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Abstract 

Each aspect of this thesis is motivated by the recent paper of Beresnevich, 

Dickinson and Velani (BDV03]. Let 'ljJ be a real, positive, decreasing function 

i.e. an approximation function. Their paper considers a general lim sup set 

A( 'ljJ), within a compact metric measure space (0, d, m), consisting of points 

that sit in infinitely many balls each centred at an element ROt of a countable 

set and of radius 'I/J(130) where 130 is a 'weight' assigned to each ROt. The 

classical set of 'I/J-well approximable numbers is the basic example. For the set 

A('ljJ) , [BDV03] achieves m-measure and Hausdorff measure laws analogous 

to the classical theorems of Khintchine and Jarnik. Our first results obtain 

an application of these metric laws to the set of 'ljJ-well approximable numbers 

with restricted rationals, previously considered by Harman (Har88c]. 

Next, we consider a generalisation of the set of badly approximable num­

bers, Bad. For an approximation function p, a point x of a compact metric 

space is in a general set Bad(p) if, loosely speaking, x 'avoids' any ball cen­

tred at an element ROt of a countable set and of radius c p(I3Ot) for c = c(x) a 

constant. In view of Jarnik's 1928 result that dim Bad = 1, we aim to show 

the general set Bad(p) has maximal Hausdorff dimension. 

Finally, we extend the theory of (BDV03] by constructing a general lim sup 

set dependent on two approximation functions, A('ljJll'ljJ2)' We state a mea­

sure theorem for this set analogous to Khintchine's (1926a) theorem for the 

Lebesgue measure of the set of ('l/Jl, 1/12)-well approximable pairs in R2. We 

also remark on the set's Hausdorff dimension. 
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Chapter 1 

Introduction 

The set of rational numbers is countable and the set of irrational numbers is 

uncountable. 

The combination of these beautifully simple facts gives way to a metric 

view of the approximation of irrationals by rationals. We begin by exploring 

this view. 

* * * 

Consider another basic fact. For any irrational x E lR and q EN, there 

exists a rational p / q such that 

Ix - p/ql < l/q . 

Thus infinitely many rationals p/q are within a distance l/q of each irrational. 

The following less obvious fact was derived by Dirichlet in 1842 and gave birth 

to the modern theory of Diophantine approximation. 

Dirichlet's Theorem (1842). For every irrational x E lR, there exist in­

finitely many p / q E Q such that 

Ix - p/ ql < q-2 . (1) 

11 



INTRODUCTION 12 

This theorem is a simple consequence of the pigeonhole principle [HW60, 

p.156]. Hurwitz showed in 1891 that the generic approximation 'factor' l/q2 

could only be improved for all irrationals by a constant E > O. In fact he 

proved that for any E < 1/ V5 there exists an irrational x E lR for which 

there exist only finitely many rationals p/q E Q satisfying 

Ix - p/ql < c:q-2 . 

In particular, for such an irrational x there exists a constant c( x) > 0 such 

that 

Ix - p/ql > c{x) q-2 v p/q E Q . 

Irrational numbers displaying this behaviour are termed badly approximable 

numbers. The set of badly approximable numbers in lR will be denoted by 

Bad. 

It is a classical fact that an irrational is badly approximable if and only 

if its partial quotients associated with its continued fraction expansion are 

bounded [HW60, p.166]. Consequently, the set Bad of badly approximable 

numbers is uncountable. In particular, any quadratic irrational is in Bad 

since its continued fraction expansion is periodic. 

Irrational numbers are also associated with the notion of 'I/J-well approx­

imable. Let 1/J : R+ -+ R+ be a real, positive, decreasing function and 

consider the set 

W{1/J) := {x E R : Ix - p/ql < 1/J{q) for Lm. p/q E Q, (p, q) = 1 }. 

Here and throughout this text 'Lm.' denotes infinitely many and the above 

function 1/J will be refered to as an approximation function. An element of 

the set W{1/J) is said to be a 1/J-well approximable number. 
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In view of Hurwitz's result, W(c q-2) = lR \ Q for c > 1/../5 ; i.e., for such 

an c, all irrationals are (c q-2)-well approximable. The following fundamental 

result provides a simple criterion for the 'size' of the set W ('I/J) expressed in 

terms of one dimensional Lebesgue measure 1 . I. 

Khintchine's Theorem {1924}. Let 'I/J be an approximation function. 

Then, with respect to Lebesgue measure, 

NULL if LqEN q t/J(q) < 00 

W('I/J) zs 

FULL if LqEN q 'I/J(q) = 00 

Here 'full' means that the complement of the set under consideration is of 

'zero'measure. Thus the Lebesgue measure of the set of 1j;-well approximable 

numbers in IR satisfies a 'null-full' law. The divergence part of the above 

statement constitutes the main substance of the theorem. The convergence 

part is a simple consequence of the convergent part of the Borel-Cantelli 

lemma from probability theory, stated in Chapter 2. To illustrate the subtlety 

of Khintchine's theorem, for TJ > 0 consider the following function 

Khintchine's theorem implies that, with respect to Lebesgue measure, 

NULL if '" > 0 

FULL if TJ = 0 

Returning to the set of badly approximable numbers, it is easily verified 

that 

Bad C IR \ W(1/Jo) . 
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Then in view of the previous statement we have that 

IBadl =0. 

Thus, Bad is an uncountable set of Lebesgue measure zero. Nevertheless, it 

is a 'large' set in that it is of maximal dimension: 

Jarnik's Theorem (1928). 

dim Bad = 1 = dimlR . 

Here dim X refers to the Hausdorff dimension of a set X. This form of 

dimension is derived from the Hausdorff measure of the set X. Hausdorff 

measure is a more delicate measure than, for example Lebesgue measure, in 

that it can make a distinction between sets of zero Lebesgue measure. It is 

therefore a very useful tool for describing the measure theoretic properties of 

a set and one which we shall exploit in this thesis. In a moment we survey 

Hausdorff measure and dimension results for 'I/J-well approximable numbers. 

First we briefly introduce these concepts and define some necessary notation. 

For a non-empty set Fen, we say that a countable collection {BihEN of 

balls Bi C f2, with radii ri < p 'Vi, forms a p-cover 01 F if F C UiBi' Let a 

dimension function f : lR+ --+ 1R+ be an increasing, continuous function such 

that f(r) -+ 0 as r --+ O. For any p > 0, define 

1i£(F) := inf { ~ J(r,) : {B,} is a p - cover of F} 

where the infimum is over all p-covers. Then the Hausdorff I-measure, 

1;/(F), of F is 

'H/ (F) := lim 1t~(F) . 
p-+O 
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For f(r) = rS with s > 0, the measure is denoted 1-£S(F) and refered to 

as s-dimensional Hausdorff measure. It is easily verified that the quantity 

1-£S(F) 'jumps' from infinity to zero as s increases. The value of s at this 

transition is defined as the Hausdorff dimension of the set F as follows 

dimF:= inf{s: 1-£S(F) = O} = sup{s: 1-£S(F) = co}. 

For any subset F of Rn, the n-dimensional Hausdorff measure of F is within 

a constant multiple of the n-dimensional Lebesgue measure of F. This im­

plies that, if a subset F of Rn has positive n-dimensional Lebesgue measure, 

then dim F = n. This is what one would expect of any basic definition of 

dimension. Moreover, Hausdorff dimension has the useful property that it 

can assign non-integer values to 'non-regular' sets such as fractals or the set 

Bad as Jarnik discovered. For a good exploration of Hausdorff measure and 

dimension see [FaI90]. 

Returning to Khitchine's theorem, if the approximation function 'Ij; de­

creases sufficiently rapidly so that the 'volume' sum LqEN q 1j;(q) converges, 

the corresponding set of '/f!-well approximable numbers is of zero Lebesgue 

measure. In this case we cannot obtain any further information regarding 

the 'size' of W('Ij;) in terms of Lebesgue measure. Intuitively, the 'size' of 

W('Ij;) should decrease as the 'speed' or equivalently the 'rate' of approxi­

mation, governed by 1/J, increases. To illustrate this, for r > 0 consider the 

approximation function 1/J : r 1-+ r-T and write W ( r) for W ( 'Ij;). In view of 

the convergence part of Khintchine's theorem we have that \W(r)\ = 0 for 

any r > 2. However, we'd expect the set W(8) to be 'smaller' than W(4), 

for example. This is therefore a good test for demonstrating the capability 

of Hausdorff measure and dimension. 
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First we turn to the Hausdorff dimension aspect. Jarnik in 1929 and inde­

pendently Besicovitch in 1934, established the following precise statement 

regarding the size of the set W ( T) expressed in terms of its Hausdorff dimen­

sion. 

Jarnik-Besicovitch Theorem. For T ~ 2, dim WeT) = 2/T . 

Thus our intuition is confirmed: the more rapid the approximation, the 

larger T and so the smaller the Hausdorff dimension of the set W ( T). In 

particular 

dim W(4) = 1/2 > dim W(8) = 1/4. 

In view of the above Theorem, it follows directly from the definition of s­

dimensional Hausdorff measure 'HB that 

1t' (W(T)) = {: 
if s > 2/T 

if s < 2/T 

However, we're given no information regarding the s-dimensional Hausdorff 

measure of WeT) at the critical value s = dim WeT). The next result not 

only addresses this but is a natural extension of Khintchine's theorem to 

general Hausdorff measures 1-l f . 

Jarnik's Theorem (1931). Let f be a dimension function such that 

r-1 fer) -+ 00 as r -+ 0 and r-1 fer) is decreasing. Let't/J be an approxima­

tion function. Then 

o if 2::1 r f (1jJ(r)) < 00 

'H' (W(t/J)) -

00 if L~1 r f (1jJ(r)) = 00 
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To be precise, in Jarnik's original statement various additional hypotheses 

on I and 1/J were assumed but they would prevent us from stating the above 

clear cut version which is clearly a precise Hausdorff measure analogue of 

Khintchine's theorem. The above form of Jarnik's theorem can be found in 

[BDV03]. 

Note that in the case when 'H/ is the standard s-dimensional Hausdorff 

measure rf.B (i.e. f(r) = rS
), it follows from the definition of Hausdorff 

dimension and Jarnik's 1931 theorem that 

dim W(1/J) = inf{ s: 2::1 r1jJ(r)S < oo} . 

Clearly, Jarnik's zero-infinity law implies the Jarnik-Besicovitch theorem 

and moreover, implies that for T > 2 

1i2
/

T (W(T)) = 00 . 

Furthermore, the 'zero-infinity' law allows us to discriminate between 

sets with the same dimension and even the same s-dimensional Hausdorff 

measure. This special property of Hausdorff I-measure is illuminated by the 

following important example. Let T > 2 and 0 < €1 < €2 and consider the 

approximation functions 

(i = 1,2) . 

It is easily verified that for any fi > 0, 

and 

However, consider the dimension function f given by 
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Then it is easily verified that 

where as usual the symbol ::::::: denotes comparability (the quotient of the 

associated quantities is bounded from above and below by positive, finite 

constants). Hence, Jarnik's zero-infinity law implies that 

whilst 

Thus the Hausdorff measure 1{/ does indeed distinguish between the 'sizes' 

of the sets under consideration; unlike s-dimensional Hausdorff measure. 

Within this classical setup, it is apparent that Khintchine's theorem to­

gether with Jarnik's zero-infinity law provide a complete measure theoretic 

description of the set W ('Ij;) of 'Ij;-well approximable numbers. 

Recently, an extremely general framework has been developed by Beres­

nevich, Dickinson and Velani [BDV03] in which they consider a natural class 

of lim sup subsets of a given compact metric space. Intuitively, such lim sup 

sets consist of points in the space which are '1jJ-well approximated' by some 

countable set. The countable set plays the role of the rationals in the classi­

cal set W(.,p). In this paper they obtain strong measure theoretic results for 

these general lim sup sets. In particular, they incorporate both Khintchine' s 

theorem and Jarnik's (1931) theorem. Moreover, their results can be applied 

to a wide spectra of problems both within and beyond number theory. The 

framework and results of [BDV03) will be discussed in Chapter 2. 

The work of Beresnevich, Dickinson and Velani has been the main moti­

vation for the problems considered in this thesis. Three main problems are 

addressed. 
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• Is it possible to apply the results of [BDV03} to obtain a general metric 

theory for the problem of Diophantine approximation with restricted 

rationals? 

• Is it possible to place the set Bad of badly approximable numbers within 

a general framework analogous to the framework developed in [BD V03} 

for well approximable numbers ? 

• Is it possible to further generalize the results of [BDV03} to incorporate 

approximation by convex bodies rather than simply balls within a metric 

space? 

Regarding the first of these problems, in Chapter 3 we obtain precise 

analogues of Khintchine's theorem and Jarnik's 1931 theorem for the set of 

'I/J-well approximable numbers arising from rationals whose numerators and 

denominators are restricted to primes. The former re-establishes a result of 

Harman [Har88c] but the latter is new. 

Regarding the second of these problems, in Chapter 4 we consider 'nat­

ural' classes of badly approximable subsets of a compact metric space n. 
Loosely speaking, these consist of points in n which 'stay clear' of some given 

countable set of points. The classical set Bad of 'badly approximable' num­

bers in the theory of Diophantine approximation falls within our framework 

as do the sets Bad( i, j) of simultaneously badly approximable numbers. U n­

der various natural conditions we prove that the badly approximable subsets 

of n have full Hausdorff dimension. Applications of our general framework 

include those from number theory and dynamical systems. 

Regarding the last of these problems, in Chapter 5 we define general 

lim sup subsets of a compact metric space which are dependent on two ap-
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proximation functions. In doing so, we generalize the work of [BDV03] by 

essentially replacing 'balls' with 'rectangles'. We obtain a general analogue 

of Khintchine's Theorem for the measure of this lim sup set and conjecture 

its Hausdorff dimension. 

Although Chapters 3 and 5 are both concerned with well approximable 

sets and so could be read consecutively, Chapter 4 on badly approximable 

sets appears in between. The reason for this is that it forms part of a natural 

progression in the global development of the subject. For example, it was 

the latter theorems of Chapter 4 which inspired the work of Chapter 5. 



Chapter 2 

limsup sets 

2.1 Basic lim sup sets 

In this chapter we describe firstly the classical results on basic lim sup sets 

and secondly recent results on a certain class of lim sup sets motivated by the 

study of Diophantine approximation. These results will be used in Chapters 

3 and 5. 

Let (n, d) denote a metric space. For a sequence of sets An C n, the set 

of points in infinitely many An is known as the lim sup set of the sequence 

{An}nEN. This is equivalent to the following definition, 

00 00 

lim sup An 
n--+oo 

:= n U An· 
m=ln=m 

If a point is in infinitely many An then it is in every union U~=m An as m 

increases, i.e. it's in their intersection. Conversely points in only finitely 

many An are not in the union U~N An for some N large enough, and so not 

in the intersection. 

We can apply this definition to reformulating the classical set of ""-well ap­

proximable numbers. Let B(c, r) be an open interval centred at c E 1R and 

21 
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of radius r E lR+. For an integer q > 1, let 

Aq(l/J) := U B(~, l/J(q)) . 
pEZ 

Then W('IjJ) := {x E lR : x E Aq(l/J) for i.m. q EN} or equivalently 

00 00 

W(l/J) - limsupAq('IjJ)·- n U Aq('IjJ) . 
q-+oo m=l q=m 

For a measure m, let (0, d, m) be a metric measure space. The following 

fundamental result determines when a lim sup set has zero m-measure. 

First Borel - Cantelli Lemma. Let (0, d, m) be a measure space with 

m(O) finite and let An C 0 be a sequence of m-measurable sets, then 

00 

m (lim sup An) = 0 if Lm(An) < 00. 
n-+oo 

n=l 

Proof. For any N > 1, 

m (Dt nQ An) mC9/n) 
00 

< < Lm(An ). 

n=N 

By assumption, E~N m(An) --+ 0 as N --+ 00. Thus, by the above definition 

of lim sup sets, m ( lim sUPn-+oo An) = O. 

o 

The first Borel-Cantelli lemma therefore implies the convergence part of 

Khintchine's Theorem as follows. Let n := [0,1] and 

A~('IjJ):= U B(~, 'IjJ(q)) n [0,1]. 
O<p$q 
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Then 
00 00 

(2) 
q=l q=l 

Thus, by the lemma, if the r.h.s. of (2) converges then 

IW(1/1)n[0,111 =0. 

The same result is true when the unit interval is replaced by any interval of 

unit length. This implies that W (1/1) is a countable union of zero measure 

sets which in turn implies I W(1/J) 1= O. 

Determining the divergence part of Khintchine's Theorem or even positive 

m-measure for any lim sup set is a much harder task. Considering the above 
00 

lemma, a natural, but not sufficient, condition is L: m(An) = 00. If satisfied 
n=l 

the following lemma can also be deployed. 

Second Borel - Cantelli Lemma. Let (n, A, m) be a probability space and 
00 

An E A be a sequence oim-measurable sets such that L: m(An) = 00. Then 
n=l 

( 
Q )2 L:s=l m(As) 

m (lim sup An) > limsup Q . 
n-+oo Q-+oo Es,t=l m{As nAt) 

This result is actually a generalisation of the second Borel-Cantelli lemma. 

For proof of the above lemma see Lemma 5 in [Spr79). If the right-hand side 

of the above inequality is positive then it obviously follows that the lim sup 

set has positive measure. 

When considering the nature of the sum E m(An), the following trivial fact 

turns out to be very useful. 
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Fact 1. Suppose that h : R+ ---+ lR+ is a real, positive, decreasing function, 

a E lR and k > 1. Then the divergence and the convergence of 

00 00 

L kno h(kn) and L r o
-

1 h(r) coincide. 
n=l r=l 

Proof. Fix a E 1R and k > 1. Then 

since h is decreasing. Since the two sums are comparable, one of the sums 

converges or diverges if and only if the other converges or diverges respec-

tively. 

o 

2.2 General well approximable sets 

Recognising the set of 1/J-well approximable numbers as a lim sup set, initiates 

the following generalisation. 

Let (0, d) be a compact metric space. Let 'R := {Ro EO: a E J} be a 

family of points Ita E 0 indexed by an infinite countable set J. We call 

Rot resonant points. Let P : J ---+ R+ : a 1-+ Po be a positive function on 

J thus each Ro has a 'weight' Po. We assume that for any 1] > 0 the set 

{a E J : /Ja < 11} is finite, thus POI tends to infinity as a runs through J. 

