nature SUPPLEMENTARY INFORMATION
ener gy https://doi.org/10.1038/5s41560-017-0058-z

In the format provided by the authors and unedited.

Non-Gaussian power grid frequency fluctuations
characterized by Lévy-stable laws and
superstatistics

Benjamin Schafer ®'2*, Christian Beck®, Kazuyuki Aihara®©#, Dirk Witthaut®5¢ and Marc Timme'2

'Chair for Network Dynamics, cfaed and Institute for Theoretical Physics, Technical University of Dresden, Dresden, Germany. 2Network Dynamics, MPIDS,
Gottingen, Germany. 3School of Mathematical Sciences, Queen Mary University of London, London, UK. “Institute of Industrial Science, The University

of Tokyo, Meguro-ku, Tokyo, Japan. *Forschungszentrum Jilich, Institute of Energy and Climate Research-Systems Analysis and Technology Evaluation,
Julich, Germany. ¢Institute for Theoretical Physics, University of Cologne, Kéln, Germany. Dirk Witthaut and Marc Timme contributed equally to this work.
*e-mail: benjamin.schaefer@ds.mpg.de

NATURE ENERGY | www.nature.com/natureenergy

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


https://doi.org/10.1038/s41560-017-0058-z
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0002-4602-9816
http://orcid.org/0000-0002-3623-5341
mailto:benjamin.schaefer@ds.mpg.de
http://www.nature.com/natureenergy

SUPPLEMENTARY NOTE 1
Power grid frequency data presentation

We have a closer look at the data sets of power grid frequency measurements. Our available data includes
ENTSO-E Continental European (CE) [1, 2], Great Britain (GB) [3], Mallorcan [4] and Nordic [5] grids, the
50 Hz and 60 Hz regions of Japan [6] as well as one day of the Eastern Interconnection (EI) [7]. Production
data including share of wind and solar for each region was taken from [6, 8-10].

Supplementary Table I. The mean frequency is kept close to the reference frequency in all grids while standard
deviations differ significantly. We list the estimates for mean, standard deviation (SD), skewness and kurtosis of
distributions for different European (Continental Europe (CE), Great Britain (GB), Nordic, Mallorca), Japanese and
Eastern Interconnection (EI) data sets and years including the number of data points.

Source year/ region|# of data points|mean p [Hz]|SD o [Hz| |skewness |kurtosis x
2014 31141070 49.9995 0.0202 0.047 1.04
CE (50Hertz)[1] 2015 24685140 49.9999 0.0200 0.024 210
CE (RTE)[2] 2015 3153029 50.0003 0.0202 20.007 3.89
. 2015 31505090 50.000 0.0434 0.033 3.11
Nordic (FinGrid) [5] 2016 31424665 50.000 0.0456 0.046 3.10
) ) 2014 31536000 49.9997 0.0545 0.232 3.02
GB (Nationalgrid)[3] 2015 31536000 49.9997 | 0.0544 0.258 2.91
50 Hz 91845 50.0003 0.0304 0.018 3.17
Japan (0CCTO) 2016 [6] —rpr 91845 60.0025 0.0376 0.000 101
Mallorca [4] 2015 2483410 49.9999 0.0415 20.014 1.99
EI (1d)[7] (2014) 863995 59.9967 0.0175 0.316 2.97

Distribution measures and histograms

As an introduction to the data, we list mean p, standard deviation o, skewness 8 (3%aussian — ) and
kurtosis x (k92ussian = 3) i e the (normalized) first four moment of the distributions in Table I. Analyzing
the figures reveals that all distributions are close to their nominal frequency of 50/60 Hz. Furthermore, all
grids have either a higher kurtosis than expected from a normal distribution (Continental Europe, Nordic,
Mallorca, Japan) or are skewed (Great Britain, Eastern Interconnection). Next, we visualize several data
sets as histograms compared to their best-fitting normal distribution in Fig. 1.

For the Continental European (CE) grid we have two data bases, one by the German transmission system
operator (TSO) 50Hertz and the other by the French TSO RTE. Although the measurements were taken at
different locations of the connected grid, they return close to identical statistics.

