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Abstract

We provide evidence that modelling both fat tails and stochastic volatility are impor-
tant in improving in-sample fit and out-of-sample forecasting performance. To show this,
we construct a VAR model where the orthogonalised shocks feature Student’s t distribu-
tion as well as time-varying variance. We estimate the model using US data on industrial
production growth, inflation, interest rates and stock returns. In terms of in-sample fit,
the VAR model featuring both stochastic volatility and t-distributed disturbances out-
performs restricted alternatives that feature either attributes. The VAR model with t

disturbances results in density forecasts for industrial production and stock returns that
are superior to alternatives that assume Gaussianity, and this difference is especially stark
over the recent Great Recession. Further international evidence confirms that account-
ing for both stochastic volatility and Student’s t-distributed disturbances may lead to
improved forecast accuracy.
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1 Introduction

Could empirical macroeconomic models with a more realistic shock distribution be able to
better predict economic downturns? Since the Great Recession and during the ensuing uncer-
tainty surrounding the political and economic environment, both academic and policy circles
have paid increasing attention to fat tail events. Many argue that recent events could hardly
be explained or predicted by models that are based on a Gaussian shock structure, mainly
because these models assign virtually zero probability to the macroeconomic outcomes that
we have recently observed.1 This has been recognised by recent efforts of the DSGE litera-
ture including Curdia, del Negro, and Greenwald (2014) and Chib and Ramamurthy (2014)
who found evidence that models with a multivariate t-distributed shock structure are strongly
favoured by the data over standard Gaussian models.

This paper contributes to the literature by empirically investigating the in-sample fit and
out-of-sample forecasting performance of a VAR model incorporated with Student’s t errors
(Student, 1908) and stochastic volatility (TVARSVOL). Building on the previous work on
univariate (Geweke, 1992, 1993, 1994) and multivariate (Ni and Sun, 2005) models with Stu-
dent’s t-distributed shocks, as well as work on the DSGE literature (Fernandez-Villaverde
and Rubio-Ramirez, 2007; Justiniano and Primiceri, 2008; Liu, Waggoner, and Zha, 2011) on
stochastic volatility of the error structure, we provide a Gibbs sampling algorithm to estimate
the TVARSVOL model. Moreover, we apply the particle filter to compute the marginal like-
lihood, and compare the in-sample fit and the out-of-sample forecasting performance of this
model against three other models, namely, a linear Gaussian BVAR model (BVAR), a VAR
model with Student’s t error (TVAR) and a VAR model with stochastic volatility (VARSVOL).

We show that incorporating both fat tails and stochastic volatility can be important in
improving in-sample fit and out-of-sample forecasting performance. Using monthly data on
industrial production growth, inflation rate, short-term interest rate and the SP500 return
for the US, the TVARSVOL model outperforms the other three models in terms of in-sample
fit. When it comes to out-of-sample forecasting, we present international evidence that VAR
models with Student’s t-distributed shocks result in density forecasts for industrial production
and stock returns being superior to alternatives that assume Normality.

Our results have at least two important implications when interpreting historical data.
First, the structural shift in industrial production volatility in the early 1980s, often referred
to as the Great Moderation, may be overestimated when the VAR model does not account
for Student’s t-disturbances. Second, the Student’s t assumption appears especially important
over the 2008 and 2009 period. Forecast densities for industrial production generated from
VARs with Gaussian disturbances assign a negligible probability to the collapse of industrial
production observed in late 2008. In contrast, when Student’s t shocks are incorporated, the
left tail of the forecast density includes the actual outcome.

Our paper is related to the DSGE analysis of Curdia, del Negro, and Greenwald (2014) who
1These issues have been discussed in more detail by Mishkin (2011); Elliott and Timmermann (2013); Ng

and Wright (2013) amongst many others.
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show that by solely focusing on fat-tails and ignoring lower-frequency changes in the volatility
of shocks (as in Ascari, Fagiolo, and Roventini (2015)) tends to bias the results towards finding
evidence in favour of fat tails. Our work is also related to Clark and Ravazzolo (2015) who work
with (V)AR models using quarterly real-time data (GDP growth rate, inflation rate, unemploy-
ment rate and short-term interest rate) of the US. They find empirical evidence that models
with stochastic volatility increase the accuracy of both point and density forecasts relative
to models assuming homoscedasticity. Our paper considers monthly data-sets incorporating
with both real and financial variables from the US and three other developed countries, and
provide evidence that modelling fat-tailed errors on top of stochastic volatility is important in
improving forecasting performance.

The structure of the paper is as follows. Section 2 provides a description of the TVARSVOL
model together with the priors and the conditional posteriors and the computation of the
marginal likelihood. This section also describes the restricted models considered in our study.
Section 3 presents the posterior estimates, compares the models based on in-sample fit and
forecasting performance, and provides sensitivity analysis. Section 4 provides further interna-
tional evidence on the forecasting performance of the different models estimated on data from
Canada, Germany and the UK. Section 5 concludes.

2 The Model

The model presented in this section is a multivariate time series model with both time varying
variance covariance matrix and Student-t distributed shocks in each of the equations (denoted
by TVARSVOL). Stochastic volatility is meant to capture possible heteroscedasticity of the
shocks and potential nonlinearities in the dynamic relationships of the model variables, which
are related to the low-frequency changes in the volatility.2 Introducing Student’s t-distribution
in the shock structure is meant to capture high-frequency changes in volatility that are often of
extreme magnitudes, hence potentially providing an effective treatment of outliers and extreme
events.3 By allowing for stochastic volatility and t-distributed shocks, we let the data determine
whether time variation in the model structure derives from rare but potentially transient events,
or from persistent shifts in the volatility regime.

Consider a simple VAR model:

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut t = 1, . . . , T, (2.1)

where yt is an n × 1 vector of observed endogenous variables, and c is an n × 1 vector of
constants; Bi, i = 1, . . . , p are n × n matrices of coefficients; ut are heteroscedastic shocks
associated with the VAR equations. In particular, we assume that the covariance matrix of ut

2See Uhlig (1997) and Primiceri (2005) amongst many others.
3In an important paper, Jacquier, Polson, and Rossi (2004) provides a detailed analysis of this issue in a

univariate framework. Also see Gerlach, Carter, and Kohn (2000) for a rich discussion of outliers in a Bayesian
context, and Bauwens, Koop, Korobilis, and Rombouts (2015) for exploring the role of structural changes in
affecting Bayesian forecasts.
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is defined as:
cov(ut) = Σt = A−1HtA

−1′
, (2.2)

where A is a lower triangular matrix and Ht = diag
(
σ2

1,t
1
λ1,t

, σ2
2,t

1
λ2,t

, ..., σ2
n,t

1
λn,t

)
with:

ln σk,t = ln σk,t−1 + sk,t, var(sk,t) = gk, (2.3)

for k = 1, 2, ..., n. In line with Geweke (1993), the weights [λ1,t, λ2,t, ..., λn,t] are indexed by time
t because they are to capture any high-frequency movements in volatility over time, as opposed
to the low-frequency movements in volatility which are in turn captured by [σ1,t, σ2,t, ..., σn,t].
As shown by Geweke (1993), assuming a Gamma prior for λk,t of the form p (λk) =

T∏
t=1

p (λk,t) =
T∏
t=1

Γ̃ (1, vλ,k) leads to a scale mixture of normals for the orthogonal residuals ε̃t = Aut where

ε̃t = {ε̃1,t, ε̃2,t, ..ε̃n,t} and cov(ε̃t) = Ht. Note that Γ̃ (a, b) denotes a Gamma density with
mean a and degrees of freedom b.4 The above formulation is equivalent to a specification that
assumes Student’s t-distribution for ε̃k,t with vλ,k degrees of freedom. Our specification allows
the variance of this density to change over time via equation 2.3.

There are two noteworthy things about the BVAR model. First, as discussed earlier, it
allows for both low and high frequency movements in volatility through the stochastic volatility
σk,t and the weights λk,t respectively. Second, note that these features apply to the orthogonal
residuals Aut. This assumption allows the degrees of freedom for the Student’s t-distribution
to be independent across equations and simplifies the estimation algorithm.5 However, the
assumption also implies dependence on the structure of the Amatrix. We show in the sensitivity
analysis that the ordering of the key variables does not have an impact on the main results.

2.1 Estimation and Model Selection

In this section, we describe the prior distributions and provide details of the MCMC algo-
rithm used to estimate the model described above. We also introduce the alternative models
considered in this study, and discuss the computation of the marginal likelihood for model
comparison.

2.1.1 Priors

To define priors for the VAR dynamic coefficients, we follow Banbura, Giannone, and Reichlin
(2010) in implementing the dummy observation approach (Doan, Litterman, and Sims, 1983;

4The probability density function for the Gamma distribution is:

Γ̃ (µ, v) =


[( 2µ

ν

)ν/2 Γ
(
ν
2
)]−1

y
ν−2

2 exp
(
− yν2µ

)
if 0 < y <∞

0 otherwise

Under this parametrisation, the Γ̃ (v0, 2) distribution is an exponential distribution with mean v0.
5Chahad and Ferroni (2014) present a VAR model that incorporates a multivariate t-density for the error

term.
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Sims and Zha, 1998).6 We follow Geweke (1993) in setting a hierarchical prior on the parameter
controlling the degree of freedom of the Student’s t distributions vλ,k and the weighting vector
λk,t, for k = 1, ..., n:

p (vλ,k) ∼ Γ̃ (v0, 2) (2.4)

p (λk,t) ∼ Γ̃ (1, vλ,k) , (2.5)

In our TVARSVOL model, the prior mean v0 is assumed to equal 20. This allocates a sub-
stantial prior weight to fat-tailed distributions as well as distributions that are approximately
Normal. We show in the sensitivity analysis below that a higher value for v0 produces similar
results for key parameters. The rest of the priors are relatively standard. We follow Cogley
and Sargent (2005) in setting the prior on the variance of the shocks to the volatility transition
equation 2.3, and propose an inverse-gamma distribution, p (gk) ∼ IG(D0, T0), where T0 = 1
and D0 = 0.0001 are the degrees of freedom and scale parameter, respectively. The prior for
the off-diagonal elements A is p(A) ∼ N (0, 1000).

