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We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into
graphs, enabling the analysis of spatially extended data structures as networks. We introduce sev-
eral possible extensions and provide analytical results on the topological properties of the graphs
associated to different types of real-valued matrices, which can be understood as the high and low
disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree
distribution of these graphs associated to uncorrelated random fields of generic dimension. This
result holds independently of the field’s marginal distribution and it directly yields a statistical
randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial
snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively
coupled chaotic maps, a system that generates high dimensional spatio-temporal chaos. The range
of potential applications of this combinatorial framework includes image processing in engineering,
the description of surface growth in material science, soft matter or medicine and the characteri-
zation of potential energy surfaces in chemistry, disordered systems and high energy physics. An
illustration on the applicability of this method for the classification of the different stages involved
in carcinogenesis is briefly discussed.

I. INTRODUCTION

The concept of visibility graphs was introduced in computational geometry and graph theory some decades ago in
order to abstract the inter-visible structure of a set of points and obstacles in the Euclidean plane [1]. Each node
in this graph models a point location, and each edge represents a visible connection between them. Applications
of classical visibility graph theory included principally robot motion planning, geography, urban planning and
architecture [2]. In recent years this paradigm was extended to the realm of time series analysis by looking at time
series as finite samplings of one-dimensional landscapes. In this context, Visibility and Horizontal Visibility Graphs
were introduced as a family of mappings between ordered sequences and graphs [3, 5]. Consider an ordered sequence
{x(t)}Nt=1, where x(t) ∈ Rm, m ≥ 1. For m = 1, the sequence of N data can for instance represent a univariate time
series trajectory describing the activity of a complex system, such as the time evolution of a temperature, a stock
price asset or a heart inter-beat measurement. Such dynamical information is subsequently mapped into a graph of
N nodes where any two nodes are linked in the graph if a particular visibility criterion (defined in section II, cf eqs.
1 and 2 below) holds in the sequence (when m > 1 we get multivariate time series associated to high dimensional
dynamics [6]). This mapping thereby establishes the framework for the combinatorial description of dynamics and
enables the possibility of performing graph-theoretical time series analysis by building a bridge between the theories
of dynamical systems, signal processing and graph theory.
In recent years, this mapping has been used to provide a topological characterization of different routes to low
dimensional chaos [7–9], or different types of stochastic and chaotic dynamics [10]. From an applied angle, it is
being widely used to extract in a simple and computationally efficient way informative features for the description
and classification of empirical time series in several areas of physics, including optics [11], fluid dynamics [12–14],
geophysics [15] or astrophysics [16, 17], and extend beyond physics in areas such as physiology [18, 19], neuroscience
[20] or finance [21]. Whenever each element in a given classification task is naturally encoded as an ordered sequence,
one can map such sequence into a visibility graph and subsequently extract a certain set of topological properties of
these graphs as the feature vector with which to train classifiers in supervised learning tasks.

Here we extend this methodology from time series {x(t)}Nt=1 to scalar fields h(x, y) : Rd → R. This extension
has only been scarcely explored [22] and is conceptually closer to the original context of visibility graphs [1, 2]. It
enables the possibility of constructing the visibility graphs of images, landscapes, and general large-scale spatially-
extended surfaces. In what follows we will introduce the concept along with a few definitions and properties. In
section III we provide analytical results on some topological properties of these graphs associated to some types of
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FIG. 1: (Color online) Illustration of a sample time series and the construction of the associated Horizontal Visibility Graph
(HVG) and Visibility Graph (VG) following the definition and criteria given by eqs. 1 and 2.

real-valued matrices which can be understood as the high and low disorder limits of real-valued scalar fields. In
particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random
fields of generic dimension, extending the result known for one-dimensional time series. We show that this result, by
holding independently of the field’s marginal distribution, directly yields a statistical randomness test, applicable in
arbitrary dimensions. In section IV we showcase its usefulness by discriminating two-dimensional white noise from
two-dimensional lattice of diffusively coupled chaotic maps (a system that generated high dimensional spatio-temporal
chaos). In section V we discuss the range of potential applications of this combinatorial framework and we further
briefly illustrate its usefulness for characterizing the process of oncogenesis through cell surface image analysis.

