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Abstract

The aim of the present study is to create a computational model of the ureteral

system that accurately mimics its dynamic functionality. This model will be able

to replicate the peristaltic movement of the ureter for a variety of physiological

conditions. The objective of this research was met using our in-house fluid solid

interaction model, known as coupled Cgles-Y-code in which the moving bound-

aries between the solid and fluid domain were replicated using a novel immersed

boundary method. First, a comprehensive literature review on ureteral phys-

iology was conducted with a focus on the anatomy of the ureter and theories

behind mechanisms of ureteral peristaltic function in various physiological and

pathological conditions. Next, the nonlinear tensile properties of the ureteral

wall were integrated into the Y-code using the equivalent strain method and the

resulting model was compared with a model with linear tensile properties. It was

shown that the implementation of nonlinear tensile properties was more accu-

rate and more closely matched the behaviour of the native ureteral wall. Next,

the development of more anatomically accurate ureter model geometry was pre-

sented along with a variety of approaches to optimise the mesh resolution for

this complex model. A new algorithm was then developed in order to model

the Intra-Abdominal Pressure (IAP) into the Y-code. Next, two separate con-

traction models, constant radial and time-window-frame, were introduced. It was

observed that a use of the time-window-frame contraction model coupled with the

IAP algorithm exhibited a better agreement with the existing clinical data than

the constant radial contraction model. Finally, a comprehensive study was con-

ducted on the urodynamic responses when different pathological conditions are

modelled. The results from using a linear tensile model, replicating an unhealthy

condition, showed a high level of shear stress around the contraction lumen and

a higher urine velocity in vicinity of the contraction region. In another scenario,

a highly depressed amplitude of peristalsis, known to be a consequence of tak-

ing vasodilators, was simulated. It was shown that an inefficient contraction can

increase the possibility of continuous reflux during the propagation of peristalsis.
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Nomenclature

Greek

E Youngs modulus

µ dynamic viscosity

ρ density

ν Poissons ratio

µ̄ damping

T Cauchy Stress

λ Lam’s First Parameter

G Shear Modulus

Ed GreenSt.Venant strain tensor

Abbreviations

ALE Arbitrary Lagrangian Eulerian

CAD Computer-Aided Design

CBCT Cone Beam Computed Tomography

CFD Computational Fluid Dynamic

CG Conjugate Gradient

CT Computed Tomography

CV Control Volume

DEM Discrete Element Modelling

DICOM Digital Imaging and Communications in Medicine

F Force

FD Full Distribution

FDEM Finite-Discrete Element Method

FE Finite Element

FR French Catheter Size

FSI Fluid Solid Interaction

FV Finite Volume

HD Half Distribution

IB Immerse Boundary

IAP Intra-Abdominal Pressure

IPM Incompressible Projection Method
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IUP Intra-Uretic Pressure

IVU Intra Venous Urogram

Q Flow-rate

P Pressure

MRI Magnetic Resonance Imaging

MPI Message Passing Interface

Re Reynolds Number

UVJ UreteroVesical Junction

PUJ Pelvis Ureteric Junction

RMP Resting Membrane Potential

RHS Right Hand Side

T Time

UTI Urinary Tract Infection

u Velocity

V Volume

VUR VesicoUreteral Reflux
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Chapter 1

Introduction

1.1 Motivation

Ureteric peristalsis modelling and its potential application in medicine and in-

dustry has been investigated by many researchers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The main objective of the urinary system modelling is to investigate the urine dy-

namic, in particular, the pressure gradient, the conditions of reflux,the behaviour

of ureter during the muscular contraction or any obstruction. In order to simu-

late a peristaltic movement, a set of mathematical equations are used based on

different parameters and boundary conditions. They can be solved either with

numerical or theoretical methods to express the relationship between these pa-

rameters. Recently, research on modelling the urinary system is introducing more

complex models to accurately simulate the real situation. In this Chapter (1), a

description of the physiology of the ureter and its mechanical properties are dis-

cussed. A variety of publications demonstrating theoretical and computational

modelelling on the ureter and urine behavior are discussed.
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1 Introduction 2

1.2 Anatomy of the Ureter

The ureter is a muscular tube with a length around 28-30 cm which conveys urine

from the kidney to the bladder, as shown in Figure 1.1. The ureter has thick,

contractile walls, and its diameter varies considerably at different points along

its length. The urine in the ureter is primarily impelled by peristaltic muscular

contraction acting in a wavelike manner with a uniform low speed, although

gravity and hydrostatic pressure also contribute. When the bladder is filled up

with urine, the lower ends of the ureters act like valves (vesicoureteic junctions)

which are compressed to prevent any retrograde flow into the ureter.

Figure 1.1: Renal System [11]

The upper and lower ureteral segments receive the sympathetic and parasym-

pathetic innervation which can cause a change in force and frequency of ureter

muscular contraction. When urine enters the renal pelvis, the contraction initi-

ated there causes movement of the urine to the ureters. There are three layers in

the ureter wall, as shown in Figure 1.2. These layers are the mucosa, the muscle

coat and the adventitia. The outer layer or the adventitia is a supporting layer

of fibrous connective tissue. The middle layer is a muscular coat which consists

of inner circular and outer longitudinal smooth muscles.
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The main function of the middle layer is to perform synchronized contractions

of the muscles (peristalsis) and convey the urine to the bladder. The inner layer,

mucosa, is composed of transitional epithelium and form a continuous seal with

the lining of the renal pelvis and urinary bladder.

Figure 1.2: Microscopic structure of the cross section of a human ureter [12].

1.3 Ureteral Physiology

Peristaltic movement is initiated by the activity of the pacemakers region in the

renal pelvis. Many researchers believe the location of the primary pacemaker is

situated in the most proximal calyceal regions of the renal pelvis [1, 2, 3, 4, 5].

However, Weiss et al. [7] suggest that the primary pacemaker is located in the

Pelvis Ureteric Junction (PUJ).

The ureter, like the heart, has other areas of muscle tissues and these are called

latent pacemakers sites. Under normal conditions, the latent pacemakers are

dominated by the activity of primary pacemakers are located in the renal pelvis.

When they are not dominated by the primary pacemakers, they may act as a
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pacemaker. These cells are located in all regions of the ureter. The pacemaker

cells located at the UreteroVesical Junction (UV J) cause antiperistalsis waves

at a frequency lower than that of the upper segment. Retrograde peristalsis is

unusual but sometimes occurs [6].

1.3.1 Propagation of Electrical Activity

The electrical activity of the pacemaker cells introduces action potentials that

propagates through the ureter downwards to the bladder. This causes a peristaltic

contraction in the smooth muscle cells. The electrical activity propagates from

one cell to the next across cells which are close together through intermediate

junctions. The conduction velocity in the ureter is around 2-6 cm/sec.

A single pacemaker region on the pelvi-calyceal border in the kidneys causes a

wave of contraction. This wave propagates radially across the pelvis to create a

wave that propagates distally towards the PUJ [8, 9, 10]. The ureteral smooth

muscle cells membranes are polarized and they maintain an electrical potential

in the resting, relaxed state. The cell contains a high concentration of potassium

and is electrically negative. Depolarization of the membrane produces a char-

acteristic action potential which is conducted downwards along the ureter. Not

every pacemaker contraction of the renal pelvis propagates all the way to the

ureter.

The distribution and permeability of K+ ions across the cell membrane deter-

mines the Resting Membrane Potential (RMP) of a ureteral muscle cell which

varies from -33 to 70 mV. The RMP of a non-pacemaker cell is stable and when

the cell is excited by an external stimulus or propagation of electrical activity

from an adjacent activated cell, the cell becomes activated. If enough of the cell

membrane is depolarized to the threshold potential, an action potential will be

generated and the membrane loses preferential permeability to K+ and becomes

more permeable to Ca2+. The membrane then maintains a depolarized state

(plateau) for a period of time and then repolarizes due to an increase in the

permeability to K+, [6], as shown in Figure 1.3.
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Figure 1.3: Driven action potential in guinea pig [6].

1.3.2 Effect of Diuresis on Ureteral Function

Transport of urine from the renal pelvis into the bladder in humans is affected

by many variables. During normal flow, the urine between two contraction waves

takes the form of a bolus which is pushed distally until it passes through the UVJ

to enter the bladder. An effective contraction wave completely closes the ureteral

wall.

Many studies have investigated the effect of flow rate and pressure amplitude on

the frequency of the peristaltic movement by means of invasive and non-invasive

methods. In-vivo studies have shown that the pressure amplitude and frequency

of peristalsis can be influenced by the volume of urine production. With small

amounts of urine, the renal pelvis produces only a few muscle contractions which

then move down through the ureter. With a higher rate of diuresis, contractions

from the renal pelvis develop until boluses coalesces and then the ureter acts as

an open duct [1, 13, 14, 15, 16].

Although any parts of the pelvicaliceal system and ureter can start the con-

traction, the proximal part of the ureter has the highest contraction frequency

due to the pacemakers. The pelvic pacemaker continues to fire at a constant

rate and the periodicity of the ureteric contractions is equal to this rate. As the

pelvis fills at the normal flow rate, the pressure is increased and the urine moves
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to the upper ureter. When the volume of the urine in the ureter is sufficiently

high , a contraction wave then passes through it. The urine, which is formed as a

bolus, is propelled efficiently if the contraction closes the ureteral walls. Finally

the bolus jets into the bladder.

However, Kiil [17] showed in his study that there was no relationship between

the volume changes in urine flow and the rate of ureteral contraction. He found

that with increasing volume of urine, the frequency of the peristaltic contraction

was increased in some cases and diminished in others. He also suggested that the

volume of urine transported in each contraction wave increased when urine flow

increased.

Wemyss-Holden et al. [18] used an invasive fast frame renography method with

ureteric spindle imaging to show that an increase of flow rate can be accompanied

by no significant change in peristalsis frequency on bolus velocity in hydrated and

dehydrated conditions. They concluded that the increased urine flow was affected

by increases in bolus volume.

Woodside et al. [19] performed a ureteral pressure flow study in non-dilated

ureters and this showed a significant linear relationship between the pressure and

the perfusion rate over the range of 2 to 15 ml/min. The mean ureteral pressure

of 2, 5, 10, and 15 ml/min were 4.5, 5.8, 8.3 and 10 mmHg. Their study confirms

that a normal ureter responds to an increase in flow with only a moderate increase

in pressure under the condition of the study.

Studies carried out by Ohlson [20, 21], described independence of contraction

frequency from flow rate. His experiment on human patients demonstrated that

there is a relationship between contraction frequency and body posture. Con-

traction intervals were significantly shorter in the upright than in the recumbent

position. There were no significant differences in the patterns of contraction inter-

val at a low and a high flow rate. Taking into account studies on the urodynamic

characteristics in humans and animals leads to the conclusion that dependence

of the contraction interval on flow rate appears to have been mostly observed in

animals and not in humans, indicating a species difference.
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The passage of urine from the renal pelvis into the bladder in a human is clearly

a complex process which can be affected by many variables. For example, the

effect of external pressures such as Intra-Abdominal Pressure (IAP) can be one of

the important issues in the dynamics of urine flow. Karnak et al. [22] conducted

an experiment in which the effect of external pressure (ureteric compression) on

ureter and the Intra-Ureteric Pressure (IUP) was investigated.

The result confirmed that an increase in IAP on the ureter caused an increase

in the IUP due to the wall tension. The study demonstrated that there is a high

possibility of hydronephrosis (distension and dilation of the renal pelvis) as a

result of increased external pressure influencing the flow of urine at a high flow

rate. It is worth noting that this experiment was carried out in the absence of

peristaltic contraction, and thus the diameter of the tube did not change.

1.3.3 The Myogenic Theory of Ureteral Peristalsis

The myogenic theory of ureteral peristalsis was first formed when studies indi-

cated that ureteral peristalsis could occur without innervation. For example,

peristalsis continues after ureter transplantation [23] and also after denervation

of the ureter [24]. Peristalsis also occurred in an isolated in-vitro ureteral seg-

ment [13]. However, Morita et al. [3] indicated that the nervous system has a

modulating role in ureteral peristalsis. That study noted that the nervous system

could affect peristaltic frequency and the bolus volume.

1.3.4 Effect of Gravity

The ureteral peristaltic activity is assisted by gravity in transporting the urine

through the ureter. Schick et al. [25] experimentally studied the effect of gravity

on a normal dog ureter. It showed that when the dog placed head down, the an-

tegrade peristalsis initially increased, then continued in an irregular rhythm and

finally stopped. The bolus volume was decreased 50% on average. In addition,

the efficiency of the ureter (number of millilitres of urine transported in bladder
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each minutes) decreased as much as 62% when the dog was in a head-down po-

sition. The work done by the ureter (the number of peristaltic waves required

transport 1ml) is increased as much as 360%.

1.3.5 Effect of Bladder Filling

The relationship between the ureteral intraluminal pressure and intravesical pres-

sure (bladder pressure) has an important role in transporting the urine through

the UV J into the bladder. Ureteral activity during filling and micturition is di-

vided in three phases: (a) phase of the free flow (b) phase of increased resistance

and (c) micturition phase [6]. The phase of free flow is when the volume of urine

in bladder is low. The flow of urine into the bladder is gradually stopped when

the intravesical pressure is around 27-37 mmHg.

When the bladder pressure is increased, the contraction frequency increases

and there is a greater amount of urine in the ureter due to the resistance of

ureterovesical orifice opening. When the bladder is distended, the resistance of

the uretrevesical junction is increased until transport of urine through this point

is stopped. As a consequence, there is an increase in retrograde waves and the

risk of retrograde flow is higher. Following micturition (bladder contraction),

there is an immediate slowing of peristaltic activity.

1.3.6 Effect of the Obstruction on Ureteral Function

An obstruction influences the flow through the ureter with a magnitude depen-

dent on the degree of obstruction, its duration, urine flow rate and occurrence

of infection. When an obstruction is present, there is an increase in the baseline

(resting) ureteral pressure and there is also a risk of retrograde of urine in the

system. It can also increase the dimeter and length of the ureter. If the kidney

continues producing urine, intraluminal pressure increases leading to an increase

in length and diameter of the ureter and an increase in the volume of the urine

inside the ureter. The peristaltic contraction reduces and the transport system
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becomes reliant on the hydrostatic forces generated by the kidney.

1.4 Pathology of the Ureter:

There are some abnormalities which can occur in the upper tract urinary system:

• Dysfunctional PUJ: Dysfunctional PUJ is mainly shown by the presence

of any abnormal flow occurring between the ureter and renal pelvis which

consequently leads to renal pelvis dilation. Dysfunctional PUJ is responsi-

ble for a considerable number of referrals to urologists, both paediatric and

adult. Figure 1.4 shows a case of hydronephrosis caused by to the reflux of

urine into the renal pelvic.

Figure 1.4: Conventional IntraVenous Urography image shows the hydronephrosis in left
ureter in case of disfuctionality of PUJ [26].

• Upper Urinary Rupture: Upper ureter rupture is considered to be an-

other serious problem. This abnormality is a perforation of the ureter and

causes a series of problems such as infection and subsequent renal impair-

ment. There are causative factors that induce ureteric rupture, including

a urinary retention, extra pressure on the ureteral wall [27, 28]. Figure 1.5
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shows the leakage of the left upper urinary tract due to the rupture of the

proximal part of ureter.

Figure 1.5: Postcontrast axial CT image shows leakage of radiocontrast media at the level of
the upper ureter [27, 28].

• UPJ obstruction: A kidney stone or tumour usually can lead to an ob-

struction in the urinary tract and the resultant back pressure within the

renal pelvis can be a source of more damage and deterioration.

• VesicoUreteral Reflux (VUR): V UR is another abnormality in the uri-

nary system. It is a back flow of urine from the bladder into the two ureters,

due to a malfunction in the valves in the vesicoureteic junction.

• Primary megaloureter due to an obstruction: A constriction at the

end part of the ureter leads to dilatation. The constriction can be anatomic

(anomaly of the muscle layer) or of a purely functional kind (normal histol-

ogy). Above the constriction the ureter is dilated, and the wall is thickened.

A primary megaloureter must be distinguished from a secondary which is

due to a valve or a vesico-ureteral reflux. An infection of the entire urinary

tract may cause an inflammation of the ureter which in acute situations;

causes the ureter to become enlarged in both width and length.

• Abnormal number of ureters: Partial doubling is a rare disorder of

a ureter which occurs due to an incomplete division of two ureters that
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fuse again at different levels in the pelvis, lumbar, iliac or intramural re-

gions. In incomplete doubling of the ureters there is a second renal pelvis

and the upper ureter has its orifice lower down on the bladder than the

lower ureter (Weigert and Meyer’s law). This abnormality often remains

asymptomatic.

• Retrocaval/Retroiliac ureter : This is another example of abnormalities

which in this case, the right ureter traces out an ”S” at the L4 level behind

the vena cava (retrocaval ureter). The right ureters course swings medially

over the pedicle of L3/4.

1.5 Peristaltic Motion and Diameter Variation

in the Contraction of the Ureter

1.5.1 Peristaltic Motions

Ureteral peristaltic motions are the results of a combination of complicated move-

ment of various differently aligned muscles in the ureteral wall. This is difficult

to study since it is hard to analyse an individual muscle cell in isolation from its

neighbours. The prevailing theory is that the circular muscles contract to cause

a narrowing of the ureteral lumen, whereas, the longitudinal muscles contract to

produce a shortening of the ureter. It is worth mentioning that the distribution

of the outer and inner layers of longitudinal and intermediate circular muscle cells

is not uniform along the ureter. These anatomical distributions produce varia-

tions in the forces that compress the ureteral wall and consequently can affect

the propagation of contractions [6].

The ureteral peristalsis is combined of complex multidimensional movements

of the ureteral wall. The ureteral wall contraction is not only changes in the

diameter of the ureter (the transverse movement), it is involved with the axial

movement, axial displacement and the rotation of the ureter. Osmon et al.[29]

analysed all these movements combined together by using the video microscopic
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technique. They showed the longitudinal muscles of the ureter contribute to

create a vacuum effect to let the ureter segment to be filled with urine, while

the circumferential muscles of the ureter aid to enclose the urine bolus within

the already expanded ureteral segment and then assists the urine bolus push

into downward to the urinary bladder. They also found that the synchronization

between the longitudinal and circular smooth muscle is a significant factor for

boules movement.

1.5.2 Diameter Variation in the Contraction of a Ureter

The change in size of the ureteral lumen during the passage of a contraction wave

was studied by Woodburne et al. [30] using a dog specimen. The technique was

based on the quick freezing of a section of the ureter during the peristaltic motion.

From microscopic observations of the lumina, it was found that the lumen cross

section had a stellate shape with five common points. Moderate urine flow rate

changes the shape to a four pointed star and with a greater flow rate, the lumen

becomes a square shape with a slightly curved sides. Finally, with full diuresis

the lumen becomes circular, see Figure 1.6.