2.1.2 The Gibbs Sampler and Computing the Marginal Likelihood

The Gibbs algorithm for the TVARSVOL model cycles through six conditional posterior distri-
butions. The details of each conditional posterior density are found Section A of the Appendix.

To compute the marginal likelihood, re-consider the main equations of the estimated model
given by:

Yt = c+
p∑
j=1

BjYt−j + Σ1/2
t εt, (2.6)

Σt = A−1HtA
−1′ (2.7)

Ht = diag

(
σ2

1,t
1
λ1,t

, σ2
2,t

1
λ2,t

, ..., σ2
n,t

1
λn,t

)
. (2.8)

where εt ∼ N(0, In) and In is an identity matrix.
Following Chib (1995), the estimate of the marginal likelihood is based on the following

identity:

ln Λ (Yt) = lnF
(
Yt|B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
+ ln Υ

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
− ln Θ

(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
, (2.9)

where g, λ and vλ respectively represent vectors of gk, λk,t and vλ,k, k = 1, ..., n, t = 1, ..., T , the
superscriptˆdenotes the posterior mean, F (·) denotes the likelihood function, Υ(·) is the joint
prior density, Θ(·) is the posterior distribution and Ξ denotes the state variables in the model.
Equation 2.9 is simply the Bayes equation in logs re-arranged with the marginal likelihood

6More specifically, we assume Normal priors on the parameters controlling the dynamics of the VAR. One
hyper parameter controls the overall tightness of the prior on the VAR coefficients which we set τ = 0.1 following
Banbura, Giannone, and Reichlin (2010). Further details can found in our working paper Chiu, Mumtaz, and
Pinter (2015).
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Λ (Yt) on the left hand side. Note that this equation holds at any value of the parameters, but
is usually evaluated at high density points like the posterior mean. The joint prior density is
straightforward to evaluate. The computation of the likelihood and posterior density is more
involved and described in Section B of the Appendix.

2.1.3 Data

We use the data-set of Stock andWatson (2012) and focus on three key macroeconomic variables
for the US: industrial production, inflation and the interest rate. The choice of these variables
is relatively standard and follows the literature (Primiceri (2005); Banbura, Giannone, and
Reichlin (2010); D’Agostino, Gambetti, and Giannone (2013)) that used similar variables when
estimating small-scale forecasting models. In addition, we add the SP500 stock market return
index. This is motivated by the increasing evidence on the relevance of financial variables for
improving macroeconomic forecasts.7

The data is at monthly frequency, spanning the period from January 1959 to September
2011. As a measure of output we use industrial production (Total Index). Inflation is calculated
based on the personal consumption expenditure (chain-type) price index. Interest rate is
measured as the 3-month Treasury Bill (secondary market) rate. Industrial production growth,
inflation and stock returns are calculated by taking the first difference of the logarithm of the
series. The primary data source for all the four variables is the St. Louis Fed. We use 13 lags
in our estimation (Banbura, Giannone, and Reichlin (2010)), but we also explore shorter lag
length specification as a robustness check.

2.2 Alternative Models

We consider three restricted versions of the VAR model with stochastic volatility and fat tails.
First, we assume that the orthogonalised shocks are Gaussian and consider a VAR model with
stochastic volatility only. This model (VARSVOL) is defined as

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut, (2.10)

where
cov(ut) = Σt = A−1HtA

−1′ (2.11)

Ht = diag
(
σ2

1,t, σ
2
2,t, ..σ

2
n,t

)
, (2.12)

where ln σ2
k,t follows the process defined in equation 2.3. In contrast, the second restricted model

does not incorporate stochastic volatility but only assumes that the orthogonalised residuals
follow an independent t distribution (TVAR). This model, therefore, is defined as:

Yt = c+B1yt−1 + · · ·+Bpyt−p + ut (2.13)
7See Stock and Watson (2003) and numerous subsequent papers including Koop and Korobilis (2014) and

the references herein.
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Figure 1: The posterior density of degrees of freedom in the TVARSVOL and in the TVAR
models
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Notes: The red lines (blue bars) represent the frequency distribution of the DOF parameters from the TVAR (TVARSVOL) model.

where
cov(ut) = Σt = A−1HtA

−1′ (2.14)

Ht = diag

(
σ2

1
1
λ1,t

, σ2
2

1
λ2,t

, ..σ2
n

1
λn,t

)
. (2.15)

The final model considered is a standard linear Gaussian VAR model (BVAR). The estimation
of these restricted models is carried out via Gibbs sampling using a simplification of the algo-
rithm used in our TVARSVOL model. The marginal likelihood for each of these alternative
models is computed via the Chib (1995) algorithm.

3 Empirical Results

In this section we present results on the relative performance of each of the empirical mod-
els, both in terms of in-sample fit and recursive forecast performance. We adopt a ’recursive
estimation scheme’: our first estimation covers data up to January 1970, with subsequent esti-
mations adding one more month’s data each time. In total, there are 490 recursive estimation
for each of the four models under study. Before moving to model comparison, we present some
of the key parameter estimates of the TVARSVOL model over the full sample and compare
them with some of the restricted models.
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3.1 A Summary of the Posterior

3.1.1 Degrees of Freedom

Figure 1 plots the estimated marginal posterior density of the degrees of freedom (DOF) from
the TVARSVOL. Consider the estimates for the industrial production growth. There is strong
evidence that the orthogonalised shock associated with this variable is characterised by fat tails
with the posterior density centred around 4 or 5 DOF. Similarly, the estimated posterior for
the DOF associated with the orthogonalised residuals of the SP500 equation points towards
non-normality. In contrast, the estimated posteriors for inflation and the T-Bill rate equations
indicate DOF that are substantially higher. This suggests that the usual normality assumption
is appropriate for the residuals associated with these equations. We show in the sensitivity
analysis below that these results are robust to changing the ordering of the variables in the
VAR.

The red lines in Figure 1 show the posterior density of the DOF from the TVAR model.
It is interesting to note that when the VAR model does not incorporate stochastic volatility,
the estimated posterior densities indicate stronger evidence in favour of fat tails for all four
residuals. This confirms the argument in Curdia, del Negro, and Greenwald (2014) that ignoring
low frequency movements in volatility may bias the estimates of DOF downwards, thereby
overestimating the fatness of tails in the shock distributions.

3.1.2 Stochastic Volatility

Figure 2 plots the estimated stochastic volatility from the TVARSVOL model and compares
it with the estimate obtained from the VARSVOL model. Consider the top left panel of the
figure. The estimated volatility of the IP shock from the TVARSVOL model is estimated to be
high until the early 1980s. It then declines smoothly and by 1985 is substantially lower than
its pre-1985 average. There is some evidence of an increase in this volatility towards the end
of the sample period. It is interesting to note that the estimated volatility of this shock from
the model that does not account for the possibility of fat tails behaves very differently. The
dotted black line shows that this estimate is more volatile indicating large fluctuations over
the 1970s and the 1980s. While the decline in volatility in the early 1980s coincides across the
two models, the VARSVOL model indicates a substantial increase in shock volatility that is
missing from the TVARSVOL estimate. Given that the shock to the IP equation displays fat
tails (see Figure 1), this difference highlights the fact that ignoring the possibility of non-normal
disturbances can lead to very different interpretation of historical movements in volatility.

Similar conclusions have been reached by Jacquier, Polson, and Rossi (2004) in a univariate
context and by Curdia, del Negro, and Greenwald (2014) using an estimated DSGE framework.
These results suggest that the size of the structural break in the volatility of of US output in the
early 1980s studied by the Great Moderation literature (McConnell and Perez-Quiros, 2000)
may be overestimated.

These results imply that adopting the unit root assumption for stochastic volatility models,
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Figure 2: Stochastic Volatility in the TVARSVOL and in the VARSVOL model
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Notes: The estimated median time-series of volatility in the model with Student’s t-distributed shocks and stochastic volatility (in
red with 32nd and 68th percentiles of the distribution) and in the model with stochastic volatility only (in black).

widely used since Primiceri (2005), while ignoring high-frequency movements of volatility may
cause problems for interpreting time-varying dynamics in the shock process. To that end, we
perform a Monte Carlo analysis of model misspecification for a bivariate VAR model where
the true data generating process features both stochastic volatility and Student’s t errors; see
Section C of the Appendix for the full details of this analysis. We estimate the VARSVOL
and TVARSVOL models and compare how well the estimated volatility paths of each model,
conditional on the simulated data, are relative to the true paths.