Pre-processing of data sets

We had to perform some pre-processing especially with the 50Hertz data set and the data from Mallorca:
The original data set [1] contains entries set to 0, 52 or 48 Hz, while the Mallorcan data included a few very
large and small values. In the case of 50Hertz, they confirmed measurements problems leading to these small
and large values. Hence, we deleted entries larger than 51Hz or smaller than 49 Hz. We associate these large
deviations with blackouts or nearly blackouts, which are no longer covered by our theory. However, even
after excluding these extreme values, the 50Hertz data had some very large jumps within 1 second to a larger
value by Af ~ 0.5Hz which we found to be most likely also artifacts. Hence, we decided to scan the data
for jumps larger than A f,,,.. = 0.1Hz and delete these if they were isolated, i.e., values before and after this
value are at least different by A f,,q..- This way the statistical measures, e.g. variance and kurtosis, of the
50Hertz data set approached the RTE data set, as expected for the same synchronous region.

When computing the noise amplitude e for different regions in Figure 5 in the main manuscript, we
assumed that the Eastern Interconnection has a total inertia of M = 1000 to increase the absolute value of
the estimated noise.
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Supplementary Figure 1. All data sets show deviations from normal distributions. We plot the histograms for the
data of Great Britain (GB), Mallorca, Japan and Eastern Interconnection (EI) together with their estimated normal
distribution. a: GB with linear scale, b: GB with log-scale, c¢: Mallorca region with linear scale, d: Mallorca region
with log-scale, e: Japan 60Hz region with linear scale, f: Japan 60Hz region with log-scale, g: EI with linear scale, h:
EI with log-scale. Each histogram is either more heavy-tailed (c,d,e,f) than a Normal distribution or skewed (a,b,g,h).



Estimated distributions

Noticing deviations from normal distributions both in Table I and Fig. 1, we perform a maximum likelihood
analysis, see e.g. [11], of the available data and thereby determine which standard distribution fits the data
best. This is done with the assumption that one well chosen distribution would be able to fit all data
sets (with differing parameters for each grid). Given a probability density function p(z) and a data set
Y ={y1,v2,..-,yn}, we calculate the likelihood that Y is drawn from the distribution p by calculating

Lyy = vazlp (yz) . (1)

The maximum likelihood estimate is based on comparing at least two different distributions, e.g., p1 (z) and
p2 (z) by computing the likelihoods for both distributions. Next, we have a look at the log-likelihood ratio

L
logy, (Lpl’i) , (2)
p2,

which is the most powerful tool to distinguish two distributions [11]. We then accept p; over ps if the ratio is
larger than 1. We use the Mathematica EstimatedDistribution [12] routine testing several build-in distributi-
ons against the data: HyperbolicDistribution[\,a,b,c,d], StableDistributionfa,b,c,d], NormalDistributionfa,b],
LogNormalDistributionfa,b], SkewNormalDistributionfa,b,c], LogLogisticDistributionfa,b], StudentTDistribu-
tionfa,b,c], ParetoDistributionfa,b,c,d], SechDistributionfa,b], ExponentialPowerDistributionfa,b,c], Johnson-
Distribution["SU", a,b,c,d] and TsallisQQGaussianDistributionfa,b,c]. As an example, we note down the esti-
mated stable distributions for some grids in Table II. Note also that especially the (generalized) hyperbolic
and stable distributions use many parameters to fit the distributions.

For the heavy-tail distributions (Continental Europe, Nordic, Japan, Mallorca) normal distributions per-
form worse than stable distributions which get outperformed by g-Gaussian distributions in terms of likelihood
(which get outperformed by a small margin by generalized hyperbolic distributions). However, skewed dis-
tributions (Great Britain and Eastern Interconnection) are best fitted by skew normal distributions but can
be approximated by stable distributions as these also describe skewed distributions.

As an example, for the 50Hertz data of 2015 we use more than 24.6 million frequency measurements to
compute the log-likelihood ratios of the Normal, Stable and g-Gaussian distributions:

Ly Gaussian, 50Hertz2015
1Og10 ( q-Gaussian, ertz ~ 30360, (3)
LStable7 50Hertz2015
Lstable, 50Hert22015
logyo < o ~ 94758, (4)
LNormal, 50Hertz2015

L. ian rtz
1Og10 ( }JGaussa , b0Hert 2015> ~ 125118. (5)
Normal, 50Hertz2015

Based on these likelihood results, we focus on stable and g-Gaussian distributions in the main manuscript.
Supplementary Table II. Estimated stable distribution parameters: stability parameter as, skewness parameter (s,

location s and scale parameter og for different regions and years (1 day in the case of the Eastern Interconnection).
All parameters are given with their standard error.

