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Statistical Modelling for Facial Expression Dynamics

Lukasz Zalewski

Abstract

One of the most powerful and fastest means of relaying emeti@tween humans are facial expres-
sions. The ability to capture, understand and mimic thosetiems and their underlying dynamics
in the synthetic counterpart is a challenging task becatifeea@omplexity of human emotions, dif-
ferent ways of conveying them, non-linearities caused loiafdeature and head motion, and the
ever critical eye of the viewer. This thesis sets out to esklsome of the limitations of existing
techniques by investigating three components of expnesaiadelling and parameterisation frame-
work: (1) Feature and expression manifold representa{@nPose estimation, and (3) Expression
dynamics modelling and their parameterisation for the psepof driving a synthetic head avatar.

First, we introduce a hierarchical representation basetth@Point Distribution Model (PDM).
Holistic representations imply that non-linearities aiby the motion of facial features, and intra-
feature correlations are implicitty embedded and hence havbe accounted for in the resulting
expression space. Also such representations requirettaigang datasets to account for all possible
variations. To address those shortcomings, and to proviesia for learning more subtle, localised
variations, our representation consists of tree-likecstme where a holistic root component is de-
composed into leaves containing the jaw outline, each oéyleeand eyebrows and the mouth. Each
of the hierarchical components is modelled according tanitsnsic functionality, rather than the
final, holistic expression label.

Secondly, we introduce a statistical approach for capguan underlying low-dimension ex-
pression manifold by utilising components of the previgudgfined hierarchical representation. As
Principal Component Analysis (PCA) based approaches taealigbly capture variations caused by
large facial feature changes because of its linear natueeyderlying dynamics manifold for each
of the hierarchical components is modelled using a Hiefeathatent Variable Model (HLVM) ap-
proach. Whilst retaining PCA properties, such a model thices a probability density model which
can deal with missing or incomplete data and allows disgoe&internal within cluster structures.
All of the model parameters and underlying density modelaat®matically estimated during the
training stage. We investigate the usefulness of such alnmt®ger and unseen datasets.

Thirdly, we extend the concept of HLVM model to pose estimatio address the non-linear
shape deformations and definition of the plausible poseespaased by large head motion. Since
our head rarely stays still, and its movements are intridigiconnected with the way we perceive
and understand the expressions, pose information is agréteart of their dynamics. The proposed



approach integrates into our existing hierarchical reprgion model. It is learned using sparse and
discreetly sampled training dataset, and generalisesaigarland continuous view-sphere.

Finally, we introduce a framework that models and extragfmassion dynamics. In existing
frameworks, explicit definition of expression intensitydapose information, is often overlooked,
although usually implicity embedded in the underlying negentation. We investigate modelling
of the expression dynamics based on use of static informatidy, and focus on its sufficiency
for the task at hand. We compare a rule-based method thigeatihe existing latent structure and
provides a fusion of different components with holistic @wesian Network (BN) approaches. An
Active Appearance Model (AAM) based tracker is used to extralevant information from input
sequences. Such information is subsequently used to deéimpatametric structure of the underlying
expression dynamics. We demonstrate that such informatiarbe utilised to animate a synthetic
head avatar.
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Chapter 1

The Introduction

Facial expressions provide one of the most powerful anésasteans of relaying emotions between
humans. As faces are the most easily recognizable featuaayoindividual, recognition by facial
identification is faster in most people than for example hm@aNeuroscientists suggest that there is
presence of a region in the human brain specifically dedidatéace recognition, and that this region
is further subdivided into a task oriented components nesipte for emotion, identity and gender
recognition [48]. Our brain is a beautiful and extremely poul thing and it is not surprising that
we take for granted the ability to process efficiently andrdeasly all of this information in real
time.

Rapid development of hardware in the last two decades hake@sn an ever greater increase
in processing power, the emergence of the Internet as algilobanunication medium and the ever
growing popularity of personal computers and portable dssshave opened up new and interesting
areas for vision related research. Although we are far an@y imatching the ability and perfor-
mance of our brains, the ability to re-create facial expoessusing synthetic counter-parts, allowing
the simulation of direct visual communication between hosnasing computer devices, and the in

depth understanding of human nature enables the normadti@mess machines to exhibit, to some
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degree, personality and emotions that increasingly seera real than ever.

Because of this we can see a change in the way that we perd¢éigman-Computer Interaction
(HCI) designs, with traditional computer-centered setopslving keyboard and mouse, are replaced
by a notion of “ubiquitous computing” where human-centedesigns are at the forefront [124].
Due to such an increase in interest, and the amount of résearded out, new opportunities and
application fields have emerged where there is a need to staddror quantify facial expressions is

much desired. Some of the potential fields include:

e Computer Animation: From the humble beginningsTodn, through to the pioneering work
of Pixar in this field, and because of its visual nature and its glolgpbsure, this area has
made the most noticeable progress, and features in almest aspect of the entertainment

field today.

e Computer Games: Due to the establishment of the internegladal communication medium
this field has evolved from that of a lonely, or personal, eigmee to a social phenomena,
where a multitude of players from all around the world mead anmerse themselves in
fantasy realms. With the emergence of Massively Multipta@aline Role-Playing Games
(MMORPG) that facilitate and encourage communication leetwplayers the need to visu-
ally convey, or determine their emotions as the playerd teamfolding events has never been

more desirable.

¢ Virtual Meeting/Chat Rooms: From the dawn of time we havéedebn person to person
communication and social interaction. Text based comnatioic has been replaced by visual
interaction, where in Instant Messaging Clients (IMC) apdcifically designed social virtual

worlds, such aSecond Lif&, the addition of facial expressions would complete the ggpee.

e Monitoring: Ability to determine certain behaviours aneithextent can be useful, and can
provide insight, or cues on further actions. These statghinmclude pain [69], fatigue [55]

or deceit [130].

1Second Life. http://secondlife.com
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Figure 1.1: Gollum character in Lord of the Rings.

e Education: Automated systems that can recognise the yimtgrtmotional states of tutees,
such as interest [119], and the opportunity this insightioles for the system to adapt or tune

its programming according to those recognised states.

However, in our great quest for realism, by large the bestiteare still obtained by employing ex-
pensive or complex motion capture systems, as the ones ugbe set of “Beowulf”, or relying on
skills and experience of animators to transfer facial esgiom dynamics into synthetic counterparts,
where the prime example is the animation of Gollum’s faceliort] of the Rings” (Figure 1.1).
Recent interest and advances in computer vision reseavehgnaduced works that focus on auto-
mated and non-intrusive approaches to extract and defieearglinformation that does not depend
on expensive and time consuming setups. However many diiiswf the real world scenarios are

still present. They include:

Tracking problems These will occur due to the ubiquitous noise, occlusiongdehe and low
quality of the input source. Their presence might causedbs=mcking or inappropriate infor-
mation being extracted hence causing erroneous clasgifiGatd animation. In this thesis we

do not directly focus on tracking phase although it is patéidy important as it provides the
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foundation which our approach is built on.

Complexity of expressionsExpressions are something more than just a contractioncal fa
muscles, they can convey the current emotional state ofdls®p and can open a new dimen-
sion in human-computer interaction. They are also extremigerse, as no two people exhibit
the same expression in the same way. This makes it very diffasi trade-offs have to be

made, regarding generality, complexity and performandeefnodels we need to use.

Realistic animation Because people learn how to recognise and interpret fact$aaial
expressions from the day they are born, even the slightgstrigctions can be easily spotted.

This makes our quest for realism very challenging [76].

1.1 Approach

The goal of this thesis is to address the problem of extrgdtie dynamics of facial expressions and
providing a parametric description that can be subsequesr#d to animate a synthetic counterpart.
We can think of it as a process of transition between the nealam face and the resulting synthetic

counterpart. In this thesis we study the following problems

1.1.1 Feature Representation

A very important step for any successful vision system isctiwce of underlying feature representa-
tion. Due to the complexity of the facial expressions andtidtitude of available stimuli the choice
is difficult and crucial as it defines the building foundatiorhe thesis work begins by introducing
the Active Appearance Model (AAM) which consists of a hatighape and appearance combined
elegantly using a PCA statistical model. We focus on theis@especific variant, which provides
better performance [46], and a more optimal basis from wtoctapture subtle dynamics of facial
expressions under a sparse training set.

Most of the existing approaches adopt a holistic repreientavhere the non-linearities caused

by the motion of facial features and their intra-featurerelations have to be accounted for in the
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resulting expression space. Also such a representatioremeode redundant information that is
unnecessary, or even detrimental to the underlying taskinthduce a hierarchical decomposition
where the face is separated into eyes and mouth componeiats avb the most salient regions on the
human face. This approach allows us to represent each & thg®ns according to their intrinsic
functionalities rather than the final expression labels.fo¢eis specifically on the shape component
of the AAM, referred to as the Point Distribution Model (PDM)ecause of its resilience to the
illumination changes and underlying low dimensionality.

By taking advantage of facial symmetry we utilise a single model to represent the variation
of both of the eyes. The underlying subspaces are modeliad tise Hierarchical Latent Variable
Model (HLVM) [13]. Whilst retaining PCA properties, it defis probability density model, that
allows the discovery of internal within cluster structyrest most importantly it allows modelling of
non-linear manifolds with a combination of localised suloigls. We demonstrate the advantages of

such a model over the PCA approach.

1.1.2 Pose Estimation

Head motion is an inherent component of facial dynamics. ddminuous head movement, every
tilt, shake or nod is what we learned to perceive, and are isexb a constant companion of facial
expressions. Ability to capture and model such movemerits@mpliment, and enrich the resulting
information. A prime example of its importance Bxar’s short feature filmLuxor Jr? where a
common household object was given human-like charadterigtrough the inclusion of such subtle
movements.

Due to the highly non-linear variations, linear mappingassufficient to represent pose changes.
We introduce a pose model, which is based on the first levehe@fiLVM hierarchy, which can
model the non-linear space with a combination of linear congmts. By just using the shape com-
ponent and appropriate underlying features, the influeh&ac@l expressions on the resulting pose

estimation is minimised, something that would be difficfilthie appearance component was also

L'Luxor Jr. http://www.pixar.com/shorts/ljr/index.html
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considered. Based on a sparse and discreetly sampledhtraet our approach is able to estimate
pose through its probabilistic framework. We exploit ougypously introduced hierarchical decom-
position, and show that through sub-sampling of the dersspes model we can derive continuous
pose estimates. As we do not utilise any dynamic informatiismmethod is fast and can deal with
large jumps and discontinuities.

We explore the usefulness of our pose model to the synthé$ixial expressions at arbitrary
viewpoints under an independence assumption of shape dundeeFor a linear shape model warp
basis, deformations at extreme viewpoints will result ixtuee artifact and distortions. Our model
is able to overcome these problems. The choice of featuregndby minimising the effects of
expressions, has a reverse effect where most of the varsatice kept in the appearance space and
the shape only serves as a warp vessel. Finally we investigateffect of pose information on fitting
of AAM where at extreme views self-occlusion causes sombeirtformation to be unavailable. We
employ a dynamically generated, and pose-dependent wesghir that constraints the calculation

of appearance difference at these views and improves tferpance.

1.1.3 Dynamics Extraction and Parameterisation

Most of the existing approaches in Automatic Facial Expogs#\nalysis (AFEA) focus on only
determining the underlying facial states, ignoring theartying gradual changes and treating it as
an on/off process [41]. Given our previously defined hidreral models we explore the concept
of fusion to combine the intrinsic functionality of eye aneduth components into final expression
labels. We investigate the use of rule-based classifierscamgbare them with a Bayesian Network
(BN) similar to Cohen et al. [20], but with the main focus om timdependence between regions
rather than features, and holistic representations of glaad Huang [53] and Liu et al. [71]. Given
the extracted final expression label, we calculate the sparding intensity as a gradual change of
the combination of intrinsic intensities of the hierare@ilisubcomponents. These are extracted using
existing probability density models.

By using the AAM tracker on sequences containing a mixturéaofl expressions interleaved
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by speech fragments we show that our method offers bettéorpence over the BN and holistic

approach. Finally we combine extracted expression laloglsther with their intensity and pose

information and apply its parametric form, in a morph-bafsesthion, to a synthetic head avatar.

1.2 Contributions

The main contributions are:

1.3

¢ A hierarchical face representation has been introducedithiges redundancy implied by the

symmetry of the human face. This representation reducaslbeemplexity of the model.
A statistical model that is built upon this hierarchical iegentation allows us to accurately

recognise expressions and extract their rate of change 1223.

A 2D pose model built using a sparse set of training samplesgsvnvariance under facial
expressions, generalises to continuous and unseen sariplesnodel serves as a basis for
synthesis of facial expressions across arbitrary viewscandmprove the AAM fitting process

[121, 120].

¢ A fusion framework that draws from our hierarchical modelptoduce expression labels, aids

in the definition of the resulting expression intensity apgles resulting parameterisation to
animate a synthetic head avatar. [123, 122, 120].

Overview of the Thesis

Chapter 2 Review of previous work on facial expression analysis.

Chapter 3 Introduction of hierarchical facial decomposition intdbstomponents and their

representation using the Hierarchical Latent Variable M¢HLVM).

Chapter 4 Investigation into pose estimation based on our previomstpduced hierarchical

representation and its usefulness in synthesis and tigickin
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Chapter 5 Overview of the framework for fusing hierarchical subcomemot information with
rule-based classifier and resulting expression intengtynation. Application of parame-

terised data to synthetic head counterpart.

Chapter 6 Conclusions and future work.
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Chapter 2

Literature Review

Early work by Suwa et al. [101] identified many problems agged with facial tracking and expres-
sion recognition. Recent advances in hardware developarahhuge increases in the processing
power of computers have triggered considerable interdbeimesearch community. However devel-
opment of vision systems that automatically understandsgnthesise facial expressions is still a
rather difficult and daunting task. A huge body of work is atte present in the areas of Automatic
Facial Expression Analysis (AFEA) [41, 87, 88, 106, 72, 854,199]. The primary focus of these
studies is aimed at providing relevant labels, the undaglgiontext of expression dynamics however
is mostly overlooked. We can divide the process of expresgymamics analysis into the following

stages:

e Face acquisition - This step is necessary to find or detecksfiean input source, which can be
an image or a sequence of images. The problefac# detectiorhas been largely addressed
in the literature [50, 131, 117]. Once the face has been teteasually some alignment is

performed. Also pose estimation can be performed if siganifidiead motion is present.

e Feature extraction - Once the face has been located, thisaéileextract and formulate the

features necessary to represent facial expressions. Huw epresentation of features can
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vary. It will form the basis for stages that follow.

e Semantics (or expression dynamics) formulation - will agtrand formulate the information
needed to describfacial statein a parametric form, which can then be used for avatar an-
imation. Facial expressions underneath are more than @ssfrigtive labels that we usually
associate with them. They are a direct manifestation of mat®nal state, and are affected by
the surroundings and the context they were used in [72]. ©sulface they are an intricate in-
terplay of facial features driven by muscle contractionse Way and the rate they evolve over
time, including rigid head motion associated with them,thesintegral part of their dynamics.
Since no two people exhibit them in the same way, and due teumgeptibility to even small-
est imperfections, the ability to capture and learn thosetying semantics accurately poses

a great challenge.

In the following section, we review the existing work on f@@ representation (Section 2.1) and

semantics formulation (Section 2.2).

