
Issues in number entry user interface styles:
Recommendations for mitigation

[Invited Paper]

Patrick Oladimeji, Harold Thimbleby
Swansea University
College of Science

SA2 8PP, Wales
p.oladimeji@swansea.ac.uk,

harold@thimbleby.net

Paolo Masci, Paul Curzon
Queen Mary University of London

Mile End Road
E1 4NS, London

p.m.masci, p.curzon@qmul.ac.uk

ABSTRACT
Interacting with numbers is a core part of using many inter-
active computer systems from the remote controls of elec-
tronic media appliances to user interfaces of high-integrity
systems such as medical devices. Number entry systems are
widely used on mobile devices. A wide variety of different
user interface designs exist for interacting with numbers.
The intricacies of the different styles are not well under-
stood by designers and developers, especially for handling
use error. This paper reviews these issues and provides rec-
ommendations for mitigating them.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input devices

1. INTRODUCTION
There are a variety of ways to interact with numbers, not

least because of the wide variety of input devices available
(e.g., Buxton [1], Card et al. [2] and Mackinlay et al. [7]).
The ease with which the different properties, movement,
pressure, etc, sensed by these input devices can be mapped
to numeric quantities (e.g., a slider specifies position while a
dial specifies angle) also adds to the diversity of design op-
tions. To structure the design space of number entry inter-
faces, we use the Questions, Options and Criteria (QOC) [8]
method.

2. THE DESIGN SPACE
QOC facilitates a structured exploration of the design

space, which can be expanded to an arbitrary level of de-
tail. QOC enables reasoning about design options at many
levels of abstraction, which is useful for people with different
roles in the design process.

The first question that helps structure the design space
addresses what part of a number the interface controls. The
user interface might be used to control individual digits of

the number or to control a selection mechanism for choosing
the intended number from a set of valid values. When the
interface controls individual digits, the question of the order
of digit specification can be asked. For this, there are three
options. The digits may be specified in an unrestricted order
or in a restricted order such as from left to right, or from right
to left.

For each of these options, it is possible to explore methods
for selecting digits in the number in order to further refine
the design space. Hence we address the question of how
the digits are specified. The digits can be specified directly
using, for example, handwriting, widgets with a 1:1 mapping
to each numeral (e.g., a digit key) or by using widgets that
have a 1:many mapping to numerals (e.g., a knob with 10
position).

When the interface controls how a number is selected di-
rectly, we can address the question of how the numbers are
selected. Similar to digit selection, the number can be se-
lected directly, using widgets with a 1:1 mapping to the
intended number (e.g., as seen on elevator panels) or the
number might be selected by using widgets that helps the
user to navigate a much larger set of valid values, e.g., using
a dial or a pair of buttons for traveling up and down the
number line.

Figure 1 shows a decomposition of the design space. We
describe four groups of interface styles from this classifica-
tion with some examples from day to day use.

2.1 Serial digit entry
This allows the user to enter the digits of a number in

a restricted order (either from left to right or from right
to left). The most common example of this is the numeric
keypad which allows direct digit entry in left to right order.
This can be found in calculators and telephones. Note that
digit selection on a serial interface need not be by direct
selection. Digits can be set incrementally using up-down
arrows or by chording (pressing multiple keys) as found on
old mechanical calculators like the Kollektor [9].

2.2 Independent digit entry
Independent digit entry interfaces allow the user to spec-

ify the digits in a number in unrestricted order. Examples
include the directional-pad (D-pad) interface (figure 2c), a
four way navigation style keypad where the up-down keys
are used to increase or decrease the digits and the left-right
keys are used to select a digit to modify. Another example,

MOBIHEALTH 2015, October 14-16, London, Great Britain
Copyright © 2015 ICST
DOI 10.4108/eai.14-10-2015.2261763



Figure 1: The QOC analysis segments the design space of number entry systems into two main dimensions. Some interfaces
allow the explicit specification of digits in a number, while others allow selection of a number from a list of valid values. Digit
based interfaces are further distinguished based on the order of digit specification and how digits are selected (e.g., direct
selection or incremental selection), while number selection based interfaces are structured based on how numbers are selected
(e.g., direct selection or incremental selection).

the up-down interface, has a pair of widgets for increasing
and decreasing each digit that can be displayed by the host
application. A variation on the up-down interface is shown
in figure 2b where each digit is modified independently by
swiping up or down on a digit.

