤2T
g 6=γ

exp
(
iu log |ζ( 1

2 + ig)|Ψ−1/2
)

= e−u
2/2

(
1 +O

(
u2 log log log T

Ψ

))

+ o(1) +O

(
|u| log log log T

Ψ1/2

)
.

Note that e−u
2/2 is the characteristic function of a normally distributed random variable with mean zero

and variance one. Hence, Theorem 2.2 immediately follows from Proposition 6.2 and and Lévy’s continuity
theorem.

We will now deduce Theorem 2.1 using Proposition 6.1 and Lemma 4.3.

Proof of Theorem 2.1. By Lemma 4.3 there is an absolute constant C > 0 such that for T < t ≤ 2T we have for
t 6= γ that

log |ζ( 1
2 + it)| ≤ log |ζ(σX,t + it)|+ 1

2 (σX,t − 1
2 ) log T + C.

Writing ∆(t) = ((σX,t − 1
2 ) log T + C)Ψ−1/2 we see that∑

T<g≤2T
g 6=γ

1[α,∞)

(
log |ζ( 1

2 + ig)|Ψ−1/2
)
≤

∑
T<g≤2T

1[α−∆(g),∞)

(
log |ζ(σX,g + ig)|Ψ−1/2

)
. (6.1)

Using Lemma 3.6 and Chebyshev’s inequality we have for any fixed ε > 0∑
T<g≤2T
∆(g)≥ε

1 ≤ ε−1
∑

T<g≤2T

∆(g)� T

εΨ1/2
log T = o(T log T ).

Thus,∑
T<g≤2T

1[α−∆(g),∞)

(
log |ζ(σX,g + ig)|Ψ−1/2

)
≤

∑
T<g≤2T

1[α−ε,∞)

(
log |ζ(σX,g + ig)|Ψ−1/2

)
+ o(T log T ).

(6.2)
Hence, Proposition 6.1 and Lévy’s continuity theorem imply that

1

Ng(T, 2T )

∑
T<g≤2T

1[α−ε,∞)

(
log |ζ(σX,g + ig)|Ψ−1/2

)
=

1√
2π

∫ ∞
a−ε

e−x
2/2 dx+ o(1).

Since ε is arbitrary Theorem 2.1 now follows from this, (6.1) and (6.2).
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Lemma 6.3. Let X = T 1/100. For |u| ≤ Ψ1/2/100, we have

1

Ng(T, 2T )

∑
T<g≤2T

exp

(
iu
∑
p≤X3

cos(g log p)

p1/2
Ψ−1/2

)
=e−u

2/2

(
1 +O

(
u2 log log log T

Ψ

))

+O

(
|u|
(

log log log T

Ψ

)1/2)
+O(1/ log T ).

Proof . By Stieltjes integration

∑
T<g≤2T

exp

(
iu
∑
p≤X3

cos(g log p)

p1/2
Ψ−1/2

)
=

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dµ(t),

where µ(t) = µφ(t) = b(θ(t) + φ)/πc = t/(2π) log(t/(2πe)) + r(t) and r(t)� 1 for t ≥ 10. The right-hand side
of this equals∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
d
( t

2π
log

t

2πe

)
+

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dr(t). (6.3)

The first integral equals
1

2π

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
log

t

2π
dt,

which by the Second Mean Value Theorem equals

1

2π
log

T

2π

∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dt+O(T ).

By Lemma 3.9 this equals

T

2π
log

T

2π
e−u

2/2

(
1 +O

(
u2 log log log T

Ψ

))
+O

(
|u|T log T

(
log log log T

Ψ

)1/2)
+O(T ) (6.4)

for |u| ≤ Ψ1/2/100.
It remains to bound the second integral in (6.3). Integrating by parts we see that∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dr(t)� 1 +

∣∣∣∣ ∫ 2T

T

r(t)d

(
exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

))∣∣∣∣.
Now ∫ 2T

T

r(t)d

(
exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

))
� |u|

Ψ1/2

∫ 2T

T

∣∣∣∣ ∑
p≤X3

sin(t log p) log p

p1/2

∣∣∣∣dt.
Applying Cauchy’s inequality and then Montgomery and Vaughan’s mean value theorem for Dirichlet
polynomials [11], we see that∫ 2T

T

∣∣∣ ∑
p≤X3

sin(t log p) log p

p1/2

∣∣∣dt ≤T 1/2

(∫ 2T

T

∣∣∣∣ ∑
p≤X3

log p

p1/2+it

∣∣∣∣2dt)1/2

�T 1/2(T log2 T )1/2 = T log T.

We now have that ∫ 2T

T

exp

(
iu
∑
p≤X3

cos(t log p)

p1/2
Ψ−1/2

)
dr(t)� 1 +

|u|
Ψ1/2

T log T.
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Combining this and (6.4) in (6.3) we obtain

1

Ng(T, 2T )

∑
T<g≤2T

exp

(
iu
∑
p≤X3

cos(g log p)

p1/2
Ψ−1/2

)
=e−u

2/2

(
1 +O

(
u2 log log log T

Ψ

))

+O

(
|u|
(

log log log T

Ψ

)1/2)
+O(1/ log T ).

