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Abstract

In this thesis we present research into linear perturbations in Lemâıtre-Tolman-
Bondi (LTB) and Assisted Coupled Quintessence (ACQ) Cosmologies. First we
give a brief overview of the standard model of cosmology. We then introduce
Cosmological Perturbation Theory (CPT) at linear order for a flat Friedmann-
Robertson-Walker (FRW) cosmology. Next we study linear perturbations to a
Lemâıtre-Tolman-Bondi (LTB) background spacetime. Studying the transformation
behaviour of the perturbations under gauge transformations, we construct gauge in-
variant quantities in LTB. We show, using the perturbed energy conservation equa-
tion, that there is a conserved quantitiy in LTB which is conserved on all scales.
We then briefly extend our discussion to the Lemâıtre spacetime, and construct
gauge-invariant perturbations in this extension of LTB spacetime.

We also study the behaviour of linear perturbations in assisted coupled quintessence
models in a FRW background. We provide the full set of governing equations for this
class of models, and solve the system numerically. The code written for this purpose
is then used to evolve growth functions for various models and parameter values,
and we compare these both to the standard ΛCDM model and to current and future
observational bounds. We also examine the applicability of the “small scale approxi-
mation”, often used to calculate growth functions in quintessence models, in light of
upcoming experiments such as SKA and Euclid. We find the results of the full equa-
tions deviates from the approximation by more than the experimental uncertainty
for these future surveys. The construction of the numerical code, Pyessence, writ-
ten in Python to solve the system of background and perturbed evolution equations
for assisted coupled quintessence, is also discussed.
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1. Introduction

1.1. Introduction

The Cosmological Constant + Cold Dark Matter (ΛCDM) model of cosmology has

become our gold standard in explaining the evolution of the universe. In this model,

the dark sector of the universe is modelled by a cosmological constant, which is

responsible for the acceleration of the universe in the present epoch, and a pressure-

less fluid that constitutes dark matter. The model is completed by assuming the

presence of baryonic matter and a radiation component. Remarkably, this simple

picture is sufficient to explain every observational probe to date. These include

high precision measurements of the Cosmic Microwave Background (CMB) [1–3],

supernovae observations [4–6], and large scale structure surveys [7–9].

Despite its success, the model raises many unanswered questions such as: Why

does the cosmological constant takes such an unnaturally small value? What is the

fundamental nature of Dark Energy (DE)? These, in addition to other questions

such as why the energy density associated with Λ is of the same order as that of

dark matter – the coincidence problem – have led the community to investigate more

complex scenarios.

One possible scenario is inhomogeneous cosmologies. Research into Lemâıtre-

Tolman-Bondi (LTB) cosmology had in the past been motivated by seeking an

alternative explanation for the late time accelerated expansion of the universe, as

indicated by e.g. SNIa observations [4]. Inhomogeneous cosmologies, including LTB,

had been suggested as such an alternative explanation of these observations (see

e.g. Ref. [10]). Other observations such as galaxy surveys, large scale structure

surveys, the CMB and indeed any redshift dependent observations (see for exam-

ple Refs. [7; 11; 12]) are usually interpreted assuming a flat Friedmann-Robertson-

Walker (FRW) cosmology - isotropic and homogeneous on large scales. In order to

test the validity of this assumption other, inhomogeneous, cosmologies such as LTB

should also be considered. There is however some difficulty making LTB match all

8



1.1: Introduction 9

observations (see e.g. Refs. [13; 14]). However there are environments, such as large

voids or overdensities where LTB may prove a more appropriate cosmological model

(see e.g. Refs. [15; 16]), where such overdensities or voids may be approximately

spherical in nature, and LTB may then prove a better background model. If such

structures are sufficiently large then perturbed LTB may then be more appropri-

ate for studying structure growth within such environments. Consequently there is

much active research into LTB and other inhomogeneous spherically symmetric cos-

mologies, both at background order and with perturbations (see e.g. Refs. [13; 17–28]

for theory and comparison with observation in general, see e.g. Refs. [2; 3; 29–31]

for research relating to CMB and see e.g. Refs. [32–40] for research more specific to

the kinetic Sunyaev-Zeldovich effect, see e.g. Refs. [41–43] for structure formation

in LTB, including N-body simulations).

Within homogeneous and inhomogeneous cosmologies, conserved quantities are

useful tools with a wide range of applications. In particular, they allow us to relate

early and late times in a cosmological model, without explicitly having to solve the

evolution equations, either exactly or taking advantage of some limiting behaviour.

These quantities have been studied extensively within the context of Cosmological

Perturbation Theory (CPT), and usually applied to a FRW background spacetime.

Using metric based cosmological perturbation theory [44; 45], we can readily con-

struct gauge-invariant quantities which are also conserved, that is constant in time

(see e.g. Ref. [46] for early work on this topic). In a FRW background spacetime, ζ,

the curvature perturbation on uniform density hypersurfaces, is conserved on large

scales for adiabatic fluids. To show that ζ is conserved and under what conditions,

we only need the conservation of energy [47]. This was first shown to work for fluids

at linear order, but it holds also at second order in the perturbations, and in the

fully non-linear case, usually referred to as the δN formalism [47–49].

Instead of, or in addition to, cosmological perturbation theory, we can also use

other approximation schemes to deal with the non-linearity of the Einstein equations.

In particular gradient expansion schemes have proven to be useful in the context of

conserved quantities, again with the main focus on FRW spacetimes [49–52]. But

conserved quantities have also been studied for spacetimes other than FRW, such

as braneworld models (see e.g. Ref. [53], and anisotropic spacetime (e.g. Ref. [54]).

The LTB spacetime [55] is a more general solution to Einstein’s field equations

than the Friedmann-Robertson-Walker (FRW) model. While LTB is invariant under

rotations, FRW is rotation and translation invariant, and hence has homogeneous

and isotropic, maximally symmetric spatial sections [56].
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Gauge-invariant perturbations in general spherically symmetric spacetimes have

been studied already in the 1970s by Gerlach and Sengupta [57; 58], using a 2+2 split

on the background spacetime. Recent works studying perturbed LTB spacetimes

performs a 1+1+2 split (see e.g. Refs. [59–61]). These splits allow for a decomposi-

tion of the tensorial quantities on the submanifolds into axial and polar scalars and

vectors, similar to the scalar-vector-tensor decomposition in FRW [44; 45]. Later in

this thesis we perform a 1+3 split of spacetime, without further decomposing the

spatial submanifold. This prevents us from decomposing tensorial quantities on the

spatial submanifold further into axial and polar scalars and vectors, but provides us

with much simpler expressions, well suited for the construction of conserved quanti-

ties. We therefore study systematically how to construct gauge-invariant quantities

in perturbed LTB spacetimes. To this end we derive the transformation rules for

matter and metric variables under small coordinate - or gauge - transformations

and use these to construct gauge-invariant quantities. We also derive the perturbed

energy density evolution equation, which allows us to derive a very simple evolution

equation for the spatial metric perturbation on uniform density and comoving hy-

persurfaces.

Another possible scenario is coupled quintessence. In this model a scalar field,

which makes up the DE component of the universe and produces acceleration, is

coupled to a pressureless dark matter fluid [62–75]. Recent extensions which have

been investigated include Multi-coupled Dark Energy (McDE) (see e.g. Ref. [76]),

in which the dark matter component of the universe is formed from two fluids that

couple differently to a single scalar field.

In a series of recent papers [72; 73; 76], perturbations in the McDE model have

been calculated numerically and compared with present and future large scale struc-

ture experiments. Taking this line of investigation, one can model the dark sector

of the universe as being made up of N fluids interacting with M scalar fields. This

model is known as assisted coupled quintessence (ACQ) [68]. The name derives from

the idea that the many fields can act together to generate acceleration, in a similar

manner to assisted inflation models of the early universe (see for example Refs. [77–

79]). ACQ is a more general model than single field and single fluid models (or

McDE) and a natural extension to the existing work in this area. It is also a reason-

able assumption to make given the multiple particle species already known from the

standard model of particle physics, as well as models beyond the standard model,

and is the same assumption as that made in the aforementioned assisted inflation

models.
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ACQ is the focus of the later parts of this thesis. Our aims are two-fold. First we

will calculate the equations of motion for linear perturbations in this rather general

model, and incorporate these into a fast numerical code, Pyessence. In principal,

this code can be used to generate quantities such as the growth factor of large scale

structure for any coupled quintessence model with an arbitrary number of fields

and fluids and arbitrary couplings. We intend to make this code publicly available.

Secondly, we will apply this code, initially to revisit the McDE model, and then to

consider specific models in which two scalar fields are present. Ongoing and future

large scale surveys (see for example Refs. [80; 81]) offer a chance to distinguish

between a cosmological constant and dynamical DE models, and it is important

therefore to understand at what level the predictions of assisted models will differ

from those of ΛCDM and those of other quintessence models.

For scales which are small compared to the horizon size today, an approximation

to the full perturbed equations of motion has often been used in previous literature,

and in particular in the previous study of McDE. A final aim of our work is to

evaluate whether this approximation is sufficiently accurate, especially in the light

of upcoming surveys.

The thesis is structured as follows. The remainder of this chapter will detail the

standard ΛCDM FRW background model of cosmology. We shall move from the

Hot Big Bang model, through inflation and finally late time accelerated expansion

driven by Λ as a form of DE. We shall also describe generalised background governing

equations. Chapter 2 will explain cosmological perturbation theory in general and

then applied to the standard FRW model. Chapter 3 details using CPT in LTB

cosmology in order to construct gauge invariant conserved quantities. It also briefly

discusses possible uses for the Spatial Metric Trace Perturbation in for example

numerical simulations of structure formation. Chapter 4 returns to FRW cosmology

but now models DE as interacting with Cold Dark Matter (CDM) as scalar fields

in ACQ models. We describe the growth of structure in ACQ models, conducted

using a Python code written specifically for the task. The results are compared

with current and future observational bounds. Chapter 5 details the construction

of the Python code, Pyessence, as well as its final structure and use. Finally,

in Chapter 6 we discuss the overall conclusions drawn from our research and the

possible avenues for further research in the field of cosmological perturbation theory

applied to LTB and ACQ cosmologies.
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1.1.1. Notation Conventions

Through out we use the positive metric signature, −,+,+,+. We also use natural

units where c = ~ = 1. With these units the Planck Mass is Mpl = G−
1
2 .

1.2. The Background Cosmology of the Standard

ΛCDM Model

1.2.1. The Background Cosmology

In the following sections we shall briefly outline the history and development of the

standard ΛCDM cosmological model, in this chapter at the unperturbed background

level only. We shall move from the early motivations for a Hot Big Bang model,

through the problems of that model to their resolution in inflationary cosmology

and finally to the observations of apparent late time acceleration and the need for

an additional component, DE usually as a cosmological constant, Λ.

The discovery by Edwin Hubble [82] of the recession of nearby galaxies gave the first

strong evidence for an expanding universe. This discovery that the galaxy recession

velocities increased with redshift, coupled with the assumptions of the Cosmological

Principle - namely that the universe is homogeneous and isotropic - implied that

the universe was expanding. This expansion in turn implied a super-dense, high

temperature, high pressure point or singularity at the very earliest time from which

the universe expanded in a Hot Big Bang. Further evidence of a Hot Big Bang was

provided through the discovery of the CMB [83].

However, there are problems with the Hot Big Bang model - Flatness, Horizon and

Relic problems - which cannot be explained by a simple unmodified model. An

additional mechanism, inflation (see e.g. Ref. [84]), is required in order to counter

these problems. Inflation is most simply described using a canonical scalar field, the

inflaton, ϕ, with a kinetic and potential term, which provides the energy driving the

process of inflation. Inflationary models are useful in explaining observations includ-

ing Large Scale Structure surveys (e.g. 2df Galaxy Redshift Survey [85], 6df Galaxy

Survey [86], Sloan Digital Sky Survey [87]), DES [8], Euclid and SKA [80]) to small

amplitude anisotropies in the CMB i.e. 1 part in 105 fluctuations around a back-

ground temperature of 2.725 K [88](e.g. COBE [88], WMAP [89], PLANCK [90]).
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1.2.2. The Governing Equations

1.2.2.1. General Background Equations

General Relativity GR is defined on pseudo-Riemannian manifolds, where we use the

torsion-free metric connection, the Levi-Civita connection, as an affine connection to

define differentiation of tangent vectors on such a manifold. In terms of the metric

the Levi-Civita connection in Christoffel symbol form is,

Γµνγ =
1

2
gµδ (∂νgδγ + ∂γgδν − ∂δgνγ) , (1.1)

where gµν is the spacetime metric and ∂ν is the partial derivative with respect to xν ,

the spacetime co-ordinates. From the Christoffel symbols we construct the Reimann

tensor which describes the intrinsic curvature of our pseudo-Riemannian manifold,

R δ
µνγ = ∂νΓ

δ
µγ − ∂µΓδ νγ + ΓαµγΓ

δ
να − ΓανγΓ

δ
µα, (1.2)

where R δ
µνγ is the Reimann tensor. By contracting the Reimann tensor once we

get,

R δ
µδγ = Rµγ, (1.3)

where Rµγ is the Ricci tensor. Finally, by contracting the Ricci tensor we get,

R µ
µ = R, (1.4)

where R is the Ricci scalar. We now have all the necessary components to describe

the geometry of our spacetime in the Einstein tensor, The Einstein field equations

are,

Gµν = 8πGTµν , (1.5)

where Gµν is the Einstein tensor, which describes the geometry of spacetime, G is

the universal gravitational constant and Tµν is the energy-momentum tensor, which

describes the matter content of the universe. The Einstein tensor, Gµν , is defined

as,

Gµν = Rµν −
1

2
gµνR. (1.6)

The matter content of the universe is described using the energy-momentum tensor,

which for a perfect fluid in the absence of anisotropic stress is,
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Tµν = (ρ+ P )uµuν + Pgµν , (1.7)

where Tµν is the energy-momentum tensor and uµ is the 4-velocity for the fluid

defined by,

uµ =
dxµ

dτ
, (1.8)

where τ is the proper time along the curves to which uµ is tangent, related to the

line element ds by

ds2 = −dτ 2 . (1.9)

The 4-velocity is subject to the constraint,

uµuµ = −1 . (1.10)

The contracted Bianchi identities,

∇µG
µν = 0 (1.11)

where Gµν is the Einstein tensor, gives the continuity equation,

∇µT
µν = 0 (1.12)

where T µν is the total energy-momentum tensor. The general expression for the

interval is metric form is,

ds2 = gµνdx
µdxν , (1.13)

where ds is the interval. The metric tensor is subject to the constraint,

gµνgνγ = δµγ , (1.14)

where δµγ is the Kronecker delta. The metric tensor allows us to define a unit time-

like vector field orthogonal to constant-time hypersurfaces,

nµ ∝
∂t

∂xµ
, (1.15)

subject to the constraint

nµnµ = −1 . (1.16)
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The covariant derivative of any 4-vector can be decomposed as (see for exam-

ple Refs. [56; 91]),

∇µnν = −nµṅν +
1

3
ΘnPµν + σµν + ωµν , (1.17)

where we use the unit normal vector, nµ, purely as an example, since Eq. (1.17) is

true for any 4-vector e.g the 4-velocity, uµ. Here Θn is the expansion factor, σµν the

shear tensor, ωµν the vorticity tensor, and Pµν is the spatial projection tensor. Note

that here, in Eq. (1.17) only, ṅν = uµ∇µnν , whereas through the rest of this thesis

the “dot” denotes the derivative with respect to coordinate time. The expansion

factor defined with respect to the unit normal vector is,

Θn = ∇µn
µ , (1.18)

the shear, σµν , is given by,

σµν =
1

2
PαµPβν (∇βnα +∇αnβ)− 1

3
ΘnPµν , (1.19)

where the spatial projection tensor is defined as

Pµν = gµν + nµnν . (1.20)

1.2.2.2. FRW Background

A homogeneous, isotropic expanding spacetime is described by the FRW metric,

ds2 = −dt2 + a(t)2dx(x, y, z)2, (1.21)

where a(t) is the scale factor, and shown in Cartesian coordinates. The energy-

momentum tensor Eq. (1.7) in this case is diagonal and because of the homogeneity

and isotropy has identical spatial components,

T00 = −ρ(t) , Tij = δijP (t), (1.22)

where ρ(t) is the density of the universe at time t and P (t) is the pressure at

time t. When combined with Eq. (1.5) this gives the exact solutions to the Einstein

equations from GR for the specific conditions for the FRW spacetime. The covariant
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form of the metric tensor for the background FRW spacetime is,

ḡµν =

(
−1 0

0 a2δij

)
, (1.23)

where the ‘bar’ denotes a background quantity and a is the scale factor, whilst the

unperturbed contravariant metric is,

ḡµν =

(
−1 0

0 a−2δij

)
. (1.24)

The background covariant 4-velocity vector, necessarily stationary relative to the

unperturbed energy density fluid is given by,

uµ = [−1, 0, 0, 0] . (1.25)

Similarly the contravariant form is given by,

uµ = [1, 0, 0, 0] . (1.26)

From Eq. (1.13) and Eq. (1.23) we can construct Eq. (1.21) from Subsection 1.2.3.1.

The Friedmann equation [92] is the 0− 0 component of the Einstein field equations,

H2 =
8πG

3
ρ− k

a2
, (1.27)

where ρ is the overall density of the universe incorporating all matter and radia-

tion, and k is the curvature term which can take be negative, 0 or positive. The

curvature term is so called because it corresponds to three possible geometries of

spacetime, negatively curved (“Saddle” shaped), flat (Planar) and positively curved

(Hypersphere) respectively.

The acceleration is the i− j component of the Einstein field equations,

ä

a
= −4πG

3
(ρ+ 3P ) . (1.28)

The ρ term, which is the mass content of the universe, causes negative acceleration

due to its gravitational attraction. The conservation equation is the time component

of the continuity equation, Eq. (1.12),

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (1.29)
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where ρ̇ is the time derivative of the density.

For a matter dominated universe it is useful to make a simplification of pressure-

less matter or “dust”. In the case of pressureless matter the conservation equa-

tion, Eq. (1.29), becomes,

ρ̇+ 3
ȧ

a
(ρ) = 0. (1.30)

Therefore,

ρ = ρ0

(a0

a

)3

, (1.31)

where the “zero” suffix denotes the value today. Next we need to substitute Eq. (1.31)

into the Friedmann equation, Eq. (1.27). The mathematics is simplest if we assume

k=0. Equation (1.27) becomes,(
ȧ

a

)2

=
8πG

3
ρ0

(a0

a

)3

. (1.32)

The solution of this is,

a = a0

(
t

t0

) 2
3

. (1.33)

The derivation of the scale factor - time relation for a radiation dominated universe

differs in that ρrad has equation of state w = 1
3

such that Eq. (1.27) becomes,(
ȧ

a

)2

=
8πG

3
ρrad0

(a0

a

)4

. (1.34)

The solution of this is,

a = a0

(
t

t0

) 1
2

. (1.35)

Finally, for a cosmological constant we get Eq. (1.47), the solution of which is,

a = a0e
(Λ)

1
2 [t−t0], (1.36)

giving exponential growth of the scale factor.
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1.2.3. Observational Evidence for the Hot Big Bang Model

1.2.3.1. Galaxy Recession Velocities

Galaxies at sufficient distances are receding from the observer’s position. The Cos-

mological Principle states that the universe is homogeneous and isotropic. An

isotropic universe looks the same in all directions, while a homogeneous universe

looks the same from every position, so that from any point, or from any galaxy

within the universe, everything must appear to be moving away from these points

also. Hubble’s Law states [82],

v = H0d (1.37)

where v is the recession velocities of the distant galaxies, H0 is Hubble’s Constant

and d is the distance to these distant galaxies.

