Hi-precision audio in listening tests - also in the browser?

Benjamin Pedersen
DELTA, SenseLab
Venlighedsvej 4, 2970 Horsholm, Denmark

bep@delta.dk

ABSTRACT

In listening tests, detailed sound control is sometimes
mandatory down to each individual digital sample value
and guarantee is needed that they are not unintentionally
altered. At other times, a lesser degree of control is ac-
ceptable, if on the other hand test execution becomes less
restricted. Detailed control of sound is often possible only
under “laboratory” conditions where hardware and software
are under complete control and sound pressure levels can
be accurately calibrated. On the other hand, if test per-
sons can do listening tests at home, via an internet browser
for example, collecting large amounts of data becomes faster
and cheaper (no laboratory facilities required, and more per-
sons can do tests in parallel). Online listening tests made
possible by the Web Audio API offers great flexibility in
test execution, but compromises in precise stimulus control
must be accepted. This paper analyzes such compromises
by discussing technological limitations of Web Audio API
followed by validation measurements of sound playback in
popular internet browsers. The measurements show that
at the detailed level there are significant differences in ac-
tual performance of different browsers and behavior is not
always as expected. Finally, a solution is presented where
audio presentation is delegated to an external audio presen-
ter for situations where the limitations of Web Audio API
are not acceptable.

1. INTRODUCTION

When evaluating sound against human perception, listen-
ing test is often the preferred tool to gain insight into aspects
such as sound quality, discriminability and preference. This
is for example relevant when designing products for sound
reproduction, when comparing competing technologies, to
support marketing claims or when investigating aspects of
perception in general. Both hardware and software (signal
processing algorithms) can be evaluated in listening tests. In
such tests, it is important to have detailed control of audio
presentation as not to introduce any bias and for the test
system to be “transparent” and not influence results. It is
often required to comply with specific standards (for listen-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21-23, 2017, London, UK.

(© 2017 Copyright held by the owner/author(s).

ing tests) to support specific claims. Such standards may
have detailed requirements for the audio presentation.

When running many listening tests with different require-
ments, flexibility in test execution is important, including
the possibility for assessors (test persons) to be located at
their homes or in a controlled laboratory [4]. This makes
detailed hardware control possible (in the laboratory), but
when large amounts of data are required and detailed control
of sound is less important assessors can sit at home using
their own personal computers increasing the rate and flex-
ibility of data collection. Further, having people do tests
at home can significantly lower cost and sometimes asses-
sors may not be near the laboratory (in for example culture
dependent studies).

When doing listening tests at a large scale there are also
several important tasks, not directly related to the execution
of a test, such as: (1) Maintaining panels of assessors and
their history, (2) keeping collected data in a uniform format
in a centralized data store with data history and traceability,
(3) execution of statistical analyses for immediate feedback
and automatic result processing, and (4) simple and fast
configuration of new tests via user interface avoiding error
prone manual editing of scripts and configuration files.

It is important with the right tools to facilitate the entire
test process to make it economically feasible and to meet
strict deadlines and avoid costly errors and at the same time
be able to collect the amount of data required for hi-quality
data analysis in a constrained amount of time (running tests
in parallel).

At SenseLab we have developed the system SenseLabOn-
line to solve the mentioned problems. Since 2009 Sense-
LabOnline has matured over several iterations using differ-
ent technologies available at different times. It has been
used for collecting and analyzing data for more than 500 lis-
tening tests. Several other software tools for listening tests
are available, some of which are free, but usually their focus
is only on few of the tasks mentioned. A presentation of one
such system is for example described by [3] who also provide
a review of some other tools.

This paper will in the following focus on detailed audio
presentation and not listening tests in general. Specifically,
the technological (in software terms) options for audio pre-
sentation are reviewed and audio presentation via Web Au-
dio API is evaluated in greater depth.

2. TECHNOLOGICAL OVERVIEW

The options for online audio presentation have changed
over time and SenseLabOnline has used Java, Silverlight and

currently Web Audio API. Java and Silverlight are not based
on web standards and only available in browsers via third
party plug-ins. For security reasons, most modern browsers
no longer allow installation of plug-ins and therefore Java
and Silverlight are not options for future (and current) ver-
sions of online listening test systems. Avoiding browser plug-
ins has the benefit that only a standard compliant browser
is required without further installation of plug-ins (and as-
sociated version problems). Further, standard compliant
browsers are available across devices and platforms to a
larger extent than plug-ins, making it possible to execute
tests on for example tablets or smartphones.