Stable Distribution

Source Year/ Region Stability para. ag|Skewness par. s |Location par. pug| Scale par. og
Continental Europe (50Hertz)[1] 2015 1.898+0.002 0.006+£0.004 | 49.999940.00004 |0.0132+0.00002
Great Britain (Nationalgrid)[3] 2015 1.969+0.005 0.997+0.005 50.00014-0.0002 | 0.0378+0.0004
50 Hz 1.988+0.002 0.237£0.120 50.000340.0001 | 0.0213+0.0001

Japan (0CCTO) 2016 [6] 60 Hz 1.986+0.002 0.387+0.114 60.0025+0.0001 | 0.0263+0.0001
Eastern Interconnection(1d)|7] (2014) 1.938+0.002 0.999+0.001 59.996940.0001 |{0.012140.00003
Nordic [5] 2015 1.987+0.003 0.999+0.001 | 49.999740.00004 |0.0306=£0.00002

Mallorca [4] 2015 1.81840.003 0.074£0.005 50.0000+0.00002 | 0.0264+0.00001




N

| W;!L’\
0.10¢ -

0.01*J

49.8 49.9 50.0 50.1 50.2
Grid frequency f (Hz)

PDF

—— Normal
Stable

Supplementary Figure 2. Stable distributions account for skewed distributions. Plotted is the Log plot of the histogram
of the Great Britain 2015 data and its best normal as well as stable distribution fit. The skewed stable distribution
is a better description both for low and high frequencies than the normal distribution.



SUPPLEMENTARY NOTE 2

Additional Fokker-Planck results

We extend the Fokker-Planck results obtained in the main text by calculating the standard deviation
and noise amplitude assuming Gaussian noise and adding treatment for primary control with deadzones.
Deadzones arise naturally in power grid control [13] where it is only possible to determine the frequency to a
finite precision. Hence, one could argue that the non-Gaussian nature of the observed distribution could be
explained by Gaussian noise combined with the nonlinear control.

Solving Fokker-Planck equations

In the main text we made use of a general time-independent solution of a Fokker-Planck equation. Given
a general stochastic system whose dynamics is defined by

dX —a(x)+ VB, (6)

dt

where ¢ is white Gaussian noise based on a Wiener process, its stationary Fokker-Planck equation is given
by

which is solved to give [14]

p) = e |2 [ ate)/pis)as). ®)

with normalization constant c. In the case of a (z) = —apx and b (z) = by, the final distribution is a Gaussian
distribution, as is the case for the power grid. We assumed that the probability and its derivative vanish at
infinity to derive (8) [14]:

lim p(z,t) =0, 9)
|| —o0
lim 9 (x,t)=0 (10)
|| =00 8xp R

Assuming that the power grid is dominated by Gaussian noise, we formulate the Fokker-Planck equation in
the main manuscript for the bulk angular velocity @ as

Op 1L 2 9%p
P Z L 11
ot 7a— ijL2121\42 92’ (11)

which is solved by the probability density function

_ M2 v M?
p@) =\ |—L— exp[ L (12)
”Zi:l i dim1 €

with damping -, the number of nodes N, noise amplitude € and summed inertia M =), M;.



Standard deviation predictions

The standard deviation of the bulk angular velocity @, assuming that all nodes have the same noise
amplitude €; ~ € and unit inertia M; = 1 Vi, is given by

€2
o= SNy (13)

This standard deviation is dependent on the number of nodes N in the grid, i.e., synchronous regions with less
production, i.e., with fewer nodes will have a broader distribution and hence higher risk of large fluctuations.