Although the lumen is closed completely during a contraction, Wood-

burnes’study [30] on dog ureter, showed that the existence of a small triangular

lumen of about 0.12 mm2 during the resting state. The segment in full diuresis

(high flow rate) had a lumen of about 2 mm2. The muscular wall becomes thin

during the luminal enlargement. Both factors contribute to the enlarged lumen as

shown in micrographs from the study reproduced in Figures 1.7. These Figures

show the peristaltic enlargement and wave form over the above range of cross

sectional areas for a length of 3cm. Weinberg [31] studied the effect of diameter

of the ureteral catheter on both contractile amplitude and basal pressure level of

the ureter was discussed. It was shown that an increase in catheter size from 3.6

Fr to 5 Fr resulted in a 5 mmHg rise in the basal pressure with a simultaneous

increase of 35 mm Hg in the peak pressure amplitude. Fr is a unit on the French

catheter scale where 3Fr is equal to a diameter of 4/3 mm.
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Figure 1.6: Stages of ureteral opening [30]

Figure 1.7: Pictorial representation of one-half of a peristaltic wave in the ureter side view.
The lumen contracts to a cross sectional area of 0.12 mm2 and opens to a cross section area of
2 mm2 [30].
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1.5.3 Effect of Drugs on the Ureter

The effect of drugs on the ureteral function has been studied by many researchers.

Tilling et al. [32] used a microscopic imaging method to determine the effect of

drugs such as LY274614 and Oxybutynin on peristaltic movement in rats ureters,

in which peristaltic velocity and frequency, bolus length and direction of propaga-

tion were evaluated. The results showed that Oxybutynin caused a substantial in-

crease in the length of the bolus and LY274614 decreased pelvic pressure, ureteral

frequency and also increased the bolus length. Although, the imaging method

used in this experiment is suitable for the evaluation of the anatomical aspects of

the upper urinary system, the hidden structures within the renal pelvis are not

very clear and the fat around both the kidney and ureter reduces transparency.

Kim Davenport et al. [33] has investigated ureteral peristalsis motion under effect

of the relaxation drugs such as, Diclofenac, Nifedipine, Tamsulosin. Their re-

sult shows that the drugs did not stop the peristalsis motion but there is 25-60%

of reduction in ureteral contraction pressure and ureteral wall tension.

1.5.4 Measurements and Imaging of the Ureteral Peristal-

sis

Complexity of ureteral prestalsis process has led to various invasive and non-

invasive methods to investigate the urine dynamics and ureteric peristalsis,

namely; X ray screening, Dynamic Scintigraphy, Doppler ultrasonography,

Endoluminal Ultra Sonography, Implantable Magnetic Sensors, EMG,

Impedance measurement and external pressure transducers [34, 35, 36, 37, 38,

39]. While non-invasive techniques offer evidence on peristaltic frequency, they

are not able to produce useful data on the upper urinary urodynamic system and

consequently are not frequently used in clinical practice.

One invasive technique to investigate peristaltic motion is recording the uremet-

rogram or ureteric profilometry together with simultaneous cineradiography.

Such a recording is called uremetrogram or ureteric profilometry. If the pres-
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sure inside the ureter is measured with a catheter fixed in place, a recording of

the pressure variations with time is obtained.

Ureteric profilometry in both normal and pathologic ureters has been recorded

in-situ by means of pressure transducers. One of the first attempts was by Kiil [17]

who initiated pressure measurements using electronic strain-gauge pressure trans-

ducers attached to catheters inserted into the ureter. Figure 1.8 shows an example

of a human uremetrogram. This shows that, in general, the pressure in a normal

ureter remains at a constant level between 1 and 6 mmHg, known as the rest-

ing pressure. This pressure periodically increases to a peak of between 20 to 40

mmHg.

Figure 1.8: An example of an urometrogram (pressure [mmHg] vs. time [s]). The location of
recording is 5 cm from the ureteral orifice [17].

Shafik [40] studied ureteric pressure profilometry in a normal and pathologic

ureter.Two pressure profile patterns have been recorded in pathologic ureters in-

cluding Ureteroarrhythmic (a ureteral condition when there are irregular rhythm

peristalsis activities) and Silent (a ureteral condition when there is no peristalsis

activities). His results show that a ureter with a normal internal diameter (as de-

tected by an excretory urogram) might be ureteroarrythmetic which could disturb

urine transport. This work also confirms, using a larger number of patients, that

ureteric pressure profilometry is a diagnostically useful tool for various pathologic

conditions such as strictured or refluxing ureters.

Tilling et al. [32] used microscopic imaging of the ureteral peristalsis on rats

during cystometry. They investigated peristaltic velocity, frequency, bolus length,

and direction of bolus propagation using indigo carmine for contrast. The velocity

of the bolus was computed by measuring the time taken for a bolus to travel along
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a measured distance.

Figure 1.9 shows two micrographs from this study. Image (1) shows the bolus at

the beginning of the PUJ and image (2) shows the bolus located in the region

of the cranial abdominal vessels. The two images were then arithmetically added

and the distance between the bolus positions was measured. The micrographs

shown in Figure 1.9, indicate a time difference of 0.49 s between two frames and

a 5.10 mm distance traveled by the bolus, yielding a velocity of 10.41 mm/s.

Figure 1.9: Video microscopy of ureteral peristaltic function in rats for calculation of bolus
velocity [32].
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Young [41] introduced an intraluminal method for pig and human ureters to

study three parameters: intraluminal pressure, conduction velocity and peristaltic

frequency. Table 1.1 shows the mean ureterodynamic parameters where P1 and

P2 are intraureteral pressures at the tip and proximal transducers, respectively.

Figure 1.10 shows the ureteral recording from pig experiments. It is worth men-

tioning that intraluminal devices disturb the normal function of a ureter and that

the catheter might even, completely block the ureter. Such a method therefore

cannot provide completely reliable results.

Table 1.1: Mean ureterodynamic parameters [41].
Parameter Human (n=3) Pigs (n=6)

Peristaltic interval (sec) 24 (1430) 16 (5.529)
Conduction velocity (cm/sec) 2.4 (1.72.9) 1.2 (1.11.3)
Intraureteral pressure P1 (cmH2o) 11 18
Intraureteral pressure P2 (cmH2o) 21 29

Figure 1.10: Ureteral recording from pig experiments [41].
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1.6 Mechanical Properties of a Ureter

In order to simulate a computational model of a ureter, one first needs to exam-

ine its mechanical properties such as the stress/strain relationship of the wall.

Watanabe et al. [42] investigated the resistance of a rupture in the transverse

and longitudinal directions. Tensile tests on a human ureter were performed on

samples around 5mm in diameter and a depth of 1mm. It was stretched with a

constant loading speed of 5mm/min.

In Figure 1.11(a), phase one shows the relationship of the stress and stain pro-

portionally without any tissue damage. There was a partial macroscopic rupture

at phase two and some wavering of the curve was visible. In phase three, there

was a decrease in stress with increasing strain. The tension in longitudinal di-

rection was around 2.0±0.21 kgf/cm at the first yield point and 2.8±0.4 kgf/cm

at the second yield point. To perform an expansion test, a physiological saline

solution was injected into the ureter through a needle at a constant speed of 1.25

mL/min. Figure 1.11(b) shows an internal volume-pressure curve. The average

tension of the ureter at the leak point was found to be 0.71 kgf/cm. Both the

tension and expansion tests confirmed that ureter injury first occurs along the

transverse direction rather than that longitudinal direction.

(a) (b)

Figure 1.11: (a) Stress strain relation for the human ureter, (b) Graphical results from the
expansive testing of the ureter [42].
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Yin et al. [43] studied the mechanical properties of isolated mammalian ureteral

segments including the human ureter. In their studies, the mechanical properties

in longitudinal direction are determined by using isolated segment of intact ureter

subjected to simple elongation and the properties in circumferential direction are

determined by using slit ring segments subjected to simple elongation. The stress

and strain curve from uniaxial elongation of longitudinal segments for ureters are

illustrated by typical results shown in Figure 1.12.

Figure 1.12: Stress /strain curve of human and animal ureter [43].

They also studied the stress relaxation test and creep test on human ureter. In

stress relaxation test, a decrease in force as function of time was recorded after

the specimen was stretched at a moderate strain rate to a desired strain level.

In the creep test, elongation as function of time was recorded after an imposed a

step constant stress on specimen. It is evident from curve shown in Figure 1.12

that the stress strain relationship for the ureter is nonlinear and that stress is

not only depended on the strain but also strain history. The history depended

part is time depended and it is related to the hysteresis, stress relaxation and

creep. Fung [44] represents this curve as an exponential functions as presented
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in Eq. 1.1:

∆Ti = Ti+1 − T i = (eα∆λ

− 1)(Ti + β) (1.1)

where λ is the ratio of the instantaneous length divided by the reference length

which will be referred to as the longitudinal stretch ratio or simply stretch, T is

the stress,

α, β, T∗, and λ∗ are experimentally determined constants. T∗ and λ∗ are a

pair of specified stress and strain levels, and α and β are the elasticity parameters

in the range of λ tested. If one plots dT/dλ vs. T, α represents the slope of the

line and β represents the intercept on the T axis.

Since the stretch ratio λ is dimensionless, the constant α is also dimensionless,

i.e., it will be the same in any consistent units of measurement. The units of β is

stress, such as dynes per square centimeter or grams per square centimeter. The

constants α and β are undoubtedly related to the structure of the tissue-to the

details of how the collagen and elastin fibers or fibrils arranged and coiled in the

ground substance and how they interact at the points of contact with themselves

or with each other-as well as to their intrinsic elasticity.

The higher the collagen content and the straighter the fibers the larger is the

value α. The product αβ represents the elastic modulus dT/dλ at zero tensile

stress (T = 0). If the material is intrinsically linear, so that it obeys Hooke’s

law of elasticity, then α → 0 but β becomes so large that a αβ remains a finite

constant.

Although the constitutive equation that mathematically describes the contrac-

tion process of smooth muscles by considering all aspects is still unknown, the

functionality of mechanical properties of ureter wall is generally represented by

three elements model in many studies [45, 46].

Apter and Mason [45, 46] formalized the viscosity properties of muscle simply as

the three parameter model of Figure 1.13. The model had two elastic moduli and
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one viscosity. The three parameters are necessary to describe stress relaxation

curve. The spring represents any energy conserving elements in muscle and the

dash pot represents energy dissipating elements. Because muscle will stress-

relaxes at all levels of contractile tone, these three components are necessary

and sufficient to characterize muscle at one particular level time. However if

the tone becomes higher the two elastic moduli will be higher .The tendency

to conserve energy is higher because of higher tone and the viscosity coefficient

changes because the muscle has contracted.

Figure 1.13: Springs E1 and E2 and dashpot η to represent the energy conserving and energy
dissipating characteristics of muscle. The arrows indicate there are variables; l0 is upstretched
length of the specimen.

According to their model, oscillating muscular contractions reflects oscillating

membrane permeability, only if the movement of ions through the membrane is

responsible for the changes in the macromolecules levels. The model is depicted

as a three parameter Kelvin model, where the two springs represent the energy

conserving elements, E1 and E2 of muscle and the dashpot represents energy

dissipating elements, η. The differential equation of this model and of the muscle

is given as Eq. 1.2:

σ +
η

E2
σ̇ = E1ε + (E1 + E2)

η

E2
ε̇ (1.2)
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where σ, σ̇, ε and ε̇ are stress, stress rate, strain and strain rate respectively.

The elements concerned with conserving and dissipating energy as well as the

unstrained length are not constant, but are thought to depend of the levels of

muscular macromolecules in a relaxed form (N) and in a contracted form (NA)

in the simplest, linear way. Thus with E representing E1 and E2 or α or l0.

E = α(A) + β(NA) (1.3)

Where α and β are both constants. The rate at which the ion N is available

to convert A to NA according to the reaction

N + A ↔ NA. (1.4)

will depend on the concentration of n the ion N or:

ṅ = k2ε− k3n (1.5)

In the absence of the electrical simulation ṅ is the rate change of n. the

Eq. 1.5 is the simplest representation of the movement of the ions across a mussel

membrane which depolorises on strain.

Apter’ work was one fundamental model of viscoelastic ueretral behaviour

which made it possible to quantify ureteral wall properties in more detailed fash-

ion than before.Their model however, failed to understand the fact that the oscil-

lating membrane potential is not always associated with contractions. The model

also did not consider the All or Nothing principle by which some a threshold level

of selected ions,N, can set off sudden conversion of the macromolecules from a

relaxed state (a) to a contracted state (NA).
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1.7 Modelling of a Typical Ureter

Modelling uretral peristaltic transport and its potential application in the field of

medicine has received much attention in recent years. A wide range of analytical

studies [47] as well as numerical studies (Computational Fluid Dynamic (CFD)

& Finite Element (FE)) [48, 49, 50] have been conducted by different research

groups. One of the main goals has been to determine the flow behavior in a

tube and determine the mechanism behind any consequent pathological condi-

tions such as reflux or trapping. The ureter’s geometry and also the governing

differential equation and boundary conditions are among the factors to be con-

sidered in ureteral modelling. Parameters such as amplitude ratio, wave number,

Reynolds number, pressure difference and flow rate are also necessary to derive

a mathematical/numerical model of peristaltic motion.

Shapiro et al. [51] investigated peristaltic flow at small Reynolds numbers and

with long waves. The effect of the amplitude ratio, from zero to a full occlusion

were studied, for both plane and axisymmetric geometries. Their results showed

that the theoretical pressure rise per wavelength decreased linearly with increas-

ing time-mean flow rate. An experiment with a quasi-two-dimensional apparatus

confirmed the theoretical values.

Manton [48] investigated the flow behavior from a long peristaltic wave of an

arbitrary shape using an asymptotic expansion for low Reynolds number flow.

They use the concept of ureteral rate-of-working, which is defined as the energy

required to pump fluid through the tube by peristalsis in terms of the motion of

the tube wall against the radial force exerted by the fluid on the wall.

The relationship between the mean pressure gradient and volume flux was

investigated for the various rate-of-working and shear stress level. They showed

that reflux occurred whenever there was an adverse mean pressure gradient, in-

dependent of wave shape, and proposed a formula to estimate the amount of

reflux based on the magnitude of the adverse pressure gradient.

Zien et al. [49] also studied the mechanisms behind reflux and showed that re-
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flux would not occur even in the presence of an adverse mean pressure gradient of

a certain magnitude if there was an additional pressure gradient which increased

the mean flux volume.

Srivastava et al. [50] carried out further investigations into peristaltic transport

of fluid of variable viscosity in a non-uniform tube. They showed that the pressure

rise decreased as the fluid viscosity decreased when flow rate was at zero. They

also showed that it was independent of viscosity variation at a fixed flow rate,

and that it increased if the flow rate was further increased. Also, for a constant

pressure the flow rate increased when the viscosity of the fluid decreased.

Takabatake et al.[52, 53] used a finite difference method to study peristaltic flow

in a circular cylindrical tube and found greater pumping efficiency for cylindrical

tubes than for two dimensional plane channels.

Table 1.2 Lists the work carried out using numerical solutions based on the

Navier Stokes equations to model peristalsis motion.

Table 1.2: Summery of analytical studies of peristaltic flow.
References Fluid type Reynolds N Wave shape

Shapiro et al. [51] Newtonian 0 s
Zien et al. [49] Newtonian Small s
Manton [48] Newtonian Small Arb

Vahidi et al. [54] studied a computational modelling of the ureteral wall. In

their study, they used the Arbitray LagrangianEulerian (ALE) method in order to

create an interaction between the fluid and structure domains. In their model, a

solid wall moving along a rigid tube was used to model the ureteral peristaltic flow

and the results showed that when the wave moved downwards, the possibility of

backflow decreased. They showed that backflow occurred during the longitudinal

propagation. However, in their model the anatomically correct shape of the ureter

has not been simulated. It must be noted that the loads causing full closure of

the ureteral wall are highly affected by the shape of the cross-section.

Kumar et al. [55] used the finite element method to investigate the influence

of the magnitude of the Reynolds number and the wave amplitude and length

on the urine flow. Their results indicated that progressive sinusoidal waves with
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high amplitude and low wave numbers caused peristaltic flows with high wall

shear stress variations and that an applied external magnetic field resulted in a

decrease in wall shear stresses.

There have been other studies [51, 53, 56] in which the finite volume method has

been used to numerically simulate incompressible fluid in urine transport. Using

this approach, Xiao et al. [56] considered a wide range of Reynolds numbers, wave

amplitudes and wave lengths in their computational model. Their results were in

good agreement with the theoretical work of Shapiro et al. [51] and the numerical

results of Takabatake et al. [53]. They showed that for small wave lengths, the

inertial force can affect the peristaltic flow more than the amplitude ratio.

They also showed that the velocity profile changed from being parabolic to

one with flow separation and a reversed velocity when the Reynolds number in-

creased to 1. Also, with regard to the effect of Reynolds number on the pressure

distribution, they suggested that the level of influence of inertial effects on the

flow field increased with Reynolds number.

Table 1.3: Summary of computational studies of peristaltic flow.
References Fluid type Reynolds N Geometry Method

Akabatake et al. [53] Newtonian Moderate Axisym Finite Difference
Kumar et al. [55] Newtonian 10-100 2D-plane Finite Element
Xiao et al. [56] Newtonian 0.01-100 Axisym Finite volume
Vahidi et al. [54] Newtonian Low Axisym Finite Element

Experimental studies on ureter deformation and its features have also been of

interest to many researchers and there is a vast literature describing experimental

models to mimic the ureteral peristaltic motion. Most of published experimen-

tal research describes work carried out using flexible rubber tubes with rubber

materials which are a popular way to model the viscoelastic walls of the ureter.

One such experiment is the simulation of physiological ureteral peristalsis using

an enlarged model of the ureter with a lobe shaped lumen with silicon proper-

ties [57]. They focused on the influence of thickness and luminal position of the

catheter on the measured pressure.
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An experimental study was also carried out by Jimnez-Lozano [58]. A linear

peristaltic pump on a latex rubber tube was contracted locally by an external

planar surface designed to simulate the contraction of the ureter. By serial com-

pression of the latex tube, a wave motion was produced. It showed a linear

relationship between the wave speed and the flow rate. The study also investi-

gated the effect of passing stones through the ureter to study the transportation

of large particles in the tubes and their mean transit time of these particles.
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1.8 Aims and Objectives

It is clear that because of the complexity of the physiological phenomena, a com-

prehensive simulation of every aspect of the urinary system is extremely difficult.