For simplification, we consider a bivariate VAR model of output and prices (with two lags)
whose dynamic processes are estimated on real data between 1950 and 2013. We assume
both features of stochastic volatility and Student’s t errors in the true data generating pro-
cess and simulate 300 such datasets, which are then separately estimated by VARSVOL and
TVARSVOL models. We present our results in percentage differences; positive percentage
points indicates over-estimation of the true volatility.

Our simulations provide strong evidence that the VARSVOL model, which ignores Student’s
t errors, consistently significantly overestimates the volatility whereas the TVARSVOL model
can come close to recovering the true data generating process. In particular, conditional on
our simulation set-up, the VARSVOL model produces median volatility estimates up to 70
percentage points larger than the true values. Moreover, this problem of misspecification
becomes more severe as the data feature more fatness in the shock distribution. Overall, our
simulations suggests that the unit root assumption for stochastic volatility models may not be
favourable if the actual data generating process contains fat tails.
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3.2 Model Comparison

3.2.1 Marginal Likelihood

We begin the model comparison by calculating the marginal likelihood for each of the four
models.

Table 1: Marginal Likelihood

Model Log Marginal Likelihood
TVARSVOL -1725.3
VARSVOL -1757.9
TVAR -2444.6
BVAR -2852.2

Notes: Each model includes 13 lags and is estimated using 50,000 iterations (with 40,000 burns). The computation of the marginal
likelihood uses 20,000 iterations (with 10,000 burns).

Table 1 lists the estimated log marginal likelihood for each model using the full sample.
The marginal likelihood is estimated via the Chib (1995) method as described in Section 2.1.2
earlier. We use 10,000 additional Gibbs iterations to estimate the components of the posterior
density. It is clear from Table 1 that the TVARSVOL model displays the best in-sample fit while
the BVAR has the lowest estimated marginal likelihood. Allowing for fat tails or stochastic
volatility improves the fit relative to the BVAR model. However, it is the combination of fat
tails and stochastic volatility that delivers the best fitting specification. This indicates that
both these features are crucial for the data we study.

3.2.2 Forecast Performance

We proceed by comparing the forecast performance of the four models considered above via
a pseudo out-of-sample forecasting exercise. The four models are estimated recursively from
January 1970 to September 2010. At each iteration, we construct the forecast density for the
models:

P
(
Ŷt+k|Yt

)
=
ˆ
P (Ŷt+k|Yt,Ψt+k)P (Ψt+k|Ψt, Yt)P (Ψt|Yt) dΨ, (3.1)

where k = 1, 2, . . . , 12 and Ψ denotes the model parameters. The last term in equation 3.1
represents the posterior density of the parameters that is obtained via the MCMC simulation.
The preceding two terms denote the forecast of the (time-varying) parameters and the data that
can be obtained by simulation. In the section below, we focus on density forecast comparison
as described in detail by Amisano and Geweke (2011, 2013) amongst other recent papers. The
density forecasts are evaluated using log scores (LS) are defined as:

LSt = lnP (Yt+k) , (3.2)

where P (Yt+k) denotes the forecast density evaluated at the realised data. A higher value
for LSt suggests a more accurate density forecast. Note that we employ kernel methods to
estimate the density and distribution function of the forecasts. This enables us to account for
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any potential non-linearities in the forecast distribution.
In addition, we also compute probability integral transforms (PITs) defined as:

PITt = Φ (Yt+k) , (3.3)

where Φ (Yt+k) denotes the CDF associated with the forecast density evaluated at the realised
data. Note that if the forecast density equals the true density then PITs are distributed
uniformly over (0, 1). For one-step-ahead forecasts, PITs are also independently distributed,
while independence may be violated at longer horizons due to serial dependence in multi-step
forecasts.

3.2.2.1 Log Score Comparisons Table 2 considers the log score for each model relative
to that of BVAR for one-month, three-month, six-month and twelve-month ahead forecasts.
The table presents the average log scores across the forecasting sample, with a positive number
indicating an improvement over the BVAR model.

Consider the results for industrial production. At the one-month horizon, allowing for fat
tails or stochastic volatility leads to a similar improvement over the BVAR density forecasts.
This is is not the case at longer horizons where fat tails are clearly important. At the six-
month horizon, the TVAR offers a 35% improvement over the BVAR log score. In contrast,
the VARSVOL model performs worse than the BVAR. Therefore, it appears that allowing for
t-distributed shocks is crucial for industrial production at policy relevant forecasting horizons.
The results for SP500 are similar. At the six-month and the one-year horizon, the TVAR model
outperforms the other models, highlighting the role of fat tails.

For inflation and interest rates, both stochastic volatility and fat tails appear to be impor-
tant. The TVARSVOL model produces the largest improvement over the BVAR for inflation at
the six-month and twelve-month horizon. As for the short-term interest rate, the TVARSVOL
model produces the best performance At the one-month and three- month horizon, whereas
the VARSVOL model delivering the largest improvement over the BVAR at longer horizons.

Furthermore, we ask how the different models perform in jointly forecasting financial vari-
ables (SP500 and the interest rate) relative to macro-variables (industrial production and infla-
tion). To answer this question we use the adaptive kernel density estimator of Botev, Grotowski,
and Kroese (2010) to construct bivariate log scores for the IP growth – inflation and SP500
– interest rate pairs. Table 3 shows the relative improvements of the three volatility models
relative to the BVAR. The results suggest that the relative improvement of each model tends
to be larger for the SP500 – interest rate pair than for the IP growth – inflation pair. The
results also confirm that the modelling of both high- and low-frequency movements in volatility
increases forecast accuracy.8

3.2.2.2 PIT Comparisons Figure 3 plots the histograms of PITs estimated by one-month
ahead forecasts, and histograms from a uniform distribution in order to provide visual assess-

8Section D reports the evaluation of the point forecasts by means of root-mean-squared errors (RMSE).
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Table 2: Percentage Improvement in Log Scores over the BVAR Model

1M 3M 6M 12M
IP Growth

BVAR (benchmark) -1.236 -1.345 -1.424 -1.401
TVARSVOL 25.328 28.941 29.131 11.427

TVAR 27.356 32.937 35.005 30.937
VARSVOL 25.154 -13.997 -23.766 4.700

π

BVAR (benchmark) -0.062 -0.625 -0.694 -0.909
TVARSVOL 36.352 59.407 62.374 61.425

TVAR 34.845 52.010 46.987 51.887
VARSVOL 24.869 74.385 36.016 15.308

SP500 Return
BVAR (benchmark) -2.984 -3.040 -2.890 -2.942

TVARSVOL 28.294 31.653 8.082 -21.550
TVAR 23.196 23.189 18.207 19.572

VARSVOL 32.420 31.181 17.647 -9.359
R

BVAR (benchmark) 0.842 -0.250 0.604 0.318
TVARSVOL 155.022 177.246 33.412 6.605

TVAR 85.714 44.122 16.813 7.378
VARSVOL 153.714 175.536 34.522 10.032

Notes: The numbers are relative to the BVAR model and are computed from the average log scores obtained from the 490
recursive estimations for each of the four models (1960 estimated models in total). Each recursive estimation uses 13 lags and
11,000 iterations. The first line of each panel reports the average log scores of the benchmark BVAR model.

ment of density calibration. The results are very similar at other forecast horizons and available
on request.

Consider the estimates for industrial production. The PIT histogram produced by the
BVAR model appears hump shaped with mass concentrated over the interval between 0.4 and
0.6, indicating departures from uniformity. In contrast, the PITs for the TVARSVOL model
is closer to the uniform distribution. Similarly, the distribution of the PITs from the TVAR
model appears to approximate a uniform distribution.

As for inflation, both the TVARSVOL and the VARSVOL models appear to be better
calibrated in terms of PITs than the the TVAR and the BVAR do, as the the histograms for
the latter models display mass at the tails. Although it is difficult to distinguish between
the PIT histograms across models for SP500, the TVARSVOL and the VARSVOL models do
appear to perform better for the short-term interest rate, because their PIT distributions do
not display hump shapes but the BVAR and TVAR models do.

Overall, the PIT distributions provide visual evidence that both fat tails and stochastic
volatility are important for obtaining a well calibrated forecast density for variables such as
industrial production and the short-term interest rate.
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Table 3: Percentage Improvement in Bivariate Log Scores over the BVAR Model

1M 3M 6M 12M
IP-π pair

BVAR (benchmark) -1.098 -1.298 -1.350 -1.495
TVARSVOL 40.108 35.511 24.799 19.269

TVAR 38.675 32.284 23.423 20.850
VARSVOL 29.790 23.577 12.630 3.494

SP500-R pair
BVAR (benchmark) -1.202 -1.997 -2.225 -2.509

TVARSVOL 89.296 82.362 44.618 6.758
TVAR 50.027 41.581 23.906 12.628

VARSVOL 85.950 77.289 43.168 9.217
Note: The numbers are relative to the BVAR model and are computed from the average bivariate log score obtained from the 490

recursive estimations for each of the four models. The first line of each panel reports the average bivariate log scores of the
benchmark BVAR model.

Figure 3: PIT histograms at the one month forecast horizon
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3.2.3 Forecasting the Great Recession

One of the main criticisms macroeconometric models have received is related to their inability
to forecast the recent the Great Recession. This leads econometricians and macroeconomists
to question the adequacy of their analysis (Ng and Wright, 2013). To see whether accounting
for fat-tails would have changed this result, we consider the evolution of log scores over the
recent financial crisis as shown in Figure 4.