Given an approximation function, 1/J : R+ ---+ lR+ I let 

A(1/J) := {x EO: x E B(Ra, t/J({3o)) for Lm. a E J} 
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Now let I := {In} and u := {un} be positive increasing sequences such 

that In < Un and In ---+ 00 as n ---+ 00. Define 

~Y(1/J, n):= U B(Ro,1jJ({3o)), 
oEJj(n) 

where 

Jt(n) := { a E J : In < {3o < Un } . 

By assumption #Jf(n) is finite and In ---+ 00 as n ---+ 00, thus we can write 

00 00 

A(1jJ) = limsup~r(¢,n) := n u ~r(1/J,n) . (3) 
n--oo m=ln=m 

We call this the general lim sup set. It is easily compared to the classical set; 

both are lim sup sets composed from 'balls' centred at elements of a countable 

set with radii dependent on an approximation function. Note that the above 

formulation of A(1/J) is irrespective of the choice of the sequences land u. 

2.3 Recent work of Beresnevich, Dickinson and 

Velani 

The general set up of the previous section is taken from that of [BDV03]. In 

this recent paper Beresnevich, Dickinson and Velani layout precise laws for 

the m-measure and for the Hausdorff I-measure of the general lim sup set, 

A(1/J). 

As mentioned in the introduction, their work has motivated each part of this 

thesis. In particular their results are employed in Chapter 3 and are extended 

in Chapter 5. We therefore take the rest of this section to state two key 
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results from [BDV03). We begin with the necessary conditions including the 

important notion of 'ubiquity', these are taken from [BDV03, §1.31. The first 

condition concerns measure. 

(A) There exist positive constants {) and ro such that for any x E 0 

where constants a and b are independent of the ball and without loss of 

generality we assume 0 < a < 1 < b. 

The ubiquity condition 

Recall that n denotes a family of resonant points Ra and that f3 attaches a 

'weight' f3a to each resonant point Ra E n. 

Let p : R+ --. R+ be a function with p(r) --. 0 as r --. 00 and let 

Llj(p, n) := U B(Ra, p(un )). 

aEJj(n) 

The following ubiquity condition essentially ensures that within any ball 

centred in 0, for n large enough, there exist 'enough' resonant points Ra 

with In < f3a < Un· 

Local m-ubiquity Let B = B(x, r) be an arbitrary ball with centre x E 0 

and radius r < r o' Suppose there exists a function p, sequences land u and 

an absolute constant K. > 0 such that 

m(Bn~j(p,n)) > K.m(B) for n > no(B) . (4) 

Then the pair ('R,f3) is said to be a local m-ubiquitous system relative to 

(p, l, u). 
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A weaker condition of global m-ubiquity is satisfied if there exists p and u as 

before and an absolute constant", > 0 such that for n > no, (4) is satisfied 

for B := n. In both cases p is referred to as the ubiquity function. 

From [BDV03] we also include the following lemma which demonstrates how 

the local ubiquity condition is easily satisfied for the set W (1/1). For this 

exercise, let n:= [0,1]' (J: ZxN ~ N: (p,q) ~ q and, for n ~ 1, 

~l(p,n) := u 
kn - 1<q$kn O<p$q 

The measure m is naturally one dimensional Lebesgue measure. 

Lemma 1. There exists a constant k > 1 such that the pair (Q, (J) zs a 

local m-ubiquitous system relative to (p, l, u) where In+! = Un := kn and 

p : r ~ constant x r-2 • 

Proof. Let I := [a, b] C [0,1]. By Dirichlet's theorem, for any x E I there 

are coprime integers p, q with 1 < q ~ kn satisfying Ix - p/ql < (qkn)-l. 

Clearly, aq - 1 < P < bq + 1. Thus, for a fixed q there are at most m(I)q + 3 

possible values of p. Thivially, for n large 

m (J n q~y'-. y B (~, qkn)) < 2 qf;. q~n(m(J)q + 3) < i m(I) . 
It follows that for k ~ 6, 

m ( J n k
n

- Y.9
n 

Y B (~, fr.-)) > m( 1) - i m( J) > 4 m( 1) . 

o 

Remark: The above proof uses Dirichlet's theorem. An analogy of this 

theorem is used to prove ubiquity for several cases of different systems ('R" (J). 
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As we shall see from the following results, Lemma 1 is sufficient to prove the 

divergence parts of Khintchine's Theorem and Jarnik's zero-infinity law. 

The following is a regularity condition on a general function and will be 

applied to the approximation function 'IjJ and/or the ubiquity function p. 

A function h : lR+ ~ lR+ is said to be u-regular for a given sequence u, if 

there exists a positive constant A < 1 such that for n large enough 

The constant A is independent of n but may depend on u. For an increas­

ing sequence u, this property implies that the function is eventually strictly 

decreasing. 

We are now in a position to state two results of [BDV03] which shall be 

employed later. We do not state the first in full generality nonetheless it 

should still be evident that these are deep and elegant results. The first result 

determines positive, and even full, m-measure for the limsup set A('IjJ). 

Corollary BDV. Let (0, d) be a compact metric space equipped with a mea­

sure m satisfying condition (A). Suppose ('R, (3) is a global m-ubiquitous sys­

tem relative to (p, l, u), 'IjJ is an approximation /unction and either 1/J or p is 

u-regular. Then 

m(A(1/J)) > 0 if f: (¢(Un ))6 = 00 . 

n=l p(un ) 
(5) 

In addition, if any open subset of n is m-measurable and ('R, (3) is a local 

m-ubiquitous system relative to (p,l,u) then m(A('IjJ)) = 1. 

Theorem 1 of [BDV03] determines the same result in more generality by 

not asking for the regularity condition to be met. However, for the pur-
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poses of this thesis, the above corollary will be sufficient. The second result 

determines infinite Hausdorff f-measure for A('IjJ). 

Theorem BDV. Let (0, d) be a compact metric space equipped with a mea­

sure m satisfying condition (A). Suppose (R, (3) is a local m-ubiquitous sys­

tem relative to (p, l, u) and that 'IjJ is an approximation function. Let f be a 

dimension function such that r-8 f(r) ~ 00 as r ~ 0 and r-8 f(r) is decreas­

'lng. Let 9 be the real, positive function given by 

g(r) := f(1jJ(r))p(r)-8 and let G:= limsupg(un ) . (6) 
n~oo 

(i) Suppose that G = 0 and that p is u-regular. Then, 

1t/(A('IjJ)) = 00 if (7) 

(ii) Suppose that 0 < G < 00. Then, 1[f(A('IjJ)) = 00 . 

Remarks: Applications described in [BDV03] include those to Diophan­

tine approximation with linear forms, p-adic numbers, and manifolds. Their 

theory also links further afield to Kleinian groups and rational maps. It is 

usually the case that the convergence counterpart of the above theorems is 

easily derived in such applications by exploiting the lim sup nature of the 

sets and using the first Borel-Cantelli lemma or the definition of Hausdorff 

measure. Thus, complete zero-one m-measure and zero-infinity Hausdorff 

f-measure laws are achieved for each application. 

With the information of this section the reader should not need to refer 

to [BDV031 to understand the theorems and proofs of this thesis. However 

this paper is recommended reading for seeing the bigger picture. On this 

point we note that the theory in [BDV031 encompasses the case when Ra are 
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not just points but sets. We do not include this more general case in our 

general set up since it is not used for the well approximable sets of Chapters 

3 and 5. 



Chapter 3 

Well approximable numbers with 

restricted sets 

3.1 Introduction and Results 

Let A and B be subsets of Z. Consider the following general subset of the 

1/J-well approximable numbers in JR. 

WA,B('I/J) := { x E JR : Ix - p/ql < 'I/J(q) for Lm. p/q with pEA, q E B } . 

Thus A := Z and B := N would return us to the classical set. However 

there are other subsets of integers of wider number theoretic interest which 

may be considered for either A, B or both. These include the sets of integers 

which are prime, square-free, congruent to a (mod q) or those which can be 

properly represented as the sum of two squares. 

In a collection of papers [Har88a], [Har88b], [Har88c), [Har89), which are 

summarised in Chapter 6 of [Har98), Harman considers the Lebesgue measure 

of W A,B ( 'I/J) where A and B are selected from the above list of subsets of Z, 

in various combinations. 

In this chapter we focus on the case: A = B := 'P where 'P is the set of prime 

31 
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integers. Let Q(P) := { p/q E Q : p, q E P } and let 

W1'("p) := {x E R+ : \x - p/q\ < "p(q) for i.m. p/q E Q(P)} . 

The results we obtain for one-dimensional Lebesgue measure and for Haus­

dorff f-measure are as follows. 

Theorem 1. Let "p be an approximation function. Then, with respect to 

one-dimensional Lebesgue measure, 

NULL if E~l 'IjJ(r) r (logrt2 < 00 

FULL if E~l 'IjJ(r) r (logrt2 = 00 . 

Theorem 2. Let f be a dimension function such that r- 1 fer) -t 00 as 

r -t 0 and r-1 fer) is decreasing. Let"p be an approximation function. 

Then 

o if E~l f('IjJ(r)) r(1ogrt2<oo 

By the definition of Hausdorff dimension, see Chapter 1, we derive the 

following corollary to Theorem 2. 

Corollary 2. For "p(r) = r-T and T > 2 

dim W l' ( 'IjJ ) = ~ and 

Remarks: As one might expect, the log term appearing in the sums 

associated with each theorem is a consequence of the prime number theorem. 
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Note that the corollary implies that the dimension of W'P(1{i) is the same as 

that of W('t/J). However, the 2/T-dimensional Hausdorff measure of W'P('t/J) is 

zero whilst that of W(1{i) is infinite; recall the discussion of Jarnfk's theorems 

in Chapter 1. In conclusion, restricting to primes has no effect on dimension 

but drastically effects the 1-£2/T measure. 

Together, the above theorems provide a complete metric description of the 

set W l' ( 1{i ). Theorem 1 is not new and was first established by Harman in 

[Har88c]. However, the unified approach taken here, namely that of ubiquity, 

introduced in Chapter 2, automatically gives rise to both statements. 

It is probable that our approach would give rise to a complete metric 

theory for WA,B(1{i) in the case where A and B are the number theoretic sets 

mentioned in the introduction above. 

3.2 Proofs of Theorems 1 & 2 

We work for the time being within the interval [1,2] to ensure a compact 

metric space and begin by showing how the intersection of W l' ( 1{i) and the 

interval [1,2] can be written as a lim sup set. For n E N, let 

t:.('t/J,n) := u U B(p/q,1{i(q)) 
2n-l<q~2n q<p~2q 

qE'P pE'P 

where B(c, r) is an interval centred at c E [1,2] and of radius r < 1. Then 

we can write W'P(1{i) n [1,2] as the lim sup set 

00 00 

W~(1{i) := n U t:.(tP,n) . 
m=ln=m 
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Since counting primes occurs at each stage of the proof, we state the 

following well known result. 

Prime Number Theorem. Let 7r(x) denote the number of primes not ex­

ceeding x. Then 
. log x 

hm 7r(x)-- = 1. 
x-+oo x 

3.2.1 The convergence part of Theorem 1 

Since W';'(1/J) can be written as the lim sup set of the sequence {~(1/J, n)}nEN, 

we can apply the first Borel-Cantelli lemma - see Chapter 2 - and say that 

\ W';'(1/J) \ = 0 if 

N ow by the Prime Number Theorem, 

\ ~(1/J, n) \ = u 
2n - 1 <q~2n q<p~2q 

qEP pEP 

In view of this, 
00 

L \ ~(1/J, n) \ « 
n=l 

00 

L \~( 1/J, n)\ < 00 . 

n=l 

q~2n p~2q 
qEP pEP 

22(n-l) 

« (log 2n-1 )2 1/J(2
n

-
1

) • 

(8) 

The r.h.s. of (8) converges since E r(logr)-21/J(r) converges - see Fact 1. 

Thus the first Borel-Cantelli lemma implies that IW';'(1/J) \ = O. The result 

obtained is the same when [1,2] is replaced by any interval of the form [a, a+ 1] 

(a E N). Also note that 

Wp(1/J) - U Wp(1/J) n [a, a + 1] . (9) 
aEN 
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Since any countable union of zero-measure sets has zero measure, we conclude 

that IWp(1j;) I = o. 

3.2.2 The convergence part of Theorem 2 

Fix N E N. Note that 

00 

U u 
is a 'ljJ(2 N - 1 )-cover of W.p('ljJ). By the definition of Hausdorff f-measure - see 

Chapter 1 - and the prime number theorem, 

This limit is zero since, by assumption, L:1 f(1jJ(r))r(logr)-2 converges. 

Hence 'H'(W.p(1/1)) = O. Finally, this result remains true when the set Wp (1jJ) 

is restricted to any other interval of type [a, a + 1] (a E N). Again W p( 1/1) is a 

countable union of sets with zero Hausdorff f -measure; thus 'H f (W p ( 1jJ )) = o. 

3.2.3 The divergence parts of Theorems 1 & 2 

The divergence parts of both theorems are derived from the two correspond­

ing results of [BDV03] stated in §2.3. Since the main condition of both of 

these results is local ubiquity we tackle the rest of the proofs of Theorems 1 
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and 2 together. We initially work with W';'('ljJ) C [1,2]. This set is identified 

with the general notation of [BDV03] described in Chapter 2 as follows. Let 

n := [1,2], R:= Q(P), J := {(p, q) E P x P : q < p < 2q} , 

Q := (p, q) E J , f3 : (p, q) ~ q , Ra :=p/q. 

Next we verify the conditions. The space n := [1,2] supports 1-

dimensional Lebesgue measure and so trivially satisfies the measure condition 

(A) with fJ = 1. The following lemma shows the pair (Q(1'), f3) is a locally 

ubiquitous system relative to (p, l, u) where land u are sequences such that 

In+l = Un := 2n (n E N) and the ubiquity function p : jR+ ---+ jR+ is defined 

as 

p: r ~ per) 
(log r)2 

.- c 2 
r 

Note that p is u-regular. 

Lemma 3. Let I C [1,2] be an arbitrary interval. There exist absolute 

constants c > 0 and K, > 0 such that, for n > no(!), 

In U (10) 
2n-1 <q~2n q<p~2q 

qE'P pE'P 

Then, since the measure and ubiquity conditions satisfied, Corollary BDV 

implies 

IW.p('ljJ)I = 1 if 
00 22n 
~ ¢(2n) (log 2n)2 = 00 . 

Accordingly, Theorem BDV implies that 

1tf(W.p('ljJ)) = 00 if 
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Note that, since W;'('I/J) C Wp('I/J) c lR+, if W;'(~) has infinite Hausdorff 

i-measure then the same is true for Wp('I/J). For Lebesgue measure, it can be 

verified that replacing the interval [1,2] with any interval of type [a, a+ 1] for 

a E N yields the same ubiquity result and thus the same Lebesgue measure 

result. Therefore, by (9), m(lR+\Wp(~)) = 0 and so Wp('I/J) has full Lebesgue 

measure. Hence, the divergence statements of Theorems 1 and 2 are true, if 

Lemma 3 is true. 

3.2.4 Proof of Lemma 3 

Without loss of generality and for the sake of convenience we prove the lemma 

for I ;= (1,1 + 20) where 0 < 0 < 1/2 is arbitrary. The proof can be easily 

adapted for an arbitrary interval in [1,2]. 

Throughout the remainder of this chapter we assume p, q, s, t are all prime 

numbers. Note that, if we restrict p so that q < p ~ (1 + O)q, then 

~ E 1* := (1,1 + 0] c I 
q 

and moreover, for n sufficiently large, B(p/q, p(2n)) C I. In view of this, 

l.h.s. of (10) > u (11) 

Let 'Re (n) denote the set of rationals in the above range; that is 

'Re(n) := {p/q E Q(1') : q < p ~ (1 + O)q, 2n
-

1 < q < 2n} 

Also, let Ve{n) denote the subset of'Re{n) such that plq E Ve{n) if 

v sit (:/:plq) E 'Re(n) . 
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The following two lemmas are the key to establishing Lemma 3. 

Lemma 4. For n large enough, 

() 22n 

#Re(n) > 36n2 ' 

Lemma 5. For 0 < () < 1/2 and n large enough, 

In view of Lemmas 4 and 5, it follows that for n sufficiently large 

o 

r.h.s. of (11) > U B (p/q, p(2n)) 
p/qEVl/(n) 

(}e 
> 36 (log2)2 = ~III, 

where ~ := ;2 (log 2)2 > O. Thus the statement of Lemma 3 is obtained and 

it remains to prove Lemmas 4 and 5. 

3.2.5 Proof of Lemma 4 

Let 0 < () < 1 . We begin by deriving a lower bound for 71'((1 + (})x) - 71'(x), 

where 71'(x) is the number of primes p < x. In view of the prime number 

theorem, for any c > 0 there exists a constant xo(c) such that, for x > xo(c), 

( )
logx 

1-c < 71'X-­
X 

< 1+£. (12) 
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So, for € := :g;:J) , take x sufficiently large that x~ > (1 + fJ) and (12) holds. 

It follows that 

71"((1 + fJ)x) - 71" (x) 

( 
(1 + fJ) ( fJ(3 - fJ) ) ( fJ(3 - fJ) )) x 

> (1 + fJ/3) 1- 6(3 + 2fJ) - 1 + 6(3 + 2fJ) log x 

fJ x 
310gx . 

In turn, this implies that, for n large enough, 

#'R,o(n) - L L 1 
2n - 1 <q~2n q<p~(l+O)q 

822n 
> 36n2 · 

This completes the proof of the Lemma 4. 

3.2.6 Proof of Lemma 5 

2n- 1 fJ 2n- 1 

> 3 log 2n- 1 310g2n 

We begin by considering the set Uo(n):= 'R,o(n) \ Vo(n). By definition, 

p/q E Uo(n) if there exists a rational sit (-I=p/q) E 'R,o(n) such that 

B(p/q, p(2n)) n B(s/t, p(2n)) # 0; 

i.e. such that 

p s ( n) o < q - t < 2p 2 . 

It is easily seen that the associated 4-tuple (p, q, s, t) is an element of the set 

Wo(n) := {(p, q, s, t) : 0 < Ipt - sql < p(2n) 22n+1, 

2n- 1 < p,s < (1 +8)2n, 2n- 1 < q,t ~ 2n} . 



WELL APPROXIMABLE NUMBERS WITH RESTRICTED SETS 40 

Thus, #U8(n) ~ #W8(n) and the lemma immediately follows upon showing 

#W8(n) < ~ #R8(n) . (13) 

In order to establish (13) we make use of the following lemma which is a 

slightly simplified version of Lemma 4 from [Har88c1. 