2.1 Feature Representation

In order to successfully recognise expressions we needdosehthe appropriate representation of
“features”. We refer to features as attributes used to destiie modelof the face, rather than a
specific representation thereof, such as fiducial pointsahment landmarks on the face like nose,
mouth or eyes. The choice of the appropriate features isrirapofor reasons such as computational
efficiency, discriminative power and resilience to missang incomplete data [93]. Most importantly
such choice will have a direct effect on the methods usedttaedinformation from the input source
and the approaches used to process that information. Weubdivigle the representation into two

different levels: conceptual and data-based.
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2.1.1 Conceptual Level Representation

On the conceptual level, features can be defined as holigtiaé a whole unit) or localised, to reflect
changes in specific regions of the face. Holistic approatiees the face as a whole unit, usually by
combining all of the information such as shape, appearamdéretion into a single monolithic unit,
and process them as such. The underlying feature vectoalyubave high dimensions, especially
when dealing with the appearance data. They embed infaymatvhich might be irrelevant for
expression recognition task, and could have a direct impacdhe classfiers ability to uncover its
true nature [84]. More importantly they implicitly encoderelations between facial features, which
can cause non-linearites in the resulting expression sgdmse correlations are important [21, 100]
as they determine the underlying facial states, but do ngg tiabe accounted for at this particular
stage. Similarly, they will also implicitly encode globaformation of the underlying dynamics.
Localised features are associated with specific parts ofeitee These parts are usually based
on the areas that are mostly prone to change, or contain teereglevant information for facial ex-
pression recognition. Psychophysical experiments cdeduzy Cunningham et al. [27] suggest that
changes only in certain regions of the face, are sufficiestiteessfully recognise facial expressions.
In their work, they focused on the eye and mouth regions, kvaie the most intuitive and salient
regions of the human face. They concluded, that these rggsither on their own or in combination
can be used to recognise facial expressions. Furthermese tiegions have been widely used and
relied upon in computer facial animation [42, 81, 63]. Nu&set al. [81] examined the concept
of necessity with respect to different facial regions tadgasuccessful recognition of expressions.
Their findings suggest that for some of the expression caegymdividual regions of a face alone
can be used to successfully represent the expressionsshBezi al. [10] have also highlighted the
importance of those regions and their influence on the glpbateption of the face. Rather than
performing the analysis from the perspective of recognijtar functional importance of the regions,
the significance of these regions was described in the coofesources of variation in the facial

image.
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Figure 2.1: The 90 feature points used for PDM represemtakocom Huang and Huang [53].

2.1.2 Data Level Representation

On a different level, data-representation features cariviged into two main categories: geometric
and appearance-based [106]. Geometric features usudihedbe location and/or shape of facial
components, such as the mouth, nose or eyes. Appeararefbatures represent the textural infor-
mation of the face, such as hair or skin, and its visual chariatics such as furrows or wrinkles. This
level is orthogonal to the previously defined conceptuatlisuch that any data-level representation

can be either holistic or localised.

Geometric Features
Huang and Huang [53] used 90 landmark points placed on the (leigure 2.1) combined with
parabolic curves for upper and lower lip shapes. Resultiragps was represented by a Point Distri-

bution Model (PDM) to capture the underlying holistic shapeations using Principal Component
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Figure 2.2: (a) Location features, wherg L2 L3,L4,L5 correspond to distances between six facial features.h@)&
features with normalized image on the left and zones of tige @tap on the right. From Tian et al. [105].

Analysis (PCA) under a linear relationship assumption,clvhiiends to fail in the presence of non-
linear variations such as those caused by large facial ar pasations. No rigid head motion, or
illumination variations should be present. Similar shapelet based approach was used by Chang
et al. [16, 17], but with 58 facial landmarks. Tian et al. [L058ed a combination of six location
and shape features from frontal, or near-frontal views. Sikdocation features consisted of the
eye corners, eyebrow inner end-points, and mouth cornedsware represented by five parameters
defined by distances between the features in question. Sbajuees were used for the mouth area
and defined by applying an edge detector to a normalised dgm®tiuce a % 3 edge map. Then the
mouth shape features were computed from zonal shape lasts@f the edges of the mouth region.
Figure 2.2 shows the location features (a), and shape &sawith the normalized face on the left
and corresponding edge zone map on the right (b). ValstaPandc [110] used a set of 20 fiducial
facial points (Figure 2.3(a)) plus the location of bothedsand the centre of the mouth in a frontal

view which locations were detected using Gabor-featuredasosted classifiers. Terzopoulus and
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() (b)

Figure 2.3: (a) 20 frontal fiducial facial points (from Valstand Pantic [110]) (b) 19 frontal and 10 profile fiducial fci
points (from Pantic and Rothkrantz [89]).

Waters [103] used 11 active snakes (also known as defornsahteurs) to represent lips and facial
features. Their approach required the subjects to wearrfeanhancing make-up therefore making
it unsuited for real world environments.

Although the majority of existing approaches deal with fedrviews only, multiple, or alterna-
tive views can be employed in order to bootstrap and helprhiguate issues related to the feature
extraction process. Pantic and Rothkrantz [88] used ftami profile views with 30 and 10 location
points respectively. Multiple detectors were used for eafcthe prominent facial features, and the
best representation was chosen based on knowledge of thkdiaatomy and the confidence of each
of the detectors. This provided some measure of redundaatyyas limited solely to the detection
stage and required manual initialisation. Pantic and Rattitk [89] utilised frontal and profile views
with 19 and 10 points respectively (Figure 2.3(b)). Howeber practicality of their approach was
impaired by the need to wear head mounted camera rig. Infiiwing work Pantic and Patras
[86] focused on a profile view only using 15 points.

Besides the location and/or shape of the features, cuesasutiotion or displacement can be added.

These can only be used with images sequences where suchation is available. Kimura and
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Figure 2.4: Motion Units (MUs) representation. From Cohealg[21].

Yachida [58] used an elastic net model, or more precisedynibtion vectors caused by its deforma-
tions. Otsuka and Ohya [83] used optical flow to estimate tbéan of localised face regions such
mouth and right eye. The exclusion of the left eye region rmtweat the changes that occur in single
eye only cannot be adequately represented. Also the fagiahetry assumption regarding the range
of motion in both parts of the face cannot always be guardnt€®hen et al. [21] used an explicit
3D wireframe model of the face to represent direction andmitade of the displacement of 12 facial
features. He called them Motion Units (MUs) (Figure 2.4)s&and Pentland [40] used optical flow
to estimate facial movements. Those movements were thestraored and refined recursively by a
detailed physical face model of Platt and Badler [92]. Lieale[67] used motion vectors extracted
from coarse-to-fine pyramidal optical flow feature trackidgnse optical flow for holistic face mo-
tion, and spatio-temporal domain gradient informationrfardelling of furrows in the skin. Lee and
Xu [65] also applied pyramidal optical flow to calculate theptiacement of 19 feature points placed

around facial landmarks such as the eyes, brows, nose anthntogeneral, flow-based techniques
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Figure 2.5: Facial features resulting from Gabor waveletotution. On the left are two facial expressions, and on the
right Gabor representations representing four diffeyemtiented kernels. From Fasel and Luettin [41].

are computationally intensive and easily influenced byatsms in lighting, non-rigid motion and
are sensitive to image registration and motion discortiggi{128].

Overall, geometric features provide low dimensionalityadand a conceptually easy way to
model and describe expressions. They are tolerant to iaain illumination, and to some extent
also to inter-person differences. Unfortunately they taasily encode subtle skin changes such
as wrinkles or furrows caused by facial expressions. Theainndisadvantage is that they rely on
accurate and reliable detection and tracking, which in nstwations cannot be guaranteed. They
do not deal very well with occlusion, and large pose varratioAlso in low resolution images and

real-world environments such information might not be lgasrailable [105, 106].

Appearance-based Features

Gabor filter based features [70, 5, 108, 110, 68, 6, 2, 71}areiost widely used appearance feature
representations due to their resilience to variationsghtihg and to small shifts and deformations
[85]. Figure 2.5 shows sample features obtained from Galawelgt convolution. They can be

applied in holistic fashion, or to specific locations, wharesabor filters are placed at selected
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locations on the face to limit computational complexity 2].1

Statistical analysis, such as Principal Component AnalyBiCA) [109], Local Feature Analysis
(LFA) [28], Local Discriminant Analysis (LDA), Independe@omponent Analysis (ICA) [28] have
also been widely used. They were pioneered by the “eigesifagerk of Turk and Pentland [109].
Padgett and Cottrell [84] explored the concept of local gpal components, or eigenfeatures, in
which windows were placed around facial feature regionsi{(@s eyes and a mouth). Eigenfeature
based representation produced better results that itstiboiounterpart, but required normalised
image data and was susceptible to differences in the mowthegm structure. Donato et al. [28]
compared the use of several techniques such as holistialspaalysis, including PCA, ICA, LFA,
LDA and approaches based on the outputs of local filters, aachabor wavelet representation and
local principal components. The best results in recoggi&itial expressions were obtained using
Gabor wavelet representations and ICA. This experimentodstrated the superiority of localised
representation.

Since appearance feature numbers and their dimensionalitye large, this implies high com-
putation costs, for example in Gabor convolution using gdanumber of features. To overcome
this problem, various feature selection techniques haga peoposed to select a subset of the most
effective ones. Littlewort et al. [68] and Bartlett et al] @mployed AdaBoost to select the best
subset of Gabor filters. Valstar and Pantic [110] comparedtl&®oost feature selection against
AdaBoost and by using their dataset the former outperfohmdatter. Local Binary Patterns (LBP)
provide an alternative to the Gabor based representatiost iftroduced by Ahonen et al. [1] and
subsequently adopted by Shan et al. [98], they offer lowermdational cost and tolerance against
illumination variation, whilst retaining sufficient inteal feature information. Shan [100] compared
AdaBoost with Conditional Mutual Information (CMI) basead&sting using LBP features, noting
that AdaBoost produced better results.

The general criticism of appearance-based features ishtbyatare more susceptible to illumina-
tion variations and inter-person differences, unless atamtial quantity of features and large varied

training datasets are used [85]. Zhang et al. [129] have shbat Gabor-filter based appearance
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Figure 2.6: 34 fiducial points representing facial geometrgm Zhang et al. [129].

features perform better than geometric features alones iShinderstandable as they can generally
encode more information compared to their geometric copates. However, study conducted by
Pantic and Bartlett [85] shows that this is not always thec&¥ork of Pantic and Patras [86] who
used a geometric feature representation performs similbetber than some appearance methods,
notably that of Bartlett et al. [7].

The obvious way forward is to combine both geomedmicl appearance features together, hence
utilising both their strengths and minimising their indiual weaknesses [124]. Zhang et al. [129]
used 34 fiducial points selected manually on the face (Figuieand applied a set of multi-scale and
orientation Gabor filters at those points. Tian et al. [L&gdua multi-state face component model: a
three-state lip model (with open, closed and tightly clostdes), a two-state eye model (with open
or closed states), and one state model for the brow and cheakidition, appearance features from

the eye and nose area were incorporated into a two state r(meskent or absent). Zhang and Ji
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[126, 128] used a set of 26 facial features around the eyes® and mouth and a set of transient
features similar to that of Tian et al. [104].

The Active Appearance Model (AAM) [33, 77, 114, 73, 59, 11himther example of a model
relying on both geometric and appearance-based featurs®! uses a holistic representation with
combined shape and appearance features modelled in a PCA. sBamilarly to PDM, which is
a component of AAM, it models both shape and texture undeneati relationship assumption,
and in the same way it tends to fail in the presence of norafimariations caused by large facial
or pose variations [43]. Matthews and Baker [77] improved performance of AAM in terms
of speed and accuracy by using an inverse compositionaigfittigorithm. However their method
can only work with an independent AAM, in which shape and apgece are not combined, and
increases the dimensionality of the resulting model. Xiaale[114] utilised both 3D as well as
2D information in what they call a combined 2D+3D AAM. This thed uses 3D information to
bootstrap the fitting process and is more resilient to o@mhss but it requires an additional 3D input
training data. Unfortunately the AAM approaches requirg/Varge and exhaustive training sets in
order to accurately capture and model inter-person and-person expression-specific variations.
Gross et al. [46] introduced the concept of Person-specifiMg. This improves the performance
and reduces the number of training samples by removingp@eson variation, but requires training
separate models for each individual person. Zhang and (aB&hinvestigated the lack of flexibility
in the holistic representation of AAM and presented a comeptibased approach, where separate
models for eye and mouth-nose regions were combined withlembfepresentation providing more

flexibility, accuracy in shape localisation.

2.1.3 Expression Manifold Representation

The dimensionality of a face input space is defined by theifeatused to represent it. It will range
from tens in the case of geometrical features to thousamdgpfearance features. Given high dimen-
sionality of the face input space, face representationatimsically on lower dimensional manifold

[102, 97]. An expression can be represented as a point oresonemifold and variations, or changes
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in those expressions can be represented by a path in sudmaanmanifold, which is of intrinsi-
cally lower dimensionality than its corresponding inpuasp [16, 17, 97].

Identification of a global, concise and accurate reprefientfor all possible facial expressions, is
crucial for modelling facial dynamics. Subspace analysishmds such as PCA and LDA have been
used to model manifolds, but they fail to find the true struetaf the data due to its underlying
non-linearity [102]. In some cases PCA can be sufficient wdnemall set of significantly different
expressions is used, hence keeping resulting non-liresatid the minimum. For example Kimura
and Yachida [58] represented anger, surprise and hapgimeash way. Liu et al. [71] and [53] em-
ployed a PCA based representation combined with a Gaussinri®l Model (GMM) to represent
the distribution of facial expressions. While the additimiha GMM produces better results com-
pared to PCA alone there was significant overlap of clustetise manifold. This is understandable,
as GMM can only provide constraints on the shape variatiorasd the classification, but it cannot
reliably model the underlying non-linear data variatiogjta built on top of PCA representation and
inherits its underlying flaws. Various extensions to PCAehbgen proposed to allow representation
of non-linear manifolds, such as Non-linear Principal Comgnt Analysis (NLPCA) or Kernel Prin-
cipal Component Analysis (KPCA) [43]. Although they ovemu® the linearity problem by utilising
higher dimensional subspace, these methods capture thalaagiance of the data which might be
the most optimum solution. Moghaddam [78] investigated afdinear and non-linear techniques
such as PCA, ICA, NLPCA and KPCA for manifold modelling in tbentext of face recognition.
Their results show that in terms of matching accuracy, KPQ#performs PCA by margin of 10%
but it is surpassed by Baesian methods such as Probalitisticipal Component Analysis (PPCA).
Heap and Hogg [49] introduced the concept of Hierarchicaddizal Component Analysis (HPCA)
where combination of local linear sub-models were usedgoesent non-linear variations in PDM.
Although the work was in context of shape modelling and ulyitey constraints, the principals
are applicable to generic scenarios. Their model consistedglobal PCA model in the root of
the hierarchy, and linear combination of local PCA modelsstacted in the global, or root, PCA

subspace. Tenenbaum et al. [102] used Isometric featurpingafisomap) to discover meaningful
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structure from high dimensionality data, while Chuang e{E3] used shape and texture statistical
representation similar to Cootes et al. [25] and a bilineadeh to represent the facial expression
space. Symmetric and asymmetric formulations were emglégenodel speech and three facial
expressions. Du et al. [31] presented a method of mappingessions to a 2D Valence-Arousal
emotion space, based on the 3D Valence-Arousal-Controkehafdrussell and Mehrabian [95] us-
ing linear mapping. Given the non-linear nature of the datech a mapping is not sufficient to
efficiently model the manifold. Chang et al. [15] compared types of embedding for expression
manifold modelling: Locally Linear Embedding (LLE) and Isighitz embedding. Chang et al. [16]
also presented a probabilistic framework for recognisimg) $ynthesising six basic expressions using
enhanced Lipschitz embedding. In their following work Cha&t al. [17] proposed an Active Shape
Model (ASM) representation and existing probabilisticnfiwork to model six basic expressions.
As they modelled a global, generic expression manifoldir tin@ining set only included two sub-
jects, which barely provided sufficient validation. Shaf@i(JLused Locality Preserving Projections
to model a generic manifold in the LBP appearance space tmatéor more detailed feature vari-
ations. They point out that sparse geometrical representat not sufficient as it does not capture
detailed features such as wrinkles or furrows, and thatnigeai separate manifold for each subject

does not provide enough generalisation.

2.2 Semantics Formulation

In order to successfully classify an expression one needsftoe a “dictionary” that describes our
facial expression state. It is worth pointing out that faeigpression analysis is not analogous to
emotion analysis [106, 72]. In order to understand emotibigher level knowledge is required and
additional factors such as context, body language, cliéleanents and sound should be considered.
There are two distinct approaches: sign and message juddg2®nSubsets of those are sometimes

referred to as emotion (affect) based, and muscle (Actioit) based [106, 100, 85]:

* Message judgmentmessage judgment tries to describe facial expressiomsnmstof inferred

emotions. During an extensive study Ekman [35] proposedaiggories of emotional ex-
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Figure 2.7: Universal expressions (from left to right): Fday, Disgust, Surprise, Sadness, Anger. From Kanade et al
[56].

pressions, referred to as the basic, or universal expressi@mppiness, sadness, surprise, fear,
anger and disgust (Figure 2.7 shows examples of each). Iperiexents suggest that these
basic expressions are universally displayed and recajais®ss different cultures. This is by
far the most popular method and has been widely adopted ffiefldeof automatic expression
recognition. There have also been attempts to recognise ethotional states such as interest
[119], pain [69], fatigue [55], deceit [130], and conveisatl components such as agreement,

disagreement, thinking, cluelessness and confusion [81].

