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1 Introduction

Cross-national comparisons on student achievement are widely used to gauge the overall per-

formances of a country’s school system. Figures obtained from the Trends in International

Mathematics and Science Study (TIMSS) and the Progress in International Reading Literacy

Study (PIRLS) show Italian primary schools performing worst than in many European coun-

tries, especially in math. These same tests also show Southern Italy well behind the North,

not surprisingly in view of the backwardness characterizing Southern regions along many

economic dimensions (higher unemployment, lower per-capita income, higher crime rates)

but also in terms of financial development (Guiso et al., 2004), political accountability (Nan-

nicini et al., 2013) and workplace productivity (Ichino and Maggi, 2000). At the same time

Italy’s own accountability system, managed by the Istituto Nazionale per la Valutazione del

Sistema dell’Istruzione (INVALSI), points to a very different regional pattern, with primary

school students in the South doing better than Northerners. The marked regional gradient

pictured by INVALSI data can be seen in the left hand side panels of Figure 1, where primary

school math and language scores are considered. Moreover, the correlation of raw scores with

proxies of school and family inputs unveils patterns in contrast with empirical regularities

usually found in the literature. For example we show in Figure 2 that lower per-capita in-

come is associated with higher scores in math, and that public spending is inversely related

to achievement. The implications of these results to guide public policy in funding and ac-

countability contradict the need for conspicuous EU investments to support modernization

of education in Southern Italy through the Italian National Operative Programme (PON)

scheme.1

How can these two sets of statistics be reconciled? A key difference between INVALSI tests

and TIMSS and PIRLS tests emerges in their administration. INVALSI tests are proctored

by local administrators and teachers, whereas in TIMSS and PIRLS scorers are organized into

teams and a team leader ensures scoring reliability. We argue here that local administration

opens the door to cheating and misreporting, and that it is this sort of manipulation that
1See http://www.invalsi.it/invalsi/index.php for a list of PON projects in Italy.
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explains surprising patters in INVALSI data. Using a statistical model to detect manipula-

tion, INVALSI identifies about 6% of classes in the country with compromised scores. In the

South the proportion of compromised exams averages about 13%, uncovering the substan-

tial regional gradient shown in the right hand side panels of Figure 1. For example, about

16% of classes in Sicily are suspected to have manipulated scores in math compared to less

than 1% in Veneto, the Northern region with the most reliable figures according to INVALSI

publications.

Angrist et al. (2017) discuss at large the origin of this phenomenon. They argue that

local teachers manipulate results by dishonest transcription of students hand-written an-

swer sheets onto machine-readable score report forms. INVALSI itself has acknowledged the

problem, and now down-weights schools with suspiciously large results in the derivation of

aggregate figures.2 Score manipulation on the part of teachers is far from unique to Italy.

In an early empirical contribution, Jacob and Levitt (2003) documented substantial cheating

from teachers in Chicago public schools. More recently, Dee et al. (2016) have shown that

scores on New York’s Regents exams are manipulated by school staff who grade them in an

effort to move marginal students over the performance thresholds. Concerns regarding score

manipulation have also been raised in Sweden (Böhlmark and Lindahl, 2013 and Diamond

and Persson, 2016) and in the United Kingdom, where Key Stage 1 tests at primary school

are locally marked3. A recent system-wide cheating scandal in Atlanta has raised much in-

terest from the media and several educators have been convicted (Severson 2011, Aviv 2014,

Blinder, 2015).

The contamination of INVALSI data raises the problem of uncovering true patterns across

Italian regions, which is the objective of this paper. Our analysis develops considering features

of the true score distribution, its average being an example. Two main problems challenge

identification. As classes with manipulated scores are arguably not representative of the

population, selection precludes identification of the counterfactual score for manipulators.

Moreover, the manipulation status from the statistical model employed by INVALSI can be

misclassified as we do not have direct evidence on who manipulates.

We deal with these two problems using a policy that randomly assigns external monitors
2Their correction implicitly assumes that manipulated and honest scores are representative of the same

population (INVALSI, 2013), a restriction that we do not impose here.
3See https://www.gov.uk/government/collections/national-curriculum-assessments-key-stage-1-tests
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to 20% of institutions in the country.4 Monitors supervise test administration and are re-

sponsible for score sheet transcription, as we discuss below. We use the presence of monitors

at institution to instrument for manipulation, and show that this is sufficient to bound the

distribution of true scores. Allowing for misclassified manipulation widens these bounds.

However, if misclassification is independent of the sampling process that assigns monitors to

classes and if monitoring prevents manipulation, monitored classes classified as manipulators

reveal part of the error. We show how this result, coupled with standard assumptions on

the misclassification error (Mahajan 2006, Lewbel 2007, and Hu 2008), yields bounds on

the distribution of true scores that allow for endogenous and mismeasured manipulation.5

Central to the development of our strategy are additional assumptions on the relationship

between true scores and the incentives to manipulate. We show that a simple Roy model

motivates restrictions on the true underlying achievement patterns and on the extent of

misclassification.

The resulting bounds are sufficiently tight to reverse regional differences in raw scores:

after correcting for manipulation, students in the North outperform students in the South in

both math and language. Looking at a finer geographic disaggregation, we see that bounds

in the most problematic regions of the South are dominated by scores in most regions of the

North. For example Sicily - the region with the highest presumed incidence of manipulation

- is ranked 3rd among the 20 Italian regions using raw math scores, and 15th at best after

our correction. Our conclusions reconcile INVALSI data with evidence from international

surveys, both in terms of the regional gradient in achievement and of its relationship with

family and school inputs (as shown in Figure 2). We also show that score manipulation in

the South is largely independent of the threat of having external monitors at institution,

suggesting that dishonesty is widespread.

The remainder of the paper is organized as follows. Section 2 presents the institutional

background and data, describes the monitoring experiment and explains the statistical pro-

cedure used by INVALSI to detect manipulation. Section 3 shows how to get identification

of the parameters of interest when manipulation is measured without error. Section 4 derives

the conditions for identification when manipulation is instead misclassified. Section 5 presents
4Institutions consist of affiliated schools, not at the same location.
5Identification under endogenous and misclassified ‘treatment’ is also considered in Nicoletti et al. (2011),

Kreider et al. (2012), and Battistin et al. (2014).
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conclusions on the extent of manipulation in INVALSI data that are robust to measurement

error. In addition, we discuss how manipulation affects scores. Section 6 presents bounds on

true achievement obtained by imposing restrictions on the behavior of manipulators. Section

7 derives policy implications and concludes.

2 Background and Data

Institutional background and sample selection criteria

We use administrative data collected by the INVALSI on testing program in Italian elemen-

tary schools in the 2009/10, 2010/11, and 2011/12 academic years. Elementary school lasts 5

years starting from 6 years of age and covers grade 1 to 5. Standardized testing for evaluation

purposes is mandatory in Italy since 2009 for all schools and students. INVALSI assessments

considered in what follows cover math and language skills of pupils in second and fifth grade

in a national administration lasting two days in the Spring, usually in May.6 Scores in lan-

guage and math are computed as percentage of correct answers, measured by grade and year

of test administration. Our statistical unit of analysis is the class since our manipulation

variable varies at class level, as explained below. The working sample includes only public

schools (over 90% of primary school students) and consists of about 70,000 classes in each of

the two grades covered by three years of data.

The Monitoring Experiment

In an effort to increase test reliability, INVALSI randomly selects institutions to be observed

by an external monitor. Every year about 7% of classes and 20% of institutions in the coun-

try are mandated to external control on the test day. Compliance of institutions is enforced

by the Italian law. Monitors are selected from a pool of retired teachers and principals who

did not have direct contacts with the schools or worked in town in the two years preceding

the test. The daily salary offered is about 200 euros per class monitored. Monitors supervise

test administration and are responsible for score sheet transcription in a limited number of

classes which are selected following a two-stage design. First, a sample of institutions strati-
6The testing procedure and its implementation are described in the annual reports of INVALSI (see

http://www.invalsi.it).
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fied by region is drawn with probability proportional to grade enrollment; then, in sampled

institutions, one or two classes by grade (depending on grade enrollment) are assigned an

external monitor. Although within-institution monitoring is supposed to preserve random-

ness, in practice it appears to be contaminated by negotiation between school principals and

INVALSI (as evident from descriptives in Bertoni et al. 2013 and discussed in Angrist et al.

2017).