Harman's Lemma (1988). Let 8, A, P E jR+ be given with 0 < 8 < 1/2, 

P > 8-2 and A > 1. Let p, q, s, t be prime. Then the number of solutions to 

o < Ipt - sql < A 

with 

P < q, t < (1 + 8)P and P < p, s < (1 + 8)2 P 

is 
wAP283 

< + O(AP39
/
20

) 
log4 P 

where w is an absolute constant. 

Now let j > 0 be the unique integer such that (1 + 8)i < 2 < (1 + 8)i+l and 

for i = 0,1, ... ,j let Pi := 2n- 1(1 + 8)i, Furthermore, let 

Wo(n, i) := {(p, q, s, t) : 0 < Ipt - sq\ < p(2n).22n+l, 

Pi < p, s < Pi(l + 8)2, Pi < q, t < ~(1 + 8)}. 

Then 
i 

#W8(n) < L: #W8(n, i) (14) 
i=O 

since 

i i 
(2n

-
1,2n

] C U (Pi, Pi (1 + 8)] and (2n- 1
, 2n(I+8)] C U (Pi, ~(1 + 8)2] 

i=O i=O 
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We now invoke Harman's lemma to estimate #We(n, i). With A := 22n+1 p(2n) 

and P := Pi' it follows that for n sufficiently large 

This together with (14) implies that 

22n j 

#We(n) < 2 CW 03 n2 2:)1 + 0)2i 
i=O 

22n 
< 16cwO-

2 
• 

n 

By choosing c:= 11~2w' we ensure via Lemma 4 that 

1 () 22n 1 
#Wo(n) < 2 36n2 < 2 #'Ro(n) . 

This completes the proof of Lemma 5. 

o 



Chapter 4 

Badly approximable sets 

4.1 Introduction and basic set up 

Recall from the introduction that the set of badly approximable numbers in 

lR is the set 

Bad := {x E lR : 3c(x) > 0, Ix - p/ql > C(X)/q2 Vp/q E Q}. 

In this chapter we begin by creating a general analogue of the badly approx­

imable numbers using a similar set up to that of [BDV031 described in §2.3. 

Of course, Bad is not a lim sup set and so the resulting general framework 

differs significantly to that of §2.3. This and other differences mean that for 

clarity we define anew the notation for this chapter. 

Let (X, d) be a metric space and (n, d) a compact subspace of X which 

supports a non-atomic finite measure m. Let 'R = {Ro: eX: a E J} be 

a family of subsets Ro: of X indexed by an infinite, countable set J. The 

sets Ro: will be referred to as resonant sets. Next, let f3 : J -+ lR+ : a 1-+ f3o: 

be a positive function on J. To avoid pathological situations within our 

framework, we shall assume that for any constant"., > 0, the set 

is finite. 

Thus f3o: tends to infinity as a runs through J. 

42 
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Given a real, positive function p : ]R+ ---+ lR+ : r 1---+ per) such that per) ---+ 0 

as r ---+ 00 and that p is decreasing for r large enough, consider the set 

Bad{p) := {x EO: ::1 c{x) > 0 s.t. d{x, Ra) > c{X)p({3a) Va E J} , 

where d(x, Ra) := infaERa d{x, a). In the case that the resonant sets are 

points, loosely speaking, Bad(p) consists of points in 0 which 'avoid' 'rr 
balls' centred at resonant points. In this case, Bad(p) can be easily compared 

to the classical set of badly approximable numbers. Notice that since p is 

eventually decreasing to zero and, for any 'rJ > 0, the set {Q E J : {3a < 'rJ} is 

finite, it follows that the number of Q E J with p({3a) > c, for any c > 0, is 

also finite. Therefore, m8.XaEJ p({3Q) exists and is finite. 

The set Bad(p) is also easily identified with the set Bad(N) of badly 

approximable points in ]RN. For N > 1, a point x := (Xl, ... , XN) is an 

element of Bad(N), if there exists a positive constant c(x) such that for all 

qEN, 

where II. II denotes the distance of a real number to the nearest integer. 

Schmidt [Sch69] proved that 

dim Bad(N) = N . 

Thus, as with Jarnik's 1928 result, this badly approximable set has maximal 

dimension. In view of these results, the initial aim of this chapter is to find a 

suitably general framework which allows us to conclude that dim Bad(p) = 
dim 0; that is to say that the set of badly approximable points in 0 is of 

maximal dimension. 
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The work presented in this chapter is joint work with S. Kristensen and S. 

L. Velani. This chapter constitutes the main body of [KTV] which has been 

recently submitted for publication. 

4.1.1 The conditions on the basic set up 

Throughout, a ball B(c, r) with centre c and radius r is defined to be the 

set {x EX: d(c, x) < r}. Thus a ball is closed and is a subset of X, 

unless stated otherwise. The following conditions on the measure m and the 

function p highlight the properties of n and of Bad(p) c n which are used 

to set a good environment for finding a maximal dimension result. 

(A) There exist strictly positive constants 8 and ro such that for any 

c En and r < ro 

where 0 < a < 1 < b are constants independent of the ball. 

If the measure m supported on n is of type (A) then dim n = 8 - this 

statement is the subject of Proposition 8 which we state and prove in §4.3. 

Trivially, this implies that dim X 2:: 8. 

(B) For k> 1 sufficiently large and any integer n > 1, 

)..I(k) < p(kn) < )"U(k) 
- p(kn+l) -

where )..1 and ).. U are lower and upper bounds independent of n such 

that )..l(k) -+ 00 as k -+ 00. 

Note that this condition on p is satisfied by any function satisfying the fol­

lowing 'regularity' condition. There exists a constant k > 1 such that for r 
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sufficiently large 

)..1 < p(r) <)..u 
- p(kr) - , 

where 1 < )..1 < )..U are constants independent of r but may depend on k. 

4.1.2 The basic result 

Let k E lR.+ and, for any integer n > 1, let Bn := {x En: d(c, x) < p(kn)} 

denote a generic closed ball of radius p(kn) with centre c in n. For () E lR.+, 

let () Bn : = {x En: d( c, x) < () p( kn)} denote the ball Bn scaled by (). Notice, 

that by definition any generic ball Bn is a subset of n. Also, for n > 1, let 

J(n) := {o: E J : kn
-

1 :s (30/ < kn
}, a finite subset of J. 

Theorem 3. Let (X,d) be a metric space and (n,d,m) a compact measure 

subspace of X. Let the measure m and the function p satisfy conditions (A) 

and (B) respectively. For k > ko > 1, suppose there exists some () E lR+ so 

that for n > 1 and any ball Bn there exists a collection C(OBn) of disjoint 

balls 2()Bn+1 contained within OBn satisfying 

(15) 

and 

where 0 < "'2 < "'1 are absolute constants independent of k and n. Further­

more, suppose dim(UoEJRo) < 6. Then 

dim Bad(p) = 6 
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Remarks: It is worth noting that this result says more than just that the set 

Bad(p) has maximal dimension. In fact, it implies that Bad(p) is thick i.e. it 

has maximal dimension everywhere in the sense that for any ball B = B(c, r) 

with centre c E n and radius r < ro, 

dim(Bad(p) n B) = 8 . 

This is easily seen by restricting the measure on n to the ball so condition 

(A) can be satisfied. 

In applications, the 'scaling factor' (J can be shrunk to help (16) to be met 

and is usually dependent on k - see the basic example below. For k suf­

ficiently large, it is always possible to find the collection C(OBn) satisfying 

condition (15) - see Lemma 6 in §4.3 for the details. Note that in the case 

where the resonant sets are points dim(UoEJRo) = 0 and the hypothesis that 

dim(UoEJRo) < 8 is trivially satisfied. This follows from the fact that the 

indexing set J is countable. 

It is not necessary for () Bn to be as arbitrary as the generic ball in the 

theorem. In fact, in the context of the proof, the concentric ball of OBn of 

twice the radius is free of Ro for all a E J(n). 

Finally, it is worth pointing out that if we had defined the generic ball Bn to 

be a subset of X with centre c still in n then the theorem remains unchanged 

and condition (16) is equivalent to: 

{ } ( 
p(kn) )0 

# 20Bn+1 C C(OBn) : 20Bn+1 n U Ra f. 0 ~ "'2 (kn+l) (17) 
oEJ(n+l) p 
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4.1.3 The basic example: Bad 

Let I = [0,1] and consider the set of badly approximable numbers restricted 

to the unit interval 

Bad/ := {x E [0,1] : Ix - p/ql > C(X)/q2 for all rationals p/q (q > O)} . 

Clearly, it can be expressed in the form Bad(p) with p(r) := r-2 and 

x = n := [0,1], J:= {(p,q) EN x N\{O} : p < q} , 

a:=(p,q)EJ, (3Q:=q, RQ:=p/q. 

The metric d is of course the standard Euclidean metric; d(x, y) := Ix - YI. 
Thus in this basic example, the resonant sets RQ are simply rational points 

p/q and the function p satisfies condition (B) with )..t = )..11. = k2 . Let the 

measure m be one-dimensional Lebesgue measure on I. Thus, b = 1 and m 

clearly satisfies condition (A). 

We show that the hypotheses (15) and (16) of Theorem 3 are satisfied for 

this basic example. The existence of the collection C(OBn)' where Bn is 

an arbitrary closed interval of length 2 k-2n follows immediately from the 

following simple observation. For any two distinct rationals p/q and p' /q' 

with kn ~ q, q' < kn+1 we have that 

, 1 
!!. _ ~ > _ > k-2n- 2 

q q' - qq' 

Thus, any interval OBn with (} := ~k-2 contains at most one rational p/q 

with kn < q < kn+l. Let C(OBn ) denote the collection of intervals 20Bn+1 

obtained by subdividing (J Bn into intervals of length 2k-2n- 4 starting from 
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the left hand side of BRn. Clearly 

#C(BRn) > [k2 /2] > k2 /4 = r.h.s. of (15) with Kl := 1/4 . 

Also, in view of the above observation, for k sufficiently large 

l.h.s. of (16) < 1 < k2 /8 = r.h.s. of (16) with K2 := 1/8 . 

The upshot of this is that Theorem 3 implies that 

dim Bad] = 1 . 

In turn, since Bad is a subset of IR, this implies that dim Bad = 1 - Jarnik's 

(1928) result. As we shall see in §4.5, Theorem 3 has other much less trivial 

consequences. 

4.2 A more general framework 

It is clear that the basic set up encompasses the set Bad(N) of badly ap­

proximable points in ]RN, but there are other well known badly approximable 

sets in ]R.N which are not covered by this set up. These include the set of 

(i,j)-badly approximable pairs in}R2 denoted as Bad(i,j). For i,j > 0 with 

i + j = 1, (Xl, X2) is an element of Bad(i, j) if there exists a positive constant 

C(Xl' X2) such that for all q E N 

In the case i = j = 1/2, the set Bad(~,~) is simply the standard set of 

badly approximable pairs Bad(2), defined in §4.1. The set Bad(i,j) was 
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recently shown by Pollington and Velani [PV02] to have maximal dimension, 

i.e. dim Bad( i, j) = 2: a result which generalized Schmidt's result that 

dim Bad(2) = 2. 

The aim of this section is to encompass the set Bad(i,j) into our generalisa­

tion and make a fruitful extension of Theorem 3. To do this we now consider 

a more general framework in which the 'badly approximable' set consists of 

points avoiding 'rectangular' neighborhoods of resonant sets. This frame­

work will allow us to further the work of Pollington and Velani and consider 

an enticing conjecture of W. M. Schmidt [Sch83]. His conjecture states that, 

for any two pairs (i,j) and (i',j') of numbers such that 0 < i,j, i',j' < 1 and 

that the sum of each pair is one, 

Bad(i,j) n Bad(i',j') =I- 0 . 

The dimension result of Pollington and Velani implies that the above intersec­

tion is of two sets of maximal dimension. This adds to the evidence that the 

conjecture may be true. However, if this conjecture was false then it would 

be even more interesting since it would imply that the famous Littlewood's 

conjecture of Diophantine approximation is true. Littlewood's conjecture 

states that for any (Xl, X2) in ]R2, 

lim inf q IIq xdlllq X211 = 0 . 
q ....... oo 

We discuss Schmidt's conjecture again in §4.5.4, in light of the results of this 

section. 
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4.2.1 The general set up 

Let (X, d) be the product space of t metric spaces (Xi, di ) and let (0, d) be 

a compact subspace of X which supports a non-atomic finite measure m. As 

before, let 'R = {Ro eX: Q E J} be a family of subsets Ro of X indexed 

by an infinite, countable set J. Thus, each resonant set Ro can be split into 

its t components Ro,i C (Xi, di). As before, let {3 : J -+ R+ : Q 1---+ {3o. be a 

positive function on J and assume that, for any TJ > 0, the set 

{Q E J : {3o. < TJ} is finite. 

For each 1 < i ~ t, let Pi : IR+ -+ R+ : r 1---+ Pi{r) be a real, positive 

function such that Pi (r) -+ 0 as r -+ 00 and that Pi is decreasing for r large 

enough. Furthermore, assume that Pl{r) > P2(r) > ... > pt{r) for all r large 

enough - the ordering is irrelevant. Given a resonant set Ro , let 

denote the 'rectangular' (PI, ... , pt)-neighbourhood of Ro. Consider the set 

Bad(Pl, ... , Pt) := {x En: 3 c(x) > 0 s.t. x fI. c(X)Fo(Pl, ... , Pt) V Q E J} . 

Thus, x E Bad(Pl, ... ,Pt) if there exists a constant c{x) > 0 such that 

Clearly, Bad(pl! ... Pt) is precisely the set Bad(p) of §4.1 in the case 

t = 1. The overall aim of this section is to find a suitably general framework 

which gives a lower bound for the Hausdorff dimension of Bad{Pl, ... , Pt). 

For each i, notice that since Pi is eventually decreasing to zero and, for 

any TJ > 0, the set {Q E J : {3o < TJ} is finite, it follows that the number of 
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0: E J with Pi({3a) > c, for any c > 0, is also finite by hypothesis. Therefore, 

m8.XaEJ Pi ({3a) exists and is finite. 

4.2.2 The conditions on the general set up 

Given ll," ., It E lR.+ and c E n let 

51 

denote the closed rectangle centred at c with sidelengths determined by 

i l , ... , Lt. Also, for any k > 1 and n E N, let Fn denote a generic rectangle 

F(c; Pl(kn ), ... , pt(kn )) n n centred at a point c in n. As before, B(c, r) is 

a closed ball with centre c and radius r. The following conditions on the 

measure m and the functions Pi will set a suitable environment for deducing 

Hausdorff dimension. The first two are reminiscent of conditions (A) and 

(B) of §4.1.1. 

(A *) There exists a strictly positive constant 0 such that for any c E n 
lim inf log m( B (c, r) ) = 8 . 
r~O logr 

It can be verified that if the measure m supported on n is of type (A *) then 

dim n > 0 [Fa190, Proposition 4.9] and so dim X > o. Clearly condition (A) 

of §4.1.1 implies (A *). 

(B*) For k > 1 sufficiently large and any integer n > 1, 

A'.(k) < Pi(k
n

) < A~(k) 
I - Pi (kn+1) - t 

'v'l<i~t, 

where A~ and Ar are lower and upper bounds independent of n such 

that .xHk) -+ 00 as k -+ 00. 
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Clearly, this is just condition (B) of §4.1.1 imposed on each function Pi' 

(C*) There exist constants 0 < a ~ 1 ~ band 10 > 0 such that 

a < m(F(c; h, ... ,It)) < b 'V c, c' E n 'V 1
1

, ... , It < lo . 
m(F(c'; it, ... , It)) -

This condition implies that rectangles of the same size centred at points of 

n have comparable m measure. 

(D*) There exist strictly positive constants D and lo such that 

m(2F(c;lll ... ,lt)) < D \..tcEn l 
)) 

v 'V It, ... , It < o. 
m(F(c; III ... ,It -

This condition simply says that the measure m is 'doubling' with respect 

to rectangles. In terms of achieving the aim of obtaining a lower bound 

for dim Bad(PI,'" Pt), the above four conditions are rather natural. The 

following final condition is in some sense the only genuine technical condition' 

yet is not particularly restrictive. 

(E*) For k > 1 sufficiently large and any integer n > 1 

m(Fn} > -\(k) 
m(Fn+t} - , 

where -\ is a constant such that -\(k) --+ 00 as k --+ 00. 

4.2.3 The general result 

Recall, that Fn := {x En: di(Xil~) < Pi(kn) 'V 1 < i < t} is a generic 

rectangle with centre c in n and sidelengths determined by Pi (kn) and for 

8 E R+, 8Fn is the rectangle Fn scaled by 8. Also, for n > 1, let 

J (n) : = {a E J : kn- 1 ~ f3a < kn} . 
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Theorem 4. Let (X, d) be the product space of the metric spaces 

(Xl, dl), ... , (Xt, cit) and let (n, d, m) be a compact measure subspace of 

X. Let the measure m and the functions Pi satisfy conditions (A *) to (E*). 

For k ~ ko > I, suppose there exists some B E R+ so that for n > 1 and 

any rectangle Fn there exists a disjoint collection C(BFn) of rectangles 2BFn+l 

contained within B Fn satisfying 

and 

# {2BFn+l c C(BFn): min di(Ci, Ra,i) ~ 2Bpi(kn+1
) V 1 < i < t} Q€J(n+l) 

(18) 

m(BFn) 
< /'i,2 m(BFn+

1
) (19) 

where 0 < /'i,2 < /'i,l are absolute constants independent of k and n. Further­

more, suppose dim(UQEJRQ) < 8. Then 

Remarks: For k sufficiently large, it is always possible to find a collection 

C(BFn) satisfying condition (18) - see Lemma 6 in §4.3 for details. Clearly, the 

lower bound result for dim Bad(p) of Theorem 3 is an immediate consequence 

of Theorem 4. To see this, simply note that if t = 1 then the rectangles Fn 

are balls Bn and if conditions (A) and (B) are satisfied then trivially so are 

the conditions (A *) to (E*). In fact, if condition (A *) is replaced by the 

stronger condition (A) in the above theorem, then we are able to conclude 

that dim Bad(pl' ... Pt) = 8 - see below. 
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We now consider an extremely useful specialization of the above general 

framework in which the space n is a product space equipped with a product 

measure. 