Deadzones

The power grid frequency (and angular velocity) cannot be determined to arbitrary precision, giving rise
to deadzones of control, i.e., for a small interval w = 0 & Awp there is no (primary) control activated at the
swinging machines. Could those deadzones explain the non-Gaussian distributions in the frequency assuming
Gaussian noise but nonlinear control? These deadzones are typically of the order Awp =~ 27 (10...200 mH z)
[13, 15], see Fig. 3 for an illustration where we split the damping + into intrinsic damping vp that arises from
damper windings etc. and the (primary) control damping ¢ which is only active outside of the deadzone.
Given our solution of the Fokker-Planck equation, we calculate the probability density function for piecewise
linear control to be

exp [—VC (Awp + w)z} w < —Awp,
else, (14)
exp [—VC (Awp — w)z} w > Awp,

Vic

pw)= Awp + Vr

where we used vp = 0. Performing a maximum likelihood analysis to estimate the deadzone wp, we reach the
conclusion that the most likely value for the deadzone parameter is wp = 0, i.e., we do not need a deadzone
to model our real power grid frequency data. Furthermore, stable distributions still outperform Gaussian
noise in terms of likelihood even when deadzones are included, see Fig. 4.
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Supplementary Figure 3. Deadzones of control lead to piecewise linear power(frequency) functions. We plot the
effective power P.yy = Py + control as a function of frequency using piecewise linear functions modeling deadzones of
primary control y¢ > 0, with intrinsic damping vp > 0 (green) and without (orange).
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Supplementary Figure 4. Stable distributions outperform Gaussian noise with deadzones in terms of likelihood. We
compare stable distributions (blue) with a piecewise linear probability density function modeling deadzones of primary
control (dashed orange) and the real 50Hertz 2015 data set (histogram). a: We plot the histogram of the real data
together with the PDFs of the best-fitting stable distribution and a piecewise linear. b: We repeat the plot with a
log-scale of the PDF. Parameters are Awp = 3 mHz and Nvc/e® = 1500. We note that increasing the damping ¢
increases the peak at 50 Hz but also results in flatter tails. Hence, we improve one property at the expense of the
other as the piecewise linear distribution tends to have a peak lower than the data (and the stable distribution) and
flatter tails.



SUPPLEMENTARY NOTE 3
Additional generalized Fokker-Planck results

The main text focused on results of the (ordinary) Fokker-Planck equation which only covers Gaussian
noise. We add to this by presenting the generalized Fokker-Planck equation following [16], treating Lévy-
stable and generalized hyperbolic distributions explicitly, providing a time-dependent solution and showing
the extension to arbitrary composite distributions.

Generalized Fokker-Planck equation

Let us assume that the evolution of state x (¢) is characterized by the stochastic differential equation

d
W) =alz,t)z(t)+b(x,1)E, (15)

with intrinsic dynamic a (x,t), noise amplitude b and arbitrarily distributed noise £&. We assume the noise to
be uncorrelated, i.e.

(€@B)E(s) =d(t—s), (16)
with Dirac delta function 6 (...) and to have mean zero:
(@) =o0. (17)
Then the generalized Fokker-Planck equation is given by
gp (x,t) = _Q (a(z,t)p(z,t)) +F ! [<p (t) lnSi“] (18)
at ) 539 9 9 k k )
where
1 o
F fu] = — / e di (19)
21 J_ o

is the inverse Fourier transform, ¢y, is the characteristic function of the probability density function p (x,t)
given as ¢y, (t) = (e~**®)) and Si® is the characteristic function of the (input) noise at time t = 1 Si* =
(e~} with noise generating process 7. A partial differential equation like (18) requires an initial and
boundary conditions to be solved. We assume the initial condition to be a delta peak at zero

p(z,t=0)=4(0). (20)

For the boundary conditions we assume the probability density function and its spatial derivative to vanish
at infinity:

lim p(z,t) =0, (21)
|| =00
im 2 p () = 0 (22)

The intrinsic dynamic a (z,t) is often obtained from a potential U (x) as

a(e)= 5 (). (23)

For the special case of a quadratic potential U () = y2?/2 and additive noise with b = 1, the stochastic
equation of motion simplifies to

d

S () =~y (1) + & (24
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For this dynamic of x, the generalized Fokker-Planck equation (18) is solved by the methods of characteristics

[17] given as
L U
p(x,t) =F 1 lexp (—7/0 Z In (ZSemw> dz)] , (25)

where SI" is the characteristic function of the (arbitrarily distributed but uncorrelated) noise generating
process [16].