For an expanding spacetime we use the Friedmann-Robertson-Walker (FRW) metric,

Eq. (1.21). The scale factor, a, as the name implies scales between the physical and

co-moving co-ordinates as follows,

r = ax, (1.38)

where x is the position vector in comoving coordinates. This makes the expression

a(t)dx(x, y, z) equivalent to dr from Eq. (1.38). While ds2 is the square of the line

element governed by the spacetime metric, dx2 represents the square of the spatial

section only of the line element from the spacetime metric. In short the scale factor

is a scaled proper separation or distance between points in space which would vary

with the expansion of the universe itself as compared to the co-moving separation

or distance which would remain fixed irrespective of any expansion. The Hubble

parameter measures the expansion rate and is defined,

H =
ȧ

a
, (1.39)

where a is the scale factor of the universe, and ȧ is the first order time derivative

of the scale factor (see e.g. Ref. [93]). The physical co-ordinates can be represented

with the position vector r. The most common interpretation of observations is to

invoke the Cosmological Principle, implying a uniform expansion of the universe

with no particular bias in direction or position.
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1.2.3.2. The Cosmic Microwave Background

The second major evidence for an expanding universe came from the discovery of

the CMB [83; 94]. The conditions at early times implied by an expanding universe

were high temperatures and particle densities. At early times, at redshifts, z =

1089.90± 0.23 [95] from current data, 379000 years after the big bang, the universe

was much more dense and therefore hotter, around 3000 K. The transition from

radiation interacting with matter to not interacting is called decoupling and the

time at which it occurred is denoted tdec. This radiation released at the time of

decoupling is of a black body, isotropic and red-shifted due to the expansion of the

universe since its time of release to the present. The present day CMB temperature

is 2.725 K [88]. The CMB is observed to be isotropic to a very small order - 1 part

in 105 [88]. The detected CMB, at a peak temperature of 2.725 K [88], has a black

body radiation curve corresponding to one for a body at a temperature of 3000 K

which has undergone cosmological red-shift due to the expansion of the universe

since the time of decoupling.

1.2.3.3. Primordial Nucleosynthesis

Primordial nucleosynthesis is the formation of the first elements some time after the

Hot Big Bang as the universe cools and particle species begin to “freeze out”. The

evidence concerns the relative abundances of the elements formed. The Hot Big

Bang model of an expanding universe is readily described back to the very early

times at which inflation is taken to have ceased or become insignificant in most

models, typically around t = 10−34 s [96]. Since we are dealing with an expanding

universe it is useful to recall that these temperatures must also be related to the

size of the universe, i.e. the scale factor, a. Stefan-Boltzmann’s Law gives,

T ∝ 1

a
. (1.40)

The above relation allows very precise predictions to be made for the times at which

different fundamental forces and different particle species froze out of the primordial

fireball and allowed the formation of matter in the universe today. Table 1.1 shows

the significant times during the early evolution of the universe.

The abundances of the various elements, Hydrogen, Helium and traces of metals,

primarily Lithium 7, match very closely the abundances as predicted by decreasing

temperature with time. The relative abundances of elements are governed by the

energies at which particle species are formed and can combine. The particle energies
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Universe Timeline
TIME DESCRIPTION SCALE FACTOR HORIZON

DIST.
REDSHIFT

< 10−34 s tinf , time at end of
inflation

1.33× 10−27 0.174 m 7.52× 1026

10−5 s thad, time at
which hadrons
fall out of equi-
librium with
radiation

4.21× 10−13 34.5 AU 2.38× 1012

1 s Time after which
nuclei could begin
to form

1.33× 10−10 0.563 pc 7.52× 109

≈ 400 s tnuc, time of nu-
cleosynthesis

2.66× 10−9 11.50 pc 3.76× 108

6570 yrs teq, time of equal-
ity

6.00× 10−5 254200 pc 16700

379000 yrs tdec, time of de-
coupling

9.00× 10−4 3.812 Mpc 1090

2.997× 1017 s tΛdom, start of DE
domination

0.772 3.270 Gpc 2.30

4.360× 1017 s t0, current epoch 1 4.236 Gpc 0

Table 1.1.: Timeline highlighting significant times during the early evolution of the
universe. This was constructed by evolving the scale factor back in time
from the present epoch using Mathematica and taking the initial condi-
tions from the Planck satellite CMB measurement data [95].
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correspond to the temperature of the universe. When the universe was 1 second old

the typical particle energies were of the order 1 MeV, which is also the order of nu-

clear binding energies. Hence, before this time stable nuclei could not form. There

is time between hadrons forming and stable nuclei beginning to form, during which

the temperature continues to drop with the expansion of the universe and protons

and neutrons fall out of thermal equilibrium. Unbound neutrons are unstable have

a half life of ≈ 648 s. The first nuclei in which neutrons may bind to protons is

Deuterium, whose binding energy is 0.1 MeV , significantly lower than the tempera-

ture at which protons and neutrons fall out of equilibrium. This lower temperature

is reached ≈ 400 s after the Big Bang, a time comparable with the half-life of a

free neutron. This time is taken as the time of primordial nucleosynthesis, tnuc, and

it is this delay which leads to a ratio of protons to neutrons at this time of 7 : 1

(see e.g. [97]). The relative abundances of protons and neutrons available to collide

and bond leads to the mass fraction of Hydrogen being 0.75 while Helium-4 is 0.25,

which agrees very closely with current observed mass fractions. The latest Planck

satellite CMB measurement data [95] gives a Helium-4 mass fraction of 0.249+0.025
−0.026.

1.2.4. Problems of the Hot Big Bang Model

With the success of the Hot Big Bang Model in explaining galaxy recession velocities,

the existence of CMB radiation and the abundances of the various elements found in

the universe today it may not appear in need of improvement. However, significant

problems remain with the standard Hot Big Bang Model without inflation. The three

main problems - the Horizon Problem, the Flatness Problem and Relic Problem -

are explored below.

Note that in the rest of this chapter wherever the density of the universe, ρ, is

referred to or the density of matter, ρmat, both these terms assume the inclusion of

both baryonic and Dark Matter.

1.2.4.1. The Horizon Problem

This problem (see e.g. Ref. [98]) arises from the isotropy observed in the CMB

temperature today at 2.725 K, uniform to 1 part in 105 [88], and the horizon distance

at different epochs. The observed uniformity in the CMB temperature requires that

all parts of the observed universe must be in causal contact at some point in the

past. This means that all parts of the observed universe must have been within the

horizon distance at some earlier time. If two regions in space observed today are

separated by more than the scaled horizon distance at the time the light was emitted,



1.2: The Background Cosmology of the Standard ΛCDM Model 22

then those two regions were outside each other’s horizon distance at that time. Even

at the relatively late time of the CMB generation it is possible to see that regions

in the CMB are out of contact with each other and yet show all the properties of

bodies in thermal equilibrium. The scaled or comoving horizon distance is given by,

d(h) =

∫ t

0

dt

a
, (1.41)

where d(h) is the comoving horizon distance, and using natural units. Assuming mat-

ter domination the angle subtended on the sky by the horizon distance at decoupling

may be found from,

θ = 360
1

π

(
tDEC

t0

) 1
3

, (1.42)

where tDEC is the time of decoupling, 1.2×1013s and t0 is the time today, 4.3×1017s.

As such the regions of the CMB on the sky which would be out of causal contact

would be separated by only ≈ 1 ◦. This is in stark contrast to the homogeneity of

the CMB temperature over the whole sky. Moving further back in time towards the

Big Bang the problem is magnified with regions in causal contact decreasing in size

down to microscopic or Planck scales.

1.2.4.2. The Flatness Problem

The Flatness Problem (see e.g. Ref. [99]) concerns the density of the universe, ρ,

as compared with the density of a universe whose expansion lies on the boundary

between halting followed by future collapse in a “Big Crunch” or continuing forever.

This density is called the critical density, ρcrit, and is defined,

ρcrit(t) =
3H2

8πG
. (1.43)

The critical density corresponds to a flat universe. A universe with positive curvature

in the absence of a component such as DE would recollapse while a universe with

negative curvature would expand forever. It is useful at this stage to introduce the

density parameter [100],

Ω(t) =
ρ(t)

ρcrit(t)
, (1.44)

where Ω is the density parameter. All the terms are time dependent, implying

that the critical density at the current epoch will differ from that in the past. The

density of the universe will include ordinary matter, Dark Matter and DE.
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By substituting Eq. (1.43) and Eq. (1.44) into Eq. (1.27) we have,

Ω(t)− 1 =
k

a2H2
. (1.45)

From this equation we can see that if the universe is at the critical density and

therefore k = 0 then Ω(t) = 1 for all time. However for any non-zero k,

|Ω(t)− 1| ∝ 1

ȧ2
. (1.46)

Now, Eq. (1.28) shows that for any universe dominated by matter or radiation

with non-zero density and pressure ä < 0, and therefore ȧ must be decreasing. This

implies that in both cases the density parameter must diverge away from unity. In

a radiation dominated universe a ∝ t
1
2 while in a matter dominated universe a ∝ t

2
3

and in both cases this leads to large deviations from unity at the current time for

relatively small deviation in the early history of the universe.

Current observations, for example the Planck 2015 results [95], put the density

parameter at the current time, Ω0 at Ω0 = 1.0008+0.0040
−0.0039. Given the age of the

universe is t0 = 1017 s and the time at onset of nucleosynthesis is t = 1 s this implies

by expressing Eq. (1.46) in terms of values at the current time, |Ω(t)− 1|nuc < 10−17,

giving a value of the density parameter so close to unity at that time that it appears

to require a high level of tuning to produce a universe at early times which results

in the universe currently observed.

1.2.4.3. Relic Problem

The problem of relics arises as a result of the conditions in the very earliest history

of the universe at very high energies and temperatures. At these very high energies

particle physics theories suggest that the forces 1 are unified i.e. requiring a Grand

Unifying Theory (GUT 2) [101–105], and the creation of high mass, stable particles

are required by particle physics models at these energies. Giacomelli et al. [102]

quotes typical energies and masses for one type, magnetic monopoles, as ≈ 1016 −
1017 GeV (as compared to protons at≈ 1 GeV ). Other candidates for relic particles

include Domain Walls [103], Supersymmetric particles such as the Gravitino [104]

and Moduli [105] fields from superstring theory.

When a particle’s thermal or kinetic energy is greater than their mass energy (kBT ≈
mc2) we take it to be relativistic in nature. As such the density of radiation and

1The electro-weak force and the strong nuclear force.
2This GUT is not necessarily a complete one incorporating gravity at this time.
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relativistic particles (ρrad) falls much more rapidly than for non-relativistic particles,

which scales as matter (ρmat) over the history of the universe. Magnetic monopoles,

which are many orders of magnitude more massive than the constituent particles

we see in the universe today in ordinary baryonic matter, become non-relativistic at

T ≈ 1016 GeV = 1028 K. This occurs at t = 10−10 s which is also of the order of

the time at which they first form. Their density comes to dominate the evolution of

the universe almost as soon as they are formed and long before any other particle

species form. In a matter dominated universe a ∝ t
2
3 whereas a ∝ t

1
2 for a radiation

dominated universe, so the expansion rate will be much greater once the magnetic

monopoles start to dominate. By the time baryons have formed they will be spatially

separated from each other by too great a distance for proton-neutron collisions to

be likely. This would lead in turn to a lack of Helium 4 in the universe in conflict

with observational evidence.

1.2.5. Inflation - an Elegant Solution to the Problems of the

Hot Big Bang

1.2.5.1. The Basics of Inflation

Inflation provides a solution to the problems of the Hot Big Bang model through

a period of accelerated expansion i.e. ä > 0. Note: the Friedmann equation and

acceleration equations are quoted in this section for illustrative purposes. They are

covered in more detail in the governing equations section, Section 1.2.2. Assuming

a cosmological constant is the dominant energy content of the universe at this time

we can simplify the Friedmann equation,

H2 =
8πG

3
ρ− k

a2
,

to, (
ȧ

a

)2

=
8πG

3
Λinf . (1.47)

Equation (1.47) shows that ȧ
a

= constant which implies an exponential expansion.

We can find the minimum value of the pressure required for accelerated expansion

from the acceleration equation,

ä

a
= −4π

3
(ρ+ 3P ) .

For positive acceleration we require a negative pressure term. From Eq. (1.28), given



1.2: The Background Cosmology of the Standard ΛCDM Model 25

that we know ä (and by definition, a) must be positive we can see that,

P < −ρ
3
, (1.48)

or

w < −1

3
, (1.49)

where w is the equation of state, defined as,

w =
P

ρ
. (1.50)

If we replace the generalised density, ρ, with our inflationary cosmological constant,

Λinf , an equation of state for an inflationary cosmological constant may be obtained

from the conservation equation,

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0,

to give,

3
ȧ

a
(Λinf + P ) = 0, (1.51)

Eq. (1.51) leads to an equation of state for Λinf of,

P = −Λinf , (1.52)

or w = −1. This simple inflationary cosmological constant model, de Sitter [106],

could not generate the observed universe, however it is sufficient to demonstrate the

possibility of inflation and allows us to address the problems of the Hot Big Bang

model.

1.2.5.2. A Solution to The Horizon Problem

The predictions of a universe undergoing ordinary non-inflationary expansion dis-

agree with the observed homogeneity in the CMB, and the distribution of matter at

late times on the largest scales. To solve the horizon problem light must have been

able to travel much further in the universe at some time before both decoupling and

the present day. This condition can be expressed in terms of the horizon distance,

Eq. (1.41) as,
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∫ tf

tb

dt

a(t)
> 2

∫ t0

tdec

dt

a(t)
, (1.53)

where tb is the time at the start of inflation, tf is the time inflation finishes and

tdec is the time of decoupling when the CMB was produced and t0 is today. With

appropriate values for, tb, tf and Λinf it is indeed possible to satisfy the condition in

Eq. (1.53). Therefore inflation provides a solution to the horizon problem. Due to

the exponential nature of the expansion during inflation and the importance of the

length of time for inflation the time for inflation is often given in e-foldings.

1.2.5.3. A Solution to The Flatness Problem

The observed value of the density parameter lying very close to unity would require

fine tuning in the absence of a mechanism for this to arise naturally. A less finely-

tuned model would drive the density parameter very close unity at very early times

such that it remains close to this value to the present day. In Eq. (1.46) we saw that

|Ω(t)− 1| ∝ ȧ−2. For accelerated expansion ä is positive and therefore ȧ must be

increasing pushing Ω(t) towards unity, in this case exponentially fast. Therefore, it

takes a very short time compared to the history of the universe to push the density

parameter so close to unity that today it is still unity to within one part in 103 [95].

1.2.5.4. Explaining the Apparent lack of Relics

The relic problem is usually taken to be solved by assuming they are generated

before or during the period of inflation. Given the exponential rate of expansion

during their formation they become separated by large distances due to the rapidly

increasing scale factor. From the solution to the horizon problem in we see that

these relic particles will also be pushed beyond each other’s co-moving horizon dis-

tance. Consequently they are likely to be beyond each other’s co-moving horizon

distance today and their particle density so low there may not be a single magnetic

monopole within our current co-moving horizon distance. Even allowing for one, or

a few, magnetic monopoles within our co-moving horizon distance the probability

of it interacting with a detector on earth would be vanishingly small. Additionally,

their density would be subdominant to all other constituents and therefore would

not lead to early matter domination, inconsistent with other predictions and obser-

vations e.g. primordial nucleosynthesis.
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Figure 1.1.: The evolution of density with scale factor for a cosmological constant,
matter and radiation. Once a cosmological constant dominates it does so
for all time. This figure was produced using the Pyessence code used
in Chapter 4 and described in more detail in Chapter 5. The background
evolution was plotted from initial conditions derived from values today
taken from the Planck satellite CMB measurement data [95], ΩΛ =
0.6911± 0.0062,Ωm = 0.3089± 0.0062,Ωr = 8.75893± 0.00003(×10−5).

1.2.5.5. The Details of Inflation

Figure 1.1 serves to show a qualitatively comparison between the evolution of ra-

diation, matter and a cosmological constant density parameters in a universe with

these constituents. The density parameters today as taken from the Planck satellite

CMB measurement data [95] are,

ΩΛ = 0.6911± 0.0062, (1.54)

Ωm = 0.3089± 0.0062,

Ωr = 8.75893± 0.00003(×10−5).

Once a cosmological constant dominates the density of the universe it will do so

for all time. Since in this de Sitter model the inflationary cosmological constant

dominates from the outset the universe will never reach a period of radiation or

matter domination and consequently not match observations. However, a period of
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constant or near constant energy density would be useful in our models in order to

generate a similar inflationary period. In addition this energy density must at some

point decay away in order to allow for both the radiation dominated and matter

dominated phases at later times. A simple way to satisfy the above conditions is

to introduce a scalar field, ϕ, to describe the energy content of the universe (see

e.g. Ref. [107])3. The Lagrangian for such a field is

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ), (1.55)

where ϕ is the scalar field, the first term is a kinetic term, whilst V (ϕ) is the

potential.

Invoking again the cosmological principle as described in Subsection 1.2.3.1 - that

the universe is homogeneous and isotropic - this homogeneity also implies that the

inflaton scalar field must be the same everywhere i.e. invariant with position. Hence

the scalar field is dependent only on time, ϕ ≡ ϕ(t). The energy density for such a

scalar field is given by,

ρ =
1

2
ϕ̇2 + V (ϕ), (1.56)

where ϕ̇ is the time derivative of the scalar field, the first term can be thought of

as the kinetic term introduced above, and similarly the second term is the potential

term. The pressure in the FRW spacetime [107] is given by,

P =
1

2
ϕ̇2 − V (ϕ). (1.57)

If V (ϕ) is near constant for a period, with only small variation in ϕ, V (ϕ) will

dominate producing a negative pressure necessary for inflation as with the de Sitter

model. The Einstein field equations give us the Friedmann equation, which for a

scalar field is,

H2 =
8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
, (1.58)

where we have taken the curvature term to be zero. If the scalar field causes in-

flation this would flatten the universe, making this a reasonable assumption. By

substituting Eq. (1.56) and Eq. (1.57) into the conservation equation we obtain the

Klein-Gordon equation,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (1.59)

3The governing equations quoted in this section are covered in more detail in Section 1.2.2.
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where a ‘dash’ denotes the derivative with respect to ϕ. Finally by substituting

the scalar field density into the acceleration equation we find,

ä

a
= −8πG

3

(
ϕ̇2 − V (ϕ)

)
. (1.60)

1.2.5.6. The Slow Roll Approximation

During standard inflation it is assumed the scalar field “slowly rolls”, meaning that

the scalar field, ϕ, is changing very slowly during the period of inflation. This

is called the slow roll approximation (SRA) and allows us to also approximate the

governing equations and make them analytically treatable. For the SRA ϕ̇2 � V (ϕ)

[108], which in Eq. (1.60) gives the required positive acceleration. It also allows us

to re-write the Friedmann equation, Eq. (1.58), as,

H2 ' 8π

3Mpl
2 (V (ϕ)) , (1.61)

Similarly in the SRA we assume that ϕ̈� 3Hϕ̇+ V ′(ϕ) [108], so the Klein-Gordon

equation, Eq. (1.59), becomes,

3Hϕ̇+ V ′(ϕ) ' 0. (1.62)

We define slow roll parameters, ε and η to describe the small changes occurring.

The first slow roll parameters is defined (see e.g. Ref. [104]),

ε =
Mpl

2

16π

(
V ′(ϕ)

V (ϕ)

)2

, (1.63)

where ε is our first slow roll parameter. It may also be expressed using the Friedmann

equation in first order form, in terms of ϕ (see e.g. Ref. [108]),

ε(ϕ) =
4π

Mpl
2

(
ϕ̇

H

)2

. (1.64)

We can see in Eq. (1.64) that as long as ϕ̇ is very small compared to H then ε� 1.

This is one of the necessary conditions for the SRA [101].

Our second slow roll parameter is defined [104],

η =
Mpl

2

8π

(
V ′′

V

)
. (1.65)

or expressed in terms of ϕ as [108],
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η =
ϕ̈

Hϕ̇
. (1.66)

We can see in Eq. (1.66) that as long as the magnitude of ϕ̈ is very small compared to

Hϕ̇ then |η| � 1. This is a second necessary condition for the SRA [101]. It can be

useful to relate the slow roll parameters to the number of e-foldings occurring during

inflation and to each other. The relation between scale factor and time measured in

e-foldings is given by,

a = a0e
−N , (1.67)

where in this case a0 is the scale factor today and N is the number of e-foldings.