In most research a series of basic assumptions are used for simplicity in order

to model the ureter and its peristaltic motion. Actual geometrical parameters,

biomechanical properties, the origin of contractions and its multi-dimensional

movements are important factors which are not considered in the majority of

existing works. Modelling these factors may however allow researchers to bet-

ter describe the mechanisms behind ureteral pathology, leading to more effective

diagnosis and treatment. Up to the present, Vahidi’s studies [59] are the cur-

rent state of art in computational modelling of ureter. However, in their model

the shape of the ureteral cross section was not anatomically correct and the

model for ureteral muscle contraction was also simplified. The aim of the present

study is to computationally model the ureteral system in a manner that accu-

rately mimics its dynamic functionality. This model will be able to replicate

the peristaltic movement of an actual ureter for a variety of physiological and

pathological conditions. The objective of this research will be addressed using

our in-house computational fluid dynamic platform, known as CgLes, to model

the urine flow, coupled with our in-house finite element platform, known as Y

code to model the non-linear viscoelastic ureteral wall. One of the advantages of

the present study is the use of the Immersed Boundary Method (IBM) to sim-

ulate Fluid Structure Interaction (FSI) in Cgles-Y code. It is worth mentioning

that the ALE method, used in Vahidi’s studies [59] are not recommended for a

highly deformable solid due to the high probability of divergence of the solver.

Compared with the ALE method, the IBM method is highly robust when solving

complex FSI models with irregular boundaries, especially for highly deformable

solids such as the ureter during peristaltic movement. A full description of the

FSI method will be described in the next chapter.
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1.9 Outline of the Thesis

A brief outline of the thesis is presented below.

Chapter 2

Our in-house code will be introduced and the governing equations for both the

fluid (Cgles) and the solid (Y ) parts will be discussed and finally the concept of

the Immersed Boundary (IB) in order to couple the two codes will be presented.

Chapter 3

The difference between the linear and non-linear tensile properties of the

ureteral wall will be discussed using computational and analytical analysis on

a thick walled tube model.

Chapter 4

Firstly the development of an actual anatomical shape of the ureter will be

presented, then a variety of approaches to optimise the mesh resolution, given

the existing computational resource limitation, will be discussed.

Chapter 5

A computational simulation of the ureter peristaltic contraction will be pre-

sented. An intra-abdominal pressure model, as well as two separate contraction

models, will be introduced and finally, the results of the pressure over time will

be validated against the clinical data.

Chapter 6

A comprehensive study will be conducted on the ureteral peristaltic move-

ment with focus on the urodynamic parameters and urodynamic responses under

different pathological conditions.

Chapter 7

The conclusions, limitations and future works will be discussed.



Chapter 2

Methodology

2.1 Motivation

The simulation of a urinary system model which has been studied in this research

is a Fluid-Structure Interaction (FSI) problem. Due to the nonlinear nature of

such problems, they cannot be solved analytically and experimental analysis is

restrained with its inherent limitations. The numerical study of FSI problems,

are used in a wide variety of research areas. There are many different methods

such as fictitious domain method [60], non-boundary fitting methods [61], Ar-

bitrary Lagrangian Eulerian (ALE) methods [62, 63, 64] to simulate the FSI

problems.

Based on the mesh types the FSI methods can be fallen into two main cate-

gories [65].

• a) Conforming mesh methods

• b) Non-conforming mesh methods.

In conforming mesh methods, the interface between fluid and solid is considered

as a physical boundary whose movement/deformation updates the fluid mesh. It

29
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requires to solve the fluid flow first at a given solid interface. Then the resulting

fluid field causes an update to the structure interface based on the prescribed

movement or the force from the flow. When the boundary condition for both

force and displacement is satisfied at the interface then the solution can be moved

to the next time step. Although, these methods are easy to be used with low

computational cost, the re-meshing procedure is very time consuming for complex

geometries. On the contrary, in the non-conforming mesh methods the location

and boundary condition of the solid-fluid interface are treated as constraints

imposed on the model equations thus no re-meshing is required [65].

One of the most widely used non-conforming mesh methods is the immersed

boundary (IB) method. Peskin [66] introduced and developed the IB method

for the first time to simulate blood flow in cardiac systems. The main idea

of the method is to use Eulerian and Lagrangian representation for fluid and

immersed solid boundary respectively. A singular force is imposed on the fluid

from immersed boundary nodes while they are moving at the local fluid velocity.

Then using a suitable discrete delta function, as an approximation to the Dirac

function, the solid-fluid interaction can be modelled. The method has been used

in many applications in a great variety of fields such as heart blood flow [66, 67,

68], flow in collapsible tubes [69], a renal arteriole [70].

In this work, due to complexity of the urinary system, the interaction between

the ureteral wall and the urine is modelled by IB method which has been im-

plemented by Ji et al.[71] by combining two pre-existing in-house CFD and FE

solver codes. These solvers are called Cgles [72] and Y -code [73] for fluid and

solid simulation respectively.

CgLes is a three-dimensional fluid solver with second order accuracy in both

time and space. The Navier-Stokes equations are solved using the projection

method to decouple flow velocities and pressure. They are discretised by a second

order Adam-Bashforth method in terms of time. Spatial derivatives, diffusion

and convection terms are approximated using the second order finite volume

method in a rectangular uniform grid.

Y -code is a solid solver using an explicit finite element method for the defor-
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mation and movement of a solid. The equation of motion is solved by an explicit

time integration scheme based on a central difference method.

In this chapter, a brief introduction of fluid and solid governing equations

and the numerical methods used in Cgles and Y -code are presented. Moreover

a detailed description of the immersed boundary (IB) method used in current

research is explained.

2.2 Fluid Solver (Cgles code)

2.2.1 Governing Equations

In Computational Fluid Dynamics (CFD), the Navier-Stokes equations are

the most commonly used governing equations describing the balance of mass,

momentum and energy in fluid flow. The relationship of the fluid motion and the

resulting pressure can be described using a set of partial differential equations.

In this study, urine is modelled using an incompressible flow with a low Reynolds

number which satisfies the incompressibility assumption.

Since the density (ρ) for an incompressible fluid is constant and consequently

(∂ρ
∂t

= 0), the mass continuity equation which is a constraint on the divergence of

the flow field can be presented as Eq 2.1:

∂ρui

∂xi

= 0 (2.1)

Where u is the velocity and the subscript i is the Einstein′s notation, ranging

from 1 to 3 to represent different direction and velocity components.

In the Navier-Stokes equations, the momentum equations are obtained by

balancing the convective acceleration, internal stresses and external forces for each

control volume using Newtons second law. The momentum equation (Eq:2.2)

considering the mass continuity constraint (Eq:2.1) is presented in its differential
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form:

∂ρui

∂t
+

∂ρuiuj

∂xj

= −
∂p

∂xi

+ µ[
∂τij

∂xj

] + fi (2.2)

where p is the pressure, fi is the body force, τij is the component of the viscous

stress tensor and µ is the dynamic viscosity which is constant. In incompressible

flow, a constant kinematic viscosity can be defined in Eq 2.3:

ν =
µ

ρ
(2.3)

In this study, the temperature of urine is considered constant and therefore

no energy equation is solved. Due to the incompressibility and assumption of

constant dynamic viscosity of the urine (not being a function of temperature),

the energy equation is decoupled from the continuity and momentum equations.

2.2.2 Finite Volume Method

The three commonly used methods to numerically solve the Navier-Stokes equa-

tions are Finite Difference, Finite Volume (FV ), Finite Element (FE) methods.

With the finite difference method, each partial derivative in the governing equa-

tions is expressed by an equivalent finite difference approximation. It implies

that the variable values (e.g velocity and pressure) from neighboring nodes are

used to approximate the desired variables at certain node. Eq 2.4 describes an

approximation of the partial derivative Eq 2.1 for a one-dimensional problem.

∂ui

∂xi
= lim

∆xi→0

uxi+∆xi − uxi

∆xi
(2.4)

In the FV method, the computational domain is divided into a number of

control volumes where the variable is positioned at the centre of each control

volume. Then the differential forms of the governing equations are integrated
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over each control volume. By application of the divergence theorem for derivative

terms, the volume integral can be converted into surface integrals at each volume

cell face to calculate the flux change over the whole control volume. A description

of the discretization will be presented further in the next sections.

In Cgles, the Navier-Stokes equations are discretised on a fixed staggered

Cartesian grid by the finite volume approach. In the finite volume method,

volume integrals in a partial differential equation that includes a divergence term

are transformed to surface integrals by applying the divergence theorem. These

terms are then assessed as fluxes at the surfaces of each finite volume. These

methods are described as conservative because the flux entering a given volume

through a surface is identical to that leaving the adjacent volume. The method

is used in many computational fluid dynamics packages.

The integral form of the simplified incompressible continuity equation can be

written in the form of Eq 2.5:

∫

v

∂ui

∂xi

dv = 0 (2.5)

Eq 2.5 indicates the net flux change of Control Volume (CV) is zero which

constrains the sum of the flux through each boundary face, as given in Eq 2.6.

∫

s

ui.(nids) = 0 (2.6)

where n is the normal vector to the face (s) of the control volume. Similarly

the momentum equation can be described as:

∫

v

∂ui

∂t
dv +

∫

v

∂ui∂uj

∂xj

dv = −

∫

v

1

ρ

∂ui∂uj

∂xj

dv +

∫

v

∂τij

∂xj

dv +

∫

v

fi

ρ
dv (2.7)
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∂ui

∂t
∆V +

∫

s

uiujnds = −
1

ρ

∂P

∂xi
∆V +

∫

s

τijnds +
fi

ρ
∆v (2.8)

2.2.3 Mesh Construction and Indexing

The computational domain is divided into a finite number of discrete points at

which the governing equations can be solved. A structured mesh is used in this

model and its connectivity to the grid points can be expressed by a two or three

dimensional array. Figure 2.1 shows that the uniformly-distributed rectangu-

lar mesh used in the simulation of the flow domain in this work can be easily

represented by a 2D array of 64 × 64.

Figure 2.1: The structured grid used in current simulation.

The advantage of this mesh is that it’s generation is easy and it requires less

storage compared with other types of mesh. This grid setting also takes full

advantage of the IB method as the calculation is carried out on the whole com-

putational domain and only requires the coordinates of the IB points to deter-

mine the grid cell it lies in and make further corrections. Figure 2.2 shows the

Cartesian grids used by the IB method.

In Cgles code, the staggered grid variable arrangement is used. In the stag-

gered mesh, each variable is stored in its own sub grid shifted half a cell in one

or more directions relative to the other grids. Each pressure node is in the center
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Figure 2.2: The Cartesian grids used by IB method.

of each cell and flow is described as flow though orthogonally adjacent cell walls,

as shown in Figure 2.3. The advantage of the staggered grid is to reduce any

oscillations in pressure due to calculation of the pressure at cell centers. On stag-

gered grids, the pressure gradient at the cell face is described by Eq 2.9 where

P (x + ∆x
2

, y + ∆y
2

, z + ∆z
2

) is the pressure at the node located at the centre of

the control volume and ∆x, ∆y, ∆z are the grid spacings in the three spatial

dimensions.

∂

∂x
P [x, y+

∆y

2
, z+

∆z

2
] =

P [x + ∆x
2

, y + ∆y
2

, z + ∆z
2

] − P [x − ∆x
2

, y + ∆y
2

, z + ∆z
2

]

∆x
(2.9)

The gradient of the pressure in each direction in Eq 2.9 corresponds with the

location of u, v, w velocity and thus can couple pressure perfectly with veloc-

ity [74].

Indices are assigned to the nodes instead of their coordinates. All the grid

points are identified by indices i, describing x position, j, describing y position,

and k, describing z position. In Cgles, each index variable has an associated
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Figure 2.3: Fluid variable in the staggered grids.

control volume and its location can be calculated using the indices i, j and k as

shown below in Eqs(2.10, 2.11, 2.12).

ui,j,k = u(x0 + i.∆x, y0 + (j +
1

2
).∆y, z0 + (k +

1

2
).∆z) (2.10)

vi,j,k = v(x0 + (i +
1

2
).∆x, y0 + j.∆y, z0 + (k +

1

2
).∆z) (2.11)

wi,j,k = w(x0 + (i +
1

2
).∆x, y0 + (j +

1

2
).∆y, z0 + (k.∆z) (2.12)

Pi,j,k = P (x0 + (i +
1

2
).∆x, y0 + (j +

1

2
).∆y, z0 + (k +

1

2
).∆z) (2.13)
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Where (x0,y0,z0) is the location of the left bottom corner vertex of the first

grid cell as shown in Figure 2.3.

2.2.4 Discretization in Cgles Code

The FV governing equations derived above can be discretized in space by means

of a uniform Cartesian grid. For a 2D control volume of mass, shown in Figure 2.4,

dx and dy represent the length of the edge in each direction. Thus, the continuity

equation can be give as Eq 2.14.

Figure 2.4: 2D control volume of mass.

∫

s

ui(nids) = ui+1,jdy − ui,jdy + vi,j+1dx − vi,jdx = 0 (2.14)

The continuity equation over a mass control volume for a 3D case, with indices

of i, j, k can be expressed as:

∫

s

ui(nids) = (ui+1,j,k−ui,j,k)dydz+(vi,j+1,k−vi,j,k)dxdz+(wi,j,k+1−wi,j,k)dxdy = 0

(2.15)

For the momentum equation (Eq 2.15), for i = 1, 2, 3 respectively, each of

the terms in that equation characterize for an integrated value over a similar u-
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control volume. For space discretization, the control volume was chosen for ui,j,k

, where i, j, k is the index showing the location of each variable on the staggered

grid and ui,j,k, vi,j,k, wi,j,k represent the velocity in three directions respectively.

2.2.4.1 Convective Term

From Eq 2.15, the convective acceleration over a velocity control volume can be

defined as:

∫

v

∂(uiuj)

∂xj
.dV =

∫

s

(uiuj)nids (2.16)

On a 3D rectangular Cartesian grid, the convective acceleration over the u-

control volume for ui,j,k can be discretised in space using the averaged values on

each cell face of the control volume as presented in Eq 2.17:

∫

s

(uiuj)nids =

∫

uudydz +

∫

uvdxdz +

∫

uwdxdy =

(ui+ 1

2
,j,kui+ 1

2
,j,k − ui− 1

2
,j,kui− 1

2
,j,k)dydz+

(ui,j+ 1

2
,kvi− 1

2
,j+1,k − ui,j− 1

2
,kvi− 1

2
,j,k)dzdx+

(ui,j,k+ 1
2
wi− 1

2
,j,k+1 − ui,j,k− 1

2
vi− 1

2
,j,k)dydx

(2.17)

The velocities on the cell face can be approximated using the averaged value

from neighbouring velocity grids as presented in Eq 2.18:

ui− 1
2
,j,k = 0.5 × (ui−1,j,k + ui,j,k) (2.18)
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2.2.4.2 Pressure and Viscous Stress Terms

For each velocity control volume on a staggered grid, the pressure nodes are on

the cell faces and the pressure gradient at the cell centres can be directly obtained

using the face value. Then, the integrated pressure term over the whole u-control

volume can be written as Eq 2.19:

−

∫

v

1

ρ
pnids = −

1

ρ

Pi,j,k − Pi−1,j,k

dx
dxdydz (2.19)

The deformation rate is expressed as Eq 2.20:

eij = eij + eij =
1

2
[
∂ui

∂xj

+
∂uj

∂xi

−
2

3
5 .ujδij] +

1

3

∂ur

∂xr

δij (2.20)

Where eij is the volume constant deformation rate and eij is the uniform rate

of expansion. δij is the Kronecker’s delta.

For an isotropic fluid the viscous stress tensor is a linear function of eij and eij

as shown in Eq 2.21

τij = λeij + 2µeij (2.21)

Whereas for a Newtonian fluid, λ is second viscosity which is often considered

zero, µ is dynamic viscosity which is assumed to be constant for the current study.

The viscous stress tensor can thus be expressed as:

τij = 2µeij = µ[
∂ui

∂xj
+

∂uj

∂xi
−

2

3
5 .ujδij] (2.22)
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From the continuity equation, Eq 2.22 reduces to Eq 2.23:

τij = µ[
∂ui

∂xj

+
∂uj

∂xi

] (2.23)

The stress acting on the surface of each control volume depends on the surface

orientation and can be expressed as a product of the stress tensor τ and the

surface normal vector −→n as shown in Eq 2.24.

∫

5τ.dV =

∫

s

τijnids =

∫

s

µ[
∂ui

∂xj
+

∂uj

∂xi
]nids (2.24)

For instance in a 3D u-control volume, the integrated viscous stress term can

be expanded, as presented in Eq 2.25:

∫

s

µ[
∂ui

∂xj
+

∂uj

∂xi
]nids =

∫

µ[
∂u

∂x
+

∂u

∂x
]dydz+

∫

µ[
∂u

∂y
+

∂v

∂x
]dxdz+

∫

µ[
∂u

∂z
+

∂w

∂x
]dxdy

(2.25)

In Eq 2.25 the terms ∂u
∂x

,∂u
∂y

,∂u
∂z

describe the velocity gradients at the centres of

the faces of the control volume cell, so the discretization can be written as:

∫

µ[
∂u

∂x
+

∂u

∂x
]dydz = 2 × µ(

ui+1,j,k − ui,j,k

dx
−

ui,j,k − ui−1,j,k

dx
)dydz (2.26)

∫

µ[
∂u

∂y
+

∂v

∂x
]dxdz =

µ(
ui,j+1,k − ui,j,k

dy
+

vi,j+1,k − vi−1,j+1,k

dx
)

− (
ui,j,k − ui,j−1,k

dy
+

vi,j,k − vi−1,j,k

dx
)dxdz (2.27)
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∫

µ[
∂u

∂z
+

∂w

∂x
]dxdy =

µ(
ui,j,k+1 − ui,j,k

dz
+

wi,j,k+1 − wi−1,j,k+1

dx
)

− (
ui,j,k − ui,j,k−1

dz
−

wi,j,k − wi−1,j,k

dx
)dxdy (2.28)

2.2.4.3 Other Forces

External forces (fi) include gravity, electromagnetic force, and centrifugal force.

In a numerical simulation, this kind of force is usually stored at the centre of the

continuity control volume the same as the pressure.

2.2.5 Boundary Conditions

2.2.5.1 Inlet and Outlet

The correct boundary conditions must be specified at each time step to correctly

solve the momentum and continuity equations. In this work, the pressure inlet

and outflow are used to define the inlet and outlet boundary conditions. The

urine flow is simulated such that it is driven by the pressure difference. To do so,

fixed pressure values are defined at the inlet and outlet and zero gradient velocity

boundary condition is applied on both the inlet and outlet.

• Inlet boundary condition:

p = pinlet

∂u
∂n

= 0, ∂v
∂n

= 0, ∂w
∂n

= 0, n is the normal vector to the boundary

• Outlet boundary condition:

p = poutlet
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∂u
∂n

= 0, ∂v
∂n

= 0, ∂w
∂n

= 0

2.2.5.2 Wall Boundary Conditions

There are two types of boundary conditions used to define a solid wall: free-slip

and no-slip boundary conditions. A no-slip boundary is when the velocity of the

fluid set to zero at the wall and there is no flow across the boundary. For the free

slip boundary, the gradient of velocity parallel to the wall is set to zero in order

to have a stress free condition on the wall. In this work, a free slip boundary

condition is used for the outer boundary and a no slip boundary condition on the

boundary between the fluid and solid.