In the absence of external monitoring, tests are proctored by local school staff. Proctors

are expected to copy students’ original responses onto machine-readable answer sheets (called

scheda risposta), which are then sent to INVALSI. The transcription procedure is needed

because this task is not mechanical. Questions come in the form of multiple choice and

open-ended items. Answers to open questions have to be judged by transcribers as correct,

wrong or missing, thus making transcription a form of grading. This transcription procedure

opens the door to score manipulation, as does the fact that no further checks are enforced to

ensure that students’ original responses coincide with information on scheda risposta sent to

INVALSI. Importantly, the transcription is performed outside official school hours without

any monetary incentives for teachers.

Measuring Manipulation

The possibility of score manipulation is acknowledged by INVALSI in their official publi-

cations. We build on Angrist et al. (2017), who show that manipulation reflects teacher

behavior. Specifically, it follows from dishonest transcription of students hand-written an-

swer sheets onto machine-readable score report forms.

To identify classes with compromised scores, INVALSI adopts a procedure that takes as

input within-class information on average and standard deviation of test scores, proportion

of missing items, and variability in response patterns (as measured by a Gini index of ho-

mogeneity). The 4 × 4 correlation matrix determined by these indicators is used to extract

two principal components, explaining over 90% of total variance for the years considered in

our analysis. Cluster analysis is then used to form eight groups of classes from values of

their principal components. Fuzzy clustering is adopted, yielding a matrix whose elements

are, for each class, eight group membership probabilities. Classes with manipulated scores

are identified as those in the group with “extreme” values of the principal components. In
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practice, these are classes with abnormally high performance, small dispersion of scores,

low proportion of missing items, and high concentration in response patterns relative to the

population averages of these indicators. The indicator adopted by INVALSI is the probabil-

ity of membership to the extreme group resulting from fuzzy clustering. This indicator is

subject-specific (math and language), and clustering is stratified by grade and year.7

The manipulation indicator used in this paper is obtained replicating the same statistical

procedure. However, hard clustering is used instead of fuzzy clustering: only classes in

the extreme cluster identified by INVALSI are deemed to have compromised scores. The

continuous indicator used by INVALSI is replaced here by a dummy variable aimed at outlier

detection. The binary indicator eases interpretation, facilitates the discussion of measurement

error in Section 4 and is in the spirit of Jacob and Levitt (2003). The right hand side panels of

Figure 1 report the fraction of classes with compromised scores resulting from our indicator.

The regional pattern depicted is qualitatively identical to that reported by INVALSI in official

reports (e.g., INVALSI, 2010).

Descriptive statistics for the estimation sample are presented in Table A1.8

3 Identification When Manipulation is Observed

Let Y1 and Y0 be scores with and without manipulation, respectively. The observed score is

Y = Y0 (1−M) + Y1M , where M is an indicator for manipulation (the ‘treatment’). Class

is the unit of analysis. The random variable Z takes value one if the class belongs to a

monitored institution, while Q denotes monitored classes; hence Q = 0 if Z = 0 by design.

Class and school level demographics X are also available, the conditioning on which is left

implicit.

The monitoring experiment is used to learn about scores for different, latent types of
7For additional details, see Quintano et al. (2009). Classes suspected of manipulation are not sanctioned,

although from school year 2011/12 INVALSI has used the manipulation indicator to adjust class scores. In
classes with values of the indicator above a threshold set by INVALSI, results are not returned to the school.
Below this threshold and within a range of values decided by INVALSI, scores are weighted by the value of
the manipulation indicator. This procedure was unknown at the time of the test, making it unlikely that
score manipulation anticipates the future adjustment.

8We will conventionally label as ‘North’ regions in Northern and Central Italy (Piedmont and Valle
d’Aosta, Liguria, Trentino Alto Adige, Veneto, Friuli Venezia Giulia, Emilia Romagna, Tuscany, Umbria,
Lazio). These will be contrasted to regions in the South (Abruzzo and Molise, Campania, Pulia, Basilicata,
Calabria, Sicily and Sardinia).
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teachers in the population. Types are defined by indexing manipulation to Z = z, Mz,

to express the idea that monitoring should lower manipulation. Combinations of (M0,M1)

define the four, mutually exclusive groups reported in Table 1. Honest (H) teachers are those

who never manipulate. The remaining teachers are classified depending on their behavior in

the presence of external monitoring. Complying (C) teachers are those who manipulate only

when the threat is low (without monitors). Dishonest (D) teachers are those with positive

expected benefit from manipulation even when the threat is high (with monitors). Finally,

non-complying dishonest (N) teachers are those who would manipulate only with external

monitors.

The incidence of the four groups in the population is φH , φC , φD and φN , respectively.

The monitoring experiment reveals only one of the two potential outcomes (M0,M1). The

notation for potential scores is also adjusted and indexed to the presence of monitors. The

variable Ymz represents class scores when M = m and Z = z, where m = 0, 1 and z = 0, 1.

The following assumption will be maintained throughout.

Assumption 1. (Independence, monitoring effects, exclusion and monotonicity).

(a) (Ym1, Ym0,M0,M1)⊥Z; (b) E [M1 −M0] 6= 0; (c) Ym1 = Ym0 for m = 0, 1; (d)

φN = 0.

Assumption 1.a is implied in our setting by random assignment of monitors to institu-

tions. Assumption 1.b states that institution monitoring is effective in reducing manipu-

lation. Assumption 1.c is an exclusion restriction implying that monitoring lowers scores

only by lowering manipulation.9 Assumption 1.d rules out the presence of non-complying

dishonest teachers, imposing that monitoring doesn’t cause manipulation. Given these as-

sumptions, we can identify four functionals of score distributions by adapting expressions in

Abadie (2002):

E[g(Y1)|D] =
E[g(Y )M |Z = 1]

E[M |Z = 1]
, (1)

9Using survey data on exam day experiences and perceptions, Bertoni et al. (2013) find no direct effects
of monitors on fifth graders’ feelings and motivation. This rules out a possible effect of monitoring on scores
over and above the effect on manipulation. Assumption 1.c is violated if the extent of manipulation depends
on the presence of monitors at institution, for example because Y11 < Y10. Assumptions would be needed
to sign the role of unobservables that cause such violation, in the spirit of Nevo and Rosen (2012). Point
identification of the quantities in (1), (2), (3) and (4) would be lost in this case.
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E[g(Y1)|C] =
E[g(Y )M |Z = 1]− E[g(Y )M |Z = 0]

E[M |Z = 1]− E[M |Z = 0]
, (2)

E[g(Y0)|C] =
E[g(Y )(1−M)|Z = 1]− E[g(Y )(1−M)|Z = 0]

E[(1−M)|Z = 1]− E[(1−M)|Z = 0]
, (3)

E[g(Y0)|H] =
E[g(Y )(1−M)|Z = 0]

E[(1−M)|Z = 0]
, (4)

where g(Y ) is any real function of the observed variable Y such that the moments above

are finite. In the empirical analysis the function g(Y ) will be assumed non-decreasing in its

argument. Since:

E[M |Z = z] = φD + (1− z)φC ,

we have φD = E[M |Z = 1], φC = E[M |Z = 0]−E[M |Z = 1] and φH = 1−φD −φC . Figure

1 motivates the investigation of conditional versions of this parameter by area (e.g., North

versus South).

The difference between equations (2) and (3) identifies the effect of manipulation for C

teachers. We are interested, however, in the following quantity that includes H and D teachers

as well:

E[g(Y0)] = E[g(Y0)|D]φD + E[g(Y0)|C]φC + E[g(Y0)|H]φH . (5)

We will use g(Y0) = Y0 when considering average scores, and g(Y0) = 1(Y0 ≥ θ) to learn

about classes scoring above a cutoff θ ∈ [0, 100]. Even if M is not mismeasured, Assumption

1 is not sufficient for point identification as E[g(Y0)|D] is not identified in general. By varying

the latter quantity over the space of its possible values, we obtain the identification region for

E[g(Y0)]. As we shall see in Section 4, lack of identification is exacerbated when the indicator

M is mismeasured.

The identification region for the quantity of interest is narrowed by assuming that ma-

nipulation boosts scores, as seems likely.

Assumption 2. (Scores and manipulation). 0 ≤ Y0 ≤ Y1.

This assumption implies g(0) ≤ E[g(Y0)|D] ≤ E[g(Y1)|D], which narrows the width of the

identification region for (5) to (E[g(Y1)|D]− g(0))φD. Importantly for what follows, φD = 0

implies point identification. We will refer to naive bounds for (5) as those obtained under
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Assumption 2.

Finally, we are interested in counting ‘rotten apples’. The quantities 1 − φH (i.e., the

fraction of non-honest teachers, consisting of C and D groups) and φD (i.e., the fraction

of D teachers) are considered to this end. These quantities are always point identified if

manipulation is not mismeasured. The quantity φC is of independent interest, as it measures

the size of teachers whose behavior is changed by the monitoring experiment. Using the

instrumental variables jargon, this is the first stage effect whenM is considered as ‘treatment’.