One e-fold is the time it takes for the horizon distance to change by a factor of e

and so Eq. (1.67) becomes,

N = ln

(
a

a0

)
. (1.68)

Consequently we introduce the convention here of counting e-foldings backwards

from the end of inflation, or any other relevant end time e.g. today. The number of

e-foldings may then be related to the Hubble parameter by differentiating Eq. (1.67)

with respect to time and dividing by the scale factor to give,

dN = −Hdt. (1.69)

Next we need to link the number of e-foldings to the slow roll parameter, ε,

ε ' 1

H

dH

dN
. (1.70)

Both slow roll parameters are ϕ dependent and both describe characteristics of

the potential, V (ϕ). Eq. (1.63) contains the term V ′(ϕ)
V (ϕ)

, the normalised slope of

the potential. Eq. (1.65) contains the term V ′′(ϕ)
V (ϕ)

, the normalised curvature of the

potential. For the SRA to hold it is necessary that V ′ and V ′′ be very small, or

put more formally in terms of the slow roll parameters, ε � 1 and |η| � 1. It is

worth noting however that this condition alone is not sufficient to ensure the SRA

will hold however [101], since although V (ϕ) may be very slowly changing or near

flat, ϕ̇ could be large.
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Figure 1.2.: Hubble diagram from [4] showing the deviation from the Hubble law for
distant type Ia supernovae.

1.2.6. Dark Energy Driving Late Time Accelerated

Expansion

We now briefly look at the final missing component of the standard ΛCDM cos-

mology, namely DE. We shall describe the observations which made an additional

component necessary and how DE may be used to explain these observations.

1.2.6.1. Observations of Late Time Accelerated Expansion

In 1998 Perlmutter et al. [4] and Reiss et al. [5] announced the discovery of the

apparent acceleration in the expansion rate of the universe, made through analysis

of the Hubble diagram for distant supernovae. Figure 1.2 show the initial results

from the Supernova Cosmology Project [4].

These observations are usually attributed to a late time accelerated expansion of

the universe. As we shall see in Chapter 3 this is not the only possible explana-

tion. An inhomogeneous cosmology where the expansion of space is not only time

dependent but has some additional spatial dependency could produce a similar phe-

nomenon to accelerated expansion since the expansion rate would be different at

different distances from the observer. However, in this initial discussion of ΛCDM

cosmology we shall consider only acceleration driven by a cosmological constant.
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Further evidence for DE comes from several sources including the CMB constraints

on the flatness of the universe [95] giving |Ωk| < 0.005 where Ωk is the density pa-

rameter of the curvature. When coupled with the CMB constraints in total matter

at ΩM = 0.308 ± 0.012, which includes both CDM and baryons, the remaining en-

ergy density required for flatness is attributed to DE. Independently, observation of

galaxy clusters (see e.g. Ref. [109] puts similar constraints on the total matter at

around ΩM = 0.311 ± 0.014, with similar DE requirements to match the observed

flatness. Finally, the Baryon Accoustic Oscillation (BAO) data from galaxy surveys

[7–9] also favour models with a DE component of around ΩDE = 0.75.

1.2.6.2. A Cosmological Constant Driving Late Time Accelerated

Expansion

Since no exit from late time accelerated expansion has been observed the simplest

inflationary model, de Sitter, may be employed to drive late time accelerated expan-

sion. Hence the introduction of a cosmological constant, Λ, in the ΛCDM model.

As such the standard model of cosmology, namely ΛCDM in flat FRW evolves as

follows. From an initial inflationary period the universe passes through radiation

domination to a period of CDM domination and finally to a new accelerated ex-

pansion epoch at late times due to DE domination in the form of a cosmological

constant, Λ (see Figure 1.1). The latest Planck values for the density parameter for

DE is ΩΛ = 0.6911± 0.0062.



2. Cosmological Perturbation

Theory

2.1. Structure in the Universe

Cosmological Perturbation Theory (CPT) is a vital tool in the analysis of the uni-

verse across all epochs. For a more comprehensive description of this field see

e.g. Ref. [93] but a brief overview follows.

Inflation provides the mechanisms whereby the small scale anisotropies in the uni-

verse, as seen in both the CMB and galaxy distributions may be generated by the

initial conditions in the universe. Quantum fluctuations in the inflaton become

perturbations in the density of matter, and the inflation it drives simultaneously

freezes in these matter perturbations, and associated gravitational perturbations,

from early times such that we can observe them today. CPT is the tool which al-

lows us to model perturbed cosmologies, link primordial perturbations to late time

matter distributions and model the evolution of perturbations, including density

perturbations, over time. In the standard ΛCDM model of cosmology we typically

assume a flat FRW spacetime.

2.2. Cosmological Perturbation Theory in Flat

FRW

2.2.1. Introduction

In this section we look at CPT in flat FRW cosmology in more detail. Ultimately we

seek to apply these same techniques, modified as necessary, to LTB cosmology. In

both cases we shall be looking for the perturbed forms of cosmologically significant

scalars, vectors and tensors and investigating conserved quantities and conservation

equations. We do this since these these conserved quantities, such as, for example,

the gauge-invariant curvature perturbation, allow us to link early to late times in

33
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the formation and evolution of structure in the universe e.g. through the density

perturbation on flat hypersurfaces. Consequently, we shall also construct gauge

invariant quantities. Since these will contain no gauge or coordinate artefacts they

are useful when comparing with other research in CPT which is formulated in a

gauge invariant way.

2.2.2. The Perturbed Metric and 4-Velocities

We perform a 3+1 decomposition of spacetime into spatial hypersurfaces of constant

time, as can be seen in the FRW metric used earlier Eq. (1.21). This allows us to

further decompose quantities into scalar, vector and tensor components according

to their transformations on spatial 3-hypersurfaces. At linear order scalar, vector

and tensor perturbations are decoupled. The metric may be decomposed into a

background metric and a perturbed metric as,

gµν = ḡµν + δgµν , (2.1)

then the perturbed portion of the metric is given by,

δgµν =

(
−2Φ aBi

aBj a22Cij

)
, (2.2)

where Φ is the lapse function, or perturbation in the proper time coordinate, Bi is

the perturbation in the mixed temporal and spatial components of the metric and

Cij is the perturbation in the spatial only components of the metric. Φ is a scalar

perturbation. The perturbed components of the contravariant form of the metric

may be found using the constraint,

gµνgνγ = δµγ. (2.3)

The perturbed metric is,

δgµν =

(
+2Φ a−1Bi

a−1Bj −2a−2Cij

)
. (2.4)

The line element derived from the covariant form of the perturbed metric is given

by,

ds2 = − (1 + 2Φ) dt2 + 2aBidx
idt+ a2 (δij + 2Cij) dx

idxj, (2.5)
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The Bi component is a “true” vector perturbation and may be further decomposed

as,

Bi = B,i−Si, (2.6)

where B is a scalar perturbation and Si the divergence-free vector perturbation and

the ‘comma’ denotes the partial derivative with respect to the coordinates. Similarly

Cij may be further decomposed as,

Cij = −ψδij + E,ij +F(i,j) +
1

2
hij, (2.7)

where ψ and E are scalar perturbations, Fi is the divergence-free vector perturbation

and hij is divergence-free, trace-free tensor perturbation.

The unperturbed form of the 4-velocities using the metric for flat FRW in coordinate

time with a negative signature, in natural units is defined as in Eq. (1.8). We define

the 3-velocity with respect to conformal time, η, as,

vi =
dxi

dη
, (2.8)

where,

dt = adη. (2.9)

We use Eq. (1.9) to give dτ , where τ is the proper time along the curves to which

uµ is tangent, to linear order as,

dτ = (1 + 2Φ)
1
2dt. (2.10)

From this and Eq. (1.8) we find the timelike component of the 4-velocity is,

u0 =
dx0

dτ
=

dt

(1 + 2Φ)
1
2dt

= (1− Φ). (2.11)

Similarly the spatial component of the 4-velocity is found to be,

ui =
dxi

dτ
=

dxi

(1 + 2Φ)
1
2adη

, (2.12)

which when combined with Eq. (2.8), and remembering that in the background

there is no spatial velocity for the fluid, and therefore any 3-velocity is by definition

a perturbation,

ui = (1 + 2Φ)−
1
2
vi

a
=
vi

a
, (2.13)
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to linear order.

This gives the 4-velocity as,

uµ =

[
(1− Φ),

vi

a

]
. (2.14)

As with the metric, the 4-velocity may be separated into a background and a per-

turbed metric such that,

uµ = ūµ + δuµ. (2.15)

In this case the perturbed 4-velocity becomes simply,

δuµ =

[
−Φ,

vi

a

]
. (2.16)

The covariant 4-velocities may be obtained simply by the metric acting upon the

contravariant 4-velocities,

uµ = uνgνµ. (2.17)

The indices may be split to give the time and spatial components separately as,

u0 = uνgν0 = u0g00 + uigi0 = −(1− Φ)(1 + 2Φ) +
vi

a
aBi, (2.18)

which to linear order becomes,

u0 = −(1 + Φ). (2.19)

Similarly the spatial component of the 4-velocity is found to be,

ui = uνgνi = u0g0i + ujgij = (1− Φ)aBi +
vj

a
a2(δij + 2Cij) (2.20)

which to linear order becomes,

ui = aBi + avi. (2.21)

Therefore we may write the covariant perturbed 4-velocity for flat FRW as,

uµ = [−(1 + Φ), aBi + avi] . (2.22)
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This may also be decomposed as,

uµ = ūµ + δuµ. (2.23)

In this case the perturbed 4-velocity becomes simply,

δuµ = [−Φ, aBi + avi] . (2.24)

The expansion scalar as defined in Eq. (1.15) for unit normal vector field in FRW

is,

Θn = 3H (1− A)− 3ψ̇ +∇2σ , (2.25)

where σ is the shear defined,

σ = Ė −B . (2.26)

2.2.3. The Perturbed Energy-Momentum Tensor

The unperturbed energy-momentum tensor, Tµν , for a perfect fluid in the absence

of anisotropic stress is given in Eq. (1.7). We now perturb Tµν as follows,

Tµν =
(
P̄ + δP + ρ̄+ δρ

)
uµuµ +

(
P̄ + δP

)
gµν , (2.27)

where P̄ and ρ̄ are the background pressure and energy density respectively, whilst

δP and δρ are the perturbations in these same quantities. The energy-momentum

tensor may also be decomposed into a background tensor and a perturbed tensor

such that,

Tµν = T̄µν + δTµν . (2.28)

The various components of Tµν may be found by substituting for the appropriate

components of the perturbed 4-velocity, Eq. (2.11) and Eq. (2.13) and perturbed

metric Eq. (2.5),

T00 =
(
P̄ + δP + ρ̄+ δρ

)
(1 + Φ)2 −

(
P̄ + δP

)
(1 + 2Φ), (2.29)
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which to linear order becomes,

T00 = ρ̄+ 2Φρ̄+ δρ, (2.30)

giving the unperturbed portion of the 00 component of T µν as, T̄00 = ρ̄ and the

perturbation only as δT00 = 2Φρ̄+ δρ. Raising the index gives the 00 component to

linear order more concisely as,

T 0
0 = −ρ̄− δρ. (2.31)

This may be stated alternatively as the unperturbed portion of the 00 component

of the T µν being, T̄ 0
0 = −ρ̄ and the perturbation only being δT 0

0 = −δρ. The other

components of T µν to linear order are,

T 0
i =

(
P̄ + δP + ρ̄+ δρ

)
u0ui =

(
P̄ + ρ̄

)
(aBi + avi) , (2.32)

or the unperturbed portion of the 0i component of the T µν is, T̄ 0
i = 0 and the

perturbation only being δT 0
i =

(
P̄ + ρ̄

)
(aBi + avi).

Finally the spatial only components of T µν we find,

T ij =
(
P̄ + δP

)
δij, (2.33)

to linear order, since all the multipliers generated by uiuj are second order, leaving

only the right-hand term in the expression. This gives us the unperturbed por-

tion of the ij component of the T µν as, T̄ ij = P̄ δij and the perturbation only as

δT ij = δPδij.

2.2.4. Conservation Equations

We find the conservation equation1 for the perturbed energy momentum tensor T µν

using the continuity equation, Eq. (1.12), such that,

∇µT̄
µ0 = ˙̄ρ+ 3H

(
ρ̄+ P̄

)
, (2.34)

which is the fluid equation for the background, where ∇µT̄
µ0 = 0 and,

δ∇µT
µ0 = ∂iv

ia−1(ρ̄+ P̄ ) + δ̇ρ+ Ċi
i(ρ̄+ P̄ ) + 3H(δρ+ δP ), (2.35)

1Cadabra [110], a tensor manipulation package, was use to aid in many of these derivations
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again where δ∇µT
µ0 = 0. We obtain the equivalent momentum conservation equa-

tion,

∇µT
µi =

(
ρ̄+ P̄

) (
4Ha−1vi + v̇ia−1 + Ḃia−1

)
(2.36)

+ ˙̄ρa−1vi + ∂iδPa−2,

again, where ∇µT
µi = 0. This contains only perturbed quantities i.e. ∇µT

µi =

δ∇µT
µi.

We derive here only the perturbed conservation equations since they are needed for

the following sections on gauge transformations and gauge invariance. We postpone

the derivation of the perturbed Einstein field equations in FRW to chapter 3 where

they are needed for comparison with LTB and Lemâıtre cosmologies.

2.2.5. Gauge Transformations

In order to find gauge-invariant perturbations we must first understand the transfor-

mation behaviour of the perturbed quantities. There are two approaches to gauge

transformations; passive and active. In the passive approach we specify the relation

between the two coordinate systems i.e. the original coordinates and the “shifted”

coordinates. The change in the perturbed quantities under this coordinate transfor-

mation is then calculated, but at the same physical point. In the active approach

the transformation in the perturbed quantities is induced by a mapping, but is cal-

culated at the same coordinate point. We shall first use the passive approach for

the transformation behaviour of the density perturbations for illustrative purposes

(throughout the rest of this thesis we use the active approach). We shall assign

the manifold in which the original coordinates live unmarked coordinates, e.g. xµ,

whilst shifted coordinates shall be marked with a tilde, e.g. x̃µ, such that,

x̃µ = xµ + δxµ, (2.37)

where δxµ is the coordinate shift. We first look at the energy density, ρ(xµ). The

coordinate shift δxµ may be decomposed into,

δxµ = [δt, δxi]. (2.38)
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Note that the δxi could itself be further decomposed into scalar and vector compo-

nents,

δxi = δijδx,j + γi. (2.39)

If we do not decompose the density into a background and perturbation and just

apply the change in coordinates we will have simply performed a passive gauge

transformation as in Eq. (2.37), i.e.,

ρ̃(x̃µ) = ρ̃(xµ + δxµ) = ρ̃(xµ) +
∂ρ̃(xµ)

∂xµ
δxµ +O(δxµ2). (2.40)

To compare perturbed quantities in the background manifold with those in the

perturbed manifold we must decompose such a quantity into a background and

perturbed portion, e.g.,

ρ̃(x̃µ) = ˜̄ρ(x̃µ) + δρ̃(x̃µ). (2.41)

4-scalar quantities are covariant, i.e. ρ̃(x̃µ) = ρ(xµ). We assume ρ̄(xµ) = ˜̄ρ(xµ).

From these we can find,

ρ̃(x̃µ) = ˜̄ρ(x̃µ) + δρ̃(x̃µ) (2.42)

= ˜̄ρ(xµ + δxµ) + δρ̃(xµ + δxµ).

Taylor expanded and linearised gives us the perturbation in the perturbed manifold’s

relation to that in the background manifold,

δρ̃(x̃µ) = δρ(xµ)− ˙̄ρδt. (2.43)

We now use the active approach to examine the transformation behaviour of vector

or tensor quantities, using the Lie derivative. For this we take the perturbation in

the coordinates as the vector through which we project our vector or tensor quantity

of interest. The Lie derivative acting on a tensor is defined,

£δxγg
µν = δxγ∂γg

µν − gµγ∂γδxν − gγν∂γδxµ, (2.44)

where, in this context, δxγ is the projection vector acting upon the tensor, gµν . The

gauge transformation for a tensor to linear order is,

δ̃T = δT + £δxµT̄, (2.45)
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where T is generalised tensor.

Below we apply the Lie derivative to the perturbed contravariant 4-velocities [111],

ũµ = exp [£δxµu
µ] (2.46)

=
[
1 + £δxµ +O(δ2)

]
uµ

= uµ + £δxµu
µ +O(δ2).

To linear order this becomes,

ũµ = uµ + δxν∂νu
µ − uν∂νδxµ. (2.47)

The µ = 0 equation is as for the lapse function i.e.

ũ0 = u0 − δ̇t. (2.48)

The µ = i equation is,

ũi = ui + δxν∂νu
i − uν∂νδxi (2.49)

= ui − ˙δxi +O(δ2).

to linear order. Since ui ≡ vi

a
this gives,

ṽi

a
=
vi

a
− ˙δxi +O(δ2) (2.50)

This same approach may be applied to the perturbed metric tensor in which case

the Lie derivative is,

δ̃g
µν

= δgµν + £δxγ ḡ
µν +O(δ2) (2.51)

= δgµν + δxγ∂γ ḡ
µν − ḡγν∂γδxµ − ḡµγ∂γδxν +O(δ2).

The components of the metric in the perturbed manifold are therefore for the 00

component,

δ̃g
00

= δg00 + 2 ˙δx
0

+O(δ2), (2.52)

for the i0 component (and by symmetry the 0j component),

δ̃g
i0

= δgi0 + ˙δx
i − a−2∂iδx0 +O(δ2), (2.53)
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and for the ij component,

δ̃g
ij

= δgij − 2Ha−2δijδx0 − a−2
(
∂jδxi + ∂iδxj

)
+O(δ2). (2.54)

From these we obtain the transformation behaviour of the scalar metric perturba-

tions as

φ̃ = φ− δ̇t , (2.55)

ψ̃ = ψ +Hδt , (2.56)

B̃ = B − a ˙δx+ δt , (2.57)

Ẽ = E − δx . (2.58)

The active approach may also be applied to the density perturbations to give,

δρ̃(x̃µ) = δρ(xµ) + ˙̄ρδt. (2.59)

Note the sign change between the passive and active approaches.

2.2.6. Selecting and Testing Gauge Invariant Quantities

We construct some useful gauge invariant quantities typically found in the literature

in the field of CPT (see e.g. Refs. [112; 113]).

We use the perturbed metric [113] in which the perturbed spatial metric component

Cij is decomposed as in Eq. (2.7) but only the scalar perturbations are retained,

i.e. Cij = E,ij −ψδij where the scalar ψ is the curvature perturbation. This is

related to the perturbed intrinsic curvature of spatial 3-hypersurfaces through R =

4∇2
(
ψ
a2

)
where R is the Ricci 3-scalar. From Eq. (2.54) we have already shown the

transformation behaviour of ψ is as in Eq. (2.56). If we take Eq. (2.43) and rewrite

for uniform density hypersurfaces i.e. δρ̃ = 0, we obtain,

δt

∣∣∣∣
δρ̃=0

=
δρ
˙̄ρ
. (2.60)

By substituting Eq. (2.60) into Eq. (2.56) we find,

ψ̃

∣∣∣∣
δρ̃=0

= ψ

∣∣∣∣
δρ̃=0

+H
δρ
˙̄ρ

∣∣∣∣
δρ̃=0

. (2.61)
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This curvature perturbation [112; 113] is conserved on very large scales, in adiabatic

systems, of a fluid with a barotropic equation of state. The gauge-invariant curvature

perturbation is denoted by ζ where ζ = −ψ̃
∣∣∣∣
δρ̃=0

. Therefore Eq. (2.61) becomes,

− ζ = ψ

∣∣∣∣
δρ̃=0

+H
δρ

ρ̇0

∣∣∣∣
δρ̃=0

. (2.62)

By performing the gauge transformation upon the RHS of Eq. (2.62) expressed in

the perturbed manifold we can show that the curvature perturbation is gauge in-

variant, or in other words ζ is equal to the RHS expression both in the perturbed

and unperturbed manifolds and therefore is gauge invariant.