* Sign judgment Sign judgment attempts to describe facial expressionsring of surface be-
haviour such as facial component movement or change. ThalFRsation Coding System
(FACS) [36] is considered to be the most popular for anatysatial activity. It defines the
expressions in terms of 44 atomic Action Units (AUs) in whigh of those correspond to
movements of particular muscle groups and are partitioo@dd sets, corresponding to upper
face and lower face (12 for the upper face and 18 for the loaee)f The remaining 14 AUs
have anatomically undefined basis and are referred to alaiseous actions [56]. Using
those rules a particular expression can be decomposed Bitgle AU or the combination
that describes that particular expression. More than 7@d@bmations have been observed
[57]. Figure 2.8 illustrates some of the AUs for the uppett pérthe face. However FACS
in itself does not define a way to translate the AUs into lauk#xpressions. Extensions such
as the Facial Action Coding System Affect Interpretatiortdbase (FACSAID) [38] or Emo-
tion Facial Action Coding System (EMFACS) [37] allow traaisbn of AUs into predefined
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Figure 2.8: Some Action Units corresponding to the uppet gfathe face. From Tian et al. [104].

emotional categories. Alternative system is the Faciah#ation Parameter (FAP) [82] coding
system developed for the MPEG-4 standard. It defines a set fdfa@ure points (FPs) placed
at predefined locations on the face. Facial movements areseted by FAPs which are de-
fined as FP displacements with respect to a neutral stat@randeasured in FAP units which
correspond to the distances between key features. Alththiglsystem does not define the
way by which we formulate expressions, it does define the l@mmpn which the data should
be represented. It is based purely on facial feature paimt#ke FACS, which is driven by

facial muscle movements.

2.2.1 Pose Information

Changes in pose are common by-products of facial expressi®ome of the expressions, such as

agreement or disagreement, can be represented by head amageatone [27]. Since our head rarely
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remains still, and its motion directly influences expressignamics, it is imperative to extract this
information in order to provide more complete and accurataeantical description. Relatively few
works in the literature try to model pose together with faedpressions, or take such information
into consideration in the semantics formulation proce84]1The rigid head motion is intrinsically
embedded with non-rigid local feature motion and the mamllehge is in separation of the two.
Usually the rigid motion is estimated first, and the nonetigécond, entailing that the face is a rigid
object without taking into consideration expression clesnfil32]. Bascle and Blake [8] investi-
gated coupling between pose and facial expressions. Faxiiressions, they used a linear model
built from key expressions, and the pose estimation mettsed affine projection with parallax.
Combined influence of both was represented with a bilineadahand de-coupling was achieved
using Singular Value Decomposition (SVD). The main focushafir work was on the removal of
pose influence in the expression recognition process, asé ipformation was not explicitly de-
fined. Also the subject were required to wear enhancing nuigkeZhu and Ji [132] proposed an
improved approach based on a Normalised Singular Value Bpasition (N-SVD) to recover head
pose information in an analytic fashion. Constraints weldea using non-linear techniques impos-
ing orthonormality condition on the pose parameters. Tluation on a synthetic data, where the
original feature points were displaced by applying différievels of Gaussian noise, shows signif-
icant improvement over Bascle and Blake [8]. Sarris et @] [#ed a 3D model and optical flow
to estimate pose information from video sequences. Thergifn was that the 3D model could
be adequately fitted in the very first frame. Eisert and Gi@#] plso employed 3D models. Both
methods fitted into the FAP framework. Gu and Ji [47] usedahiRed (IR) information to define
several properties such as inter-pupil distance, sizeientation, which were subsequently mod-
elled using PCA to form a Pupil Feature Space (PFS). Headwaseletermined by mapping those
parameters into PFS. A similar technique was used by Zhadgdigii27]. Dornaika and Davoine
[30] use a deterministic registration technigue based dm®Appearance Models to estimate head
pose. On the other hand, Tian et al. [105] used the silhooétiehead rather than face, which was

then converted to grayscale, histogram equalised, armbetd the appropriate resolution. This was
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then passed through a Neural Network (NN) with the outpuisgoene of the following: frontal,
near-frontal, side, profile, back or occluded. By using thwsette the effects of facial expressions
were mostly removed, but such representation could be gtilsieeto ambiguities and could not be
used for more fine-grained, or precise, pose definition. Niegkess the pose information can be ex-
tracted from the underlying model - this is especially troethe 3D-based models. Xiao et al. [114]
can automatically obtain pose information from the 3D headi@hwhich was used to constrain the
2D AAM model. Similarly Xiao et al. [115] developed means afracting pose information from

the cylindrical model.

2.2.2 Expression Categories Extraction

After the extraction of the required features, one may wastetognise (or classify) facial expression
labels based on the given data. Different classifiers cansbd for this task. These can be NNs
[60, 104, 105, 129, 84, 57], Support Vector Machines (SVMisB| 110, 70, 98], BNs [21] and their
dynamic counterparts [128, 108, 47, 126], Hidden Markov MsdHMMSs) [21, 66, 83, 57] or rule
based classifiers [86] and Particle filters [30]. We can fomm tain categories of approach: static,
in which information used for expression analysis is exgddrom a single image, and dynamic, in

which temporal information is also utilised [106, 85].

Posed versus Spontaneous Expressions

There is a clear physical distinction between posed andtapeaus expressions. Neurological re-
search suggests that they are driven by two different ngathlways in the brain, and that the facial

muscles and dynamics are different [85]. For example thatspeous expressions are driven by
different motor pathways, resulting in non-symmetric egsions [106]. Also, spontaneous expres-
sions are context and culture specific, and only small suddgbem can be defined across culture or
context. Most of the existing work uses data that contaitibetately posed expressions. This data
is easier to obtain or generate, but such data rarely eristseal world scenarios. The use of posed
data was partly driven by convenience, but mostly due todbk bf comprehensive and available

datasets.
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1C Inner brow raise
2C Outer brow raise
4B Corrugator

5D Upper lid raise
7B Lower lid tighten

20B Lip stretch
26B Jaw drop

Figure 2.9: The 5-point intensity scale of FACS. From Batrte¢al. [6].

Expression Intensity

We can define expression intensity as a rate of change witfeceso some point of reference,
usually neutral facial expression. Such a measure is irmpbim the modelling of facial dynamics,
and necessary for synthesis and animation of expressioasticRand Bartlett [85] point out that
there is a coupling between expression decoding accuracgeiped intensity of the underlying
emotional state, and physical intensity of the facial eoroti An expression intensity measure is
important for accuracy, and has significant impact on disicration between posed and spontaneous
expressions. As facial expressions rarely convey only poe of emotion, it is also important to be
able to detect and extract a combination of displayed emstimd their respective intensities. For
basic expressions, such intensities are usually repessastnormalised, continuous values within a
specified range. The FACS coding system on the other handausgmint discrete intensity scale
(A-F) to describe intensity variation in each of the AUs [186]. Figure 2.9 shows an example of

such a scale. Also some of the AU’s themselves, combinedonpg; can function as a measure of
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intensity, e.g. AUs 41-45 can represent intensity changbinvthe eye region [106]. Most of the
existing work treats expression classification as a bintate gpresent or absent), and only a small
subset address, or provide the means to define expressamsiigtas a continuous or multi-level

discrete measure [66, 58, 67, 128, 100, 68, 118, 65].

Static Approaches

Kimura and Yachida [58] proposed a method for recognisimgetlkinds of expressions: happiness,
anger and surprise. They used potential net motion flow inédion generated by comparing the
expressionless reference frame with the target expres3iban PCA was applied to the extracted
vectors to create what they call an emotion space. Intemsity the type of the expression was
defined as the distance and direction of a straight line ih five principal components, approxi-
mated by the least squares method. This assumes that thessixpor subspace is constructed in a
star-shaped manner with neutral expression at the cenliehwnight not be true for a larger and
non-standard set of expressions. Huang and Huang [53] udBdzaussian mixture model of PCA-
represented Action Parameters (APs) space. The PCA spacsowstructed using 180 location (90
feature PDM) and 13 mouth shape parameters. CombinatiohP®fiefined by Vanger et al. [111]
were then used to classify six prototypic expressions. Dueérlaps of each of the expressions with
two or more other expressions, in the PCA space, the higbest ®f the three correlations deter-
mined the final expression achieving average recognititmab84%. Cohen et al. [21] investigated
the use of Bayesian Network Classifiers, focusing on unitylglistribution assumptions and design
of the network with respect to feature dependency. The lyidgrfeature representation consisted
of Motion Units (MUs). In their first experiment they used ail¢aBayes classifier (Figure 2.10
(a)) and compared the use of the Gaussian and Cauchy distribu Their findings suggest that
the latter performs better, however the independence gggmrimposed by the model might not
hold true due to correlation between various facial motidmsng the expressions. The second ex-
periment used a Tree-Augmented-Naive (TAN) Bayes clasgifieigure 2.10 (b)) to automatically
learn the dependencies amongst different features in twdmrercome the implied feature indepen-

dence shortcoming of Naive Bayes. They reported recognitites of 786%, 8005% and 8331%
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Figure 2.10: Visualisation of Naive Bayes (a) and Tree Augiae Naive Bayes (b) Network of Cohen et al. [21].

for Naive-Bayes Gaussian, Cauchy and TAN classifiers réispbc Neither approach however ad-
dresses the issue of modelling expression intensity. ®anti Rothkrantz [88] employed a rule based
forward reasoning classifier to recognise six basic emstfoom an AU encoded representation of
the expression with 91% success rate. In their followingkywBantic and Rothkrantz [89] extended
the previous approach and used two rule-based classifieesdgnise single, or a combination of,
24 AUs in profile view and 22 AUs in frontal view. If both frortand profile views are available
then their system is able to recognise single or combinatdi32 AUs. As the primary focus was on
AUs recognition, the logic behind and corresponding setilefsrwas complex and in the case of [88]
was computationally intensive. Littlewort et al. [70] andrBett et al. [5] compared the performance
of an SVM classifier, AdaBoost and AdaSVM classifiers. A Gateresentation was used, based
on patches extracted from the output of the face detectorpas to the classifier. For classification
a two stage process is performed. Firstly, seven SVM classjfone for each emotion class, were
used to discriminate each emotion from all others. Thendoésibn regarding emotion category was
made based on the classifier with the maximum margin. Meltikgrnels were tested, with Linear
and RBF kernels using a unit-width Gaussian performing. dést performance was then compared

with an AdaBoost classifier using individual Gabor patchedeatures. Finally a combination of
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AdaBoost selected features were used to provide a redupeelsemtation for the SVM classifier,
which showed the best results of all. Expression intensig wvalculated by passing a 7-D emotion
structure, obtained from the output of the classifier to a Giih#ate tool [75], in which each of the
expressions was calculated as a weighted combination gflmtargets for each emotion. The same
approach was adapted to recognise seven upper face AUstleyvoitt et al. [68] and twenty AUs in

a non-posed environment by Bartlett et al. [6]. In additi6hvas able to determine AU intensity us-
ing the output margin of the SVM classifier. Tian et al. [104¢d two (one for the upper and one for
the lower face) three-layer NN with one hidden layer to rexsg 16 AUs (6 for the upper and 10 for
the lower face). According to Tian et al. [106] this is thetfggstem to handle a combination of AUs.
Although they have taken the advantage of localised reptaten, such localisation was performed
at the very coarse level. Reilly et al. [94] compared thegremince of KPCA with LLE using SVM.
They focused only on four lower facial AUs. Rather than tgyin estimate intensity they performed
classification under varying intensity. The limitation bktabove approaches is that they perform
recognition without any temporal component of facial esgien, which is an important factor in

expression recognition [9].

Dynamic Approaches

Eisert and Girod [34] used a 3D model, optical flow and 3D mmo&quations to produce an FAP de-
scription. Similarly Sarris et al. [96] used a 3D model antiag flow to extract appropriate motion
parameters using geometric transformations. The extraptiocess was bootstrapped by previously
extracted pose information. In both approaches, there werattempts to explicitly provide ex-
pression labels or intensity, because this informationintamsically embedded in FAP parameters.
Bettinger et al. [12] presented an approach to modellinglyimamics of facial expression. An AAM
was used to model the appearance, and image sequences pvesented as trajectories in a param-
eter space. The trajectories were broken into segmentsa aadable length Markov Model was
used to learn the relationships between those segmentsauthers were able to synthesise novel
sequences, but did not provide any means for explicit exedabelling or intensity estimation.

Otsuka and Ohya [83] used HMM to spot five states correspgrtdidifferent contractions of facial
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Figure 2.11: Multi level HMM model. From Cohen et al. [21].

muscles: relaxed (neutral) , contraction (onset), apdaxation (offset). Transition probabilities

were conditioned using thresholds to constrain the modkpasvent misclassification. No attempts

were made to recognise individual, or combination of AUsntemsity associated with them. Lien

et al. [67] used a set of HMMs representing individual or corabons of AUs. Once the input ex-

pression has been determined the intensity is defined by wtimypthe sum-of-squared differences

in PCA space. Cohen et al. [21] used a multi-level HMM for egsion classification. The model's

higher level section, which defined six basic emotion stateh as surprise, disgust, anger, fear

sadness and happiness, was represented as a star shapédvithodeutral being in the middle.

The lower level consisted of six HMMs, one relating to eachhaf recognised expressions (Fig-

ure 2.11). The lower-level model used MUs as its featuretgpnd higher-level model used the
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six-state feature vector obtained from the lower-level edlod heir approach performed successful
segmentation of a video sequence into sections contailiffegedt facial expressions. Koelstra and
Pantic [61] used GentleBoost for classification and a sépaidM for each of 27 AUs to detect
and model their dynamics. For each of the AUs they were abtietect four temporal segments,
based on the transitions between neutral, onset, apex &, diowever no fine-grained intensity
estimation was conducted. Tian et al. [105] used a threerIs§l with one hidden layer to recognise
six prototypic expressions. The network was trained by thedard back-propagation method and
used five location features and twelve zone components ofmstape features as inputs. Dornaika
and Davoine [30] used a particle filter to classify six expi@ss and estimate head pose. Valstar and
Pantic [110] proposed a method to recognise 15 AUs indiviguar in combination, from frontal-
face views. They use SVM classifiers for recognition of an Ald &s dynamics (i.e. neutral, onset,
apex, offset) based on a set of the best features selecteddyobdst. Pantic and Patras [86] used a
temporal rule-based classifier on profile-view faces togaise, segment, and model the dynamics
of 27 AUs individually, or in combination. Similarly to Vabsr and Pantic [110], a particle filter was
used to track 15 facial points. Yacoob and Davis [116] usedllparametric motion models and
a heuristic classifier to discriminate one of six facial e@gsions. Anderson and McOwan [3] used
velocity information obtained from optical flow and an SVMassifier to classify the expressions.
Amin et al. [2] employed PCA-based representation of Gabi@rgi for dimensionality reduction,
and fuzzy c-Means clustering to provide best pair-wise mafgrincipal components. Membership
of the clusters is mapped to degrees of facial expressiensity. However they only deal with two
types of expressions: happiness and surprise, and emphtogeadrade intensity scale (less, medium
or very). Shan [100] used fuzzy k-Means and a similar thmaelg intensity scale, but his approach
included all of the six basic expressions. Zhang and Ji [188H multi-sensory information fusion
and Dynamic Bayesian networks to model the temporal bebaeibAction Units and classification
of six prototypic expressions. As a follow-up, Zhang andL2d] used the same information fusion
technique but focused on modelling of temporal changes r@tedsity variation, and on reduction

of inter-personal variations. Lucey et al. [73] used the AAdpresentation and compared Nearest
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Neighbour classifiers based on PCA and LDA subspaces withvah Gassifier in recognition of

spontaneous facial expressions using FACS. Their findinggest that there is no real advantage of

NNs over SVM classifiers. The experiments were restrictethtoFACS intensity scale (peak). Yang

et al. [118] treated intensity estimation as a ranking mwbhnd used RankBoost to model it. The

ranking score was used as a direct measure of the intensityextended to incorporate expression

classification. They also obtained significant performangarovement with RegRankBoost, which

introduced L1 norm regularisation into RankBoost. Lee and66] used the Cascade Neural Net-

work, where structure was learned during a training staggether with an SVM to estimate facial

expression intensity. They experimented with differentBkérnels, and concluded that polynomial

kernels performed best. However they only dealt with happgry and sad expressions.