Table A2 in the Appendix reports estimates of the quantities above obtained from raw

data when g(Y ) = Y . The counterfactual terms (1), (2), (3) and (4) are estimated from 2SLS

regressions which follow from those described in Section 4 imposing no measurement error.

The average effect of manipulation for C teachers, E[Y1 − Y0|C], is positive and large - see

columns (1) and (4). Classes with H teachers appear to have comparable scores everywhere

in the country, well above those for classes with C teachers. Since E[M |Z = 1]− E[M |Z =

0] = −φC , the table also shows that monitoring reduces manipulation, particularly in the

South. Moreover, the size of the complying population among non-honest teachers is below

10% in the South. In the North φD is negligible and set to zero in estimation for practical

purposes, implying that the presence of monitors at institution is sufficient to offset dishonest

transcription of scores in all classes. We will soon come back to differences in the prevalence

of latent types across areas.

4 Identification With Misclassified Manipulation

Monitoring and misclassification

In practice, we do not know for sure who manipulates. Rather, we observe only a proxy for

M , denoted by W , which corresponds to the manipulation indicator described in Section 2.10

We therefore turn to an analysis that takes misclassification into account. We first assume

that class monitoring (that is, monitoring of classes within sampled institutions) prevents

manipulation. Here and below the notation employed uses the fact that monitored classes
10As previously discussed, W is aimed at detecting outliers along multiple dimensions. However, this

indicator is not deterministically related to large class scores. For example, 39% and 67% of classes with
scores in the top 10% and 20% of the math distribution, respectively, have W = 0.
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are only in monitored institutions.

Assumption 3. (No manipulation in monitored classes). E[M1|Q = 1] = 0.

The potential outcome notation is employed here to stress that class monitoring constrains

behavior of teachers. The assumption is weaker than assuming that monitoring eliminates

manipulation in all classes at institution, and implies:

M = M(1−Q). (6)

We further assume that the properties of the manipulation indicator do not change across

populations for which it is computed. If one maintains φN = 0, the probability of detecting

manipulation must be the same for D and C teachers. Similarly, detection of honest reporting

should be the same for H and C teachers. This is equivalent to assuming classification errors

independent of the monitoring experiment.

Assumption 4. (Misclassification independent of monitoring). E[W |M1 = m,Z = 1] =

E[W |M0 = m,Z = 0] for m = 0, 1.

Assumption 4 is an exclusion restriction implying that the correlation between monitoring

and W reflects only the correlation between monitoring and M . The relationship between

observed manipulation, W , and latent manipulation, M , can therefore be written as:

W = (1− π0) + (π0 + π1 − 1)M + η, (7)

the terms π1 and π0 denoting probabilities of correct detection of manipulated and honest

scores, respectively:11

πm ≡ Pr[W = m|M = m], m = 0, 1.

Our characterization is completed by assuming non-differential misclassification, which is a

standard assumption in the measurement error literature (see Carroll et al., 2006, and Chen

et al., 2011). It qualifies W as a surrogate of M , in the sense that the latter variable is finer

than the former in the relationship between manipulation, outcomes and Q.

Assumption 5. (Non-differential misclassification). For z = 0, 1 and m = 0, 1:
11Since by definition of (M0,M1) we have E[W |M = m,Z = z] = E[W |Mz = m,Z = z], Assumption 4 is

equivalent to E[W |M = m,Z = 1] = E[W |M = m,Z = 0] for m = 0, 1.
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(Y0, Y1, Q) ⊥ W |Mz = m,Z = z.

This again is an exclusion restriction, implying that W does not have any residual corre-

lation with (Y0, Y1, Q) when the manipulation status M is revealed. Importantly, it does not

rule out the likely correlation between manipulation, Y and Q, and can be stated conditional

on X. Also, Assumption 5 lends itself to an interpretation that stems from the definition

of latent types. It says that errors in detection of misconduct (of D and C teachers) or of

honest behavior (of H and C teachers) are independent of outcomes and class monitoring.

We can now derive the quantities (1)-(4), which are functionals of (Y,Q,M,Z), as func-

tionals of (Y,Q,W,Z). This allows us to establish an identifying map between quantities of

interest and their analogues computed from raw data. Define:

Λ ≡ [W − (1− π0)] (1−Q), Ψ(π1) ≡ (π0 + π1 − 1)− Λ.

The dependence on π0 is left implicit here, as this parameter will not be relevant for the

derivation of bounds in what follows. The main results are presented in propositions, whose

proof follows from calculations reported in the Appendix.

Proposition 1. (Potential distributions under misclassification). Under Assumptions 1, 3,

4 and 5:

E[g(Y1)|D] =
E[g(Y )Λ|Z = 1]

E[Λ|Z = 1]
, (8)

E[g(Y1)|C] =
E[g(Y )Λ|Z = 1]− E[g(Y )Λ|Z = 0]

E[Λ|Z = 1]− E[Λ|Z = 0]
, (9)

E[g(Y0)|C] =
E[g(Y )Ψ(π1)|Z = 1]− E[g(Y )Ψ(π1)|Z = 0]

E[Ψ(π1)|Z = 1]− E[Ψ(π1)|Z = 0]
, (10)

E[g(Y0)|H] =
E[g(Y )Ψ(π1)|Z = 0]

E[Ψ(π1)|Z = 0]
. (11)

The quantities above are partially identified by letting the probabilities of correct clas-

sifications, π0 and π1, vary over their support. Importantly, quantities involving outcomes

under manipulation depend only on π0. The equations presented are derived imposing the

constrain in (6). When Q = 0 for all classes, Proposition 1 provides expressions for function-
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als of potential outcomes in an instrumental variables setting when the treatment status is

misclassified.

Proposition 2. (Rotten apples under misclassification). Under Assumptions 1, 3, 4 and 5:

1− φH =
E[Λ|Z = 0]

(π0 + π1 − 1)
, φD =

E[Λ|Z = 1]

(π0 + π1 − 1)
.

Note that the ratio of these two quantities depends only on π0:

φD

1− φH

=
E[Λ|Z = 1]

E[Λ|Z = 0]
, (12)

and represents the share of D teachers among the pool of non-honest (D or C) teachers. It

also follows that:

φC =
E[Λ|Z = 1]− E[Λ|Z = 0]

(π0 + π1 − 1)
.

Proposition 3. (Identification of π0). Under Assumptions 3, 4 and 5 the misclassification

probability π0 is identified from the monitoring experiment:

(1− π0) = E[W |Q = 1].

The last result is central for what follows, implying that the quantities (8), (9) and (12)

are point identified from the data. It follows that identification region for the parameter in (5)

becomes wider when W 6= M because π1 is unknown. At the same time, point identification

of φD, φC and φH is lost.12

The difference between (9) and (10) identifies the causal effect of manipulation for C

teachers. Using the expression for (1− π0) in Proposition 3, it follows that:

E[g(Y1)− g(Y0)|C] = (π1 − E[W |Q = 1])
E[g(Y )|Z = 1]− E[g(Y )|Z = 0]

E[W |Z = 1]− E[W |Z = 0]
,

the last term on the right hand side representing the causal effect obtained from raw data

(Table A2 in the Appendix reports the effect when g(Y ) = Y ). A sufficient condition to

ensure that misclassification preserves the sign of this causal effect is π1 > E[W |Q = 1]. The
12Define:

SC(a) ≡ {E[g(Y0)|C] : π1 ≥ a} , SH(a) ≡ {E[g(Y0)|H] : π1 ≥ a} ,
as the sets of values taken by (10) and (11), respectively, when π1 ≥ a. Calculations available on request
show that, for δ > 0 and a + δ < 1, we have SC(a + δ) ⊂ SC(a) and SH(a + δ) ⊂ SH(a). This implies that
the identification regions for (10) and (11) shrink as π1 increases to one.
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latter assumption also implies that manipulation biases upward causal effects for complying

teachers estimated from raw data (Aigner, 1973).13

Finally the following assumption is also imposed. It is convenient in our setting, and is

not rejected in the data when combined with Assumption 8 below. This is more than the

minimum requirement to maintain positive correlation between M and W, and imposes a

lower bound on the correlation between W and M .

Assumption 6. (Informational content of W ). π1 ≥ 0.5.