We may also construct density perturbations on flat hypersurfaces i.e. ψ̃ = 0

Eq. (2.56) expressed in terms flat hypersurfaces is,

δt̃
∣∣∣
ψ=0

= − ψ
H
, (2.63)

which when combined with Eq. (2.43) leads to,

δρ̃
∣∣∣
ψ=0

= δρ+
˙̄ρψ

H
, (2.64)

the expression for a gauge invariant density perturbation on flat hypersurfaces.

Next we can construct the conservation equation for the curvature perturbation by

starting with the perturbed conservation equation, Eq. (2.35) and evaluating for

constant density hypersurfaces,[
Ċi
i +∇2va−1

] (
ρ̄+ P̄

) ∣∣∣∣
δρ̃=0

+ 3HδP

∣∣∣∣
δρ̃=0

= 0. (2.65)

From the definition of Cij we find,

Ċi
i

∣∣∣∣
δρ̃=0

= Ė,ii

∣∣∣∣
δρ̃=0

− 3ψ̇

∣∣∣∣
δρ̃=0

, (2.66)

such that, coupled with the definition of ζ, Eq. (2.65) when rearranged gives us

the form of the evolution equation for the curvature perturbation, in the uniform

density gauge,

ζ̇ = − HδP(
ρ̄+ P̄

)∣∣∣∣
δρ̃=0

− 1

3a
∇2
(
v + aĖ

) ∣∣∣∣
δρ̃=0

, (2.67)
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Common Gauges
Gauge Name Gauge Conditions
Flat ψ = E = 0
Longitudinal (Newtonian) B = E = 0
Synchronous Φ = B = 0
Co-moving vi = 0
Uniform Density δρ = 0

Table 2.1.: Selected examples of commonly used gauges (see e.g. Ref.[112]).

which, if we take the large scale limit where the spatial gradient terms become

negligible we find ζ is conserved for adiabatic fluids.

If we return to the perturbed conservation equation with the gauge unspecified, and

separate the gradient and non-gradient terms we obtain,(
∇2
[
Ė +

v

a

]) (
ρ̄+ P̄

)
− 3ψ̇

(
ρ̄+ P̄

)
+ δρ̇+ 3H (δρ+ δP ) = 0. (2.68)

Again taking the large scale limit where the spatial gradients vanish, for simplicity

and clarity in the derivations, we obtain,

− 3ψ̇
(
ρ̄+ P̄

)
+ δρ̇+ 3H (δρ+ δP ) = 0. (2.69)

Finally we show the invariance of this equation. Eq. (2.69) in the uniform density

gauge, expressed in terms of quantities in the perturbed manifold gives,

− 3 ˙̃ψ
(
ρ̄+ P̄

) ∣∣∣∣
δρ̃=0

+ 3HδP̃

∣∣∣∣
δρ̃=0

= 0. (2.70)

If we substitute for the variables expressed in terms of the unperturbed manifold we

recover the original gauge unspecified form of the perturbed conservation equation

in the large scale limit; Eq. (2.69). In the above work we set degrees of freedom,

such as the density perturbation, to zero to define a hypersurface. This is called

making a gauge selection. One or more degrees of freedom may be fixed in this way

leading to a wide variety of gauges. Some common gauges are listed in Figure 2.1.

Note: Synchronous, Co-moving and Uniform Density are incomplete gauges and

require additional gauge fixing conditions in order to remove all gauge artefacts e.g.

Synchronous - and - comoving completely fixes the gauge.



3. Conserved Quantities in

Lemâıtre-Tolman-Bondi

Cosmology

In this chapter we study linear perturbations to a Lemâıtre-Tolman-Bondi (LTB)

background spacetime following similar procedures as in Chapter 2 i.e. we study the

transformation behaviour of the perturbations under gauge transformations and con-

struct gauge invariant quantities. We show, using the perturbed energy conservation

equation, that there are conserved quantities in LTB, in particular a spatial metric

trace perturbation, ζSMTP, which is conserved on all scales. We then briefly extend

our discussion to the Lemâıtre spacetime, and construct gauge-invariant perturba-

tions in this extension of LTB spacetime, which unlike LTB allows for a background

pressure.

3.1. Lemâıtre-Tolman-Bondi spacetime

In this section we first briefly review standard LTB cosmology at the background

level. We then extend the standard results by adding perturbations to the LTB back-

ground. In order to remove any unwanted gauge modes, we study the transformation

behaviour of the perturbations, which then allows us to construct gauge-invariant

quantities, in particular the equivalent to the curvature perturbation. We show

under which conditions this curvature perturbation is conserved.

Throughout this section we assume zero pressure in the background (see Section

3.2 for the addition of non-zero background pressure) i.e. the matter content is

pressureless dust. We do this since LTB gives an exact solution to the Einstein

field equations in the absence of background pressure. We do however allow for a

pressure perturbation in the later subsections.

45
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3.1.1. Background

The LTB metric can be written in various forms [55; 59; 114]. Here we shall use the

following form of the metric [55; 56],

ds2 = −dt2 +X2(r, t)dr2 + Y 2(r, t)
(
dθ2 + sin2 θdφ2

)
, (3.1)

where X and Y are scale factors dependent upon both the radial spatial and time

co-ordinates. The scale factors are not independent and are related by,

X =
1

W (r)

∂Y

∂r
, (3.2)

where W (r) is an arbitrary function of r, following Bondi [55], arising from the

Einstein field equations.

The 4-velocity in the background is given from its definition, Eq. (1.8), as

uµ = [1, 0, 0, 0] , (3.3)

where the indices 0, 1, 2, 3 are t, r, θ, φ respectively, and since we assume we are

comoving with respect to the background coordinates dr = dθ = dφ = 0, and

therefore dτ 2 = dt2 (that is in the local rest frame).

From the definition of the energy-momentum tensor, Eq. (1.7), we immediately

find that in the absence of pressure the only non-zero component is, T 00 = ρ. For

later convenience we define Hubble parameter equivalents for the two scale factors

such that,

HX =
Ẋ

X
, HY =

Ẏ

Y
. (3.4)

where the “dot” denotes the derivative with respect to coordinate time t.

The Einstein equations are, from Eq. (1.5), for the 0− 0 component,

1

Y 2
+HY

2 + 2
X ′Y ′

X3Y
+ 2HXHY −

(
Y ′

XY

)2

− 2
Y ′′

X2Y
= 8πGρ , (3.5)

where a prime denotes a derivative with respect to the radial coordinate r. For the

0− r component we find,
2

Y

(
Y ′HX − Ẏ ′

)
= 0 , (3.6)
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for the r − r component, (
Y ′

XY

)2

− 1

Y 2
−H2

Y − 2
Ÿ

Y
= 0 , (3.7)

and for θ − θ and φ− φ components we get,

Y ′′

X2Y
− X ′Y ′

Y X2
− Ÿ

Y
−HXHY −

Ẍ

X
= 0 . (3.8)

The other components are identically zero. The energy conservation equation, ob-

tained from Eq. (1.12), is

ρ̇+ ρ(HX + 2HY ) = 0 . (3.9)

3.1.2. Perturbations

In this section we add perturbations to the LTB background. Unlike recent works

studying perturbed LTB models, e.g. Refs. [59], we do not decompose the perturba-

tions into polar and axial scalars and vectors, and multi-poles, which considerably

simplifies our governing equations.

We split quantities into a t and r dependent background part, and a perturbation

depending on all four coordinates. Compare this with FRW, as in Chapter 2, (see

e.g. Eq. (2.41)), where due to the Cosmological Principle, the background is only

time dependent, while the perturbation depends upon all coordinates. For example,

in LTB we decompose the energy density ρ as follows,

ρ = ρ̄(t, r) + δρ(xµ) , (3.10)

where here and in the following a “bar” denotes a background quantity, if there is

a possibility for confusion.

We perturb the metric in a similar way as in the flat FRW case, the LTB metric

being very similar to flat FRW in spherical polar coordinates, save for the two scale

factors and the factor of r being absorbed into Y .

Hence we split the metric tensor as

gµν = ḡµν + δgµν , (3.11)

where ḡµν is given by Eq. (3.1). For the perturbed part of the metric, δgµν , we make
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the ansatz,

δgµν =


−2Φ XBr Y Bθ Y sin θBφ

XBr 2X2Crr XY Crθ XY sin θCrφ

Y Bθ XY Crθ 2Y 2Cθθ Y 2 sin θCθφ

Y sin θBφ XY sin θCrφ Y 2 sin θCθφ 2Y 2 sin2 θCφφ

 . (3.12)

Here Φ is the lapse function, and Bn, where n = r, θ, φ, are the shift functions for

each spatial coordinate. Similarly, Cnm, where n,m = r, θ, φ, are the spatial metric

perturbations. Compare this with the perturbed metric in FRW, Eq. (2.2), which

is much more concise. As already pointed out, we do not decompose Bn and Cnm

further into scalar and vector perturbations (see however Ref. [59]).

Using the perturbed metric we can construct the perturbed 4-velocities using the

definition, Eq. (1.8). Proper time is to linear order in the perturbations given by,

dτ = (1 + Φ)dt , (3.13)

and defining the 3-velocity as,

vi =
dxi

dt
, (3.14)

from Eq. (1.8) we get the contravariant 4-velocity vector,

uµ = [(1− Φ), vr, vθ, vφ]. (3.15)

By lowering the index using the perturbed metric we obtain the covariant form,

uµ = [−(1+Φ), X (Br +Xvr) , Y
(
Bθ + Y vθ

)
, Y sin(θ)

(
Bφ + Y sin(θ)vφ

)
] . (3.16)

Conservation of the energy-momentum tensor, Eq. (1.12), allows us together with

its definition, Eq. (1.7), to derive the perturbed energy conservation equation,

δρ̇ + (δρ+ δP ) (HX + 2HY ) + ρ̄′vr + ρ̄

(
Ċrr + Ċθθ + Ċφφ (3.17)

+ vr ′ + ∂θv
θ + ∂φv

φ +

[
X ′

X
+ 2

Y ′

Y

]
vr + cot θvθ

)
= 0,

where we used Eq. (3.10), and the LTB background requires P̄ = 0. The perturbed



3.1: Lemâıtre-Tolman-Bondi spacetime 49

momentum conservation equations are

˙̄ρvr +ρ̄(v̇r +
Ḃr

X
+
Br

X
HX + (3HX + 2HY )vr) +

1

X2
δP ′ = 0 , (3.18)

˙̄ρvθ +ρ̄(v̇θ +
Ḃθ

Y
+
Bθ

Y
HY + (HX + 4HY )vθ) +

1

Y 2
∂θδP = 0 , (3.19)

˙̄ρvφ +ρ̄

(
v̇φ +

Ḃφ

Y sin θ
+
BφHY

Y sin θ
+ (HX + 4HY )vφ

)
(3.20)

+
1

Y 2 sin2 θ
∂φδP = 0 ,

which we do not use in this work.

3.1.3. Gauge Transformation

In order to construct gauge-invariant perturbations, we have to study the trans-

formation behaviour of our matter and metric variables, as we saw in Chapter 2,

Subsection 2.2.5. Using the active point of view, linear order perturbations of a

tensorial quantity T transform as Eq. (2.45), in Chapter 2 Section 2.2.5 using the

Lie derivative. The old and the new coordinate systems are related by Eq. (2.37)

where δxµ = [δt, δxi] is the gauge generator. The Lie derivative is denoted by £δxµ ,

defined in terms of the metric as in Eq. (2.44).

3.1.3.1. Metric and Matter Quantities

From Eq. (2.45) and Eq. (3.10) we find that the density perturbation transforms

simply as,

δρ̃ = δρ+ ˙̄ρδt+ ρ̄′δr , (3.21)

since the background energy density depends on t and r. c.f. Eq. (2.59) for FRW

which does not contain the ρ̄′δr term. The perturbed spatial part of the 4-velocities,

defined in Eq. (3.15) transform as,

ṽi = vi − ˙δxi , (3.22)

where i = r, θ, φ. c.f. Eq. (2.50) for FRW, which is similar but for factors of 1
a

arising

from the slightly different definition of the 4-velocity we use in LTB in Eq. (3.15).

The perturbed metric transforms, using Eq. (2.45), as

δg̃µν = δgµν + δxγ∂γ ḡµν + ḡγν∂µδx
γ + ḡµγ∂νδx

γ. (3.23)



3.1: Lemâıtre-Tolman-Bondi spacetime 50

From the 0− 0 component of Eq. (3.23) we find that the lapse function transforms

as

Φ̃ = Φ− δṫ . (3.24)

For the perturbations on the spatial trace part of the metric we find for the r

coordinate from Eq. (3.23),

C̃rr = Crr + δt
Ẋ

X
+ δr

X ′

X
+ δr′ , (3.25)

for the θ coordinate,

C̃θθ = Cθθ + δt
Ẏ

Y
+ δr

Y ′

Y
+ ∂θδθ , (3.26)

and for the φ coordinate,

C̃φφ = Cφφ + δt
Ẏ

Y
+ δr

Y ′

Y
+ δθ cot θ + ∂φδφ . (3.27)

For later convenience we define a spatial metric perturbation, ψLTB, as,

3ψLTB = δgkk = Crr + Cθθ + Cφφ , (3.28)

that is the trace of the spatial metric, in analogy with the curvature perturbation

ψFRW in perturbed FRW spacetimes (see Section 3.1.4.1 below). The relation be-

tween ψLTB here and the curvature perturbation in perturbed FRW can be most

easily seen from the perturbed expansion scalar, given in Eq. (3.36) below, which is

very similar to its FRW counterpart (see e.g. Ref. [112], Eq. (3.19)). The relation is

not obvious from calculating the spatial Ricci scalar for the perturbed LTB space-

time, as can be seen from Eq. (A.11), given in the appendix. From the above ψLTB

transforms as

3ψ̃LTB = 3ψLTB +

[
Ẋ

X
+ 2

Ẏ

Y

]
δt+

[
X ′

X
+ 2

Y ′

Y

]
δr + ∂iδx

i + δθ cot θ , (3.29)

where i = r, θ, φ. c.f. Eq. (2.56) in FRW which is much simpler with only time

derivatives and time coordinate artefacts. In addition, from Eq. (3.23) the off diag-
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onal spatial metric perturbations transform as,

C̃rθ = Crθ +
Y

X
δθ′ +

X

Y
∂θδr , (3.30)

C̃rφ = Crφ +
Y sin θ

X
δφ′ +

X

Y sin θ
∂φδr , (3.31)

C̃θφ = Cθφ +
sin θ

X
∂θδφ+

1

sin θ
∂φδθ . (3.32)

The mixed temporal-spatial perturbations of the metric, that is the shift vector,

from Eq. (3.23) transform as

B̃r = Br +Xδ̇r − δt′

X
, (3.33)

B̃θ = Bθ + Y δ̇θ − ∂θδt

Y
, (3.34)

B̃φ = Bφ + Y (sin θ) ˙δφ− ∂φδt

Y (sin θ)
. (3.35)

3.1.3.2. Geometric Quantities

The expansion scalar, as defined in Eq. (1.18) with nµ in place of uµ, calculated

using the 4-velocity, given in Eq. (3.15), is,

Θ = (HX + 2HY ) + 3ψ̇LTB + ∂iv
i − (HX + 2HY ) Φ +

(
X ′

X
+ 2

Y ′

Y

)
vr + (cot θ) vθ ,

(3.36)

where i = r, θ, φ. Alternatively, the expansion factor defined with respect to the

unit normal vector field defined in Eq. (1.18), is given by,

Θn = (HX + 2HY )+3ψ̇LTB−(HX + 2HY ) Φ−B
′
r

X
−∂θBθ

Y
− ∂φBφ

Y sin θ
−2BrY

′

XY
−Bθ cot θ

Y
.

(3.37)

This is more complicated than the equivalent in FRW, Eq. (2.25), due to the ad-

ditional scale factors and their additional radial spatial coordinate dependence. In

order to have the possibility to define later hypersurfaces of uniform expansion, on

which the perturbed expansion is zero, we have to find the transformation behaviour

of the expansion scalar. We find, that e.g. Θn transforms as,

Θ̃n = Θn +
[
ḢX + 2ḢY

]
δt+ [HX + 2HY ] δ̇t+

(
Ẋ ′

X
− ẊX ′

X2
+ 2

Ẏ ′

Y
− 2

Ẏ Y ′

Y 2

)
δr

+

[
1

X2
∂rr +

1

Y 2
∂θθ +

1

Y 2 sin2 θ
∂φφ

]
δt+

2Y ′

Y X2
δt′ +

cot θ

Y 2
∂θδt . (3.38)
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We immediately see that the transformation behaviour of Θn is rather complicated,

and we therefore do not use it to specify a gauge.

3.1.4. Gauge invariant quantities

We can now use the results from the previous section, to construct gauge-invariant

quantities. Luckily, we can use the results derived for the FRW background space-

time, as above and in Chapter 2, as guidance to get the evolution equations. We

showed that the evolution equation for the curvature perturbation on uniform den-

sity hypersurfaces, ζ, as seen in Eq. (2.67), can be derived solely from the energy

conservation equations (on large scales).

3.1.4.1. FRW spacetime

We will first consider the construction of gauge-invariant quantities in perturbed

FRW spacetime, which is the homogeneous limit of LTB. As per Chapter 2, the

perturbed FRW metric is,

ds2 = −(1 + 2φ)dt2 + 2aB,idtdx
i + a2 [(1− 2ψFRW)δij + 2E,ij] dx

idxj ,

where we have performed a scalar-vector-tensor decomposition, and kept only the

scalar part. Eq. (2.45) and Eq. (2.37) then give [112]

ψ̃FRW = ψFRW +
ȧ

a
δt , (3.39)

δ̃ρFRW = δρFRW + ˙̄ρδt , (3.40)

Ẽ = E + δx . (3.41)

where as before a = a(t) is the scale factor (as compared with, X(r, t) and Y (r, t),

the two time and radial spatial coordinate scale factors in LTB) and ρ̄ = ρ̄(t) is

the background energy density. We can now choose a gauge condition, to get rid

of the gauge artefacts, here δt. To this end, the uniform density gauge can then be

specified by the choice δ̃ρFRW ≡ 0, which implies

δt = −δρFRW

˙̄ρ
. (3.42)
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Combining Eq. (3.39) and Eq. (3.42), we are then led to define

− ζ ≡ ψFRW +
ȧ/a

˙̄ρ
δρFRW , (3.43)

as before in Eq. (2.62), which is gauge-invariant under Eq. (2.45), as can be seen by

direct calculation.

3.1.4.2. LTB spacetime

We can now proceed to construct gauge-invariant quantities in the perturbed LTB

model, taking the FRW case as guidance. From the transformation equation of the

perturbed spatial metric trace, ψLTB, Eq. (3.29), we see that here we have to sub-

stitute for δt and δxi, that is we have to choose temporal and spatial hypersurfaces.

From the density perturbation transformation, Eq. (3.21), choosing uniform den-

sity hypersurfaces, δρ̃ = 0, to fix the temporal gauge, we get

δt
∣∣∣
δρ̃=0

= −1
˙̄ρ

[δρ+ ρ̄′δr] . (3.44)

Substituting this into Eq. (3.29), the transformation of the metric trace, we get

−ζSMTP = ψLTB−
1

3

[
Ẋ

X
+ 2

Ẏ

Y

](
δρ+ ρ̄′δr

˙̄ρ

)
+

1

3

{[
X ′

X
+ 2

Y ′

Y

]
δr + ∂iδx

i + δθ cot θ

}
,

(3.45)

where ζSMTP is the Spatial Metric Trace Perturbation and we chose the sign con-

vention and notation to coincide with the FRW case. We can now choose comoving

hypersurfaces to fix the remaining spatial gauge freedom. This gives for the spatial

gauge generators from the transformation of the 3-velocity perturbation, Eq. (3.22),

δxi =

∫
vidt . (3.46)

Substituting the above equations into Eq. (3.45) we finally get the gauge-invariant

spatial metric trace perturbation on comoving, uniform density hypersurfaces,

−ζSMTP = ψLTB +
δρ

3ρ̄
+

1

3

{(
X ′

X
+ 2

Y ′

Y
+
ρ̄′

ρ̄

)∫
vrdt+ ∂r

∫
vrdt+ ∂θ

∫
vθdt

+ ∂φ

∫
vφdt+ cot θ

∫
vθdt

}
, (3.47)
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i.e. ζSMTP = −1
3
δ̃gkk
∣∣
δ̃ρ=0,v=0

. We can check by direct calculation, i.e. by substituting

Eq. (3.29), Eq. (3.21), and Eq. (3.22) into Eq. (3.47), that ζSMTP is gauge invariant.