2.3 Summary

In this thesis we address the following issues:

1. Facial feature representation Facial feature representation has been widely discussta i

existing literature to date. However the most effectiveich@nd representation of features
still remains an open question. In Chapter 3 we explore theeajat oflocalised representation

for the purpose of modelling the expression space, and mrésexdvantages over the holistic
approach. We also introduce a hierarchical model decorigosih order to help produce

semantic information using geometric features alone. piaduces a compact representation,
reduces inter-feature correlations, and to some extetet;-frerson variations. We investigate
its advantages and disadvantages with respect to appeaaadccombined representations.
Multiple components of such a representation can be wilisedifferent tasks, such as pose

estimation.

. Representation of the facial expression subspaceéCorrect representation of the facial ex-
pression subspace is an important factor for interpretatitd modelling. Such a mapping is

usual non-trivial and involves projection of higher-dins@mal data onto a lower-dimensional
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space. In Chapter 3 in order to provide the best representatie model regions of interest,
such as the eyes and mouth, according to their intrinsictiumalities, rather than using a
holistic approach that models them according to the bagicession types. For this task we
employ a probabilistic framework which is a form of Hieraicdi Latent Variable Model that
is applied to each of the regions. We show that such a modgdloging geometric features
alone, removes some of non-linearities from the underhgtrgcture, and is able to model

variations using a small set of training samples that gdisesawell to larger, sample sets.

. Pose estimation Pose information is crucial for realistic animation. Gunly there are few

works that provide a unified framework that is capable of niodgethe expressions and pose
together. Also such pose information can be fed back intéréimework to improve expression
classification, usually when large pose variations aregmtesin Chapter 4 we introduce a
pose model trained on a sparse set of training samples, whittprovide continuous pose

estimation and minimise effects of facial expressions.

. Semantics formulation Being able to provide an appropriate semantic descripioreces-

sary to successfully mimic the expression exhibited by dtstit counterpart. in Chapter 5
we investigate the concept of facial region necessity véapect to expression definition. We
modify the commonly used standard set of prototypic exjpwassto achieve best visual im-
pact, for example we represent the happy expression as imdthand grin states. We present
the use of the rule-based classifiers and compare it with BNhalistic approaches in a context
of sufficiency for the task at hand without the use of tempifairmation. Such an approach
also provides facial expression intensity estimationabjnwe produce a parametric descrip-
tion of expressions that includes intensity and pose in&ion, that can be applied to a 3D

avatar in a morph-target based fashion.
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Chapter 3

Hierarchical Feature Representation

Being able to represent facial features in an effective abdst manner is a crucial step for mod-
elling and understanding facial behaviour. One might ségrihs a basis for it, as it influences all
the steps that will follow.

In this chapter we consider a facial feature representdigsed on an Active Appearance Model
(AAM), but more precisely focus on a hierarchical decomfiasiof its shape component that is also
referred to as the Point Distribution Model (PDM). Althousiiiape models cannot encode informa-
tion such as skin changes they provide significantly lowatuiee and hence model dimensionality
when compared to appearance models, or combined shape peatrapce models. Also removal of
the appearance component provides invariance to illumima&ihanges and to some extent to intra-
person variations. Hierarchical decomposition furthetuces the resulting model dimensionality,
aids in the removal of non-linearities caused by large tiana, and decreases the number of possi-
ble combinations that must be accounted for in order to mitee$et of required expressions.

We begin by describing how shape and texture are used by théd Pefiresentation. We then fol-
low this by expression manifold representation, where weduce our hierarchical feature and

demonstrate its advantages. Finally in the experimentoseate demonstrate how such hierarchical
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representation can further reduce overall model dimensitgrand analyse its performance.

3.1 Active Appearance Models

Active Appearance Models (AAMs) were introduced by Edwaetlal. [33], and have been widely
established as a technique for face detection and tracKimgy have also appeared in modelling and
analysis of facial expressions and their underlying maaéfo AAMs are parametric models which
consist of shape and appearance components modelled ugiegpp&® Component Analysis (PCA).
In addition, the resulting shape and texture models can imbiceed and modelled under the assump-
tion that both the shape and appearance are linearly reldteere is also the alternative approach
that treats shape and appearance independently of eachaathés referred to as Independent Ap-
pearance Models (IAMs). Such decoupling opens up interggssibilities, by which each of these
components can vary independently of the others, but tioieé&ses the overall dimensionality of
the model. Matthews and Baker [77] improved fitting perfonge of the AAM by employing an
Inverse-Compositional Algorithm in such a decoupled repn¢ation.

Gross et al. [46] compared two categories of AAMs: generit person-specific, where the first
tries to model variation of many individuals, and the sec@omlses on the variation of a single
individual. Their empirical evaluation showed that the aigperformance of person-specific AAMs
in terms of modelling and fitting is better than for genericd@is. In this chapter, we follow the same
line of thought, as we consider that person-specific modeldatter able to capture the intricate
dynamics of facial expressions, provide a better trackiagidy and are more robust under sparse

training sample sets.

3.1.1 Shape Component

The shape of any object can be defined by a sédt@fdimensional points. These points may repre-
sent boundaries of the given object, or key feature poirttg. foints can take an arbitrary dimension,
thatisD € Z7, whereZ* is positive integer space, although we will focus on 2D spatbordinates

representing positions of the selected landmarks in thgénpdane. Usually, these coordinates are
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Figure 3.1: Selected training samples with overlaid PDMlmas

obtained by manually labelling the training set, but they akso be extracted by using automated
labelling procedures, such as the one described by [24Lir&i8.1 shows some of the training ex-
amples with an overlaid shape mask. Let us define vectofx, Y1, %2, Y2, ..., X3, Y3} ' to represent
our shape. Give training examples, the data set is giveny= {s;,s,...,Sn}. These vectors
form a distribution in a 2 dimensional space. To minimise the effects of global tramsétions,
such as rotation or scale, these vectors are aligned in a caroorordinate frame. This is achieved

by Generalised Procrustes Analysis (GPA) [44], and thequfore is as follows:

1. Translate each of the shapes from the training set sotshegtre of gravity is at the origin.

N

. Choose and scale one of the sampjess an initial estimate of the mean, such that to and

%l = 1.

w

. Align all the shapes with the current estimate of the mesamguGPA.
4. Re-estimate the mean shape from the aligned shapes.

5. Constrain the current estimate of the mean by aligningtft ty and scaling such thaxs| = 1.
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6. Return to step 3 if not converged (convergence is detemnio be when there is no further

significant change of the mean estimate between iterations)

Once the shapes have been aligned in a common co-ordinate, fvge calculate the mean
Xn (3.1)

and covariance matrix
1 N _ _
zS: N Z [Xn_Xs][Xn _Xs]T (3.2)
n=1

of the training set. After applying PCA, we obtain eigeneesi; and corresponding eigenvalues
A of Zs. Next the eigenvalues are sorted into decreasing order Aj.e Ai11). If U contains the
eigenvectors corresponding to thiargest eigenvalues then any example can be approximatin by
following:

Xs ~ Xs+ Ubs (3.3)

whereb is at dimensional vector such that

which defines a set of parameters controlling the model. regperiments the dimensionalityof
the model is determined by retaining 98% of the variatiorspne in the training set. Alternatively,
the choice of the number of model parameters can be seleattdtb anodel’s ability to approximate
any of the training samples with pre-defined accuracy. Tvslves building multiple models, and
choosing the one that best satisfies the criteria [24].

By varying the elements dis one can vary the shapeg using Equation (3.3). The variance
of the it" parametem; across the training set is given By. By constrainingb;, such thatb; €
[—2.5V/Ai, +2.5V/Ai], we ensure that newly generated shapes are similar to tfiosg training set.
Under the linearity assumption of the shape space, thigmrainisalso defines a Valid Shape Region
(VSR). Figure 3.2 shows the effect of varying each of the shagrameters in turn betweetR.5

standard deviations.
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Figure 3.2: Effects of varying the first three (top to bott@h@ape parameters in turn betweeR.5 standard deviation.

3.1.2 Appearance Component

The appearance is defined as a pattern of pixels across ae pa&gh. The patch in the training set
is described by the set of points belonging to the correspgreDM. However the number of pixels
in each patch may be different due to external factors, ssdtale or head orientation. In order to
perform successful analysis of the texture, a coordinamdrhas to be found in order to establish
correspondence between pixels in the training set.

Firstly, a reference shape is defined, either by selectingeannshape from the corresponding
PDM, or by choosing a sample from the shape training set. [dibxhe training examples can
be morphed to the reference shape to obtain a shape freg patar by using piece-wise affine
morphing [24], or with Thin Plate Splines [14]. Once our shdmee patches have been extracted
the pixel information is sampled and stored in the vegigr Each patch now contains very little
texture variation caused by exaggerated expressions #atkdces in shape. Figure 3.3 shows part
of the training image with a shape overlaid on top of it (leftaige) and the corresponding shape
free texture patch (right image). Next, normalisation igfqrened to minimise the effects of global

lighting variation by scalingr and offset such that

o = (gm—B1) /a (3.5)

wherea = gim.g: andf = (gim-1) /n. This is an iterative process, similar to shape alignmest, i
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Figure 3.3: Two selected training images (top and bottornth) worresponding shape mask (left) and shape free texture
patch (right)

1. Choose one of the samplgsas an initial estimate of the mean, such tat go.
2. Align all of the samples with the current estimate of theamasing Equation (3.5).
3. Re-estimate the mean from the aligned samples.

4. Return to step 2 if not converged (convergence is deteulriio be when there is no significant

change of the mean estimate between iterations).

Next the mean
_ 1N
== ) On (3.6)
N nzl

and covariance matrix

s L

N [On— ][O0 — )" 3.7)

Mz

n=1

of the training set are calculated. By applying PCA a lineadst is given by:

O =~ 0t + Piby (3.8)
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Figure 3.4: Effects of varying the first three texture parergin turn betweer-2.5 standard deviations.

whereg: represents mean of the normalised ddtajs the set of eigenvectors corresponding to
the largesk eigenvalues which define a set of orthogonal modes of vaniaandb; is the set of
parameters controlling the model. The actual image texgure&an be generated using previously

calculated normalisation parameters using:
Gim ~ (g + Piby) + B1 (3.9)

Figure 3.4 shows different texture examples obtained byingrthe fist three parameters bf in

turn by +2.5 standard deviations.

3.1.3 Shape and Appearance Combined

The shape and texture can be represented by the parameatasig@ndb; respectively. Assuming

that there is correlation between the two, the combined kawgator is defined as follows:

Wb WP (Xs — Xe
by = TS sPs (X =) (3.10)

by PtT(gt—gt)
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Figure 3.5: Shape variation obtained by varying the first¢tappearance parameters in turn betwe2s standard
deviations.

were Wy is a weight matrix with diagonal elements to compensate ifiterénce in units between

shape and appearance. Such a matrix can be defined as
Ws=rl (3.11)

wherer? is the ratio of total intensity variation to total shape a#ion in the normalised frames. Next

PCA is applied to the combined sample vectors, yielding ¢fiewing model

whereP, are the eigenvectors aradis a vector controlling the appearance parameters. Figre 3
shows different examples obtained by varying the fist thesameters o in turn by +£2.5 standard

deviations.
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3.2 Expression Manifold Representation

Given a combined shape and appearance model, the maingjelie investigate here is how to pro-
vide a meaningful representation of the expressions and@mate estimate of this representations
underlying manifold. This expression manifold will helptlvithe modelling of each expression’s
dynamics and in turn aid resulting parameterisation. Toaletrate the range of expressions we
want to model we have selected those that provide the masthigmpact. Although based on the
set of universal expressions (happiness, sadness, syrgas, anger and disgust) defined by Ekman
[35], it differs in two following ways: firstly, we divide hgpness into two separate smile and grin
expressions, and secondly we do not distinguish betwegmiseirand fear and treat them both as a
single, orjoint, label. The former choice is influenced byitr expression categorisations that have
been used in the gaming and on-line communities in the forenudticons, where smile and grin
represent two distinct states. A similar distinction hasrbased in facial animation to emphasise
different levels of happiness [42]. The latter choice wélsienced by the analysis of our training set,
and observation of a close similarity between fear and e xpressions: they only differed in the
underlying intensity.

We have found that because AAMs, and their respective shagh@@pearance components are
modelled using PCA, which is based on linear statisticsh @didhe modes can only vary along a
straight line, and non-linear modelling is achieved by a bimation of two or more modes [49].
Although Hong et al. [51] and Cho et al. [18] have reportedcsss using PCA to represent the
expression manifold, they only considered three exprassidisgust, happiness and surprise. This is
understandable, as the number of variations present indhtaset was relatively small. When one
considers more varied expression changes, PCA is not vdhguited to manifold representation as
it cannot reliably capture, or separate, subtle intradi@avariations and determine the true degrees
of freedom, when large variations, due to expression or pbaages, occur [17].

Even in datasets where variations due to inter-personrdiftees are not present, such a represen-
tation still does not not yield a compact and clearly definemiging with respect to the predefined

labels in the resulting subspace. Figure 3.6 shows the Vis(left column) and second two (right
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column) principal components for holistic shape, appesraand combined shape and appearance
(top to bottom) respectively, of the AAM trained using 886dHed samples from a person-specific
dataset. To overcome the limitation of PCA based technjguesous approaches have been pro-
posed. Chang et al. [17] applied a modified Lipschitz embeglth the training set, consisting of six
reference sets for each of the modelled expressions. Stan[@7] introduced Locality Preserving
Projections to model the manifold of expression space. €pet al. [23] used separate AAMs for
profile, half-profile and frontal views, although their pany motivation was to account for viewpoint
variation. A similar approach was undertaken by MoghaddadhRentland [79].

We propose a different solution. Rather than treating faoipression as a holistic entity, and
modelling it as such, we define it as the combination of thetrsalgent and intuitive facial regions.
This is because our experiments [121] suggest that forgoiati facial expressions, only certain re-
gions convey the most relevant information, and the comtidh of others is marginal. For example
when we grin, mainly the lower part of the face; the mouth shtagether with possible skin creases
around the nose area; contains the relevant informatiahydren we are surprised, relevant infor-
mation is mostly conveyed through mouth shape and widenirtbeoeyes. Figure 3.7 shows the
different activation areas for two different types of exgziens, obtained by motion differencing of
selected frames with an initial (neutral expression) fradfe can see that for the grin expression (a)
the motion is mostly concentrated around the mouth and neses zand for the surprised expression
(b) concentration falls in the mouth and eye regions. Sudgeon driven representation has been
utilised in the context of computer generated facial aniomgd2, 63] and also has been investigated
in psychophysical experiments and found to be the most igi¢iser and sufficient in the context of

facial expression recognition [27].

3.2.1 Hierarchical Representation

In our new approach we define a hierarchical representafié@atures in terms of subcomponents

based on selected regions of the face. The subcomponerdefared as follows:

e The jaw outline, nose, centres of the eyes and mouth formoibieof our hierarchy.
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Figure 3.6: First (left column) and second (right columre #re two principal components of the training set that have
been projected onto shape (top row), texture (middle) antbawed shape and texture (bottom) in the expression space.
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(a) Surprised

Figure 3.7: Original image (top rows in (a) and (b)), and #gions of the image exhibiting motion during expressions
(bottom rows) such as surprise (a) and grin (b).

e With the leaves, or children, being used to model the eyereyepairs and the mouth.

Figure 3.8 shows an example of such a decomposition. Thedemre used for expression modelling,

Figure 3.8: Structure of our hierarchy. The top row corresizato the highest point in the hierarchy (root), the middle
row corresponds to the leaves.

and the root component is utilised for estimating pose (ke will investigate in Chapter 4).
Localised representation, based on similar face regiows baen used by Padgett and Cottrell [84],

however their motivation was different and focused entih face detection. The advantages of
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localised compared to holistic representation are:

e Firstly of all, each of the expressions is defined in a monaitive and quantitative way, for
example, as a combination of intrinsic functionalities afle of the subcomponents - this form

of expression implied facial feature independence has brgloited by [28].

e Secondly, such a representation allows us to account falasiexpressions (smile with eyes
open, or smile with eyes closed) with a much smaller trairsaty Figure 3.9 demonstrates
four expressions, which for holistic representation walldhave to be included in the training

set in order to be successfully modelled. For hierarchieptesentation inclusion only of the

first two is necessary: the others will be automatically aoted for.