II. DEFINITIONS AND BASIC PROPERTIES

We start by recalling the basic definition of Visibility Graphs (VG) and Horizontal Visibility Graphs (HVG) (see
[3, 5] and figure 1 for an illustration):

Definition (VG) Let S = {x1, . . . , xN} be an ordered sequence of N real-valued, scalar datapoints. A Visibility Graph
(VG) is an undirected graph of n nodes, where each node i ∈ [1, N ] is labelled by the time order of its corresponding
datum xi. Hence x1 is mapped into node i = 1, x2 into node i = 2, and so on. Then, two nodes i and j (assume
i < j without loss of generality) are connected by a link if and only if one can draw a straight line connecting xi and
xj that does not intersect any intermediate datum xk, i < k < j. Equivalently, i and j are connected if the following
convexity criterion is fulfilled:

xk < xi +
k − i
j − i

[xj − xi], ∀k : i < k < j. (1)

The same definition applies to a Horizontal Visibility Graph (HVG) [5] but in this latter graph two nodes i, j (assume
i < j without loss of generality) are connected by a link if and only if one can draw a horizontal line connecting xi
and xj that does not intersect any intermediate datum xk, i < k < j. Equivalently, i and j are connected if the
following ordering criterion is fulfilled:

xk < inf(xi, xj), ∀k : i < k < j (2)
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FIG. 2: (Color online) Illustration of two extension classes of visibility algorithms in a dimension d = 2 dataset (gray box
matrix). In the Canonical extension (panel a)) for a given datum (green box) a visibility algorithm is evaluated along the
vertical and horizontal directions. In the FCC extension (panel b)) visibility is considered also along the diagonals crossing the
green box.

From a combinatoric point of view, HVGs are outer-planar graphs with a Hamiltonian path [23], i.e. non-crossing
graphs as defined in algebraic combinatorics [24]. Note that the former definitions focus on discrete sequences,
such that the index labelling is such that i + 1 ≡ i + ∆, where ∆ is the spacing between data. Interestingly,
both VG and HVG are invariant under changes in ∆. Intuitively, this suggests that, in order to consider the
continuous version of a discrete time series one simply needs to take the limit ∆ → 0. This invariance property in
principle allows treating continuous scalar fields as the ∆→ 0 limit of matrices, something that will be discussed later.

Extension classes. One can now extend the definition of visibility to handle two-dimensional manifolds, by simply
extending the visibility criteria along one-dimensional sections of the manifold. The question is, in how many different
ways one can do that? As a matter of fact, there exist several possibilities, here we consider just a few of them.
We firstly consider manifolds of dimension d which have a natural Euclidean embedding and define two extension
classes, which we label as canonical and FCC respectively (incidentally, the name FCC is only loosely inspired in the
Face-centered cubic crystal shape). In the canonical extension class, the rule of thumb for extending the definition
of a visibility graph to a manifold of dimension d will be by applying the VG/HVG to d orthogonal sections of the
manifold (which define n = 2d directions). In other words, at each point of the manifold one constructs the VG/HVG
in the direction of the (canonical) Cartesian axis. On the other hand, the FCC extension class allows an additional
number of sections in the direction of the main diagonals. Accordingly, in this second class the number of directions
is n = 2d+ 2d directions (see figure 2 for an illustration in the case d = 2). Finally, a third extension class (which in
this work will only be defined for d = 2 flat surfaces) is defined by taking n directions in such a way that the set of n
vectors make an homogeneous angular partition of the plane with constant angle 2π/n. This class is labelled as the
order-n class. Obviously, the order-8 and order-4 classes coincide –when d = 2– with the FCC and canonical classes
respectively, but they differ otherwise. These special classes are indeed of special relevance as they are perhaps the
most natural algorithmic implementation for image processing. We are now ready to give a more formal definition of
visibility graphs in these extension classes.

Definition (IVGn) Let I be a N × N matrix, where Iij ∈ R and N > 0 (note at this point that n and N denote
two different things). For an arbitrary entry ij, make an angular partition of the plane into n directions, such that
direction labelled as p makes an angle with the row axis of 2π(p− 1)/n. The Image Visibility Graph of order n IVGn

is a graph with N2 nodes, where each node is labelled by a duple ij in association with the indices of the entry Iij,
such that two nodes ij and i′j′ are linked if

1. i′j′ belongs to one of the n angular partition lines, and

2. Iij and Ii′j′ are linked in the VG defined over the ordered sequence which includes ij and i′j′.

The Image Horizontal Visibility Graph (IHVGn) follows equivalently if in the second condition we make use of HVG
instead of VG. For illustration, in figure 3 we depict a sample matrix (panel a)) where we have highlighted the central
entry, and in panel b) of the same figure we describe the connectivity pattern associated to this entry in the case of
IHVG8 (to obtain the connectivity patterns of that node within IVG8 instead, one only needs to switch the linking
criterion from eq. 2 to eq. 1).
Note that in the preceding definition, I can be understood as a two-dimensional square lattice, which is naturally
embedded in R2 if we associate a certain lattice length ∆p > 0 to the separation between any two neighbors in
each direction p. Since a two-dimensional square lattice is coarsely equivalent to R2, in the limit N → ∞,∆p → 0
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FIG. 3: (Color online) Illustration of the IHVG8 construction. Panel a): plots a sample square matrix, where the central
entry in the matrix is selected (with value 0.5). Horizontal visibility criterion (eq. 2) along 4 lines (FCC extension class, blue
arrows) is then applied to select visible data points over the image/field (red boxed pixels). Panel b): the connectivity pattern
of the node associated to the selected entry is shown. By sequentially applying the algorithm to all the pixels in the matrix
the corresponding IHVG8 can be fully determined. To obtain the connectivity patterns of that node within IVG8 instead, one
only needs to switch the linking criterion from eq. 2 to eq. 1.