Before going into details of audio presentation a brief
overview of other requirements for SenseLabOnline and
chosen solutions are given to understand why a web
browser/web server solution is adequate. While Sense-
LabOnline is the primary tool for our own listening tests
we also want to: (1) Grant customers access to an online
service where they can carry out own experiments and (2)
make it possible for customers to install and use Sense-
LabOnline on their own hardware allowing them to keep
all collected data in-house, which might be required in com-
mercial development projects. The first option (online ac-
cess) requires a centralized server and preferably clients do
not have to install anything on their own hardware (other
than a standard compliant browser). For the second option
(entire SenseLabOnline system on customer’s hardware) it
should preferably be very easy to install, host and maintain.
For a traditional web system, this often means installing and
maintaining a separate web server and database server which
often is rather complicated and requires server licenses. To
get around this, the relatively new open source and cross
platform .NET Core framework (developed and maintained
by Microsoft) is used as a base for the web server imple-
mentation and SQLite (open source) is used as database.
These choices have the following benefits: A .NET Core
web application can be hosted on traditional web servers
(like Microsoft’s web server Internet Information Services or
the open source cross platform NGINX), but it can also run
“standalone” with inbuild web server. SQLite is a popular,
well tested, single-file, serverless (in-process) database re-
quiring no server installation, but clients access the database
file directly. For simple installations, running SenseLabOn-
line is as simple as running a single executable file. Ac-
tually, installation is not even required, the system can be
started directly from for example a USB stick (though this
is not the recommended way of running SenseLabOnline).
The database is a single file, which can easily be copied and
backed up.

Configuring a test often involves many details and can be
error prone. The philosophy in SenseLabOnline is to avoid
file based configuration and provide a user interface with
sensible options helping to avoid mistakes, which potentially
invalidate collected data for its intended use.

Security is an important aspect of online systems, and
SenseLabOnline has several layers of data access, so for ex-
ample, a test person can only access data for tests he/she
participates in. Also, there is data separation between differ-
ent clients configuring and running tests on the same system.

While being able to execute standard listening tests, the
core of SenseLabOnline is, via an add-inn architecture, de-
signed so it is relatively easy to extend with new types of
tests (not limited to listening tests). This also provides the

needed flexibility to quickly implement tests with require-
ments not immediately met by the existing system.

A good user interface with dynamic user interaction, as
required in a listening test, can be challenging to implement
in a browser (HTML/JavaScript). And further, there may
be special requirements for for example rating scales and la-
belling. As an example, Figure 1 illustrates how scales can
be in a “not rated” state and how a guideline helps position-
ing a rating in relation to other ratings. Angular (referring
to Angular 2 and newer, not AngularJS) has been used to
implement this (with TypeScript code) and the ability of
Angular to “data bind” rating data (and other data) is very
helpful. Bootstrap (HTML/CSS style framework) is also
used, enabling the user interface to dynamically adapt to
different screen/windows sizes.

3. AUDIO PRESENTATION IN SOFT-

WARE

At the lowest level (sound card driver) audio samples are
written directly into a fixed size output buffer for the sound
card for immediate playback. The audio driver requests data
to be written into the buffer by interrupts or callbacks. De-
pending on audio driver and configuration it is possible to
specify desired buffer size, sample rate and channel count
for the hardware. Also, it is possible to request information
of bit-depth (sample format) at the hardware level as to ob-
tain “bit perfect” playback. This is for example possible by
using ASIO drivers or WASAPI (Windows Audio Session
API) drivers (in “exclusive” mode). Controlling buffer size
also makes it possible to obtain very small latencies (to ob-
tain fast response times to user actions). Note that audio
software typically must share audio device with other soft-
ware thus not having the privilege of setting sample rate
and buffer size and often there is no guarantee that other
software is not generating interfering sounds. The concept
of “exclusive mode” remedies this by letting a specific pro-
gram take ownership of audio hardware and thus preventing
other programs from using the same audio device. “Exclu-
sive mode” must be implemented at the driver (lowest) level
of the audio chain.

3.1 JavaScript limitations

In this paper “JavaScript” is used in a broad sense and
refers to the language (ECMAScript specification) and avail-
able APIs in a web browser (as standardized by W3C).
JavaScript is the programming language for the browser,
so audio programming for a web browser is subject to limi-
tations of JavaScript.