Figure 3.9: Example expressions that would have to be ieclud the training set if holistic model was used. In case of
hierarchical model only two are necessary.

¢ Thirdly, we remove the explicit need to model, or accountdorrelation between those facial
parts at this stage. Also non-linearities resulting fromateons caused by large expression
changes are minimised. We can also discard some informtit&anmight be either unneces-

sary, or in the worst case actually diluting the true natdthe data.

e Finally, each of the hierarchical components can be madleltezording to its intrinsic func-
tionality, for example, eye components could representwigen, neutral or squint. This al-

lows the capture of more localised variations, and moreratewynamics. Also this provides
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the ability to re-formulate, or learn, the final expressitatess as a combination of component

states, or even represent states of the subcomponentsaitiaiso

We choose only the shape component for our hierarchicaéseptation. The shape is individually
independent given appropriate hormalisation, hence caefflogently utilised to capture manifolds
of the facial expressions. Texture information was notcdete because it is susceptible to external
factors such as illumination or identity changes. Althosghpe alone is hardly sufficient to represent
subtle skin variations such as wrinkles or furrows, it hasrbshown to perform as well as texture
in some circumstances [85]. The use of the shape componétg own has also been adopted by
Huang and Huang [53] and Chang et al. [16, 17] to representrantgl facial expression subspaces.
A hierarchical approach can also be extended to the undgrijata representation layer. This is
especially useful in cases where data contains multipesels whose variation we wish to capture
and represent. Instead of using PCA we adopt Hierarchidaint&ariable Model (HLVM) of [13].
This approach provides several advantages in terms okcingt density modelling, and dimension-
ality reduction. The main shortcoming of PCA is the lack ofralqability density framework [107].
By incorporating this into Bayesian frameworks, it wouldtbme possible to model class based den-
sities, and to provide interoperability should there be amgsing values. Also, most importantly,
non-linear variations could be represented by a colleatidlocalised linear models. Finally, all of
the model parameters can be determined in a maximum lilediframework, where the partitioning
of the data and the calculation of respective principal comemnts are obtained automatically as the

likelihood is maximised.

3.3 Hierarchical Latent Variable Model

Bishop and Tipping [13] introduced the HLVM, which is an ex¢@n of the Mixture of Probabilistic
Principal Component Analysers [107]. Figure 3.10 demaissr the concept of such a hierarchy,
where each of the levels successively defines a more refiededailed representation of the data.
For a given data sdt;} wherei € {1,...,N} and each element of has dimensionalitgl, and where

we have a single latent variable model defining the root ohibearchy, the linear mapping ontaja
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Figure 3.10: Conceptual visualisation of the Hierarchicitent Variable Model. The top level corresponds to a single
latent variable model, and subsequent levels correspofiitket@rained mixtures of them.

dimensional spaceis given as:

y=Wx+p-+e (3.13)

whereW is a factor loading matrixy is mean and ~ A (0,a?l) is a noise process. For a given

the probability distribution overis:
p(tx) = N(Wx + i, 0?l) (3.14)
wherep(x) ~ N (0,1). The probability density function of such a model is definsd a

p(t) = | it P (3.15)
which is also Gaussian, such that:
p(t) =N (u,C) (3.16)

where thed x d model covariance matri€ = g2l +WW . The posterior distribution can be defined

as:

P(X[t) = N(M W (t — p),0°M ) (3.17)
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where theg x q posterior covariance matrix M = g2l + WTW.

Tipping and Bishop [107] showed that the maximum likelihaadution for parameterg, W and

2

ocis:
1 N
Hue = le th (3.18)
Ww = Ug(Aq—0?)iR (3.19)
2 1
=G+

(3.21)

whereUq are the eigenvectors ag, are the eigenvalues of the sample covariance m&takthe

observed values:
S= %ii(ti —p)(ti— )7 (3.22)
A reduced dimensionality transformation of the data pujrns given by:
%n = Wt (th — M) (3.23)
and its optimal reconstruction is given by:
tn &~ WL (Wi W) ™ n + B, (3.24)

This can be extended to a mixture of such models, hence dgfiménsecond level of the hierarchy.

The mixture density model is then given as follows:

M
p(t) = ,Zln.fp(tli) (3.25)

whereM defines the number of components in the mixture, gnare the mixing coefficients cor-
responding to the mixture componemif|i). Each of the mixture components is a latent variable
model, so the model is defined in terms of parametgrgs;, W; and aiz. To obtain the parame-
ters, Tipping and Bishop [107] show that for a given posterésponsibility of componernt that is

generating data poin, we can express:

R = Pift) = 2ol (3.26)
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and an iterative, two stage EM algorithm produces the faligwparameter updates:

. 13

i = anani (3.27)

= _ IRt 3.28

Hi 3 neq R 329

Wi = SWi(g?l+ M 'wisw)™ (3.29)

5 = STrS - SWMA) (3.30)
(3.31)

whereS§ is defined as the local responsibility weighted covarianegris

N
A 2. Raltn— )t~ )" (332

S =

Given the definition of the second level of the hierarchys ttdn be extended further, where each of
the M components can be decomposed i@{csubcomponents in the lower levels of the hierarchy.

For each such level, the density function is given by:
M . .
p(t) = Z}m ) P(t]i, j) (3:33)
i= J€0i

wherep(tli, j) defines independent latent variable modajg,defines mixing coeficients for each
andy ; ; = 1. Each of the given levels corresponds to a generative maitalchild levels provid-
ing more detailed and refined information. Now, the postesponsibilities for the component

generating a data poity is:

7T|| p(tn||7 J)
Ryi i = RyiRyii: = ! - 3.34
1] IRn||] 2][ T[JI“ p(tn||, J,) ( )
wherey ;.o Raij = Rnai, gives rise to the following update equations:
N L
T = Lﬁl R (3.35)
Zn:lRni
N
o 1 Rniit
f,, = ol (3.36)
> n=1Rni,j
Wij = SjWij(a3l+M WS wij)~t (3.37)

. 1 L
Gi?j = aTr(S,j_Sﬁ,jWi,jMiJlWIj) (3.38)
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where agair§ j is defined in a responsibility weighted covariance matrix:

1 N . -
Rni,j (tn — Hi j) (th — 14 j)T (3.39)

Sj=———
P SN Ruij nzl ’

3.4 Experiment

Our main training set consists of 1300 6480 colour images and manually labelled shapes (con-
sisting of 74 landmarks), which include the following sixpegssions: neutral, smile, grin, sadness,
anger, surprise/fear and large variations in pose. Figurst®ws selected samples from the dataset.
Although our focus is mainly on person specific expressiaapaterisation, we also use selected
samples from the Cohn-Kanade facial database [20] whictagm486 sequences from 97 subjects.
This ensures wider variation of expressions being modedledounts for unpredictability in contin-
uously changing facial motion, and provides a better gdisateon of the model. For testing of the
model we used two sequenc€$ and T2 consisting of 1536 and 1541 frames respectively, which
were tracked using an AAM based tracker and contained atyarfenodelled expressions. Those
sequences included a substantial amount of noise causedshiigmnment failures in the tracking
procedure. Although good results were obtained using thieitig set, or parts of it, we felt that
using output from the tracker provided a more realistic-best. Figure 3.11 demonstrates some of
the correctly (top) and incorrectly (bottom) tracked exssiens.

Rather than modelling each of the states as belonging todd sietclasses of prototypic expressions,
we investigate each of the hierarchical components witheesto their intrinsic functional labels.
For eye components they are neutral, open and squint. Fahrmomponent they are neutral, anger,
sad, smile, grin and wide open. In Chapter 5 we present a mhetthich based on these intrinsic
functionalities will produce the final expression labelse Wéfine three models, one corresponding
to each of the eyes and one to the mouth area. Our implenmantftHLVM is based on the PhiVis

toolbox of [13].
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Figure 3.11: Sample of correctly (top) and incorrectly {bot) tracked expressions.

3.4.1 Eye Models

To build models for both left and right eyes we use a trainiagaf 288 samples from a person
specific training dataset, and 114 samples from the Cohraf@dataset, where each of the samples
consisted of 19 facial landmarks. Those landmarks weréraatdy sub-sampling the holistic shape
representation according to the defined hierarchical dposition rules in Section 3.2.1. The pro-

portions of intrinsic eye states present in the trainingasetisted in Table 3.1.

Neutral | Open| Squint ‘

25% | 33% | 42%

Table 3.1: Proportions of intrinsic eye states presentertithining set.

We injected some artifical variation by duplicating therinag set and perturbing each of the dupli-
cated samplet, by a vectov whose elements were drawn from uniform distribution andestsuch

thatv € [-1,1]. The displaced samplg was given bytq = t, + v * constwhereconstdetermined
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(a) Left Eye Model (b) Right Eye Model

Figure 3.12: Visualisation of the hierarchical clusteringhe eye space for (a) left and (b) right eye models. Colours
correspond to the intrinsic functionalities of the computse Each of the rows depicts a level in the hierarchy. The
numbered clusters in the top level correspond to the ordéreofluster frames in the lower levels.

the severity of the displacement. This is analogous to thadlshifts of landmarks introduced during
the labelling process or by tracking errors. A similar cgptosas used by Cootes and Taylor [24],
but their primary motivation was to add extra unseen vaniain order to enhance the flexibility of
the model, rather than to reinforce the existing variatiome artifically perturbed samples were
appended to the original training set. We chose a superaigptbach to building the model, where
the initial cluster centre positions used to initialise Bl algorithm were selected interactively for
each of the levels of the hierarchy of the model. Althougk tloes not yield an automated process,
it allows discovery of the internal data structure and ¢osadf the model based on it. Alternative
methods such as K-Means, or taking an average value of theadabrding to the assigned labels,
could also be used as a starting points for the EM algorithirea&h level of the hierarchy conver-
gence was assumed after a few iterations. Figure 3.12 sheigsaisation of the resulting models
for the left eye (a) and right eye (b). Because the number afatfed classes was small, a two level
hierarchy was sufficient for representing the model.

As both eye shapes are nearly symmetric, we can use a simifiedunodel. This would result
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in a smaller number of models being needed to represent firessions, and reduce the number of
overall parameters. By taking one of the data sets belortgirsgparticular eye, we can mirror the
samples along the vertical axis, and after applying the@pjfate normalisations, both datasets can
be treated as a unified single eye data set. We have to acldgevtbat there will always be small
discrepancies between the two shapes, mainly due to ththfstdhe face is not exactly symmetrical
and the range of motions exhibited is not the same either.edemsuch an approximation is desirable
and can be used to create a model that will capture the rebuamrgations in a unified manner.

To that end, we have taken samples from the training set origfint eye, mirrored them along the
y-axis and aligned them. Then those samples were used tiatalihe left eye model. A similar
procedure was repeated whereby samples from the left eye taleen, mirrored along the y-axis,
aligned and used to validate the right eye model. Table Jo#/shhe resulting 3-class confusion

matrices for the left eye model (a) and right eye model (b).

Neutral | Open| Squint Neutral | Open | Squint

Neutral | 96.64% | 3.36 0 Neutral | 87.1% 0 12.9%

Open 0 94% 6% Open | 23.3% | 71.9% | 4.8%

Squint | 20.4% 0 79.6% Squint 0 0 100%
(a) Left Eye Model (b) Right Eye Model

Table 3.2: Confusion matrices of the left eye model (a) aeditht eye model (b).

Given the promising results of models built using data fromirgle eye, which were cross-
validated with the data from the other eye, we used sampbes Both eyes to train the combined
eye model. Once mirrored, aligned and combined, the trgig@t contained 804 samples. Given
the definition of a hierarchical latent variable model in grevious section, a visualisation of the
combined eye model is shown in Figure 3.13. Compared to tigdeseye models, this model now

contains clusters corresponding to each of the intrindieltafor each of the eyes. In the case of
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® Neutral
® Open
® Squint

Figure 3.13: Hierarchical clustering in the eye space. @slaorrespond to the intrinsic functionalities of the
components. Each of the rows depicts a level in the hierarchy

both single and combined eye models, the dimensionalithefatent space was setde= 3. This
number was selected experimentally, and chosen to maxtimésgassification accuracy.

To evaluate the performance of the combined eye model anaindow well it generalises to
larger datasets containing unseen samples, we testeddtasi two test sequencebl andT2. The

selected proportions of each of the intrinsic eye statefisiegl in Table 3.3.

Neutral | Open| Squint

T1| 35% | 30% | 35%

T2 | 37% | 35% | 28%

Table 3.3: Proportions of intrinsic eye statesTdrand T2 test sequences.

The classification of intrinsic functionalities was perfad by evaluating class conditional probabil-

ities and choosing the class, or label with the highest vafioe a given eye shaggye this is given
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by:
j =argmax f|teye) (3.40)

wherep( j|teye) = %e’y)g(” The results were compared with manually assigned growtid labels.

Table 3.4 shows the 3-class confusion matrix of the eye mfmtelest sequencdl (a) and test

sequencd 2 (b).

Neutral | Open | Squint Neutral | Open | Squint

Neutral | 89.40% | 2.87% | 7.73% Neutral | 81.32% | 5.34% | 13.34%

Open | 11.69% | 88.31% 0% Open | 32.03% | 57.83% | 10.14%

Squint | 0.28% | 0% | 99.72% | | Squint | 1.16% | 0% | 98.84%
() (b)

Table 3.4: Confusion matrix of the overall eye state classiion for test sequencil (a) andT2 (b) for the combined
eye model.

Next we compared our method with that used by Huang and H&8Jaghd Liu et al. [71] in which

a Gaussian Mixture Model (GMM) was fitted over the existingAPslibspace. We used exactly the
same training and validation datasets to train and valitteeelevant models. First we compared
the performance of our method with the PCA+GMM approach &pasate models built for each
of the eyes. Figure 3.14 shows the overall results of thererpat. This confirms the advantage
of the HLVM approach over PCA+GMM one. We can also see thatitile eye model does not
perform as well as the left eye model. Next we repeated the gmotedure but used the combined
eye model. Figure 3.15 shows the overall results of the testrestingly forT1, the HLVM was
able to compensate for poorer performance in the right eyelycing very similar scores for both

eyes. This is due to the HLVM ability to capture and represeatocal variations more accurately.
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Figure 3.14: Classification results for test sequeTit¢a) and test sequende (b) using separate eye models for each of
the eyes.
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Figure 3.15: Classification results for test sequefit€a) and test sequende (b) using the single eye model.
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3.4.2 Mouth Model

For the mouth model we followed the same procedure as witleyeemodel. We have used 527
training samples from a person specific training datasetldddsamples from the Cohn-Kanade
dataset. Each of the samples consisted of 26 facial landrnankl those landmarks were obtained by
sub-sampling the holistic shape representation accotdinige defined hierarchical decomposition
rules in Section 3.2.1. The proportions of intrinsic mouttitess present in the training set are listed

in Table 3.5.

Neutral | Smile | Grin | Anger | Disgust| Sad| Open

13% | 19% | 20% | 14% 10% | 9% | 15%

Table 3.5: Proportions of intrinsic mouth states presethértraining set.

Artificial variation was injected in the same way as for the myodels. Similarly, an interactive model
creation process was adopted, where at each level of tharttigrthe convergence was assumed
after few iterations. The dimensionality of the latent spa@s set tay = 3. Again, this number
was selected experimentally in order to maximise the dlaation accuracy. Figure 3.16 shows a
visualisation of the resulting mouth model. To evaluategbdormance of the mouth model and to
see how well it generalises to larger datasets containisgamsamples, we performed similar test
to the eye model, again using our two test sequefdesndT2. The selected proportions of each of

the intrinsic mouth states are listed in Table 3.6.

Neutral | Smile | Grin | Anger | Open| Sad

T1| 14% 16% | 18% | 21% | 12% | 19%

T2 | 16% | 22% | 13% | 19% | 5% | 25%

Table 3.6: Proportions of intrinsic mouth states Tdrand T2 test sequences.