Using the characteristic function of the (output) distribution S"* and the characteristic function of the
input noise distribution S}C“, we note the following important relations of the stationary distributions:

i k 1 Sin
Sz‘“ = exp 1/ L( z )dzl , (26)
|7 Jo Z
Sin — _ o 2 ot (27)
E — €Xp _W ok Nog— | -

Levy-stable noise

Agsuming our system is described by a Langevin equation of the form

d
S (t) = a e,z (1) +b (08, (28)
and is subject to Lévy-stable distributed noise with characteristic function Sy (as, 8s,05):

S}C“ (as,Bs,05) = exp [—ags || - (1 —sgn (k)ifs - tan %)} , (29)

with stability parameter a.g, skewness parameter g and scale parameter og (setting the location parameter
ts = 0). Then, the generalized Fokker-Planck equation [16] is given by

L (a,1) = 3 fala, ) (2 1) (30)

foas 9% [b(x, )" p(z,t)]
S a|x|a5 9 p 9
aas—l

a |x|0¢s—1

+03fs tan (%>

; b (2, )° ().

The fractional derivative of a function h () is defined as

o%s

0 ||

h(w) = =F " [|k]* Pl - (31)

Time-dependent solution

We formulate the time-dependent solution given the quadratic potential U (x) = ~y2?/2 and assuming
Lévy-stable noise input. We compute

st _ exp [0 o (e ~ 1) )
z
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and can now compute the final characteristic function

[ 1 k 1 Sin o,
SoUt (¢) = exp —f/ —In [W] dz] (33)
YJo % S

B ag k as

= exp Is_ (e77st —1) / &dz (34)
|7 o <
r 1— —vyagst

= exp |- L) ;as ) s |z|°‘S] (35)

. _ p,—7Yast 1/as
gin <a5,0,05~ (W) ) (36)

So we get a time-dependent scaling parameter

(1 _ efvast) ) 1/es

Yas

os(t) = o ( (37)

which is zero at the initial condition, consistent with the ansatz in [16]: og(0) = 0, i.e., the probability
density function is a delta function p (t = 0,0) = 6 (@). For t — oo, the scaling parameter approaches the
value stated in the main manuscript as follows:

1 1/as
os(t) = og - () ,as t — oo. (38)
s

In this calculation we assumed zero mean (ug = 0) and neglected skewness since it does not change.

Generalized hyperbolic distribution

The generalized hyperbolic distribution (describing among others, generalized inverse Gamma and Stu-
dentT distributions) returned one of the highest likelihoods for the Continental European data and hence is
worth special attention. Assuming that the final distribution is given as a generalized hyperbolic distribution,
we have

(VarnB26) (VIZ + anH26) " Ky (VE + an H25)
KA (\/ OzHH25) ’
where K is the modified Bessel function of the second kind, A and ay are shape parameters, § the scale

parameter [18] and we set the location parameter p and skewness parameter § to 0, in accordance to our
estimate. Setting the above as our final distribution, we get an initial noise input distribution as

gin kzaHé - Ky (\/ k2 + OéHH2(5)
=exp | — ,
k P \/k‘2+OéHH2~K,\(\/k‘2+O{HH25)

SQut — (39)

(40)

which unfortunately is not a well known standard distribution. However, we relate the variances of the input
and output distributions assuming ¢; = € as

2 2
g
<F> = o (41)
I8, Hyperbolic v

which demonstrates how increasing the damping v or the number of nodes N decreases fluctuations. On
the other hand, increasing the noise amplitude € increases the final distribution width. Furthermore, this is
exactly the relation of two variances we get when assuming Gaussian noise, see (13) and setting og, = 1.
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Composite distributions

Using generalized Fokker-Planck equations, we also treat composite distributions in the case that the power
fluctuations are generated by multiple stochastic processes. Suppose that we are aware that our input noise
£ is not generated from a single but from a composite process Z, i.e., £ ~ Z with the composite noise as
a sum of processes Z = Zf\il X;, where any weighting factors in the sum are absorbed in the individual
distributions. A sum of different independent processes is also known as a convolution and is easily handled
in terms of the characteristic equations of the distributions

) M
Sy =11 Sx., (42)
=1

see e.g. [11].
As an example, we consider the sum of a normal distribution X and an a-stable distribution Y