2.3 Incremental number entry
Here the user navigates forward or backwards through a

list of numbers. The interface may allow the user to control
the speed of navigating through the list. In many designs,
tapping a button goes to the next number, and holding it
gradually (or after a pause) increases the speed of search.

2.4 Direct number selection
Here the user makes a selection from a valid set of options

presented by the application. This is feasible in situations
where there is a small and stable set of numeric values to
choose from, e.g., as seen in lift floor selection interfaces. If
the range of numeric values required by the host application
is large enough to require scrolling between screens, then
this interface essentially becomes an incremental interface.

Any of the interfaces described above may be implemented
using buttons, sliders, dials, gestures or any widgets found
in the design space of input devices [7]. The smallest unit
of a number is a digit, which itself is a number. A sequence
of digits that are a part of a number are also numbers. This
means, for instance, that the controlling aspect of the inter-
faces described here is not limited to single digits and entire
numbers. The controls may be applied to digits that are
grouped together in twos, threes or more clusters and these
controls may be performed incrementally or directly.

3. CRITERIA
Below we present criteria that can be used as part of the

decision process of selecting an appropriate interface from
the design space for a given context.

3.1 Error correction rate
This refers to the proportion of all errors that occur on

an interface that are corrected by the user. It gives an in-
dication of how well errors are detected on each interface.
For instance, results from our lab studies [10, 11] showed
that 83% of errors on the serial interface tested were cor-
rected. 94% of errors were corrected on both version of the

incremental interface tested. On the independent digit entry
interfaces, the up-down interface had 84% of errors corrected
while the d-pad had 100% of errors corrected.

3.2 Error severity
Error severity provides a quantitative measure for assess-

ing the level of risk that can be attributed to an undetected
error on an interface. More formally, it is defined as the ratio
of the intended value to the transcribed value in a number
entry task [3, 10, 14]. This criterion can be used to explore
the cost of undetected overrun, substitution, deletion or in-
sertion errors in a number entry task.

3.3 User interface footprint
This is the amount of space needed to implement an in-

terface. This includes issues such as the number of widgets
required, the minimum size of each widget in order to fa-
cilitate optimal target acquisitions and the amount of space
needed to meaningfully implement and execute interaction
modalities such as gestures if using a touch screen interface.

3.4 Speed of entry
This refers to how quickly a user can enter or select an

intended number on a given interface. The speed of entry
would depend on the range of values and the precision (i.e.,
the number of decimal places) of the values allowed in the
application. Where numbers of unbounded length and pre-
cision need to be entered, a reasonable option might be to
implement a serial digit entry interface. This same assump-
tion should not be carried over to contexts where the type of
numbers allowed in the application are bounded, with some
values more common than others. An example of this is in
numbers used in infusion pumps and other medical devices.
Our research shows that on average, the up-down indepen-
dent digit entry interface is faster than the numeric keypad
found on many infusion pumps [9]. Based on the analyses
of numbers used in infusion pumps in hospitals, research by
Wiseman et al. shows that optimising the user interface to
address more frequently used digits in the required context
would improve the speed of entry and could reduce number
entry error [16].

4. ISSUES
Each group in the classification comes with choices that



1 2 3

4 5 6

7 8 9

0 C
(a) Number pad (b) Numeric wheels (c) D-pad (d) Dial (e) Chevrons (f) Lift

Figure 2: Serial digit entry (a), independent digit entry (b) and (c), incremental number entry (d) and (e) and direct number
entry (f).

designers have to make when implementing user interfaces
from that group. These have an impact on the correctness
of the overall application. We highlight some common issues
below and give recommendations to mitigate them:

4.1 Serial digit entry
The nature of interfaces based on serial digit entry means

they are prone to syntax errors that violate the rules of a
properly formed number. For instance, what happens when
a person keys in multiple decimal points, or a number too
long to be displayed in the application? How are detected
errors corrected? and how are users alerted to error?

4.1.1 Blocking and alerting users to error
Many devices, such as calculators and infusion pumps, just

ignore the user pressing the decimal point more than once.
This behaviour means that if a person tries to correct the
key presses [0 7 5], by trying to delete a decimal point [0

DEL 7 5], they could turn it into 75 rather than 0 75. If
the second decimal point was just silently ignored then the
attempted correction would delete only the one registered
instead. Does this really make a difference? We studied a
variety of designs with computer simulated user key pressing
to see what effect decimal point handling has on the accu-
racy of numbers. We found that correctly handling decimal
points can at least halve the rate of ‘out by ten’ errors, where
a person enters a number that is ten or more times larger
or smaller than that intended [14]. This can be achieved by
registering all keys the user presses (including multiple dec-
imal points) on the display and by blocking and alerting the
user to the entry of numbers that violate the international
guidelines for formatting numbers of the Institute for Safe
Medication Practices. Few medical devices do this, yet it
would be easy to fix them — and normal (error free) use
would be unaffected.