Theorem 5. For 1 ~ i < t, let (Xi, di ) be a metric space and (ni , di , mi) be a 

compact measure subspace of Xi where the measure mi satisfies condition (A) 

with exponent 8;. Let (X, d) be the product space of the spaces (Xi, di ) and let 

(n, d, m) be the product measure space of the measure spaces (ni , di , mi)' Let 

the functions Pi satisfy condition (B*). For k > ko > 1, suppose there exists 

some () E lR+ so that for n ~ 1 and any rectangle Fn there exists a disjoint 

collection C(OFn) of rectangles 20Fn+1 contained within OFn satisfying 

(20) 

and 

where 0 < K2 < Kl are absolute constants independent of k and n. Further­

more, suppose dim(UaEJRa) < E:=l 8i . Then 

t 

dim Bad(Pl,' .. Pt) = L 8i 

i=l 

The deduction of Theorem 5 from Theorem 4 is relatively straightforward 

and hinges on the following simple observation. Since m is the product mea­

sure of the measures mi and the latter satisfy condition (A) with exponents 
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t5i (1 5 i < t), we have that 

t m(F(c; h, ... ,It)) t 
a < < b - n~ l~i 

1=1 I 

VeE n V it, ... , it < lo . (22) 

It follows that conditions (C*) and (D*) are trivially satisfied as is condition 

(A) with t5 := E!=l t5i . Recall, that (A) implies (A *). Also, (22) together 

with (B*) implies that condition (E*) is satisfied. Thus, Theorem 4 implies 

the desired lower bound estimate for dim Bad(Pl,'" Pt). The complementary 

upper bound estimate is a simple consequence of the fact that m satisfies (A). 

If m satisfies (A), then dim n = t5 (see §4.3) and since Bad(Pl,"" Pt) ~ n 
the upper bound follows. 

4.2.4 The general basic example: Bad( i, j) 

We are now in a position to reprove the result of [PV02] that dim Bad(i, j) = 

2, by showing it is a simple consequence of Theorem 5. 

Let Bad[2(i,j) := Bad(i,j) n /2 where 12 := [0,1] x [0,1]. Without loss 

of generality assume that i < j. Clearly, it can be expressed in the form 

Bad(pb P2) with Pl(r) := r-(l+i), P2(r) := r-(l+j) and 

Furthermore, d1 = d2 is the standard Euclidean metric on 1 and ml = m2 

is one-dimensional Lebesgue measure on /. By definition, the metric d on 

12 is the product metric d1 x dl and the measure m := ml x ml is simply 

two-dimensional Lebesgue measure on 12. 
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We show that the conditions of Theorem 5 are satisfied for this basic 

example. Clearly the functions PI, P2 satisfy condition (B*) and the measures 

ml, m2 satisfy condition (A) with 81 = 82 = 1. We now need to establish the 

existence of the collection C((}Fn), where Fn is an arbitrary closed rectangle of 

size 2k-n(1+i) x 2k-n(1+j). To start with, note that m((}Fn) = 4(}2k-3n . Now 

assume there are at least three rational points (PI/q,P2/q), (pilq',p~/q') and 

(p~/qll,p~/qll) with 

kn < q, q', q" < kn+1 

lying within (}Fn . Suppose for the moment that they do not lie on a line and 

form the triangle .6 sub-tended by them. Twice the area of the triangle .6 is 

equal to the absolute value of the determinant 

1 pdq P2/Q 

det.- 1 pi/q' p~/q' 

1 p'{ / q" P'2 / q" 

Then, in view of the denominator constraint, it follows that 

Now put 

2 x m(A) ~ _1_ > k-3(n+l) . 
qq'q" 

Then m{.6) > m(OFn) and this is impossible since .6 c (}Fn . The upshot of 

this is that the triangle in question cannot exist. Thus, if there are two or 

more rational points with kn < q < kn+1 lying within (}Fn then they must lie 

on a line C. 

Starting from a 'corner' of the rectangle (}Fn , partition (}Fn into rectan­

gles 26Fn+ 1 of size 46k-(n+l)(1+i) x 40k-(n+1)(1+;) and denote by C(OFn ) the 



BADLY APPROXIMABLE SETS 57 

collection of rectangles 20Fn+1 obtained. Trivially 

[ 
20k-n(1+i) ] [ 20k-n(1+j)] k3 

#C(OFn) > 40k-(n+l)(1+i) 40k-(n+l)(1+j) > 16 . 

Here [xl denotes the integer part of x. In view of the above 'triangle' argument 

we have that 

# {20Fn+1 C C(OFn): min di(Ci, Ret,i) < 20pi(kn+1) V 1 < i < t} 
etEJ(n+l) 

< # {20Fn+1 C C(OFn) : 20Fn+1 n.c 1= 0} , 

where .c is any line passing through OFn . Recall, that we are assuming that 

i < j. A simple geometric argument ensures that for k sufficiently large 

# {20Fn+l C C(OFn) : 20Fn+1 n.c 1= 0} < [ 20k-
n
(1+j)] [k1+j] 

40k-(n+l)(1+j) = -2-

The result of this is that the collection C(OFn) satisfies the required conditions 

and Theorem 5 implies that 

dim Bad/2(i,j) = 2. 

In turn, since Bad(i,j) is a subset ofR2, this implies that dim Bad(i,j) = 2. 

In [PV02], the stronger result that 

dim Bad( i, j) n Bad( 1, 0) n Bad (0, 1) = 2 

is established; i.e. the set of pairs (Xll X2) with Xl and X2 both badly approx­

imable numbers and an (i,j)-badly approximable pair has full dimension. 

Consider the following extension of Bad(i,j) into higher dimensions. 

For any N-tuple of real numbers it, ... , iN > 0 such that L ir = 1, denote 

by Bad(it, ... , iN) the set of points (xt, ... , XN) E ]RN for which there exists a 
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positive constant C(Xl' ... , XN) such that 

Clearly, the above argument can easily be modified to show that 

dim Bad(il' ... , iN) = N . 

In §4.5, by considering the intersection of sets with the set Bad(ib ... , iN)' 

we obtain a much more general result than the above result of [PV02]. We 

also remark on the implications of this result for Schmidt's conjecture. 

4.3 Preliminaries 

In this section we introduce the following powerful tools which are funda­

mental within the proceeding proof of Theorem 4. 

Covering Lemma. Let (0, d) be the product space of the metric spaces 

(n l , dl ), ... , (nt,dt) and:F be a finite collection of rectangles F:= F(c; it, ... , It) 

with c E nand ll, ... , It fixed. Then there exists a disjoint sub-collection 

{Fm} such that 

U FeU 3Fm · 
Fe:F m 

Proof. Let S denote the set of centres c of the rectangles in :F. Choose 

e(l) E S and for k > 1, choose 

k 

c(k+l) E S\ U2F(c(m);lt, ... ,lt) 
m=l 
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as long as 8 \ U~=I 2 F(c(m); lll' .. , It) 1= 0. Since #8 is finite, there exists 

ki < #8 such that 

kl 

8 c U 2 F(c(m); lll . .. , it) . 
m=l 

By construction, any rectangle F(c; lI,' .. , It) in the original collection :F is 

contained in some rectangle 3 F(c(m); i I , ... , It) and since di(Ci(m), Ci(n)) > 

2li for each 1 < i < t the chosen rectangles F(c(m); it, ... ,It) are clearly 

disjoint. 

o 

Next we make use of the covering lemma in order to establish the following 

assertion made in §4.2.3. The result is extremely useful when it comes to 

applying our theorems - see §4.5. With reference to Theorem 4, it guarantees 

the existence of a disjoint collection C({)Fn ) of rectangles with the necessary 

cardinality. 

Lemma 6. Let (X, d) be the product space of the metric spaces 

(Xl, d1), ••. , (Xt, dt ) and let (n, d, m) be a compact measure subspace of X. 

Let the measure m and the functions Pi satisfy conditions (B*) to (D*). Let 

k be sufficiently large. Then for any () E lR+ and for any rectangle Fn (n > 1) 

there exists a disjoint collection C«()Fn ) of rectangles 20Fn+1 contained within 

()Fn satisfying (18) of Theorem 4· 

Proof. Begin by choosing k large enough so that 

Pi(k
n

) > 4 
Pi (kn+1 ) -

(23) 

That this is possible follows from the fact that A~(k) -+ 00 as k -+ 00 

(condition (B*)). Take an arbitrary rectangle Fn and let lien) := (}Pi(kn). 
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Thus ()Fn := F{c; ll{n), ... , It{n)). Consider the rectangle Tn C ()Fn where 

Tn := F{c; ll{n) - 2h{n + 1), ... , It{n) - 21t(n + 1)) . 

Note that in view of (23) we have that Tn :J ~()Fn' Now, cover Tn by 

rectangles 20Fn+1 with centres in 11 n Tn. By construction, these rectangles 

are contained in () Fn. In view of the covering lemma, there exists a disjoint 

sub-collection C(()Fn ) such that 

u 6()Fn+1 

Since rectangles of the same size centred at points of n have comparable 

m measure (condition (C*)), it follows that 

Using that fact that the measure m is doubling on rectangles (condition 

(D*)), it follows that there exists a positive constant D, such that 

o 

Remark. Clearly, with reference to Theorem 3, the above lemma guaran­

tees the existence of the collection C{()Bn ) satisfying (15). 

The following well known result is used in the proof to determine the 

lower bound of dimension. 

Lemma 7. (Mass Distribution Principle) Let I-L be a probability measure 

supported on a subset F of (0., d). Suppose there are positive constants c and 
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To such that 

J.L(B) < cf(T), 

fOT any ball B centred in 0 with mdius T < To. If X is a subset of F with 

J.L(X) = A > 0 then 

Proof. If {Bi} is a p-cover of X with p ~ To then 

A = JL(X) = J.L(UiBi) < L: JL(Bi) < c L f(Ti). 
i i 

It follows that 1i£(X) ~ Alc for any p < To. On letting p -+ 0, the quantity 

'H~(X) increases and so we obtain the required result. 0 

Using the covering lemma and the mass distribution principle, we now 

prove a result already refered to earlier in this chapter. 

Proposition 8. Suppose (n, d) is a compact, metric space and 0 supports 

a non-atomic probability measure m satisfying condition (A) with exponent 

{) > O. Then 

dimO - lJ • 

Proof. By the definition of Hausdorff dimension, it suffices to prove 

Condition (A) on the measure m, implies that, for any ball B of radius 

o < p :S To, 

m(B) 5 bl 

where b and lJ are positive constants. It then follows directly from the mass 

distribution principle that m(O) = 1 implies 1iD(O) > b-1 > O. Since the 
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space n is compact, there exists a cover of n by a finite collection B of balls 

B centred in n and of radius P > o. By the covering lemma, there exists a 

disjoint sub-collection {Bi (p)} of B such that 

o 

UBi(p) CUB c UBi(3p). 
i BEB i 

Thus the collection {Bi(3p)} is a 3p-cover of n. Hence, 

1t~p(n) < 2: (3p)O «: ~ m(Bi(p)) = m (U Bi(P)) < men) - 1 . 
I I , 

On letting p -t 0, we obtain 1iO(O) «: 1 as required. 

o 

4.4 Proof of Theorem 4 

The overall strategy is as follows. For any k sufficiently large we construct a 

Cantor-type set KC(k) such that Kc(k) with at most a finite number of points 

removed is a subset of Bad(Pl, ... ,Pt). Next, we construct a measure J.l 

supported on KC(k) with the property that for any ball A with radius rCA) 

sufficiently small 

J.L(A) «: r(A)O-e(k) ; 

where c(k) -t 0 as k -+ 00. Hence, by construction and the mass distribution 

principle we have that 

Now suppose that dim Bad(Pb ... ,Pt) < 8. Then, dim Bad(Pb ... ,Pt) -

8 - '" for some", > O. However, by choosing k large enough so that c(k) < '" 
we obtain a contradiction and thereby the lower bound result follows. 
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4.4.1 The Cantor-type set KC(k) 

Choose ko sufficiently large so that for k > ko, PiCk) (1 < i < t) is decreasing 

and the hypotheses of the theorem are valid. Now fix some k > ko and 

suppose that 

{o: E J : f3a < k} = 0. (24) 

Define F1 to be any rectangle OF} with sidelengths 0pi(k) and centre c in n. 
The idea is to establish, by induction on n, the existence of a collection Fn of 

disjoint rectangles 0 Fn such that Fn is nested in :Fn- 1 ; that is, each rectangle 

OFn in Fn is contained in some rectangle OFn- 1 of Fn- 1 • Also, any OFn in 

Fn will have the property that for all points x E OFn and for all 0: E J with 

(3a < kn
, 

for some i: 1 < i < t , (25) 

where the constant 

c( k) : = min (0/ .\f (k)) 
l$i$t 

is dependent on k but is independent of n. Then, since the rectangles 0 Fn 

of :Fn are closed, nested and the space n is compact, any limit point in OFn 

will satisfy (25) for all O! in J with (3Q ~ k. In particular, we put 

00 

KC(k) := n Fn . 
n=1 

By construction, we have that Kc(k) is a subset of Bad(Pl,"" Pt) under the 

assumption (24). 

The induction. For n = 1, (25) is trivially satisfied for Fl = OF} since we 

are assuming (24). Given Fn satisfying (25) we wish to construct a nested 
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collection Fn+l for which (25) is satisfied for n + 1. Consider any rectangle 

8Fn c Fn. We construct a 'local' collection Fn+l(8Fn) of disjoint rectangles 

8Fn+1 contained in 8Fn so that for any point x E f)Fn+1 the condition given 

by (25) is satisfied for n + 1. Given that any rectangle 8Fn+1 of Fn+1«()Fn) 

is to be nested in 8Fn! it is enough to show that for any point x E ()Fn+l at 

least one of the inequalities 

(1 S; i < t) 

is satisfied for a E J with kn < /30: < kn+ 1; i.e. with a E J (n + 1). 

For k sufficiently large, by the hypotheses of the theorem, there exists a 

disjoint sub-collection Q«()Fn) of C(8Fn) of rectangles 2()Fn+1 c ()Fn with 

[ 
m«()Fn) 1 

#Q(8Fn) = fi, m(8Fn+l) (26) 

and such that for any rectangle 20Fn+l C Q(f)Fn) with centre c 

Clearly, by choosing k large enough we can ensure that #Q(OFn) > 1 - this 

makes use of conditions (D*) and (E*). Now let 

Thus the rectangles of Fn+1(OFn) are precisely those of Q«()Fn) but scaled by 

a factor 1/2. Then, by construction for any x E 8Fn+l c Fn+l(8Fn) and for 

at least one i with 1 < i < t 

d,(x" R..,,) > 6p,W+1) = 6p,(k
n

) p~~~~:;) > Ar~k)p'(f3a) > c(k) p,(f3a). 

Here we have made use of condition (B*) and the fact that Pi (k) is decreasing 

for k > ko and that a E J(n + 1). Finally let 

Fn+1 := U Fn+l(8Fn). 
OFnE:Fn 
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This completes the proof of the induction step and so the construction of the 

Cantor-type set 
00 

KC(k) := n:Fn , 

n=l 
where c{k) := minl~i~t{O/Af{k)) and k is sufficiently large. 

Note, that in view of (26) we have that for n > 2 

n 

#:Fn = #:Fn- 1 x #:Fn{OFn-d = II #:Fm(OFm-d 

II
n 

K m(OFm-d > -
m=22 m(OFm) 

4.4.2 The measure J.L on KC(k) 

m=2 

(~)n-l m(OFd 
2 m(OFn )' 

(27) 

We now describe a probability measure fL supported on the Cantor-type 

set KC(k) constructed in the previous subsection. For any rectangle 0 Fn in :Fn 

we attach a weight fL(OFn) which is defined recursively as follows: for n = 1, 

and for n > 2, 

This procedure thus defines inductively a mass on any rectangle used in the 

construction of Kc(k)' In fact a lot more is true - fL can be further extended 

to all Borel subsets A of n to determine fL(A) so that fL constructed as above 

actually defines a measure supported on Kc(k); see [FaI90, Proposition 1.7]. 

We state this formally as a 
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Fact. The probability measure J..L constructed above is supported on Kc(k) 

and for any Borel subset A of n 

JL(A) = inf L J..L(F) 
FE:F 
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where the infimum is taken over all coverings :F of A by rectangles F E {:Fn : 

Notice that, in view of (27), we simply have that 

(n > 1) . 

4.4.3 A lower bound for dim KC(k) 

Let A be an arbitrary ball with centre a not necessarily in n and of radius 

r(A) < Op.(kno ) where p.(r) := maxl$i9 Pi(r) and no is to be determined 

later. We now determine an upper bound for J..L(A) in terms of its radius. 

Choose n ~ no so that 

Without loss of generality, assume that A n KC(k) # 0 since otherwise there 

is nothing to prove. Clearly 

where 

If OFn+1 n A # 0, then OFn+l C 3 A since r(A) > 0pi(kn+1) for 1 < i < t. 

The balls in :Fn+ 1 are disjoint and have comparable m measure (condition 

(C*)), thus 
m(3A) 

Nn+l(A) < (OF.) . 
am n+l 
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It follows by (27), that 

JL(A) < m(3A) x 1 
- am(8Fn+l) #:Fn+l 

m(3A) (2)n 
< am(8F1);' . 

Using the fact that p.(kn) < '\~(k)-(n-l) p.(k), it is easily verified that 

for 

4 + am(8Ft} 

[

log (8 p.(kW(k) ] 

log ~ 

Note c(k) > 0 since '" < 1. Hence, 

and c(k) 
410g~ 

.- log '\~(k) . 
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Since An Kc(k) =I 0, there exists some point x E Ann. Moreover, 3A C 

B(x, 4 rCA)) which together with condition (A *) implies that 

m(3A) < m(B(x, 4 rCA))) < r(At-e(k) 

for rCA) S ro := ro(c(k)). Now p.(r) ~ 0 as r ~ 00, so 8p.(kn) < ro for 

n > n2. Thus, for n > no:= max{nl,n2} 

On using the fact that rCA) < 8p.(kn), we obtain that 

This together with the mass distribution principle implies that 

dim KC(k) ~ 8 - 2c(k) . 
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Note that since e(k) ~ 0 as k ~ 00 we have that dimKc(k) ~ 8 as k ~ 00. 

4.4.4 Completion of proof 

Recall, that dim(UaEJRa) < 8. Now suppose that dim Bad(Pb"" Pt) < 8. 