Z=X+Y, (43)
with
X'\’N(/‘NaO—N)v (44)
YNS(OLSVﬂSa,LLSaUS)a (45)
in . O—]ka2
SR (k) = exp iunk — ——1 (46)
Si0 (k) = exp [z’usk ~Jogk|S (1 — iBgsign (k) tan (%))} . (47)

The composite distribution Z has the characteristic function

0'2 2 s
Sig (k) = S (k) - S¥ (k) = exp [ik(uNJrus) N Joshie (uﬁssign(k)tan(js))]. (48)

Note that stable distributions are closed under convolution if they have the same stability parameter ag.
In our example this would only be true for ag = 2 which resembles two normal distributions. Otherwise,
the distribution of Z is neither a normal nor a stable distribution. We simplify (48) by setting the skewness
parameter to zero S = 0 and assuming both distributions have 0 mean uy = pug = 0 as follows:

. o2, k2
S 5o () = exp [ N

: |osk:“5}. (49)

We now apply the solution of the generalized Fokker-Planck equation (25) to get the characteristic equation
of the output distribution as

k
S°U (k) = exp ll/o 1n(sz)dz] (50)

Y z

% k? B |Jsk’|asj|

51
4y Yos (5)

= exp {—

The probability density function does not have a closed form but we plot some examples of such a composite
distribution in Fig. 5.
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Supplementary Figure 5. The generalized Fokker-Planck equation also handles composite distributions. a: We depict
the final PDF of a power grid with input noise consisting of a (0-mean) normal distribution N (0,0y) and a (0-mean,
0-skewness) stable distribution S (as,0,0,05). b: We repeat this with a log-scale of the PDF. We fix the standard
deviation of the normal distribution at ony = 0.1 but test different values for stability parameter ag and the scale
parameter og of the stable distribution. Especially in the Log-Plot we clearly observe the power-law tails of the
composite distribution, noting that stable distributions are normal distributions for as = 2.
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SUPPLEMENTARY NOTE 4
Noise drawn from a Gamma distribution

As was shown in [19, 20], noise in power grids can be well approximated by Weibull, Normal, Log-Normal
but also Beta or Gamma distributions which have support = € [0,1) and z € [0, 00), respectively. Here, we
demonstrate how the presented framework for treating arbitrary noise distributions applies to noise drawn
from a Gamma with shape parameter o = 6 and scale parameter 5 = 0.1, as shown in Fig. 6.

1.5¢

PDF

0.5¢

0.0r

0.0 0.5 1.0 15 2.0 2.5 3.0
Noise £ (s™")

Supplementary Figure 6. Probability density function (PDF) of a Gamma noise distribution with shape parameter
«a = 6 and scale parameter 8 = 0.1.

The generalized Fokker-Planck equation of the bulk angular velocity @ was solved to give the stationary

solution
o) = F1 _l/kl 1
p(@)=F lexp ( ol In Sin dz | |, (52)

where v is a damping constant, F~! is the inverse Fourier transform and S is the characteristic function of
the noise. This equation can be applied to arbitrary distributions, as long as the integral over the integrand

Integrand(z) = éln (Slin) (53)

exists.

To treat the Gamma distribution mentioned above, we plot this integrand in Fig. 7. Unfortunately,
including the complex logarithm induces jumps in the imaginary part of the integrand and thereby required
us to split the integral into parts which can be continuously integrated. As a side note, the Beta distribution
[19, 20], even shows divergence of the integrand making it more difficult to treat.

After integrating the integrand (53), the resulting expression is highly oscillatory and can not be treated
easily by automatic inverse Fourier transforms, as required in Eq. (52). Hence, we performed a discrete
Fourier transform of a finite interval z € [—10,10] to finally obtain the distribution of the bulk angular
velocity @ as predicted by equation (52) (red line) versus the histogram obtained from stochastic simulations
in Supplementary Figure 8.
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Supplementary Figure 7. Integrand of the Gamma distribution, which needs to be integrated for any values of z.

5 71T
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Supplementary Figure 8. Probability density function (PDF) of the bulk angular velocity & when subject to noise
distributed according to a Gamma distribution with shape parameter @ = 6 and scale parameter 5 = 0.1. The red
line is based on the prediction of Eq. (52) and the histogram is obtained from stochastic simulations of the power
grid being subject to noise from a Gamma distribution.
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SUPPLEMENTARY NOTE 5
Superstatistics

In the main text we introduced the idea of superstatistics as presented in [21-23] where the total distribution
is seen as several aggregated Gaussian distributions with changing damping v and noise amplitude e. We
present an illustration of the concept in Fig. 9, where we combine two Gaussian distributions to form a
distribution that is both skewed and heavy-tailed. Note also that skewed distributions could arise from the
grid responding differently to frequencies above the reference frequency value than to ones below it.