Audio files can be rather large, and there is no standard
way of storing large files locally in JavaScript. There is a
concept of “LocalStorage”, but with limitations for data size,
making it inappropriate for audio files. This means audio
files must reside in memory on the client device. There is
no restriction on memory use in JavaScript, but the amount
of physical memory on the client may be a problem. In
a listening test, switching between sounds is required on
a single trial, so not all audio for an entire test needs to
reside in memory at the same time, but only audio files for
individual trials. There is also the possibility of “streaming”
audio directly from the server, but switching and crossfading
between streamed audio is hard to obtain without glitches.

JavaScript executes code synchronously in a single thread

SenselabOnline Test = 41 X

Like extremely

Like very much

Like moderately
Like slightly
Neutral

Dislike slightly

Dislike moderately

& C' | @ Sikker | https://senselabonline.azurewebsites.net/SLO/0.1.2/TestSession?testiD=dd 1696b3-0286-4a5a-a46e-2bb62ccc1598&i ¥

Preference

- O X

EHEE

Angiv din personlige preeference, nar
du giver din vurdering.

Det er vigtigt, at du forholder dig
noje til skalaens hjeelpeord (f.eks.
"Like Extremely", "Dislike slightly")

Dislike very much

Dislike extremely

12.0

11

Figure 1: Example of test session in SenseLabOnline. Labels for rating scales can be configured with irregular
intervals (a modified version of Labelled Hedonic Scale in this case [5]). Helping guideline is provided for
the actively (dragged) rated scale. Playback status and control is in the bottom of the screen. The active
section of the sound (“zoom”) can be set by the assessor. When configuring the test, automatic looping of

the selected range can be enabled or disabled.

(conceptually at least, and with the exception of Web Work-
ers) and this has consequences for audio presentation as will
be discussed later, but basically this means audio samples
cannot be processed individually in code.

3.1.1 Web Audio API limitations

Web Audio API is a set of JavaScript functions and ob-
jects which can be used for audio programming. The be-
havior of these are described by a standardized specification
[2].

The specification states that “implementations must use
block processing, with each AudioNode processing 128
sample-frames in each block”. The 128 sample block is
somewhat comparable to the buffer size mentioned ear-
lier, but it is important to realize that they are different
things, where the 128 block size for processing merely gives
an absolute lower limit with respect to buffer latency and
the actual audio buffer size at the hardware level is most
likely larger depending on the actual Web Audio API im-

plementation and its use of the operating system’s audio
drivers. Somewhat related to the block size is “AudioCon-
text.currentTime”, which can be used for precise timing. It
should be noted that “AudioContext.currentTime” is not
elapsed time, but rather it “is the time in seconds of the
sample frame immediately following the last sample-frame
in the block of audio most recently processed” [2]. This defi-
nition may be somewhat problematic as it is not totally clear
what happens if “most recently processed” frame progresses
during a single JavaScript event loop. Potentially “Audio-
Context.currentTime” is not constant in a single JavaScript
event loop which is somewhat contradictory to “normal”
JavaScript behavior.

There are no functions available in Web Audio API to
set sample rate or request “exclusive” mode and audio chan-
nel and sample rate resampling is performed in Web Audio
API if required. In most use cases this is a good thing, be-
cause it makes misuse of audio hardware harder for malicious
web pages, but it also means that “bit perfect” audio repro-

duction cannot be guaranteed. Also, note that an internet
browser potentially must mix audio of several opened web
pages. As stated, bit perfect reproduction cannot be guar-
anteed in Web Audio API, but on the other hand, it might
also be possible under specific circumstances when the right
browser and operating system audio settings are (and can
be) made. For example, the Chrome internet browser until
recently had a (probably unknow by most) switch enabling
“exclusive” mode use of audio drivers in Windows. Unfortu-
nately, this feature of Chrome now seems to be abandoned.

In many listening tests “bit perfect” reproduction is not a
requirement, but in some it is. SenseL.abOnline online sup-
ports both cases, being able to present audio using Web Au-
dio API, but also being able to redirect audio presentation
to an “external presenter” with detailed hardware control as
will be described later.

3.2 Requirement and implementation

This section describes requirements for sound control and
how this can be obtained using JavaScript and Web Audio
API and related problems. Several functions from the API
are discussed and the reader is assumed to be familiar with
these or consult their documentation elsewhere (for example
[6] and [7]).