The classification of intrinsic functionalities was perfad by evaluating class conditional prob-

abilities and choosing the label with the highest value.dgiven mouth shapig,q,ththis was given
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Figure 3.16: Hierarchical clustering in the mouth spacdo@s correspond to the intrinsic functionalities of the
components. Each of the rows depicts a level in the hierarchy

by:
j = argmax m”tmouth) (3-41)

wherep(j|tmouth) = % The results were compared with manually assigned grouutd tr
labels. Table 3.7 shows the 6-class confusion matrix of thettmodel for test sequengd (a) and
test sequence&2 (b).

As before, we compared our method with that used by Huang araah¢[53] and Liu et al. [71]
in which a Gaussian Mixture Model (GMM) was fitted over thestixig PCA subspace. Again, the
same training and validation datasets were used to trairvalidhte both models, and Figure 3.17

shows the overall results. The performance of the mouth miedauch lower than that of eye
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Figure 3.17: Classification results for the mouth model.

model, with sad expression being completely missclassifiénis is due to the natural flexibility of
the mouth which results in the highly non-linear behaviobserved here and by the way this has

reduced the reliability and accuracy of captured face imalyging the tracking process.

3.5 Discussion

In this chapter, we have presented a foundation in the fortmerfirchical decomposition, both in
the conceptual and in the data sense, which offers an diterneay to represent and model facial
expressions. It overcomes problems of non-linearities@auny variations in facial features and al-
lows their description using intrinsic functionalitiestbe components (improved performance using
eye and mouth regions was also observed by [4]). However wddnlike to point out that such
decomposition, especially using shape alone, would natssecily be sufficient to provide FACSs
parameterisation due to the missing information needeepi@sent wrinkles and furrows in the skin.

One of the solutions is to extend the number of modelled compis to provide more detailed in-
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formation. This was investigated by Cosker et al. [26] inathadditional regions, including textural

information, were included to extend the amount of avadldikial state data. On the other hand,
using shape alone allows us to further reduce the complekitye resulting model by being able to

represent both of the eyes in a unified model.

The Hierarchical Latent Variable Model (HLVM) model proes additional benefits over PCA
in the context of manifold representation. Besides itsitghib model non-linear manifolds with a
combination of local, linear subspaces, it also providesresily model, from which class conditional
probabilities can be easily computed. However, becaustligas the EM algorithm, it is rather
susceptible to initial starting positions during the tmagnstage, so can be time consuming in creating
an optimal or best fitting model for a given set of data, anditslel.

If accurate and reliable tracking is available, then thisdei@lone could be used to represent
each of the face components reliably. Unfortunately, sucassumption is rarely valid in real world
environments.

This investigation also highlights the importance of the eggion based on its very good perfor-
mance, over the mouth region. This is partially due to théebdtacking results in that area, but
mainly due to the small number of classes being modelled haddilative rigidity of the sub-
components that correspond to eyes and their brows.

In the next chapter we investigate how the root of our hidriaed model can be utilised to

estimate the pose of the subject’s face.
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Neutral | Anger | Smile Grin | Open/Fear Sad

Neutral | 73.79% | 4.85% | 1.94% | 19.42% 0% 0%

Anger 0% 100% 0% 0% 0% 0%
Smile 8.14% | 0% | 91.86% 0% 0% 0%
Grin 0% 0% 0% 100% 0% 0%

Open/Fearl 0% 0% 0% 248% | 97.52% | 0%

Sad 12.13% 0 0 0 87.87% | 0%
(a) Test SequencEl

Neutral | Anger | Smile Grin | Open/Fear Sad

Neutral | 86.67% 0% 5.33% | 6.67% 1.33% 0%
Anger 1.16% | 98.84% 0% 0% 0% 0%
Smile 3.46% 0% 96.54% 0% 0% 0%
Grin 0% 0% 3.33% | 96.67% | 11.66% | 0%
Open/Feary 0% 0% 0% 0% 100% 0%
Sad 18.75% 0% 0% 10.42%| 70.83% | 0%

(b) Test Sequence2

Table 3.7: Confusion matrix of the mouth state classificatay T1 (a) andT2 test sequences in a model built using a
person-specific dataset .
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Chapter 4

Pose Estimation

Pose information is an important component of facial dyreamAs our head rarely stays still, it plays
an important role in the formulation of the meaningful andlistic parameterisation of expressions
[76, 45]. Pose can also implicitly encode expressions, as@greement or disagreement, and enrich
existing information by adding subtle tilts or movements.this chapter we present a method for
estimating pose based on a sparse training set that covigradraction of the viewsphere but
is able to provide generalisation to a continuous viewsphas compared to most of the existing
models that require dense sampling of the entire viewsA8r80]. Rather than adopting an ad-hoc
approach, our method maps directly into the hierarchicapstHframework introduced in Chapter 3.
This model can also be used in the synthesis of arbitrarysvighere it serves as a shape, or warp
basis onto which a chosen texture can be rendered, eitmerafiingle image or from the underlying
appearance model. Furthermore a prior knowledge of poseniraition can help in bootstrapping the
Active Appearance Model (AAM) fitting process where, dueeat-scclusion caused by large pose
variation, parts of the texture information cannot be t#ligextracted.

We begin by investigating the pose model in question, thewige experiments that demonstrate our

findings.
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(@) (b)

Figure 4.1: Invalid shape reconstructions of profile viel)s These were generated using modes of variations of arlinea
shape model trained at near frontal views (a).

4.1 Pose Model

Large pose variations cause the shape space to become hmhlynear, and this makes the lin-
ear mapping used to model the subspace no longer suffici8ht [Bhe problem is illustrated in
Figure 4.1. Invalid shape reconstruction of profile views ¢h the right, where the underlying
model was generated using samples from the near frontalsviewia). Our investigation [121]
shows that the shape distribution forms distinctive barfgmts in the PCA space with respect to
the pose. Figure 4.2 shows projections of the data onto thietfiree principal axes of the shape
model. The grouping was performed with respect to Y-axisjyeotation, where triangles rep-
resent[—40°, —20°], crosse§—10°,1(°] and circles[20°,4(°] ranges respectively, sampled a10
intervals. We choose to model the underlying non-linearifolthwith a combination of linear sub-
components. The methodology is similar to that of [49] whrembination of PCA models was used
to constrain the Valid Shape Region (VSR). But in additiorthiose constraints, we also strive to
provide both a pose estimation and a synthesis basis. Oarmodel is based on the Hierarchical
Latent Variable Model (HLVM) described in Section 3.3. Wdisg the second level of the latent
hierarchy which is equivalent to a mixture of PPCA modelsrasfiby Equation (3.25). Then the
pose density model of the mixture is given by:

M

P(tpse) = Zl TEP(tpseli) (4.1)
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Figure 4.2: The shape variation of facial expression iméges [—40°,40°] 3D views (in yaw) projected onto the 1st
three principal components. The manifold forms continuanis separable clusterls:40°, —20°] (shown by triangles),
[-10°,10°) (shown by crosses) angd®, 40°] (shown by circles)
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wheretpseis a pose shape vectdd, defines the number of components in the mixture, grate the
mixing coefficients corresponding to the mixture composgftpsdi). A visualisation of the pose
model is shown in Figure 4.3. In this figure the top row coroegfs to a single PPCA model, and
the second row defines the components of our mixture. Eadteahixture components corresponds
to one of the rotation band§;-40°, —20°,0°,20°,40°], sampled at 2intervals in yaw. We focus
on yaw as the discriminative factor for our clustering schgeas this type of rotation is the primary
cause of non-linearites, and is more likely to be presetttanrtput data (as opposed to pitch rotation).

Conceptually our method is similar to the View-Based Appeae approaches of [23] but with the

A ® -40

® -20
A ® 0

® 20
® 40

° ° | [ @ B

H Q.':. 0g o %0

TR IR AR,

Figure 4.3: Visualisation of the hierarchical pose modeitt@m row corresponds to components of our mixture (degicte
with yaw rotation sampled in 20ntervals af—40°, —20°,0°, 20°, 40°)).

following differences: Firstly we do not require the manpedcess of building multiple models. As

we use shape only, the dimensionality of the model and iaguitaining time, is greatly reduced.
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Secondly there is no need to establish the relationship dmiveach of the models to find which
one is responsible for generating a given data point. Bitlaé full correspondence between features
among the components is established, allowing for unifoajedttories of the shape across the model
view-sphere. Our model is able to easily generate novel kangh arbitrary view-points and warp
selected textures onto them. This is in contrast to [43],reléPCA was used to model resulting
non-linearites and the feature space was implicit and unknthe model proposed here can easily
reconstruct, or generate novel samples, as the model défitlegorward and reverse mappings to
and from lower dimensional manifold. We chose not to incaagm any temporal information, and
the estimation can be done frame-wise on-the-fly in real .tifileis approach is able to cope with
very large jumps and discontinuities in pose change.

Each of the components is capable of capturing an underlanigtion of interest, according to
its clustering scheme. Figure 4.4 shows a visualisatiom@fiean values corresponding to each of

the PPCA components with respective yaw labels determigetebpredefined data grouping.

40° 20° o° —20° —40°

Figure 4.4: Means corresponding to each of the PPCA modélsedeby the hierarchical pose model with their
respective yaw labels.

From the definition of our model, latent variables are assbiebe drawn from a Gaussian dis-
tribution. Given anyd-dimensional multivariate Gaussian distribution with meaand covariance
matrix C, its marginalg-dimensional multivariate distribution (whege<< d) is also Gaussian, as
described by Krzanowski [62]. L& be aqg x d dimensional matrix with diagonal elements set to

1 and all remaining elements equal to 0. Then the margjr@mponent multivariate Probability
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Distribution Function (PDFXq is given by:
fq ~ N (Bu,BCBT) (4.2)

The corresponding Cumulative Distribution Function (Ci¥-lefined as the probability that a real-
valued random variabl¥ with a given probability distribution will be found at a vadess than or
equal tox. If we interpret this as a value less than or equal to a spgumifée value captured by the
underlying distribution, we can use this to extract the pofermation based on it. Following the
concept of the marginal PDF, we define the CDBuch that for aj-dimensional random variable
it is given by:

PO(X) = /X fq(X)dx (4.3)
We are mostly interested in CDFs that are closely relatelldé@bmponents responsible for yaw and
pitch rotation. For a given shapgsethe estimate of the pitch rotatiopich is given by Equation (4.4),
whereay,ap are coefficients of a linear polynomial amich is the marginal CDF of the model

component responsible for generating shigge

lpitch = @1Ppitch + a2 (4.4)
ppitch = cl)m p(t pse)

Figure 4.5 shows visualisation of linear relationship far pitch estimate for an example cluster.
For yaw rotatiorry,, the estimate is given by Equation (4.5), whbgeb, are coefficients of a linear

polynomial andpyaw is a weighted sum of marginal CDFs of the model.

fyaw = blpyaw+ by (4.5)

M
Pyaw = Zl Tﬂq)my(tpse“)

Figure 4.6 shows visualisation of linear relationship fur yaw estimate.
Although we do not account for roll rotation in our model, wappted the approach of Horprasert

et al. [52], where for the eye centroitige, andteyer the head roll is given by:
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Figure 4.5: Visualisation of linear relationship for théghi estimate for an example cluster using discretely sainple
training data at 19intervals.

Ay

r = arctan— 4.6
roll AX ( )
_ y y
Ay = teyeR_ teyeL
Ax = t)éyeR_ t)éyeL

The above equations encompass the formulation of our model.

4.2 Experiment

Our training and validation dataset consists of 540 ladel® shapes from 12 individuals each
defining 14 landmarks. Figure 4.7 shows selected trainingpges from this training set. The shapes
have associated ground truth information, obtained byguaimagnetic sensor rigidly attached to
the subjects head, and are sparsely sampled®aniérvals, covering only part of the view-sphere,

(—40°,40°) around the yaw axis an@—20°,20°) around the pitch axis. We divided the dataset
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Figure 4.6: Visualisation of the linear relationship foetyaw estimate using discretely sampled training data%t 20
intervals.

pr (g 1

Figure 4.7: Selected training samples from the pose esimdataset.

into groups consisting of 300 and 240 samples. The first gconpained samples selected using 20
intervals for yaw, consisted of rotation barjdst0°, —20°,0°,20°,40°], and was used for training the
model. The second group was set aside for validation puspassenpled using similar 20ntervals
and consisted of yaw rotation bands not used in the trairétg.s.[—30°, —10°, 10°,30°].

To train the model we chose to calculate the means for eadireafroups of labelled data, and
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used those means as starting points for the EM algorithnodiih we experimented with using the
K-means algorithm we found that the expected clusteringngement, with respect to location of
clusters, was not always guaranteed. And as our method wed ba the assumption of a pre-defined
clustering scheme we settled for the former EM approachlowoig mean calculation, the EM al-
gorithm was run and after a few iterations convergence wealsigl. In contrast to the approach that
was undertaken when building the models for the eye and namnttponents in Section 3.4, this of-
fers a fully automated model building process without thedier user-driven feedback. For each of
the individuals we have calculated corresponding marddiiFs and fitted appropriate polynomials
according to Equation (4.5) and Equation (4.6) for pitch waa respectively. Also, because there
were differences in the estimated parameters, final polyalaroefficients were taken as an average
over the coefficients obtained from serveral differentvidlials.

Facial expression can affect the resulting pose informailatained by the model. This is mainly
caused by variations, or movement of facial componentd{pnénantly the eyes and mouth in the
case of our shape representation). Although techniquet tnryodel the pose by including these
regions and account for their influence, we choose the alte@mapproach of selecting only those
features that will remove, or minimise the impact caused drying facial expression. We choose
jaw and nose outlines, and the centres of the eyes and mauthifpose shape representation. Our
model is able to generalise to a denser shape model. Thisisved by down-sampling the larger
PDM to the required size by calculating the centroids of $yeseand mouth and selecting a subset
of jaw outline landmarks. For the mouth shape, the centmithiculated as an intersection of two
lines formed by two middle landmarks on the upper and lowss &nd two landmarks on the jaw
outline. This provides a more stable representation unaigting facial expression and compensates
for more flexible and unconstrained lip deformations. Feg8 shows how eye and mouth centroids
are determined.

Figure 4.9 provides visualisation of this down-samplinggass across selected facial expressions
using previously unseen data. The top row corresponds tiullHeDM representation consisting of

74 landmarks and the bottom row to the down-sampled 14 laridnepresentation. Each of the
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Figure 4.8: Visualisation of the eye and mouth centroidfwhie latter calculated by intersecting two lines formedhsy t
landmarks on lip and jaw outline.

down-sampled shapes has a pose estimate associated wistwjpi(ch,roll), and we can see that
there is not much pose change between different expressioss using the reduced representation,
compared to that exhibited in the full size shape model. VWe@weledge that this is only an approx-
imation, as the calculated eye and mouth centroids willl@kisimall amounts of movement where
facial expressions are present. However as we are morg tikelxperience those expressions in a
frontal, or near frontal views, the impact on the estimatibextreme views is minimised.

To test the ability of the model to generalise to new data weleyrthe second part of the dataset.
We project the data onto the latent subspace, estimatessipformation and compare it against the

assigned ground truth labels. Given the Root Mean Squace RMSE) as our measure of error:

N
RMSEY) =1 5 (-3 @7

wherex represents the vector of ground truth values gnd corresponding vector of estimated
values, we obtained average errors @5degrees for yaw and@b degrees for pitch.
To perform an evaluation on how well the model is able to galiser to a continuous sequence

we have used a test set of 500 samples which exhibited posgimas in yaw, pitch and roll with



4.2. Experiment 90

{\r/g; == L\f;\ = \ == ) = = |
| l\ s
Cail / \ L~ | { (%j) | <{L o
L e \ // \\ L7 ) \ rn - )
N / Y L
N N4 \. / "/
LI S

‘\ \ | \\ 2 / & e /
\\ J \\ // \ ) \\\ )
N N g \.
. W \\V/// N
—4.0°,0.4°,—-0.6° —4.0°,-0.7°,—-4.1° —4.4°,-1.0°,-4.2° —4.0°,0.4°,-2.9°

Figure 4.9: Denser shape model consisting of 74 landmaok$, parse set of 14 landmarks (bottom) with
corresponding estimated pose angles (yaw,pitch,roll).

a much denser arrangement of landmark points. Each of theeshaas down-sampled and sub-
sequently used to estimate the pose. Due to the lack of aetréiclt can reliably and consistently
track a face beyond frontal, or near frontal views we have uabiy labelled the training set. The
top plot in Figure 4.10 shows the result of the experiment. dAfe see that the yaw estimation is
consistent throughout the sequence, but pitch estimatatams errors, especially around frames
228— 285 and 340- 385. This is caused by an incorrect choice of cluster merhesbtained
through class-conditional probability. The errors shoat thur initial assumption that each of the
clusters responsible for the appropriate yaw rotation eitidlways be chosen to estimate the pitch
was not correct, and it also highlights the fact that thetehssoutside the designated band perform
poorly in such estimation. To address this problem we havednced yaw-based constraints, which
follow the design of the model more closely. Rather thangisiass-conditional probability to de-
termine the cluster membership, we enforce the selectiaobglitioning each choice on the interval

into which the estimated yaw value falls. The bottom plot igufe 4.10 demonstrates the results
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obtained from this yaw constrained model.
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Figure 4.10: Pose estimates obtained from the original pasel (top) and from the yaw constrained one (bottom).