The left axis in each panel shows the percentage improvement in log scores over the bench-
mark BVAR model. In this figure we consider the three-month forecasting horizon but the
results are similar at other horizons. The right axis shows the actual data, plotted as an area
chart, for each variable.

The top left panel shows the results for industrial production. The performance of the three
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Figure 4: Log scores (3 month horizon) relative to those from the BVAR model over the recent
financial crisis
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models is similar before the onset of the deep recession at the end of 2008. The large decline
in industrial production coincided with a very large divergence in the performance of models
with and without fat tails. The TVAR and the TVARSVOL model show a huge improvement
in the log score. In contrast, the accuracy of the VARSVOL model deteriorates substantially
relative to the BVAR model.

To get a better understanding of this divergence in the forecast performance, we take a
closer look at the outcome in September 2008 when industrial production fell by 4.3%. Given
that the mean and the standard deviation of industrial production growth in sample are 0.23%
and 0.83%, respectively, a forecasting model with normally distributed shocks would assign
virtually zero probability to such an outcome.

To illustrate this, Figure 5 shows the three-month ahead forecast density of industrial
production for September 2008 from the four models together with the actual out-turn in that
month depicted by the vertical red line. The left tails of the densities from the BVAR and
the VARSVOL model do not include the actual industrial production out-turn of −4.3%. In
contrast, the densities from the models with fat tails cover this eventuality. This highlights the
fact that the assumption of normality may lead one to ignore the possibility of large movements
in the data as seen in the recent financial crisis. It is interesting to note that the performance of
the three models was similar during the second dip in industrial production seen in December
2008 and January 2009. This is because the 2% fall during this episode was accounted for by
the forecast densities from all models.

As for the stock returns and inflation, both stochastic volatility and t-disturbances appear
to be important, with the TVARSVOL model showing a large improvement during late 2008
and early 2009. The performance of these models is mixed for the short-term interest rate
over the initial cutting phase of 2007 and 2008. However, stochastic volatility appears to be
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Figure 5: Forecasting the Great Recession
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Note: The panels show the 3 month-ahead forecast distributions for industrial production in September 2008. The actual out-turn
(−4.3%) is depicted by the dashed vertical red line.

important over the post 2009 period that was characterised by persistently low interest rates.9

3.2.4 Forecasting Performance in Various Sub-sample Periods

To further investigate how introducing fat tails and stochastic volatility to a VAR model
can improve out-of-sample forecasting performance, we focus on three-month ahead forecasts
and break down the improvement of log scores into three sub-sample periods: the pre-Great
Moderation period (January 1970 - December 1983), the Great Moderation period (January
1984 - December 2006), and the Great Recession (January 2007 - September 2011). Results
are reported in Table 4.

With the exception of inflation forecasts in the 1970s and early 1980s, the TVARSVOL
model always dominates BVAR, and in many cases, out-competes VARSVOL. This is true
during the Great Recession period where the US economy experienced an increase in volatility
and big outliers in IP growth and inflation rates, as well as during Great Moderation which
was characterized by lower economic volatility and lack of occurrence of outliers. In other
words, evidence seems to suggest that while including stochastic volatilities can be beneficial
in improving forecast accuracy most of the time, introducing fat tails can deliver additional
significant improvement when the economy experiences extreme events.

9This is of course subject to the caveat that the federal funds rate are subject to a zero lower bound during
this period.
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Table 4: Percentage Improvement in Log Scores for three-month ahead forecasts over the BVAR
Model for three sub-sample periods

1970M1-1983M12 1984M1-2006M12 2007M1-2011M9
IP Growth

BVAR (benchmark) -1.483 -0.894 -3.592
TVARSVOL 13.402 10.561 200.03

TVAR 20.823 8.036 227.74
VARSVOL 10.066 9.165 -431.45

π

BVAR (benchmark) -0.042 0.330 -8.666
TVARSVOL -56.882 2.619 844.46

TVAR -6.039 0.364 681.15
VARSVOL -30.589 0.494 803.46

SP500 Return
BVAR (benchmark) -2.862 -2.674 -5.955

TVARSVOL 8.617 6.029 275.33
TVAR 8.087 6.082 264.93

VARSVOL 5.765 6.453 278.73
R

BVAR (benchmark) -3.443 1.461 1.245
TVARSVOL 425.87 46.553 45.046

TVAR 84.535 23.354 20.382
VARSVOL 427.42 46.251 36.280

Notes: The numbers are relative to the BVAR model and are computed from the average log scores obtained from the recursive
estimations for each of the four models within each sub-sample period. The first line of each panel reports the average log scores
of the benchmark BVAR model.

3.2.5 Sensitivity Analysis

In this subsection, we ask whether our results are robust to choosing alternative priors for the
degree of fatness of shock distribution. In the TVARSVOL model, we used the prior v0 = 20
for p (vλ,k) ∼ Γ̃ (v0, 2) , k = 1, 2, ..., n which assigns a reasonable probability to extreme events.
As an alternative prior, we re-estimate the models using the value v0 = 50, implying a higher
prior weight on the possibility of normality.

Table 5: Percentage Improvement in Log Scores of the TVARSVOL over the BVAR Model
when v0 = 50 (sensitivity analysis)

1M 3M 6M 12M
IP 23.184 20.395 30.253 30.544
π 38.261 62.279 40.970 60.381

SP500 32.287 31.482 16.459 -4.231
R 154.945 177.268 33.664 7.591

Notes: The numbers are relative to BVAR model and computed from the average log scores obtained from the 490 recursive
estimations. Each recursive estimation uses 13 lags and 11,000 iterations. Average log scores of the benchmark BVAR model are
reported in Table 2 and are not reproduced here for brevity.

Table 5 presents the estimated log scores (relative to the BVAR) from TVARSVOL using
this alternative prior. The results indicate that for industrial production and stock market
returns (the variables for which the orthogonalised errors displayed the most evidence for non-

16



Table 6: Forecast Comparison with the TVP-VARSVOL Model

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

BVAR (benchmark) 0.510 0.604 0.648 0.684
TVARSVOL 0.979 0.984 0.985 0.985

TVP-VARSVOL 0.972 0.973 0.977 0.981
π

BVAR (benchmark) 0.143 0.173 0.188 0.206
TVARSVOL 1.006 1.028 1.042 1.042

TVP-VARSVOL 0.980 0.975 0.974 0.958
R

BVAR (benchmark) 0.023 0.043 0.064 0.094
TVARSVOL 0.991 0.951 0.949 0.963

TVP-VARSVOL 0.993 0.990 0.984 0.975

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

-1.183 -1.296 -1.342 -1.279
16.164 -4.756 26.016 17.005
8.780 8.641 9.864 13.629

π

0.074 -0.152 -0.348 -0.605
15.719 22.085 35.892 43.107
20.530 21.051 46.934 75.820

R
0.269 -Inf 0.274 0.229

223.713 Inf 67.003 6.647
192.674 Inf 58.181 17.086

Note: The numbers are relative to the BVAR model and are computed from the average RMSE and log scores obtained from
the 490 recursive estimations. Each recursive estimation uses 2 lags and 11,000 iterations. The values are relative to the BVAR
model. The first line of each panel reports the average RMSE and log scores of the benchmark BVAR model. The –Inf value
for the log-score of three-month ahead interest rate is caused by huge forecast errors in 1980, a period characterised by highly
volatile monetary policy. The BVAR model, but not our other models, struggles to produce appropriate density forecast during
such volatile periods in this three-variable model, hence leading to an infinite percent relative improvements.

Gaussianity), the average relative log scores are fairly similar. This provides evidence that the
key results do not depend on the prior for the degree of fatness of shocks distributions.

In Section E of the Appendix, we provide further evidence that our results are robust against
alternative orderings of the variables and different choices of hyperparameters governing the
prior distribution of the variance of the shocks gk in equation 2.3.

3.3 Comparison with Time-varying Coefficient VARs

As a further robustness check, we explore how the TVARSVOL model performs relative to a
VAR with time-varying parameters and stochastic volatility (TVP-VARSVOL) as in Primiceri
(2005) and D’Agostino, Gambetti, and Giannone (2013), amongst others. Given the computa-
tional intensity of performing recursive forecasts with this model, we estimate a three-variable
system by omitting the SP500 return series and by considering two lags only.10 We adopt
the same set-up for the TVARSVOL and the benchmark BVAR models so that we can per-
form out-of-sample forecasting model comparison. This analysis also serves as a robustness
check to investigate whether reducing the information set and the lag length from 13 to 2 will
change the relative forecast performance of the TVARSVOL model. A brief description of the
TVP-VARSVOL model can be found in Section F of the Appendix.

10The addition of an extra variable in a TVP-VARSVOL model leads to an exponential increase in com-
putational time (recall we need to compute 490 recursive forecasts each of which should include a sufficiently
large number of posterior draws.) We argue that the three-variable model is sufficient to illustrate that a more
general modelling of the covariance matrix can be as important as modelling time-variation in the dynamic
parameters. Exploring whether time-varying parameters or time-varying covariance matrix is more important
for forecast accuracy is an important avenue for future research, which is beyond the scope of the current paper.
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Table 6 presents the results for the point forecasts (evaluated by Root-mean-squared errors,
or RMSE) and density forecasts from the TVP-VARSVOL and TVARSVOL models relative to
the BVAR. They suggest that the TVARSVOL model continues to perform well especially in
terms of density forecast accuracy. The TVP-VARSVOLmodel also performs well, especially on
the point forecasts of inflation. This is consistent with the results of D’Agostino, Gambetti, and
Giannone (2013) who find that accounting for time-varying coefficients significantly improves
the accuracy of point forecasts for inflation. Nevertheless, TVARSVOL performs well in terms
of density forecasts relative to the TVP-VARSVOL model. This suggests that achieving more
superior VAR forecasts can be done not only by accounting for time-variation in the dynamic
coefficients but also by modelling appropriately the variance-covariance matrix of VAR models.