Instead of using δρ to specify our temporal gauge, we can just as easily use the

spatial metric trace perturbation, that is define hypersurfaces where ψ̃LTB ≡ 0. This

gives for δt

δt = − 1

HX + 2HY

[
ψLTB +

(
X ′

X
+ 2

Y ′

Y

)
δr + ∂iδx

i + δθ cot θ

]
. (3.48)

This allows us to construct another gauge invariant quantity, the density perturba-

tion on uniform spatial metric trace perturbation hypersurfaces, using Eq. (3.21),

as

δρ̃
∣∣∣
ψLTB=0

= δρ+ ρ̄

{
3ψLTB +

(
X ′

X
+ 2

Y ′

Y
+
ρ̄′

ρ̄

)∫
vrdt+ ∂r

∫
vrdt+ ∂θ

∫
vθdt

+ ∂φ

∫
vφdt+ cot θ

∫
vθdt

}
, (3.49)

where the spatial gauge generators were eliminated by selecting the comoving gauge

Eq. (3.46) again. The density perturbation defined in Eq. (3.49) can be written in

terms of ζSMTP, defined in Eq. (3.47), simply as

δρ̃
∣∣∣
ψLTB=0

= −3ρ̄ζSMTP . (3.50)

This expression allows us to relate the density perturbation at different times to the

spatial metric trace perturbation, which, as we shall see in Section 3.1.5, is conserved

or constant in time on all scales for barotropic fluids.

Alternatively, in both cases above, Eq. (3.47) and Eq. (3.49), we could have used

the shift functions instead of the 3-velocities to define the spatial gauge, in analogy

with the Newtonian or longitudinal gauge condition in perturbed FRW. In this case
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the spatial gauge generators are

δr = −
∫
dt

[
∂r
X2

(
δρ
˙̄ρ

+
Br

X

)]
−
∫
dt

[
∂r
X2

(
δrρ̄′

˙̄ρ

)]
, (3.51)

δθ = −
∫
dt

[
∂θ
Y 2

(
δρ
˙̄ρ

+
Bθ

Y

)]
−
∫
dt

[
∂θ
Y 2

(
δrρ̄′

˙̄ρ

)]
, (3.52)

δφ = −
∫
dt

[
∂φ

Y 2 sin2 θ

(
δρ
˙̄ρ

+
Bφ

Y sin θ

)]
−
∫
dt

[
∂φ

Y 2 sin2 θ

(
δrρ̄′

˙̄ρ

)]
.(3.53)

Since the expressions are considerably longer than Eq. (3.46) above, we did not

pursue this choice of spatial gauge any further.

Another alternative would be to choose a more geometric definition of the longi-

tudinal or Newtonian gauge, namely use a zero shear condition to fix temporal and

spatial gauge, again in analogy with FRW, i.e.,

δ̃σij = 0 . (3.54)

However, again we find that this leads to much more complicated gauge conditions

(since we do not decompose into axial and polar scalar and vector parts), and we

here do not pursue this further. See however appendix A.2 for the components of

the shear tensor.

3.1.5. Evolution of ζSMTP

Before we derive the evolution equation for spatial metric trace perturbation ζSMTP,

we briefly discuss the decomposition of the pressure perturbation in the LTB setting.

We assume that the pressure P = P (ρ, S), where ρ is the density and S the entropy

of the system. We can then expand the pressure as

δP =
∂P

∂ρ

∣∣∣∣
S=const

δρ+
∂P

∂S

∣∣∣∣
ρ=const

δS , (3.55)

or,

δP = c2
sδρ+ δPnad , (3.56)

where

δPnad =
∂P

∂S

∣∣∣∣
ρ=const

δS, (3.57)
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is the entropy or non-adiabatic pressure perturbation, and the adiabatic sound speed

is defined as

c2
s ≡

∂P

∂ρ

∣∣∣∣
S

, (3.58)

for a pedagogical introduction to this topic see e.g. Ref. [115]. Since in LTB back-

ground quantities are t and r dependent, therefore allowing for now P ≡ P (t, r), we

find that

c2
s =

˙̄P + P̄ ′vr

˙̄ρ+ ρ̄′vr
. (3.59)

However, since in LTB P̄ = 0, we have that on uniform density hypersurfaces

δP = δPnad.

The evolution equation for spatial metric trace perturbation on uniform den-

sity and comoving hypersurfaces, ζSMTP, using the time derivative of Eq. (3.47),

Eq. (3.17) and background conservation equation, Eq. (3.9), is

ζ̇SMTP =
HX + 2HY

3ρ̄
δPnad . (3.60)

This result is valid on all scales. We see that ζSMTP is conserved for δPnad = 0,

e.g. for barotropic fluids. While this result is similar to the FRW case [47], we do

not have to assume the large scale limit here, which is a striking contrast to be

discussed in Section 3.3.

3.1.6. Spatial Metric Trace Perturbation in FRW

In this subsection we will now compare the behaviour of the ζSMTP variable that

we defined in LTB with the spatial metric trace perturbation on comoving constant

density hypersurfaces in FRW spacetime, including background pressure. From

Eq. (3.1.4.1), the trace of the perturbed part of the spatial metric can be seen to be

given in FRW by

δgkkFRW = −3ψFRW +∇2E . (3.61)

This quantity can be seen to transform under Eq. (2.45) as

δ̃gkk = δgkk − 3Hδt+∇2δx . (3.62)
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The 3-velocity transformation has the same form as in LTB, and is given by Eq. (3.22).

Additionally, the density perturbation evolves as

δρ̇+ 3H (δρ+ δP )− 3
(
ρ̄+ P̄

)
ψ̇FRW +

(
ρ̄+ P̄

) ∇2

a2

(
av + a2Ė

)
= 0 . (3.63)

Taking the time derivative of Eq. (3.61) and substituting into Eq. (3.63) we then

find that the spatial metric trace perturbation on comoving constant density hyper-

surfaces evolves as

− 1

3

˙̃
δgkk
∣∣
δ̃ρ=0,v=0

=
H

(ρ̄+ P̄ )
δPnad . (3.64)

This equation is again valid on all scales, and can again be seen to demonstrate that

the spatial metric trace perturbation on comoving constant density hypersurfaces1 is

conserved for barotropic fluids. It should be noted that in order to relate this spatial

metric trace perturbation on comoving constant density hypersurfaces in FRW to

observables such as the density perturbation both the density perturbation and 3-

velocity need to be specified on flat hypersurfaces. It should also be noted that this

quantity is not the same as the curvature perturbation, ζ, from the standard FRW

literature. Both Eq. (3.64) and Eq. (3.60) differ from the result for the Lemâıtre

spacetime, as shall be seen in Section 3.2 below.

3.2. The Lemâıtre spacetime

Although the main focus of this chapter is on LTB cosmology, we here briefly also dis-

cuss perturbations around a Lemâıtre background spacetime. The Lemâıtre space-

time is a generalisation of LTB, allowing for non-zero pressure in the background

[116]. Although no exact solutions are known in this case, we nevertheless think it

is interesting to extend the discussion of the previous sections to this spacetime.

The Lemâıtre background metric is given by

ds2 = −f 2dt2 +X2(r, t)dr2 + Y 2(r, t)
(
dθ2 + sin2 θdφ2

)
, (3.65)

where f is an additional factor, f ≡ f(t, r). The background four velocity, from

Eq. (1.8), is,

uµ =

[
1

f
, 0, 0, 0

]
, (3.66)

1− 1
3

˙̃
δgkk
∣∣
δ̃ρ=0,v=0

≡ ζ̇SMTP
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and energy-momentum tensor, from Eq. (1.7), becomes,

T µν =


ρ
f2

0 0 0

0 P
X2 0 0

0 0 P
Y 2 0

0 0 0 P
Y 2 sin2 θ

 . (3.67)

Energy conservation is similar to LTB but with an additional pressure term,

ρ̇+ (ρ+ P )(HX + 2HY ) = 0 . (3.68)

If we now perturb the metric in a similar way to LTB, Eq. (3.12), we get,

δgµν =


−2f 2Φ fXBr fY Bθ fY sin θBφ

fXBr 2X2Crr XY Crθ XY sin θCrφ

fY Bθ XY Crθ 2Y 2Cθθ Y 2 sin θCθφ

fY sin θBφ XY sin θCrφ Y 2 sin θCθφ 2Y 2 sin2 θCφφ

 . (3.69)

The perturbed 4-velocity, from Eq. (1.8), is,

uµ =
1

f

[
(1− Φ), vr, vθ, vφ

]
, (3.70)

As in the LTB case, we can now study how the perturbations in this case change

under the transformation Eq. (2.37). The perturbed energy density δρ, and the

3-velocities, vi, transform as in the LTB background Eq. (3.21) and Eq. (3.22). The

perturbed metric components transform as

Φ̃ = Φ− ḟ

f
δt− f ′

f
δr + δ̇t , (3.71)

and

B̃r = Br +
X

f
δ̇r − fδt′

X
, (3.72)

B̃θ = Bθ +
Y

f
δ̇θ − f∂θδt

Y
, (3.73)

B̃φ = Bφ +
Y (sin θ)

f
˙δφ− f∂φδt

Y (sin θ)
. (3.74)

The transformation behaviour of the perturbed metric components Cij, and hence

ψ, are unchanged from the LTB case, see Eq. (3.25) - Eq. (3.27) and Eq. (3.29) -
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Eq. (3.32).

The perturbed energy conservation equation is,

δρ̇ + (δρ+ δP )

(
Ẋ

X
+ 2

Ẏ

Y

)
+
(
ρ̄′ + P̄ ′

)
vr +

fBr

X
P̄ ′ +

(
∂θ
Bθ

Y
+ ∂φ

Bφ

Y sin θ

)
fP̄

+
(
ρ̄+ P̄

)(
ψ̇ + vr ′ + ∂θv

θ + ∂φv
φ +

[
f ′

f
+
X ′

X
+ 2

Y ′

Y

]
vr +

Brf
′

X
+ cot θvθ

)
= 0 . (3.75)

As in the previous section, we can now construct gauge-invariant quantities. We

choose hypersurfaces of vanishing perturbed energy density to define the temporal

gauge, that is,

δt =
δρ
˙̄ρ

+
ρ̄′

˙̄ρ
δr , (3.76)

and choose again co-moving gauge, where vi = 0, to get for the spatial coordinate

shifts

δxi =

∫
vidt . (3.77)

Then using the transformation for perturbed metric trace ψ, given above in Eq. (3.28),

we can construct the gauge-invariant spatial metric trace perturbation on uniform

density and comoving hypersurfaces,

−ζSMTP = ψ +
δρ

3(ρ̄+ P̄ )
+

1

3

{(
X ′

X
+ 2

Y ′

Y
+

ρ̄′

ρ̄+ P̄

)∫
vrdt+ ∂r

∫
vrdt+ ∂θ

∫
vθdt

+ ∂φ

∫
vφdt+ cot θ

∫
vθdt

}
. (3.78)

The evolution equation for ζSMTP is then found from Eq. (3.75), using the decom-

position of the pressure perturbation, Eq. (3.56), and the definition of the adiabatic

sound speed, Eq. (3.59), as

−ζ̇SMTP =
˙̄ρ(

ρ̄+ P̄
)2 δPnad −

P̄ ′(
ρ̄+ P̄

)vr − fBr

X
(
ρ̄+ P̄

) P̄ ′ − (∂θBθ

Y
+ ∂φ

Bφ

Y sin θ

)
fP̄(
ρ̄+ P̄

)
+

[
∂t

(
X ′

X
+
Y ′

Y
+

ρ̄′

ρ̄+ P̄

)]∫
vrdt− f ′

f
vr +

Brf
′

X
. (3.79)

By transforming the coordinates to Cartesian using the chain rule and taking the
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spatial derivatives to be negligible on large scales, Eq. (3.79), reduces to,

ζ̇SMTP =
HX + 2HY

3(ρ̄+ P̄ )
δPnad . (3.80)

This can be seen to be similar to that for LTB, Eq. (3.60), but as with the standard

ζ in FRW, and unlike ζSMTP in both LTB and FRW, is only valid at large scales.

3.3. Discussion on Gauge-invariants in

Inhomogeneous Spacetimes

In this chapter we have constructed gauge-invariant quantities in perturbed LTB

spacetime. In particular we have constructed the gauge-invariant spatial metric

trace perturbation on comoving, uniform density hypersurfaces, ζSMTP. We derived

the evolution equation for ζSMTP and found that it is conserved on all scales for

barotropic fluids (when δPnad = 0). We found this result for the evolution equation

for ζSMTP also holds for FRW. This is in contrast to the standard FRW result, where

an equivalent gauge-invariant quantity, ζ, is only conserved on large scales. It was

also found that the evolution equation for ζSMTP, in Lemâıtre spacetime which would

be conserved in the case of barotropic fluids is only found in the large scale limit,

as with the result for the standard ζ in FRW.

Deriving these results in LTB is more involved than in the FRW case, because

the background is t and r dependent, whereas the FRW background is homoge-

neous and isotropic, and hence only t dependent. Additional complications often

arise in LTB because it suggests a 1+1+2 decomposition, and not “simply” a 1+3

one, as in FRW. The 1+3 decomposition makes a multi-pole decomposition much

more complicated, and hence we did not use such a multi-pole decomposition here

to construct conserved quantities.

The difference in the behaviour of the LTB ζSMTP found here, to the curvature

perturbation in FRW may prove useful in studying the differences in structure for-

mation in the two models.

As pointed out in Ref. [15] the gauge-invariant quantity we have constructed would

be particularly useful in numerical simulations of structure formation in regions of

the universe best modelled using LTB e.g. large voids or overdensities. This is

because in numerical simulations initial conditions, for -for example- densities and
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velocities are set and therefore known. These can then be compared with their

values at the end of the simulation, as opposed to the limited information available

through actual observations at different times.

In addition, further extensions of this research into similar and related space-

times, such as Lemâıtre, may provide similar tools for comparing inhomogeneous

spacetimes with the standard FRW model, as was highlighted with reference to our

research in Ref. [117]. This is of particular interest to research trying to explain

the effects of Dark Energy using inhomogeneous spacetimes. For example, LTB is

difficult to fit to all observations simultaneously e.g. Baryon Accoustic Oscillations

(BAOs) and supernovae data (see e.g. Refs. [13; 14]). Specifically, to explain the

observed dimming of distant supernovae it is possible to use a spherically symmet-

ric inhomogeneous model such as LTB with a local underdensity. However density

profiles for such a void which allow BAO observations to match observations at all

times differ from those needed to fit the supernovae data (the former requiring a

greater void density than the latter). In fact density profiles which work well with

the supernovae data stretch the BAO scale at lower redshifts i.e. near the centre

of the void. However other inhomogeneous cosmologies, such as Lemâıtre might

still prove a better fit to observations while providing an alternative explanation for

accelerated expansion observations but without DE.



4. The Growth of Structure in

Assisted Coupled Quintessence

Cosmologies

4.1. Introduction to Assisted Coupled

Quintessence

In this chapter we investigate assisted coupled quintessence (ACQ) models of DE.

These models contain multiple CDM fluids and DE scalar fields coupled with each

other. We study the behaviour of linear perturbations to these models in order to

compare the growth of structure in those models, and one other recently researched

DE model, multi-coupled dark energy (McDE) [76], against ΛCDM. This chapter

is set out as follows. Section 4.2 describes the ACQ model used. Subsection 4.2.1

describes those aspects of the background equations specific to the models studied.

Subsection 4.2.2.1 contains the general gauge unspecified perturbed equations. Sub-

section 4.2.2.2 describes fixing the gauge in order that the equations can be solved

numerically. Section 4.3 then describes the resulting Pyessence code. Section

4.4 reviews the observational quantities against which our results can be compared.

Finally, section 4.5 details our numerical investigation of specific ACQ and related

models. We conclude in Section 4.6.

4.2. The model

In the ACQ models, the dark sector of the universe is modelled by J different dark

matter fluids, with arbitrary equation of state, and K different scalar fields. We also

include two further fluids which model baryonic matter, and radiation. The general

energy-momentum tensor for any perfect fluid, taken from Eq. (1.7) but here with

62
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mixed indices, is given by

T µν
(Mα) = (ρα + Pα)uµ(α)uν(α) + δµνPα , (4.1)

where the subscript α labels the J + 2 fluids, ρα is the density of any given fluid and

Pα the corresponding pressure, and uµ(α) is the four velocity for a given fluid. The

equation of state for a given fluid is defined as in Eq. (1.50) such that,

wα =
Pα
ρα

. (4.2)

Here and throughout Greek indices µ and ν label coordinates running over time

and relative dimensions in space, and we use lower case Latin indices to label only

spatial dimensions. The energy-momentum tensor for the scalar fields is given by

T µν
(ϕ) = gλµ

∑
I

∂λϕI∂νϕI − δµν

(
1

2

∑
I

gρσ∂ρϕI∂σϕI + V (ϕ1, . . . , ϕM)

)
, (4.3)

where V is the potential energy, ϕI the “I th” scalar field, and upper case Roman

indices label the K fields. In addition,

T µν = T µν
(Mα) + T µν

(ϕ), (4.4)

where T µν is the total energy-momentum tensor. In order to model the interaction

of the matter fluids with the scalar fields, we assume [62; 68]

∇µT
µ
ν

(ϕ) = κ
∑
α,I

CIαT(Mα)∇νϕI , ∇µT
µ
ν

(Mα) = −κ
∑
I

CIαT(Mα)∇νϕI , (4.5)

where κ = (8πG)
1
2 and CIα are coupling constants. Here T(Mα) is the trace of

energy-momentum tensor,

T(Mα) = T µµ(Mα) , (4.6)

for a given fluid. Equations Eq. (4.5) respect energy-momentum conservation of the

total matter content. In what follows we will set the relevant components of the C

matrix such that there is no interaction between baryons or radiation and the scalar

fields.
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4.2.1. Background cosmology

We take a flat FRW spacetime as our background with the metric Eq. (1.23). We

assume the fluids to be comoving with the expansion of the universe such that

ū0(α) = −1 , ūi(α) = 0 . (4.7)

Here we use “bars” to denote background quantities. The background stress energy

tensor for the fluids then becomes

T̄00 =
∑
α

ρ̄α +
∑
I

˙̄ϕ2
I

2
+ V , T̄0j = 0 , T̄ij = δija

2

(∑
α

P̄α +
∑
I

˙̄ϕ2
I

2
− V

)
,

(4.8)

where an overdot indicates a derivative with respect to cosmic time. Eq. (4.5) leads

to the evolution equation for each fluid

˙̄ρα + 3H(ρ̄α + P̄α) = −κ
∑
I

CIα(ρ̄α − 3P̄α) ˙̄ϕI , (4.9)

where H is the Hubble parameter, and to the Klein-Gordon equation for each field

¨̄ϕI + 3H ˙̄ϕI + V,ϕI = κ
∑
α

CIα(ρ̄α − 3P̄α) . (4.10)

The background Friedmann equation is

H2 =
κ2

3

[∑
α

ρ̄α +
∑
I

˙̄ϕ2
I

2
+ V

]
. (4.11)

Finally, we define the density parameter for a given fluid as per Eq. (1.44), such

that,

Ωα =
ρ̄α
ρc

, (4.12)

where ρc is the critical density defined as in Eq. (1.43).

4.2.2. Linear perturbations

4.2.2.1. General Perturbed Equations Gauge Unspecified

The line element for perturbations about a flat FRW spacetime with the gauge

unspecified is given by Eq. (2.5). The perturbed 4-velocity is derived from Eq. (1.8)
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such that,

u0(α) = −(1 + Φ) , ui(α) = a(v +B),i , (4.13)

and the total perturbed energy-momentum tensor for our model is given by

δT00 =
∑
α

δρα +
∑
I

(−Φ ˙̄ϕI
2

+ δϕI ˙̄ϕI + V,ϕI δϕI), (4.14)

δT0j = a

[∑
I

˙̄ϕI

(
˙̄ϕIB,i +

1

a
δϕI,i

)
−
∑
α

(ρ̄α + P̄α)v(α),i

]
,

δTij = δija
2

(∑
α

δPα −
∑
I

(Φ ˙̄ϕI
2 − ˙δϕI ˙̄ϕI + V,ϕI δϕI)

)
.