2.2.6 Non dimensionalization of Governing Equations

In Cgles code the non-dimensional governing equations are implemented. In

order to obtain non-dimensional governing equation, the following substitutions

are made in Eq 2.29 using reference velocity uref and reference length Lref .

ux = u∗
xuref

p = p∗u2
refρ

t = t∗tref = t∗Lref/uref

x = x∗Lref

fx = f∗
xρu2

ref/Lref

(2.29)

Where the variables with superscript star are the dimensionless quantities. By

implementing the above substitution in the momentum equations, the following

equation (Eq 2.30) can be obtained.
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∂u∗
x

∂t∗
+ u∗

x

∂u∗
x

∂x∗
+ u∗

y

∂u∗
x

∂y∗
+ u∗

z

∂u∗
x

∂z∗
=

∂p∗

∂x∗
+

ν

urefLref

[
∂2u∗

x

∂x∗2 +
∂2u∗

x

∂y∗2 +
∂2u∗

x

∂z∗2
] + f∗

x

(2.30)

The dimensionless Reynolds number is also expressed as: Re =
ρuref Lref

µ
=

uref Lref

ν

2.2.7 Incompressible Projection Method (IPM)

The projection method was originally introduced by Chorin [75] and Temam [76].

For an incompressible Newtonian fluid, the momentum equations can be written

as follows in which an explicit time marching scheme is used for illustration:

un+1 − un

∆t
+ un. 5 un = −5 pn+1 + 5(ν(5un) + (5un)

T
)) + fn (2.31)

(
∂u

∂t
)
n

=
un+1 − un

∆t
(2.32)

where n and n + 1 refer to the time step level.

The projection method is based on the two stage fractional scheme, which

means several calculations steps are performed in each time step to approach the

final result. In the first stage a predictor step for the intermediate velocity u∗ is
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computed by ignoring the pressure term, as presented in Eq 2.33.

u∗ − un

∆t
+ un. 5 un = 5(ν(5un) + (5un)T )) + fn (2.33)

Since all the terms are known at time step n, the Eq 2.33 can be solved and the

value of u∗ is obtained. Then, in the corrector step, the velocity un+1 is obtained

by using Eq 2.34 in which pn firstly needs to be solved.

un+1 = −5 pn.∆t + u∗ (2.34)

In order to find pn, the Poisson equation can be derived by subtracting the

momentum equations with regards to u∗ and un+1 and taking the divergence of

both sides:

1

∆t

∂ui
n+1

∂xi

+
∂ui

∗

∂xi

+
1

ρ

∂2pn+1

∂xi
2

= 0 (2.35)

By applying 5.un+1 = 0, the following equation is obtained.

52pn =
5.u∗

∆t
(2.36)

2.2.7.1 Time Stepping Schemes

When the final velocity is obtained for a given time step, the scheme

marches/steps to the next time step and the whole projection-correction pro-

cess is restarted until the desired wall time criteria have been met. In the Cgles

code, the 2nd order Adams-Bashforth time stepping scheme is used because this

method is known to provide higher accuracy than other methods.

By applying Adams-Bashforth, the momentum equation in Eq 2.31 can be
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discretized in time as shown in Eq 2.37,

un+1 = un + dt(
3

2
RHSn −

1

2
RHSn−1 −

3

2
5 pn +

1

2
5 pn−1) (2.37)

where the Right Hand Side (RHS) stands for the convective and viscous term

and can be expanded as in Eq 2.38:

RHS = (ν 52 un + (5un)T )fn (2.38)

and the intermediate velocity can be obtained by Eq 2.39:

u∗ = un + dt(
3

2
RHSn −

1

2
RHSn−1 +

1

2
5 pn−1) (2.39)

Then the Poisson equation can be drived as Eq 2.40 :

52pn =
2 5 .u∗

3dt
(2.40)

The correction step can be written as Eq 2.41:

un+1 = u∗ −
3

2
dt 5 pn (2.41)

2.3 Solid Solver (Y -code)

To simulate the deformation of a solid structure the combined Finite-Discrete

Element Method (FDEM), which was originally described by Munjiza [73], is

used in Y -code.The FDEM merges the finite element-based analysis of con-

tinua with the discrete element-based transient dynamics, contact detection and

contact interaction solutions. It is beyond the scope of this thesis to provide

a comprehensive explanation for the combined FDEM . However, a very brief
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description of the method will be given in the following section.

2.3.1 Introduction to Finite District Element method

(FDEM):

The microstructure of engineering materials is discontinuous; however, in many

engineering problems the discontinuous nature of the material is neglected. This

is because engineering problems generally use materials in quantities sufficiently

large that the microstructure of the material can be described by averaged mate-

rial properties, which are continuous. The averaged material properties are given

as continuous functions of volume. These physical properties allow the definition

of constitutive equations such as conservation of mass or conservation of energy.

Governing equations are usually given as a set of partial differential equations or

integral equations. The governing equations can be coupled with external actions

in the form of boundary and initial conditions such as loads, supports or initial

velocity. Hypothesis of discontinua describe the interactions between particles

and balance equations. Because these equations cannot be solved analytically,

and approximate numerical solutions are sought instead. The most advanced nu-

merical methods are Discontinuous Deformation Analysis (DDA) and Discrete

Element Methods (DEM). These methods are designed to handle contact situ-

ations for a large number of irregular particles. DDA is more suitable for static

problems, while DEM is more suitable for problems involving transient dynam-

ics until a state of rest or steady state is achieved. To model deformation under

stress or load, the state of the art method is the Finite Element Method (FEM).

To model discontinuum-based phenomena (interaction and motion of individual

particles), the state of the art method is the District Element Method (DEM).

The new method is therefore a combination of both FEM and DEM and is de-

noted the combined finitediscrete element method (FDEM). In the combined

FDEM , each particle (body) is characterized by a single discrete element that

interacts with discrete elements that are close to it. Moreover, each discrete el-

ement is discretized into finite elements. Each finite element mesh describes the

deformability of a single discrete element (particle, body). So far the combined
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FDEM has been applied to a wide range of engineering problems such as rock

mechanics, soil mechanics, mining, powders, composites, bone mechanics and bi-

ological tissues. Figure 2.5, shows an FDEM problem comprising two discrete

elements. Each discrete element is discretized into finite elements.

Figure 2.5: The combined finite-discrete element problem comprising two discrete elementsin
the combined finite-discrete element method, each discrete element is discretised into finite
elements

2.3.2 Stress and Strain Relationship

In this study, the ureter structure is meshed with tetrahedral elements, one of

which is shown in Figure 2.6.

Figure 2.6: A solid tetrahedron finite element

The deformability of the elements is controlled by nodal forces and the corre-
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sponding displacement. The deformation of the solid can be written as Eq 2.42

f(p) = p + u(p) (2.42)

Where p is a set of positions, f is a smooth function mapping the initial

positions to the deformed positions and u(p) is a set of displacement vectors.

Eq 2.43 and 2.44 illustrate the deformation gradient and deformation gradient

tensor of each material position.

F (p) = 5f(p) = I + 5u (2.43)

F = 5f = 5









x + u(x, y, z)

y + v(x, y, z)

z + w(x, y, z)









=









1 + ∂u
∂x

∂u
∂y

∂u
∂z

∂u
∂x

1 + ∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

1 + ∂w
∂z









(2.44)

From the strain tensors, the Cauchy stress is calculated using the constitutive

law. Different constitutive laws can be employed at this point. In Y-code, a

constitutive law for homogeneous isotropic material derived by analogy with the

Hooke’s constitutive law. Eq 2.45 represents the modified Hooke’s constitutive

law.

T =
E

(1 + ν)

1

(|detF |)2/3
Ed +

E

(1 + 2ν)

1

(|detF |)2/3
Es +

2µ̄

(|detF |)2/3
D (2.45)

where Ed = 1
2
[ FFT

(|detF |)2/3 − I ] is the GreenSt. V enant strain tensor caused by

the deformation, Es = I [ (|detF |)2/3−1
2

] is the GreenSt. V enant strain tensor due

to volume changing stretch and [ 2µ̄
(|detF |)2/3 ] represents the viscous stress which is

responsible for material damping. D is the rate of deformation obtained from

velocity gradient. E is the Young’s modulus, ν is Poissons ratio, µ̄ is damping
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due to deformation.

Based on the integrated modified Hooke’s constitutive law in Eq 2.45, the

viscoelastic materials can undergo strain and volume change without being dam-

aged. The nonlinear tensile property of the ureteral wall was extracted from the

clinical data [43] and integrated directly in Eq 2.45, using the equivalent strain.

A comprehensive description of this methodology was explained in chapter 3.

The Cauchy stress is applied to a deformed tetrahedral element (Figure 2.6)

used in ureter simulation and the traction force, S, for over each of the surface

of the tetrahedron is calculated by using the normal on the edge of the deformed

tetrahedron. Surface traction for each of the four surfaces is distributed equally

to each node and an equal force is allocated to each node.

f =
1

3
S (2.46)

The Y -code solver uses an explicit finite element method for dynamic simu-

lations, the deformation and movement of a solid. This can be solved by an

implementation of Newtons second law:

F = M.a = M.Ẍ (2.47)

where F is the total force acting on each node, which include the internal forces

due to Cauchy stress or the interaction force between the wall and the fluid force

acting on the surface nodes. M is the mass represented by the node, a is the

acceleration to be determined, X is a set giving the node coordinates in three

dimensions which will be updated at each time step.

The FE method explicit scheme based on a central difference method [73] can

be summarized as follow:

• Calculation of internal forces based on the deformation of particles.

• Contact detection, for instance by using the Munjiza-NBS contact detection
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algorithm.

• Calculation of forces resulting from contact interaction using a penalty func-

tion method.

• Summing external forces and solution of the equation of motion for each

element separately.

The equation of motion is stable for a given time step dt because:

dt <
dx

√

λ+ 2G
3

ρ

(2.48)

Where dx is the smallest element size, λ is Lam’s first parameter, G is the

shear modulus and ρ is the density.

2.4 Coupling Between Fluid and Solid Codes

(Immersed Boundary (IB))

Fluid-solid interactions need to be determined by solving the equations of motion

of the fluid in conjunction with the governing equations for the elastic body. The

equations governing the fluid flow are solved for the whole computational domain

on a Cartesian grid; the effect of the immersed solid boundary is then imposed

on the flow through a body force term in the Navier-Stokes equations.

The force on the interface boundary is calculated by the governing equations

of the solid and extrapolated onto the nearby fluid grids with an extrapolation

function and is then used to calculate a new fluid velocity. The new velocity field

is then interpolated again onto the interface where a non-slip boundary condition

applies to give a velocity of the virtual surface by which the new surface location

can be updated accordingly. In the next time step the body force on the interface

can be calculated again by Hooke’s Law and then extrapolated to the nearby fluid

domain.
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The fluid motion equations are discretized on a fixed Cartesian grid. The

conservative form of the second order Adam-bashforth temporal discretised gov-

erning equations of incompressible fluid using the IB method point is presented

in Eq 2.49:

un+1 = un + dt[
3

2
RHSn −

1

2
RHSn−1 −

3

2
5 pn +

1

2
5 pn−1] + fn+ 1

2 dt (2.49)

An extra singular body force, f , is added into the momentum equation to take

the solid boundary into account.

There are also two new functions: I(θ) is interpolation of the solid mesh on

to the CFD grid points and D(Θ) is the distribution function on the immersed

boundary points. The θ represents the fluid variables on the grids, such as the

velocity vector (u), pressure (p), body force (f), and the Θ denotes the variables

on the IB points, such as the interpolated velocity U , and fi. The interpolation

function projects the physical fluid field from the grids to the IB points and the

distribution function maps the calculated results from the IB points back to the

Cartesian grids.

In Eq 2.50 and Eq 2.51, Un+1 is the interpolated velocity on the IB points and

the V n+1 is the desired velocity on the IB points.

Un+1 = V n+1 (2.50)

where

Un+1 = I(un+1) (2.51)

By substituting Eq 2.51, Eq 2.49 into Eq 2.50 and rearrange the equations, the
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body force on the grid points is obtained as presented in Eq 2.52:

F (t) =







D[V n+1 − I [un + dt[ 3
2
RHSn − 1

2
RHSn−1 − 3

2
5 pn + 1

2
5 pn−1]]], Inside IB

0, Outside IB

(2.52)

When distributing the body force from the IB points to the grids, either a Full

Distribution (FD) forcing strategy or a Half Distribution (HD) forcing strategy

can be used depending upon the model simulation.

In FD forcing strategy, using a delta function the body force f acting on an IB

point is spread over several grids both inside and outside the immersed boundary.

It has been reported that the convergence rate is in this method is fast due to

smooth body force transferring. In contrary to HD method which is proposed for

high Reynolds number simulation flows [77], the FD method is widely used for

low Reynolds applications. More detail about the schemes and the applications

can be found in the paper by Ji et al. [71]. Due to the low speed of the urine

flow, the main forcing strategy used in this work is FD forcing strategy.

The iterative IB method involves a two-step predictor-corrector procedure

similar to the projection method in which body force and the pressure are solved

iteratively. The first step is the prediction step in which the intermediate velocity

u∗ is predicted by using Eq 2.53

u∗ = un + dt[
3

2
RHSn −

1

2
RHSn−1 +

1

2
5 pn−1] (2.53)

Then, the intermediate pressure pn,kand the body force f
n+1

2
,k iteratively, using

the procedure outlined in the following pseudo code, where k is the iteration step.

Let pn,k=pn−1, and k=1.

Outer loop begins:
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• Update body force f
n+1

2
,k

Substitute u∗ into Eq 2.52,

f ( n+1

2
,k)dt = D(V n+1 − I([u∗ −

3

2
dt 5 pn,k−1]) (2.54)

fn+ 1
2
,k =







D[V n+1 − I [u∗ − 3
2
dt 5 pn,k−1]], Grids Inside IB

0, Grids Outside IB
(2.55)

• Update the intermediate velocity u−k

ūk = u∗ + f (n+ 1
2
,k)dt (2.56)

• Update pressure intermediate pn,k

52pn,k =
2 5 .ūk

3dt
(2.57)

• Apply convergence criteria

If the norm of I [u∗ − 3δt
2

∂pn,k

∂x
]-I [u∗ − 3δt

2
∂pn,k−1

∂x
] is smaller than a given

tolerance, break the loop.

• Let k=k+1

• Outer loop ends

The next step after the iterative process is completed is the correction step.

The correction step is applied with pn = p(n,k) and the final velocity is as

follows:

un+1 = ūk −
3

2
dt5n (2.58)

It is worth noting that the pressure Poisson equation (Eq 2.57) is solved using

the iterative Bi−Conjugate Gradient (BiCG) method and the pressure from one
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iteration is used regardless of convergence. It is just an intermediate pressure and

there is no need the exact value at this intermediate stage. Also in this iterative

IB method, the coefficient matrix for pressure never changes which means it is

independent.

To verify this iterative IB method, a series of numerical simulations were car-

ried out and can be found in the paper of Ji et al. [71]. They include a simulation

of turbulent flow with moderate Reynolds number (Re+ =1000), turbulent flow

past a 3D static cylinder, laminar flow past a two-dimensional stationary cylin-

der, laminar flow past a two-dimensional stationary elliptic cylinder and laminar

flow past a stationary sphere.
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2.5 Summary

The in-house code (Coupled Cgles-Y ) was introduced. The Cgles is a three-

dimensional fluid solver using the NavierStokes equations. The discretization

of different Navier-Stokes equation terms in the control volume method is ex-

plained. Then, the projection method and boundary conditions used in Cgles

code to solve the fluid domain were described. The simulation of the ureteral

wall deformation was conducted using the in-house the Y -code. The stress and

strain relationship of the finite element method in the solid domain was explained

and the corresponding governing equations were introduced. Finally, to simulate

the interaction between the fluid and solid domains, an existing novel Immersed

Boundary method was introduced to simulate moving boundaries.



Chapter 3

Deformation of a Thick Walled

tube under Confining Pressure

3.1 Motivation

One of the principal difficulties with finite element modelling is modelling the cor-

rect mechanical properties for the materials involved. This is especially difficult

with biological tissue. A stress-strain curve is an extremely important graphical

measure of a materials mechanical properties. As well as mechanical properties

the simulation must also correctly factor in geometry, mesh, boundary condi-

tions, loads, and contact parameters. Because most deformations of biological

materials are nonlinear, as shown in Figure 3.1, the capability of a simulation to

model nonlinear mechanical properties is essential. In many previous studies [54],

the stress-strain relationship was assumed to be linear behaviour for simplicity,

which produced inaccurate results except at small deformations at which the

linear assumption gives a reasonable approximation.

In this chapter, firstly, a comparison between the computational model and

the theoretical solution for the radial deformation of a thick wall tube for a linear

material properties is presented. Secondly, in order to use the stress-strain curve

56
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Figure 3.1: Nonlinear stress-strain relationship in a biological material.

for a non-linear material property, an equivalent strain is formulated in the Y -

code. Then, by use of this formulation and stress-strain curve, a computational

simulation model is studied. To validate this computational simulation, a novel

analytical solution for nonlinear material deformation is introduced. This solu-

tion was implemented using C programming. Comparisons are made between

the results of the analytical and computational models for a nonlinear mate-

rial property to give greater confidence in the results presented in the following

chapters.

3.2 Predication of Radial Deformation by Mod-

elling a Linear Stress/Strain Relationship

3.2.1 Model Description

A thick walled circular cylindrical shell of outer radius r0 and inner radius ri

is considered and the pressures on the inner and outer surfaces of the circular

cylindrical shell are Pi and P0, respectively, as shown in Figure 3.2. The stress
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p0

p
i

ri

r0

Figure 3.2: A cross-sectional and isometric view of a thick walled circular cylindrical shell.

components are respectively, defined in terms of tangential (T), radial (R) and

axial (A) stress. In this case the circular cylindrical shell has open ends (as in

the current model) and there is no axial component of stress. The exact elastic

solution for the circular cylindrical shell under stress can be obtained using Lames

equation.

For this particular example we consider a circular cylindrical shell of 0.6 cm

outer diameter, 0.1 cm thickness and of length of 8 cm is simulated. As the

thickness is greater than one-tenth of the radius, it can be treated as a thick

walled cylinder. The modulus of elasticity (E) of the elastic material was defined

as 5 Kpa and Poissons ratio (ν), was defined as 0.35.