Estimation

The quantities in Proposition 1 are estimated from a sequence of 2SLS regressions using Z

as instrument at selected values of the probability π1 (for an application of the same method

see Angrist et al. 2013). For C teachers, the following equations are considered:

g(Y )Λ = αC
1 + βC

1 Λ + ζC1 ,

g(Y )Ψ(π1) = αC
0 + βC

0 Ψ(π1) + ζC0 , (13)

and the coefficients βC
1 and βC

0 are used to estimate (9) and (10), respectively. For D teachers,

the quantity (8) is obtained by considering the coefficient βD
1 from:

g(Y )ΛZ = αD
1 + βD

1 ΛZ + ζD1 . (14)

Finally, the coefficient βN
0 from:

g(Y )Ψ(π1) (1− Z) = αN
0 + βN

0 Ψ(π1) (1− Z) + ζN0 ,

is used to estimate the quantity (11). We estimate separate regressions by area (Northern

versus Southern regions), controlling for grade and year effects and using sampling probability

weights constructed from the stratification variables in the monitoring experiment (region,

grade enrollment at institution and their interactions).14 Standard errors are obtained using
13Under Assumption 6 below, Assumption 2 doesn’t restrict the range of values of the probability π1.
14All control variables here are categorical. To ease the computational burden, and since the identification

result abstracts from parametric restrictions, we impose that covariates enter linearly the various conditional
expectations. We checked the sensitivity of our conclusions to this restriction by implementing the estimator
proposed by Frölich (2007), which uses non-parametric estimates over cells defined by the cross-tabulation of
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100 bootstrap replications clustering on institution. We will use these as point-wise standard

errors (i.e., standard errors computed for a fixed value of π1) in presenting some of the results.

The quantities in Proposition 2 are estimated from their sample analogues, using sampling

probability weights, and their standard errors computed via bootstrap.15

Finally, the value (1− π0) is estimated by taking the empirical analogue of E[W |Q = 1]

using all monitored classes in the sample. In particular, we impose the same value of (1−π0)

across areas, as the regression of W on X for monitored classes (Q = 1) did not yield

important differences over time, grades and areas. The resulting estimate of π0 is 98%,

implying that 2% of classes are erroneously classified as manipulators.

5 Counting Rotten Apples

Using raw INVALSI data we compute the fraction of honest (φH), complying (φC) and

dishonest teachers (φD) from Proposition 2. Results are presented in Figure 3 by varying

π1 over the interval [0.5, 1], separately for Northern and Southern regions. Shaded areas

represent 95% confidence intervals obtained at each value of π1. The left hand side panels

show that the fraction of honest teachers is almost 100% in the North, and that it uniformly

dominates, at all values of π1, the fraction of honest teachers in the South. Manipulation

appears to be more pronounced for math.

The fraction of C teachers is reported on the right hand side panels of Figure 3. The

incidence of D teachers can be mechanically obtained as a residual term φD = 1− φH − φC ,

and is not presented. The striking feature about manipulation in the North is that all

dishonest teachers are compliers, implying φD ' 0. The important policy conclusion to draw

is that institution monitoring in the North annihilates manipulation. Complying teachers

in the South are roughly half the pool of non-honest (C or D) teachers. Depending on the

value of π1, the size of the non-honest group varies between 11% and 23% for language and

between 15% and 30% for math. All D teachers are located in the South, suggesting that

manipulation is an area-specific phenomenon. The veil of ignorance about the probability

X and Z. In our data, the average sample size across 240 cells is 583 classes. Results from this alternative
estimation strategy are reported in Figures B1-B4 of the on-line Appendix, and are qualitatively similar to
those presented below.

15See Arcones and Giné (1992) and Hahn (1996) for the validity of bootstrap for just identified 2SLS models
with an i.i.d. sample from (Y, W, Z).
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π1 limits our ability to count rotten apples. However, our conclusions on peculiarities of the

two areas are not precluded by this limitation.

The evidence documented poses the question of how score distributions are affected by

such pervasive manipulation. The issue is addressed in Figure 4, where densities of Y1 for D

and C teachers are reported. In light of the information conveyed by Figure 3, only results

for the South are presented. For a grid of values θ in the support of the outcome variable,

we estimate equations (13) and (14) using g(Y ) = 1(Y ≥ θ). The resulting estimates of βC
0

and βD
0 represent cumulative distributions for C and D teachers, respectively, at all values

θ. These are combined using the isotonic regression smoother (Brunk, 1958) to impose non-

decreasing curves, which we then use to plot densities in Figure 4. Shaded areas represent

95% confidence intervals constructed from bootstrap standard errors using 100 replications.16

Teachers manipulate scores to obtain almost perfect results (i.e., 100% correct). This

is consistent with manipulation boosting scores on all items regardless of their difficulty.

Wholesale curbstoning, a strategy that minimizes transcription or grading effort while main-

taining high levels of achievement, has been identified as the primary force behind score

manipulation in Angrist et al. (2017). The distributions presented for math and language

are substantially identical across latent types.

6 Bounds on True Scores

Naive bounds

Bounds on E[g(Y0)] are obtained by varying π1 over the range implied by Assumption 6. For

all admissible values of this probability, we compute (5) by retrieving the relevant quantities

from Proposition 1 and Proposition 2. Imposing Assumption 2, the counterfactual term

E[g(Y0)|D] is bounded from above by (8), yielding the following bounds for a known value
16Density estimation may be carried out using:

g(Y ) =
1

h
K(

a− Y
h

),

where the term on the right hand side is a kernel function with bandwidth h (see Angrist et al. 2013
for a similar idea). The resulting estimates of βC

0 and βD
0 represents densities at a for C and D teachers,

respectively. The approach taken in this section ensures some symmetry with density estimation at the end
of Section 6, and yields qualitatively identical results.
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of π1:

E[g(Y0)] ≤ E[g(Y1)|D]φD + E[g(Y0)|C]φC + E[g(Y0)|H]φH ,

E[g(Y0)] ≥ g(0)φD + E[g(Y0)|C]φC + E[g(Y0)|H]φH ,

where g(0) is the value of g(Y0) at the lowest possible value of the score (Y0 = 0).17 Consis-

tently with the evidence presented in the previous section, we impose φD = 0 in the North

implying that in this area E[g(Y0)] is point identified at all values of π1. Shaded areas, here

and in what follows, represent point-wise 95% confidence intervals (i.e., confidence intervals

computed for a known value of π1) constructed using the bootstrap procedure by Horowitz

and Manski (2000) with 100 replications.

Bounds for average math and language scores are presented in Figure 5, separately for

the two areas, using g(Y0) = Y0. The discussion of results for other functionals of the score

distribution is deferred to the final part of this section. Math scores in the North are centered

at about 61% of correct answers, a value included in the corresponding bounds computed

for the South. Confidence intervals in the South shrink as π1 grows to one, ranging from

[51, 64] for π1 = 0.5 to [56, 63] for π1 = 1. Results are not conclusive about the ranking of

areas with respect to performance in math. However, the bottom panel of Figure 5 tells a

different story for language scores. Scores in the North virtually bound from above the range

of admissible values for scores in the South. The average difference between areas computed

from raw data is reversed once manipulation is taken into account. Confidence intervals for

average scores in the South shrink from [60, 71] when π1 = 0.5 to [65, 71] when π1 = 1.

Behavioral restrictions

Restrictions on the origin of manipulation can be used to tighten naive bounds. The following

assumption is reasonable for the case at hand, implying that dishonest teachers have the

lowest scores. This is in the spirit of Kreider and Pepper (2011), although random assignment

of monitors to institutions adds to the informational content of this assumption as we discuss

further below.

17This choice is rather conservative. The lowest scores are 22% and 30% for math and language, respectively,
in monitored institutions in Sicily, which is the Italian region with the highest presumed manipulation rate.
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Assumption 7. (Origin of manipulation). The following inequality holds for z = 0, 1:

E[g(Y0)|Mz = 0] ≥ E[g(Y0)|Mz = 1].

In potential outcome notation, the assumption is equivalent to stating that D teachers

have the worst scores:

E[g(Y0)|D̄] ≥ E[g(Y0)|D], (15)

and that H teachers have better scores than do D and C teachers:

E[g(Y0)|H] ≥ E[g(Y0)|H̄], (16)

where the notation D̄ and H̄ denotes non-D and non-H teachers, respectively. As we show

in the Appendix, these assumptions are expected to tighten the naive upper bound in our

application. However, they do not necessarily make the naive lower bound more informa-

tive. To ease presentation, we state the bounds implied by Assumption 7 in the following

proposition.

Proposition 4. (Bounds under behavioral restrictions). Under Assumptions 1, 3, 4, 5 and

7, the following bounds are defined for a known value of π1:

E[g(Y0)] ≤ min

{
E[g(Y0)|C]

φC

1− φD

+ E[g(Y0)|H]
φH

1− φD

, E[g(Y0)|H]

}
,

E[g(Y0)] ≥ g(0)
φD

1− φH

+ E[g(Y0)|C]
φC

1− φH

.