It follows that, max { dim Bad(Pl, ... , Pt), dime UaEJ Ra)} = 8 - TJ for some 

TJ > O. Fix some k sufficiently large so that 2 €(k) < TJ. Then, 

dim Kc(k) ~ 8 - 2e(k) > 8 - TJ • 

By construction, for any point x E KC(k) we have that 

V a E J with f3a > k (1 < i < t) . 

Now let Jk := {a E J : f3a < k}. If (24) is true for our fixed k then 

Jk = 0 and clearly KC(k) ~ Bad(Pb ... ,Pt). In turn, dim Bad(pl' ... ,pd > 

dim Kc(k) > 8 - TJ and we have a contradiction. So suppose, Jk ::f. 0 and let 

'Rk := {Ra : a E Jk}. For any fixed k the number of elements in Jk is finite. 

So, if x i Rk then there exists a constant d (x) > 0 such that 

V a E Jk (1 < i < t) . 

Thus, for x E Kc(k)\ 'Rk 

'V a E J (1:5 i < t) , 

where c*(x) := min{ c(k), c'(x)}. It follows that Bad(pll ... ,Pt) 2 Kc(k)\ 'Rk 

and since dim'Rk < dim KC(k) we have that 

This is a contradiction and completes the proof of Theorem 4. 
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4.5 Applications 

In this section we look at applications of the theorems of this chapter. We 

begin in the field of real Diophantine approximation. For N > 1, let n eRN 

be a compact metric space which supports a non-atomic finite measure m. 

We consider the set 

where the set Bad(ib "'1 iN) of (ill"" iN)-badly approximable points in jRN 

was defined in §4.2.4. Initially this section considers the more specific set 

for il = ... = iN := liN 

where n supports an 'absolutely a-decaying' measure. 

4.5.1 Bad(N) and 'absolutely Q-decaying' measures 

To demonstrate the versatility of our results, primarily Theorem 3, we look 

at the case where the measure m is 'absolutely a-decaying'. This type of 

measure has been recently studied and, although introduced in [KLW03], we 

use the following definition from [PV03]. 

Let C, denote a generic (N -l)-dimensional hyperplane of JRN and let c,(~) 

denote its f-neighborhood. A measure m is absolutely a-decaying if there 

exist positive constants C, a, To such that for any hyperplane c" any E > 0 

and any open ball B(x, T) in ]RN, 

'r:/ x E n 'r:/ T < To • 
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It is easily seen that N-dimensional Lebesgue measure is absolutely I-decaying. 

In the case n c JR., note that if the measure m satisfies condition (A) with 

exponent 8 then m is automatically absolutely 8-decaying. 

Theorem 6. Let n be a compact subset of 1R.N which supports an absolutely 

a-decaying measure m satisfying condition (AJ . Then 

dim Badn(N) = dim n . 

Note that, in the case n := ]RN, the conditions are trivially satisfied and 

thus the above theorem implies Schmidt's result that dim Bad(N) = N, as 

mentioned in the introduction of this chapter. 

Proof. With reference to the basic framework of §4.1, the set Badn{N) 

can be expressed in the form Bad(p) with p(r) := r-(l+-h) and 

Here d is the standard sup metric on ]RN; d(x, y) := max{d(xl' yt}, . .. , d(XN' YN)}' 

Thus balls B(e, r) in ]RN are genuinely cubes of sidelength 2r. 

We show that the conditions of Theorem 3 are satisfied. Clearly the 

function p satisfies condition (B) and we are given that the measure m sup­

ported on n satisfies condition (A). Also, since the resonant sets are points 

the condition that dim(UaEJRa) < 8 is satisfied. We need to establish the 

existence of the disjoint collection C(9Bn) of balls (cubes) 29Bn+1 where Bn 
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is an arbitrary ball of radius k-n (1+k) with centre in n. In view of Lemma 

6, there exists a disjoint collection C«()Bn ) such that 

(28) 

i.e. (15) of Theorem 3 holds. We now verify that (16) is satisfied for any 

such collection. We consider two cases. 

Case 1: N = 1. The trivial argument of §4.1.3 shows that any interval () En 

with () := ~k-2 contains at most one rational p/q with kn < q < kn+l; i.e. 

a E J(n + 1). Thus, for k sufficiently large 

l.h.s. of (16) ~ 1 < ~ x r.h.s. of (28) . 

Hence (16) is trivially satisfied and Theorem 3 implies the desired result. 

Case 2: N > 2. We shall prove the theorem in the case that N = 2. There 

are no difficulties and no new ideas are required in extending the proof to 

higher dimensions. 

Suppose that there are three or more rational points (PI/q,P2/q) with 

kn < q < kn+l lying within the ball/square ()Bn. Now put () := 2-1(2k3)-1/2. 

Then the 'triangle' argument of §4.2.4 (where m is Lebesgue measure) implies 

that the rational points must lie on a line l passing through () En. Since the 

balls 2()Bn+1 are disjoint and m is absolutely a-decaying, it follows that, for 
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€ := 80k-(n+l)~, 

l.h.s. of (16) < # {20Bn+1 c C(OBn) : 20Bn+1 n C =J 0} 

< ~ x r.h.s. of (28) for k sufficiently large. 

Hence (16) is satisfied and Theorem 3 implies the desired result. 

o 

4.5.2 Intersecting Bad(N) with self-similar sets 

We deviate for a moment to consider the construction of some fractals. The 

purpose is to show a dimension result using an example of an absolutely 

a-decaying measure which is naturally supported on these fractals. 

A function 8 : ]RN --+ ]RN is a similarity map if it can be written as 

8(x) = c8(x) + a 

where c E ]R+, a E ]RN and 8 E O(N, ]R), the orthogonal group. The similarity 

map 8 is contracting if c < 1. For any finite family {81, .•. , Sk} of contracting 

similarity maps there exists a unique set K, know as the attractor, for which 
k 

K = U 8i {K). 
i=l 



BADLY APPROXIMABLE SETS 73 

In other words K is invariant under the family of maps. Such a family of 

maps is an example of an 'iterated function scheme' - see [Fal90, §9.1] for 

more information. 

A finite family of contracting similarities {Sl, ... , Sk} is irreducible if 

there does not exist a finite collection of proper affine subspaces of jRN which 

is invariant under {S1, ... , Sk}. The open set condition is satisfied for the 

above family if there exists an open set U C jRN such that 

'V i = 1, ... , k, 

and 

The similarity dimension s > 0 of the family {S1, ... , Sk} is the unique 

solution of L:i ct = 1. Hutchinson [Hut81] proved that if Si satisfy the open 

set condition then 

This trivially implies dim K = s. Moreover it shows that K supports a non­

atomic, finite measure. Thus the attractor K can be seen as the compact 

metric space n from our general framework. 

This type of attractor was studied recently by Kleinbock, Lindenstrauss and 

Weiss. The following theorem combines Theorems 2.2 and 8.1 of [KLW03]. 

Theorem KLW Let {Sll ... , Sk} be an irreducible family of contmcting self 

similarity maps of lRN satisfying the open set condition and let m be the 

restriction of 1t6 to its attmctor K where 6 := dim K. Then m is absolutely 

a-decaying and satisfies condition (A). 
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The above theorem implies the following application of Theorem 6. It 

has also been independently established by Kleinbock and Weiss [KLW03, 

Theorem 10.3], [KW03]. 

Corollary 9. Let {S1,' .. , Sk} be an irreducible family of contracting self 

similarity maps of JRN satisfying the open set condition and let m be the 

restriction of 1-(.') to its attract or K where ~ := dim K. Then 

dim{K n Bad(N)) = dimK . 

A simple example of such an attractor is the middle third Cantor set, C C 

[0,1]. If 81 : x 1-+ ~ and 82 : x 1-+ ~ + ~ we can see that 

and s = log2 = dimC 
log 3 

is the unique solution to {1/3)8 + (1/3)8 = 1. Other examples of attractors 

which work with the above results are the von Koch curve and the Sierpinski 

gasket. 

4.5.3 Intersecting Bad(ib ... , iN) with product spaces 

Naturally we consider next the condition of absolute a-decay in relation to 

the more general set Badn(ill ... , iN)' We state two theorems in this section 

both with illuminating corollaries. However it turns out that the first result 

does not require the 'decay' condition. Note that this is an extension of the 

discussion on the 2-dimensional set Bad{ i, j) from §4.2.4. 
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Theorem 7. For 1 < j < N, let OJ be a compact subset of R which supports 

a measure mj satisfying condition (AJ with exponent 8j • Let 0 denote the 

product set 0 1 x .. , x ON' Then, for any N-tuple (ill .... , iN) with i j > 0 and 

2:7=1 i j = 1, 

A simple application of the above theorem leads to the following result. 

Corollary 10. Let Kl and K2 be regular Cantor subsets ofR. Then 

dim «Kl x K2) n Bad(i,j)) = dim(KI x K2) = dimKl + dim K2 . 

Proof of Theorem 7. Without loss of generality assume that N > 2. The 

case that N = 1 is covered by Theorem 6. For the sake of clarity, as with the 

proof of Theorem 6, we shall restrict our attention to the case N = 2. 

Recall that since OJ C Rand mj satisfies (A), then mj is automatically 

absolutely 8r decaying. A relatively straightforward argument shows that 

m := ml x m2 is absolutely a-decaying on 0 with a := mint 8}, 82}. In fact 

the following more general fact is true - see [KLW03, §9]. 

Fact: For 2 < j < N, if each mj is absolutely aj-decaying on OJ, then 

m := ml x ... x mN is absolutely a-decaying on 0 = 0 1 X .•. x ON with 

a = min{a}, ... ,aN}' 

Now let us write Badn{i, j) for Badn{il, i2) and without loss of generality 

8BSume that i < j. The case i = j is already covered by Theorem 6 since 
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m is absolutely a-decaying on n and clearly satisfies condition (A). The set 

Badn(i,j) can be expressed in the form Bad(pt,P2) with PI(r) = r-(1+i) , 

/h(r) = r-(1+j) and 

X =]R2, 11:= 111 x 112 , J:= {((PllP2),Q) E N2 X N\{O}} , 

With reference to Theorem 5, the functions PI, P2 satisfy condition (B*) and 

the measures mt, m2 satisfy condition (A). Also note that dim(UaEJRa) = 0 

since the union in question is countable. We need to establish the existence 

of the collection C(8Fn), where Fn is an arbitrary closed rectangle of size 

2k-n (1+i) x 2k-n (1+i) with centre c in n. In view of Lemma 6, there exists a 

disjoint collection C(8Fn) of rectangles 28Fn+1 C 8Fn such that 

(29) 

i.e. (20) of Theorem 5 is satisfied. We now verify that (21) is satisfied for 

any such collection. With 8 = 2-1(2k3tl/2, the 'triangle' argument of §4.2.4 

implies that 

l.h.s. of (21) 5 #{28Fn+1 C C(8Fn) : 28Fn+1 n C # 0} , (30) 

where C is a line passing through 8Fn. Consider the thickening T(C) of C 

obtained by placing rectangles 40 Fn+1 centred at points of C; that is, by 

'sliding' a rectangle 48Fn+1, centred at a point of C, along C. Then, since 

the rectangles 28Fn+l C C(OFn) are disjoint, 

#{20Fn+1 C C(8Fn) : 28Fn+l n C # 0} 

< #{28Fn+l C C(OFn) : 28Fn+l C T(C)} 

< m(T(L) n OFn) 
m(20Fn+l ) 

(31) 
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Without loss of generality we can assume that £ passes through the centre 

of OFn, To see this, suppose that m(T(£) n OFn) of 0 since otherwise there 

is nothing to prove. Then, there exists a point x E T(£) n OFn n n such that 

T(£) n OFn C 20F~ n T'(£') . 

Here F~ is the rectangle of size k-n(l+i) x k-n(1+j) centred at x, £' is the 

line parallel to C, passing through x and T' (C) is the thickening obtained 

by 'sliding' a rectangle 80Fn+1 centred at x, along £', Then the following 

argument works just as well on 20F~ n T'(C). 

Let ~ denote the slope of the line £ and assume that ~ > O. The case 

A < 0 can be dealt with similarly. By moving the rectangle OFn to the origin, 

straightforward geometric considerations lead to the following facts: 

(Fl) where 
€ := 40 (k-(n+l)(l+j) + Ak-(n+1)(l+i») 

VI + A2 

(F2) T(£) n OFn C F(c; ll, l2) where F(c; III l2) is the rectangle with the 

same centre cas Fn and of size 211 x 212 with 

11 := ~ (k-n(l+;) + 4k-(n+l)(1+;) + ~k-(n+1)(1+i») and l2:= Ok-n(l+j) . 

We now estimate the right hand side of (31) by considering two cases. Through­

out, let ai, bi denote the constants associated with the measure mi and con­

dition (A) and let 

The following two cases consider whether the line £ travels through the long 

or the short side of OFn, i.e. they compare the slope ~ of £ with the slope 

of the diagonal which links opposite corners of OFn. 
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Case (i): A >wk-n(l+i)/k-n(l+i). In view of (F2) above, we trivially 

have that 

It follows that 

m(T(L) n OFn) 

m(20Fn+l) 

Case (ii): 0 < A < wk-n(1+i)/k-n(l+i). By the covering lemma of §4.3, 

there exists a collection Bn of disjoint balls Bn with centres in OFn n nand 

radii Ok-n(l+i) such that 

OFn nne U 3Bn . 
BnEBn 

Since i < j, it is easily verified that the disjoint collection Bn is contained in 

20Fn and thus #Bn ~ m(20Fn)/m(Bn). It follows that 

by (Fl) above 
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since m is absolutely o:-decaying. Now notice that for this case 

€ . . < ~ (k-(l+j) + Wk-(l+i») . 
30k-n(t+J) - 3 

Hence, for k sufficiently large we have that 

m(T(.c) n OFn) < ~41 k(l+j)bt k(l+i)c52 . 

m(20Fn+1) 

On combining the above two cases, we have that 
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m(T(.c) n OFn) 
l.h.s. of (21) < m(20F

n
+d 

1 - 4 x l.h.s. of (29). 

Hence (21) is satisfied and Theorem 5 implies the desired result. 

o 

The argument used to establish Theorem 7 can be adapted to prove a 

slightly more general result. 

Theorem 8. For 1 < j < N, let OJ be a compact subset of JRdj which 

supports an absolutely OJ -decaying measure mj satisfying condition (A) with 

exponent 6j . Let 0 denote the product set 0 1 x ... x ON' Then, for any 

N -tuple (i l , .... , iN) with i j ~ 0 and 2:7=1 dj i j = 1, 

N 

dimBadn(ill ... ,i1 ; i2 , ... ,i2 j ... j iN, ... ,iN) - dimO - L6j • 
'--....--' '---..--' ~ 

dl times d2 times dN times j=1 

The following is a simple consequence of Theorem KLW and Theorem 8. 

Corollary 11. For 1 < j < N, let K j be the attractor of a finite irreducible 

family of contracting self similarity maps ofJRdj satisfying the open set condi­

tion. Let mj be the restriction of1lbj to K j where 6j = dim K j . Let K denote 
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the 'product attractor' KI x ... X K N • Then, for any N-tuple (iI, .... , iN) with 

i j ~ ° and L~=l dj i j = 1, 

dim(KnBad(il, ... ,i1j i2 , ... ,i2 j ... j iN, ... ,iN)) - dimK. 
'---v---' ~ '---v---' 

d} times d2 times dN times 

As an application of Corollary 11 we obtain the following statement which 

to some extent is more illuminating - even this special case appears to be 

new. 

Corollary 12. Let V C R2 be the von Koch curve and K c R be the middle 

third Cantor set. Then, for any positive i and j with 2 i + j = 1 

dim «V x K) n Bad( i, i, j)) = dim(V x K) = log 8 
log 3 

4.5.4 Remarks related to Schmidt's conjecture. 

In §4.2.4, we mentioned the result of [PV02] that 

dim(Bad(i,j) n Bad(I,O) n Bad(O,l)) = 2 . 

This can easily be obtained via Theorem 7. To see this, first of all notice that 

Bad x Bad = Bad(l, 0) n Bad(O, 1). For N > 2, let FN := {x E [0,1] : x := 

[ab a2, ... ] with ai < N for all i}. Thus FN is the set of real numbers in the 

unit interval with partial quotients bounded above by N. By definition FN is 

a compact subset of Bad and moreover it is well known that FN supports a 

measure mN which satisfies condition (A) with exponent ~N with ~N ---+ 1 as 

N ---+ 00. Now let n := FN x FN, then Theorem 7 implies that 

dim(Bad(i,j) n Bad(l,O) n Bad(O, 1)) > dim(Badn(i,j)) - 2~N . 
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On letting N ~ 00, we obtain that dim(Bad(i,j) nBad(l, O)nBad(O, 1)) > 

2. The complementary upper bound result is trivial since the set in question 

is a subset of ]R2. 

Recall, that Schmidt's conjecture states that Bad(i,j) nBad(i',j') =1= 0. 

In order to illustrate a possible approach towards the conjecture via the re­

sults of this chapter we consider the special case of Bad(i, j)nBad(1/2, 1/2). 

A straightforward application of Theorem 3 together with the 'triangle' ar­

gument of §4.2.4 leads to the following enticing statement: 

If there exists a compact subset n ofBad(i,j) which supports a measure m 

satisfying condition (A) with exponent 8 > 1, then 

dim(Bad(i,j) n Bad(1/2, 1/2)) > 8. 

Clearly, this would imply that Bad(i,j) nBad(1/2, 1/2) =1= 0. Regarding 

the above statement, it is not particularly difficult to prove the existence of 

a compact subset n supporting a measure m satisfying condition (A) with 

8 < 1. However, from this we are not able to deduce that dim(Bad(i, j) n 

Bad(1/2, 1/2)) > 8 or even that Bad(i,j) n Bad(1/2, 1/2) -I:. 0. 

4.5.5 Rational maps 

In this section we consider the 'badly approximable' analogue of the 'shrink­

ing target' problem introduced in [HV95] for expanding rational maps. Let 

T be an expanding rational map (degree ~ 2) of the Riemann sphere C = 

C U {oo} and J(T) be its Julia set. The Julia set of a rational map T is 

the closure of the set of repelling periodic points of T. Note that J(T) is 
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non-empty, compact and invariant with respect to T. See [Fal90, §14} for a 

basic introduction to rational maps. For any Zo E J(T) consider the set 

BadzJJ) := {z E J(T) : 3 c(z) > 0 s.t. m(z) rI- B (zo, c(z)) V n E N} . 