There is a related problem with some numeric keypads,
like calculators, such as those which have one key for each
digit. Commonly, the devices only have space to display
numbers with at most 8 digits. The delete key behaves
unexpectedly because applications often ‘ignore’ digit keys
pressed after the display is full. Trying to correct the 9 digit
number 123456786 to 123456789 with the sequence of keys
[1 2 3 4 5 6 7 8 6 DEL 9] could delete the 8 if the last 6 had
just been ignored. This would turn it into 12345679.

Overall the important design lesson here is that devices
should always alert users when they have made a mistake,
like entering too many digits or multiple decimal points [12],
rather than silently ignoring the flawed key press. Otherwise
the person may not notice their mistake, or not notice that
it has been silently corrected and then mistakenly try to
correct it.

4.2 Independent digit entry
4.2.1 Controlling digits

Modification of digits on an interface allowing direct con-
trol of digits is usually done using UP and DOWN arrow
keys. How should these keys work? For example, pressing
UP will increase 1 to 2, 2 to 3, 3 to 4 and so on, but what
happens when 9 is increased? Does it go to 0 or does it go
both to 0 and increase the digit to its left (does 9 “increase”
to 0 or to 10?). Perhaps it stays at 9? What happens when
users attempt to change numbers beyond the maximum or
minimum values the device can display?

4.2.2 Controlling cursors
Instead of having UP and DOWN keys that correspond

to each digit on the display, some interfaces use LEFT and
RIGHT arrow keys to move a cursor over the digit that
should be modified. What happens if you press LEFT when
the cursor is in the leftmost position, or press RIGHT when
in the rightmost position? Where should the cursor be ini-
tially placed when entering a number?

We studied combinations of design choices from a set of
common features like these found in designs [4]. We inserted
simple, common keying errors such as pressing a key twice
or missing a key press at random. We looked at each design
decision separately in terms of whether it was included or
not. We found the safest choices in terms of which is least
likely to lead to a large error in the sense of being least
sensitive to simple keying slips are:

• when users attempt to increase or decrease numbers
beyond the maximum or minimum values allowed on
the device they are stopped from doing so;

• the cursor starts on the leftmost digit, and
• when moving left or right, the cursor does not jump

from one end of the display to the other, but instead
the cursor stays where it is.

4.3 Incremental number entry
Incremental number entry interfaces can be slow if they

are used to address numbers over a very large range. De-
signers try to improve the speed by changing the order of
control of the widget from a simple position control system
to a velocity or acceleration control system — where user
action determines the speed at which changes to the num-
ber is made. These design decisions mean users are likely to
overshoot and undershoot their target values when selecting
numbers.

4.3.1 Gain and time-delay
Improving the stability of incremental number entry inter-

faces requires understanding the roles played by gain and
time-delay. Gain affects the speed at which the user ap-



proaches the target number and time-delay affects the time
taken for the system to react to changes made by the user
(also referred to as latency). When gain is low, the speed of
entry is slow. When gain is high, the user is likely to oscil-
late about the target value. There is a similar effect when
time-delay is high [5, 6].

Since users tend to look at the displays of this type of
interface during interaction, appropriate information should
be fed back to the user regarding how much change would
happen to a number as a result of interaction. This can
be achieved by highlighting digits on the display or using
auditory feedback to encode the amount of change occurring
on a number. Stability of the system would also be improved
if a widget that allows the user to control the gain of the
system is used. This way users are able to control exactly
how fast they approach the target value.

4.4 Bugs
Numeric user interfaces seem easy to implement, so it is

surprising that many have bugs [13–15], perhaps a conse-
quence of programmers thinking number entry is so easy to
program they do not think it is worth adopting best practice
they would use for problems recognised as being hard.

For example, the delete key on serial number entry user
interfaces is often incorrectly implemented [15], and on some
independent digit entry systems there are modes where pre-
vious numbers interfere with the number the user is enter-
ing [4].

An unlimited number of bugs is possible, and any can
interact badly with use error, so the recommendations for
mitigation are to use formal methods [13] and testing [15],
as well as development environments that support tools for
rigorous development.