Although introducing the constraints corrected the presierrors, both methods produce jagged
curves caused by small shifts in landmarks, and generatimacies resulting from the estimation
process. This makes the representation unsuitable fomedeaisation, as they will produce jerky
animation sequences. In order to produce smoother curvemmlved the estimated pose data
with a Gaussian kernel. Although some of the informationoi Iduring the smoothing process,
this is a justified trade-off and should not be too noticedbléhe viewer in most circumstances.
Figure 4.11 shows the results of this filtering, where théedéhce between the original (jagged)

curve and the smoothed one can clearly be seen. The finalsesaldepicted in Figure 4.12 with
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Figure 4.11: Section of pitch rotation plot: original jagigeurves (green solid line) and their smoothed out counterpa
(red dashed line).

the yaw corrected and smoothed rotation curves. Figure ghib@s the selected frames from the

input sequence (left image), with the corresponding s\gitleel avatar alongside (right image). The

synthesis was performed with LightWave 3Dwhere each of the rotation curves was converted into
its respective channel envelope and used to drive the avaitas resulting video can be viewed here

2.

The experiments conducted in this section have shown hoywdbe model developed here can be

used to provide smooth and continuous pose estimation.

Lightwave 3D http://www.newtek.com/lightwave/
2http://www.eecs.gmul.ac.ukiukas/videos/posé.[avi|mov]
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4.3 Synthesis

The pose model developed in this chapter can be also be usaahttoesise samples at arbitrary
viewpoints. We investigate the use of Independent Appeardfodels (IAMs), where dependence,
or correspondence, between texture and shape is ignordthuggh this increases the overall dimen-
sionality of the model, it opens up the possibility of usiriffedent texture models interchangeably
with a single shape model. In our case the given shape i®ttes a warp, or morph basis onto
which a selected texture will be rendered from the undeglgippearance model.

This procedure usually involves a shape-free textuahich will be warped onto a target shape
&, and using shapg, as the warp base, which is usually defined by the mean of theelmdabr
each of the shapes we will have a corresponding set of tearthiat have been obtained obtaining
by applying Delaunay triangulation [64] to the convex hugfided by the set of control points, or
landmarks. The number of triangles, and their respectiviexéndices are computed once, during
the shape model creation. This is to reduce the computdtioad caused by re-calculating the
triangulation every time warping is performed, but more amantly to ensure that the rendering of
the texture stays uniform across the synthesis and extraptocess. The triangulation can be done
in an automated way, where the triangles are created to Ibéefcontrol points, or they can be
manually defined to conform to a particular scheme, suchoas left to right, or from top to bottom.

Next, for each of the triangles, the shape-free texturenfixgt, contained within, is warped
from the base shapig onto the target shapie to produce the resulting synthesised sample. This
process works well in frontal, or near frontal views, butdan extreme views when a linear model
has been used to generate the view. Figure 4.14 demonsate&ilure: (a) shows shape-free base,
or mean shape, with its corresponding triangulation. (lo) @) show the shape reconstructions of
extreme views and their corresponding triangulation frdmesar shape model trained at near frontal
views. Because of the inability of the model to generatedvsliapes at these views, some of the
triangles will overlap. During the warping process thislwduse distortion to the resulting texture,
at arbitrary places if the triangulation was automated,t¢the edges of a single extreme pose view

if the triangulation was performed left to right.
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(@) (b) (©)

Figure 4.14: Visualisation of triangulation when warpirging a linear model: (a) base (mean) triangulation, (b, )
extreme view triangulation.

Our hierarchical model is able to handle the non-linear ghaimuch better. Figure 4.15 shows

(@) (b) ©)

Figure 4.15: Visualisation of triangulation when warpirging a hierarchical model: (a) base (mean) triangulatione)
extreme view triangulation.

a similar triangulation where (a) is the shape-free basmeaan shape, and (b) and (c) are the shape
reconstructions of profile views.

Our choice of features for the pose shape model was drivehebgded to minimise, or remove,
the effects of facial expressions. Interestingly, in thategt of synthesis, or warping this has an

inverse effect. Rather than having shape free appearanimh witill minimise the effects of the
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expressions on the underlying appearance model, we haygpaar@ance model which does not aim
to minimise the effects of the expressions. This is illusdain Figure 4.16, where the top row
corresponds to a full size PDM with a small amount of expasbieing carried over to the resulting

shape free appearance sample. The bottom row depicts tadPid where most of the expression

Figure 4.16: Shape and expression-free appearance withDil mask (top) and shape-free with pose PDM mask
(bottom).

is propagated over to the corresponding shape free appeasample. Given a separate texture
model, and our pose model, we can easily generate arbitkpngssions at arbitrary viewpoints by
varying the components of each of the models independeftlshow this we built an appearance
model using 490 images from the Cohn-Kanade database, &adituas a basis for synthesis of
arbitrary viewpoints. Figure 4.17 shows samples of thelt®$tom our synthesis, where in each
set of expressions, labelled (a), (b) and (c), the top rowesponds to the expression synthesised
using our pose model and bottom row to an expression systuksising a PCA pose model, and
Figure 4.18 illustrates the cluster membership for the shagses used in the synthesis. Note that
in the PCA model synthesis, only one of the extreme viewshétghsevere texture distortion. This

is due to the triangulation order that we imposed (left thitigso that overlapping triangles happen
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Q’

(c) Expression 3

Figure 4.17: Examples of morphing (synthesising) faci@iregsions into extreme virtual views. The top rows in (a), (b
(c) were computed using the HLVM model. The bottom rows wemaputed using the PCA model with visible kinks at
extreme 3D views (profile views) due to the non-linearitiessgnt.

to be drawn in a correct order (as an analogy, this can alsbdeht of as a painter’'s algorithm
[113]). If the pose information were known, the warping @®es could be controlled by enforcing
the order with respect to the pose value, i.e. either frotrtdefight or from right to left. This would
ensure that the incorrect triangles are drawn first, andcbones second. However this would be a
half measure and in the case of the linear model this woulgwotk for overlapping triangles and

would not correct the artifacts caused by the extreme, nvenlapping distortions. In this section we
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Figure 4.18: Visualisation of the cluster membership fershape bases used in the synthesis (top and middle rows)
together with the synthesised samples (bottom row).

have described and demonstrated how the pose model candwsecessfully generate synthetic

samples at arbitrary viewpoints.

4.4 Improved AAM Fitting

The fitting process of the AAM is defined as an optimisatiorbfem, where the difference between

an image and the synthesised counterpart is minimised.férelifce vector can be defined by:

whereTim, Ty are the texture instances in the image and model frame itasggc However the

basic representation of an AAM is only able to cope with fabmtr near-frontal views[{15°,15°]
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in yaw). At the extremes of pose change, due to occlusiomduhie warping process, the texture is
distorted creating large residuals and causing trackiihgréa Figure 4.19 shows the original images
from a sequence in the top row, and the corresponding framgal warped texture vectors, with

visible distortions in the bottom row. Given the knowleddet® pose information Dornaika and

Figure 4.19: Distortions due to the pose changes and selfigion. Top row: original images, bottom row: frontal view
warped images.

Ahlberg [29] proposed the approximation of the missing linfation by mirroring the warped image
when necessary. Figure 4.20 shows the results of this rimigrq@rocess, where the top row consists

of the original images and the bottom row shows pose coumattierored images. As we can see

Figure 4.20: The mirroring process. Original images (tog)rand resulting pose corrected frontal view warped images
(bottom row).

mirroring provides only an approximation to the true repreation of the face at extreme views and
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can distort the true representation of the data.

To further improve the tracking process we introduce a paseected weight vector such that
the original texture differencAT = Tjy,, — Ty becomesAT oy = W ® AT, whereW is the pose
dependent weight vector drawn from the normal distributiod ® is element-wise multiplication.
We consider that the weight vector as a measure of the infueheach of the pixels within the
texture vector towards the final texture difference conditd on the current pose estimate. For areas
that will be occluded, hence containing distorted dataameunt of influence will be minimal, or
zero and should not influence the fitting process. If we defimexah shape free mask, then for

every row of pixels in that mask, each elemgnn that row contains the weight value given by its

probability:
_ (i—w?
p(j) = e’ (4.9)
= 0.5xw (4.10)
_ 05xE«*(0.5+w)
o = 50 (4.11)

whereE = |40 — ryaw| When|ryay| < 40 orE = 1 otherwise. We only calculate the weights for the
occluded half of the image, which we determine from the pasienation, and the fully visible parts
of the image are set to 1. Figure 4.21 shows different reptagens ofW with respect to different

yaw rotation values.

LLLALE

-3 —17

Figure 4.21: Different weight vector representations fiffledent yaw rotation values.

We have compared the performance of the original formulatibthe AAM with our method.
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Figure 4.22 shows the results of the experiment, where thedw contains the frames from the
original AAM implementation, and the bottom row containg {hose corrected method. Although
we obtained better results, our approach was not able téderaensistent and reliable tracking. This

is due to the influence of the underlying linear shape model itz flexible and invalid variation.

Figure 4.22: Selected frames from the experiment in fittiddyAonto the extreme pose view. Top row corresponds to the
original AAM model formulation and bottom row to the poseremted model.

In summary, we have investigated and shown how to minimiseeffects of distortions due to
self-occlusions caused by extreme pose viewpoints. Thétseshow improvement over standard

AAM fitting techniques in the literature.

4.5 Discussion

In this chapter we have described a pose model, which irtegirato our hierarchical decomposition,
and is able to estimate and generalise to continuous posed ba a sparse set of training samples.
The choice of shape component and the underlying featullesjeal us to minimise the influence
that facial expressions have on the resulting pose estimaigoal that would be difficult to achieve
if the appearance component was considered. However in s@taaces, for example in the case
of the surprise expression, jaw outline may exhibit somewrhof movement, which can affect the

estimated pose. Given the underlying probabilistic framwwand its ability to deal with missing
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data, features such as parts of the jaw outline and centodieges and the mouth can be treated as
missing, and the pose can be estimated in such a way thattatomopletely negates the effects of
expressions. Luthi et al. [74] used the missing data appraaceconstruct a full set of data from a
single PPCA model using only a subset of the original feature

Our model can also be utilised as a warp basis, onto whiclrampitextures are rendered, and
which provides superior performance to the linear PCA madelvever our model is a combination
of linear models, and invalid reconstructions can stillwdn some circumstances. Extending the
model to cover additional yaw rotation would extend the nhodeerage. Although we only consider
single images from the underlying model, this could easfyektended to sequences containing the
expressions exhibiting facial actions. Then the trajéesoin texture space could be learned and
reconstructed using an approach similar to [12].

Finally prior knowledge of the pose can help bootstrap theVARtting process where self-
occlusions lead to missing information, and artifacts ie thsulting shape free texture, affecting
calculation of the pixel difference, and resulting paranefpdates. Although the proposals of Sec-
tion 4.4 method offered improvement over the standard AAMragach, it seems that constraining
texture alone is not enough. In order to achieve stable amsigtent tracking we must add constraints
to our linear model, or we must adopt a non-linear model ferstiape component.

Next in Chapter 5 we explore the concept of fusion, which domdbthe information extracted
from our hierarchical components to produce final expreskibels, and allows us to estimate the
underlying expression intensity. Labels together withepard intensity information are converted

to a parametric form which will be used to animate a synthetiad avatar.
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Chapter 5

Modelling Expression Dynamics

Facial expressions play an important role in communicatungian emotions. Unfortunately the ma-
jority of approaches focus predominantly on the abilityustjdetermine a set of emotional labels.
Although frequently underestimated, the intensity or sgvef these states, combined with pose
information, is an important factor that contributes to timglerlying dynamics of those states. Since
our eyes are able to distinguish even the slightest of inepdns and because we perceive expres-
sions mostly in a dynamic context, we should make use of thiigable information to more fully
accomplish its successful transfer to a synthetic couaterp

In this chapter we introduce a facial expression modellir@gnework which produces param-
eterised expression dynamics information. Based on ouadtieical decomposition, presented in
Chapter 3, we explore the use of rule based classifiers toicentte information obtained from the
facial expression components previously considered. Mpbete the parameterisation, we compute
severity information for each of the identified expressiand produce continuous animation curves
that can be used to animate a synthetic head avatar in a rbaggd fashion. We investigate the use
of static information only and its sufficiency for the taskhand.

Using an Active Appearance Model (AAM) based tracker, we para the performance of our
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approach with that of a holistic representation plus Baedietwork (BN) approach under chal-
lenging conditions, where misalignments during the tnaghirocess can produce noisy or incorrect
information.

The work in this chapter begins with a description of exgmsparameterisation, then we ex-
plain our 3D animation model and provides experiments teat@hstrate how our system performs

dynamic expression modelling.

5.1 Expression Parameterisation

Let us first develop a compact parametric description of #pgessions which can summarise their
underlying dynamics and can be subsequently used to ananateatar. In the context of parameter-
isation much recent work has been focused on recognitionagiaFAction Coding System (FACS)
Action Units (AUs) [67, 86, 110, 73]. We try to avoid the coragity and computational demands of
processing FACS, although their detailed description gfessions and realistic animation provide
a desirable goal. In real world scenarios this level of dedainformation is unlikely to be easy to
extract or accurate enough.

In theory each of the hierarchical components introduce@hapter 3 should be sufficient on
their own to define the resulting labels and the underlyingaglyics. However in practice due to the
inevitably inaccurate input information this approachikglly to produce biased results. Conceptu-
ally we wish to represent final expression labels and thaietging dynamics as a combination of

intrinsic functionalities, or states of the hierarchicabsomponents. This can be summarised as:

expression= stat@nouth+ Statyer+ Stat@yer

This concept is analogous to the way character rigging fpaed in facial animation, where actions
of the most salient, or influential components are combiogéther to produce the final state [42].
To achieve that goal, we investigate a fusion approach.oRusiusually associated with combining
data from multi-sensory input sources, but in our case wa trach of our hierarchical regions as a

different input source.
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5.1.1 Framework Overview

For a given image sequence, the flow of information througtpoacessing pipeline can be described

by the following tasks:

1. Pre-processing: The input image is converted to HSV speloieh has proved to be success-
ful in detecting, or separating, skin regions [54]. Backgrd segmentation is performed by
thresholding Hue and Saturation components to segmenti&gei into the face region (fore-
ground) and anything else (background). Next the segmémizgle is converted to grey scale

and passed on to the subsequent module.

2. Tracking: The face of interest is tracked across the semuef images. Once the image
has been fitted, extraction of the shape component and iarbiécal de-composition is per-

formed.

3. Pose estimation: The root component of the hierarchieabihposition is used to estimate
yaw, pitch and roll rotations. The information can be fedkbtxthe tracker to assist with

non-frontal views.

4. Label assignment: Each of the hierarchical componergsthdinal expression label deter-

mined.

5. Intensity estimation: Once the labels have been assitheedorresponding intensity for that

label is calculated.

6. Parameterisation: Pose information, together withléabad corresponding intensity is con-

verted into a parametric description of the facial state.
7. Rendering: The resulting expression is rendered usmgnviously defined parametric form.

The overview of our framework is depicted in Figure 5.1. Tloé&dm line of boxes corresponds to
the framework described. The upper boxes in Figure 5.1 spored to training the expression model

and training the pose model.