3.2.1 Looping and zooming

When comparing sound samples in a listening test it is
often desirable to have a given sound repeat itself, and fur-
ther, it is also desirable to be able to focus on only a part
of the sound (to “zoom”). This behavior is implemented
in SenseLabOnline and the user interface for this is illus-
trated in Figure 1 (“play bar” in the bottom). Given the
availability of relatively high-level functions in Web Audio
API such as “linearRampToValueAtTime” and “start” and
“stop” at given times, this might initially seem quite trivial
to implement, but the requirement of Web Audio API to
schedule ahead in time and at the same time also be able
to immediately react to user interactions make this surpris-
ingly difficult, though possible. Also, there is no “seek” op-
eration in Web Audio API, so this has to be implemented
by for example “stop” followed by “start” at a given po-
sition. An “AudioBufferSourceNode” in Web Audio API
has a “loop” property, but when fading has to be applied
at beginning and end of the loop, implementation of loop
is more easily achieved by a scheduled fade out and then
“stop” followed by a scheduled “start” and fade in. When at
any given time the listener is allowed to change the “zoom”
range, already scheduled events have to be cancelled and
new scheduled events established. The scheduling has to be
implemented using for example JavaScript’s “setTimeOut”
which, because of JavaScript’s single thread, is not partic-
ularly accurate. Therefore, implementation requires elabo-
rate “book keeping” of Web Audio API event scheduling and
general JavaScript scheduling which must also take care of
rescheduling potentially involving “cancelScheduledValues”
for Web Audio API events and “clearTimeout” for JavaScript
events. Also, it can be noted that even though Web Audio
API provides a few events which can be listened for (sound
source “ended” event for example) it is the authors experi-
ence that these are not working reliable across different in-
ternet browsers and all event timing must be via JavaScript
timers (“setTimeOut” for example) and tight time alignment
carried out in timer event handlers with Web Audio APT’s

“AudioContext.currentTime” as reference.

3.2.2 Fading curve

When switching between two sound samples ITU-R
BS.1534-3 requires raised 5-ms raised cosine fading curves.
This can be obtained with the “setValueCurveAtTime” of
at gain node in Web Audio API. Alternatively, sample-by-
sample control is also possible (and has been tried out) using
the “ScriptProcessorNode”, but this method has now been
deprecated and has problems with glitches caused by the
“single threaded-ness” of JavaScript. The concept of an
“AudioWorker” (or “AudioWorklet” in the latest “Editor’s
Draft” of the specification [1]) has newly been introduced
as a replacement, but is hardly implemented yet across
browsers. As described by the Web Audio API specification
the use of AudioWorker-code potentially lowers priority of
the audio rendering thread increasing the possibility of audio
glitches. Therefore “setValueCurveAtTime” currently seems
to be the best solution for detailed control of wave shape.
The “linearRampToValueAtTime” and “exponentialRamp-
ToValueAtTime” are also available for fading, but are not
able to fulfill the “raised-cosine” requirement of the standard.
The “setValueCurveAtTime” method takes two parameters:
(1) An array of numbers describing the shape of the curve
and (2) a number describing the total length (in seconds) of
the curve. The values of the value curve are equidistantly
distributed over the specified duration and linearly interpo-
lated by Web Audio API to fit the relevant sample rate. If
the parameters for “set ValueCurveAtTime” are chosen such
that the resolution of the numbers for scaling is the same as
that of the sampling rate, sample scaling can be controlled
at single sample level.

3.3 Validation measurements

Even though a procedure for fading and looping can be
theoretically described it is also of interest to measure the
performance of actual implementation executed in various
internet browsers. This gives some insight into how well
Web Audio API is implemented across browsers and how
similar their performance is. In this section, such control
measurements of the following scenario are presented: A lis-
tener listens to sound A and presses a button in the web
interface to switch (fade) to sound B. Two “AudioBuffer-
SourceNode”s (one for sound A and one for sound B) were
used. Each of these were connected to a “GainNode” used
for fading. The output of these were connected to “Au-
dioContext.destination” (the overall audio output). When
the listener clicked the button, fading out of sound A
was scheduled immediately (“setValueCurveAtTime” called
on gain node with start time parameter equal to “Audio-
Context.currentTime”). Simultaneously fade in was sched-
uled for sound B with start time equal to “AudioCon-
text.currentTime” plus the length of the fading curve for
sound A (that is, sound B starts fading in immediately after
sound A has faded out). “stop” (sound A) and “start” (sound
B) were scheduled on buffer nodes to align with end of fade
out (sound A) and beginning of fade in (sound B).