Figure 6 shows how naive bounds for average scores are refined by imposing Assumption

7. Results are obtained by taking the intersection with bounds in the previous section.

We find that (15) and (16) unveil geographic differences in math scores and reinforce the

ranking in language scores already pictured by naive bounds. Math scores in the North

now bound from above admissible values for scores in the South. Confidence intervals in

the South change from [51, 58] for π1 = 0.5 to [56, 61] for π1 = 1. Assumption 7 implies a

sizable improvement for the width of bounds compared to the naive case discussed above:

about 46% at π1 = 0.5 and 38% at π1 = 1. Confidence intervals for language scores in the

South are now [60, 68] when π1 = 0.5, and [65, 70] when π1 = 1 (with a 17% and 27% width

improvement, respectively), strengthening geographic differences already evident with naive

bounds.
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A Roy model for manipulation

Assumption 7 yields a partial ordering of E[g(Y0)] across latent groups, and can be motivated

using a Roy model for the decision to manipulate. Write potential outcomes as Y1 = µ1 + ε1

and Y0 = µ0 + ε0, and let γ1Z + τ be the manipulation cost. The latter varies across classes

and areas through the random term τ , and increases for everyone in the presence of external

monitors (γ1 > 0). By letting V ≡ −ε1 + ε0 + τ and γ0 ≡ µ1−µ0, the decision to manipulate

is modeled as:

M = 1(Y1 − Y0 − γ1Z − τ > 0) = 1 (γ0 − γ1Z ≥ V ) , (17)

where V is unobservable and assumed continuous with a strictly increasing distribution func-

tion. In this setting, manipulation occurs if the expected benefit is positive. The assumption

that Z is independent of the triple (ε0, ε1, V ), which in our setting follows from the moni-

toring experiment, together with the latent index equation (17) imply, and are implied, by

Assumption 1 (Vytlacil, 2002). Additive separability between Z and V plays an essential role

in this result. It follows that latent groups in the population are identified from the value of

V :

D : γ0 − γ1 ≥ V, C : γ0 ≥ V ≥ γ0 − γ1, H : γ0 ≤ V.

This representation implies that scores for D, C and H teachers are stochastically ordered if

E[ε0|V = v] is not decreasing in v.18 It therefore follows that Assumption 7 is implied by

non-decreasing class performance in manipulation cost.

The same Roy model also implies the full ordering of E[g(Y0)] across latent groups for any

non-decreasing function g(Y0). In general this is neither implied by, or implies, Assumption 7.

This paves the way for the following additional assumption used in the derivation of bounds.

Assumption 8. (Ranking of scores across latent types). The following inequality holds:

E[g(Y0)|H] ≥ E[g(Y0)|C] ≥ E[g(Y0)|D].

This requirement refines the identification region of the parameter of interest by changing

the upper bound and by restricting the parameter space for π1. To see this, notice that the

first inequality in Assumption 8 implies:
18Joint normality of (ε0, V ) with positive correlation of the two components is also sufficient for the result.
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E[g(Y0)|H]− E[g(Y0)|C] ≥ 0, (18)

for all values of π1. Given that both E [g (Y0|H)] and E [g (Y0|C)] are identified from equations

(10) and (11) up to knowledge of π1, we could use equation 18 to rule out values of π1

yielding a negative difference. Conditional on values of π1 for which (18) is not violated,

the following proposition presents the lower and upper bounds from imposing that scores are

ranked across latent types of teachers. We show in the Appendix that the new upper bound

is more informative than the upper bound derived in Proposition 4.

Proposition 5. (Bounds under ranking of scores). Under Assumptions 1, 3, 4, 5 and 8, the

following bounds are defined for a known value of π1 when E[g(Y0)|H] ≥ E[g(Y0)|C]:

E[g(Y0)] ≤ E[g(Y0)|C](1− φH) + E[g(Y0)|H]φH , (19)

E[g(Y0)] ≥ g(0)φD + E[g(Y0)|C](1− φD). (20)

Bounds for average math and language scores obtained by imposing Assumption 7 and

Assumption 8 are shown in Figure 7. We set π1 ≥ 0.56 and π1 ≥ 0.55 for math and language,

respectively, as these are the critical values ensuring the validity of (18).19 Classes in the

North outperform classes in the South in both math and language. For math, scores in the

South range from [52, 59] when π1 is at its minimum to [56, 60] for π1 = 1 (implying a 20%

improvement on the width of bounds in Proposition 4 when π1 = 1). Similar results are

obtained for language, the width of confidence interval at π1 = 1 now being [65, 68], with an

improvement of about 40%.

The discussion so far has addressed the problem of bounding average scores. The same

methodology can be used to provide bounds for distributions, by replicating the same analysis

using g(Y0) = 1(Y0 ≥ θ). Bounds (19) and (20) define mixtures bracketing the true, unknown

distribution of Y0 for a known value of π1. For a grid of values θ in the support of the outcome

variable, we compute the complement to the cumulative distributions for complying teachers,

E[1(Y0 ≥ θ)|C], and honest teachers, E[1(Y0 ≥ θ)|H]. The isotonic regression smoother is

then applied as in Figure 4, and bounds are computed by combining smoothed distributions
19Figure B5 in the on-line Appendix presents the profile of this difference with respect to π1, together with

confidence intervals obtained by bootstrapping the difference between (10) and (11) which we estimate from
2SLS regressions as explained above.
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using mixture weights φH and φD. Results are presented in Figure 8 for scenarios correspond-

ing to ‘small’ (π1 = 0.95), ‘moderate’ (π1 = 0.90) and ‘large’ (π1 = 0.80) misclassification of

true manipulators.

Results show that the ranking of average scores does not follow from stochastic dominance

across areas. The lower tail of the math distribution is thicker in the South, implying a

larger number of classes with problematic performance compared to the North. However, the

fraction of classes scoring above 60% (approximately the average score for Northerners, as

shown in Figure 7) is comparable across areas, and the upper tail in the South is significantly

thicker than in the North for scores between 70% and 90%. A similar comment applies to

language scores: the fraction of classes scoring above 70%, the average score for Northerners,

is comparable across areas, but the lower tail of the distribution is much ticker in the South.

This conclusion holds up at all values of π1 considered, implying that poor performance in

the South is driven by a large number of classes lagging behind academic standards of the

best classes in the area, which are instead comparable to the North.

Regional rankings

The same analysis can be carried out at a finer geographic level considering the 20 Italian

administrative regions. This disaggregation is important as reflects political divisions re-

sponsible for the administration of local resources, including those assigned to schools. We

start by deriving, for each region, bounds on the incidence of manipulation E[M ]. These are

obtained from (7) by varying π1 over its support. Pragmatically, we impose E[M ] = 0 in

those regions (6 for math and 5 for language, all in the North) where the upper bound is

below 1%. It follows that in these regions raw scores can be treated as true scores (Y = Y0).

Maintaining the assumption that all manipulators in the North are compliers, we compute

bounds on regional scores as in Figure 7. Our correction heavily affects the national ranking

because the effects of manipulation on scores are large, as it is shown in Figure 9. Here

bounds are presented for π1 = 0.9, as the general conclusions are not sensitive to this choice

(see Figures B6 and B7 in the on-line Appendix which report results for π1 = 0.80 and

π1 = 0.95, respectively). Dots in the figure represent average scores computed from raw

data. Continuous lines are confidence intervals for bounds on true scores obtained from our

correction. The vertical axis reports names of all regions, which are ranked clockwise from
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North to South (Lazio is the last Northern region considered in the main analysis). Upper

bounds in the South are dominated by scores for most regions in the North. For example,

Sicily is ranked 3rd according to raw math scores, and at best 15th after our correction.

Moreover, the figure allows to establish at least a partial ordering of Southern regions.

Not only our correction changes the regional gradient in scores, but also affects its re-

lationship with family and school inputs. Figure 2 presents the association between scores

and per-capita income (left panel) and pupil-to-teacher ratio (right panel) across the 20 ad-

ministrative regions of the peninsula. Dots in the figure are average scores obtained from

raw data, which are interpolated to obtain the downward-sloping line for per-capita income

and the upward-sloping line for pupil-to-teacher ratio, respectively. Superimposed are labels

for the regions with lowest (Veneto) and highest (Sicily) incidence of presumed manipulation

according to the indicator W . Results show that regions with low per-capita income and

high pupil-to-teacher ratio have the highest scores, a fact hard to reconcile with evidence

from the international literature. The figure also presents linear fits once manipulation is

taken into account. Adjusted scores, represented with crosses, coincide with regional upper

bounds in Figure 9, thus considering the most conservative scenario for the relationship with

the socio-economic indicators considered.