this matrix I converges in some mathematically well-defined sense to a continuous scalar field h(x, y) : R2 → R.
Accordingly, the continuous version of these graphs can be obtained for n→∞, and in that case I(H)VG∞ would be
an infinite graph. In this work we keep n finite and from now on only consider finite discretizations of scalar fields,
however the infinite case is certainly of theoretical interest and is left for future investigations.

For a given dimension d, one can define in a similar fashion the Visibility Graphs in the canonical extension class
labelled IVGc(d) by modifying condition (1): i′j′ belongs to one of the d Cartesian axis which span Rd and have
origin in ij. Analogously, the Visibility Graphs in the FCC extension class IVGFCC(d) are obtained by modifying
again condition (1) appropriately to allow visibility in the main diagonals. Finally, again the Horizontal version
follows equivalently if in the second condition we make use of HVG instead of VG.

A trivial but important remark is that ∀I, I(H)VG4=I(H)VGc(2) and I(H)VG8=I(H)VGFCC(2). Note also that the
special class IVGc(2) has been explored recently under the name row-column visibility graph [22].
Once any of these graphs has been extracted from a given matrix I, one can further compute standard topological
properties on this graph using classical measures from Graph Theory [25] or recent metrics defined in Network
Science [26], which in turn might be used to provide a topological characterization of I. For instance, the degree k
of a node is the number of links of that node. This allows to construct the degree matrix K ∈ NN×N , where Kij is
the degree of node labelled with the pair i, j. The degree distribution P (k) determines the probability of finding a
node of degree k and can be straightforwardly computed from the degree matrix. In this work for concreteness we
will only consider these metrics, however we should emphasize here that a large toolbox of measures could be used
for feature extraction in context-dependent applications. Here we are motivated to use these very simple metrics as
it has recently been proved that, in the one-dimensional case, the set of degrees is on bijection with the adjacency
matrix and hence is indeed an optimal feature [27].
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In what follows we depict some exact results on the topology of these graphs associated to simple types of matrices
which can be understood as the high order and high disorder limits of real images. From now on we only consider
the Horizontal version of the visibility criteria, and we assume N →∞ to avoid border effects.

III. SOME EXACT RESULTS

A. Periodicity: monochromatic images and chess boards.

We start by considering trivial configurations at the end of total order. For monochromatic images where Iij = c, the
IHVGn is such that Kij = n and thus P (n) = 1 and P (k 6= n) = 0. Then we can consider chess boards. This is a pe-
riodic lattice, where in each row the same periodic sequence is represented (black,white,black,. . . )≡ (1,−1, 1,−1, . . . ),
except for a one-step translation in even rows. Accordingly, neglecting boundary conditions Iij = 1 if i · j is odd
and −1 otherwise. For IHVG4 we find Kij = 8 if i · j is odd and 4 otherwise. For IHVG8 we find Kij = 12 if i · j
is odd and 8 otherwise. From this latter matrix the degree distribution is simply P (k) = 1/2 for k = 8, 12 and zero
otherwise. For other types of periodic structures it is easy to see that the degree matrix will inherit such periodicity
and thus the degree distribution will only be composed by a finite number q of non-null probabilities, where q in turn
is typically bounded by a function that depends on the period of the periodic structure.

B. Uncorrelated random fields.

We then consider a limit configuration at the end of total disorder: a two-dimensional uncorrelated random field,
i.e. white noise. Then, the following theorem holds for the degree distribution of IHVGn:

Main Theorem. Consider an N × N matrix with entries Iij = ξ, where ξ is a random variable sampled from
a distribution f(x) with continuous real support x ∈ (a, b). Then, for n > 0 and in the limit N → ∞ the degree
distribution of the associated IHVGn converges to

P (k) =

{(
1

n+1

)(
n

n+1

)k−n
, if k ≥ n

0, otherwise
(3)

For the sake of readability, the proof of this theorem has been put in an appendix. A few comments are in order.
First, note that this equation reduces, for n = 2 (d = 1), to the well-known result for time series of i.i.d. variables
P (k) = (1/3)(2/3)k−2 [5]. Second, in the specific class n = 8 (equivalent to the FCC class in d = 2), eq.3 yields

P (k) =

{(
1
9

)(
8
9

)k−8
, if k ≥ 8

0, otherwise
(4)

Third, note that in the limit of large n we would have a continuous visibility scanning. The extension for any generic
n can also be directly interpreted as a generalization to higher dimensional (discrete) scalar fields, so it is easy to
show that eq.3 also applies to the degree distribution of (i) the canonical extension for dimension d = n/2 (i.e. only
even values of n are allowed in this case), and (ii) the FCC extension for dimension d, where n = 2d + 2d (i.e. for
n = 8, 14, 24, 42, . . . ). We are now ready to provide the proof of the theorem.