Clearly, the forward orbit of points in Badzo(J) are not dense in J(T). Now 

let m be Sullivan measure and 8 = dim J(T). Thus m is a non-atomic, 8-

conformal probability measure supported on J(T) and since T is expanding 

it satisfies condition (A) [Sul81, Theorem 4}. Moreover, m is equivalent 

to 8-dimensional Hausdorff measure ?to - see [HV95, §2.3.41. In view of 

the 'Khintchine type' result for expanding rational maps (see, for example 

[BDV03, §8.4J) it is easily verified that ?to (BadzJ J)) = 0 = m(BadzJ J)). 

Nevertheless, the set Badzo (J) is large in that it is of maximal dimension. 

Theorem 9. 

dim Badzo(J) - 8 . 

This result is not new and has been established by numerous people, for ex­

ample [AN971. However, we give a short proof which indicates the versatility 

and generality of our framework and results. 

Proof of Theorem 9. In view of the bounded distortion property for 

expanding maps, [HV95, Proposition 1], we can rewrite Badzo(J) in terms of 

points in the Julia set which 'stay clear' of balls centred around the backward 

orbit of the selected point Zo. Thus, the set Badzo (J) is equivalent to the 

set 

{ z E J(T) : 3 c(z) >0 s.t. z ~ B (y, c(z)I(Tq)'(y)I-1
) V (y, q) E I } , 
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where I := {(y, q) : q E N with Tq(y) = zo}. Also, since T is expanding, 

dim J(T) < 2 (Su181, Theorem 4]. So we assume that J(T) is a subset of 

C and we use the usual metric on C. It is now clear that BadzJJ) can be 

expressed in the form Bad(p) with per) := r- l and 

x = n := J(T) , J:= I, a:= (y, q) E I, {Jet:= \(Tq),(y)\, R et := y . 

With reference to Theorem 3, the Sullivan measure m and the function p 

satisfy conditions (A) and (B) respectively. To deduce Theorem 9 from The­

orem 3 we need to establish the existence of the disjoint collection C ( e Bn) of 

balls 20Bn+l where Bn is an arbitrary ball of radius k-n with centre in n. 

In view of Lemma 6, for k sufficiently large, there exists a disjoint collection 

C ( () Bn) such that 

(32) 

i.e. (15) of Theorem 3 holds. We now verify that (16) is satisfied for any 

such collection. First we recall a key result which is the second part of the 

statement of Lemma 8 in [HV97]. For ease of reference we keep the same 

numbering of constants as in [HV97] . 

• Constant Multiplicity: For X E lR+, let P(X) denote the set of pairs 

(y,q) E I such that fq(Y) - Cs < X ~ fq+l(y) + Cs, where fq(y) := 

log I(Tq),(y)\. Let z E J(T). Then there are no more than Cg pairs (y, q) E 

P(X) such that z E B (y, ClO I(Tq),(y)I-1). 

We are now in the position to verify (16) of Theorem 3. By definition 

J(n + 1) := {(y, q) E I : kn- l < I(Tq),(y)1 < kn} and let e := ClOk- l . It 

follows that 

l.h.s. of (16) < #{ y E OBn : (y, q) E J(n + 1) } 

< #{ y E B(e, ClO 1(~),(y)l-l) : (y, q) E J(n + 1)}, (33) 



BADLY APPROXIMABLE SETS 84 

where c is the centre of BBn. Without loss of generality, assume that IT'(zo) I > 

1. Otherwise, since T is expanding we simply work with some higher iterate 

Tq of T for which I(Tq),(zo) I > 1. Next, note that the chain rule implies 

Then, by the constant multiplicity statement, 

#{ (y, q) E P(X) : y E B(c, ClO I(Tq),(y)I- 1 
)} < C9 • 

Now let f). := IT'(zo)1 and take X = Xj := log(f).jkn) + C8 (2j - 1) then 

t 

[kn, kn+1) C U [f).-leXj-CS, eXj+cs] 
j=1 

where t is the unique integer such that (~e2C8)t-l < k < (~e2C8)t. This 

implies that the r.h.s. of (33) is «Cglog k , for k large enough. Hence, for 

k sufficiently large 

l.h.s. of (16) < ~ x r.h.s. of (32) . 

Thus, (16) is easily satisfied and Theorem 3 implies Theorem 9. 

o 

Remark: It is worth mentioning that our framework also yields (just as 

easily) the analogue of Theorem 9 within the Kleinian group setup. Briefly, 

let G be either a geometrically finite Kleinian group of the first kind or a 

convex co-compact group and let A( G) denote its limit set. For these groups, 

Patterson measure supported on A(G) satisfies condition (A) and plays the 

role of Sullivan measure. Then, it is not difficult to obtain the Kleinian group 

analogue of Theorem 9 via Theorem 3; i.e. the set of 'badly approximable' 

limit points is of full dimension - dimA(G). 



Chapter 5 

General lim sup sets of two 

approximation functions 

5.1 Introduction 

As described in Chapter 2, Beresnevich, Dickinson and Velani recently proved 

laws for the m-measure and Hausdorff I-measure of the following general 

lim sup set dependent on an approximation function 1/;, 

A(1/;) := { x En: x E B(Ro,1/J(!3o)) for Lm. Q E J } . 

Recall that Ra are resonant points in a compact metric space n and are 

indexed by a countable set J with the function !3 : J --. lR+ : Q f-+ !3a. 

assigning a 'weight' f30 to each Ro. Also recall that an approximation function 

is a positive, real, decreasing function. 

Although the general framework of [BDV03] is broad ranging in applica­

tion, it does not cover the case of a lim sup set dependent on two or more 

approximation functions. Consider the classical example for approximation 

functions 'l/Jl, ... ,,,pn' The set of (1/;1, ... , 1Pn)-well approximable points in lRn 

is defined as the set W(1/;b"" 1/Jn) of points x = (Xb"" Xn) in lRn such that 

IXt - ~I < 1/Jt(q) (1 ~ t < n) £ . (21. fu) or 1.m. q , ••. , q • 

85 
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The n-dimensional Lebesgue measure law of W{1/Jl , . " ,1/Jn) is obtained in the 

following theorem [Sch80, Theorem 3A]. 

Khintchine's Theorem (1926a). For 1 < t < n, let'l/;t : R+ ~ lR+ be a 

real, positive function such that 0 < 1/Jt(q) < l/q. Suppose that I1~1 qn1/Jt{q) 

is non-increasing. Then, with respect to n-dimensional Lebesgue measure, 

Thus the Lebesgue measure of the set of ('l/;l, ... , 'l/;n)-well approximable num­

bers in lRn satisfies a 'null-full' law. The divergence part of the above state­

ment constitutes the main substance of the proof. The convergence part is a 

simple consequence of the first Borel-Cantelli lemma - see Chapter 2. 

The aim of this chapter is to extend the general set up of [BDV031 and 

to obtain a statement analogous to the above theorem of Khintchine. For 

simplicity we focus on the case of a lim sup set dependent on two approxi­

mation functions. Thus, at a basic level, we shall be replacing balls in the 

set up of [BDV03] with 'rectangles'. In this respect we are taking a similar 

approach to that of §4.2 in which we extended the basic set up of the gen­

eral badly approximable set Bad(p) to a more general framework for the set 

Bad(Pl,"" Pt). 

In the future, we hope to establish a complete measure theoretic description 

of lim sup sets dependent on two or more approximation functions. Unfortu­

nately time has only allowed us to make the following initial study. 
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5.2 The set up 

Let (OI, d1) and (02 , d2 ) be compact metric spaces and 0 := 0 1 x O2 , 

Suppose each Ot supports a non-atomic, probability measure mt and that 

the product measure m := ml x m2 is supported on O. As in Chap­

ter 2, let R = {Ro EO: Q' E J} be a collection of resonant points 

Ro := (Ro,t, Ra,2) in n indexed by an infinite, countable set J. As usual, let 

f3 : J -+ 1R+ : Q' ~ f30 be a positive function on J and assume that for any 

'TJ > 0, the set {Q' E J : {3o < 'TJ} is finite. Define 

as the rectangle centred at c := (CI, C2) E 0 with sidelengths h, i2 E 1R+. 

Then, given approximation functions 'l/Jl, 'l/J2, consider the set 

As in the general set up of §2.2, let 1 := {in} and u := {un} be positive 

increasing sequences such that In < Un and In -+ 00 as n -+ 00. Define 

where 

~'t('l/Jl' 'l/J2; n):= U F(Ro; 'l/Jl({3o), tP2(f3o)) , 
oEJr(n) 

Ji(n) := { Q' E J : in < f30 < Un } . 

Then, using the assumptions that #Jr(n) < 00 and in -+ 00 as n -+ 00, we 

can write 

00 00 

A('l/Jll'l/J2) = limsup~'t(tjJl,'l/J2;n) := n U ~'t('l/Jt,'l/J2;n). 
n-+oo 

(34) 
m=l n=m 

Therefore we call A( 'l/Jl , 'l/J2) the general lim sup set with respect to two func­

tions. As an analogue to Corollary BDV, we aim to determine the conditions 
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under which the m-measure of A( 'l/Jl, 'l/J2) is positive or even full. We also aim 

to make some remarks on the Hausdorff dimension of A( 1/Jb 'l/J2). Since this 

is an extension of the theory of [BDV03], we begin by setting out similar but 

adapted conditions. 

5.3 Conditions 

Measure : Suppose the measures ml and m2 are each of type (A) as defined 

in §2.3. Then there exist positive constants 81,82 , To such that, for any ball 

B(xt, Tt) C nt centred at Xt E nt and of radius rt ~ To, 

(t = 1,2) . 

The constants at, bt are independent of the ball and without loss of generality 

o < at < 1 < bt . Since F(x; Tl, r2) = B(Xl' Td X B(X2, T2), it follows that 

where a := ala2 and b := b1b2• Trivially, this implies that m is of type (A) 

with exponent 8 := 81 + 82 . Furthermore, by Proposition 8 of §4.3, condition 

(A) implies that 

and dim n = 0 > 8t (t = 1,2) . 

Ubiquity with rectangles : We now extend the notion of ubiquity in a 

natural way to involve two ubiquity functions. Recall from §2.3 that (n,13) 

can be said to be a global or local m-ubiquitous system relative to (p, l, u) 

where p : R+ --+ 1R.+ is the ubiquity function with the property that per) --+ 0 

as r --+ 00. 
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Let Pi, Pi : lR+ -t lR+ be real, positive functions with Pi(r), Pi(r) -t 0 as 

r --+ 00. Define 

t1i(Pi, Pi; n) := U F(Rex; Pi( Un), Pi (Un)) . 
exEJr(n) 

(U) There exists a collection <1> of pairs of functions (Pi, Pi) and a positive 

constant r u such that for each pair 

(UI) 

(U2) 

'tIr > ru ; and 

there exists an absolute constant", > 0 such that for a ball B C 0, 

m(B n t1f(Pi, Pj; n)) ~ '" m(B) for n > no(B) . (35) 

If the system (R, (3) satisfies condition (U), with (U2) satisfied for B = 0, 

then (R, (3) is said to be a global m-ubiquitous system relative to (<1>, I, u). If 

(U2) is satisfied for any ball B with radius sufficiently small, centred in 0, 

then (R, (3) is said to be a local m-ubiquitous system relative to (<1>, l, u). 

The key outcome of this ubiquity condition is that for any pair (Pi, Pj) 

from <1> we know something about the measure of Ai(Pi, Pi; n). By comparing 

(1/11,1/J2) to a pair (Pi, Pi) we obtain information on the measure of A( 1/11,1/12), 

This will become clear during the course of the proof. In view of this method, 

there should always be an appropriate pair (Pi, Pi) with which a 'useful' 

comparison can be made. However, for some 'extreme' pairs (1/Jl, 1/12) there 

may not be any useful pair (Pi, Pi)' In these rare circumstances, we are not 

able to say anything about the measure of A( 1/11, ¢2)' In order to ensure the 

pair (1/Jl, 1/12) is not one of these 'extreme' pairs, we introduce the following 

properties. 
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Properties PI and P2 : The pair ('l/JI, 'l/J2) has the property PI if either 

1. there exists a pair (Pi, Pj) E <I> such that 

1
. tPi (un) 
1m sup ( ) < 00 
n-+oo Pi Un 

or 

or 

2. there does not exist such a pair but there exists a pair (Pi, Pj) such that 

Pi is u-regular, 

and 

The pair (1/h, tP2) has the property P2 if either 

1. there exists a pair (Pi, Pj) E <I> such that 

or 

or 

2. there does not exist such a pair but there exists a pair (Pi, Pi) such that 

Pi is u-regular, 

and 

The property PI avoids pairs (tPI, 1/J2) such that, for all (Pi, Pj) from <1>, the ra­

tio 1/Jl (un) / Pi (Un) oscillates between two sequences with one sequence tending 

to zero and the other to infinity as n tends to infinity. The same can be said 

for property P2 and the ratio tP2(Un )/ Pj(un ). However, the property PI or P2 

only disallows this oscillation when, for all n large enough, 'l/J2(Un ) < Pj(un ), 

or 1/Jl (un) < Pi( Un), respectively. 
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5.4 Basic example 

We demonstrate how these conditions are satisfied for the two-dimensional 

case of the classical set defined in the introduction, i.e. we consider the set 

of ('1h,'I{12)-well approximable pairs in lR2, denoted W('I{11,tP2). For n > 1, let 

~r('I{1t,'l/J2;n):= U U F((~'Pf);1/Jt(q),'I{12(q)) n [0,1]2 
kn-l<q~kn Pl,P2~q 

where the sequences l, u are such that In+l = Un = kn, for some k > 1. Thus 

we can write 
00 00 

W('I{1t, '1{12) n [0,1]2 = n u ~i('I{11' tP2; n) . 
m=ln=m 

To identify this set with the general framework let 

{3 : (pt, P2, q) I-t q , R '= (~ Ea.) o· q'q . 

Let the measure m be two-dimensional Lebesgue measure. Naturally, let 

ml, m2 be one-dimensional Lebesgue measure then trivially each satisfies 

the measure condition (A). Thus ch = 82 = 1 and 8 = 2. 

Proposition 13. The pair (R, (3) is a local m-ubiquitous system relative to 

(~, 1, u) where ~ is the collection of pairs (Pi, Pj) such that, for a constant 

k> 1, 

Pier) := k r-(1+i), pj(r):= k r-(1+j) 

for 0 < i, j ~ 1 and i + j = 1. 

Proof. The pair (R., (3) is known to be a local m-ubiquitous system relative 

to (p, l, u) where per) := constant x r-3/ 2 - see [BDV03, §12.1]. It follows 
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immediately that for any pair (Pi, Pj), 

and so (Ul) is satisfied. We now show (U2). 

Let B = la, b] x [a, b] C [0,1]2. Fix i, j such that 0 < i, j < 1 and i+ j = l. 

It can be verified by the pigeonhole principle that for any x = (XI, X2) in B, 

there exist integers PI, P2, q with (PI, q) = (P2, q) = 1 and 1 < q < kn 

satisfying 

Clearly, aq - 1 :5 Pb P2 < bq + 1. Thus for a fixed integer q there exist at 

most «b - a)q + 3)2 many pairs (PbP2). Thus, for n large enough, 

m ( B n q~y'-, p,~~q F ( ( ~, ~ ) ; q~.>. q0» ) 

< 2 L «b - a)q + 3)\2~n < ~m(B). 
q~kn-l 

It follows that for k > 6, 

> m(B) - ~m(B) > ~m(B). 

o 
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We now consider properties PI and P2 for the basic example. Note that, in 

this set up, Pi, Pi have a 'maximum function' Pmax and a 'minimum function' 

Pmin in the sense that for any (Pi, Pj) E <1>, and any r > 1, 

Thus the pair ('l/h, W2) satisfies property PI if either (1) 

limsUPWl(kn)kn < 00 or limsuPW2(kn )k2n > 1, (36) 
n .... oo 

or (2) neither of the conditions of (36) are satisfied but there exists a pair 

(i,j) such that 
00 

lim inf 1/Jl (kn) kn(l+i) > 0 and "" W2(Q) if = 00 . 
n .... oo LJ 

q=l 

Likewise, the pair ('I/J}, 1/J2) satisfies property P2 if either (1) 

n-+oo 

or (2) neither of the conditions of (37) are satisfied but there exists a pair 

(i,j) such that 

00 

lim inf 'l/J2(kn ) kn(l+j) > 0 and "" 1/Jl (q) qi = 00 • 
n-+oo ~ 

q=l 

With this in mind, we could consider the following simplification. Properties 

PI and P2 are satisfied if 

lim sup 1/Jt(kn) kn < 00 (t = 1,2) , 
n .... oo 

i.e. there exists a constant c such that, for all q large enough, Wt(q) < c/q 

(t = 1,2). Note that this is a slightly stronger condition than properties PI 

and P2. 
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5.5 Results 

Theorem 10. Suppose m is a non-atomic probability measure of type (AJ, 

(R, {3 J is a global m-ubiquitous system relative to (<I>, 1, u) and '1Pt, 'l/J2 are 

approximation functions such that the pair ('1/;1, '1/;2) satisfies the properties PI 

and P2' 

(38) 

ar (39) 

either Pi, Pi are each u-regular, 'V(Pi' Pi) E <I>; (40) 

ar '1/;1, 'l/J2 are each u-regular. (41) 

Then m(A(,pl,1/J2)) > O. In addition, suppose that (R, {3) is a local m­

ubiquitous system relative to (<I>, l, u) and that any open subset of 0 is m­

measurable. Then m(A(1/Jt,1/J2)) = 1. 

Remarks: We can make a comparison between this theorem and Corol­

lary BOV stated in §2.3. One can see that, if 0 1 = O2 , 1/J := ,pI = 1/J2 and 

<I> := (p, p), then properties PI and P2 hold and the statement of this theorem 

is the same as that of Corollary BDV. Properties PI and P2 are the only main 

addition to the theorem for two approximation functions. These properties 

are necessary to handle the extra cases which occur in the proof as a result 

of this set up. 

Theorem 10 verifies the divergence part of the following classical result 
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which we prove in §5.9. 