4 Results for Canada, Germany and the UK

In this section, we estimate the four model specifications for other countries including the
United Kingdom (UK), Germany and Canada. From the Global Financial Database, we re-
trieve (i) monthly data for the UK covering the period January 1959- September 2011, includ-
ing the FTSE all-share Index, CPI, industrial production index, and the three-month Treasury
Bill yield; and (ii) monthly data for Germany covering the period January 1961 - September
2011, including the CDAX composite index, CPI and industrial production. Monthly data for
Canada covering the period January 1961 - September 2011 and for the short-term German
interest rate are obtained from the OECD Economic Outlook. Monthly growth rates are cal-
culated for all the variables except the interest rate. As in the case of the US, we recursively
estimate the forecast density 3.1 for of each of the models and for each of the countries.11 We
present the results for both point forecasts and density forecasts.

Table 7 presents the results for Canada. With the exception of inflation, point forecasts
of all variables are more accurate relative to the BVAR model which performs the worst in
predicting the interest rate.

Results for log scores suggest that, relative to the VARSVOL model, the TVAR tends to
outperform in terms of forecasting inflation and stock returns and tends to under-perform
in terms of forecasting industrial production growth and interest rates. Over the one-month
horizon, the TVARSVOL model comes first in predicting stock returns and the interest rate.

Results for the UK, presented in Table 8, highlight the dangers of ignoring the slow-moving
component of volatility when using fat-tailed VAR models for forecasting purposes. Outliers
such as the a 400 basis point jump in short rate in July 1973 (discussed in the note of Table
8) leads to an over-estimation of the fatness of the shock distribution in case of the TVAR
model, which in this case substantially worsens the point forecasts for all the variables. The
reason why this problem is particularly severe in the case of the UK is related to the high level
of inflation volatility that characterised the 1970s and early 1980s (Liu and Mumtaz 2011),

11The recursive algorithm starts with the estimation of each of the models up to January 1970 in the case of
the UK and up to January 1972 in the case of Canada and Germany. This delivers 490 forecast densities for
the UK and 466 forecast densities for Germany and Canada.
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Table 7: Forecast Comparison Results for Canada (with BVAR as the benchmark)

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

BVAR (benchmark) 0.879 0.999 1.043 1.067
TVARSVOL 0.962 0.957 0.963 0.971

TVAR 0.964 0.959 0.966 0.977
VARSVOL 0.960 0.958 0.964 0.973

π

BVAR (benchmark) 0.244 0.284 1.043 1.067
TVARSVOL 1.006 1.012 1.010 1.003

TVAR 1.003 1.008 1.008 1.003
VARSVOL 1.000 1.005 1.004 0.995

Stock Return
BVAR (benchmark) 3.243 3.800 3.977 4.067

TVARSVOL 0.972 0.967 0.972 0.982
TVAR 0.972 0.963 0.969 0.979

VARSVOL 0.976 0.965 0.970 0.980
R

BVAR (benchmark) 0.026 0.052 0.081 0.123
TVARSVOL 0.971 0.946 0.933 0.911

TVAR 0.961 0.929 0.916 0.904
VARSVOL 0.968 0.940 0.926 0.902

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

-1.539 -1.541 -1.554 -1.546
6.134 5.870 4.299 1.484
5.240 4.348 3.445 0.910
6.549 -1.560 4.097 1.293

π

-0.399 -0.405 -0.400 -0.433
-35.920 -0.637 -24.371 -5.239
10.962 10.753 6.609 4.270
-45.191 -68.749 -63.174 -26.838

Stock Return
-3.160 -3.164 -3.319 -3.243
17.056 8.471 14.831 21.412
18.477 17.775 29.877 34.501
1.253 1.506 -45.327 -18.320

R
0.478 0.518 0.340 -0.074
164.370 69.064 31.375 25.806
145.807 48.796 17.867 22.081
161.846 69.760 34.593 30.046

Note: The numbers are relative to the BVAR model and are computed from average RMSE and log scores obtained from the 466
recursive estimations for each of the four models (1864 estimated models in total). Each recursive estimation uses 13 lags and
11,000 iterations. The values are relative to the BVAR model. The first line of each panel reports the average RMSE and log
scores of the benchmark BVAR model.
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Table 8: Forecast Comparison Results for the UK (with BVAR as the benchmark)

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

BVAR (benchmark) 0.904 1.026 1.096 1.157
TVARSVOL 0.955 0.973 0.986 1.000

TVAR 0.960 1.394 1.302 1.234
VARSVOL 0.970 0.980 0.989 1.131

π

BVAR (benchmark) 0.247 0.308 0.343 0.385
TVARSVOL 0.969 0.952 0.944 0.922

TVAR 0.951 1.916 2.010 1.862
VARSVOL 0.931 0.923 0.926 1.083

Stock Return
BVAR (benchmark) 3.999 4.631 4.835 4.997

TVARSVOL 0.985 0.989 0.995 1.001
TVAR 1.050 1.085 1.102 3.783

VARSVOL 0.990 0.991 0.999 2.108
R

BVAR (benchmark) 0.339 0.613 0.917 1.377
TVARSVOL 0.986 0.965 0.968 0.969

TVAR 1.380 1.520 1.508 5.918
VARSVOL 0.965 0.943 0.964 3.029

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

-1.839 -1.888 -1.885 -1.885
28.354 32.823 35.220 36.373
26.456 29.045 27.649 26.557
31.983 30.677 30.949 28.351

π

-0.834 -1.066 -0.987 -1.183
63.984 78.263 68.334 79.877
59.271 67.140 51.538 61.716
63.364 80.726 65.190 72.388

Stock Return
-4.160 -4.149 -4.066 -4.134
109.816 109.552 99.838 105.163
101.013 95.805 99.265 106.761
112.098 108.108 96.489 98.820

R
-Inf -2.042 -2.356 -2.603
Inf 87.846 64.693 39.441
Inf 67.655 45.342 23.607
Inf 83.237 57.088 25.683

Note: The numbers are relative to the BVAR model and are computed from the average RMSE and log scores values obtained
from the 490 recursive estimations for each of the four models (1960 estimated models in total). Each recursive estimation uses
13 lags and 11,000 iterations. The values are relative to the BVAR model. The first line of each panel reports the average RMSE
and log scores of the benchmark BVAR model. The calculated log score value for one-month-ahead interest rates density forecasts
is –Inf. The Bank of England engineered a 400 bp jump in the short rate between the end of June and the end of July of 1973.
The one-period-ahead forecast density produced in 1973M6 produced by the BVAR has no probability mass to cover such a jump,
leading to a –Inf in log score. Our models, which are able to generate a tail long enough to cover this event (though the probability
is very low), produce an infinite percent improvement in the log score.
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Table 9: Forecast Comparison Results for Germany (with BVAR as the benchmark)

(a) Relative RMSE values

1M 3M 6M 12M
IP Growth

BVAR (benchmark) 1.253 1.495 1.595 1.702
TVARSVOL 0.946 0.955 0.971 0.983

TVAR 0.948 0.957 0.973 0.984
VARSVOL 0.952 0.956 0.970 0.982

π

BVAR (benchmark) 0.167 0.199 0.213 0.224
TVARSVOL 0.989 0.993 0.997 1.001

TVAR 0.982 0.985 0.990 0.994
VARSVOL 0.998 0.996 1.000 1.003

Stock Return
BVAR (benchmark) 4.108 4.714 4.899 5.049

TVARSVOL 0.973 0.978 0.983 0.986
TVAR 0.978 0.982 0.986 0.989

VARSVOL 0.971 0.980 0.983 0.987
R

BVAR (benchmark) 0.019 0.038 0.061 0.099
TVARSVOL 0.925 0.847 0.848 0.855

TVAR 0.924 0.864 0.868 0.878
VARSVOL 0.900 0.836 0.840 0.853

(b) Relative Log-scores values

1M 3M 6M 12M
IP Growth

-2.083 -2.107 -2.089 -2.200
23.165 16.330 13.709 20.284
21.639 14.465 11.694 18.903
14.637 12.250 10.145 21.281

π

-1.298 -Inf -1.121 -1.212
76.055 Inf 79.753 5.820
111.258 Inf 121.558 104.502
128.675 Inf 113.001 117.387

Stock Return
-3.580 -3.409 -3.449 -3.512
53.356 35.559 37.985 41.023
40.707 33.865 38.310 37.958
51.325 34.981 37.943 40.467

R
2.026 1.266 0.740 -0.153
50.090 31.095 31.269 44.232
28.100 19.721 17.103 57.359
38.159 30.262 31.774 52.103

Note: The numbers are relative to the BVAR model and are computed from the average RMSE and log scores values obtained
from the 466 recursive estimations for each of the four models (1864 estimated models in total). Each recursive estimation uses 13
lags and 11,000 iterations. The first line of each panel reports the average RMSE and log scores of the benchmark BVAR model.
The presence of –Inf log score value for three-month-ahead inflation forecasts is due to extreme values: an extremely large negative
observation occurred in January 1991 (−2.07%) in the midst of the economic recession following the German reunification. Given
that the mean and the standard deviation of the monthly German inflation rate in the sample are 0.23% and 0.27%, respectively,
the BVAR model assigns virtually zero probability to this event.

which was also substantially higher than in the US, Canada and Germany during the same
time (Mumtaz and Surico 2012).