Finite size effects. To assess the convergence speed to eq. 3 for finite N , we have estimated the degree distribution
of IHVG8 associated to N × N random matrices whose entries are i.i.d. uniform random variables U[0,1]. In figure
4 we plot, in semi-log scales, the resulting (finite size) degree distributions, for different N = 27, 28, . . . , 212. As we
can see, the distributions are on excellent agreement with eq. 3 for k ≤ k0, where the location of the cut-off value k0
scales logarithmically with the system’s size N as shown in the bottom of the figure. In other words, finite size effects
only affects the tail of the distribution, which converges logarithmically fast with N .

IV. A SIMPLE APPLICATION

The results for uncorrelated random fields found in the previous section are indeed of practical interest because eq.3
holds independently of the noise marginal distribution f . Resorting to the contrapositive, if the degree distribution of
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FIG. 4: (Color online) Panel a): semi-log plot of the degree distribution (ensemble averaged over 10 realizations) of IHVG8

associated to N ×N matrices with i.i.d. uniform U[0,1]random entries, for N = 27, 28, . . . , 212. The solid line is the theoretical
value of P (k) given by eq.3 for n = 8. In every case we find excellent agreement for k < k0, where k0 is a cut-off value that
denotes the onset of finite size effects. Panel b): linear-log plot of the cut-off k0 as a function of the system’s size N for the
same data of Panel a), suggesting a logarithmic scaling k0 ∼ c logN .

IHVGn deviates from eq.3 for some empirical field I, one can conclude that the field is not uncorrelated noise. This
theorem thereby allows for the straightforward design of a randomness statistical test which would be applicable to
data structure of arbitrary dimension d, where n(d) = 2d if one uses the canonical extension class, or n(d) = 2d+ 2d

in the case of FCC.

Coupled Map Lattices. To illustrate this we consider a simple application of discriminating noise from high-
dimensional chaos. Chaotic processes display irregular and unpredictable behavior which is often confounded with
randomness, however chaos is a deterministic process which indeed hides in some cases some patterns that can be
extracted by appropriate techniques. The endeavor of distinguishing noise from chaos has been an area of intense
research activity in the last decades [28] and applications have pervaded nearly every scientific discipline where
complex, irregular empirical signals emerge. Here we consider spatially extended structures and thus we will be
dealing with spatio-temporal chaos, i.e. chaotic behavior in space and in time, and we will explore whether visibility
graphs are able to distinguish such dynamics from simple randomness. Let us define I(t) as a two dimensional square
lattice of N2 diffusively coupled chaotic maps which evolve in time [34]. In each vertex of this coupled map lattice
(CML) we allocate a fully chaotic logistic map xt+1 = Q(xt), Q(x) = 4x(1 − x), and the system is then spatially
coupled as it follows:

Iij(t+ 1) = (1− ε)Q[Iij(t)] +
ε

4

∑
i′,j′

Q[Ii′j′(t)], (5)

where the sum extends to the Von Neumann neighborhood of ij (four adjacent neighbors). The update is parallel
and we use periodic boundary conditions. The coupling strength ε ∈ [0, 1]. For ε = 0 the system is uncoupled and
the N2 logistic maps evolve independently. For positive ε > 0 there is a balance between the internal (chaotic)
dynamics which drives a local tendency towards inhomogeneity and the diffusion term (in the right hand of the
equation one can easily recognize the discrete version of the Laplacian) which induces a global tendency towards
homogeneity in space. This balance is tuned by ε, acting as an effective viscosity constant, and the system evolves
into different spatio-temporal dynamics as ε varies. For a small yet positive value of the coupling the system
displays so-called Fully Developed Turbulence, a phase with incoherent spatiotemporal chaos and high dimensional
attractor [34]. In other words, the system evolves both temporally and spatially in a very irregular way, yet it is not
totally uncorrelated. For illustration, in figure 5 we plot, for N = 200, grayscale snapshots of this system for ε = 0
(uncoupled), ε = 0.1 (weak coupling) and ε = 0.7 (strong coupling) along with a 200 × 200 matrix of U [0, 1] i.i.d.
random variables (white noise). Note that the snapshot of the uncoupled case reduces to a collection of independent
and identically distributed chaotic variables with a marginal distribution that coincides with the invariant measure
of the fully chaotic logistic map: the Beta distribution B(1/2, 1/2) = π−1x−1/2(1 − x)−1/2. In other words, such
a snapshot is indistinguishable from white, Beta-distributed noise, which should be then equivalent under the
IHVG mapping to any type of white noise and should therefore fulfill our theorem. When ε > 0 spatial correlations
settle in and the snapshots are in theory statistically different, however this difference is only evident for large coupling.
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uncoupled CML (ε=0)