Corollary 14. Suppose ('I/J}, 'l/J2) is a pair of approximation functions satis­

fying properties p} and P2 • Then, with respect to Lebesgue measure, 

NULL if Lr;l q2'I/J} (q)'l/J2(q) < 00 

Remarks: This corollary differs in two ways from Khintchine's Theorem 

(1926a), as stated earlier in this chapter, for the case n = 2. The above 

corollary asks that 'I/J} and 'l/J2 are decreasing which implies the condition 

of Khintchine: q2'I/JI(Q)1/12(q) is non-increasing. However, the condition that 

the pair (1/1}, 'l/J2) satisfies properties PI and P2 is weaker than Khintchine's 

condition that 1/JI (q) , 1/J2 ( q) < 1/ q. Therefore the above corollary is stronger 

than Khintchine's theorem in this regard. The meaning of properties PI 

and P2 for the classical case is discussed in §5.4. Within this discussion, we 

state the following alternative condition which is simpler than properties PI 

and P2 : there exists a constant c such that, for all q large enough, 'lj;t(q) < 

c/q (t = 1,2). Even this stronger condition is weaker than Khintchine's 

condition. 

Slightly more interestingly, Theorem 10 leads to the following result for the 

set W (1/JI, 1/JI, 1/->2) contained in lR3, defined at the beginning of the chapter. 

Corollary 15. Suppose ('l/JI, 1/J2) are pair of approximation functions satisfy­

ing properties PI and P2• Then, with respect to Lebesgue measure, 
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These corollaries are proved at the end of this chapter. 

5.6 Hausdorff dimension 

Theorem BDV stated in §2.3, obtains a Hausdorff f-measure statement for 

the general lim sup set, A( 1/;). In view of Theorem 10 it should be possible to 

extend Theorem BDV in order to to make a similar statement for the Haus­

dorff f-measure of A(VJ} , 'l/J2)' Theorem 10 and some of the sets constructed 

in its proof are the basis from which a Hausdorff measure theorem could be 

established. However, even by glancing at the paper [BDV03J, one can see 

that obtaining the Hausdorff f -measure of a lim sup set requires considerably 

more work than obtaining its m-measure. 

Some headway has been made with the easier task of deriving the Haus­

dorff dimension result for A(1/;1 , 'l/J2)' Within [BDV03] this is the case that 

G = 00. In view of work on this task to date, we make the following conjec-

ture. 

Conjecture. Suppose m is a non-atomic probability measure of type (A), 

tR, (3) is a local m-ubiquitous system relative to (<I>, l, 11,) and 'l/JI, 'l/J2 are 

approximation functions such that 1/J2 (r) < 'l/Jl (r) for r large enough. If 

'l/Jl (11, )<51 

lim sup n = 00 (42) 
n-oo p( un )<5 

then 

where 
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Remarks: We state the above result as a conjecture although we have all 

the structure of a proof. The hypothesis (42) implies that (J > 151. Therefore 

the conjecture would only obtain a result if the dimension is greater than 

81, In the case that the dimension is less than 81, we are less sure of the 

exact condition to replace (42). Nonetheless, we conjecture that whatever 

the condition the result for this case should show 

This pair of results would verify Rynne's result [Ryn98] for the following set. 

Let 71 ~ 72 be two positive parameters then consider the following set 

In the case of this set, Rynne's result is as follows. 

Theorem (Rynne, 1998). Suppose 71 + 72 ~ 1 then 

_3_ if 71 > 2 
1+1"1 

5.7 Preliminaries 

The proof of Theorem 10 employs the following classical measure results 

which we have taken from [BDV03, §8) where they are neatly written with 

proofs. 

Proposition BDVl. Let (0, d) be a metric space and let m be a finite, 

doubling measure on 0 such that any open set is measumble. Let E be a 
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Borel subset of O. Assume that there are constants r 0, c > 0 such that for 

any ball B of radius r( B) < r 0 and centre in 0 we have that 

m(E n B) ~ cm(B) . 

Then E has full measure in 0, i.e. m(O \ E) = o. 

Note that any measure of type (A) is automatically doubling. We will 

also use the second Borel-Cantelli Lemma from Chapter 2, which features in 

[BDV03] as Proposition 2. This lemma leads to the conclusion of the next 

result. 

Proposition BDV3. Let (0, A, m) be a probability space, F E A and 

An E A a sequence of m-measumble sets. Suppose there exists a constant 

c > 0 such that 

limsup m(F nAn) > cm(F) . 
n--+oo 

Then 

m (F n lim sup An) > c2 m(F) . 
n--+oo 

5.8 Proof of Theorem 10 

Let B be an arbitrary ball centred at a point in O. The aim of the proof is 

to show that 

(43) 

where C > 0 is a constant independent of B. Under the global ubiquity 

hypothesis, Theorem 10 follows on establishing (43) with B := 0 - the space 

o can be thought of as a ball since it is compact. In the case of local ubiquity 

(43) will be established for balls B with sufficiently small radii so that the 
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conditions of local ubiquity and BDV Proposition 1 are fulfilled. Then (43) 

together with BDV Proposition 1 implies Theorem 10 for local ubiquity. 

Since in the local case we appeal to BDV Proposition 1, the extra hypothesis 

that any open subset of n is m-measurable is necessary. 

The method for obtaining (43) splits into cases. The cases depend on the 

pair (¢1, ¢2) and its relationship with the collection CP. Specifically, each case 

depends upon the comparison of ¢l(Un) with Pi(Un) and 'l/J2(Un) with Pj(un) 

for the pairs (Pi, Pj) from CP. Therefore, we have the following four cases. 

Case A2 : ('l/Jl, 'l/J2), not in Case AI, for which there exists a pair (Pi, Pj) 

from 4> such that 

'l/Jl ( un) > Pi ( Un) for infinitely many n 

and 'l/J2 ( un) < Pj ( Un) for all n sufficiently large . 

'l/Jl (un) < Pi (Un) for all n sufficiently large 

and 'l/J2(Un) > Pj(un) for infinitely many n . 

Note that Cases A3 and A4 are the contrapositive of the combination of 

Cases Al and A2. We proceed to prove (43) for each case. 
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5.8.1 Case Al 

In this case we begin by fixing a pair (Pi, Pi) for which 

for infinitely many n. For these n, by the fact that each of 'ljJl, 'ljJ2 is decreasing, 

and by (U2), we have 

Thus, lim SUPn-+oo m(~i( 'ljJl, 'ljJ2; n)) > K m(B) and, by Proposition 

BDV3, 

Thus (43) is satisfied for Case A 1. The argument is true regardless of whether 

B = B(x,r) c n or B = n. 

Before proving (43) for Case A2, we show how Cases A3 and A4 each 

reduce to Case A2. 

5.8.2 Case A3 

For this case we fix a pair (Pi, Pi) from 4> such that 

'l/JI(Un) > Pi (Un) for infinitely many n 

and .,p2(Un) < Pi (un) for all n sufficiently large 

and such that either 

1· . f 1/;1 (Un) a 
Imlll ( ) > . 
n-+oo Pi Un (44) 
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Such a pair (Pi, Pj) exists due to property PI and the assumption of this case. 

We begin by choosing a pair (Pi, Pj) such that the lim sup condition of (44) 

holds; thus there exists a constant 1 < k < 00 such that, for all n sufficiently 

large, 

Let 'l/J~(un) := t'l/h(Un). For this new function the following are true. 

• 1/J~ ( un) < Pi ( un) for all n sufficiently large 

• by hypothesis (39), 

• 'l/J~ is u-regular if 1/J is u-regular . 

Thus, under the lim sup assumption of (44), Case A3 reduces to Case A2. We 

can now assume the lim inf condition of (44). In view of this and of property 

PI, we choose a pair (Pi, Pi) for which the following hold: 

and (45) 

Therefore, there exists some constant 1 < k' < 00 such that 

'l/JI (Un) ~ t, Pi ( Un) for all n large enough. 
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• by (45) and (Ul), 

• 'I/J~ is u-regular since Pi is u-regular by Pl' 

Thus Case A3 reduces to Case A2. 

5.8.3 Case A4 

In this case, we choose a pair (Pi' Pj) from the collection <I> such that 

'l/Jl (un) < Pi(Un) for all n sufficiently large 

and 'l/J2( un) > pj(un) for infinitely many n 

and such that either 

r 'l/J2( un) r . f'I/J2(un) 0 (46) 1m sup ( ) < 00 or lmm () > . n ..... oo Pj Un n ..... oo Pi un 

Such a pair (Pi, Pi) exists due to property P2 and the assumption of this case. 

We begin by choosing a pair (Pi,Pj) such that the limsup condition of (46) 

holds; thus there exists a constant 1 < k" < 00 such that 
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• "p~(Un) < Pj(un) for all n sufficiently large; 

• "p~ is u-regular if 'l/J2 is u-regular. 

Thus, under the lim sup condition of (46), Case A4 reduces to Case A2. We 

now assume the Hminf condition of (46). In view of this and of property P2, 

we choose a pair (Pi, Pj) for which the following hold 

and (47) 

Then there exists a constant 1 < k'" < 00 such that 

'l/J2(Un ) ~ k~" Pj(un ) for all n large enough. 

Thus, for 'I/J~(un) := k~"Pj(un) the following are true . 

• 'I/;;(un ) < Pj(un ) for all n sufficiently large; 

• by (47) and (Ul), 

• '1/;; is u-regular since Pj is u-regular. 

Thus Case A4 reduces to Case A2. 
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5.8.4 Case A2 

For this case we fix a pair (Pi, Pj) for which 

(48) 

for all n sufficiently large. In order to reach our goal of establishing (43) 

we begin by constructing a 'good' subset A('l/h, 'l/J2; B) of A('l/Jt, 'l/J2) n B. 

Since #Ji(n) is finite, the collection of rectangles F(Ro;3Pi(Un),3Pj(un)) 

centred at Ro E Ji(n) is trivially a finite cover of ~r(pi' Pj; n). By the cov­

ering lemma stated in §4.3, there exists a disjoint sub collection of rectangles 

F(Ra; 3Pi(Un), 3pj(un)) such that 

o 

U F(Ra; Pi(Un), Pj(un)) 
RaEGn(n) 

U F(Ra; 9Pi(Un), 9pj(un)) , (49) 
RaEGn(n) 

where Go(n) is the set consisting of the centres of rectangles in the sub col­

lection. With regard to the discussion at the beginning, let B(x, r) be a ball, 

centred at x E n, with radius r sufficiently small that, for B = B(x, r), (35) 

and Proposition BDV1 are satisfied. Now choose n sufficiently large so that 

36max{Pi(un),Pj(un)} < r; by definition Pi(Un),Pj(un) --+ 0 as n --+ 00. We 

next construct a subset GB(n) of Gn(n) for B = B(x,r). Let 

Thus, for Ra in GB(n), the rectangle F(Ra; 9Pi(Un) , 9pj(un)) is contained in 

B. In view of this, and of (49), 

o 

U F(RaiPi(Un),Pj(un)) C ~l(pi,pj;n) n B (50) 
RaEGB(n) 
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and 

/:).i(Pi, Pj; n) n iB C U F(Ra; 9Pi(Un), 9pj(un)) . (51) 
RaEGB{n) 

To see that the latter is true observe that, if Ra is not in ~ B, then 

F(Ra; 9pi(Un) , 9pj(un)) does not intersect iB. We now estimate the car­

dinality of GB(n). By (35), (51) and the fact that the measure m is of type 

(A), for n sufficiently large we have 

#GB(n) m(Fn(Pi, Pj)) » m ( U F(Ra; 9Pi(Un), 9Pi(Un))) 
RaEGB{n) 

> K m(iB) » m(B) 

where Fn(Pi, Pj) is a generic rectangle centred at a point Ra in Gn(n) with 

side lengths Pi (Un) , Pj(un). It also follows from (50) that 

In view of the above statements and (VI), 

m(B) 
p(Un)6 

(52) 

where the implied constants are dependent only on the constants a and b 

from the measure condition (A). In the case of B = 0, (52) is satisfied with 

m(B) replaced by m(O) = 1. We are now in a position to prove the theorem 

under the lim sup hypothesis (38). By the hypothesis of Case A2, the fact 
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that 'l/Jl, 1/J2 are decreasing and the construction of G B ( n ) , 

Note that the same is true for B = n. From hypothesis (38), there exists a 

constant k > 0 such that 

Since m{B) is independent of n, 

limsup m(~r('l/Jb'I/J2;n) n B) » km(B) . 
n-+oo 

We now invoke Proposition BDV3 with F = B to conclude that 

This proves Theorem 10 for Case A2 under the limsup hypothesis (38). 

We now turn our attention to proving (43) for Case A2 under the hypotheses 

(39) to (41). Without loss of generality we can assume that 

1
· 'l/Jl(Un)61'I/J2(Un)~ - 0 
1m sup ()6 -. 
n-+oo P Un 

Let 

An ('l/l},'l/J2;B):= U F(Ra;1/J}{Un ),'l/J2(Un )). 

Ra.EGB(n) 
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Note that the above union is disjoint for n large enough by the assumption 

of Case A2 and by the construction of GB(n). Hence, for n large enough, 

(53) 

Next, let 
00 00 

A('llh,1/12;B) := limsup An(1/;b1/12;B) = n u An(1/;1,1/12;B). 
n-+oo 

m=l n=m 

By construction, and since 1/Jl, 1/12 are each decreasing, 

In view of (43), the theorem will follow on showing 

(54) 

Notice that the estimate (53) together with the divergent sum hypothesis 

(39) imply that 
00 

L m(An( 1/111 1/;2; B)) = 00 . (55) 
n=l 

The divergence of this sum is significant since it shows that the set A( 1/11, 1/;2; B) 

is 'useful' in the sense that, if the sum converged, then the first Borel-Cantelli 

lemma would imply m(A(1/11, 1/12; B)) = O. This would obviously not tell us 

anything about m(A(1/111 1/12) n B). In addition to (55) we also require the 

following result on independence. 

Lemma 16 (Quasi-independence on average for rectangles). If, for 

either of the pairs (tPl, ¢2) or (Pi, p;), both /unctions are u-regular, then there 

exists a constant C > 1 such that, for Q large enough, 

t, m(A.( 1/>., ,p.; B) n A,( 1/>., 1/>2; B)) < mfB) (t. m( A.( 1/>., ,p.; B» y . 
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Therefore, the second Borel-Cantelli lemma, as stated in §2.1 together with 

the divergent sum (55), Lemma 16 and hypothesis (40) or (41) imply (54) 

as required. The above argument also holds for B = n. Thus, assuming 

Lemma 16 is true, the proof of Case A2 is complete and we have proved the 

statement of the theorem in all possible cases. We now proceed to verify 

Lemma 16. 

5.8.5 Proof of Lemma 16 

Let At := At(Vlt, 'l/J2; B). Fix the ball B and a positive integer s. Let t > s 

and note that 

(56) 

We aim to find an upper bound for (56) where Fs ('l/Jl, tP2) is any rectangle of 

As, as previously defined. Also note that 

m(Fs (tPlltP2) nAt) := m (F8('l/JlltP2)n U F(RO:;Vlt(Ut),tP2(Ut))) 
RaeGB(t) 

(57) 
RaeGB(t) 

In order to find an upper bound for the above sum, we consider four cases 

depending upon the size of 'l/Jl ( us) compared with Pi ( Ut) and the size of tP2 ( u 8 ) 

compared with Pj(Ut). 
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Suppose there are two points Ra, Ral E G B(t) such that 

(0* = 0,0') . 

Then 

and 

However, by construction the rectangles F(Ra·; 3Pi( Ut), 3pj{ Ut)) are disjoint 

and so 

Hence, at most one rectangle F(Ra; Pi(Ut), Pj(Ut» with Ra in GB(t) can 

possibly intersect Fa ( 1/Jt , 'l/J2)' This fact together with (48) and (57) implies 

m (Fs('l/Jll 'l/J2) n Ad « m(Ft(1/Jt,1/J2»' In view of (56), 

m(As nAt) « m(B) 'l/Jl(Ut)'h'I/J2(Ut)ch 
p(us)6 

Let N2 be the number of rectangles F(Rc.;Pi(Ut),Pj(Ut», with Ra E GB(t), 

for which 

In view of the fact that rectangles F(Rc.; 3pi(Ut), 3pj(ut» with Ra in GB{t) 

are disjoint, and by the set up of Case B2, when we restrict our view to 

the n1 'plane' we see that at most one of these disjoint rectangles can in­

tersect Fs(1/Jh 1/J2) n n1· Therefore it is only necessary to count N2 from 
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the n2 perspective. This means that N2 is no more than the number of 

balls B(c, pj(Ut)) C n2 which intersect a fixed ball B(d, ¢2(Us )) C n2 where 

c, d E n2 . This implies that 

N2 « m2(B(d,1P2(us))) «: (1P2(US))02 . 
m2(B(c, Pj(Ut))) Pj(Ut) 

(58) 

Using the fact that ¢l and ¢2 are each decreasing, together with (57), we 

have 

m (Fs(1P}, ¢2) n Ad « N2 m(Ft('l/JI, 'l/J2)) . 

Then (57), (56), (58) and (59) together give 

m(A,nA,) « m(B) (~i~~r ¢l ( Ut )61¢2 ( Ut )62 

p(Us )6 

(59) 

Let N3 be the number of rectangles F(Ra;Pi(Ut),Pj(Ut)), with Ra E GB(t), 

for which 

We can then follow an equivalent argument to that of Case B2 to say that 

N3 is no more than the number of balls B(c, Pi(Ut)) C n1 which intersect a 

fixed ball B(d, 'l/Jl (us)) C n1 where c, d E 0 1. This argument implies that 

N3 « ml(B(d,'l/JI(us))) « ('l/Jl(US)),h 
ml(B(c,Pi(Ut))) Pi (Ut) 

Since 1Pl and ¢2 are each decreasing, we have 

Then (57), (56), (60) and (61) together give 

m(AsnAt) «: m(B) (1Pl(Us))6
1 

Pi(Ut) 
'l/Jl ( Ut ) 61 'l/J2 ( Ut) 62 

p(Us )6 

(60) 

(61) 
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In this case, if Ra E C B(t) and 

(62) 

then F(Ra; Pie Ut), pj( Ut)) C Fs(51/Jt, 51/J2) where Fs(5't/Jt, 5't/J2) naturally de­

notes the rectangle with sidelengths 5't/Jl(Us), 5't/J2(Us)' Let N4 be the number 

of rectangles F(RajPi(Ut),Pj(Ut)) with Ra in CB(t) satisfying (62). Then 

N « m(Fs(5't/Jl,51/J2)) « 't/Jl(Us)Ol't/J2(Us)02 
4 m(Ft(Pi' Pi)) p(Ut)6 

This estimate of N4 , combined with (57), (56), and then (53), implies that 

m(B) 
m (As nAt)« ( )6 N4 m(Ft(1/JI, 't/J2)) 

P Us 

1 
« m(B) m(As) meAt) . 