We find that score manipulation reverses the sign of the correlation. This finding has

important implications for empirical analyses using INVALSI data, as the effects of manip-

ulation when true scores, Y0, are used as dependent variable in the relationship with inputs,

X, is not innocuous as it is in the case of classical measurement error. Although our dis-

cussion was not centered around differences between ∂
∂x
E[Y0|X = x] and ∂

∂x
E[Y |X = x], the

Appendix presents a simple setup showing under which conditions the latter term can be

wrongly signed because of score manipulation.

7 Conclusions and policy implications

Our findings have important policy implications. The first result is that manipulation is

widespread only in some areas of the country (see Figure 3). Scores in the North are re-

ported correctly for at least 98% of classes. The fraction of classes with compromised math

scores in the South is instead at least 15%, but can be almost 30% depending on the assump-
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tions made on the extent of misclassification. Manipulation reflects dishonesty of teachers

(Angrist et al. 2017) which, in the South, is a widespread attitude rather than an oppor-

tunity to cut corners: approximately half of dishonest teachers manipulate scores regardless

of the threat of having an external monitor at institution. Italian teachers work in a highly

regulated public sector, with virtually no risk of termination, and are subject to a pay and

promotion structure that are largely independent of performance. As the available resources

are inadequate to increase the number of monitored classes or to provide sensible monetary

incentives to teachers, INVALSI should improve reliability of the information collected either

by sanctioning dishonest behavior or by enforcing high quality standards in the transcription

process. From 2013/14 multiple versions of the same test are employed with items randomly

ordered, making the mechanical transcription of correct answers into scheda risposta more

difficult. Whether or not this measure has been successful in limiting manipulation is still

an open issue.

Measuring manipulation and purging data from its distortive effects is of primary interest

for the redistribution of resources and the design of education policies. All indicators of

score manipulation are error prone, and the procedure followed by INVALSI is no exception.

We have shown that the INVALSI monitoring experiment can be used to unveil part of

the error. If the properties of the manipulation indicator are independent of how monitors

are assigned to classes, the fraction of monitored classes classified as honest must equal π0.

This probability in our data is approximately 98%, with little variability across grades, areas

and time. As INVALSI flags as suspicious classes with a distribution of answers unusually

concentrated around high scores, 2% of truly exceptional classes may be erroneously deemed

to have manipulated results. The possibility of misclassification should be acknowledged in

the publication of official reports.

Our approach offers an alternative to the correction used by INVALSI until 2013 (Falzetti,

2013). Their method employed the class-level probability of manipulation derived from fuzzy

clustering (as described in Section 2). Average figures in the country were obtained by down-

weighting classes with abnormally high values of the indicator with respect to Veneto, a

region in the North where scores are viewed as the most accurate. Classes with a proba-

bility value below the median for Veneto were given weight one; all remaining classes were

weighted one minus this probability. This adjustment affected marginally the regional gra-
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dient obtained from raw data, as can be seen from official reports published by INVALSI.20

Starting from 2013, this procedure was refined by INVALSI using weights constructed with

a different methodology. Both corrections are not uncontroversial, as they implicitly assume

that manipulators are a random sample from the population (as well as that they can be

detected for sure). Our approach overcomes such limitations.

Learning about the incidence of score manipulation allows to rank Italian regions in terms

of performance at national tests (see Figure 9). If the propensity to manipulate decreases with

true scores, an assumption consistent with the implications of a simple Roy model, bounds on

true scores are tight enough to reverse the evidence from raw data. Classes in the South under-

perform with respect to the rest of Italy, and differences are particularly pronounced in the

most problematic regions. This conclusion aligns well with that from international surveys

like TIMMS and PIRLS. Interestingly, a closer look at score distributions reveals higher

inequality in the South and thick tails at the lower end. Besides, the best classes in the South

have scores comparable to the best classes in the North. It follows that differences in score

distributions between areas do not result from a location shift, and poor average achievement

in the South can be ascribed to a disproportionally large number of low performing classes.

These are the learning environments that should be primary target of policy interventions in

Southern Italy, for example through the National Operative Programme (PON) scheme.

Why is the fact that score manipulation distorts regional rankings of general interest?

Micro-data on student achievement are employed in empirical research to learn about the

most effective determinants in the education production function. Manipulation explains the

puzzling, negative relationship between scores and family and school inputs that researchers

would measure from raw data, as we have shown in Figure 2. The association between

achievement and inputs is reversed by the correction, as better endowed regions are now

characterized by higher scores. Ignoring manipulation, at least for the case of primary schools

considered here, would heavily bias results of empirical analyses using micro data on scores.

This finding has important implications for public policy in funding and accountability.

Our findings raise a number of additional questions, including why teacher manipulation
20We document this in Figure B8 of the on-line Appendix. The correlation between regional ranks before

and after the correction is 99% and 66% for math and language scores, respectively. A variant to this
procedure is also considered by INVALSI, and assigns weight zero to classes with a probability value above
50%. The resulting regional ranking is comparable to that in Figure B8 (results are available upon request).
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is so much more prevalent in the South, and what can be done to enhance accurate assessment

in Italy and elsewhere. Similar concerns have been raised in regard to the consequences of

local proctoring and grading of tests in Britain and New York. For example, local teachers

mark the UK’s Key Stage 1 assessments (given in year 2, usually at age 7). Key Stage 2

assessments given at the end of elementary school (usually at age 11) are locally proctored

with unannounced external monitoring and external marking (grading).21 It’s also worth

asking what are the determinants of low performance of students in the South of Italy,

in light of the ongoing education policies in those areas (Objective 1 regions) eligible to

receive EU Regional Development Funds and EU Social Funds (see, for example Battistin

and Meroni, 2013) and the positive trend in PISA scores of some regions. We hope to answer

these questions in future work.

21See documents and links at http://www.education.gov.uk/sta/assessment, and the evidence of manipu-
lation in Battistin and Neri (2015).
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Table 1: Compliance TypesTable 1: Compliance Types

M1 = 1 M1 = 0

M0 = 1 Dishonest (D) Complying (C)

M0 = 0 Non-Complying Dishonest (N) Honest (H)

Note. This table defines the four compliance types implied by the monitoring experiment. Types refer to

teacher behavior. See Section 3 for details.

Table 2: Estimates of Average Counterfactual Scores by Compliance Types and
Percent of Honest and Dishonest Teachers

North South

Complying Dishonest Honest Complying Dishonest Honest

(1) (2) (3) (4) (5) (6)

Panel A. Math

E[Y1] 90.469 - - 91.866 90.423 -

(0.210) - - (0.483) (0.090) -

E[Y0] 27.226 - 62.156 24.194 - 63.133

(3.895) - (0.071) (4.194) - (0.140)

φ 0.020 - 0.980 0.072 0.085 0.842

(0.000) - (0.000) (0.004) (0.003) (0.002)

Panel B. Language

E[Y1] 91.249 - - 92.373 91.201 -

(0.149) - - (0.417) (0.073) -

E[Y0] 57.846 - 71.480 39.176 - 70.429

(2.424) - (0.056) (4.087) - (0.106)

φ 0.023 - 0.977 0.051 0.072 0.876

(0.001) - (0.001) (0.003) (0.003) (0.002)

Note. This table shows estimates of average counterfactual scores by compliance types and percent of honest

and dishonest teachers. All terms are obtained from 2SLS regressions similar to those described in Section 3,

assuming that classes with manipulated scores are correctly classified.
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Figure 1: Raw Scores and Manipulation Rates

Note. These figures are obtained from INVALSI data pooling second and fifth grade students 
for the school years 2009-2011.
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Figure 2: Raw and Adjusted Scores against School and Family Inputs
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Note. The figure plots regional math and language scores against regional per-capita income (left panel)

and pupil to teacher ratio (right panel). Points with • refer to raw scores and points with x refer to

adjusted scores. Labeled in the figure are regions with the lowest (Veneto) and highest (Sicily) incidence

of presumed manipulation. Data on per-capita income are obtained from Istat, Conti economici regionali

2012. Data on the pupil to teacher ratio are from the Ministry of Education, La scuola statale - sintesi

dei dati 2009-2010.
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Figure 3: Percentages of Honest and Complying Teachers

Note. This figure reports the percentage of honest (ϕH) and complying (ϕC) teachers. Results are 
presented for the interval π1 ≥ 0.5, separately for the North (continuous line) and the South 
(dashed line). Shaded areas are 95% bootstrap confidence intervals obtained at each value of π1.
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Figure 4: Manipulated Score Distributions by Compliance Type

Note. This figure shows the score distribution for math and language under manipulation for 
dishonest (left hand side panels) and complying (right hand side panels) teachers. Only classes 
in the South are considered. Shaded areas are bootstrap 95% confidence intervals (see Section 4 
for details).
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Figure 5: Naive Bounds on E [Y0]

Note. This figure shows naive bounds for average math and language scores, separately for 
North and South, for π1 ≥ 0.5. We impose ϕD = 0 in the North. Shaded areas are 95% 
confidence intervals at each value of π1 using the procedure by Horowitz and Manski (2000).
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Figure 6: Bounds on E [Y0] using Behavioral Restrictions
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Note. This figure shows bounds for average math and language scores when Assumption 7 is imposed,

separately for North and South, for π1 ≥ 0.5. We impose ϕD = 0 in the North. Shaded areas are 95%

confidence intervals at each value of π1 using the procedure by Horowitz and Manski (2000).
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Figure 7: Bounds on E [Y0] using Full Ranking of Types
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Note. This figure shows bounds for average math and language scores when Assumption 7 and Assump-

tion 8 are imposed, separately for North and South, for π1 ≥ 0.5. We impose ϕD = 0 in the North.