chaotic CML (ε=0.1)

random field (iid)
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chaotic CML (ε=0.7)

FIG. 5: (Color online) Grayscale plots of 200x200 matrices describing: (panel a)) i.i.d. uniform U[0,1] random variables
(uniform white noise); (panel b)) a snapshot of a two-dimensional lattice of diffusively coupled chaotic logistic maps with
coupling strength ε = 0 (effectively being uncoupled and therefore a snapshot of uncorrelated Beta distributed white noise);
(panel c)) the same coupled map lattice for weak coupling ε = 0.1 for which the system displays fully-developed turbulence (a
state of spatio-temporal chaos with a high dimensional attractor); (panel d)) the same coupled map lattice for strong coupling
ε = 0.7. In this latter case the system shows strong spatial correlations and is easily distinguishable from the rest.

Distinguishing noise from chaos. To explore such differences we can exploit our theorem as it follows: first, we
estimate the degree distribution of the IHVG8 of each snapshot, and compare against the theoretical equation for
white noise. To account for finite size effects, it is necessary to compare the estimation of the chaotic case not just
with eq.3 but also with a finite i.i.d. sample. We have generated 20 realizations of each process (random uniform
noise, ε = 0 and 0.1) and have extracted the degree distribution of IHVG8 for each case. Sample results of these
distributions can be shown in panel a) of figure 6 along with the theoretical prediction for i.i.d (eq. 4). As expected,
the distributions are apparently very well approximated by eq. 4 in every case (there are strong deviations for k > 35
but this is due to finite size effects as similar deviations take place for the i.i.d. white uniform noise case). To quantify
potential deviations from the theory (which according to the theorem would imply non-randomness), for each case we
have computed the χ2 statistic

χ2 = N
∑
k

[Pth(k)− Pexp(k)]2

Pth(k)
,

where we have taken k = 8, 9, . . . , 44. Results are shown in panel b) of figure 6, showing now a clear separation
between the uncorrelated cases (uncoupled chaotic maps and uniform white noise) and the weakly coupled system.
This clear distinction is further confirmed in a principal component analysis (PCA) depicted in panel c) of the
same figure, where each degree distribution P (k) has been projected in a two-dimensional space spanned by the
first two principal components (this subspace accounts for 60% of the variability). One does not need to apply
any clustering algorithm as the non-random matrices are very clearly clustered together and apart from the i.i.d. cases.

Phase diagram. As mentioned previously, the spatio-temporal dynamics of the coupled map lattice show a rich
phase diagram as we increase the coupling constant ε. An easy way of encapsulating and visualizing such richness in
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FIG. 6: (Color online) Panel a): semi-log plot of the degree distribution of IHVG8 associated to a two-dimensional uncorrelated
random field of uniform random variables (black dots), and two-dimensional coupled map lattices of diffusively coupled fully
chaotic logistic maps, for coupling constant ε = 0 (diamonds) and ε = 0.1 (crosses). The solid line is eq.3 for n = 8. Deviations
from the exponential law in the tail are due to finite size effects (in every case matrices are 200×200). Note that the ε = 0 case
is effectively a spatially uncorrelated field with i.i.d. entries (with marginal distribution equivalent to the invariant measure
of an isolated logistic map, i.e. the beta distribution). For ε = 0.1 the system is weakly coupled and displays fully-developed
turbulence (spatio-temporal chaos with high-dimensional attractor, i.e. the snapshot is weakly correlated). All three snapshots
(a,b,c in figure 5) look very similar and, expectedly, they all display apparently similar degree distributions. Panel b): here we
consider 20 realizations of each of the three systems, and in each case compute the χ2 statistic (see the text) measuring the
deviation of the empirical degree distribution (k < 44) from the theory for random fields. As expected, the i.i.d. cases (random
field and snapshot of the uncoupled logistic maps) are indistinguishable, but the weakly coupled system is clearly distinguished,
finding stronger deviations from eq. 3 than those found due to finite size effects. Panel c): principal component analysis (PCA)
of the set of degree distributions for the 60 realizations explored in panel b). Each degree distribution P (k) has been projected
in a two-dimensional space spanned by the first two principal components (this subspace accounts for 60% of the variability).
One does not need to apply any clustering algorithm as the non-random matrices are very clearly clustered together and apart
from the i.i.d. cases.