To extract the long time scale we need to determine the kurtosis given a certain interval length At: For
heavy-tailed distributions this At is the time interval for which the averaged kurtosis of individual intervals of
length At is equal to k = 3. Similarly, for skewed distributions, such as the Great Britain grid, we determine
the long time scale by looking for the longest interval such that the skewness averaged over all intervals equals
0, see Fig. 10.
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Supplementary Figure 9. Few Gaussian distributions give rise to skewed and heavy-tailed distributions. We display
two Gaussian distributions (green and orange) from which we take 2000 samples each to form a histogram. This
histogram is no longer well-described by another Gaussian distribution, as can be seen when comparing histogram
and most likely Normal plot (blue). Instead the resulting data is skewed with skewness 8 ~ 0.45 and has a kurtosis
of k ~ 3.26, compared to xG2ussian — 3,
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Supplementary Figure 10. We determine the long time scale 7. a: For skewed distributions (Great Britain (GB),
Eastern Interconnection (EI)) the long time scale is the time for which the averaged skewness has a minimum. b-c:
For heavy-tailed distributions (b: Continental Europe (CE) and c¢: Japan 60Hz) the long time scale is the time for
which the averaged kurtosis is approximately x (At =T') ~ 3.

Computing effective friction

As soon as we computed the long time scale T for a given data set, we extract the distribution of the
effective friction ~.g¢ which is changing over time as

(to) !
Yefr (Lo) = P} 3
<332>t0,T - <x>t0,T

(54)
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to+At

where (...), A, = t ...dt. Following [21-23] we expect Yo to follow a log-normal or alternatively a >

or inverse x? distribution, see e.g. [24, 25] for coverage of log-normal distributions.
In the main text the Japanese data follows a log-normal distribution very well, while we observe larger
deviations from the predicted log-normal distribution for the 50Hertz data set, see Fig. 11.
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Supplementary Figure 11. The variance of Gaussian noise follows approximately a log-normal distribution. Plotted
are the histograms of the effective friction s value based on the 50Hertz 2015 trajectory compared to the best-fitting
log-normal distribution. a: Full year of 2015. b: First million (of 30 mill.) data points only, i.e. approximately 10
days. We notice that the data using a shorter trajectory give the better fit to a log-normal distribution. Most likely
this is due to several time scales entering the frequency trajectory. Correlations exist on the half an hour, hour, day,
weeks and more time scales. Hence, modeling the varying noise with one long time scale is limited and using the full
trajectory reveals this problem.

How to derive ¢-Gaussians

Here we derive how a x? distribution of the effective friction e leads to a g-Gaussian distribution of the
frequency, following [21] and provide numerical evidence how a log-normal v distribution also leads to a
q-Gaussian.

Consider the Langevin equation

b=y + e, (55)

with noise amplitude e and damping 7. Now define the effective friction v.g = 2 and assume that it is
following a x? distribution:

n/2
1 n n/2—1 ( n%ff)
=——|(=— exp | — , 56
P (Vett) ) <2%) Vet P2, (56)

with degree n, mean 7y and Gamma function I'. Next, assume that the changes of veg are much slower than
the relaxation time scale defined by 7 = 1/ during which the system settles down for one fixed 7. Then,
the conditional probability to find the system in state x at fixed ~es is

1
p(oban) =/ 2 exp (—jens?). 57)

and the marginal probability distribution (probability to observe = independent of the value of veg) is

p(z):= /p(x\%ff)p(%ff) desr (58)
_T(5+3) 0\ 1
- W (%) (1+ lﬂgﬂ)”/”l/?’ (59)
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which is a q-Gaussian and can be re-written as

1
O i B - e 0

with g=1+4+2/(n+1) and ¥ =2/(3 — ¢)v.

Let us review the consequences for our data-driven approach. When we record a x? distribution for the
effective friction e, it strongly supports the g-Gaussian modeling of the bulk angular velocity @.