Thus for Case B4 we have pairwise quasi-independence. 

N ow recall the following sum from the statement of the lemma and note 

that it breaks down into the four cases as follows. 
Q 

L: m(As nAt) -
s,t=l 

Q Q-l Q Q-l Q 

Lm(As} + 2 L L m(As nAt }+2 L: L: m(AsnAt } 

8=1 8=1 t=.+l 
cueBl 

8=1 t=.+l 
caeeB2 

Q-l Q Q-l Q 

+ 2 L L m (As n Ad + 2 E E m (As nAt) 
8=1 t=.+l 

cue B3 
s=1 t=.+l 

c ..... B4 
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Note that, from the argument of Case B4, 

Q-l Q Q-l Q 

~ ,~, m (A. nAt) « mtB} ~ m(A,} t~l m(A,} 
cueB4 

Also note that by (55), for Q large enough, 

tm(A.} « mtB} (tm(A.}), 

Thus the lemma follows on showing that 
Q-l Q 

L L m(A8 nAt) « 
8=1 t=.+1 

cueB" 

(63) 

(64) 

where B* represents Bl, B2 or B3. We proceed to prove (64) first under 

the hypothesis that 1/;1 and 1/;2 are both u-regular, and then again under the 

alternate hypothesis that Pi and Pj are u-regular. Suppose 1/;1 and 1/;2 are 

both u-regular. This means that, for t > s, with s sufficiently large, 

for constants 0 < At, A2 < 1. Thus, by this property, 
Q-1 Q 

L L m(A8 nAt) 
s=1 t=_+1 

c .... B1 

Q 

« Lm(As) , 
8=1 
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since A~l Ag2 < 1. Hence (64) is satisfied for Case Bl. For Case B2 we have 

that 
Q-l Q 

L L m(AsnAt) 
s=1 t=a+l 

c ...... 82 

s=1 

since 'l/J2(Ut) < Pj(Ut). Thus (64) is satisfied for Case B2. Similarly Case B3 

is resolved as follows: 
Q-l Q 

L L m(AsnAt } 

s=1 t=a+l 
cue 83 

8=1 

The lemma is therefore proved under the assumption of the u-regularity of 

1/;1 and 'l/J2· 

Next suppose Pi and Pi are u-regular. For t > s we have positive constants 

Ai, Aj < 1 such that, for s sufficiently large, 
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For each case we require a simple rearrangement of the double sum; otherwise 

the arguments are virtually the same as those for the 1/11,1/12 u-regularity 

case. However, for completeness we proceed to resolve the lemma under the 

alternate hypothesis. Beginning with Case Bland following from (65) and 

(Ul) we have 

Q-l Q 

L L m(AsnAt) 
s=1 1=_+1 

c ...... Bl 

Next, following from (66) 

Q-l Q 

L L m(AsnAt) 
s=1 1=_+1 

cueB2 

Finally, from (67), we have 

Q-l Q 

L L m(A,nAt ) 
8=1 t=_+1 

c_B3 

Q 

« Lm(An ). 

n=l 
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Therefore (64) holds for Cases B1, B2 and B3 as required to prove the lemma 

under the hypothesis of u-regularity of Pi and Pj' This concludes the proof 

of Lemma 16 and hence completes the proof of Theorem 10. 

o 

5.9 Proof of Corollary 14 

For this proof we carry forward the notation from §5.4 and we restrict our 

attention to begin with to the intersection of W(.,pll 'l/J2) and the unit square. 

Convergence part: We begin by noting that 

m(~i(.,pl,'l/J2;n)) ~ 2: 2: F((~,,;:);.,pl(q),.,p2(q)) 
kn - 1 <q$kn Pl,P2$q 

Then, by Fact 1 of §2.1, 

00 00 

L m(~i('l/Jl' 7/l2; n)) < 00 if L q27/l1 (q)'l/J2(q) < 00. (68) 
n=l q=l 

By the first Borel-Cantelli lemma, if the left-hand side of (68) is true then 

This argument gives the same result when [0,1]2 is replaced by any square 

in]R2 of unit size. Thus W(7/lb 7/l2) is a countable union of zero measure sets. 

It therefore follows that W ('lPt, 7/l2) has measure zero, under the convergent 

sum hypothesis of the corollary. 
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Divergence part: Proposition 13 states that the system ('R, (3) is a local 

m-ubiquitous system relative to (<1>, l, u). Trivially, any Pi, Pi is kn-regular, 

for any k > 1, since 

Hence, Theorem 10 implies 

under the divergent sum hypothesis. We can replace [0, 1]2 by any square 

of unit size i.e. 0 := [a, a + 1]2 for any integer a. From the set up its clear 

that W('l/h,'l/J2) n [a, a + 112 can be written as a limsup set. The ubiquity 

condition can also be seen to hold, for this 0, by a slight adjustment of the 

proof of Proposition 13. Therefore, since 

W('l/Jb'l/J2) = UW('l/Jl,'l/J2)n[a,a+l]2, 
aEZ 

5.10 Proof of Corollary 15 

The proof of Corollary 15 follows in a similar way to that of Corollary 14. 

Let n := [0,1]3 = 0 1 X O2 = [0,1]2 x [0,1]. Define a rectangle F(c; ll, l2) 

centred at c = (Cl,C2,C3) in [0,1]3 and of side lengths it,12 E R+ to be the 

set 

For n > 1, let 

Ai('l/Jb 1/;2; n):= U U F ((~,~; Pff) ; 'l/Jl(q), 'l/J2(q)) n [0,1]3 
kn-l<q~kn P},P2,P3~q 
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where the sequences I, u are such that In+ 1 = Un = kn, for some k > 1. Thus 

we can write 
00 00 

W(1/-Il,1/-I111/12) n [O,lP - n u ~r(1/11' 1/12; n) . 
m=ln=m 

To identify this set with the general framework, let 

"0 '= (l!!. ~.~) ~La • q , q' q • 

Let the measure m be three-dimensional Lebesgue measure. Naturally, let 

ml, m2 be two-dimensional and one-dimensional Lebesgue measure, respec­

tively. Each satisfies the measure condition (A). Thus 81 = 2, 82 = 1 and 

8 = 3. Note that 

Thus, by the first Borel-Cantelli lemma, 

00 

m(W(1/1b1Pl,1/-I2)n[0,lp) =0 if Lk4n1/-l1(kn)21P2(kn) < 00. 

n=1 

The above sum is convergent as a result of the convergent sum hypothesis and 

by Fact 1 of §2.1. This argument gives the same result when [0,1]3 is replaced 

by any square in R3 of unit size. Thus W (1/11, "pI, 1/12) is a countable union of 

zero measure sets. It therefore follows that W('l/Jb 1/-11, 1/-12) has measure zero, 

under the convergent sum hypothesis of the corollary. For the divergence 

part of the proof, we proceed to show all the conditions of Theorem 10 are 

satisfied. 

Proposition 17. The pair (R, fj) is a local m-ubiquitous system relative to 

(<I>,l,u) where <I> is the collection of pairs (Pi'P;) such that, for a constant 
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k> 1, 

Pi(r) := k r-(1+i) , pj(r):= k r-(1+j) 

where 0 ~ i < ~, 0 < j < 1 and 2i + j = 1. 

From [BDV03, §12.11 it follows that the pair (R, (3) is a local m-ubiquitous 

system relative to (p, l, u) where p( r) : = constant x r-4/ 3 • Thus we see that 

(Ul) is satisfied since, for any pair (Pi, Pj), 

We postpone the remainder of the proof of Proposition 17. For any i, j, the 

functions Pi, Pj are both kn-regular with regularity constant .x := 11k < 1. 

Thus the conditions of the Theorem 10 are satisfied and it follows that 
00 

m (W(1/-Il, '1Pt, 1/-12) n [0,1]3) = 1 if Lk4"1/-Il(k")21/-12(k") = 00. (69) 
"=1 

By Fact 1, the right-hand side of (69) diverges under the divergent sum 

hypothesis. The statement of (69) remains true when [0,1]3 is replaced by 

any cube of unit size Le. 0 := [a, a + 1]3 for any integer a. From the set up 

its clear that W(1/-Ib 1/Jb 1/J2) n [a, a + 1]3 can be written as a lim sup set. The 

ubiquity condition can also be seen to hold, for this 0, by a slight adjustment 

of the proceeding proof of Proposition 17. Therefore, since 

W(1/-Il , 1/-11, 1/-12) = U W(1/-Ib 1/-111 1/J2) n [a, a + IJl , 
aEZ 

it follows that m (]R3 \ W(1/J1! 1/-II, 1/-12)) = o. Hence W(1/-Ib 1/-11, 1/-12) has full m­

measure. It remains to prove the condition (U2) is met. 

Proof of Proposition 17: part (U2) 

Let B = [a,b]2 x [a,b] c [0,1]3. Fix i,j such that 0 < i < ~, 0 <j < 1 

and 2i + j = 1. It is easily verified by the pigeonhole principle that for 



GENERAL LIM SUP SETS OF TWO APPROXIMATION FUNCTIONS 119 

any x = (XllX2,X3) in B, there exist integers PbP2,P3,q, with (Pt,q) - 1 

(t = 1,2,3) and 1 < q < kn, satisfying 

Clearly, aq - 1 ~ PI, P2, P3 ~ bq + 1. Thus for a fixed integer q there exist at 

most ((b - a)q + 3)3 many triples (PllP2,P3). Thus, for n large enough, 

< 2 L ((b - a)q + 3)3 q2~n < ~m(B). 
q~kn-l 

It follows that for k ~ 6, 

> m(B) - ~m(B) > ~m(B). 

o 



Chapter 6 

Conclusion 

This thesis set out to explore uncharted territory in the field of metric Dio­

phantine approximation. 

We began by taking a look at a general approach to well-approximable 

numbers explored recently by Beresnevich, Dickinson and Velani [BDV03]. 

We employed their results to gain a new result for the Hausdorff measure of 

a set of well-approximable numbers with restricted sets which is analogous to 

the Lebesgue measure result for the same set established by Harman [Har88c]. 

A whole new approach to badly approximable sets in an abstract setting 

was established in the main section, Chapter 4, and along with it a dimension 

law was presented with several applications. This result was extended to 

encompass sets dependent on more than one approximation function giving 

the results a broader scope of application. 

The extended theory in Chapter 4 inspired the study presented in the final 

chapter. In this chapter an extension of a measure result from [BDV03] was 

achieved for a general lim sup set dependent on two approximation functions. 

A dimension result was also conjectured for this set and therefore the basis 

for future work is set up. To make this study a complete extension further 

work needs to be done to achieve a Hausdorff measure law for the general 

120 
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lim sup set dependent on two approximation functions. 

Ideally, future work on this lim sup set would also encompass resonant 

sets, as opposed to simply resonant points, in line with the general setting of 

[BDV03]. In addition, it would be nice to point towards the method for es­

tablishing measure results for any finite number of approximation functions, 

as achieved by the analogous classical result of Khintchine (1926a). 

More interestingly, the author would like to stretch out this theory for 

lim sup sets with two approximation functions, particularly once the Haus­

dorff measure result is achieved, in order to investigate its implications for 

the tempting Littlewood's conjecture, as stated in §4.2. 

Thus new territory in the field has been charted and the path is set for 

future investigation. Whatever is discovered next, we can say for certain 

that the enticing landscape of metric Diophantine approximation will keep 

on evolving. 



Bibliography 

[AN97] A. G. Abercrombie and R. Nair. An exceptional set in the ergodic 

theory of rational maps of the Riemann sphere. Erg. Th. & Dyn. 

Sys., 17:253 - 267, 1997. 

[BDV03] V. V. Beresnevich, H. Dickinson, and S. L. Velani. Mea-

sure theoretic laws for lim sup sets, 2003. Preprint. 1 - 83, 

http://arxiv.org/abs/math.NT/0401118. 

[Bes34] A. S. Besicovitch. Sets of fractional dimensions (IV): on rational 

approximation to real numbers. J. Lond. Math. Soc., 9:126 - 131, 

1934. 

[Fal90] K. Falconer. Fractal Geometry: Mathematical Foundations and 

Applications. John Wiley & Sons, 1990. 

[Har88a] G. Harman. Metric Diophantine approximation with Two Re­

stricted Variables I. Two square free integers, or integers in arith­

metic progressions. Math. Proc. Cambridge Philos. Soc., 103:197 

- 206,1988. 

[Har88b) G. Harman. Metric Diophantine approximation with Two Re­

stricted Variables II. A prime and a square-free integer. Mathe­

matika, 35:59 - 68, 1988. 

122 



BIBLIOGRAPHY 

[Har88c] G. Harman. Metric Diophantine approximation with Two Re­

stricted Variables III. Two Prime Numbers. J. Number Theory, 

29:364 - 375, 1988. 

123 

[Har89] G. Harman. Metric Diophantine approximation with Two Re­

stricted Variables. IV Misc. results. Acta Arith., LIII:207 - 216, 

1989. 

[Har98) G. Harman. Metric Number Theory. LMS Monographs New Series 

18. Clarendon Press, Oxford, 1998. 

[Hut81] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. 

J., 30:713 - 747, 1981. 

[HV95] R. Hill and S. L. Velani. Ergodic theory of shrinking targets. In­

ventiones mathematicae, 119:175 - 198,1995. 

[HV97) R. Hill and S. L. Vel ani. Metric Diophantine approximation in 

Julia sets of expanding rational maps. Inst. Hautes Etudes Sci. 

Publ. Math., 85:193 - 216, 1997. 

[HW60] G. H. Hardy and E. M. Wright. An introduction to the theory of 

numbers. Clarendon Press, Oxford, 4th edition, 1960. 

[Jar28] V. Jarnik. Zur metrischen Theorie der diophantischen Approxima­

tionen. Pmce Mat.-Fiz., pages 91 - 106, 1928. 

[Jar29] V. Jarnik. Diophantischen Approximationen und Hausdorffsches 

Mass. Mat. Sbornik., 36:371 - 382, 1929. 

[Jar31] V. Jarnik. tiber die simultanen diophantischen Approximationen. 

Math. Z., 33:503 - 543, 1931. 



BIBLIOGRAPHY 

[Khi24] A. Khintchine. Einige Siitze iiber Kettenbriiche, mit Anwendungen 

auf die Theorie der Diophantischen Approximationen. Math. Ann., 

92:115 - 125, 1924. 

124 

[Khi26] A. Khintchine. Zur metrischen Theorie der diophantischen Ap­

proximationen. Math. Z., 24:706 - 714, 1926. 

[KLW03] D. Kleinbock, E. Lindenstrauss, and B. Weiss. On fractal measures 

and Diophantine approximation, 2003. Selecta Mathematica. To 

appear. 

[KTV) S. Kristensen, R. E. Thorn, and S. L. Velani. Diophantine ap­

proximation and badly approximable sets. Preprint. 1 - 31, 

http://arxiv.org/abs/math/0405433. 

[KW03] D. Kleinbock and B. Weiss. Badly approximable vectors on frac­

tals, 2003. Pre-print. 

[PV02] A. D. Pollington and S. L. Velani. On simultaneously badly ap­

proximable pairs. Jou. Lond. Math. Soc., 66:29 - 40, 2002. 

[PV03] A. D. Pollington and S. L. Velani. Metric Diophantine approxi­

mation and 'absolutely friendly' measures, 2003. Pre-print. 1 - 11. 

http://arxiv.org/abs/math/0401149. 

[Ryn98] B. P. Rynne. Hausdorff dimension and generalised simultaneous 

Diophantine approximation. Bull. Lond. Math. Soc., 30:365 - 376, 

1998. 

[Sch69] W. M. Schmidt. On badly approximable systems of linear forms. 

J. Number Theory, 1:139 - 154, 1969. 



BIBLIOGRAPHY 

[Sch80] W. M. Schmidt. Diophantine approximation. Lecture notes in 

Math. 785. Springer - Verlag, 1980. 

[Sch83] W. M. Schmidt. Open problems in Diophantine approximation. 

125 

In Approximations diophantiennes et nombres tmnscendants (Lu­

miny, 1982), Progr. Math., pages 271 - 287. Birkhauser, 1983. 

[Spr79] V. G. Sprindzuk. Metric theory of Diophantine approximation 

{translated by R. A. Silverman}. V. H. Winston & Sons, Wash­

ington D.C., 1979. 

[SuI81] D. Sullivan. Conformal Dynamical Systems. In Proc. Conf. on 

Geometric Dynamics in Rio de Janeiro, volume Springer LNM 

1007, pages 725 - 752, 1981. 


	419768_001
	419768_002
	419768_003
	419768_004
	419768_005
	419768_006
	419768_007
	419768_008
	419768_009
	419768_010
	419768_011
	419768_012
	419768_013
	419768_014
	419768_015
	419768_016
	419768_017
	419768_018
	419768_019
	419768_020
	419768_021
	419768_022
	419768_023
	419768_024
	419768_025
	419768_026
	419768_027
	419768_028
	419768_029
	419768_030
	419768_031
	419768_032
	419768_033
	419768_034
	419768_035
	419768_036
	419768_037
	419768_038
	419768_039
	419768_040
	419768_041
	419768_042
	419768_043
	419768_044
	419768_045
	419768_046
	419768_047
	419768_048
	419768_049
	419768_050
	419768_051
	419768_052
	419768_053
	419768_054
	419768_055
	419768_056
	419768_057
	419768_058
	419768_059
	419768_060
	419768_061
	419768_062
	419768_063
	419768_064
	419768_065
	419768_066
	419768_067
	419768_068
	419768_069
	419768_070
	419768_071
	419768_072
	419768_073
	419768_074
	419768_075
	419768_076
	419768_077
	419768_078
	419768_079
	419768_080
	419768_081
	419768_082
	419768_083
	419768_084
	419768_085
	419768_086
	419768_087
	419768_088
	419768_089
	419768_090
	419768_091
	419768_092
	419768_093
	419768_094
	419768_095
	419768_096
	419768_097
	419768_098
	419768_099
	419768_100
	419768_101
	419768_102
	419768_103
	419768_104
	419768_105
	419768_106
	419768_107
	419768_108
	419768_109
	419768_110
	419768_111
	419768_112
	419768_113
	419768_114
	419768_115
	419768_116
	419768_117
	419768_118
	419768_119
	419768_120
	419768_121
	419768_122
	419768_123
	419768_124
	419768_125