The exact same code implementing this scenario was
executed in three different browsers: Chrome (version
56.0.2924.87), Edge (version 38.14393.0.0) and Firefox (ver-
sion 51.0.1). Running these browsers under Windows 10,
the following test was made: Two wav sound files were gen-
erated with a sample frequency of 44.1 kHz, two channels

and a resolution of 16 bit per sample (signed integer). The
sample values contained in each file were of constant value
where, in one file (sound A), the constant value was half
of full scale and in the other (sound B) the value was half
of the negative full scale. Raised cosine fading curves to
be used with “setValueCurveAtTime” were generated by the
JavaScript function “buildFaderCoefficients” with code listed
in Code 1. In the testing a 5 ms fader duration was specified
and a sample rate of 44.1 kHz was given as parameter to the
“buildFaderCoefficients” function.

Code 1: JavaScript function for generating fading

curves

function buildFaderCoefficients

(duration, fs) { // fs is samplerate fx 44100
var faderLength = Math. ceil (duration * fs);
if (faderLength < 2) faderLength = 2;

var inFader = new Float32Array (faderLength);
var outFader = new Float32Array (faderLength);
for (var i = 0; i < faderLength; i++) {

var raisedCosine = 0.5 x*

(1+Math . cos (i/(faderLength —1)«Math.PI));
inFader[i] = 1 — raisedCosine;
outFader[i] = raisedCosine;

return {
duration: faderLength / fs,
coefficients: {
in: inFader,
out: outFader

b
b

The audio device (RME Fireface UC) was configured for
two channel playback at 44.1 kHz with 24 bits per sam-
ple. 44.1 kHz was also reported as the sample rate in the
three tested browsers (“AudioContext.sampleRate” in Web
Audio API). A digital loopback was configured on the sound
card, which means the exact sound output from each browser
could be recorded (recording was also made at 44.1 kHz).
Fade in and out according to the described scenario was
recorded for the three browsers and the results are presented
in Figure 2. The figure also presents fading when directly
using ASIO drivers via external presenter (described later).
The graphs in the figures represent consistent behavior of the
browsers and not atypical cases. The dashed line indicates
the ideal target curve. As can be seen, none of the browsers
behaves perfectly, but have individual deviations from the
desired target curve. It is not the purpose of this paper to
identify errors in internet browsers, but examine if they be-
have similarly (with respect to audio reproduction) provided
the same code. So, whether the “error” is in the browser or in
the executed code is not important in this context. However,
a few comments can be made about the individual browsers:
From close inspection, it is seen that Chrome does not scale
the first sample by the fading curve when fading in. Edge
does not scale what appears to be the first 128 samples (the
Web Audio API block size) when fading out. Firefox does
not appear to scale samples by the fading curve at all, but
correctly switches between the two sounds. If better under-
standing of this behavior is wanted, it may be relevant to
note that fade in by “setValueCurveAtTime” is scheduled at
“AudioContext.currentTime” (i.e. immediately) and other
events are scheduled 5 and 10 ms ahead of time respectively.
It can also be noted that, when everything is scheduled suf-

ficiently ahead of time, Edge and Firefox can be made to
hit the target curve and Chrome’s spike can be removed by
explicitly setting the scale for the first sample.

3.3.1 Browser idiosyncrasies

As illustrated, browsers are not behaving equal. It is
also the experience of the author that this problem is not
restricted to the specific case presented here. Under non-
critical circumstances, hardly anybody would notice the dif-
ferences in fading curves as presented earlier. But in criti-
cal situations, the differences would be clearly heard which
might be problematic in some listening tests, and further-
more, one can hardly claim to do a test according to a stan-
dard if for example it in its specification have requirements
for fading which are clearly violated. To get around this, one
may try to make “work arounds” for specific browsers. This
is, however, not very desirable as one is no longer relying
on web standards, but implementation details of individual
browsers and versions. On the positive side, it is the au-
thor’s experience that “steady state” audio rendering works
well across browsers and even devices (computers, phones,
tablets).