Shaded areas are 95% confidence intervals at each value of π1 using the procedure by Horowitz and

Manski (2000).
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Figure 8: Bounds on Score Distributions
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Note. This figure shows bounds on math and language scores distributions when Assumption 7 and

Assumption 8 are imposed, separately for North and South, at selected values of π1. We impose ϕD = 0

in the North. Shaded areas are 95% confidence intervals using the preocedure by Horowitz and Manski

(2000).
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Figure 9: Regional Rankings using Raw and Adjusted Scores
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Note. This figure shows average scores from raw data and bounds on the average of true scores, the

latter being obtained under Assumption 7 and Assumption 8 when π1 = 0.9 (see Section 6 for details).
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Appendix

Relationship between scores and socio-economic characteristics

We use a simple model in an effort to explain how manipulation may reverse the relationship

between scores and socio-economic indicators (see the discussion at the end of Section 6).

This is motivated by results in Figure 2. Assume the following relationship between true

scores, Y0, and school inputs, X:

E[Y0|X = x, g] = α0g + β0x,

where E[X] = 0 and g = C,D,H. Assume β0 ≥ 0 without loss of generality, so that inputs

above the average are associated with better scores. Assume also:

α0D ' α0C ≡ α0H̄ < α0H ,

implying that, at common values X = x, scores for D and C teachers are approximately equal

and below scores for H teachers. This setting is consistent with Assumption 8. Manipulation

takes the form:
E[Y1|X = x, g] = α1 ' 100,

and follows from nearly perfect curbstoning (see Figure 4; for a discussion on the anatomy

of manipulation see Angrist et al., 2017).

Consider institutions without monitors (Z = 0), where all complying teachers manipulate.

The following quantities are defined (the conditioning on Z = 0 is left implicit throughout):

E[Y0|X = x] = (α0H + β0x)φH(x) + (α0H̄ + β0x)[1− φH(x)],

E[Y |X = x] = (α0H + β0x)φH(x) + α1[1− φH(x)],

where φH(x) is the fraction of H teachers at X = x. The expressions above imply:

E[Y |X = x] = E[Y0|X = x] + α1[1− φH(x)]− (α0H̄ + β0x)[1− φH(x)].

and the following expression for the covariance between Y and X:

Cov[Y,X] = Cov[Y0, X]− (α1 − α0H̄)Cov[φ(X), X]− β0

{
V ar[X]− E[X2φH(X)]

}
.

Dividing both sides by V ar(X) we obtain:
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Cov[Y,X]

V ar[X]
=
Cov[Y0, X]

V ar[X]
− (α1 − α0H̄)δH − β0 {1− κH} ,

where κH = E[X2φH(X)]/V ar(X) ∈ (0, 1) and δH = Cov(φH(X), X)/V ar(X). This expres-

sion relates the slope of the linear regression of Y on X, on the left hand side (see Figure 2),

to the slope of the linear regression of Y0 on X, on the right hand side. Manipulation boosts

scores, implying α1 − α0H̄ ≥ 0. Notice that, if manipulation is nearly perfect curbstoning,

the term α1−α0H̄ can be fairly large. If δH ≥ 0, an assumption likely to hold in our data, we

have Cov[Y0, X] ≥ 0 and that the second and third terms on the right hand side of the last

expression are negative. This may yield sign reversion, for example if the gradient of φH(X),

amplified by (α1 − α0H̄), exceeds the gradient of Y0.

Now consider institutions with monitors (Z = 1), where all complying teachers transcribe

scores honestly. The quantity E[Y0|X = x] coincides with that for unmonitored (Z = 0)

institutions. By denoting with φC(x) the fraction of C teachers at X = x, we have (the

conditioning on Z = 1 is left implicit throughout):

E[Y |X = x] = α1 + (α0H − α1)φH(x) + (α0H̄ − α1)φC(x) + β0x [φH(x) + φC(x)] ,

which, by re-arranging terms, implies:

Cov[Y,X]

V ar [X]
=
Cov[Y0, X]

V ar [X]
− (α1 − α0H̄) δ̃H − β0 {1− κ̃H} ,

where κ̃H = E [X2 {φH(X) + φC(X)}] /V ar(X) ∈ (0, 1) and δ̃H = Cov [{φH(X) + φC(X)} , X] /V ar(X).

If δ̃H ≥ 0, sign reversion can follows from arguments similar to those discussed above.

Proofs of Propositions

Proposition 1

Assumption 5 implies:

E[W (1−Q)|Z = z] = (1− π0)E[1−Q|Z = z] + (π0 + π1 − 1)E[M |Z = z],

E[g(Y )W (1−Q)|Z = z] = (1− π0)E[g(Y )(1−Q)|Z = z] + (π0 + π1 − 1)E[g(Y )M |Z = z].
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These expressions can be solved for the unknowns (i.e., quantities that depend on M) and

substituted into equations (1)-(4). Start from:

E[M |Z = z] =
E[Λ|Z = z]

(π0 + π1 − 1)
,

E[g(Y )M |Z = z] =
E[g(Y )Λ|Z = z]

(π0 + π1 − 1)
.

It follows that:

E[g(Y1)|D] =
E[g(Y )Λ|Z = 1]

E[Λ|Z = 1]
.

The ratio of the quantities:

E[M |Z = 1]− E[M |Z = 0] =
E[Λ|Z = 1]− E[Λ|Z = 0]

(π0 + π1 − 1)
,

E[g(Y )M |Z = 1]− E[g(Y )M |Z = 0] =
E[g(Y )Λ|Z = 1]− E[g(Y )Λ|Z = 0]

(π0 + π1 − 1)
,

implies:

E[g(Y1)|C] =
E[g(Y )Λ|Z = 1]− E[g(Y )Λ|Z = 0]

E[Λ|Z = 1]− E[Λ|Z = 0]
.

Now consider:

E[g(Y )(1−M)|Z = z] = E

[
g(Y )

{
1− Λ

(π0 + π1 − 1)

}
|Z = z

]
,

and:

E[(1−M)|Z = z] = E

[
1− Λ

(π0 + π1 − 1)
|Z = z

]
.

Since we can write:

1− Λ

(π0 + π1 − 1)
=

Ψ(π1)

(π0 + π1 − 1)
,

it is:

E[g(Y0)|C] =
E[g(Y )Ψ(π1)|Z = 1]− E[g(Y )Ψ(π1)|Z = 0]

E[Ψ(π1)|Z = 1]− E[Ψ(π1)|Z = 0]
.

The same calculations also imply:

E[g(Y0)|H] =
E[g(Y )Ψ(π1)|Z = 0]

E[Ψ(π1)|Z = 0]
.
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Proposition 2

Using the representations in the proof of Proposition 1 we can write:

φD = E[M |Z = 1] =
E[Λ|Z = 1]

(π0 + π1 − 1)
,

1− φH = E[M |Z = 0] =
E[Λ|Z = 0]

(π0 + π1 − 1)
.

Proposition 3

Under Assumptions 3, 4 and 5 we have:

E[W |Q = 1, Z = 1] = (1− π0) + (π0 + π1 − 1)E[M |Q = 1, Z = 1] = 1− π0.

Proposition 4

Assume that π1 is known. Inequality (15) implies:

E[g(Y0)|D] ≤ E[g(Y0)|C]
φC

1− φD

+ E[g(Y0)|H]
φH

1− φD

,

which when substituted into (5) yields:

E[g(Y0)] ≤ E[g(Y0)|C]
φC

1− φD

+ E[g(Y0)|H]
φH

1− φD

.