3.2.2 Analytical Model

Radial displacement can be obtained from Eq 3.1, the equation of equilibrium for

an element of material in polar coordinates for axisymmetric problems assuming

there are no body forces. This equation describes how the internal/external

pressures on the circular cylindrical shell relate to its radial displacement [78].

dσr

dr
+

σr − σθ

r
= 0 (3.1)
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Figure 3.3 shows an element of radius r defined by an angle increment dθ, a

radial increment dr and the radial and tangential stresses denoted σr and σθ (a

function of r) . The shear stress on the element is zero and, for an element of

unit thickness, the equation of equilibrium can be written as follows in Eq 3.1:

r

� �

�

p�

p�
�

�

�� �
�

�
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� �
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� � �  � � � 
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Figure 3.3: Stress in thick-wall cylinder. (a) Thin annulus of thickness dz. (The Z axis is
perpendicular to the plane of figure.) (b) Cylindrical volume element of thickness dz.

The radial strain and tangential strain are respectively described as εr=
du
dr

and

εθ=
u
r

respectively where u is the radial displacement and, since the end of the

model is open, axial stress σz=0. From Hooke’s law, εr and εθ can be desired as;

εr =
du

dr
=

1

E
(σr − νσθ) = 0 (3.2)

εθ =
u

r
=

1

E
(σθ − νσr) = 0 (3.3)

where E is the Young’s modulus and ν is the Poisson’s ratio.
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Solving for the stresses yields equations 3.4 and 3.5

σr =
E

1 − ν2
[
du

dr
+ ν

u

r
] (3.4)

σθ =
E

1 − ν2
[
u

r
+ ν

du

dr
] (3.5)

After substituting these expressions into the equation of equilibrium (Eq 3.1),

we obtain:

d2

d

u

r2
+

1

r

du

dr
−

u

r2
= 0 (3.6)

The solution of this (radial displacement) is u = c1r + c2
r

giving stresses are:

σr =
E

1 − ν2
[c1(1 + ν) − c2(

1 − ν

r2
)] (3.7)

σθ =
E

1 − ν2
[c1(1 + ν) − c2(

1 − ν

r2
)] (3.8)

The following boundary conditions can then be applied:

• σr(ri) = Pi

• σr(r0) = P0

Constant c1 and c2 can be obtained from Eq 3.9 and Eq 3.10.

c1 =
(1 − ν)

E
[
(−Pir

2
i + P0r

2
0)

r2
0 − r2

i

] (3.9)

c1 =
(1 + ν)

E
[
(−Pi + P0)r

2
i r

2
0

r2
0 − r2

i

] (3.10)
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Ur in Eq. 3.11 is the displacement in radial direction due to external and

internal pressurization.

Ur =
(1 − ν)

E
[
(−Pir

2
i + P0r

2
0)

r2
0 − r2

i

]r +
(1 + ν)

E
[
(−Pi + P0)r

2
i r

2
0

r2
0 − r2

i

]
1

r
(3.11)

where Pi is uniform internal pressure, P0 is uniform external pressure and r is

the radius that varies between ri and r0.

3.2.3 Analytical Solution with a Linear Stress-Strain Re-

lationship

Assuming the pressure values in Table 3.1, the radial displacement is calculated

by the model equations described above. The result from the model are listed in

Table 3.1 where

r0= 0.3 cm, ri= 0.2 cm, Pi =0 Barye, E=50000 Barye and ν is 0.35.

Table 3.1: The Parameters used in the Model.
Po=Pressure =
force/Area (Barye) Radial displacements (cm)

2500 0.0345
3750 0.0517
6250 0.086
8750 0.012
11250 0.15525
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3.2.4 Computational Simulation

3.2.4.1 Model geometry

A circular cylindrical shell with the geometrical features described below was

designed using the Abaqus software resulting in a model with 10433 tetrahedral

elements. Fig 3.4 shows the three dimensional model geometry of the circular

cylindrical shell and the cross section of the model used for this simulation.

Figure 3.4: Mesh arrangement, (a,b) in cross section of the tube and (c) in tube

A cylinder with a 0.1 cm thickness is considered. The geometrical parameters

are the same as in analytical model with the length around 8 cm . The model

was meshed using Abaqus software, resulting in 10353 tetrahedral elements and

3475 nodes. The minimum size of each element was around 0.01cm and the nodes

were uniformly distributed. Since CGS unit is used in Y code, all parameters are

calculated in CGS unit Table 3.2.
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Table 3.2: The CGS unit used in Y-code.

Quantity Force Length Velocity Pressure Viscosity

Abrivation,Definition dyne , g.cm2/s2 cm cm/s Barye(Ba),g/(cm.s2) poise, g/(cm.s)

3.2.4.2 Boundary Conditions

The tube wall was fixed at the axial faces of the tube and forces were applied to

each node on the outer surface to simulate the external pressure. This pressure

was varied from 2500 to 11250 Barye, which is equivalent to forces from 20 to 90

dyne at each node. To apply the force on each node on the surface, a centre line

was assumed as a reference, ~Xp= (xp,yp,zp) was defined as a point on the surface

and ~Xc= (xc,yc,zc) = (xc,0,0)) was defined as a point on the central line. The

force components can be obtained using the following equations:

nx =
xp − xc

√

(xp − xc)2 + (yp − yc)2 + (zp − zc)2
(3.12)

ny =
yp − yc

√

(xp − xc)2 + (yp − yc)2 + (zp − zc)2
(3.13)

nz =
zp − zc

√

(xp − xc)2 + (yp − yc)2 + (zp − zc)2
(3.14)

fx = f ∗ nx (3.15)

fy = f ∗ ny (3.16)

fz = f ∗ nz (3.17)
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Because of the coordinate of (xc,0,0), then fx= 0.

nx = 0 (3.18)

ny =
yp − yc

√

(yp − yc)2 + (Zp − Zc)2
(3.19)

nz =
zp − zc

√

(yp − yc)2 + (Zp − Zc)2
(3.20)

fx = 0 (3.21)

fy = f ∗ ny (3.22)

fz = f ∗ nz (3.23)

3.2.4.3 Computational Solution with a Linear Stress-Strain Relation-

ship

To apply the correct force on the each node on the model, the equivalent force

is obtained by using the same pressure value which was used in the analytical

sections. The area and force are calculated as:

Area S = πDL
N

= 0.008 cm2, Number of surface nodes (N)= 2024,
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Table 3.3 shows the computational results with linear stress-strain relationship.

Table 3.3: Computational results with linear stress-strain relationship
Force(dyne) Pressure(Barye) Radial displacements (cm)

20 2500 0.0254
30 3750 0.04538
50 6250 0.07897
70 8750 0.115
90 11250 0.1518

3.2.5 Comparison between the Analytical and and Com-

putational Results

The predicted deformation obtained from the analytical theory of a thick-walled

circular cylindrical shell (Lams equations) and the computational simulation are

compared to verify the validity of the analytical model. Figure 3.5 shows a

graphical representation of the analytical and computational results for external

force. In this figure radial displacements obtained from both the analytical and

computational methods appear to linearly with the applied external pressures.

The results obtained from the two techniques are in good agreement.

3.3 Predication of Radial Displacement with

non-linear Stress/strain Relationship

3.3.1 Model Description

The Mechanical properties of the ureter have been discussed in pervious chap-

ters and it shows for highly deformable ureteral wall, a nonlinear stress/strain

relationship material property or viscoelastic models represent ureteral wall more

realistically. A non-linear stress strain relation data from Yin et al. [43] is used to

simulate the non-linear stress strain relationship. Figure 3.6 shows the extracted

points from their results which are used to calculate the shear modulus in order to
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Figure 3.5: Comparison between theoretical and computational radial displacements.

obtain the strain tensor. Since the radial displacement equation uses a constant

E, it needs to be modified to account non-linear changes, see Figure 3.6.

3.3.2 Computational Simulation

To introduce the nonlinear tensile properties of the ureter into the Y -code, a scalar

quantity called Equivalent Strain is used to mimic the nonlinear stress/strain

curve. Equivalent strain (also called V on Mises strain) is often used in de-

sign work because it allows any arbitrary three-dimensional strain state to be

represented as a single positive strain value. In the mechanics of materials, an

equivalent strain is defined by Eq 3.24 where ν is Poisson ratio and ε11, ε22, ε33
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Figure 3.6: Stress strain curve extracted from experimental data obtained by Yin et al. [43].

are principal strains and ε12, ε23, ε31 are shear strains from the strain tensor E.

εν =
1

1 + ν

√

(ε11 − ε22)2 + (ε22 − ε33)2 + (ε11 − ε33)2 + 6(ε2
12 + ε2

23 + ε2
31)

2
(3.24)

Where

E =









ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33









(3.25)

By implementing the equivalent strain in the Y -code, the multitude of strains

in computational model become equivalent to the uniaxial strain from the exper-

imental study.
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From the stress-strain curve (Figure 3.6), a dataset defining the shear mod-

ulus/equivalent strain is extracted. This data set is used as an input file into

Y -code for the simulation.

When the strain tensor is calculated, the equivalent strain is also calculated

according Eq 3.24. Then, by referring to the shear modulus/equivalent strain

input files , the correct shear modulus is determined and the Cauchy stress is

calculated in terms of that shear modulus.

Before the method was applied to the circular cylindrical shell model, the equiv-

alent strain design was used to simulate the deformation of a single element with

an axial displacement in the z direction as shown in Figure 3.7. Figure 3.7 shows

a tetrahedral element under uniaxial displacement in the Z direction. For this

element, uniaxial displacement is caused by displacing node 3 in the Z direction.

During the deformation, output data from the equivalent strain is obtained every

few time steps and plotted against the experimental data, as shown in Figure 3.8.

The results are also in good agreement with those measured experimentally.

Figure 3.7: Displacement in the principle direction of one element (a) before deformation
and (b) after deformation. Contours show the Z position on the element surface in cm.

For further validation of the accuracy of the computational model, the second

simulation is studied by applying displacement in the principle direction in such a

way that it is applied at 3 nodes in each time step, as shown in Figure 3.9. Node 3
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Figure 3.8: Comparison of relationship between shear modulus (dyne/cm2) and Equivalent

Strain for a single element.

in the Z direction (ε33), node 4 in the X direction (ε11) and node 2 in the y direction

(ε22) are moved while node 1 is fixed. The black arrows show the direction

of the deformations. As shown in the Figure 3.10 the equivalent strain/shear

modulus results are very close to the experiment data. These results confirm the

accuracy of the computational code for a single element, supporting the use of this

technique for further investigation using the aforementioned circular cylindrical

shell model.

The graphs 3.8 and 3.10 showing deformation of a single element in one and

two directions confirms the accuracy of the computational simulation technique

with use of the nonlinear stress/strain curve and they show good agreement

with experiment data. This computational simulation of a thick walled circular

cylindrical tube under deformation with nonlinear tensile properties is now in-

vestigated. The geometry and mesh properties are the same as the linear model.

Table 3.4 shows the external pressures values and corresponding radial displace-
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Figure 3.9: Displacement in the principle direction of one element (a) before deformation and
(b) after deformation. Contours show the Z position on the elements surface in cm.

Figure 3.10: The comparison graph of shear modulus (dyne/cm2)/equivalent strain relation-
ship in simulations and experiments.

ments predicted by the simulation.
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Table 3.4: The parameters are used in model with nonlinear material properties.
Po=Pressure =
force/Area (Barye) Force (dynes) Radial displacements (cm)

2500 20 0.055
6250 50 0.078
11250 90 0.097
15000 120 0.1

To better understand the effect of the nonlinear tensile properties in our model,

Figure 3.11 shows a comparison between the numerical simulations with linear

and nonlinear stress-strain relationships. It is clear that the linear theory over-

estimates the displacement at forces of greater than 50 dyne. For example, when

the force is around 70 dyne, the linear and nonlinear models predictions of radial

displacement are 0.11 and 0.085 respectively, giving an overestimate of 29.4%

from the linear model. The linear stress/strain only provides an accurate pre-

diction at small deformations. Further validation for our computational code

is provided by comparing the analytical and computational solutions for radial

displacement using a nonlinear stress-strain relationship in the tube wall.

3.3.3 Analytical Solution

Since a theoretical solution for the radial displacement of a material with a non-

linear stress/strain relationship is not published in the literature, an iterative

solution was designed to calculate the radial displacement based on data from

the nonlinear stress/strain graph (Fig. 3.6).

The developed method was based on the linearization of segments. The fol-

lowing flowchart (Fig. 3.13) shows the algorithm of this method. An input file of

equivalent strain/shear moduli according to the previously described experimen-

tal study was used. The algorithm can be described as follows:

• Step1: External and internal pressure are divided by i=100. Then Pouter

and Pinner are estimated as Pouter = P0 /100 and Pinner = Pi/100 respec-

tively.
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Figure 3.11: The comparison between linear and non -linear radial displacement.

• Step2: In this step, the initial values of strain and radial displacement are

set to zero as follows (where i=0)

ei
r=0

∆ui
r=0

• Step 3: In this step, a loop is initiated to measure radial displacement

incrementally by use of Pouter and Pinner. According to the value of strain

ei
r , the Young’s modulus, Ei is obtained from the input data file (Y oung′s

modulus/Equivalent strain data) by mean of interpolation based on the

value of strain ej
r.

• Step 4: In this step, the radial displacements of two points located on the

inner and outer surface of the shell respectively, are calculated by use of

equation 3.11. The difference between these values is also obtained. ui
r =

ui
ii - ui

00, where rinner =0.2cm and router = 0.3cm.
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• Step 5: In this part, the strain value is obtained.

∆ej
r=

∆ui
r

rinner−rout

• Step 6: The new radius rinner and router are updated as follows:

rinner=rinner-u
i
ii

router=rinner -u
i
00

• Step7: The strain is updated as follows:

ej
r=

∑n
i=1 4ej

r

• Step 8: Radial displacements Uinner and Uouter are also updated for the two

points located on the inner and outer circle of the shell:

Uinner=
∑n

i=1 ui
ii

Uouter=
∑n

i=1 ui
oo

• Step 9: This step is a decision box which, if satisfied, returns to step 3 and

a new Ei is obtained through the data file (Y oung′s modulus/Equivalent

Strain data) according to the updated strain. If the condition is not satis-

fied, the loop ends and moves to step 7.

• Step 10: In this step, the final value of radial displacement Uinner and Uouter

for any point on the inner surface and outer surface is returned.

3.3.4 Comparison between Computational and Analytical

Results

The nonlinear stress/strain relationship discussed in Section 3.3.2 was used to

numerically/computationally simulate the thick walled tube with the same ge-

ometry as used in section 3.2.5. Three different values of the force ranging from

0.2 to 130 dynes were used to give the radial displacements of the nodes on the

outer surface. The analytical results based on the description in Section 3.3.3 for

the radial displacement of a cylindrical circular shell with a nonlinear stress/strain

relationship are plotted in Figure 3.12. The result shows the agreement between
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Figure 3.12: Comparison between the analytical model and computational simulation of the
thick walled tube with a nonlinear stress-strain relationship under radial compressive stress.

the theoretical and computational models. In both cases the materials stiffness

clearly increases as more force is applied.
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Figure 3.13: Flowchart of the iterative approaches to theoretical solution of a Radial dis-
placement of cylindrical shell with nonlinear material property.
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3.4 Summary

In this chapter an equivalent strain is implemented in the Y -code for a nonlinear

material. The deformation of a circular cylindrical shell under external pressure

with linear and nonlinear material properties are evaluated with analytical and

computational solutions. For a material with nonlinear properties, an analytical

solution is introduced by using an iterative approach in order to validate the com-

putational model. From comparison between linear and nonlinear stress/strain

models, it is clear that the deformation of a ureter will be more accurate and

similar to reality of the ureter wall using a nonlinear stress/strain curve relation-

ship. All results show good agreement with the experimental data. Based on

the work described in this chapter, the computational technique can be extended

to a more geometrically complex ureter model and further investigations can be

carried out, as described in the next chapters.



Chapter 4

Development of an Anatomical

Computational Model of the

Ureter

4.1 Motivation

This chapter describes the use of an anatomically correct finite element model

of a ureter system. Although the computational simulation of ureters has been

investigated in prior studies [54, 79], an anatomically correct ureter geometry has

not been investigated to the best of our knowledge. This geometry is difficult to

model due to its complexity and asymmetrical shape. There is also a wide range

of curvatures on the ureter geometry, so this model requires a high grid resolution

for both solid and fluid parts in order to obtain reliable computational results.

This adversely affects the computational time and cost. The model presented in

this study demonstrates a computational result which more closely matches the

clinical data.

77
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4.2 Development of a Finite Element Model for

the Ureter

This part of the study was conducted in collaboration with Whipps Cross Hospi-

tal and Urology Innovation centre. Fifty different CT scans of urinary systems

of female and male patients aged over 30 years old were obtained from both or-

ganisations. Each image has been examined individually to ensure it is free from

any obstruction or disconnection. The CT scans were obtained as a series of 350

DICOM (Digital Imaging and Communications in Medicine) images, each slice

with a thickness of 1.5 mm, as shown Figure 4.1. Among all the CTs, the best

one from a female candidate that showed a clear geometry of the ureter without

any complication was selected.

Figure 4.1: One of the slices of a typical IUV scans (contrasted)

4.2.1 Creation of 3D Geometry of the Ureter.

The CT scans were imported into the image-processing package Mimics 14.01

which is software developed by Materialise Company specifically for medical

image processing. This software takes in a number of 3D medical image segmen-

tations of a patients anatomy, which can be extracted from CT , MRI , micro-CT ,

CBCT , 3D Ultrasound and Confocal Microscopy, and converts them into an

accurate 3D model. The 3D model can then be exported to other software, such

as statistical, CAD, or FE packages.
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(a)

(b)

(c)

Figure 4.2: Unmodified DICOM images imported into Mimics 14.01. These scans are
visible in the (a) coronal, (b) transverse and (c) sagittal planes.

In this work, a data set of more than 335 transverse CT scan slices with

an in-plane resolution of 0.80 mm and slice to slice separation of 1.5 mm were

processed. Figure 4.2 (a,b,c) show the unmodified scans of the coronal, transverse

and sagittal plane in Mimics.
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The CT scans of the ureter should be separated from the surrounding soft

tissue. This was achieved by using the thresholding function in Mimics, which

identifies the greyscale regions in the images with values between 260 and 3071.

Figure 4.3 shows the extracted 3D model of the ureter from the original scanned

images where the length and the average diameter of ureter are around 239.95

mm and 5.06 mm respectively. The yellow sections at the bottom and top of the

image are parts of the bladder and renal pelvis.

Because we are focusing only on the computational analysis of the ureter, the

bladder and renal pelvis were ignored and removed from the model to leave just

the ureter. This was achieved by manually deleting the bladder and renal pelvis

segments. Figure 4.4 shows a cropped 3D model of the ureter which has a length

of 199.52 mm. It can be seen that there is evidence of deformations, which we

assume to be the peristaltic contractions. The diameter and length of the ureter

can be obtained from the produced 3D model, however, due to its microscopic

scale and consecutive cross-sectional changes along its length, this model failed

to provide a clear geometrical information.