5. SUMMARY
Number entry user interfaces are ubiquitous and their cur-

rent design and implementation are often not performed in
a dependable way. We have shown there is variety in the
design of user interfaces for manipulating numbers. With
different contexts of use, it is important to choose an in-
terface style that is appropriate. Various constraints might
determine this choice — for instance speed might be impor-
tant in gaming user interfaces, but in a medical application
error severity might be most important, and user interface
footprint might be important in a mobile application. We
have therefore highlighted common issues that arise as a re-
sult of the choices designers and developers have to make
when implementing number entry user interfaces. We have
provided some recommendations on how to mitigate com-
mon issues. In general errors should be caught and alerted
to the user, and users should be able to accurately predict
the effects of their actions on the interface.

Acknowledgements
This work was funded by EPSRC [grant EP/G059063/1].

6. REFERENCES
[1] William Buxton. Lexical and pragmatic considerations

of input structures. SIGGRAPH Comput. Graph.,
17(1):31–37, January 1983.

[2] Stuart K. Card, Jock D. Mackinlay, and George G.
Robertson. The design space of input devices. In
Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’90, pages
117–124, New York, NY, USA, 1990. ACM.

[3] Abigail Cauchi. Differential formal analysis: evaluating
safer 5-key number entry user interface designs. In
Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’12,
pages 317–320, New York, NY, USA, 2012. ACM.

[4] Abigail Cauchi, Andy Gimblett, Harold Thimbleby,
Paul Curzon, and Paolo Masci. Safer “5-key” number
entry user interfaces using differential formal analysis.
In Proceedings of HCI 2012 The 26th BCS Conference
on Human Computer Interaction, volume 26, pages
29–38, Birmingham, UK, September 2012.

[5] Gavin Doherty and Mieke Massink. Continuous
interaction and human control. In Proceedings of 18th
European Conference on Human Decision Making and
Manual Control, pages 80–96, Loughborough, 1999.

[6] Richard J. Jagacinski and John Flach. Control theory
for humans: quantitative approaches to modeling
performance. Routledge, 2003.

[7] Jock Mackinlay, Stuart K. Card, and George G.
Robertson. A semantic analysis of the design space of
input devices. Hum.-Comput. Interact., 5(2):145–190,
June 1990.

[8] Allan MacLean, Richard M. Young, Victoria M.E.
Bellotti, and Thomas P. Moran. Questions, options,
and criteria: Elements of design space analysis.
Human-Computer Interaction, 6(3-4):201–250, 1991.

[9] Patrick Oladimeji. Designing number entry user
interfaces: a focus on interactive medical devices. PhD
Thesis, January 2014.

[10] Patrick Oladimeji, Harold Thimbleby, and Anna Cox.
Number entry interfaces and their effects on error
detection. In Proceedings of the 13th IFIP TC 13
international conference on Human-computer
interaction, pages 178 – 185, Berlin, 2011.

[11] Patrick Oladimeji, Harold Thimbleby, and Anna Cox.
A performance review of number entry interfaces. In
Proceedings of the 14th IFIP TC13 Conference on
Human-Computer Interaction, pages 365–382, Cape
Town, September 2013.

[12] Harold Thimbleby. Contributing to safety and due
diligence in safety-critical interactive systems
development by generating and analyzing finite state
models. In Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing
systems, EICS ’09, pages 221–230, New York, 2009.

[13] Harold Thimbleby. Safer user interfaces: A case study
in improving number entry. IEEE Transactions on
Software Engineering, 41:711–729, 2015.

[14] Harold Thimbleby and Paul Cairns. Reducing number
entry errors: solving a widespread, serious problem.
Journal of the Royal Society Interface,
7(51):1429–1439, October 2010.

[15] Harold Thimbleby, Paul Cairns, and Patrick
Oladimeji. Unreliable numbers: Error and harm
induced by bad design can be reduced by better
design. Journal Royal Society Interface, in press.

[16] Sarah Wiseman, Anna L Cox, and Duncan P Brumby.
Designing devices with the task in mind: which
numbers are really used in hospitals? Human factors,
55(1):61–74, February 2013.


	Introduction
	The design space
	Serial digit entry
	Independent digit entry
	Incremental number entry
	Direct number selection

	Criteria
	Error correction rate
	Error severity
	User interface footprint
	Speed of entry

	Issues
	Serial digit entry
	Blocking and alerting users to error

	Independent digit entry
	Controlling digits
	Controlling cursors

	Incremental number entry
	Gain and time-delay

	Bugs

	Summary
	References