a) b)

FIG. 7: (Color online) Panel a): scalar parameter D (see the text) as a function of the coupling constant ε, compute from
the degree distribution of IHVG8 associated to 100× 100 CMLs of fully chaotic logistic maps. D captures the spatio-temporal
phases: Fully-Developed Turbulence (FDT), Periodic Structure (PS), Coherent Structure (CS) and a mixed phase. Snapshots
characteristic of these phases are depicted in figure 9 in an appendix. Panel b): principal component analysis (PCA) of the
degree distributions of IHVG8 associated to the same data of panel a). The plot is a projection into the first two principal
components (accumulating over 90% of the data variability). The different heuristic phases are highlighted.
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a single diagram is presented in panel a) of figure 7. For each ε, we compute the degree distribution of the associated
IHVG8. Then we compute the distance D between the degree distribution at ε and the corresponding result for ε = 0
(eq. 4) D =

∑
k |P (k)− (1/9)(8/9)k−8|. D acts as a scalar order parameter describing the spatial configuration of the

CML, and interestingly, evidences sharp changes for the different phases, such as: for ε < 0.12, the system develops
Fully-Developed Turbulence (FDT) with weak spatial correlations. This regime shifts to a Periodic Structure (PS)
for 0.12 < ε < 0.27. This regime then parsimoniously shifts into a phase with spatially Coherent Structures (CS),
which ultimately break down for ε > 0.88 in favor of periodic patterns. For 0.88 < ε < 1 the spatial structure shows a
mix between CS and PS. We conclude that the degree distribution of the IHVG8 captures this rich spatial structure,
something confirmed via principal component analysis in panel b) of figure 7.

V. DISCUSSION

This framework allows the possibility of describing discretized scalar fields of arbitrary origin in a combinatorially
compact fashion, and enables using the tools of graph theory and network science for the practical description and
classification of spatially-extended data structures. For the sake of exposition and concreteness, in this work we have
only used a couple of graph measures (degree matrix and degree distribution) which can be argued that were optimal
in the one-dimensional case [27], but it should be highlighted that this method is much more general and allows to
extract from these graphs any desired property.
For d = 1 the method was naturally designed for the task of time series analysis, and has been exploited accordingly
and extensively in the last years -both from a theoretical point of view and for applications- as was acknowledged in
the introduction section. Here we have presented a natural extension of these algorithms to deal with (discretized)
scalar fields of arbitrary dimension, along with a few exact results on simple -yet relevant- cases. From a mathematical
point of view, the task of characterizing the graphs in these extension classes provide a wide range of challenging open
questions, which could parallel recent advancements in the one-dimensional case [10]. Now, what are the potential
applications of this framework?

For d = 2 (either using the canonical or FCC extension classes, or the order-n class), a plethora of applications
emerge, here we only enumerate and discuss a few: (i) Image Processing: a (grayscale) image is just a discrete scalar
field. Once we extract the visibility graphs of a given image, can we use the topological properties of this graph
to build feature vectors which can feed automatic classifiers for several statistical learning tasks involving images
[4]? Can we define the distance between two images using graph kernels [29] on the associated visibility graphs?
(ii) Physics of Interfaces: can we provide a topological characterization of fractal surface growth [35]? Can we -for
instance- account for spatial self-similar structures much in the same way the Hurst exponent of fractional Brownian
motion was estimated with visibility graphs [30] (a preliminary analysis via row-column visibility graphs has partly
addressed this issue recently [22]). Furthermore, can we apply this methodology in biologically-relevant problems and
beyond, for instance to classify tumoral or calli surfaces? (iii) Urban Planning: can we automatically cluster cities
by only resorting to combinatorial properties extracted from their visibility graphs? And can we link such emerging
clusters with architectural, historical or cultural properties of cities? (iv) Random Matrix theory: Is there a visibility
graph characterization of different random matrix ensembles?

To illustrate the potential applicability of the method to the case of tumor description, in panel d) of figure 8 we
plot the degree distribution of the IHVG8 associated to three atomic force microscopy (AFM) images (94× 94 after
grayscale preprocessing) of normal (panel a)), immortal (premalignant, panel b)) and cancer (malignant, panel c))
cervical epithelial cells [31]. This very preliminary evidence suggests that the carcinogenesis transition normal →
premalignant → cancer is paralleled in IHVG8 graph space by a systematic deviation of the degree distribution from
the i.i.d. case. In panels e), f), g) of the same figure we plot the degree distributions associated to IVG8 instead, whose
tails have been fitted to exponential functions ∼ exp(−λk). We find that exponents seem to change during carcinogen-
esis as λnormal < λimmortal < λcancer [32]. These are of course very preliminary results given simply for illustration, and
future research should confirm their accuracy and their potential use for carcinogenesis description and early detection.