This problem was resolved by adopting the cross-section shape used in the

study conducted by Hammersen et al. [12]. Figure 1.2 from the Introduction (1)

shows the coordinates of the outer and inner surface of the cross-section, extracted

from the study conducted by Hammersen et al. [12] using Plot Digitizer 2.6.8

software. A 3D model of the ureter was created using ICEM software using the

Figure 4.3: Extracted 3D model of the ureter.
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assumption that the ureter cross-section was constant along the ureters centre

line, as shown in Figure 4.5.

The centre line of the 3D geometry was obtained using Mimic software and

the resulting 3D model gave a fair approximation of the ureters geometry. In this

model the complex geometry of the iliac vessels is preserved. This model is more

complex than the model used in previous computational studies [54] in which the

shape of the ureter is simplified to a thick walled tube.

4.2.2 Initial Meshing of Ureter Model

For this study, ICEM 15.0 was used to create the tetrahedral mesh to be used for

the structural model. The cross-section surface was meshed using the curve mesh

function in ICEM for both the inner and outer surface curves. Next, the surface

mesh was extruded along the models centre line with a fixed spacing to create

a longitudinal 3D mesh. All generated elements were converted into tetrahedral

elements and finally all node numbers in each slice were rearranged in ascending

order from 1 to the maximum number in order to be compatible with the Y -code.

Figure 4.4: Cropped 3D model of the right ureter.
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Figure 4.5: The modified geometry of the 3D mimic software model.

Due to the complex shape of the ureters lumen, it was important to keep the

number of nodes high enough to ensure that the geometry of the native organ

was accurately preserved. Consequently, a mesh quality study was performed at

this point in the process to ensure a suitable compromise between computational

performance and time.

As described in Chapter 2, the fluid code (Cgles) is fully parallelised but

the solid codes (Y -code) are only partially parallelised. Cgles and Y -code use

MPI and Open MP respectively for parallelisation. Further there were a limited

number of nodes for this project available to concurrently run the solid and fluid

parts in parallel. The UK National Supercomputing Service (Archer), with more

than 4920 computational nodes, was also available for our research. However our

access to this was sporadic, since Archer only offered limited hours with limited

number of nodes for academic research projects. This limit to the available

computational power constrained the compromise between dense meshes which

maximised accuracy and coarser meshes that could be completed in a reasonable

time frame.

4.2.3 Mesh Quality Study

To evaluate the effect of mesh resolution on the computational time, we created

five different solid meshes using the described anatomically accurate ureter model

with different numbers of nodes and elements. These are presented in Table 4.1.

By increasing the element sizes, the solving time decreases. The length of the

time step is dependent on the smallest edge of an element. The approximate
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computational time required to solve Meshes 1 to 5 decreases from 30 s to 1.3 s

on the QMUL cluster.

Table 4.1: The approximate computational time required to run mesh 1 to 5 with the current
existing computational resources.

Solid
Number of
elements

Number
of
nodes

Min el-
ement
size
(cm)

Element
size in
longi-
tudinal
direc-
tion(cm)

Number
of
nodes
in cross
section

Solid
Time
step
(sec)

Number of
threads / Av-
erage time of
solving solid on
Archer cluster
(sec)

Number of
threads /Av-
erage time of
solving on Ap-
ocrita cluster
(sec)

Mesh 1 88608 18550 0.0001 0.7 420 e-7 6/9 8/30
Mesh 2 33930 7688 0.0008 0.7 248 e-7 6/4 8/20
Mesh 3 18000 4309 0.001 0.7 139 e-7 6/3 8/12
Mesh 4 6700 1891 0.005 0.7 61 e-5 6/1.5 8/4
Mesh 5 5039 1271 0.04 0.7 41 e-5 6/0.3 8/1.3

Figure 4.6(a-e) shows the cross-sections of the ureter model with different num-

bers of nodes. Figure 4.6(a) has the finest mesh with the maximum number of

nodes and Figure 4.6(e) has the coarsest mesh with the minimum number of

nodes. Although for fine mesh cases such as Meshes 1 and 2, the anatomically

accurate stellate shape of a native ureter is clearly preserved, 8-10 seconds are

required to solve the solid part in each small time step. The time for Meshes 4

and 5 is much less.
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Figure 4.6: Different number of mesh quality was created to use in order to find the best one
for this simulation.
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For this study, it was not feasible from the time perspective to run the cases

with the fine and medium mesh (Mesh 1, 2, 3). To give maximum accuracy with

a reasonable solution time, Mesh 4 was selected for this investigation. To ensure

that the structural simulation results with Mesh 4 would not be altered by further

mesh refinement, a mesh-independent analysis was carried out.

Similar to a study conducted by Shashikant et al. [80], for this study the

Von Mises stress variable was selected as a benchmark for mesh-independent

analysis of the solid part. Von Mises stress is a scalar value which is computed

from the Cauchy stress tensor (shear stress and principle stress) as presented in

equation 5.1.

σν =

√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2
12 + σ2

23 + σ2
31)

2
(4.1)

The Von Mises stress was calculated on a single observation node in the con-

traction area. A radial force with a magnitude of 500 dyne was imposed on the

outer wall, and Von Mises stress was calculated after 10 time steps for Meshes 1

to 5.

Figure 4.7 shows the Von Mises stresses from the different mesh resolutions.

Mesh 5, with the highest resolution, has the greatest stress of 4.8×e4 (barye) and

mesh 1 with the coarsest resolution shows the lowest stress of 3×e4 (barye).

Mesh 4, which has been selected for our study, shows a stress of 4.7e4 (barye)

and an error of less than 5% compared to Mesh 1. The mesh-independent analysis

has therefore shown that the selection of mesh 4 is a suitable compromise between

accuracy and computational cost.
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4.3 Development of the Fluid Domain

Figure 4.8 shows the fluid domain used for the ureter model. The fluid domain

has a rectangular cuboid shape which extends 22.5 cm in the Z direction, 0.5 cm

in the X direction and 4 cm in the Y direction. As shown in Figure 4.8, due to

the asymmetric volute shape and long length of the ureter, a large fluid domain

is required to enclose the whole ureter model.

A wide range of fluid grid resolutions was examined in order to obtain an

optimal compromise between accurate computational results and computational

cost. Table 4.2 shows the required computational times to solve for seven tested

fluid domains with different resolutions in the x and y and z directions. For all

cases, the boundary conditions were an inlet pressure of 1 cm h2o and an flow

boundary condition at the outlet.

Table 4.2 shows that as the grid resolution improves, the computational cost

increases. It is shown that Domain 1, with an element size of 0.015×0.017×0.046

results in a computational time of 4 and 90 seconds per time step on Archer
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Figure 4.7: The graph of von misses stress against the different mesh resolutions
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Figure 4.8: Fluid domain with used and unused block elements.

Table 4.2: The comparison of different fluid resolutions.

Fluid Domain
Number of grid
in x,y,z

Grids size in x,y,z
Fluid
time
step

Number of pro-
cessors / Av-
erage time of
solving fluid on
Archer cluster
(sec)

Number of
processors
/Average time
of solving fluid
on Apocrita
cluster (sec)

Domain 1 32 × 224 × 480 0.015× 0.017× 0.046 e-4 32/4 24/90
Domain 2 32 × 224 × 448 0.015× 0.017× 0.046 e-4 32/5 24/90
Domain 3 64 × 448 × 480 0.0078× 0.0089× 0.045 e-4 32/4 24/100
Domain 4 64 × 448 × 680 0.0078× 0.0089× 0.0367 e-4 32/6 24/150
Domain 5 64 × 448 × 960 0.0078× 0.0089× 0.02 e-5 32/9 24/160
Domain 6 128× 768× 640 0.0039× 0.0052× 0.035 e-5 32/20 48/200
Domain 7 128× 768× 960 0.0039× 0.0052× 0.02 e-6 32/30 48/200

and Apocrita clusters respectively, whereas Domain 7 with an element size of

0.0039 × 0.0052 × 0.02, eight times smaller than an element in Domain 1, results

in a computational time of 30 and 300 seconds per time step on the Archer and

Apocrita clusters respectively.

A mesh independent study was performed on the seven fluid domains presented

in Table 4.2, in order to ensure the accuracy of our computational results. These

simulations were conducted in the absence of solid contractions, and the maxi-

mum velocity at the centre of lumen was selected as the variable to determine

mesh independence. For each domain, a simulation was conducted for 1000 time

steps, the maximum velocities were determined and compared. Figure 4.9 shows

the maximum velocity in each domain. It is evident that from Domain 1 to

Domain 5, as the grid resolution improves, the maximum velocity increases grad-

ually, however from Domain 4 to Domain 7 there was no significant difference

in the maximum velocity. The mesh independent studies for the fluid domain

therefore indicate that Domain 4 is a sufficiently accurate grid resolution and can
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Figure 4.9: Graph of maximum velocity against the various domains.

be used for this work. Our investigation to obtain the optimal grid resolutions

for the solid and fluid domains has concluded that mesh 4 for the solid part and

Domain 4 for the fluid part should be selected the computational investigation

of the ureter.

Using Mesh 4, the solid part takes approximately 3-4 seconds per time step on

the Apocrita cluster to run the isolated solid part (ureter). Using Domain 4, it

takes approximately 150 seconds per time step on the Aprocrita cluster to run

the isolated fluid domain. Because the time step increment is e−5 s for the solid

part and e−4 s for the fluid part, time step synchronisation is required between

the fluid and solid time steps in order to obtain a time step in which both solid

and fluid parts can be solved. The time step synchronisation is calculated using

Eq 4.2;

∆tsychro =
∆tfluid

∆tsolid
(4.2)

Where ∆tfluid and ∆tsolid are the fluid and solid time steps, respectively. Con-

sidering ∆tfluid is equal to e−4 and ∆tsolid is equal to e−5 the synchronisation time
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step will be equal to ten, implying that for each fluid time step, ten solid time

steps must take place. The total computational time per time step is calculated

as follows:

Total computational time per one time step = computational fluid

time + computational solid time×synchronization = 150 + (4×10) =

190 seconds.

In order to illustrate the actual computational time on the QMUL cluster, the

computational time for a few fluid Domains (4, 5, 6) using Mesh 4 is tabulated

in Table 4.3. It is worth mentioning that for 1 second simulation, the contraction

only move 3.5 cm in the ureter.

Table 4.3: An approximation of the total computational time.

Fluid Domain
Fluid
Time
Step

Solid time
step for
Mesh 4

Synchronization
between fluid
and solid time
step

Computational
time for 1 time
step for both
solvers (s)

Computational
time for 1
second (s)

Number of
days to move
the contraction
3.5 cm/s in
ureter

Domain 4 e-4 e-5 10 150+(10×4) 10000×190 21
Domain 5 e-5 e-5 1 160+(1×4) 100000×160 185
Domain 6 e-5 e-5 1 200+(1×4) 10000×204 236

Considering the total computational time of 190 seconds per time step, it would

take approximately 42 days on Apocrita and 5 days on the Archer cluster to move

a contraction along the ureter. Due to the existing limitations for the assigned

time and memory on each cluster, it was not practically feasible to run a single

case continuously on either Apocrita or Archer cluster. Therefore, a new solution

was improvised to reduce computational cost.

The fluid domain previously shown in Figure 4.8 consists of a substantial num-

Figure 4.10: Reduced fluid domain with no unused block elements.
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ber of unused blocks, which not only have no impact on the computational results,

but also increase the computational cost significantly. Consequently, the size of

the fluid domain was reduced by removing the unused blocks, thereby reduc-

ing the computational time. For the new fluid domain, shown in Figure 4.10,

all remaining blocks are connected to each other using the free slip boundary

conditions.

The new fluid domain has 213 blocks, compared to 413 in the original fluid

domain. The reduced domain reduced the fluid solution computational time from

160 seconds to 75 seconds per time step, resulting in an improved computational

time of approximately 20 days on the QMUL cluster.

4.3.1 Generation of Immersed Boundary Points

To establish communication between an immersed boundary (IB) point and a

fluid cell point, there should exist at least one IB point for each fluid cell. A

solid elements size cannot be more than twice that of a fluid grid cell/element.

For mesh 4, the size of the solid element size in the Z direction is 0.7 cm, whereas

the fluid size is 0.036 cm. It is apparent that there are fewer IB points than fluid

cells, indicating that there will be fewer fluid cells with no connections to any IB

points. To overcome this problem, the number of IB points has been interpolated

from 2 to 15 for one element. Figure 4.11 shows the extracted boundary element

nodes along the ureter.

The first step to create IB points is to extract the boundary surface nodes

from the total solid elements. In this work, due to the asymmetric and complex

geometry of the ureter model, the extraction of the boundary element surface,

which is not connected to the other internal nodes, was not a straightforward

procedure. An algorithm was developed specifically for this task to enable the

extraction of these nodes from the boundary surface of the ureter.

In this algorithm first the nodes with a distance of more than 2 cm from the

centre of the ureter cross-section will be isolated. Next, the joint elements will
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Figure 4.11: The extracted boundary element nodes on the ureter using our code.

be selected by comparing each element with other elements. Next, the algorithm

checks if the summation of the distance from the furthest node to the centre of

an element and the distance from the furthest node of element centre in another

element are greater than the distance between the centres of each of these two

elements. Next, the algorithm checks if two elements have a joint surface. Fig-

ure 4.12 shows two elements denoted A and B. The algorithm checks whether the

two elements A and B are in contact with the same surface when the summation

of the node IDs for element A subtracted from node ID, not in contact with ele-

ment B, is equal with the summation of the node IDs for element B subtracted

from node ID, not in contact with element A.

It is evident that node 1 of element A is not in contact with node 5 of element

B. Therefore, the summation of the node IDs for element A is 10 (=4+3+2+1)

and for element B is 14 (=4+3+2+5). It is apparent that by subtracting the

non-contact node IDs (1 for A & 5 for B) from the total summation for each

individual element of A and B, the same result (= 9) is obtained.

Finally, the algorithm creates a set of nodes from boundary surface nodes

and transfers the velocity and coordinates from immersed boundary points. Fig-

ure 4.13(a,b) shows the interpolated set of nodes along a single fluid element
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Figure 4.12: Element A result: 10-1 =9, Element B result: 14-5 =9

(a) (b)

Figure 4.13: One solid element with two sets of nodes on axial facing element surfaces/facets.
(b) A set of 15 interpolated nodes along the same element along the Z direction.

along the Z direction.

A detailed description of the algorithm is presented in a sequential order from

step 1 to step 15 as follows.

• Step 1) Calculate the coordinate of the centre for each element i.

• Step 2) Calculate the centre of each surface (triangle) of element i (each

element has 4 faces) by using Step (1).
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• Step 3) Calculate the distance between central lines using interpolation and

calculate the centre of the sub-triangle.

• Step 4) Define (indexi ) as a variable for counting the summation of node ID

number in each element i , check the condition (1): if the distance is greater

than 2 cm, then the element is not on the boundary surface, otherwise it is

on the boundary surface.

• Step 5) Calculate the distance between the centre of the element i and each

node in element i. Select the longest distance as di

• Step 6) Select the element j which is not the same as the element i

• Step 7) Define (indexj) as a variable for counting the summation of node

ID number in each element j

• Step 8) Calculate the distance between the centre of the element j and each

node in element j, and record the longest distance as d j.

• Step 9) Calculate variable d as the distance between two centre of two

elements i and j Check the condition (2) (dj+ di ¡d ), then go to step 6

and select element j+1 , if the condition 2 is not satisfied, indicating that

elements i and element j may have a joint surface then, go to the next step.

• Step 10) for each node of element i, calculate i = (indexi) node ID which is

the difference between summation of all node IDs of one element and that

node ID.

• Step 11) for each node of element j, calculate j = (indexj)-node ID which is

the difference between summation of all node IDs of one element and that

node ID. Check the condition (3), If the (i==j) go to the step 12, if it is

not satisfied go to step 10.

• Step 11) for each node of element j, calculate j = (indexj)-node ID which

is the difference between summation of all node I of one element and that

node ID. Check the condition (3), If the (i==j) go to step 12, if it is not

satisfied go to step 10.
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• Step 12) define a variable Found , for counting the number of nodes which

are the same.

• Step 13) compare all nodes IDs in element i and element j and if the IDs

are the same, update Found.

• Step 14) If Found =3, these node IDs are not in the inner boundary surface.

• Step 15) Select the velocity and coordinates of the boundary surface nodes,

then calculate the area of the triangle using the geometry coordinates.

• Step 16) Divide each triangle surface to 64 triangles and calculate the centre

of each triangles by using an interpolation techniques.

• Step 17) Update the area of each sub triangle.

• Step 18) Transfer the coordinate and velocity of each of triangle centre as

a new immersed boundary node.

Figures 4.14 and 4.15 show the flowchart of the algorithm in which the whole

procedure is described step by step.
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Figure 4.14: The algorithm flowchart developed to select the IB points (I).
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Figure 4.15: The algorithm flowchart developed to select the IB points (II).
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4.4 Summary

This chapter has described the mesh generation analysis for the solid, fluid and

immersed boundary parts of the 3D ureter model. Considering the limited com-

putational resources available at QMUL, a wide range of fluid and solid grid

resolutions have been examined to obtain an optimised resolution which can pro-

vide the most accurate computational results possible. For the solid part (ureter),

mesh 4 was selected and for the fluid part (urine) Domain 4 were selected. For

each mesh type, a mesh independent study was performed to ensure that the use

of coarser mesh elements would not cause inaccuracy in the computational results.

To further improve the computational performance, the fluid domain was shrunk

by removing the unused blocks. An algorithm was developed with the purpose of

creating immersed boundary points between the fluid and the solid parts. Finally

a series of C programming codes were developed and introduced into the main

codes in order to initialise the 3D model of the ureter to be compatible with the

structural code.



Chapter 5

Peristalsis modeling estimation

based on Numerical Simulations.

5.1 Motivation

The aim of this chapter is to report firstly, on the simulation of ureteralperistaltic

contraction by considering the Intra-Abdominal Pressure (IAP ) and secondly, to

investigate the effect of ureteral wall contraction on the pressure pulse magni-

tude and finally, to validate the computational results against other experimental

studies. In order to reproduce the pressure/time graph, an approximation of the

contact pressure between the solid walls resulting from contact forces acting on

cross-sectional nodes of the computational model was obtained. Two separate

contraction models were investigated in order to find the most precise results:

one with a constant radial force and the second one, an improved version ob-

tained by adding a specific time-window with the purpose of muscle contraction

in time and location.

98
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5.2 Ureteral Pressure estimation on Numerical

Simulations

An accurate determination of pressure is significantly important in understanding

the ureteral function. Most of intra-ureteral pressure profile studies have been

investigated by using the fluid-filled catheters connected to displacement type

pressure transducers [81]. It is evident that pressure measurements highly rely

on the movement of urine in and out of a transducer chamber. In an actual

situation, the highest pressure occurs in the contraction area when the ureter

collapses completely around the tip of fluid filled catheter.