We now move to Fourier space, where tensor perturbations may be decomposed into

eigenmodes of the spatial Laplacian such that,

∇2 = −k
2

a2
, (4.15)

where k is the wavenumber. The evolution equations for density fluctuations are

then given by

δ̇ρα −
(
k2vα
a

+ k2Ė + 3ψ̇

)
(ρ̄α + P̄α) + 3H(δρα + δPα) = −κ

∑
I

CIα(ρ̄α − 3P̄α) ˙δϕI

− κ
∑
I

CIα(δρα − 3δPα) ˙̄ϕI , (4.16)

momentum conservation gives the constraint

v̇α = κ
∑
I

CIα(ρ̄α− 3P̄α)
δϕI
a

+ 3H
˙̄Pα
˙̄ρα

(vα +B)−H(vα +B)− Φ

a
− δPα
a(ρ̄α + P̄α)

− Ḃ ,

(4.17)

and the evolution of scalar field perturbations is given by

δ̈ϕI +3H ˙δϕI +
∑
J

V,ϕIϕJ δϕJ − (k2Ė + 3ψ̇) ˙̄ϕI +
k2

a2
δϕI +

˙̄ϕI
a
k2B − ˙̄ϕIΦ̇ + 2V,ϕI Φ

− 2κ
∑
α

CIα(ρ̄α − 3P̄α)Φ− κ
∑
α

CIα(δρα − 3δPα) = 0 . (4.18)
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The Einstein Field Equations are as follows. From the 0− 0 component we get

3H(ψ̇+HΦ)+
k2

a2
(ψ+H[a2Ė−aB]) = −κ

2

2

[∑
α

δρα +
∑
I

(−Φ ˙̄ϕ2
I + ˙δϕI ˙̄ϕI + V,ϕI δϕI)

]
,

(4.19)

from the 0− i component

ψ̇ +HΦ = −κ
2

2

[∑
α

a(vα +B)(ρ̄α + P̄α)−
∑
I

˙̄ϕIδϕI

]
, (4.20)

from the trace of the i− j component

ψ̈ + 3Hψ̇ +HΦ̇ + (3H2 + 2Ḣ)Φ =
κ2

2

[∑
α

δPα +
∑
I

(−Φ ˙̄ϕ2
I + ˙δϕI ˙̄ϕI − V,ϕI δϕI)

]
,

(4.21)

and from the trace-free part of the i− j component

σ̇s +Hσs − Φ + ψ = 0 , (4.22)

where σs is the scalar shear and σs = a2Ė − aB.

4.2.2.2. Governing equations in flat gauge

As we saw at the end of Chapter 2, it is possible to define hypersurfaces on which

given quantities are zero and thereby “fix” the gauge. This may be done by fixing one

or more degrees of freedom leading to many different possible choices of gauge. Pre-

viously in the literature (see e.g. Refs.[68; 81]) a common choice of gauge for studies

of coupled quintessence models has been the longitudinal gauge (B̃ = Ẽ = 0), and

we present the equations of motion for perturbations in this gauge in Appendix C.3.

However, we found that this gauge is not a good choice for the numerical integration

of the full equations of motion. This is due to the prefactor term in Eq. (C.17). The

magnitude of the second term in this prefactor is orders of magnitude smaller than

the first, except when the first touches zero, which can occur as the fields oscillate.

This leads to a loss of accuracy at these times and to a numerical instability. For

our numerical integration we therefore use the flat gauge which does not suffer from

this problem. The Pyessence code is covered in more detail in Chapter 5.

The flat gauge is defined by the conditions ψ̃ = 0 and Ẽ = 0. Defining the new

quantity

v̂α = vα +B , (4.23)
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in this gauge Eq. (4.16) reduces to

˙δρα +3H(δρα + δPα)− k2(v̂α −B)

a
(ρ̄α + P̄α) = −

∑
I

κCIα(ρ̄α − 3P̄α) ˙δϕI

−
∑
I

κCIα(δρα − 3δPα) ˙̄ϕI . (4.24)

and Eq. (4.17) to

˙̂vα = κ
∑
I

CIα(ρ̄α − 3P̄α)
δϕI
a

+ 3H
˙̄Pα
˙̄ρα
v̂α −Hv̂α −

Φ

a
− δPα
a(ρ̄α + P̄α)

. (4.25)

The evolution equation for the fields, Eq. (4.18), becomes

δ̈ϕI +3H ˙δϕI +
∑
J

V,ϕIϕJ δϕJ −

[
κ2

2H

(∑
α

δPα −
∑
I

(Φ ˙̄ϕ2
I − ˙δϕI ˙̄ϕI + V,ϕI δϕI)

)

− (3H2 + 2Ḣ)

H
Φ

]
˙̄ϕI +

k2

a2
δϕI +

k2B

a
˙̄ϕI + 2V,ϕI Φ− 2

∑
α

κCIα(ρ̄α − 3P̄α)Φ

−
∑
α

κCIα(δρα − 3δPα) = 0 . (4.26)

From Eq. (4.19), we get

3H2Φ− k2B

a
H = −κ

2

2

[∑
α

δρα +
∑
I

(−Φ ˙̄ϕ2
I + ˙δϕI ˙̄ϕI + V,ϕI δϕI)

]
, (4.27)

and from Eq. (4.20)

Φ = − κ2

2H

[∑
α

av̂α(ρ̄α + P̄α)−
∑
I

˙̄ϕIδϕI

]
, (4.28)

which allows us to replace Φ in terms of field and fluid perturbations. For complete-

ness we note that Eq. (4.21) gives

HΦ̇ + (3H2 + 2Ḣ)Φ =
κ2

2

[∑
α

δPα −
∑
I

(
Φ ˙̄ϕ2

I − ˙δϕI ˙̄ϕI + V,ϕI δϕI

)]
(4.29)

and from Eq. (4.22) we have

Ḃ + 2HB = −Φ

a
. (4.30)
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Combining Eq. (4.27) and Eq. (4.28) we find

B =
3κ2a

2k2

[
1

3H

(∑
α

δρα −
∑
I

(Φ ˙̄ϕ2
I − ˙δϕI ˙̄ϕI − V,ϕI δϕI)

)
+
∑
I

˙̄ϕIδϕI

−
∑
α

av̂α(ρ̄α + P̄α)

]
. (4.31)

which allows us to replace B is terms of field and fluid perturbations.

4.3. Numerical solutions

We can now solve the closed system of equations derived in the previous section

numerically. The system of background equations for the scalar fields and the en-

ergy densities of the fluids, Eq. (4.9) and Eq. (4.10), together with the Friedmann

constraint Eq. (4.11), is solved simultaneously with the evolution equations for the

perturbations δρα, v̂α and δϕI , Eq. (4.24) to Eq. (4.26), together with the con-

straint equations for Φ and B, Eq. (4.28) and Eq. (4.31). The numerical code,

named Pyessence, is written in Python and publicly available on Bitbucket [118]

and on the Pyessence website [119] under an open source modified BSD license,

with documentation available in Ref. [120].

4.3.1. Initial Conditions

4.3.1.1. Background Initial Conditions

We set the initial conditions for the background energy densities of the fluids and

the background field amplitudes such that the background evolution follows closely

that of the ΛCDM model. Due to the potentials used in the models tested we have

analytical solutions for the background evolution equations, which enables us to set

the background initial conditions in terms of their values today. We are free to

choose an initial time, and select N = −14, where N is the number of e-folds from

today (N = 0), which fixes the initial value for the scale factor a and coordinate

time, t. This also ensures we are well into the radiation dominated epoch. In

particular, we demand that the model satisfies constraints on present day energy

densities from Planck data [95]. These are ΩΛ = 0.6911±0.0062 for the cosmological

constant, Ωr = 9.117 × 10−5 for radiation, Ωb = 0.0486 ± 0.0003 for baryons and

ΩCDM = 1 − ΩDE − Ωr − Ωb for cold dark matter. To do so, we assume that

the scalar fields will collectively replace Λ, and the dark matter fluids collectively
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replace the single cold dark matter species of the ΛCDM model. Initially we take

the fields’ velocity to be zero, ϕ̇I = 0. Of course we need to check on a case by case

basis whether the fields really do generate acceleration in a way that accounts for

observations, and that dark matter components behave in a viable way, such that

the background evolution is compatible with current limits.

4.3.1.2. Perturbed Initial Conditions

We start our simulations at sufficiently early times to ensure radiation domination

and that all the k modes studied lie outside the horizon at that time. For simplicity,

we choose the initial conditions for the field velocity and field perturbations to be

zero
˙δϕI = δϕI = 0 , (4.32)

though we find the evolution is insensitive to this choice. The initial conditions for

all other perturbations can be given in terms of observational constraints on the

power spectrum of the gauge invariant curvature perturbation ζ, as defined earlier

in Eq. (2.62),

〈
ζ2
〉

= δ3(k− k′)
2π2

k3
Pζ(k) . (4.33)

On superhorizon scales the power spectrum can be parametrised as

Pζ(k) = As

(
k

k∗

)ns−1

, (4.34)

where [121] As = 2.142 × 10−9 is the scalar amplitude at the Planck pivot scale

k∗ = 0.05 Mpc−1, and ns = 0.9667 is the spectral index [95].

From Eq. (2.62) we then get a relation between the curvature perturbation and the

total energy density perturbation in flat gauge, such that,

δρflat = −
˙̄ρ

H
ζ . (4.35)

This allows us to set the initial condition for the individual fluids. In addition we

assume that the initial conditions are adiabatic, which gives a relation between the

fluid density perturbations initially. The gauge-invariant relative entropy perturba-

tion between two non-interacting fluids [122] is given by

Sαβ = −3H

(
δρα
˙̄ρα
− δρβ

˙̄ρβ

)
. (4.36)
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Adiabatic initial conditions require that Sαβ = 0. Combining Eq. (4.36) with

Eq. (4.9) for radiation and baryons, which for these models, as specified in Sec-

tion 4.1 have couplings of zero, we find

δb =
3

4
δr , (4.37)

where we introduced the density contrast for a given fluid species, α, as

δα ≡
δρα
ρ̄α

. (4.38)

Finally we can set the initial conditions for the 3-velocities, v̂α. We checked numer-

ically that the late time evolution of the system is not very sensitive to the actual

value for the 3-velocities, and we therefore set v̂α = 0 initially. While studying the

initial conditions we found that aside from the initial radiation density perturbation

the results are fairly insensitive to small changes in the initial conditions, due to the

integration starting well inside radiation domination. Small variations in the initial

conditions for the other constituents, for a given k mode, soon converged to a com-

mon trajectory within approximately one e-fold from the start of the simulations.

This meant there was negligible difference in the observable growth of the density

perturbations.

4.3.1.3. Relating Longitudinal Gauge to Flat Gauge

In the previous sections we have presented the system of governing equations and the

initial conditions for the code in flat gauge. However, in order to connect to previous

studies in the literature we present our results in terms of the density contrast in

longitudinal gauge.

Using the background and perturbed densities as defined in Eq. (4.8) and Eq. (4.14),

the total density contrast is defined as,

δ =

∑
α

δρα +
∑
I

δρϕI∑
α

ρ̄α +
∑
I

ρ̄ϕI
. (4.39)
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Using the transformations for the metric and matter variables given in appendix C.2,

and the constraint Eqns. (4.31), we find

δlong = δflat +
˙̄ρ
2

ρ̄
a

(
3κ2a

2k2

[ 1

3H

(∑
α

δρα −
∑
I

(Φ ˙̄ϕ2
I − ˙δϕI ˙̄ϕI − V,ϕI δϕI)

)

+
∑
I

˙̄ϕIδϕI −
∑
α

av̂α(ρ̄α + P̄α)
])

, (4.40)

which reduces initially to

δlong = δflat +

(
k

a

)−2
[

4π Gδflat −
˙̄ρ
2

3Hρ̄
a
∑
α

(ρ̄α + P̄α)v̂α

]
. (4.41)

4.4. Observations

Two key parameters which are constrained by observational data are the growth fac-

tor and growth function. We therefore apply our code to calculate these quantities.

The growth factor is defined as

g =
δ

δ0

, (4.42)

where δ is the total density contrast defined in the longitudinal gauge [81], and δ0

is the total density contrast today. The growth function, f , is defined as

f =
δ′

δ
, (4.43)

where the prime in this case denotes a derivative with respect to the number of

e-folds [81]. Typically observational results are presented as constraints on the

combinations fg and fσ8, since, for example, these quantities can be extracted

directly from redshift space distortions (see e.g. Ref. [123]). σ8 is the amplitude

of the matter power spectrum at a scale of 8h−1Mpc [81; 124]. The experimental

uncertainty of σ8, taken from Dark Energy Survey (DES), which overlaps two other

data sets which are in some tension Canada-France-Hawaii Telescope Lensing Survey

(CFHTLenS) and Planck), is 0.81+0.16
−0.26[125]. In Subsection 4.5.2.4 we use σ8 =

0.81 [95] since this is consistent with the other Planck based parameter values we

have used. Future surveys hope to have the sensitivity to pick up k dependence

in the growth of structure. Square Kilometer Array (SKA) [81; 123], for example,

should be sensitive to measurements of growth at approximately the percent level (or

better) for 42H0 < k < 420H0 at a redshift z ≈ 1 [123]. For k > 42H0 this sensitivity
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falls to ≈ 30%, for example, being at this level around k = 21H0. According to the

author [123] this combined four survey approach (SKA1-MID Band 1 and Band

2 IM (intensity mapping) surveys, Hα and SKA2) should therefore have sufficient

accuracy to distinguish between GR (General Relativity) + ΛCDM and alternative

models, such as coupled quintessence. This accuracy is potentially increased still

further through multiple tracer analysis, cross-correlating with other surveys such

as Euclid. The combined redshift range for SKA and Euclid is 0.5 & z & 2.

Current surveys offer far looser constraints on the growth of structure. Below

we use observational data from 6dF Galaxy Survey (6dFGS), Luminous Red Galaxy

(LRG)200, LRG60 (where 200 and 60 refer to the sample size of luminous red galaxies

selected), Baryon Oscillation Spectroscopic Survey (BOSS), WiggleZ and VIMOS

Public Extragalactic Redshift Survey (VIPERS) with associated errors [124] in our

plots for fg. fg itself was extracted from the values for fσ8 from these surveys, and

applying the value of σ8 = 0.81 as detailed above. The values for fσ8 themselves

are obtain by assuming a weak or negligible k dependence in the growth of structure

and a linear dependence in the same on σ8. These values are obtained by averaging

over a range of scales, for example with the LRG results specific scales were selected

in the range 30h−1Mpc to 200h−1Mpc [126] and averaged over. This approach

would therefore hide any k dependence in the growth. These current surveys also

have a shorter redshift range than that predicted for future surveys (z . 0.8) and

constrain growth at only ≈ 10 − 20% level. In single field coupled quintessence

there is an observational constraint on the magnitude of the coupling between DE

and CDM as C < 0.1
√

2
3

[64]. For this class of models couplings greater than this

give unrealistic background cosmologies, through deviations in the sound horizon at

decoupling from that obtained in ΛCDM (see e.g. Ref. [64]). The McDE models first

described in Section 4.5.1 (1 scalar field and 2 CDM species) give viable background

cosmologies through the effect of the opposite charges and symmetric magnitudes

of the CDM species [76]. We restrict our background analysis to ensure that the

relative background densities match today’s values, and that the evolution moves

from radiation domination, through a period of CDM domination to a final epoch

of DE domination.

Subsequent to the initial submission of this thesis and the submission of [127] to

Physical Review D we received the referees report for this paper raising questions

over our treatment of the background cosmology. The point was raised, with some

justification, that while we had ensured that for the models studied the various

components density parameters had reached values in agreement with those today,

those values themselves are derived assuming the ΛCDM model. This is problematic
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since interacting DE models such as those we investigated could lead to density

parameters of the various components at the time of decoupling which vary greatly

from that obtained assuming ΛCDM (see e.g. Ref. [128]). This in turn then leads

to different density parameters today than those derived assuming ΛCDM. See also

Appendix A of Ref. [129] for a succinct but detailed discussion of this topic. To

ensure the validity of our results we propose confirming that the models studied are

sufficiently close to ΛCDM at the time of decoupling such that their background

evolutions would show negligible difference. Given the initial conditions were set

such that the final density parameters corresponded to the Planck ΛCDM derived

values today, this check should be sufficient. Since ΩΛ is always orders of magnitude

subdominant to ΩM (the total matter density parameter) in those models we claim

satisfy background constraints we shall simply compare the ΩM obtained from these

models at decoupling with that from ΛCDM to ensure no significant deviation.

However, if there is a wide deviation in the energy densities at the time of decoupling

from ΛCDM this would change our estimates of the current energy densities based on

CMB observations interpreted using these interacting DE models, and as such would

also change our values for the growth factors and fg. Such a possible degeneracy

in the results could also remove the ability to distinguish the models studied from

ΛCDM using the SKA and Euclid future survey data.

4.5. Example models

In order to compare models against the standard model, we first applied our code

to produce results for the ΛCDM cosmology. Figure 4.1 shows the results for the

behaviour of fg together with current observational constraints. We also applied

our code to a uncoupled quintessence model with two scalar fields and two CDM

species. In this case, and for all subsequent models including McDE, the potential

for the scalar fields is taken to be a sum of exponentials,

V (ϕ1, . . . , ϕI) = M4
∑
I

e−κλIϕI , (4.44)

where λI is the slope of the potential for field I and M is the scale of the potential.

The sum of exponentials potential was selected since it gives analytic solutions for the

evolution of background quantities which in turn made setting the initial conditions

more straightforward. In addition this potential also gives a simpler matrix of the

derivatives of the potential in terms of the fields, which simplified the analysis. The
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results for uncoupled quintessence are also shown in Figure 4.1. We can see that

for large k there is a negligible difference from ΛCDM in the growth, and even for

small k, the difference is still too small to be detectable by future surveys such as

SKA and Euclid.

4.5.1. Multi-coupled Dark Energy - McDE

Next, we investigated the recently proposed subclass of coupled quintessence, McDE,

as described in Refs. [72; 73; 76]. The McDE model has two CDM species coupled

to one DE scalar field. The couplings of each DM species have the same magnitude

but opposite signs. In order to compare directly with the results of Ref. [76], we set

the baryon density to zero for this model. In previous work, perturbations in this

model have been studied using an approximation to the full system of equations

[64; 68; 74; 76]. This simplification is valid for modes on subhorizon scales and

allows scalar field fluctuations to be written in terms of density perturbations. The

dimensionality of the system can therefore be reduced and an autonomous system of

equations formed for the density perturbations alone. We use the system of ODEs,

taken from Ref. [76], to evolve the density perturbations. We also use the same initial

conditions to generate results using our implementation of the full equations. This

provides a useful examination of the applicability of the subhorizon approximation.

Finally, for comparison, we produce ΛCDM results with the assumption of zero

baryonic content, using the McDE subhorizon approximations equations and our

full system of equations.

We take the initial conditions used in Figure 7 of Ref. [76]. The couplings are

symmetric and set to β = ±0.03 where β ≡
(√

3
2

)
C and α = 0.12 where α ≡ λ.

The potential is as Eq. (4.44), for I = 1, α = 2. The initial conditions were set

non-adiabatically with AIC = 2, where

AIC =
Ω−δ−i
Ω+δ+i

, (4.45)

and AIC is the measure of the deviation from adiabaticity, ‘−’ denote the negatively

charged CDM species and ‘+’ the positively charged. One further parameter is the

asymmetry between these two species, µ, and is defined

µ =
Ω+ − Ω−
Ω+ + Ω−

. (4.46)

Initially µ = 0.5, however we found the final results to be insensitive to this initial
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Figure 4.1.: The top left plot shows the growth function, fg, on sub-horizon scales
for ΛCDM, for the region of redshifts relevant for current and future sur-
veys. The green points are observational data from 6dFG S, LRG200,
LRG60, BOSS, WiggleZ and VIPERS with associated errors [124]. The
red error bars are the Euclid forecasts and the blue the SKA fore-
casts [81] applied to the k = 300H0 plot. The forecast error bars are
approximately the line width. The top right plot shows the same for
uncoupled two field two CDM species quintessence, λ = 0.1. The bot-
tom plot compares fg for ΛCDM with uncoupled quintessence (DC) for
k = 300H0 and k = 3H0.
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condition. Once again we generated plots using the reduced system and the full

equations for a range of ks. For quantities which were absent in Ref. [76]; radiation

perturbations, perturbations to the scalar field, these were initially set to zero.