However, we did not fit our distribution of veg with a x? distribution but used a log-normal distribution
instead. Unfortunately, we cannot derive the g-Gaussian distribution analytically based on a log-normal
distribution but we can compare the predicted PDF or p (w) when convoluting a log-normal distribution with
the histogram and the estimated g-Gaussian. Supplementary Figure 12 displays this comparison for the 60Hz
Japan data which works very well: The g-Gaussian based on the original data and the PDF based on the
convolution of the log-normal distribution are close to identical, see also [23] for more discussion on the role
of log-normal distributions in superstatistics.

Win m log-normal conv.
1 ] m g-Gaussian 11
L
g
0.1 10.1
0.01 -0.5 0.0 0.5 1.0 0.01

Bulk angular velocity w

Supplementary Figure 12. The log-normal distribution of ~es predicts nearly the gq-Gaussian estimate for the 60Hz
Japanese grid. We plot the histogram data of the Japanese 60 Hz region, together with its q-Gaussian estimate. In
addition, we compute the expected PDF given that the Gaussian distributions change based on a 7es following a
log-normal distribution. All quantities match very well.
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SUPPLEMENTARY NOTE 6
Monte-Carlo simulations

We validate our predicted probability density functions (PDF) based on the Fokker-Planck equation

M? M?
p@) = |~ exp —w”—] (61)

N
T i 6?

and the generalized Fokker-Planck equation

p(x,t)=F ! lexp <_% /Ok % In (%) dz)] , (62)

by simulating the swing equations on realistic power grid networks which are subject to either Gaussian or
Lévy-stable noise. As topologies we chose the elementary two node system (one producer connected to one
consumer), a 10 node, see Fig. 13 and the Tokyo-Tohoku power grid topology, see Fig. 14.

Supplementary Figure 13. We test the (generalized) Fokker-Planck predictions with simulations on a toy power grid.
Here we show the 10 node system with producers (green) and consumers (red). We set v = 0.1, P~ = —1/s for
consumers and P = 1/s? for producers with homogeneous coupling of K = 4/s.

Tokyo P 3N Tohoku

Producer &
Consumer
Branch point

Supplementary Figure 14. We test the (generalized) Fokker-Planck predictions with simulations on a realistic power
grid. Here we show the joined Tokyo (Triangle) and Tohoku (squares) grid with producers (green), branches (black)
and consumers (red) [26]. We set v = 0.1 and P~ = —1/s? for consumers and P ~ 2.38/s> for producers, with
admittance matrix and positions of producers/consumers in the grid given by [26]. For our simulations, we increase
the coupling by a factor of £ = 15.

Swing equation simulations Assuming symmetrical coupling K;; = Kj;, balanced power ) . P; = 0 and
homogeneous damping to inertia ratio v we have the following equation of motion
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d _ -
= + €, (63)

with mean noise amplitude € and noise £. To solve this equation, we discretize time into intervals of length
At and compute

AB=—7-@(t) At + X - VAL
G(t+At) =& (1) + Aa, (64)
t=1t+At,

with X as our random variable drawn from a previously defined distribution (normal or stable).
Comparison of data and simulations In order to reproduce the data of the ENTSO-E Great Britain

grid, we estimate the stability parameter of the measurements as ag ¢p =~ 1.97, the scale parameter as

0s,¢e = 0.2420 and calculate the damping based on the autocorrelation to be vgp = 0.00215/s. The

simulations reproduces very well the initial estimate and the original data in the histograms, see Fig. 15 and
in the autocorrelation function, see Fig. 16.
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Supplementary Figure 15. Simulations reproduce the heavy-tailed ensembles. a: We compare the histograms of
the original frequency measurements (transformed to angular velocity w) with simulations and the estimated stable

distribution (based on the original data) using the Great Britain 2015 data. b: We repeat the plot with a log-scale of
the PDF.

1.0f
Sosf
()
s
= 0.67
° m Simulation
é 0.4F = Data
é u Estimate
Zo02
0.0t

0 15 30
Time lag At (min)

Supplementary Figure 16. Simulations reproduce the autocorrelation. We compare the autocorrelation function of the

original frequency measurements (transformed to angular velocity w) with simulations and the estimated exponential
decay using the Great Britain 2015 data.
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