By using of a stationary probe with an opening parallel to urine flow (inside

the ureteral wall), an approximate static pressure can be measured. The dynamic

pressure can also be estimated in the ureter, if the opening in the probe is placed

normal to the direction of urine flow. The low velocity of urine makes the dynamic

pressure contribution less than 1% of the total pressure. So, in the absence of a

peristaltic contraction, the total pressure measured by a pressure transducer will

be mainly static pressure which can be interpreted as the resting pressure in the

ureter.

The effect of pressure transducer/catheter on pressure recordings in the ureter

has been discussed widely in other studies [82]. According to a study by Kiil

et al. [17], the catheter did not cause any urine retention; thereby no ureteric

function disturbance was observed and hence the pressuretime recording was not

sensitive to the catheter.

In a healthy ureter, the resting pressure is around 4-7 mmHg and a peak

pressure is around 24-26 mmHg with a corresponding amplitude of 15 mmHg

for a pulse which takes around 2-3 seconds. The UreteroVesical Junction (UV J)

performs as a check valve through which urine can be discharged into the bladder

when the pressure in the ureter is higher than the vesical (bladder) pressure. Each

urine spurt enters into the bladder when a peristaltic wave arrives in UV J . The

resting pressure is the same before and after each wave. The net pressure rise



5 Peristalsis modeling estimation based on Numerical Simulations. 100

due to the movement of the wave is zero.

Moreover, as long as the vesical pressure does not exceed 25-29 mmHg, the

resting pressure is unaffected and remains at the same level. Figure 5.1 shows

a schematic diagram of the pressure distribution in a ureter. Pressure pulse

measurement in the ureter is one of the main tools to investigate peristaltic

activities. These recording can provide useful information about the frequency,

periodic cycle, interrelation and the velocity of the contraction along the ureter.

Moreover, the magnitude and the feature of the pressure waveform generated

by peristaltic movement in a ureter can be investigated through experimental

pressure pulse recordings. The physical significance of each individual pressure

pulse, consisting of the static and dynamic function of the ureter, has not been

investigated.

Figure 5.1: Schematic diagram of pressure distribution in the ureter.

In a peristaltic contraction, the maximum pressure occurs during the con-

traction phase and that leads to a complete closure of the cross-sectional area

(lumen), thus zero fluid pressure is expected. This is because there will not be

any fluid inside the closed lumen and thus the total present forces are only as a
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result of contact forces generated between the ureteral walls. In the absence of

the catheter, the muscle contraction closes the cross sectional area completely, so

the pressure distribution over time is only a function of the muscle action.

The aim of this chapter is to report firstly, on the simulation of ureteral peri-

staltic contraction by considering the intra-abdominal pressure; secondly, to in-

vestigate the effect of ureteral wall contraction on the pressure pulse magnitude

and finally, to validate the computational results against published experimental

studies [81, 82].

The ureteral peristaltic motions forming due to consecutive contractions and

relaxations of the circular and longitudinal smooth muscle layers, results in a

complete closure of the lumen. However, for this study only the radial contrac-

tions of circular muscle were modelled and the longitudinal contractions of the

smooth muscle will be investigated in future study.

5.3 Contraction Modelling

The ureteral peristaltic contraction was simulated by integrating two separate

contraction models in order to find which provides the most precise results. One

model implemented a constant radial force acting on the cross-sectional area

which travels axially along the ureter model with the same speed as the actual

human ureter contraction. The second model uses an individual time-window

frame for each cross-section along the ureter with the purpose of emulating the

relaxation and contraction of individual muscles with fixed positions across time.

Both contraction models used the same set of parameters from clinical studies

[40, 17] as presented in Table 5.1.

Table 5.1: Joint parameters used in both contraction models.

Velocity of contraction (cm/s)
Force magnitude
(Dyne)

Contraction length
(cm)

3.5 1200 3
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5.3.1 Peristaltic Motion as a Constant Force

To simulate the contraction using a constant radial force, a specific time-window

was defined at the beginning of the ureter. This specific time-window travels

along the ureter longitudinal direction with a velocity of 3.5 cm/s similar to the

clinical data [6]. The force was applied to close the lumen in order to push

the urine down the ureter with the purpose of mimicking realistic pacemaker

activity. A maximum force of 1200 dynes was applied radially on the ureter to

mimic contraction. A window of 3 cm of contraction travelled with the speed of

3.5 cm/s along the length of the tube. The maximum force is calculated according

to Eq 5.1.

Forcemax =
Pressuremax

A
(5.1)

where A is the area = 2πrL
n

, and n is the maximum number of nodes in the

time window.

The time-window with initial position Z1 is updated for each time step. All

nodes with Z coordinate between Z < Z1 and Z > Z1-L, where L is contraction

length, will have a maximum constant force as shown in the following steps:

• Step 1) For each cross section the centre coordinate is calculated according

to the initial coordinate of all nodes,

Xc =

∑maxN
0 xinitial

maxN
, (5.2)

Yc =

∑maxN
0 yinitial

maxN
(5.3)

Zc =

∑maxN
0 zinitial

maxN
(5.4)

where Max N which is the maximum number of nodes in each cross section.
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• Step 2) The distance between the centre and the current coordinate is

calculated as follows:

dis =
√

(XC − XCcurrent)
2 + (YC − YCcurrent)

2 + (ZC − ZCcurrent)
2 (5.5)

• Step 3) The normal vectors are calculated :

nx =
Xcurrent − XCcurrent

dis
, (5.6)

ny =
Ycurrent − YCcurrent

dis
(5.7)

nz =
Zcurrent − ZCcurrent

dis
(5.8)

• Step 4) The force vector is calculated as a product of the magnitude of the

force and normal vectors:

−→
fx = (Force)−→nx (5.9)

−→
fy = (Force)−→ny (5.10)

−→
fz = (Force)−→nz (5.11)

5.3.2 Peristaltic Motion as a Piecewise Linear Force

In this section, the peristalsis movement is modelled as a piecewise linear function

which can be seen in Eq 5.15. A time-window, as shown in Figure 5.1, indicates

that each cross-section of the ureter has an individual time-window in order to
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be exposed to a linear force and this time-window is dependent on the current

time.

It is worth mentioning that, because each section is allocated assigned an in-

dividual time-window with a time span of 2 to 3 sec, the force is applied to the

section when the current time reaches a particular time window.

In Figure 5.2, n is the beginning time of the contraction and m is the total

number of sections of the contraction. The other two main variables are defined

as S and T where S is defined as the time that a contraction is required to transfer

from one cross-section to another cross-section of the ureter. T is the time at the

beginning of the window for each cross-section. The steps need to be taken the

force on a cross-section are presented below:

• Step 1) Calculates the centre of cross section regarding the current coordi-

nate of each node ID on the same cross-section

XCcurrent =

∑maxN
0 xCcurrent

maxN
(5.12)

YCcurrent =

∑maxN
0 yCcurrent

maxN
(5.13)

ZCcurrent =

∑maxN
0 zCcurrent

maxN
(5.14)

• Step 2) The function contraction model which shows the force acting on

each cross section is defined as:

F (t) =



















Fmax

s
t, 0 < t < s

Fmax, s < t < (m− 1)s

Fmax

s
(ms − t), ms < t < (m − 1)s

(5.15)
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Figure 5.2: The time window of each cross section experiences the contraction.

• Step 3) The distance between the current coordinate of each node and the

current centre of each cross section is calculated as:

dis =
√

(Xcurrent − XCinitial
)2 + (Ycurrent − YCinitial

)2 + (Zcurrent − ZCinitial
)2

(5.16)

• Step 4) The normal vector between these centres is calculated by using the

estimated distance from step 3:

nx =
Xcurrent − XCcurrent

dis
(5.17)

ny =
Ycurrent − YCcurrent

dis
(5.18)

nz =
Zcurrent − ZCcurrent

dis
(5.19)
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• Step 5) The force components are calculated as:

−→
fx = (Force)−→nx, (5.20)

−→
fy = (Force)−→ny (5.21)

−→
fz = (Force)−→nz (5.22)

• Step 6) The resultant force in x,y,z directions is calculated for each individ-

ual cross-section:

−−−−−→
FXresults

=
−−−−−→
FXresults

+
−→
fx , (5.23)

−−−−→
FYresults

=
−−−−→
FYresults

+
−→
fy , (5.24)

−−−−→
FZresults

=
−−−−→
FZresults

+
−→
fz , (5.25)

• Step 7) The force to each node on each cross section is applied as:

−−−−→
FXfinal

=

−−−−−−−→
ForceXfinal

+
−→
fx +

−−−−→
FXresult

∑

Nodes
(5.26)

−−−→
FYfinal

=

−−−−−−−→
ForceYfinal

+
−→
fy +

−−−−→
FYresult

∑

Nodes
(5.27)

−−−−→
FZfinal

=

−−−−−−−→
ForceZfinal

+
−→
fz +

−−−−→
FZresult

∑

Nodes
(5.28)
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5.4 Intra-Abdominal Pressure (IAP ) modelling

The ureter is surrounded by connective tissue which makes the ureter remained

in horizontal position. Intra-Abdominal Pressure (IAP ) is the pressure within

the abdominal cavity which varies between 5 and 7 mmHg in men and is the

same as the resting pressure [6]. In the present study, in order to keep the ureter

in a horizontal position, an IAP model was introduced to the Y -code. A detailed

descriptions of the algorithm is presented in a sequential order from step 1 to 5

as follows:

• Step 1) The centre of each cross-section is calculated with regard to the

initial coordinates of each nodes ID on the same cross-section where max

N is the maximum number of nodes in each cross section.

YCinitial
=

∑maxN
0 yCinitial

maxN
(5.29)

ZCinitial
=

∑maxN
0 zCinitial

maxN
(5.30)

• Step 2) The centre of each cross-section with regard to the current coordi-

nates of each nodes ID on the same cross-section is calculated as:

XCcurrent =

∑maxN
0 xCcurrent

maxN
(5.31)

YCcurrent =

∑maxN
0 yCcurrent

maxN
(5.32)

ZCcurrent =

∑maxN
0 zCcurrent

maxN
(5.33)

• Step 3) The distance between the initial centre and current centre of each
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cross-section is calculated as:

dis =
√

(Xcurrent − XCinitial
)2 + (Ycurrent − YCinitial

)2 + (Zcurrent − ZCinitial
)2

(5.34)

• Step 4) The normal vector between these two centres is calculated by using

the estimated distance from step 3.

nx =
XCinitial

− XCcurrent

dis
, (5.35)

ny =
YCinitial

− YCcurrent

dis
, (5.36)

nz =
ZCinitial

− ZCcurrent

dis
(5.37)

• Step 5) The force vector components is calculated as:

−→
fx = Force(−→nx.dis), (5.38)

−→
fy = Force(−→ny.dis), (5.39)

−→
fz = Force(−→nz .dis) (5.40)

This force is applied to all nodes along the ureter model at each time step

by keeping the current coordinates of the centre of each cross-section in a

manner similar to initial coordinates of centre of each cross-section during

the contraction. The resting pressure, similar to the IAP , is around 3-

8 mmHg The magnitude of Force in step 4 is obtained from the following

calculation where r is the radius of ureter, L is length of ureter, N= number
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of surface nodes in the computational model.

Force = Pressureresting ×Area (5.41)

where Area=2πrL
N

=2×π×0.25×21
1302

=0.025 cm2

Force = 4000 × 0.025 = 100 dynes

5.5 Results and Discussion

In this section, firstly the computational results on the effect of IAP on the

ureteral wall deformation will be discussed. Secondly, the computational results

from the two contraction models, constant force and piecewise linear force, will

be presented.

5.5.1 Comparison between the contraction models with

and without IAP

Figure 5.3(a-b) shows a comparison between the two computational models of

the peristaltic movement in the presence and absence of the IAP .

Figure 5.3(a) shows that with the absence of the IAP the ureter model is

not constrained and start moving in an eccentric direction. Figure 5.3(b) shows

that with the presence of the IAP , the ureter model is fully constrained and the

applied radial force leads to a centric contraction, similar to an actual human

ureter.
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Figure 5.3: Comparison between the two simulations in the absence (a) and in the presence
(b) of the IAP

5.5.2 Comparison between the Models with Constant and

Linear Force

A length of contraction of 4cm and the maximum force of 1200 dynes were applied.

A constant intra-abdominal force of around 100 dynes was applied to maintain the

ureter in a horizontal position. The contact wall pressure on an arbitrary point

located around the middle of the ureter is computed and results are plotted for

both models with a constant force and linear force. Figure 5.4 shows non-filtered

results of contact pressure during the passing of a complete contraction as a

result of applying the constant force model. Figure 5.5 shows non-filtered results

of contact pressure during the passing of a complete contraction as a result of

applying the linear force model.

Figure 5.6 shows the filtered computational results of pressure against time

for the constant force and linear force models, in comparison with the experi-
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Figure 5.4: Non-filtered results of contact force model for an arbitrary point in the middle of
the ureter during passing of a complete peristalsis movement.
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Figure 5.5: Non-filtered results of contact force for an arbitrary point in the middle of the
ureter during passing of a complete peristalsis movement.

mental study by Kill et al. [17]. The data was filtered using the SavitzkyGolay

filtration method. The maximum contact pressure is obtained by dividing the

contact forces by area for each element. Figure 5.6 shows a similar amplitude

of 20 mmHg for both computational and experimental data. It is evident that
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the results from the piecewise linear function shows a better match with the

experimental study [17]. The pulse duration, shown in this figure, is the time

when the contact pressure increases to its maximum value and then gradually

drops as the contraction travels away. It can be seen that the pulse duration for

the linear force model is about 2.3 seconds and for the constant force is about

1.25 second. It is concluded that the linear force model exhibits a better perfor-

mance. Figure 5.7 shows the deformation of a cross-section over the same period

of the contraction time. R is defined as the radius displacement of the ureter in

cm. This figure confirms the complete closure of the ureteral cross-section, where

maximum pulse pressure occurs.
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Figure 5.6: The filtered computational results of pressure over time with a constant force
model (Computational 1) and the linear force model (Computational 2), compared with the
experimental study by Kill et al. [17].

Figure 5.7: The deformation of a cross-section over the same period of the contraction time,
where R is the radius of the cross-section in cm.

Figure 5.8 (a-d) shows four consecutive time sequence plots of the ureteral con-

traction travelling along the longitudinal direction. In this figure P is the radial

displacement resulting from peristaltic contraction. The maximum deformation

of the outer surface in a radial direction is around 0.1 cm.

During the contraction phase, the ureteral diameter reduces up to 60% of

the maximal diameter during resting phase [83]. As shown in Figure 5.7, the

maximum radial displacement of the outer surface during the contraction phase

is around 0.1 cm which makes the outer diameter of around 0.2 cm which is in a

close agreement with experimental study [83].
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Figure 5.8: The movement of the contraction at T= 0.5 ,1 ,1.5 and 2.5 seconds (a-d).
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5.6 Summary

In this chapter, an intra-abdominal pressure model is introduced into the Y -code

for the purpose of constraining the ureter position. Two types of force models

were tested in order to mimic a realistic peristalsis movement. Results from using

a piecewise linear force were in very good agreement with experimental studies in

terms of maximum magnitude and pulse duration.The deformation of the ureter

surface of the ureter is in the range of experimental studies.



Chapter 6

An Investigation in Healthy and

non-Healthy Ureter

6.1 Motivation

In Chapter 5, a realistic 3D model of peristaltic contraction travelling in a lon-

gitudinal direction was presented. This model accurately mimics the cell to cell

peristaltic movement of a ureteral wall.

The dynamics of the upper urinary tract and the effect of bladder pressure

variation on urodynamic parameters have been studied by other researchers [84,

16]. However, there are many urodynamic phenomena that have still not been

fully explained. For instance, explaining the mechanism behind (ureteral) reflux

is one of the biggest challenges in urodynamic research. The interaction between

the kidney pressure and bladder pressure has been described in very few analytical

or computational simulations.

116
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In this chapter firstly, the effect of linear and nonlinear tensile properties on

urine bolus velocity will be discussed. Next, two types of ureteral abnormalities

known as Dysfunctional Pelvis Ureteric Junction (PUJ) and inefficient peristal-

talsis will be simulated by implementing different boundary conditions. The

urodynamic responses as well as the effect on ureteral wall shear stress level will

be analysed under these conditions. Particularly, the presence of reflux in the

absence of a pressure difference and the effects of dysfunctional PUJs will be in-

vestigated. Furthermore, the efficiency of peristaltic contraction will be evaluated

by studying the relationship between contraction amplitude and backflow. The

results from this chapter will assist medics to understand the impaired ureteral

function in more detail.

6.2 Simulation Setup and Configuration

For this study the following configurations were specified.

• Urine properties: Urine is an incompressible laminar, Newtonian fluid

with dynamic viscosity of 0.01 poise and a constant density of 1 g/cm3.

The initial velocity of urine was set to 0.01 cm/s.

• Material properties of the ureter: Linear and nonlinear tensile prop-

erties are modelled for the ureter wall. For the linear material the Young’s

modulus is assumed 5 Kpa and for the nonlinear material the stress-strain

curve from Yin etals study [43] was adopted and incorporated in the Y -

code. The Poissons ratio of the ureter wall is 0.35 for all simulations in

this chapter.

• Contraction model: The simulation of normal contractions in the ureter

was conducted by describing two pacemaker activities in the ureter model

referred to as contraction A and contraction B. Contraction A is located

in the proximal part of the ureter and Contraction B is located in the

distal part. Figure 6.1 shows the location of the two contractions A and

B in the ureter. Two contraction models are used in the simulation is to
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accurately model the pacemaker activities in different parts of the native

ureter. In an actual ureter the pacemaker cells are located along the ureter

and they initiate the contraction [6]. In this study, to simulate a normal

and depressed ureteral contraction, a force of 1200 and a relatively low force

of 450 dynes is applied in the model. The low force contraction prevents a

complete closure of the lumen area as a consequence of taking vasodilators.

Since, vasodilators resulting in a significant reduction in ureteral contraction

pressure of between 20 to 65%, the magnitude of contraction force of 450

dynes is considered to model the simulation [33].

Figure 6.1: Contraction A and B in the proximal and distal part of the ureter.

• Boundary conditions: A no slip boundary condition is applied between

the urine and ureter wall. Different pressure differences (∆P) are applied

between the inlet and outlet of the ureter in order to simulate the healthy

condition and dysfunctional PUJ . For a healthy ureter, according the

study by Shafik [40], the pressure difference between the resting pressure in

the PUJ and the resting pressure in the UreteroVesical Junction (UV J) is

between 0.36 and 0.73 mmHg. A pressure difference of 0.4 mmHg is applied

in order to simulate the healthy ureter in this work. For dysfunctional
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PUJ , no resting pressure difference is described between the renal pelvis

and PUJ . This is because the renal pelvis has the same resting pressure

as UV J [40], so there is no pressure difference between the resting pressure

in the PUJ and in the UV J .