The results are presented in terms of the evolution of fg and are shown in Fig-

ure 4.2. For the simplified ΛCDM model, with the baryon content set to zero, and

the radiation unperturbed (initially for our full code, while radiation perturbation

equations are not included in the subhorizon approximation) the results are shown

in Figure 4.2 together with present and future constraints. Examining this figure,

we see that for the largest k modes the results converge with the result generated

using the subhorizon approximation. It should be noted however that there is a

noticeable difference in the evolution of growth between the different k modes down

to the scale of k = 300H0, and as such the subhorizon approximation is masking

this k dependence over this range of ks.

As in Ref. [76] we found that the evolution provided by the subhorizon approx-

imation gives an evolution for fg close to ΛCDM but with a deficit at lower red

shifts. The larger k modes have mostly converged with the approximation, however,

there is a small deviation such that at late times fg is closer to ΛCDM than the

approximations. As with all full equation results produced, the growth results are

converging with increasing k, as expected. However, even at scales of k = 300H0

the small scale approximation appears insufficient for this model, even for the con-

servative predicted precision for SKA and Euclid measurements. We can see in the

right hand plot of Figure 4.2 that the approximation deviates from the full equations

results by more than the predicted observational precision at these higher redshifts.

Additionally, for the full equations at k = 300H0 the evolution of fg for McDE and

ΛCDM models can not be distinguished from the predicted observational precision.

4.5.2. Assisted Coupled Quintessence

4.5.2.1. Transient Matter Domination

Next we considered the ACQ model introduced in Ref. [68]. The model contains

two pressureless dark matter fluids coupled to two scalar fields. Initially we choose

small couplings (C11 = −0.2, C12 = 0.4, C21 = −0.3 and C22 = 0.6) and small

slopes for the potentials, λI , (λ1 = λ2 = 0.1). The evolution of the background

densities for this model is shown in the left hand panel of Figure 4.3. These small

couplings give rise to a tracking behaviour, by which we mean that the scalar fields

densities between e-folds of within the interval −13 and −3 approximately follow

the evolution of the energy densities of the other components. While this may not
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Figure 4.2.: The top left hand panel shows fg = δ′

δ0
for McDE with ΩΛ = 0.692,

no baryons, one CDM species and unperturbed radiation, λ = 012,

C = ±0.03
√

2
3
. A range of subhorizon k modes are shown with con-

vergence towards a k independent evolution of growth with larger ks.
The result for the subhorizon approximation from Ref. [76] is shown in
grey. The top right panel shows fg for McDE for k = 300H0 for the full
equations, the subhorizon approximation from Ref. [76] and ΛCDM for
k = 300H0. In each panel, the green points are observational data from
6dFGS, LRG200, LRG60, BOSS, WiggleZ and VIPERS with associated
errors [124]. The red error bars are the Euclid forecasts and the blue
the SKA forecasts [81] applied to the k = 300H0 plot. The bottom
panel reproduces a magnified area of the lower panel, showing that the
approximation results differ from the full equations by more than the
uncertainties.



4.5: Example models 78

Figure 4.3.: The left hand plot shows the evolution of the background densities of
components for the transient matter domination ACQ model. The scale
is logarithmic. Subscript b denotes baryons, subscript r denotes radi-
ation. Couplings, C11 = −0.2, C12 = 0.4, C21 = −0.3, C22 = 0.6.
Slopes for the potentials, λ1 = λ2 = 0.1. The right hand plot shows the
evolution of the background densities of components for the strongly
coupled matter dominated coupled quintessence model. Subscript b de-
notes baryons, subscript r denotes radiation. Couplings, C11 = −20,
C12 = 40, C21 = −30 and C22 = 60. Slopes for the potentials,
λ1 = λ2 = 10

alleviate the coincidence problem and instead restate the problem in terms of the

value of the potential/effective potential minimum, some may find this aesthetically

more acceptable given the additional dynamism in the field and a more “natural”

interacting scalar fields driven explanation. This model also still gave a transition

to a near constant energy density for the scalar fields at late times and domination

of the scalar field energy densities at late times, as required to produce similar

background behaviour to ΛCDM.

The right hand panel of Figure 4.4 is the evolution of fg for k = 300H0, and

shows the conservative predicted observational precision would not be enough to

distinguish between this model and ΛCDM. However, if optimal performance were

achieved leading to an order of magnitude improvement in the observational uncer-

tainties this could be sufficient to distinguish the two models.
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Figure 4.4.: The top left plot shows the growth function, fg, sub-horizon scales, for
the transient matter domination ACQ model, for the region of red-
shifts relevant for current and predicted future surveys. Couplings,
C11 = −0.2, C12 = 0.4, C21 = −0.3, C22 = 0.6. Slopes for the po-
tentials, λ1 = λ2 = 0.1. The green points are observational data from
6dFGS, LRG200, LRG60, BOSS, WiggleZ and VIPERS with associated
errors [124]. The red error bars are the Euclid forecasts and the blue
the SKA forecasts [81] applied to the k = 300H0 plot. The top right
plot compares the fg between ΛCDM and transient matter dominated
model (TMD) for k = 300H0 and k = 3H0. The bottom panel zooms
in on the top right panel to show the results versus the SKA/Euclid
uncertainties for k = 300H0.
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Figure 4.5.: The left plot shows the growth function, fg, sub-horizon scales, for
strongly coupled matter dominated ACQ model, for the region of red-
shifts relevant for current and future surveys. Couplings C11 = −0.2,
C12 = 0.4, C21 = −0.3 and C22 = 0.6. Slopes for the potentials,
λ1 = λ2 = 0.1. The right hand plot compares the fg between ΛCDM
and the strongly coupled model (SC) for k = 300H0 and k = 3H0.

4.5.2.2. Strongly Coupled Matter Domination

Taking again the same setup, next we choose the couplings C11 = −20, C12 = 40,

C21 = −30 and C22 = 60 and the slopes for the potentials λ1 = λ2 = 10. The

background evolution of this system was also studied in Ref. [68] and can be seen

in the right hand plot in Figure 4.3. The initial oscillations in the scalar fields are

caused by the initial conditions for the fields, which are set above the minimum

of the effective potential and subsequently oscillate around this minimum. The

average behaviour of the scalar fields’ energy densities is similar to the transient

matter domination model. Initially there is a nearly tracking period at early times,

followed by transition to nearly constant energy densities for the fields. Unlike the

transient matter domination model, one of the CDM fluids then scales with the scalar

fields’ energy densities as shown in the right panel of Figure 4.3. Although there is

oscillatory behaviour at early times in the growth factor it does not exceed unity,

and the average behaviour is very similar to that of the weaker coupled transient

matter dominated model. As such the model is consistent with present observations.
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Figure 4.6.: The plot shows the log of growth factor, g, for scaling solution ACQ
model, for subhorizon k modes.

4.5.2.3. Scaling Solution

As a second example we followed Ref. [68], and considered the same setup and

potential, but chose couplings which give rise to a scaling behaviour. The resultant

system is, however, not consistent with observations. It even lacks dark matter

domination at earlier epochs. In this example C11 = 90, C12 = −8, C21 = −63 and

C22 = −10 and the slopes of the potentials were taken to be λ1 = 10, λ2 = 5.4.

For this example we calculated the growth factor, g, shown in Figure 4.6. It can

clearly be seen that it becomes greater than unity on subhorizon scales, although

less pronounced with increasing k, showing this model to be unrealistic at both the

background and perturbed level.

4.5.2.4. Exploration of Potential Slope Space for Strongly Coupled

Matter Domination

We now explore how changes in the slopes of the potentials (the λI terms in

Eq. (4.44)) in the matter dominated model affects the cosmology. Since, for the cou-

plings in the strongly coupled model, the original large value of the slopes, λ1 = 10,

λ2 = 10 produced excessive growth, we investigated the slope parameter space. This

was done from λI = 10 down to λI = 0.01. This region including observationally

consistent models is shown in Figure 4.7. In producing this figure, the wavenumber
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Figure 4.7.: fσ8 for the matter dominated model with varying slopes for the poten-
tials, λ. The wavenumber was set to k = 42H0 for these runs. Cou-
plings, C11 = −20, C12 = 40, C21 = −30, C22 = 60. The observational
values with uncertainties used for comparison were those from LRG200,
for z = 0.25. The plot is a subsection from a region of λ parameter
space from λ = 10 down to λ = 0.01 where the results are consistent
with observations.
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of k = 42H0 was selected since it is the smallest k mode for which SKA is predicted

to still attain its highest precision [123]. The LRG200 data set was selected simply to

serve as an example for comparison (see Section 4.4 for more details on observations

used for comparison). Different data sets would move the value of fσ8 slightly, and

alter the range of the error bars. There is a range of slopes for which these models

not only gave a realistic background cosmology but also gave growth consistent with

observations. In this region the parameter values are at least an order of magnitude

smaller than the original values used. The background cosmologies for this region

are very close in behaviour to Figure 4.3. For slopes much smaller than λ = 0.01

the potential is becoming increasingly flat and the results become noise dominated.

As such they were excluded from our analysis.

4.5.2.5. Exploration of Couplings Space for Strongly Coupled Matter

Domination

For completeness a coarse exploration of the full parameter space of couplings was

conducted and the growth function calculated. The range of couplings investigated

was from −50 ≤ C ≤ 50 with a stepping of 10. The slopes for the potentials and

initial conditions were left as before i.e. λ1 = λ2 = 10. For the portions of coupling

space where the couplings satisfied the background constraints for these models, all

exhibited excessive growth in the perturbations.

Finally in Figure 4.8 we show fg for a sample of the models studied against ΛCDM

compared with the SKA and Euclid predicted precisions. This was carried out for

mode k = 42H0 as it corresponds to the largest scale for which the highest predicted

precision should be achieved for SKA [123]. We can see that unless the best possible

predicted precision is achieved it may still be hard to distinguish models with small

couplings and slopes from ΛCDM. However, models with larger couplings should be

easily identified. The strongly coupled model with λI = 1 was chosen since it lay

within one of the viable regions discovered in Subsection 4.5.2.4. For this model it

is clear that this would be distinguishable from ΛCDM given even the conservative

predicted precision for SKA and Euclid. Therefore, there is a region of param-

eter space between the transient matter domination parameters and the strongly

coupled parameters we initially tested in which subregions satisfy both background

constraints and give growth results distinguishable from ΛCDM by future surveys,

as the strongly coupled model does.
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Figure 4.8.: This plot compares the fg between ΛCDM and the strongly coupled
model (SC) for both λI = 10 and λI = 1, the transient matter dom-
inated model (TMD) and McDE model. All models are evaluated at
k = 42H0. The insert zooms in on an example region in redshift space
where future surveys should measure fg sufficiently accurately to com-
pare different model predictions.
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4.6. Discussion of ACQ Results

In this chapter we have presented the full equations for perturbations in ACQ mod-

els, produced a numerical package to evolve these perturbations, Pyessence, and

used this package to compare a set of example models with observations. We found

that the longitudinal gauge, often employed in previous studies of less general sys-

tems, is not ideal for the numerical evolution of the full system, and we therefore

used the flat gauge.

We found that there are examples of ACQ models which lie within current obser-

vational bounds, however, distinguishable from ΛCDM models with future surveys

such as Euclid and SKA, as they will attain a precision in fg at the percent level or

better [81]. On the other hand, we also found examples such as the strongly coupled

model defined in Ref. [68], were fg is incompatible with current observations, ruling

out the model. This confirms the conclusion in Ref. [68], that while “large” couplings

might give a realistic background model, the perturbations experience excessively

strong growth (or damping) and are, therefore, unrealistic. However, we found that

it did not require both the couplings and the slopes to be reduced simultaneously in

order for a region of viable background and perturbed cosmologies to be recovered,

as discussed in Subsection 4.5.2.4, since when λ . 2 this leads to a viable parameter

space region.

We have found for the McDE model, and the transient matter dominated case

for the ACQ models studied, that they give realistic background cosmologies while

apparently exceeding the allowed coupling strength for single field ACQ, C . 0.1
√

2
3

(see e.g. Ref. [64]). This difference in behaviour between single field (and single

CDM species) and multiple CDM species models results from the relative signs of

the couplings. In Ref. [76], the McDE model with couplings significantly greater

than 0.1
√

2
3

gave rise to viable background and perturbed cosmologies. This is

attributed to the unique way in which the CDM species are oppositely charged

with respect to the DE scalar field (couplings are also of the same magnitude).

In our ACQ models each CDM species has an opposite charge relative to each

scalar field i.e. CDM species 1 has a negative coupling to scalar field 1 while CDM

species 2 has a positive coupling, and similarly for scalar field 2. Although the

couplings are no longer symmetric in magnitude, this partial balance of charge still

has a similar effect as in McDE, both in giving viable background cosmologies and

in controlling the growth of structure. However, of the models studied only the

transient matter dominated model satisfied both the background evolution and the

evolution of growth through fg for low redshift.
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Finally, we have also addressed the question of the applicability of the large k

approximation, and investigated at which scales it may be considered a good ap-

proximation. The deviation of the full equation results for large k modes from

the approximation is frequently greater than the experimental uncertainty in future

surveys. In Section 4.5.1 we showed that using a subhorizon approximation gave a

difference in results for growth from the full equations which would be larger than the

predicted observational precision for SKA and Euclid. The approximation already

deviates from the full equations by more than the predicted precision of SKA [123]

at k = 300H0 and becomes progressively worse towards k = 42H0, the boundary for

which SKA is predicted to have the highest precision. Hence results from the full

equations should be used for comparison with future observations instead of those

obtained using the approximation. This is therefore an important aspect to take

into account in the analysis of large scale structure from near future experiments.



5. Pyessence - Assisted Coupled

Quintessence Linear

Perturbation Python Code

5.1. Introduction

In this chapter we discuss the construction and operation of the Pyessence Python

code used to obtain the results discussed in Chapter 4. Pyessence is designed to

evolve linearly perturbations to coupled quintessence models with multiple CDM

fluid species and multiple DE scalar fields.

The code allows two main approaches to investigating the viability of ACQ and

related models. Firstly, the “stability” of these perturbations may be investigated.

Here we use the word “stability” rather loosely to mean the perturbations might

experience runaway growth or “explode”; models in which the perturbations have

runaway growth may be excluded. In addition models where the growth factor,

g, exceeds unity for subhorizon k modes may also be excluded (see e.g. Subsec-

tion 4.5.2.3). Secondly, the power spectra or growth functions may be calculated to

compare with observations e.g. k dependent fg as in Section 4.5. They may either

prove to be outside current observational bounds (see e.g. Ref. [124]) such as the

strongly coupled ACQ model in Subsection 4.5.2.2, or provide deviations from the

standard ΛCDM model of cosmology which would be detectable in future surveys

e.g. SKA [81] or Euclid [80] as seen in Section 4.6.

The code is designed to be flexible, with the form of the potential and other model

specific parameters set in the MODEL.py module (while the equations within the

code allow for more exotic forms of dark matter which might have non-zero equa-

tions of state, as in warm dark matter (WDM), see e.g. Ref. [130]). For any given

model the code either produces directly, or allows the calculation of, quantities such

as such as g, the evolution of the density contrast normalised by today’s value i.e.

87
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δ
δ0

, or f , the e-fold derivative1 of the density contrast scaled to the density contrast

i.e. δ′

δ
may be calculated from the data output and compared with, for example,

fσ8 measurements (see e.g. Ref. [81]) or fg (see e.g. Refs. [76; 127]) as seen in Sec-

tion 4.4. The evolution of the density perturbations for the CDM species is produced

directly by the code, which allows the power spectrum for the density perturbations

to be generated by running the code for a range of wavenumbers, k. The code gives

results in flat gauge but these may be converted into whichever gauge is required

for a given task, or for comparison with existing literature e.g. the frequently used

longitudinal or Newtonian gauge [68; 81; 131].

An advantage of this code is that it is relatively small and therefore fast. It generates

observables which allow the ruling out of regions of parameter space (or potentially

a given model entirely) as with, for example, the slopes and couplings parameter

space investigation in Subsection 4.5.2.4 and Subsection 4.5.2.5 respectively, before

embarking on more detailed analysis using larger codes with broader functionality

e.g. CLASS [132] or CAMB [133].

The rest of this chapter is set out as follows; Section 5.2 outlines the system

requirements for the Pyessence package. Section 5.3 details the variable names and

other code specific features, as well as listing each of the modules; CONSTANTS.py,

BACKGROUND.py, PERTURBED.py and MODEL.py. In the PERTURBED.py

Subsection we also discuss problems encountered while constructing the code and

also some of the reliability testing. Finally, Section 5.4 details some further example

applications of the Pyessence code complementing those from Chapter 4, which

were used while testing the code in development.

5.2. Requirements

Pyessence was written and tested using Python 2.7.3 and should therefore work

on higher versions of Python. It may work with earlier versions but this has not

been tested.

The core modules use Numpy, and these were developed and tested using v1.6.2,

and also use Scipy, using v0.10.1.

The various Pyessence application examples e.g. EXAMPLE1.py, use Mat-

plotlib to demonstrate plotting of results but this is not required for the core mod-

ules.

1As before in Subsection 1.2.5.6, e-fold is the logarithmic measure of time in terms of the expansion
of the universe, as in Eq. (1.68) such that N = ln( aa0 ), where N is the number of e-folds, a is
the scale factor at a given time and a0 is the scale factor today.
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5.3. Modules

The variable and function labels are listed in a table in the README.txt file. The

variables are stored in an array labeled In[x], where x runs from zero to 5 + 3A + 4I

where I is the number of scalar fields and A is the number of CDM fluids as defined

by the dimensions of the couplings matrix.

The MODEL.py is model specific and would therefore need configuring for each

model studied. It contains the matrix for the couplings as an array labelled C in the

code, corresponding to C in the equations below and in Chapter 4. The value of k is

also set here, however, this may be overridden by the python module constructed to

call the Pyessence modules if, for example, stepping through k space is required

e.g. constructing power spectra. To explore the range of viable couplings for a given

model, or the potential slopes give in the L matrix in the code, the C or L matrix

values may be overridden in a similar way, as in Subsections 4.5.2.5 and 4.5.2.4. We

shall return to these settings in more detail in Section 5.3.4.

5.3.1. CONSTANTS.py

This module is the smallest and simply contains the constants used within the

Pyessence package. Any additional constants required if the code is modified

should be put here. It contains the gravitational constant, G,

κ = (8πG)
1
2 , (5.1)

the Hubble parameter, h, and the critical density today,

ρc(0)(=
3H2

0

κ2
). (5.2)

5.3.2. BACKGROUND.py

This module contains the background equations. In this subsection we list the

equations coded in the module in the order in which they appear. When listed

in previous chapters we refer back. The only equations seen in this subsection

are those included in the code in a specific form, or which were included in the

code but were not part of the system integrated. These non-integrated equations

will be those useful for calculating or plotting other quantities. A bar is used to

denote background quantities. Please note, all the pressure terms in the equations

throughout are replaced with appropriate equations of state terms within the code.
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The non-integrated equations are below. The first is Eq. (4.11), the Friedmann

equation, for the fluids and fields. The coordinate time derivative is denoted by

“dot”. Derivatives with respect to fields are denoted by a “comma”. The time

derivative of the Hubble parameter is given by,

Ḣ =
κ2

6H

[∑
α

˙̄ρα +
∑
I

( ˙̄ϕI ¨̄ϕI + ˙̄ϕIV,ϕI )

]
. (5.3)

The energy density of the scalar fields are given by,

∑
I

ρ̄ϕI =
∑
I

˙̄ϕ2
I

2
+ V. (5.4)

The integrated equations are as follows. The evolution equation for the radiation

energy density can be taken from Eq. (1.29) with w = 1
3
, and is given by,

˙̄ρr = −4Hρ̄r. (5.5)

The evolution equation for the baryon energy density can be taken from Eq. (1.30),

and is given by,

˙̄ρb = −3Hρ̄b. (5.6)

Next in the module is the evolution equation for the CDM fluids energy densities;

Eq. (4.9).