The most exciting application for higher dimensions d ≥ 2 is perhaps on describing the spatial structure of generic
energy landscapes [36] V : x ∈ Rd → R, where d is the number of degrees of freedom. Typically, these fields
describe an energy function whose minimum is associated to the macroscopic behavior of many-body systems,
and play a major role in physics and chemistry. The structure of these fields is however rather messy. As a
matter of fact, in spin glasses and other disordered systems their macroscopic properties do not necessarily relate
directly to a configuration of minimal energy as the system gets trapped in local, metastable minima of this energy
surface: in this sense the spatial distribution and overall structure of these minima (stationary points) gives valuable
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FIG. 8: (Color online) Panles a), b), c): grayscale atomic force microscopy images of normal (a)), immortal (premalignant, b))
and cancer (malignant, c)) cervical epithelial cells (extracted from [31] after permission from I. Sokolov). Panel d): semi-log plot
of the degree distribution of IHVG8 associated to the three images: normal (red dots), immortal (black triangles) and cancerous
(black hollow squares) cells [31]. Normal cells display a distribution closer to an uncorrelated random field (eq.3 for n = 8),
and this preliminary evidence suggests that the transition normal→ immortal→ cancer is paralleled by a systematic deviation
from the random field case for most of the degrees k in P (k). Panels e), f), g): analogous plot for the degree distributions in the
case of IVG8. The distributions now have a clear exponential tail, and we have used least-squares to fit exponential functions
∼ exp(−λk) to the tails of the distributions, i.e. in the range k ≥ 30 (dispersion is Gaussianly distributed, a requirement to
use least-squares minimization). Fitting suggests λnormal < λimmortal < λcancer, something that should be carefully validated in
a larger study.

information on the system dynamical evolution. These energy surfaces are also of great interest in chemistry
(Kramer’s reaction rate theory for the thermally activated escape from metastable states) and high energy physics
(e.g. local minima of supersymmetric energy landscape corresponds to the field theory vacuum). The formalism
presented here would enable the description of such energetic landscapes, opening a thread of questions such as:
Can we classify different types of field theories only using combinatorial criteria on their energy landscapes? What
is the spatial distribution of stationary points of different canonical disordered systems in the light of this new method?

To conclude, we hopefully made the case that to encode spatially extended structures in a combinatorial fashion is an
enterprise that opens exciting theoretical questions as well as applications. The approach presented here is promising
and there exist several possible avenues for future research, and we hope that these methods spark interest in some
of these communities accordingly.

APPENDIX: PROOF OF THE MAIN THEOREM

The proof of the main theorem stated in section III.B essentially makes use of the diagrammatic formalism intro-
duced in [5, 10] where, in the case of time series, the probability of each degree was expanded in a series expansion of
terms, each term associated to a different diagram and contributing with different amplitude.
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Let us start by considering the concrete case n = 8 (which describes the case implemented in our algorithm for
image filtering) and we will generalize for all n thereafter. Using the jargon developed in [5, 10], a node chosen at
random which has horizontal visibility of k others can be modeled as a seed (contributing with probability S) which
has visibility of k − 8 inner nodes (contributing with I) distributed along the n = 8 directions (such that direction
i contributes with ki inner nodes), and whose visibility is finally bounded by 8 bounding nodes (contributing with
probability B). The probability that a node chosen at random has horizontal visibility of k other nodes can thus be
formally expressed as

P (k) =
∑

{k1,k2...k8}

SB8
8∏

i=1

Iki
, (A.1)

where the sum enumerates all admissible combinations of {(k1, k2, . . . , k8)} such that
∑8

i=1 = k− 8 (by construction,
every node always has visibility of its boundary, here formed by n = 8 nodes). It is easy to see that a possible
enumeration is

ki = 0, 1, . . . , k − 8−
i−1∑
m=1

km for i = 1, 2, . . . , 7; k8 = k − 8−
7∑

i=1

ki.