Figure 5.1: General overview of the process in our system.
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5.1.2 Rule-based fusion

Rule-based classifiers are frequently used in machineiteplbecause of the ease with which rules
might be interpreted by humans. If the number of rules idikelly small, and the detection accuracy
is sufficiently high, such classifiers are an optimal cholwegause the reasons for their decisions
can easily be verified [32]. Furthermore they do not requiaining, which in the case of large
datasets can be time consuming. For optimal results, rbleslé be mutually exclusive, and their
coverage should be exhaustive over the problem domain. cHmise tricky for complex problems
that cannot be easily decomposed into simpler, atomic.uRastic and Rothkrantz [89] used a rule
based classifier to determine the resulting AUs from a patrdorgescription of the features. Our
concern is at a higher level of abstraction, and its interdaimbine, or fuse available information
from the eye and mouth components. Given shape input featmterstyouth teyeL teyer Obtained
from hierarchical decomposition described in Chapter 8,rasulting class-conditional probabilities
for eye and mouth models defined by Equations (3.40) and ) 3mEldefine the discrete outputs for

the mouth (M), left eye (EL) and right eye (ER) as follows:
M =i, ie {l(neutral)’2(smile)’3(grin)’4(oper)’5(angetj’6(sad)’7(disgusu}
ER = j, J c {1(squint),z(neutral)’3(operj} (5_1)
EL = k ke {1(squint) ’ 2(neutral) , 3(oper)}

wherei, j andk correspond to the class, or label with the highest value.fiflag¢label assignment is

performed by combining the information obtained from atkethdiscrete outputs together. The final
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expression label F is defined as:

(

smile M= 2

grin M=3

fear/surp (M =4A(ER=3VEL=23))
V(M =4AER=2AEL=2)

F={ anger (M=5A(ER=1VEL=1)) (5.2)

V(M=1AER=1AEL=1)

sad M=6A(ER=1VEL=1)

disgust M=7A(ER=1VEL=1)

neutral otherwise

\

whereV represents logical OR andrepresents logical AND.

Note, that for some expressions, certain facial regionsnateutilised. In the design of this
classifier we have taken into consideration the findings ofdéuk et al. [81] regarding necessity
and sufficiency of similar facial regions with respect tomgsion recognition. Their psychophysical
experiments show that some expressions depend solely agla fcial region, where as for others
dependence extends to the combination of such regions.xBorme for happiness and surprise the
mouth region is sufficient, but for surprise both eyes andtmawe required. On the other hand,
Pelachaud and Poggi [91] suggest that for surprise bothhremd eye regions are necessary. We
adopted the latter line of thought, as firstly we considet shaprise can be represented by raising
of the eyebrows only, and secondly the use of both regiondgee some level of redundancy. The
latter reason was driven mainly by practicality, becausednrate data from the mouth region alone

cannot provide reliable labels.

5.1.3 Severity Criterion

We have found [123] that severity, or intensity combinedchveib appropriate expression label, sum-
marises the underlying expression dynamics. The majofitgpproaches are only interested in

expression classification, and their parameterisatiohomily deliver a discrete on/off output. Un-
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fortunately such a representation does not yield the reduipntinuous response and fine-grained
detail for the expressions in question for many application

To address this issue, our severity information metric iBndd in terms of the combination
of severities of the hierarchical subcomponents. For edicheoeye and mouth components the
information is measured in terms of corresponding low leeelintrinsic, behaviours. Given the
high level final expression lab@& obtained during the fusion process in Equation (5.2), fahea
of the components, severity is defined by the marginal cutimelalistribution function given by
Equation (4.2) of the probability density model for the logwél behaviour belonging to thgeth
hierarchical component, whejec {moutheye ,eye:}.

For the combined intensity value, if the high level labet {smilegrin} then the severityis
given by:

S= Ormoutr{tmouth) (5.3)

where®(tmouth) is the the cumulative distribution of the probability depdunction of the mouth
hierarchical component, ark [0,1]. For expressions other than smile or grin the severity ismgiv

by the weighted combination of all of the facial regions:
S=% wjPj(t)) (5.4)
]

whered(tj) is the cumulative distribution of the probability densitynttion of the classified expres-
sion componeni € {moutheye , ey}, w; are weights such thgtw; = 1, andSe [0, 1]. The choice
of weights was determined experimentally and was s@.t0.3,0.3) for themoutheye , eye com-
ponents respectively, and reflects the amount of influencie leas towards the overall intensity. We
also experimented with Mahalanobis Distance (MD) as amradtaze measure for the calculation of

severity which is given by:

D = /(t— ) TEHt - pr) (5.5)
Unfortunately we have found that it is not sufficient for thesk. Figure 5.2 shows two images that

demonstrate gradual change for two expressions grin (wp aad fear (bottom row). We can see

that our SC produces correct values compared to MD. Thisusathby a lack of symmetry in PCA



5.2. 3D Animation Model 111

SC 0% 24% 60%

MD 0% 0% 98%

Figure 5.2: Selected frames from two expressions demdimgirgradual change for grin (top row) and fear (bottom row)
and the severities associated with them using our methojlgfCnaive approach based on (MD).

space and the fact that variation in each of the principalpmrants is a combination of many factors,

not just those caused solely by the expressions.

5.2 3D Animation Model

The output from our expression parameterisation systesed to operate a 3D animation model. We
employ a blend shape, or morph based approach, where tHeng®xpression is created through

the combination from the collection of existing sample Is488]. Every character is required to have
a set of predefined bases corresponding to the expressiongstveo model. Then any expressién

is given by:

E= ZWiFi (5.6)

wherew defines a weight vector ang; € [0,1] for everyi. I' defines a set of morph bases corre-
sponding to predefined expression states. Figure 5.3 showsample of these morph bases for

two different avatars (top and bottom). Although somewhmattéd in the sense of available free-
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99999
33333

Figure 5.3: An example of morph bases (left to right) for malusmile, grin, surprise/fear, anger for two differenaars
(top and bottom).

dom, and requiring pre-rigged characters, such an approfiefs several advantages. Firstly the
representation is compact and independent of the animatigime, giving us the ability to model
human and non-human characters alike. Secondly the coityptéxthe model and the number of
parameters is relatively small compared to physics-bassdets, such as the one described by [90].
Reduced complexity and the small number of control parammetgens up possibilities for real-time

animation. We demonstrate how our 3D animation model perddan the next section.

5.3 Experiment

Here we use our expression parameterisation approacthargeith the 3D animation model de-
scribed in the previous section. These form part of our systetlined in Figure 5.1. For face
tracking we employed the Cootes and Taylor [24] Active Agpaae Model (AAM) tracker, which

was trained using a set consisting of 1300 images and shapels With 74 landmarks), which con-
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sisted of six basic expressions (neutral, smile, grin, sssinsurprise/fear, anger) and variations in
pose. The resulting tracker was based on a person specific fdAMbustness under sparse training
samples, and also for providing a better basis for captuntrigate expressions.

To test our system we used two test sequerideand T2 totalling 2850 frames altogether. In
both of the sequences the exhibited expressions weredated with casual speech intervals. Al-
though we did not specifically consider modelling speechfeltéts inclusion might provide a more
realistic scenario, where expressions would naturallyepaiated by speech fragments. To evaluate
the performance we compared our rule-based method withoftatholistic approach adopted by
Huang and Huang [53] and Liu et al. [71], and with the Bayediatwork (BN) of Chuang et al.
[19]. Although in the latter the BN was defined in the contekfeatures and by design assumed
independence between them, we will utilise the hierar¢hmzadels and assume independence be-
tween those. All of the methods were trained using the saaieinig set consisting of 813 hand
labelled samples, representing continuous changes alugfacial expressions. For the BN we have
performed supervised training. Figure 5.4 shows the labgbament results for test sequerick
and Figure 5.5 shows the label assignment results for tgaeseel 2. In both cases our rule based
method provided the best results. All three methods were tabieliably assign labels to grin and
surprise expressions, and this is partly due to the factthizeste expressions were the most reliably
and accurately tracked. However the holistic approach texely failed to recognise smile and anger
expressions, whilst the BN method completely failed to geise smile, and had more limited suc-
cess generally. Unfortunately all of the methods compldtgled to recognise sadness. These results
highlight the ability of the rule driven selection in our taechical approach to provide the required
level of redundancy and the ability to cope with noisy data.tlie other hand, the holistic approach
is not able to provide such redundancy and hence is unabldatat,amainly due to its global nature
and the resultant constraints. Similarly, the performasfdbe BN, although better than the holistic
method, can be attributed to the training process, in whith correct data was used. Figure 5.6 de-
picts overall label assignment scores, and Table 5.1 suisesahe results of the experiment. Due to

the lack of standardised evaluation tests for continuoalsgaadual parameterisation the evaluation
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Rule-based Holistic ([53, 71]) | Naive Hierarchical

seqT1l 8115% 42.40% 67.19%
seqT2 80.57% 52.82% 67.66%

Table 5.1: Table comparison of label assignments methods.

100

T
I Rule Based
90t [ Holistic + GMM [/
I \aive Hierarchical
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Classification rate (in precentage)

10 b

Tl T2

Figure 5.6: Final label assignment scores for test seqeéricandT2.

was based only on a simple label assignment scheme (expregziesent/absent) as the compared
approaches did not define the severity of the expressions.

Given the resultant labels from the best performing methaxnext move on to estimating the
expression intensity. The choice of the marginal CDFs fatheaf the hierarchical regions was
determined by analysis of the underlying models, and chgotie one that contributes the most

to the underlying intrinsic functionality rate of changem$arly to the pose estimation technique,
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we have smoothed the animation curves by convolving therh wiGaussian kernel. Figure 5.7
shows the resulting severities for each of the expressmmg$t sequencél (bottom row) together
with corresponding label assignment scores for rule-bagguioach (top row). Figure 5.8 shows
the resulting severities for each of the expressions farseguencd 2 (bottom row) together with
corresponding label assignment scores for rule-basedagipi(top row).

Finally we assembled the complete parametric form and eghjitiito a virtual head avatar. Fig-
ure 5.9 shows selected frames from a casual conversatiaeses; Within each of the boxes the
left image corresponds to the currently tracked image fratitiethe AAM appearance mask super-
imposed on it. The image on the right corresponds to the syinthvatar animated according to the
classified expression. These results clearly show a useftélation between input expressions and

the avatar output.

5.4 Discussion

In this chapter we have presented an alternative way of ibgsgexpressions as a combination of in-
trinsic functionalities of three hierarchical componerdgas corresponding to the face, both eyes and
the mouth. To formulate the final expression labels, we tiyated the concept of fusion of infor-
mation obtained from different hierarchical componentsleFbased classification offers an efficient
and more robust alternative to more complex classifiers aits simplicity and absence of training
stage. We have shown that our approach performs better ieamotistic approach of [53, 71] and
the Bayesian Network (BN) approach of [19] where the retetfiips amongst the components were
learned through a training process. This highlights thetfeat holistic methods model the global na-
ture of variations and cannot adapt to localised changeseddoy inaccuracies in the data. Although
BN performed better than the holistic approach, since it based on hierarchical components, its
ability to determine the correct labels was limited by tharing set, which only contained correct
samples.

Given the resulting labels, we have also explored interestimation of the corresponding ex-

pressions as a weighted combination of intensities of carapbintrinsic functionalities. This of-
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Frame 1050 (surprise:71%) Frame 1354 (anger:63%) Frante (i4i5:90%)

Figure 5.9: Selected frames from experiments on exprestiasification and avatar animation with correspondingl&bnd severity (as a percentage). Each of
the images shows the tracked frame with AAM mask superintpost (left), and corresponding synthesised avatar (yight
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fered the ability to account for contributions of differdatial regions towards the final value, and

allowed us to measure the intensity of expressions, wheyesargle regions trigger the activation.
Overall in this chapter we have demonstrated the pos#isildf processing facial representations

from input to output with evident success. The range of bssipplications for such a system must

surely be considerable.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The human face provides a most powerful medium for relaymgtens between humans and plays
an important, if not crucial, role in our day to day sociakir@ction. Due to the rapid advances of
computer hardware and the growing popularity of personadmgers in our everyday lives, machine
analysis of facial expressions has been emerging as ar dietiel for the last decade with growing
interest in application fields such as human-computer aot&m, computer animation, computer
gaming and social networking.

In this thesis we studied methods for building a framewoiatde of modelling and parameter-

ising facial expression dynamics. In particular three lemging issues have been addressed:

Hierarchical Feature Representation

We investigated facial feature representation based oAdtiee Appearance Model (AAM), and fo-
cused on its shape component also known as Point Distribimdel (PDM). Although shape alone
cannot capture skin changes, it provides significantly tdeature and hence model dimensionality.

This approach also provides invariance to illuminationnges and some invariance to intra-person
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variations. We have employed hierarchical decompositioth® holistic shape representation into
subcomponents corresponding to the eyes and mouth; whictoungl to be the most salient fa-
cial regions. The underlying dynamics of each of those regiwas represented by a Hierarchical
Latent Variable Model (HLVM). We have found that both eye gmments can be sufficiently repre-
sented by a unified, single model further reducing the olveradlel dimensionality. In contrast to the
holistic representation, our approach allows us to redbeentimber of non-linearities present due
to intra-feature correlations, and provide a more prea@peasentation with respect to the intrinsic
functionalities of the components, rather than final exgiceslabels. In real world scenarios, where
data will contain inaccuracies and noise, our approachigesvbetter performance compared to a

PCA based one.

Pose Estimation

Pose is an important, but somehow overlooked, part of exjmmeslynamics. As our head rarely
stays still, it is intrinsically connected with the way werpaive facial expressions. Some of the ex-
pressions, such as nods or shakes are even representgdydlet pose. Large head motion causes
non-linearities in the shape space which makes PCA not muffifor representing this subspace. Our
proposed method integrates into our existing hierachreah&éwork, and employs a HLVM to model
its underlying distribution, and is entirely based ahigformation obtained from a sparse, discretely
sampled training set. As expressions can have significgradtron pose we have demonstrated that
by making an appropriate choice of features we can reduséntigact. We have demonstrated how
the underlying probability model can be used to estimateptiee and can generalise to estimate
continuous pose from unseen samples. Such a model can alsethén the synthesis of arbitrary
expressions at arbitrary viewpoints, where it serves asrimaor warp basis. Finally prior knowl-
edge of the pose information can also assist in an AAM fittirecpss, where due to self-occlusion

parts of the available appearance information become Uabia
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Expression Dynamics Modelling

We have introduced a framework that is capable of extradtingal dynamics information and pro-
ducing a parameterised version thereof. We investigatedusion of information obtained from
hierarchical components using rule-based and Bayesiandde{(BN) classifiers. Based on the as-
signed labels and using an underlying hierarchical skzdistnodel we estimate the intensity of the
final expression as a combination of intensities of thenstd functionalities of the modelled facial
regions. We show that our method performs better than thisticoapproach. Finally we create a

parametric description of the expression dynamics andyapfal animate a synthetic head avatar.

6.2 Future Work

So far we have discussed issues related to modelling ofl fdgeamics, and although progress has
been made our work still has some limitations. Here we liss¢hlimitations and possible directions

for future work:

e The AAM based tracking is not feasible in real world envirams, due to the laborious
labelling process. We would like to investigate alterrativethods, which provide a more

stable and reliable basis and ultimately help to reduce hprdparation and training time.

e Another important component of facial dynamics is eye hfigk Combined with subtle head
movements it defines what we learn to perceive as expreshimmsa very young age. Its

absence makes the synthesised expressions unrealistic.

e Although our test sequences included fragments of speeehhave not focused on them
specifically. In real world scenarios, it might not be poksito extract the visemiés due
to the fast and usually blurred lip movements. However kedgé of the speech and non-
speech segments would give us the ability to simulate, othsgize lip movements in the

synthetic counterpart hence enhancing the visual expariemen more.

lviseme is a representational unit used to classify speaaidsdn the visual domain. It describes the par-
ticular facial and oral positions and movements that oclaungside the voicing of phonemes. (from wikipedia)
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e Throughout the course of this work we have focused on a pliaatkuniversal set of expres-
sions. We would like to expand this set to include a wider eamigexpressions including those

caused by the head movements alone.

e We have focused on static expression parameterisationsadfficiency for the task at hand.
We do realise, that for some of the expressions, dynamic letme of how the face changes

over time is important and enhances the amount of availafidennation.

e So far we have shown that shape alone can provide a sufficésig Bor estimating the dy-
namics of the expressions. In addition, we would like to gsmlthe appearance information,
which would increase the amount of available informatidigwang us to investigate FACS

parametric descriptors.
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