To sum up, the log score results for the UK suggest that the TVARSVOL model outperforms
the other competing volatility models, with the exception of the one-month ahead forecast of
stock returns and industrial production growth, in which case the VARSVOL delivers more
accurate density forecasts.

Results for Germany are broadly in line with the previous findings. With the exception
of inflation, the point forecasts of all variables improve by either volatility models, and the
TVARSVOL model tends to dominate other volatility models, at least in the short-run.

Finally, Table 10 shows the estimated values of the marginal likelihood for the three coun-
tries. The results are in line with the evidence for the US: The BVAR and the TVAR have
worse in-sample fit than the TVARSVOL and VARSVOL models. The TVARSVOL has the
best in-sample fit in the case of Canada, whereas the VARSVOL model comes first in the case
of Germany and the UK. This may be explained by the fact that the nature of shocks differ
across countries. For example, as in the case of the UK, the extremely volatile period before the
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1980s and the relatively calm period after may appear to be better explained by changes in low
frequency volatility rather than by high frequency volatility manifested by fat tails. In other
words, the UK is less subject to high frequency volatility shocks, implying that VARSVOL
model provides a better in-sample fit.

Table 10: Marginal Likelihood

Model Canada Germany UK
TVARSVOL -1857.2 -2428.7 -3201.6
VARSVOL -1980.0 -2406.6 -3058.6
TVAR -2479.6 -3136.2 -4375.8
BVAR -2133.4 -4445.8 -3615.1

Notes: Each model includes 13 lags and is estimated using 50,000 iterations (with 40,000 burns). The computation of the marginal
likelihood uses 20,000 iterations (with 10,000 burns).

Overall, our findings suggest that models which account for heteroscedasticity in the error
structure can exhibit considerably improved forecast accuracy relative to the benchmark linear
Gaussian BVAR model. These results are consistent with those recently presented by Clark
and Ravazzolo (2015). An additional result is that explicitly modelling both the low- and high-
frequency movements in volatility could provide further improvements in the forecast accuracy
as well as in the in-sample fit, as shown in the case of the US and Canada.

5 Conclusions

This paper introduces a VAR model that incorporates stochastic volatility and fat tailed dis-
turbances. We show that this model fits a monthly US data-set better than alternatives
that do not include these features. The estimates of the model present strong evidence that
disturbances to industrial production growth and stock market returns are non-normal. In-
corporating this non-normality in the model leads to substantial improvement in the accuracy
of forecast densities. In particular, linear BVAR models with Gaussian disturbances fail to
attach any probability to low values of industrial production growth seen in late 2008 in the
US. Our results, that are also consistent with findings for a further set of countries, highlight
the importance of incorporating the possibility of fat tails in forecasting models.
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Appendix

A The Gibbs Sampling Algorithm for TVARSVOL

The Gibbs algorithm for the TVARSVOL model cycles through six conditional posterior dis-
tributions. The details of each conditional posterior density is provided in the following sub-
sections. As a shorthand symbol, we use Ψ to denote all other parameters except the specific
parameter(s) under discussion.

A.1 Drawing G(λk,t|Ψ)

The conditional posterior distributions related to the t-distributed shock structure of the model
are described in Koop (2003). Note that conditional on B and A, the orthogonalised residuals
can be obtained as ε̃t = Aut. The conditional posterior distribution for λk,t derived in Geweke
(1993) applies to each column of ε̃t. This posterior density is a gamma distribution with mean
(vλ,k + 1) / 1

σk,t
ε̃2
k,t + vλ,k and degrees of freedom vλ,k + 1. Note that ε̃k,t is the kth column of

the matrix ε̃t.

A.2 Drawing G (vλ,k|Ψ)

The conditional distribution for the degree of freedom parameter capturing the fatness of tails
is non-standard and given by:

G (vλ,k|Ψ) ∝
(
vλ,k
2

)Tvλ,k
2

Γ
(
vλ,k
2

)−T
exp

(
−
(

1
v0

+ 0.5
T∑
t=1

[
ln
(
λ−1
t,k

)
+ λt,k

])
vλ,k

)
. (A.1)

As in Geweke (1993) we use the Random Walk Metropolis Hastings Algorithm to draw from
this conditional distribution. More specifically, for each of the n equations of the VAR, we
draw vnewλ,k = voldλ,k + c̄1/2ε with ε ∼ N(0, 1). The draw is accepted with probability G(vnewλ,k |λ̄k)

G(voldλ,k|λ̄k)
,

where λ̄k = [λ1, λ2, ..., λT ], with c̄ chosen to keep the acceptance rate around 40%.

A.3 Drawing G (gk|Ψ)

The conditional posterior of G (gk|Ψ) is inverse Gamma as discussed in Cogley and Sargent
(2005). The posterior scale parameter is D0 +

(
ln σ2

k,t − ln σ2
k,t−1

)′ (
ln σ2

k,t − ln σ2
k,t−1

)
with

degrees of freedom T + T0.

A.4 Drawing G
(
σ2
k,t|Ψ

)
The conditional posterior G

(
σ2
k,t|Ψ

)
is sampled using the Metropolis Hastings algorithm in

Jacquier, Polson, and Rossi (1994). Given a draw for B and defining ut = Yt−c−
L∑
l=1

BlYt−l, the

VAR model can be written as Aut×H̄1/2
t = ūt, where cov (ūt) = H̃t. Here H̄t = diag(λ1,t, λ2,t..)
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and H̃t = diag
(
σ2

1,t, σ
2
2,t, ..

)
. Conditional on other VAR parameters, the distribution σ2

k,t is
then given by:

f
(
σ2
k,t|σ2

k,t−1, σ
2
k,t+1, uk,t

)
= f

(
uk,t|σ2

k,t

)
× f

(
σ2
k,t|σ2

k,t−1

)
× f

(
σ2
k,t+1|σ2

k,t

)
= 1
σk,t

exp
(
−u2

k,t

2σ2
k,t

)
× 1
σ2
k,t

exp

−
(
ln σ2

k,t − µ
)2

2σhk

 ,
where µ and σhk denote the mean and the variance of the log-normal density 1

σ2
k,t

exp
(
−(lnσ2

k,t−µ)
2

2σhk

)
.

Jacquier, Polson, and Rossi (1994) suggest using 1
σ2
k,t

exp
(
−(lnσ2

k,t−µ)
2

2σhk

)
as the candidate gener-

ating density with the acceptance probability defined as the ratio of the conditional likelihood
1
σk,t

exp
(
−u2

k,t

2σ2
k,t

)
at the old and the new draw. This algorithm is applied at each period in the

sample.

A.5 Drawing G (A|Ψ)

The conditional posterior G (A|Ψ) for the off-diagonal elements of matrix A is standard. Con-
sider the representation of the system as in Cogley and Sargent (2005), adopted for our 4-
variable VAR below:


u1,t

u2,t + u1,tα21

u3,t + u2,tα32 + u1,tα31

u4,t + u3,tα43 + u2,tα42 + u1,tα41

 =



(
σ2

1,t
1
λ1,t

)1/2
ε1,t(

σ2
2,t

1
λ2,t

)1/2
ε2,t(

σ2
3,t

1
λ3,t

)1/2
ε3,t(

σ2
4,t

1
λ4,t

)1/2
ε4,t


. (A.2)

where εk,t ∼ N(0, 1), k = 1, .., n. The second, third and fourth lines give the following system
of linear regressions:

u2,t =− u1,tα21 +
(
σ2

2,t
1
λ2,t

)1/2

ε2,t

u3,t =− u2,tα32 − u1,tα31 +
(
σ2

3,t
1
λ3,t

)1/2

ε3,t

u4,t =− u3,tα43 − u2,tα42 − u1,tα41 +
(
σ2

4,t
1
λ4,t

)1/2

ε4,t,

(A.3)

where, conditional on λk,t and σk,t, the parameters α′s have a Normal posterior and formulas
for Bayesian linear regressions apply.

A.6 Drawing G (B|Ψ)

Finally, the posterior distribution of the VAR coefficients is linear and Gaussian, G (B|Ψ) ∼
N
(
BT |T , PT |T

)
. We use the Kalman filter to estimate BT |T and PT |T where we account for the
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fact that the covariance matrix of the VAR residuals changes through time. The final iteration
of the filter delivers BT |T and PT |T .