Making use of the cumulative distribution F (x) =
∫ x

a
f(x′)dx′ (with F (a) = 0, F (b) = 1) and following [5, 10],

geometrically it is easy to see that

S =

∫ b

a

f(x0)dx0; B =

∫ b

x0

f(x)dx = 1− F (x0);

To describe the probability of finding p inner nodes Ip, by construction we shall take into account that an arbitrary
number r (from zero to an infinite amount) of hidden data (i.e. nodes that are not visible from the seed) can lie in
between every pair of aligned inner nodes. Such arbitrary number of hidden data should contribute with the following
amplitude

∞∑
r=0

r∏
j=1

∫ x

a

f(nj)dnj =
1

1− F (x)
,

where we have used the properties of the cumulative distribution to find the last identity. Accordingly, the concate-
nation of p inner data which might have an arbitrary number of interspersed hidden data can be expressed as

Ip =

∫ x0

a

f(x1)dx1
1− F (x1)

n−1∏
j=1

∫ x0

xj

f(xj+1)dxj+1

1− F (xj+1)
. (A.2)

This latter calculation is easy but quite tedious. One proceeds to integrate equation A.2 step by step and a recurrence
quickly becomes evident. One can easily prove by induction that

Ip =
(−1)p

p!
[ln(1− F (x0))]p.

We are thus ready to tackle eq. A.1. Taking advantage of the closure
∑8

i=1Ki = k − 8, we first have

8∏
i=1

Iki
=

(−1)k−8[ln(1− F (x0))]k−8∏8
i=1(ki)!

,

so after some reordering,

P (k) =
∑

{k1,k2...k8}

(−1)k−8∏8
i=1(ki)!

∫ b

a

f(x0)(1− F (x0))8[ln(1− F (x0))]k−8dx0.

Now, in this latter equation the integral is easy to compute:∫ b

a

f(x0)(1− F (x0))8[ln(1− F (x0))]k−8dx0 = (−1)k−8(k − 8)!

(
1

9

)k−7
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Consider finally the term

∑
{k1,k2...k8}

(k − 8)!∏8
i=1(ki)!

= (k − 8)!

k−8∑
k1=0

k−8−k1∑
k2=0

· · ·
k−8−

∑7
j=1 kj∑

k7=0

1

k1!

1

k2!
. . .

1

k7!

1

(k − 8−
∑7

j=1 kj)!
= 8k−8 (A.3)

where the last identity was found by iteratively applying the binomial theorem
∑a

k=0

(
a
k

)
rk = (1 + r)a. Altogether,

we can write down explicitly for n = 8

P (k) =

(
1

9

)(
8

9

)k−8

for k ≥ 8 and zero otherwise. This result is independent of f(x) as expected since HVG is an order statistic [33], and
coincides with eq. 3 for n = 8 (i.e. eq. 4).

We are now ready to generalize the whole derivation. For a generic n, trivially

P (k) =
∑

{k1,k2...kn}

(−1)k−n∏n
i=1(ki)!

∫ b

a

f(x0)(1− F (x0))n[ln(1− F (x0))]k−ndx0.

with ∫ b

a

f(x0)(1− F (x0))n[ln(1− F (x0))]k−ndx0 =

(
1

n+ 1

)k−n+1

(−1)k−n(k − n)!

such that

P (k) =

(
1

n+ 1

)k−n+1 ∑
{k1,k2...kn}

(k − n)!∏n
i=1(ki)!

.

Finally since ∑
{k1,k2...kn}

(k − n)!∏n
i=1(ki)!

= nk−n,

we find

P (k) =

(
1

n+ 1

)k−n+1

nk−n =

(
1

n+ 1

)(
n

n+ 1

)k−n

,

what concludes the proof. �

Note that a similar result can be found much more easily at the expense of using a non-rigorous heuristic argument. In
the case n = 8, the probability that the seed node has visibility of exactly k nodes can be expressed as the probability
that there are k− 8 nodes that are not bounding times the probability that after these, the boundary prevents larger
visibility. Accordingly, we shall write

P (k) = (1− P (8))k−8P (8)

For k = 8, ki only take the value ki = 0 ∀i = 1 . . . 8, hence this term is straightforward to compute

P (8) = SB8 =

∫ b

a

f(x0)

[ ∫ b

x0

f(x)dx

]8
dx0 =

1

9
, ∀f

which then yields the correct shape for P (k):

P (k) = (1− P (8))k−8P (8) =

(
1

9

)(
8

9

)k−8

A similar argument can be used for a generic n, yielding

P (k) = (1− P (n))k−nP (n) =

(
1

n+ 1

)(
n

n+ 1

)k−n

for k ≥ n and zero otherwise, in agreement with eq. 3.
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a) b) c)

d) e) f)
FIG. 9: (Color online) Grayscale snapshot plots of 100 × 100 CMLs (eq.5) for different values of ε. From top left to bottom
right, respectively: ε = 0.05 (Fully-developed turbulence, panel a)), ε = 0.15 and ε = 0.25 (periodic structure, panels b) and c)
respectively), ε = 0.4 and ε = 0.8 (coherent structure, panels d) and e) respectively), and ε = 0.95 (coexistence state with both
coherent and periodic structures intertwined, panel f)).
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