3.4 External presenter - detailed control and
video

Web Audio API can be used for audio presentation with
a degree of control and quality that is sufficient in many
cases, but for the cases where better control of stimulus pre-
sentation is required SenseLabOnline has the possibility of
sending control commands to an external presenter. The
same browser based user interface (as for example seen in
Figure 1) is used whether using Web Audio API audio pre-
sentation or the external presenter. An abstract command
based code interface has been developed and the commands
given via the user interface are then sent to a selected im-
plementation of that interface in this case being either Web
Audio API based implementation or the external presenter
implementation. The external presenter is implemented as a
regular Windows program thus able to directly utilize ASIO
(or WASAPI) drivers for detailed hardware control. Effi-
cient communication between browser (user interface) and
external presenter is made possible by the Web Sockets web
standard. The actual implementation uses Microsoft’s Sig-
nalR library for this, and the external presenter is in itself
also a websocket server. In less technical words this means
that using web standards the browser based user interface
can be used to control a presenter program with full hard-
ware rights. This also opens new possibilities as the exter-
nal presenter can control everything regarding hardware so
presentation is not necessarily restricted to audio only pre-
sentation. Specifically, an external presenter which is able
to present both audio and video has been developed where
great care was taken for audio and video to be synchronized
while being able to switch between different audio process-
ings for the same video. And also, the external presenter
implementation is able to handle uncompressed (raw) video,
which would not be possible using a purely web standard
based implementation.

4. CONCLUSIONS

It has been argued that web standards provide a good
platform for implementation of user interface for doing
listening tests (both configuration management, and test

Q
&b L
L
Chrome
o o
—— Al
20 -
S5 o
o &
— = - @
~] (s
. Firefox
e P e [Tian e - o
. N
| | | | | -
0 5 10 0 5 10
Time [ms]

Figure 2: Fading using external presenter (ASIO) and three different browsers. A positive constant (FS/2,
half of full scale) is faded out and immediately after, a negative constant (-FS/2) is faded in. The fading
curve has raised cosine shape and a duration of 5 ms. Dashed curve indicates theoretical target curve and

red curve represents digitally measured values.

execution proper). Using Web Audio API, the only re-
quirement to run the test is a standard compliant inter-
net browser, but if the requirement for audio precision is
high, other means of audio presentation can be necessary.
Some of the problems seem to stem from the definition
of “AudioContext.currentTime” (bound to frame most re-
cently processed). “currentTime” may be in the past when
related JavaScript code is actually executed. It is up to
the JavaScript programmer to guess (or probe) how much
ahead of time to schedule events to avoid glitches. Because
this depends on hardware and browser implementation, it
seems reasonable that the Web Audio API should somehow
provide this information (or at least some hint of a “safety”
offset for “currentTime”).

In the future, browser implementation of Web Audio
API may improve, and the Web Audio API specification
may develop (AudioWorklets [1] for example) so alternative
means for precision audio presentation becomes irrelevant.
Whether this happens, will probably depend on how im-
portant precise audio presentation is deemed by developers
of web browsers. In most use cases (non-listening tests),
the differences between browsers illustrated earlier, hardly
would be noticed by anyone and consequently resolution of
this type of issues may have low priority in browser devel-
opment. So, even though Web Audio API provides a good
platform for many listening tests, critical listening tests may
have to rely on other means in the foreseeable future.

S. REFERENCES

[1] P. Adenot and R. Toy. Web Audio API, W3C Editor’s
Draft 21 June 2017.
https://webaudio.github.io/web-audio-api, 2017.

[2] P. Adenot and C. Wilson. Web Audio API, W3C
Working Draft 08 December 2015.
https://www.w3.org/TR/2015/WD-webaudio-
20151208/,

2015.

[3] N. Jillings, B. De Man, D. Moffat, J. D. Reiss, and
R. Stables. Web Audio Evaluation Tool: A framework
for subjective assessment of audio. In 2nd Web Audio
Conference, apr 2016.

[4] S. V. Legarth, J. Ramsgaard, G. Le Ray, and
N. Zacharov. A performance comparison of Home
Usage Testing and Central Location Testing in small
impairment listening tests. In 3rd International
Workshop on Perceptual Quality of Systems (PQS),
Dresden, Germany, 2010.

[5] J. Lim, A. Wood, and B. G. Green. Derivation and
evaluation of a labeled hedonic scale. Chemical Senses,
34(9):739-751, 2009.

[6] Mozilla. JavaScript. https://developer.mozilla.org/en-
US/docs/Web/JavaScript.

[7] Mozilla. Web Audio APL.
https://developer.mozilla.org/en-
US/docs/Web/API/Web_Audio_API.