B Computation of the Marginal Density

B.1 Likelihood

The likelihood function of the model is calculated using a particle filter using 10,000 particles.
We re-write the model in state space form:

Xt = Θ̄Γ̄t (B.1)

Γ̄t = µ+ F̄ Γ̄t−1 + Q̄
1/2
t ε̄t (B.2)

ln q̄K,t = ln q̄K,t−1 + v̄t, (B.3)

where ε̄t = {ε̄1,t, ..., ε̄N,t} with ε̄K,t, K = 1, ..., N , follows a Student’s t-density with vK degrees
of freedom and q̄K,t denotes the diagonal elements of Q̄. Xt is observed data, while Φt =(
Γ̄t, q̄K,t

)
are the state-variables. Given the non-normal disturbances, the Kalman filter cannot

be employed.
Consider the distribution of the state variables in the model denoted Φt conditional on

information up to time t (denoted by zt):

f (Φt|zt) = f (Xt,Φt|zt−1)
f (Xt|zt−1) = f (Xt|Φt, zt−1)× f (Φt|zt−1)

f (Xt|zt−1) . (B.4)

Equation B.4 implies that this density can be written as the ratio of the joint density of the
data and the states f (Xt,Φt|zt−1) = f (Xt|Φt, zt−1) × f (Φt|zt−1) and the likelihood function
f (Xt|zt−1) where the latter is defined as:

f (Xt|zt−1) =
ˆ
f (Xt|Φt, zt−1)× f (Φt|zt−1) dΦt. (B.5)

Note also that the conditional density f (Φt|zt−1) can be written as:

f (Φt|zt−1) =
ˆ
f (Φt|Φt−1)× f (Φt−1|zt−1) dΦt−1. (B.6)

These equations suggest the following filtering algorithm to compute the likelihood function:

1. Given a starting value f (Φ0|z0) calculate the predicted value of the state

f (Φ1|z0) =
ˆ
f (Φ1|Φ0)× f (Φ0|z0) dΦ0,
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2. Update the value of the state variables based on information contained in the data

f (Φ1|z1) = f (X1|Φ1, z0)× f (Φ1|z0)
f (X1|z0) ,

where f (X1|z0) =
´
f (X1|Φ1, z0)× f (Φ1|z0) dΦ1 is the likelihood for observation 1. By

repeating these two steps for observations t = 1...T , the likelihood function of the model
can be calculated as ln lik = ln f (X1|z0) + ln f (X2|z1) + ... ln f (XT |zt−1)

In general, this algorithm is inoperable because the integrals in the equations above are dif-
ficult to evaluate. The particle filter makes the algorithm feasible by using a Monte-Carlo
method to evaluate these integrals. In particular, the particle filter approximates the con-
ditional distribution f (Φ1|z0) via M draws or particles from the Student’s t-density using
the transition equation of the model. For each draw for the state variables the conditional
likelihood Wm = f (X1|z0) is evaluated. Conditional on the draw for the state variables, the
predicted value for the variables X̂M

i1 can be computed using the observation equation and the
prediction error decomposition is used to evaluate the likelihood Wm. Note that as the predic-
tive density is degenerate in this model, we need to add measurement error. The update step
involves a draw from the density f (Φ1|z1). This is done by sampling with replacement from
the sequence of particles with the re-sampling probability given by Wm∑M

m=1 W
m
. This re-sampling

step updates the draws for Φ based on information contained in the data for that time period.
By the law of large numbers the likelihood function for the observation can be approximated
as ln likt = ln

∑M

m=1 W
m

M
.

B.2 Evaluation of the Posterior Density Θ(·)

Consider the following decomposition:

Θ
(
B̂, Â, ĝ, λ̂, v̂λ,Ξ

)
= Θ

(
B̂|Â, ĝ, λ̂, v̂λ,Ξ

)
×Θ

(
Â|ĝ, λ̂, v̂λ,Ξ

)
×Θ

(
ĝ|λ̂, v̂λ,Ξ

)
×Θ

(
λ̂|v̂λ,Ξ

)
×Θ (v̂λ|Ξ) .

Each term can be evaluated directly or by using a further MCMC run:

1. Θ
(
B̂|Â, ĝ, λ̂, v̂λ,Ξ

)
. This is a complete conditional density with a known form: a Normal

with mean and variance that can be calculated via the Kalman filter. The evaluation in
done via an additional Gibbs sampler that draws from:

(a) Θ
(
Bi|Â, λ̂, v̂λ, ĝ,Ξj

)
(b) Θ

(
Ξi|Â, λ̂, v̂λ, ĝ, Bj

)
where the subscripts i and j respectively indicate current and previous draws.

After a burn-in period, Θ
(
B̂|Â, λ̂, v̂λ, ĝ,Ξ

)
≈ 1

I

∑I
i=1 Θ

(
B̂i|Â, λ̂, v̂λ, ĝ,Ξj

)
where I is the

number of the retained simulations.

29



2. Θ
(
Â|λ̂, v̂λ, ĝ,Ξ

)
=
´

Θ
(
Â|λ̂, v̂λ, B, ĝ,Ξ

)
× Θ

(
B|λ̂, v̂λ, ĝ,Ξ

)
dB . This term can be ap-

proximated using an additional Gibbs run that samples from the following conditionals
with the current and previous draws indexed by i and j:

(a) Θ
(
Ai|ĝ, λ̂, v̂λ, Bj,Ξj

)
(b) Θ

(
Bi|ĝ, λ̂, v̂λ, Aj,Ξj

)
(c) Θ

(
Ξi|Bj, ĝ, λ̂, v̂λ, Aj

)
After a burn-in period, Θ

(
Â|λ̂, v̂λ, ĝ,Ξ

)
≈ 1

I

∑I
i=1 Θ

(
Âi|λ̂, v̂λ, ĝ, Bj,Ξj

)
where

Θ
(
Ai|λ̂, v̂λ, ĝ, Bj,Ξj

)
has a Normal density and I is the number of the retained simula-

tions.

3. Θ
(
ĝ|λ̂, v̂λ,Ξ

)
=
´ [´

Θ
(
ĝ|λ̂, v̂λ, B̂, Â,Ξ

)
×Θ

(
Â|λ̂, v̂λ, B̂,Ξ

)
dA
]
×Θ

(
B̂|λ̂, v̂λ,Ξ

)
dB̂ where

the bracket term
´

Θ
(
ĝ|λ̂, v̂λ, B̂, Â,Ξ

)
× Θ

(
Â|λ̂, v̂λ, B̂,Ξ

)
dA = Θ

(
ĝ|λ̂, v̂λ, B̂,Ξ

)
. This

term can be approximated using an additional Gibbs run that samples from the following
conditionals:

(a) Θ
(
gi|λ̂, v̂λ, Bj, Aj,Ξj

)
(b) Θ

(
Bi|gj, λ̂, v̂λ, Aj,Ξj

)
(c) Θ

(
Ai|Bj, gj, λ̂, v̂λ,Ξj

)
(d) Θ

(
Ξi|Aj, Bj, gj, λ̂, v̂λ

)
After a burn-in period, Θ

(
ĝ|λ̂, v̂λ,Ξ

)
≈ 1

I

∑I
i=1 Θ

(
ĝi|λ̂, v̂λ, Bj, Aj,Ξj

)
where this is an

inverse Gamma pdf and I is the number of the retained simulations.

4. Θ
(
λ̂|v̂λ,Ξ

)
. As in step 3 above, this term can be approximated by a Gibbs run that

draws from the following densities:

(a) Θ (λi|gj, v̂λ, Bj, Aj,Ξj)

(b) Θ (gi|λj, v̂λ, Bj, Aj,Ξj)

(c) Θ (Bi|gj, λj, v̂λ, Aj,Ξj)

(d) Θ (Ai|Bj, gj, λj, v̂λ,Ξj)

(e) Θ (Ξi|Aj, Bj, gj, λj, v̂λ)

After a burn-in period, Θ
(
λ̂|v̂λ,Ξ

)
≈ 1

I

∑I
i=1 Θ

(
λ̂i|v̂λ, gj, Bj, Aj,Ξj

)
which has a Gamma

pdf and I is the number of the retained simulations.

5. The final term Θ (v̂λ|Ξ) is an unknown density. Therefore the algorithm of Chib and
Jeliazkov (2001) is required. They show that this density can be approximated as:

Θ (v̂λ|Ξ) = E1 (α (vλ, v̂λ|B,A, λ,Ξ) q (vλ, v̂λ|B,A, λ,Ξ))
E2 (α (v̂λ, vλ|B,A, λ,Ξ)) ,
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where α
(
voldλ , vnewλ

)
denotes the acceptance probability of Metropolis move from voldλ to

vnewλ and q(voldλ , vnewλ ) is the candidate density. The numerator term can be approximated
by averaging the quantity from the main MCMC run:

α
(
vjλ, v̂λ|B,A, λ,Ξ

)
q
(
vjλ, v̂λ|B,A, λ,Ξ

)
,

where j indexes the MCMC draws. The denominator term requires an additional Gibbs
sampler as α

(
v̂λ, v

j
λ|B,A, λ,Ξ

)
, the acceptance probability, is conditioned on the poste-

rior mean v̂λ. This sampler draws from each posterior density conditioned on v̂λ, and
then draws from the candidate density vjλ ∼ q (v̂λ, vλ|B,A, λ,Ξ). The average acceptance
probability produces an estimate of the denominator.