Observe that Proposition 6.1 follows immediately from Lemma 6.3 and

Lemma 6.4. Let X = T 1/100. For |u| ≤ Ψ1/2/100, we have∑
T<g∗≤2T

exp
(
iu log |ζ( 1

2 + ig∗)|Ψ−1/2
)

=
∑

T<g∗≤2T

exp

(
iu
∑
p≤X3

cos(g∗ log p)

p1/2
Ψ−1/2

)

+O

(
|u|T log T log log log T

Ψ1/2

)
.

(6.5)

Additionally, under the same hypotheses we have∑
T<g≤2T

exp
(
iu log |ζ(σX,g + ig)|Ψ−1/2

)
=

∑
T<g≤2T

exp

(
iu
∑
p≤X3

cos(g log p)

p1/2
Ψ−1/2

)
+O

(
|u|T log T

Ψ1/2

)
.

Proof . We will omit the proof of the second assertion as it follows from a similar argument. Note that in
the second statement the error term is slightly smaller because we can obtain better estimates on averages of
X(σX,g− 1

2 ) and (σX,g − 1
2 ) as opposed to averages of F (g∗;X). (Compare Lemma 3.6 to Lemma 5.2.)

Note that |eia − eib| = |
∫ b
a
eitdt| ≤ |b− a|. By this and Lemma 4.2 we have∑

T<g∗≤2T

∣∣∣∣ exp
(
iu log |ζ( 1

2 + ig∗)|Ψ−1/2
)
− exp

(
iu
∑
p≤X3

cos(g∗ log p)

p1/2
Ψ−1/2

)∣∣∣∣
� |u|

Ψ1/2

∑
T<g∗≤2T

(
F (g∗;X)XσX,g∗−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣du
+ F (g∗;X) log T + E2(g∗;X) + E3(g∗;X)

)
.

(6.6)

(See (4.2) for the definition of E1 and Lemma 4.2 for the definitions of E2, E3.) Observe that (1− wX(p))�
log p/ logX, so by Cauchy’s inequality and (3.3),

∑
T<g∗≤2T

E2(g∗;X)� (T log T )1/2

( ∑
T<g≤2T

E2(g;X)2

)1/2

� T log T.

Similarly, by (3.4)

∑
T<g∗≤2T

E3(g∗;X)� (T log T )1/2

( ∑
T<g≤2T

E3(g;X)2

)1/2

� T log T.

Next, by Lemma 5.2 ∑
T<g∗≤2T

F (g∗;X) log T � T log T (log log log T ).

It remains to bound the first term in (6.6). We begin by applying Cauchy’s inequality to see that∑
T<g∗≤2T

F (g∗;X)XσX,g∗−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣du
≤
( ∑
T<g∗≤2T

F 2(g∗;X)X2σX,g∗−1

)1/2( ∑
T<g∗≤2T

(∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣du)2)1/2

.

(6.7)
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By Lemma 5.2, ∑
T<g∗≤2T

F 2(g∗;X)X2σX,g∗−1 � T
(log log log T )2

log T
. (6.8)

Next, apply Cauchy’s inequality to the final factor on the right-hand side of (6.7) to see that

∑
T<g∗≤2T

(∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣du)2

≤
(∫ ∞

1/2

X1/2−udu

)(∫ ∞
1/2

X1/2−u
∑

T<g∗≤2T

∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣2du)

�
∫ ∞

1/2

X1/2−u log3X
∑

T<g≤2T

∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig log2X
wX(p)

∣∣∣∣2du.
Noting that for p ≤ X3 we have log p log pX/(pu log2X)� log p/(p1/2 logX) for u ≥ 1/2, we see from (3.3) that
the sum over g is � T log T uniformly for u ≥ 1/2. Hence, the quantity above is � T log3 T . Combining this
with (6.7) and (6.8) we see that

∑
T<g∗≤2T

F (g∗;X)XσX,g∗−1/2

∫ ∞
1/2

X1/2−u
∣∣∣∣ ∑
p≤X3

log p log pX

pu+ig∗
wX(p)

∣∣∣∣du� T log T log log log T.

Proof of Proposition 6.2. Since |eit| = 1 we see that by Lemma 5.1 extending the range of the sum on the left-
hand side of (6.5) to T < g ≤ 2T , g 6= γ produces an error term of size at most o(T log T ). Similarly, extending
the sum on the right-hand side of (6.5) to all of T < g ≤ 2T gives an error term not exceeding o(T log T ). Also,
by Lemma 5.1 N∗g (T, 2T ) = Ng(T, 2T )(1 + o(1)). Hence, by these observations we have for |u| ≤ Ψ1/2/100 that

1

N∗g (T, 2T )

∑
T<g≤2T
g 6=γ

exp
(
iu log |ζ( 1

2 + ig)|Ψ−1/2
)

=
1

Ng(T, 2T )

∑
T<g≤2T

exp

(
iu
∑
p≤X3

cos(g log p)

p1/2
Ψ−1/2

)

+O

(
|u| log log log T

Ψ1/2

)
+ o(1).

Applying Lemma 6.3 completes the proof.
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