Table 6.1: The boundary conditions, contraction parameters and material properties of the
four simulations performed in this work

Simulation Condition
Material Prop-
erties

Velocity of
Contractions

∆P
Contraction
Force

1 Dysfunctional PUJ Nonlinear 3.5,1.75 (cm/s) 0 (mmHg) 1200 (dyne)
2 Normal Nonlinear 3.5,1.75 (cm/s) 0.4 (mmHg) 1200 (dyne)
3 Normal Linear 3.5,3.5 (cm/s) 0.4 (mmHg) 1200 (dyne)
4 Effect of drug Nonlinear 3.5,3.5 (cm/s) 0 (mmHg) 200 (dyne)

6.3 Investigation on the Effect of Linear and

Non-linear Ureter Wall Tensile properties

on Urine Velocity in a Healthy Ureter

In this section, the effect of linear and nonlinear tensile properties on urine bolus

velocity in a healthy ureter is studied. Two contractions move longitudinally

along the ureter with a velocity of 3.5 cm/s. Figure 6.2(a,b) show the magnitude

of the urine velocity in Z-direction in the bolus using nonlinear (a) and linear (b)

material properties.

Figure 6.2(b) shows that the maximum urine velocity in the longitudinal di-

rection is slightly higher when using a wall with linear tensile properties. In

order to have a better understanding of the bolus velocity, the average velocity is

calculated using an equation for the velocity profile for laminar flow in a pipe [85];

Ur = 2Uavg[1 −
r2

R2
] (6.1)

Where U is velocity, r is the point radius from the centre and R is radius of
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(a)

(b)

Figure 6.2: The magnitude of urine velocity in the Z-direction. (a) Bolus between the two
contractions with non-linear material properties. (b) Bolus between the two contractions with
linear material properties.

the pipe. The maximum velocity occurs at the centreline where r=0 and can be

extracted easily from the simulation. The average velocity is therefore calculated

as:

Uavg =
Umax

2
(6.2)

The average urine velocity with nonlinear and linear tensile properties for the

ureteral wall are plotted in Figure 6.3. For the non-linear material model, the
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average velocity in the bolus is around 3.5 cm/s, similar to the speed of the

contraction movement. The model using linear tensile properties shows higher

average urine velocity due to the large deformation of the ureteral wall during the

contraction. The linear tensile model overestimates the ureteral wall deformation

during the contraction and expansion of the lumen. This causes a higher average-

velocity in the centre of the ureteral lumen. Yet, the nonlinear material model of

ureteral wall has shown to be more realistic.

As the average urine velocity traveling in vicinity of the contraction is the

same as the velocity of the contraction itself in a healthy ureter [17, 40], it can

be concluded that the use of non-linear tensile properties model showed a better

agreement to what is occurring in a native system.
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Figure 6.3: Comparison between the average velocity of urine in the ureter using models with
linear and nonlinear tensile properties (T=1 second).
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6.4 The Urodynamic Responses in Healthy and

Pathological Conditions

6.4.1 Ureteral Wall Shear Stress Distribution

The study of shear stress and consequent shear strain of biological tissue is im-

portant because excessive shear strain can deform the cell wall, interfere with

biological functions and in some cases cause tissue damage.

In this section, the wall shear stress distribution of the ureteral wall are studied

under both the presence and the absence of a pressure difference, mimicking the

healthy and pathological conditions respectively. Contractions A and B travel

with a velocity of 3.5 cm/s and 1.75 cm/s respectively. A pressure difference of

0.4 mmHg is applied in order to simulate the healthy condition.

Figure 6.4 shows the wall shear stress at T=0.3, 0.6, 1.0 seconds in the absence

of the pressure difference and Figure 6.5 show the wall shear stress at T=0.3, 0.6,

1.0 seconds in the presence of the pressure difference.

The results from both simulations show that the shear stress is significantly

higher around the contraction region. It is clear that highest shear stress occurs at

the proximal part of the ureter, in the vicinity of the PUJ . The figure also shows

that the maximum value of shear stress decreases as the peristalsis propagates

towards the UV J .

The results show that the maximum shear stress on the wall is dependent on the

velocity of the contraction in the ureter. The shear stress behind the contraction

B is 75% lower than that around contraction A due to its lower peristaltic velocity.

These results show that the proximal part of ureter, in the vicinity of the

PUJ, can be subjected to high shear stress and may result in wall deformation

in that region. The occurrence of high shear stress at the proximal part of ureter

described by this study supports other computational [54] and experimental stud-
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Figure 6.4: Wall shear stress in the absence of the pressure difference (Dysfunctional PUJ).
The positions of contractions A and B are shown.

ies [27, 28] in which the possibility of wall deformation and consequent proximal

ureter rupture was reported. Proximal ureter rupture is a perforation of the

ureter which causes a series of problems such as infection and renal impairment.

There is a 25% drop in the maximum shear stress between the simulations in

which a pressure difference of 0 and 0.4 mmHg were applied across the ureter.

These results also indicate the importance of the presence of the PUJ in the

urinary system which maintains the pressure difference in the ureter, thereby

decreasing the shear stresses level on the proximal part of ureter.

6.4.2 Reflux

Next in this study, the possibility of the reflux formation in a dysfunctional

PUJ condition was investigated. In urodynamics , the reflux phenomenon is an

interesting subject, since one of the most common disease in urinary system is

the presence of the Urinary Tract Infection (UTI) due to the reflux carrying the

bactria into the kidney.
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Figure 6.5: wall shear stress in the presence of the pressure difference of 0.4mmHg(healthy).
The positions of contractions A and B are shown.

To investigate the reflux, both contractions A and B are set to travel with the

same speed of 3.5 cm/s. There is a pressure difference of zero between the inlet

and outlet. Figure 6.6(a,b) shows the urine velocity vectors behind the moving

contraction A and B respectively after 0.5 seconds. The figures show a high

backward velocity, confirming the occurrence of reflux behind both contractions

A and B.

The proximal part of the ureter and the pelvic spindle are more likely to be

sites of urine reflux. These results also indicate the importance of the presence of

PUJ in the urinary system which prevents any reflux into the renal pelvis from

the ureter. These wall shear and velocity vector investigations have shown that

the high shear stress and reflux usually occurs at the beginning of the closing the

lumen at the start of the simulation time.Both phenomena are gradually decrease

by propagation of the peristalsis while the lumen is completely closed by a normal

contraction force.

These results indicate that the location at which the pacemaker initiates the
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(a)

(b)

Figure 6.6: (a) The presence of the reflux behind of the contraction A. (b) The presence of
reflux at the behind contraction B.

contraction is crucial. Since the pacemakers are located in many locations in the

upper urinary tract, including the renal pelvis, it can be concluded that not all

peristaltic movement will cause reflux or high shear stresses at the beginning of

the ureter. The magnitude of high shear stress and reflux at the upper part of

ureter might be dependent on where the contraction is initiated. There is a large

volume of research on the pacemaker activities in different parts of the upper

urinary system. In some research, it was concluded that the primary origin of

electrical activity at pacemaker sites is the renal pelvis and the pacemaker sites
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on the ureter are secondary and described as latent pacemaker sites [6].

6.4.3 Pressure Gradient Distribution

Figure 6.7 shows the magnitude of the urine pressure gradient in the absence

of any pressure difference at T = 0.5 seconds. The magnitude of the pressure

gradient in the ureter is calculated using post processing software Tecplot in the

X, Y and Z directions:

−−−→
| 5 p| =

√

(
∂p

∂x
)2 + (

∂p

∂y
)2 + (

∂p

∂z
)2 (6.3)

Analysis of the urine pressure distribution during peristalsis shows that the

maximum pressure gradient in the ureter occurs behind the moving bolus. These

results support the experimental data reported by Weinberg [31] showing that the

maximum ureteral luminal pressure during peristalsis permanently occurs behind

the moving bolus.

Figure 6.7: Pressure gradient magnitudes immediately before and after contractions A and
B.
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6.5 The Urodynamic Responses under the In-

fluence of Relaxation Drug

Numerical and experimental analysis of the ureter function under various va-

sodilators have been examined in prior studies [86, 87]. A highly depressed ampli-

tude of the peristalsis is known to be a consequence of taking vasodilators, which

are used to promote the passage of stones through the urinary system. Drugs

such as Alpha Adrenoreceptor Blockers, Diclofenac, Nifedipine, Tamsulosin

all result in a significant reduction in ureteral contraction pressure of between 20

to 65% [87].

To simulate the depressed ureteral contraction, a zero pressure difference con-

dition was applied between the inlet and outlet of the ureter. Next, a relatively

low force of 450 dynes was applied to simulate a weaker contraction, which pre-

vented a complete closure of the lumen area. The contraction velocities for both

A and B were 3.5 cm/s.

The aim of this simulation was to assess the possibility of reflux occurring

during peristaltic movement in patients with inadequate contraction force result-

ing from taking vasodilators. This model created a reduced contact pressure

describing a deterioration in peristaltic functionality.

Figure 6.8 shows the results from the impaired ureter system with a lower con-

traction force. It shows the presence of continuous reflux behind the contraction.

during peristaltic movement at T = 0.3 and 1 seconds. The results confirm that

a patient taking vasodilators is more exposed to the risk of ureteric reflux. Al-

though the urine velocity in this model is to some extent smaller than that seen

in a normal contraction, the reflux velocity almost remains unchanged.
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Figure 6.8: Velocity profile in contraction A and B in the ureter.
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6.6 Summary

In this chapter, the urodynamic responses were investigated under different condi-

tions, including linear and nonlinear tensile properties, the absence and presence

of a pressure difference and finally the low contraction force. The comparison

between the nonlinear and linear tensile models for a healthy condition was ex-

amined and the results showed that the contraction speed and average urine

velocity correlated more closely, as expected in the native system, when non-

linear tensile properties were used. In this aspect, the model of the ureter wall

used in this work is therefore more accurate than in previous work.

It was shown that with no pressure gradient, there was an increase of 25%

in the maximum wall shear stress at the proximal part of the ureter. These

results indicates the importance of PUJ in the urinary system which maintains

the pressure difference in the ureter, thus decreases the shear stresses level on the

proximal part of ureter. The other important result from this work is to show

how an inefficient contraction which doesnt completely collapse the ureteral wall

and close the lumen can increase the possibility of continuous reflux during the

propagation of peristalsis.



Chapter 7

Conclusions, Limitations and

Future Work

7.1 Conclusions

Computational modelling of the ureteral system and its potential application

in medicine has received a significant amount of research attention in recent

years. The complexity of the physiological phenomena occurring in the ureter

makes a comprehensive simulation of every aspect of the urinary system extremely

difficult. Consequently developing a computational platform which can simulate

the dynamic functionality of the ureteral system more precisely can not only

help physicians with a better understanding of the exact mechanisms behind

each particular ureteral disease, but also has the potential to be used in the

design and development process of a variety of medical components, including

ureteral stents and catheters, prior to clinical trials.

In the Introduction 1, a comprehensive literature review on the ureteral physi-

ology was conducted with a focus on several topics: the anatomy of the ureter, the

theory behind the ureteral peristaltic function, the effects of various pathological

conditions and the effects of a variety of drugs on the ureter functionality. In

130
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this chapter, several experimental studies performed to investigate urodynamics

as well as the ureteral peristalsis were discussed. Both invasive and non invasive

techniques were described. Subsequently, a number of studies on the computa-

tional modelling of the ureteral system were presented and the pros and cons of

each study were discussed. It was concluded that many of these studies used a

series of assumptions to simplify the model and none of the previous computa-

tional simulations of the uretery system modelled essential parameters including

the actual geometry of the ureter, viscoelasticity properties of the ureteral wall

and the multi-dimensional peristaltic movements. As a result, the aim of the

present study was to computationally model a ureteral system that accurately

mimics the dynamic functionality of the actual urinary system by incorporating

anatomically correct geometry and the non-linear elastic properties of a native

ureter.

The objective of this research was met using our in-house Computational Fluid

Dynamics (CFD) platform, known as CgLes, to model the urine flow, coupled

with our in-house Finite Element (FE) platform, known as Y -code, to model the

non-linear, non-linear properties of the ureteral wall. The discretization of dif-

ferent Navier-stokes equations terms in control volume method was explained.

Then, the projection method and boundary conditions used in Cgles code to

solve the fluid domain were described. The simulation of the ureteral wall de-

formation was conducted using the in-house the Y -code. The stress and strain

relationship of the finite element method in the solid domain were explained and

the corresponding governing equations were introduced. Finally, to simulate the

interaction between the fluid and solid domains, the novel Immersed Boundary

(IB) method was introduced to simulate moving boundaries.

Chapter 3 described the simulation of the mechanical properties of the ureteral

wall, including tensile properties and geometry. In this chapter, two models of

thick walled tube made of linear and non-linear mechanical properties were used.

The nonlinear properties of the ureteral wall were integrated into the Y -code using

the equivalent strain technique. Both computational and theoretical analyses

were conducted and the deformation of each resulting model was evaluated under

the same external pressure. It was shown that the computational and theoretical
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analysis were in good agreement. The results showed that the radial displacement

of the cylindrical shell varies linearly for the elastic and nonlinearly for the non-

elastic material. It was concluded that modelling the tube wall as Hookean

results in an overestimation of the strain when the pressure is increased. It

was shown that implementation of nonlinear stress-strain properties was more

accurate and more closely matched the native ureteral wall.

In Chapter 4, the development of a more anatomically accurate ureter model

geometry was presented, along with a number of approaches to optimise the mesh

resolution for this complex model. The 3D model of the ureteral system was ex-

tracted from CT scan images of an actual human ureter. A mesh quality study

was performed to obtain a good compromise between computational cost and

precision. Five different solid meshes with various numbers of nodes and ele-

ments were examined with the Von Misses stress variable used as a benchmark.

For the fluid analysis, similarly, several mesh independent studies were conducted

on seven fluid domains, using the central velocity as a bench mark. Our inves-

tigation to obtain the optimised grid resolution for the solid and fluid domains

has concluded that, after considering the available computational resources, solid

Mesh 4 with 6700 elements in the solid part and fluid Domain 4 with 64×448×680

cells over X, Y and Z directions respectively, were the most suitable choices for

the computational simulation of the ureteral system with coupled Cgles-Y . Fi-

nally, an algorithm was developed to create the IB points from the solid part

and implemented in the Y -code to enable the extraction of surface nodes from

the non-symmetric boundary surface of the ureter.

In Chapter 5, the ureteral peristaltic contraction was simulated by integrating

two separate contraction models in order to find which provides the most precise

results. One model implemented a constant radial force acting on the cross-

sectional area which travels axially along the ureter model with the same speed

as the actual human ureter contraction. The second model uses an individual

time-window frame for each cross-section along the ureter with the purpose of

emulating the relaxation and contraction of individual muscles with fixed posi-

tions across time. Finally, a new algorithm was developed in order to implement

the concept of IAP into the Y -code. The computational results confirmed the
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IAP has a significant impact on the computational results. It was also shown

that the time-window-frame contraction model exhibited better agreement with

the existing clinical data, compared with the constant radial force contraction

model.

In Chapter 6, a comprehensive study was conducted on the uretral peristaltic

movement with focus on the urodynamic parameters and urodynamic responses

under different pathological conditions. The result showed that the shear stress

was significantly higher around the contraction region and that using a linear ma-

terial for the ureteral wall led to a higher urine velocity in front of the contraction

region. For lower amplitude peristalsis, the reflux behind the contraction area

remained unchanged.

7.2 Limitations

A clinical study was designed and developed in collaboration with Whipps Cross

hospital with the purpose of validating our computational simulation. The aim

was to obtain clinical data from several patients, including accurate anatomi-

cal geometry of ureter, urodynamic measurements, urine production and pace-

maker activities. The ethics application to conduct this study was submitted in

November 2015 but was unfortunately rejected at an early stage of the project.

Consequently for this study, we had no choice but to use clinical data from the

literature, which was not obtained from a specific patient. Although the use of

non-patient-specific clinical data did not cause a significant mismatch between the

simulated and measured data, it is essential in future studies of this nature to con-

duct clinical studies on specific individual patients to validate the computational

simulation and improve the efficacy of our computational platform. As described

in Chapter 1, a peristaltic contraction consists of a multidirectional movement

including both longitudinal and circular contractions. In the present study, the

longitudinal muscle contraction was not simulated to minimise the complexity of

the simulation. Consequently the synchronization between longitudinal and cir-

cular contractions was not considered. For the final simulations, the geometry of
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ureter was also simplified to a star shape due to limited computational resources.

In future study, the longitudinal contraction will also be simulated in the model

to create a more realistic peristaltic motion. As described in Chapter 2, the

fluid code (Cgles) was fully parallelised but the solid code (Y -code) was only

partially parallelised. This caused a significant delay to solve the solid part at

each time step. Moreover, Cgles was parallelised using the MPI method, which

is more efficient than the open MP method used in Y -code. Using two different

parallelisation methods limited the number of clusters which could be used for

this study. For future work, the Y -code needs to be fully parallelised using the

MPI method to reduce computational time. The available local computational

nodes to run the solid and fluid domains concurrently were limited. Although

the UK national supercomputing service (Archer), with more than 4920 compu-

tational nodes, was also available for our research, the access to this service was

sporadic. For academic research projects Archer only offered limited hours with

a limited number of nodes. This limitation to the available computational power

constrained the compromise between dense meshes, which maximised accuracy,

and coarser meshes that could be completed in a reasonable time frame.

7.3 Future Works

Future work in this area will involve improving the performance of the code, to

resolve the limitations caused by high computational cost. To this end, the Y -

code must be fully parallelised. This will allow case studies with higher mesh

resolution to be completed in a shorter time. In the present study, the longi-

tudinal muscle contraction was not simulated. In an actual ureter, the ureteral

peristaltic motions are the result of the combined longitudinal and radial muscle

contractions. For the future study, proper synchronization between the longitu-

dinal and radial muscle contraction will be conducted in order to improve the

accuracy of the simulation. Conducting a broad range of experimental analyses,

using an in-vitro set up, is essential to validate the computational results and

evaluate the performance of the code. A wide range of computational studies

should be conducted on different ureteral diseases such as vesicoureteral reflux,
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ureteral obstruction and megaureter to improve our understanding of the mech-

anisms behind each particular disease. In addition, the effects of certain drugs

on ureteral functionality such as the effect on the frequency and amplitude of the

circular muscle or the sequence of peristaltic contraction-relaxation cycles can be

simulated numerically.



Appendices

Publications:

• Computational simulation of the urinary system. G. Hosseini, E. Avital

and J. J. R. Williams. Proceedings of the world congress on Engineering

and Computer Science 2012 Vol II, ISBN: 978-988-19252-4-4

• Simulation of the Upper Urinary System. G. Hosseini, E. Avital, J. S.

Green and J. J. R. Williams, Critical Reviews in Biomedical Engineering,

41(3):259-68 January 2013
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