C Monte Carlo Analysis of Stochastic Volatility Estima-
tion

The model of Primiceri (2005) is by now the benchmark for estimating VAR models with
stochastic volatility. This section presents results from a Monte Carlo exercise in order to
illustrate the consequences of model misspecification, which may arise when the true data-
generating process features both stochastic volatility and Student’s t errors, while the esti-
mation ignores Student’s t errors. We simulate 300 data-sets using a bi-variate TVARSVOL
model. For each data-set, we simulate 3000 observations and retain the last 250 to remove
any effect caused by the initial values. The parameter values, as listed below, are taken from
a bi-variate VAR featuring the quarterly growth rates of GDP (denoted as ’variable 1’ below)
and price level (denoted as ’variable 2’ below) of the United States between 1950 and 2013. We
intend our simulated data-sets to bear the features of the dynamics of the two major variables: yt

πt

 =
 0.64

0.13

+
 0.32 0.05

0.06 0.64

 yt−1

πt−1

+
 0.08 −0.22

0.02 0.14

  yt−2

πt−2

+
 εyt

επt

 , (C.1)

with the following variance-covariance structure:

cov

 εyt

επt

 = Σt = Ã−1ĤtÃ
−1′,

Ĥt =
 σ2

1,t 0
0 σ2

2,t

 ,
where ln σk,t = ln σk,t−1+sk,t, var (sk) = gk. Denote ut = [uyt uπt ]′ as the vector of orthogonalised
shocks, which are iid and follow Student’s t distribution with degrees of freedom m1 and m2,
respectively. We assume the variance of the volatility shocks to be gk = 0.0001 for both
variables. The lower triangular matrix Ã is assumed to be [1 0; 0.1 1]. As for the degrees of
freedom, we assume m1 = 4, m2 = 10. For each of the 300 data-sets we estimate a VARSVOL
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and a TVARSVOL model. Given the estimated volatility paths, we first compute the median
of the posterior distribution, then calculate how different these medians are from the true
volatility processes. We express the differences in percentage points.

Figure 6: Stochastic Volatility Estimates from the TVARSVOL Model
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Figure 7: Stochastic Volatility Estimates from the VARSVOL Model
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We then collect and sort these percentage differences across the 300 simulated data-sets and
present them in Figures 6 and 7, as well as in Tables 11 and 12. A positive percentage points
indicates over-estimation of the true volatility. At the 68% interval, we find strong evidence
that the differences between the estimated median volatilities and the true ones are significantly
positive for VARSVOL but not for TVARSVOL. At the 50th percentile, the VARSVOL model
generates median volatility estimates that are 70 percentage points larger for variable 1, and
30 percentage points larger for variable 2. Overall, the simulation results suggest that the

32



VARSVOL model over-estimates the underlying true volatility, whereas TVARSVOL model
provides more precise estimates of it.

Table 11: Stochastic Volatility Estimates : Variable 1

TVARSVOL VARSVOL
selected (% difference of the median (% difference of the median

data point estimated volatility from the true volatility) estimated volatility from the true volatility)
16th prctile 50th prctile 84th prctile 16th prctile 50th prctile 84th prctile

50 -12.03 17.82 59.20 30.34 74.21 136.78
75 -14.47 14.54 46.72 16.33 64.42 122.78
100 -14.13 13.84 47.86 28.58 71.40 126.67
125 -11.90 12.65 50.81 29.46 75.31 125.78
150 -11.65 15.85 48.28 35.22 79.73 130.59
175 -12.56 14.48 51.58 33.96 76.55 132.39
200 -13.75 14.10 46.32 30.28 72.55 126.55
225 -12.74 15.33 51.55 25.60 73.02 144.70

Note: The table shows the distribution of the percentage differences between the estimated median stochastic
volatility and the true volatility path over the 300 simulated data-sets. The numbers correspond to the upper

panels of Figures 6 and 7. Simulation details are reported in Section C of the Appendix.

Table 12: Stochastic Volatility Estimates : Variable 2

TVARSVOL VARSVOL
selected (% difference of the median (% difference of the median

data point estimated volatility from the true volatility) estimated volatility from the true volatility)
16th prctile 50th prctile 84th prctile 16th prctile 50th prctile 84th prctile

50 -14.25 8.46 57.94 3.26 28.83 63.47
75 -14.64 11.66 50.44 7.09 30.25 61.81
100 -15.38 10.96 46.32 10.15 30.17 62.51
125 -11.43 10.24 48.12 10.29 30.26 63.21
150 -11.35 10.39 41.79 9.96 32.35 68.12
175 -13.67 11.91 40.93 8.59 30.81 68.43
200 -12.77 11.20 47.51 6.99 31.91 68.27
225 -12.96 12.53 47.46 4.96 31.37 67.75

Note: The table shows the distribution of the percentage differences between the estimated median stochastic
volatility and the true volatility path over the 300 simulated data-sets. The numbers correspond to the lower

panels of Figures 6 and 7. Simulation details are reported in Section C of the Appendix.

D Point Forecast Evaluation for the US data

The point forecast is obtained as the mean of the the forecast density. Table 13 presents
the average root mean squared error (RMSE) for each model relative to that obtained using
the BVAR. The table shows that it is difficult to distinguish between the models in terms of
point forecasts. For variables such as industrial production, the interest rate and the stock
price index, each of the three models produce forecasts that lead to a 5% to 10% reduction in
RMSE relative to the BVAR. For inflation, the point forecast performance of the models under
consideration is very similar to that of the BVAR.
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Table 13: RMSE relative to the BVAR model

1M 3M 6M 12M
IP Growth

BVAR 0.538 0.637 0.682 0.710
TVARSVOL 0.904 0.914 0.927 0.945

TVAR 0.899 0.906 0.921 0.950
VARSVOL 0.903 0.909 0.925 0.946

π

BVAR 0.137 0.166 0.179 0.193
TVARSVOL 1.011 1.027 1.048 1.065

TVAR 0.994 1.011 1.031 1.050
VARSVOL 0.993 1.011 1.027 1.041

SP500 Return
BVAR 2.796 3.360 3.529 3.584

TVARSVOL 0.951 0.953 0.959 0.974
TVAR 0.950 0.951 0.956 0.970

VARSVOL 0.956 0.955 0.958 0.971
R

BVAR 0.024 0.046 0.069 0.097
TVARSVOL 0.935 0.885 0.879 0.912

TVAR 0.930 0.886 0.888 0.928
VARSVOL 0.940 0.896 0.881 0.908

Notes: The numbers are relative to the BVAR and computed from the average RMSE values obtained from
the 490 recursive estimations for each of the four models (1960 estimated models in total). Each recursive
estimation uses 13 lags and 11,000 iterations. The first line of each panel reports the average RMSE of the
benchmark BVAR model.

E Further sensitivity analysis

We consider alternative orderings of the variables in the TVARSVOL. Figure 8 presents the
marginal posterior for the DOF for the industrial production and SP500 returns using alter-
native orderings for these variables in the TVARSVOL model. For example, while in the main
text IP is ordered first, ‘order1’, ‘order2’ and ‘order3’ refer to versions of the model where IP
is ordered second, third and fourth respectively. Similarly, SP500 is ordered first, second and
fourth in these alternative models. It is clear from the top panel of the figure that the strong
evidence for non-normality of the orthogonal residuals of the IP equation is not influenced by
the recursive structure of the A matrix in equation 2.2. The bottom panel of the figure suggests
a similar conclusion for SP500. While there is a rightward skew in the marginal density when
SP500 is ordered last, the posterior is centred around a value of DOF less than 10 in all cases.

We also consider different priors to the variance of the shocks gk for TVARSVOL. In the
main text, we follow Cogley and Sargent (2005) by proposing an inverse-gamma distribution
p (gk) ∼ IG(D0, T0), where T0 = 1 and D0 = 0.0001 are the degrees of freedom and scale
parameter. As sensitivity checks, we loosen the prior scale by ten and hundred times such that
the new scales are D′0 = 0.001 and D′′0 = 0.01 respectively. Figure 9 displays the posterior
distribution of gk under the three different prior scales. We find evidence that the posterior
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Figure 8: Sensitivity of the DOF Posterior to Alternative Orderings
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distributions for gk of all variables are quite robust against the prior of the scale parameter.

F Time-Varying Parameter VAR with Stochastic Volatil-
ity

The TVP-VARSVOL model with three variables and two lags can be written as follows:

Yt = ct +B1,tyt−1 +Bp,tyt−2 + ut t = 1, . . . , T. (F.1)

where ut are heteroscedastic shocks with a variance-covariance matrix Ωt defined as:

cov (ut) = Ωt = A−1
t Ht

(
A−1
t

)′
, (F.2)

where the time-varying matrices Ht and At are defined as:

Ht =


h1,t 0 0
0 h2,t 0
0 0 h3,t

 At =


1 0 0

α21,t 1 0
α31,t α32,t 1

 . (F.3)

The log of hi,t and αij,t evolve as random walks:

ln hi,t = ln hi,t−1 + νi,t αij,t = αij,t−1 + τt, (F.4)

where var(νi,t) = gi and var(τt) = S.
The system can be represented more compactly by stacking the right-hand-side coefficients

into a vector Φ̂t as follows:
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Figure 9: Posterior distributions of the variance of shocks
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Notes: Black lines represent the posterior distributions of the gk for each variable when the prior scale is
D0 = 0.0001, following Cogley and Sargent (2005). Red lines represent the posterior distributions when

D′0 = 0.001 whereas blue lines represent D′′0 = 0.01.

Yt = X ′tΦ̂t + A−1
t Htεt, (F.5)

where the data matrix is written as X ′t = In ⊗
[
1, y′t−1, y

′
t−2

]
, and Φ̂t = vec ([ct, B1,t, B2,t]), and

structural variance-covariance matrix cov (εt) = In (In denotes an identity matrix). Following
the literature, we model the dynamics of the parameter matrix as a random walk:

Φ̂t = Φ̂t−1 + ηt, (F.6)

where the innovation vector ηt follows a multivariate normal distribution with mean zero
and variance Q.

The TVP-VARSVOL model F.1 – F.6 is estimated with Bayesian methods as described in
Blake and Mumtaz (2012) amongst others.
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