Inequality (16) implies:

E[g(Y0)|D] ≤ E[g(Y0)|H]
(1− φH)

φD

− E[g(Y0)|C]
φC

φD

.

Substituting into (5) we have:

E[g(Y0)] ≤ E[g(Y0)|H](1− φH) + E[g(Y0)|H]φH = E[g(Y0)|H].

The two inequalities derived, taken jointly, imply:

E[g(Y0)] ≤ min

{
E[g(Y0)|C]

φC

1− φD

+ E[g(Y0)|H]
φH

1− φD

, E[g(Y0)|H]

}
,

which is the expression for the upper bound. The naive upper bound can be written as:

E[g(Y1)|D]φD + E[g(Y0)|C]φC + E[g(Y0}|H]φH . (21)

If E[g(Y1)|D] is larger than E[g(Y0)|C] and E[g(Y0)|H], as it is likely to be the case in our

application, the new upper bound is more informative than the naive upper bound.
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Inequality (16) acts on the lower bound by imposing the following restriction:

E[g(Y0)] ≥ E[g(Y0)|D]
φD

1− φH

+ E[g(Y0)|C]
φC

1− φH

.

The expression for the lower bound follows by bounding E[g(Y0)|D] from below:

E[g(Y0)] ≥ g(0)
φD

1− φH

+ E[g(Y0)|C]
φC

1− φH

.

The naive lower bound can be written as:

g(0)φD + E[g(Y0)|C]φC + E[g(Y0)|H]φH ,

which can be smaller or larger than the bound in this proposition.

Proposition 5

Assume that π1 is known. The second inequality in Assumption 8 bounds from above the

counterfactual term E[g(Y0)|D]. If substituted into (5), this yields:

E[g(Y0)] ≤ E[g(Y0)|C](1− φH) + E[g(Y0)|H]φH ,

which is the expression for the upper bound. Notice that the ranking across types implies

that the difference between upper bounds from Proposition 5 and Proposition 4 is equal to:

{E[g(Y0|H]− E[g(Y0)|C]} φHφD

1− φD

≥ 0,

implying that the upper bound here is tighter than the upper bound in Proposition 4.

As for the lower bound, the first inequality in Assumption 8 implies:

E[g(Y0)] ≥ E[g(Y0)|D]φD + E[g(Y0)|C](1− φD) ≥ g(0)φD + E[g(Y0)|C](1− φD).

This defines a new lower bound on (5). Remember that the naive lower bound is: g(0)φD +

E[g(Y0)|C]φC + E[g(Y0)|H]φH . Therefore the difference between the latter and the one

obtained imposing Assumption 8 is:

E[g(Y0)|C](φC − φC − φH) + E[g(Y0)|H]φH = (E[g(Y0)|H]− E[g(Y0)|C])φH

which is always positive.
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Table A1: Descriptive StatisticsTable 4

Italy North South

(1) (2) (3)

Panel A. Math

Raw score 64.042 62.419 66.747

(13.027) (10.628) (15.892)

Presumed manipulators 0.066 0.020 0.142

(0.248) (0.141) (0.349)

Monitored classes 0.069 0.069 0.069

(0.253) (0.253) (0.253)

Panel B. Language

Raw score 72.077 71.784 72.565

(10.172) (8.730) (12.187)

Presumed manipulators 0.056 0.023 0.112

(0.231) (0.150) (0.316)

Monitored classes 0.069 0.069 0.069

(0.253) (0.253) (0.253)

Panel C. Other covariates

Monitored institutions 0.238 0.247 0.222

(0.426) (0.431) (0.416)

Second grade 0.482 0.489 0.471

(0.500) (0.500) (0.499)

2009 survey 0.343 0.341 0.347

(0.475) (0.474) (0.476)

2010 survey 0.329 0.330 0.329

(0.470) (0.470) (0.470)

2011 survey 0.327 0.329 0.324

(0.469) (0.470) (0.468)

Number of classes 140,010 87,498 52,512

Note. This table presents descriptive statistics from INVALSI data pooling second and �fth

grade students for the years 2009-2011. Standard deviations in parentheses.
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Table A2: Estimates of Average Counterfactual Scores by Compliance Types and Percentages
of Honest, Complying and Dishonest Teachers

Table 1: Compliance Types

M1 = 1 M1 = 0

M0 = 1 Dishonest (D) Complying (C)

M0 = 0 Non-Complying Dishonest (N) Honest (H)

Note. This table defines the four compliance types implied by the monitoring experiment. Types refer to

teacher behavior. See Section 3 for details.

Table 2: Estimates of Average Counterfactual Scores by Compliance Types and
Percentages of Honest, Complying and Dishonest Teachers

North South

Complying Dishonest Honest Complying Dishonest Honest

(1) (2) (3) (4) (5) (6)

Panel A. Math

E[Y1] 90.469 - - 91.866 90.423 -

(0.210) - - (0.483) (0.090) -

E[Y0] 27.226 - 62.156 24.194 - 63.133

(3.895) - (0.071) (4.194) - (0.140)

φ 0.020 - 0.980 0.072 0.085 0.842

(0.000) - (0.000) (0.004) (0.003) (0.002)

Panel B. Language

E[Y1] 91.249 - - 92.373 91.201 -

(0.149) - - (0.417) (0.073) -

E[Y0] 57.846 - 71.480 39.176 - 70.429

(2.424) - (0.056) (4.087) - (0.106)

φ 0.023 - 0.977 0.051 0.072 0.876

(0.001) - (0.001) (0.003) (0.003) (0.002)

Note. This table shows estimates of average counterfactual scores by compliance types and percentages of honest,

complying and dishonest teachers. All terms are obtained from 2SLS regressions similar to those described in

Section 3, assuming that classes with manipulated scores are correctly classified.
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Additional Materials (for on-line publication)

On-line Appendix
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Figure B1: Percentage of Honest and Complying TeachersFigure 1: Percentage of Honest and Complying Teachers
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Note. Estimation results from non-parametric IV estimation (Frölich 2007). The figure

reports the percentage of honest (ϕH) and complying (ϕC) teachers. Results are presented

for the interval π1 ≥ 0.5, separately for the North (continuous line) and the South (dashed

line). Shaded areas are 95% bootstrap confidence intervals obtained at each value of π1.
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Figure B2: Naive Bounds on E [Y0]Figure 2: Naive Bounds on E[Y0]
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Note. Estimation results from non-parametric IV estimation (Frölich 2007). The figure shows

naive bounds for π1 ≥ 0.5. We impose ϕD = 0 in the North. Shaded areas are 95% confidence

intervals at each value of π1 using the procedure by Horowitz and Manski (2000).
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Figure B3: Bounds on E [Y0] using Behavioral Restrictions
Figure 3: Bounds on E[Y0] using Behavioral Restrictions
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Note. The figure shows bounds for average math and language scores when Assumption 7 is

imposed, separately for North and South, for π1 ≥ 0.5. We impose φD = 0 in the North. Shaded

areas are 95% confidence intervals at each value of π1 using the procedure by Horowitz and Manski

(2000).
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Figure B4: Bounds on E [Y0] using Full Ranking of Types
Figure 4: Bounds on E[Y0] using Full Ranking of Types
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Note. The figure shows bounds for average math and language scores when Assumption 7 and

Assumption 8 are imposed, separately for North and South, for π1 ≥ 0.5. We impose φD = 0 in

the North. Shaded areas are 95% confidence intervals at each value of π1 using the procedure by

Horowitz and Manski (2000).
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Figure B5: Confidence Intervals for E [Y0|H]− E [Y0|C]

Note.  This figure reports E[Y0|H]-E[Y0|C] at different values of π1. Shaded areas represent 
95% boostrap confidence intervals.
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Figure B6: Regional Rankings using Raw and Adjusted Scores for π1 = 0.8
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Note. This figure shows average scores from raw data and bounds on the average of true scores, the

latter being obtained under Assumption 7 and Assumption 8 when π1 = 0.8 (see Section 6 for details).
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Figure B7: Regional Rankings using Raw and Adjusted Scores for π1 = 0.95
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Note. This figure shows average scores from raw data and bounds on the average of true scores, the

latter being obtained under Assumption 7 and Assumption 8 when π1 = 0.95 (see Section 6 for details).
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Figure B8: Adjusted Scores using the INVALSI Methodology

Note. These figures are obtained from INVALSI data pooling second and fifth grade students for the school years 2009-2011,

for details about correction see Falzetti (2013).
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