The subsequent equations simply equate the functions for the time derivatives of

the scalar fields, labelled dx in the code, with the variables for the same, labelled y,

within the code. Finally, the second time derivatives of the scalar fields are given

by Eq. (4.10).

5.3.3. PERTURBED.py

This module contains the perturbed equations. In constructing the Pyessence code

we initially selected longitudinal gauge (See Appendix C.3) for our perturbed equa-

tions. However we discovered a numerical instability, first noticed through all avail-

able integration methods (dopri5, LSODA, vode, zvode and dop853) failing to con-

verge using longitudinal gauge, due to the problems caused by the first term in

Eq. (C.17) outlined in Subsection 4.2.2.2. To avoid this we switched to flat gauge

where the constraint equations did not suffer from this numerical instability. By

incrementally increasing the relative and absolute tolerances (the rtol and atol set-

tings for the ODE package respectively) we were able to ensure convergence occurred
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well before the tolerances eventually used for all the runs reproduced here and in

Chapter 4; specifically, rtol = 10−14, atol = 10−14.

In this subsection we list the equations coded in the module in the order in which

they appear. When listed in previous chapters we refer back. The only equations

seen in this subsection are those included in the code in a specific form, or which

were included in the code but were not part of the system integrated. These non-

integrated equations will be those useful for calculating or plotting other quantities.

The non-integrated equations are below. The first is the constraint for the metric

potential, Φ, Eq. (4.28). Next is the constraint equation for B Eq. (4.31). The

perturbed energy density for the scalar fields, taken from Eq. (4.14), is given by,

δρϕI = −Φ ˙̄ϕ2
I + ˙̄ϕI ˙δϕI + V,ϕI δϕI . (5.7)

The equation for the gauge invariant curvature perturbation, ζ (see e.g. Ref. [134]),

taken from Eq. (2.62) and expressed in terms of the sums of the components is,

ζ = −ψ −H


∑
α

δρα∑
α

ρ̇α

 . (5.8)

The integrated equations are as follows. The evolution equation for the radiation

perturbed energy density is taken from Eq. (4.24) with zero couplings and w = 1
3
,

and is given by,

˙δρr = −4Hδρr +
4k2

3a
(v̂r −B)ρ̄r. (5.9)

The evolution equation for the baryon perturbed energy density is taken from

Eq. (4.24) with zero couplings and w = 0, and is given by,

˙δρb = −3Hδρb +
k2

a
(v̂b −B)ρ̄b. (5.10)

The evolution equation for the CDM fluids perturbed energy densities is Eq. (4.24).

The evolution equation for the 3-velocity for the radiation fluid is taken from

Eq. (4.17) with zero couplings and w = 1
3
, and is given by,

˙̂vr = −Φ

a
− δρr

4aρ̄r
. (5.11)

The evolution equation for the 3-velocity for the baryon fluid is taken from Eq. (4.17)
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with zero couplings and w = 0, and is given by,

˙̂vb = −Hv̂b −
Φ

a
. (5.12)

The evolution equation for the 3-velocity for the CDM fluids is Eq. (4.17).

Similarly to the BACKGROUND.py module, the next equation simply equates the

function for the time derivative of the perturbed scalar fields, labelled dpx within

the code, with the variable for the same, labelled py, within the code. Next the

second time derivatives of the perturbed scalar fields is given by Eq. (4.26). Finally,

the last function included at the end of the module, df, is the array of all functions

passed to the integrator, both background and perturbed.

5.3.4. MODEL.py

This module defines the model being studied. The wavenumber, k, is also set here,

for convenience in the code structure. Additional modules calling Pyessence may

override this value locally, for example if looping through k values, or plotting func-

tions from multiple saved data sets for different ks. Many of the parameters in the

MODEL.py file included are specific to the sum of exponentials potential, Eq. (4.44),

used to test the Pyessence code and give the first scientific results. This is simply

one example of a possible potentials, and the example MODEL.py contains param-

eters set specifically for this example potential. These would need to be altered to

configure for a different potential e.g. the derivatives of the potential. Below only

general quantities will be discussed.

In this subsection we list the functions and variables coded in the module. C is the

array of the couplings. This has been entered directly in the included MODEL.py

but may be loaded from a Numpy save file created separately. For larger mod-

els with many CDM fluids and many scalar fields this would be a more practical

method. The module uses the dimensions of this array to determine the number of

CDM fluids, assigned to variable A, and number of scalar fields, assigned to variable

I. It also uses these to initialise the array of all integrated variables, In, the initial

condition array, f 0, and the CDM fluids equations of state array, w.

Function V is the potential for a given model. Function VP is the array of deriva-

tives of the potential with respect to the scalar fields. Function VPP is the array of

second derivatives of the potential with respect to the scalar fields. Those included

in the MODEL.py file are for the sum of exponentials potential and have been en-

tered manually as for a two CDM fluid, two scalar field model. More generally, for
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many CDM fluids and many scalar fields loading VP and VPP functions from saved

arrays would be more practical, as per the C array.

5.4. Examples

The example Python files included with the package distribution were created during

the testing and initial use of the Pyessence code. They are included to give some

guidance as to how the code may be used, but are not intended to be prescriptive.

5.4.1. Example 1 - Matter and Radiation only Universe

This file was designed to evolve perturbations to just matter and radiation, with no

CDM fluids or dark energy. This was compared to the same results in Ref. [131].

The file is included as EXAMPLEPAD.py in the official release on Refs.[118; 119].

The corresponding model file is also included as MODELPAD.py.

In this subsection we list the settings and functions coded in the module in the order

in which they appear. The imports section heads the file. Next, t i is the initial time,

t f the final time and the step is the step size, in e-folds. After these are the initial

conditions. In this example some of the perturbed initial conditions depended upon

functions of the background, hence the split in the setting of the initial conditions

seen in the module. For convenience an array of all times is created, t out.

Next the integrator is set up. The dopri5 integration method is being used in this

example, as was the case for all the scientific results shown in Chapter 4, but other

possible integration methods are shown “hashed out” within the code.

After the integrator has finished the results are saved (fulloutput), along with the

time array (t out).

The next section contains plotting routines. The first two sections plot the back-

ground and perturbed energy density for matter and radiation. The next two sec-

tions plot the density contrasts in the flat gauge in which the code is written and

then plots the density contrasts converted to longitudinal gauge as in [131]. The

next section plots the shear, σ (where σ = 3
4
δr − δm). This is followed by the co-

moving curvature perturbation, ζ, and then the metric potential, Φ, in flat gauge,

the shift, B, and then Φ in longitudinal gauge shown in Figure 5.1 for comparison

with Ref.[131].
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Figure 5.1.: Evolution of metric potential, Φ, for k = 0.01keq, where keq is the
wavenumber for the horizon size at the time of matter-radiation equal-
ity. N = −6 e-folds corresponds to the time of horizon crossing and
these numerical results matched those expected c.f Ref. [131].

The final section plots the 3-velocities for matter and radiation.

5.4.2. Example 2 - ΛCDM

The file for this example is included in the official release on Refs.[118; 119] as

LCDM.py. The model file corresponding to this is also included as MODELL-

CDM.py. The layout is much as for Section 5.4.1 with the following exceptions.

This code was adapted from a test for one scalar field interacting with one CDM

fluid. Standard ΛCDM behaviour was then achieved by flattening the potential and

setting it to the same energy density as a cosmological constant today. In this sub-

section we list the settings and functions coded in the module in the order in which

they appear. The initial conditions for the scalar field and the scalar field velocity

are then set to zero as are the field perturbation and field perturbation velocity. A

small additional Python code called gANDfPLOTTER(long)LCDM.py, held in the

Data folder, was used to produce plots of the growth functions in longitudinal gauge

over a range of ks. Figure 5.2 is included as an example output for log of the growth

factor, g (= δ
δ0

).
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Figure 5.2.: Log of growth factor, g, δ
δ0

, subhorizon scales, for ΛCDM. H0 is the
Hubble constant.

This shows the expected behaviour for ΛCDM, specifically near constant growths

over a range of e-folds prior to horizon crossing, followed by a linear increase in

growths over a range of e-folds once the mode has re-entered the horizon, before the

slopes begin to decrease as we enter Λ domination.

5.4.3. Example 3 - Assisted Coupled Quintessence -

Transient Matter Domination

The file for this example is included as EXAMPLE1.py in the official release on

Refs.[118; 119] as MODELLCDM.py. The model file corresponding to this is also

included as MODEL.py. The layout is much as for Section 5.4.1 with the following

exceptions. This code is for two scalar fields interacting with two CDM fluids. After

initial radiation domination, an epoch of matter domination is entered which finally

transitions to one of dark energy domination. Again, gANDfPLOTTER(long).py

was used to produce plots of the growth functions in longitudinal gauge over a range

of ks. Figure 5.3 is included as an example output for log of the growth factor, g

( δ
δ0

).
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Figure 5.3.: Log of growth factor, g, subhorizon scales, for ACQ with couplings,
C11 = −0.2, C12 = 0.4, C21 = −0.3, C22 = 0.6. Slopes for the potentials,
λ1 = λ2 = 0.1. H0 is the Hubble constant.

Compared to ΛCDM (Figure 5.2), there are deviations from these results with

additional fluctuations in the growth during matter domination. These become

more pronounced with decreasing wavenumber.

5.5. Concluding Remarks

As detailed above, Pyessence is designed to be a fast code for quickly performing

initial testing of coupled quintessence models by evolving perturbations, such as

CDM density perturbations, which may be compared with observations. Models may

be constrained through the regions of parameter space matching observations, or

possible eliminated altogether. For example, while conducting the slope parameter

space exploration (see Subsection 4.5.2.4), ≈ 100 runs were conducted sequentially

to produce the results shown in ≈ 20 hours. This was performed on a quad core

desktop PC with Intel Core i5-2400 3.10GHz CPUs, 7.7 Gb of RAM running Debian

release 7.11. The code can be optimised for parallel runs, which should significantly

increase its efficiency. Pyessence is released under an open source BSD license
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which can be found in the LICENSE.txt file included with this distribution on

Refs.[118; 119].



6. Conclusions and Further Work

In this chapter we summarise the work contained in this thesis, highlighting key

methods and results. We will also look at possible directions for future work from a

theoretical perspective. Finally we shall give an outlook to further work in the field

in the light of future observations.

6.1. Summary

The research in this thesis, conducted using CPT at linear order and shown in

Chapters 3, 4 and 5, highlights the importance of CPT as a tool for studying the

universe. In Chapter 3 we applied techniques previously used in standard flat FRW

models - to construct gauge invariant and conserved quantities - to inhomogeneous

cosmologies, specifically LTB and Lemâıtre. We constructed a gauge invariant cur-

vature perturbation, ζSMTP (or Spatial Metric Trace Perturbation), in LTB and

Lemâıtre cosmologies and also examined its behaviour in standard flat FRW cos-

mology. Specifically we found it was conserved on all scales in LTB and FRW, while

only being conserved on large scales in Lemâıtre. With two gauge fixing conditions,

specifically constant density and comoving hypersurfaces, ζSMTP is best suited to

numerical simulations of the evolution of density perturbations i.e. structure in the

universe, where it can provide an analytical check against these numerical results.

This is because both conditions must be known at one time such that they can

then be analysed in combination at another time. This is would not be possible

observationally since even if density and velocity perturbations were known at the

current time, ζSMTP would only reveal their combined value at early times, which

could not be separated observational. However in numerical simulations both condi-

tions are known at the start and end of the simulations and as such ζSMTP provides

a consistency check in such simulations.

In Chapters 4 and 5 we derived the full system of evolution equations for linear

perturbations in ACQ cosmologies before fixing the gauge (longitudinal, synchronous

and flat). We used equations in flat gauge for a Python package, Pyessence, de-

98
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signed to quickly investigate the evolution of these perturbed quantities. We used

the code to evolve the CDM density perturbations in order to then calculate the

growth of density perturbations, through f , g, fg and fσ8, which we could then

compare with observations. We also compared the ACQ models and McDE against

standard ΛCDM. We found which models were inconsistent with current observa-

tions, specifically the ACQ scaling (Subsection 4.5.2.3) and strongly coupled (Sub-

section 4.5.2.2) solutions. We also found models which would be indistinguishable

from ΛCDM even with future observations, namely McDE (Subsection 4.5.1) and

the transient matter domination ACQ solution (Subsection 4.5.2.1). A region of

potential slope and coupling parameter space in which ACQ models would match

background and current perturbed observations, but which also should have growth

distinguishable from ΛCDM by future surveys was identified in Subsection 4.5.2.5.

It was shown in Subsection 4.5.1 that the small scale approximation would be inad-

equate to describe growth when measured in future surveys, given the results they

produce differ from the full equations by more than the predicted observational

precision.

6.2. Future Work

LTB as a global cosmology, describing the universe on the largest scales, has prob-

lems matching all observations simultaneously i.e. e.g. Baryon Accoustic Oscil-

lations (BAOs) and supernovae data (see e.g. Refs. [13; 14]). Although there is

still some recent ongoing work in the field (see e.g. Ref. [135]) LTB is most useful

as a toy model. However, though LTB is not a viable cosmology on the largest

scales, it can be used when modelling large voids (see e.g. Refs. [15; 16]). Recent

research, Refs. [136; 137], also considers structure growth and galaxy formation in

large voids from an observational perspective. If a void or overdensity on a suffi-

ciently large scale were discovered, such that linear order CPT would be applicable,

understanding the behaviour of perturbations in these models, and therefore ap-

plying ζSMTP to numerical simulations in this area could be an avenue for future

research.

Other inhomogeneous spacetimes e.g. Lemâıtre, while perhaps unlikely to provide

a better observational match than ΛCDM in flat FRW, are still interesting to con-

struct gauge invariant and conserved quantities in. These may in turn provide

useful checks for numerical work conducted in this area. We have already con-

structed ζSMTP for Lemâıtre and the future applications described above for LTB
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are equally applicable to Lemâıtre. Besides Lemâıtre, other inhomogeneous mod-

els are actively being researched, for example Szekeres (see e.g. Refs. [138; 139]).

For completeness, an extension to our research would be to perturb these cosmolo-

gies and construct a ζSMTP, or similar gauge invariant conserved quantity, which

could be related to the perturbed matter content. It may also be possible to ex-

tend the work to anisotropic cosmologies such as Bianchi (for recent research see

e.g. Refs. [140; 141]) or Kantowski-Sachs (for recent research see e.g. Refs. [141; 142].

The first extension to our work in ACQ should be a finer grained exploration of

both the slopes and couplings parameter space to further constrain and identify the

regions of observationally consistent cosmologies. Within this, the regions of param-

eter space where such cosmologies would be distinguishable from ΛCDM should also

be determined. In addition, extending the work to include more fluids and fields

would enable us to see whether this allows for larger couplings and/or slopes and

yet gives growth consistent with observations i.e. whether the effect of oppositely

charged CDM species increases with the numbers of species - namely by increasing

the suppression of excessive growth.

We have only used one potential, the sum of exponentials potential, Eq. (4.44),

largely because this allows initial conditions to be set relatively simply and also

simplified the matrix of derivatives of the potential with respect to the field. Other

potentials should be explored, but given the almost limitless choice of potentials

making a selection could be problematic. One route would be to look at assisted

inflation (see e.g. Ref. [79]) and choose potentials employed there e.g. quadratic,

quartic, generalised monomial potential. We might prefer potentials which give a

minimum, since the field should eventually settle there giving cosmological constant-

like behaviour, driving late time accelerated expansion. However this requirement

may not even be necessary, since with multiple fields even potentials without a

minimum, such as the exponential potential, in combination can produce an effective

minimum, which has the same effect - the field will come to rest there and drive late

time accelerated expansion. The space of possible potentials is therefore a promising

area for future exploration.

Finally, other models of interacting dark energy should be explored beyond ACQ.

Our ACQ model assumed constant couplings but we could extend this to couplings

as functions. Beyond ACQ itself models include Chameleon Dark Energy (for re-

cent research see e.g. Refs. [143; 144] and k-essence (for recent research see e.g.

Refs. [145; 146]). With Chameleon Dark Energy the Chameleon scalar fields allow

large couplings between the fields and ordinary matter as well as CDM. Screening
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mechanisms are then used which introduce additional terms into the Lagrangian

density to mask fifth force effects - i.e. the effect of the couplings - at small scale

e.g. solar system scales. With k-essence the Lagrangian density is entirely kinetic

i.e. no potential, and the k-essence field or fields can take on the combined role of

CDM and DE. Chameleon DE and k-essence would both require modifications to the

governing equations derived for ACQ, and consequently to the Pyessence code to

reflect these differences, but this would then allow further research into these classes

of models.

6.3. Observational Outlook

Future galaxy surveys and observations in the context of large voids or overdensities

will be most relevant to the application of LTB or other inhomogeneous cosmologies

on these scales, where large cosmological scale voids or overdensities might be dis-

covered. These surveys often overlap with those probing the nature DE since they

are measuring both the structure of the universe through markers of the matter

distribution such as luminous matter or gravitational lensing effects, and its growth

e.g. DES [8], SKA [81] or Euclid [80].

Future surveys relevant to the nature of DE will therefore be relevant both to study-

ing the viability of inhomogeneous cosmologies, such as those studied in Chapter

3, or the examples given in Subsection 6.2 for future work, and interacting or dy-

namical DE models such as ACQ studied in Chapters 4 and 5. For SKA [123] we

saw in Chapter 4, Subsection 4.4, that it has a predicted observational precision

for growth in the range 42H0 < k < 420H0 at z = 1 is 1 − 2%. This seems to

be true out to z = 2, although there is some uncertainty due to increasing survey

area versus less efficient foreground removal. In addition, for smaller k (k < 42H0),

where differences in growth are often more pronounced, the predicted observational

precision drops to ≈ 30%. These predicted precisions would be sufficient to dis-

tinguish some ACQ models from ΛCDM as already seen in Chapter 4. However,

we can see in Ref. [123] that there is already some uncertainty in these predictions.

More efficient foreground removal or longer survey time could improve upon these,

thereby allowing more models to be ruled out through SKA observations. We can

see that the Euclid predicted observational precision given in Ref. [81] is similar to

SKA at most redshift where they overlap. However, it does offer higher precision

in the range 1.5 < z < 2.0 and extends to a higher redshift than SKA. The pre-

dicted precision of Euclid might well also be improved with increased survey time,
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and foreground cleaning. As such, Euclid might give us the first observations of DE

beyond the ΛCDM model. Failing that, the next generation of surveys, for example

the Maunakea Spectroscopic Explorer (see e.g. Ref. [147]) or Large Synoptic Survey

Telescope (LSST) (see e.g. Ref. [148]) will hopefully achieve an order of magnitude

improvement on SKA and Euclid and give us the required evidence.



Appendix A.

Additional material for LTB

In this section of the appendix we present some material that is not essential to

follow the main body the LTB research in Chapter 3. However, since it might be

useful and save time in reproducing or extending some or all of the calculations, we

reproduce it here.

A.1. Contravariant LTB Metric Perturbations

Using the constraint Eq. (1.14), acting on the covariant perturbed metric, Eq. (3.12),

we get the contravariant perturbed metric components,

δgµν =


2Φ Br

X
Bθ
Y

Bφ
Y sin θ

Br
X

−2Crr
X2 −Crθ

XY
− Crφ
XY sin θ

Bθ
Y

−Crθ
XY

−2Cθθ
Y 2 − Cθφ

Y 2 sin θ
Bφ

Y sin θ
− Crφ
XY sin θ

− Cθφ
Y 2 sin θ

− 2Cφφ
Y 2 sin2 θ

 . (A.1)

A.2. LTB Shear

The shear, as discussed in Subsection 3.1.4.2, is given by,

σµν =
1

2
PαµPβν (∇βnα +∇αnβ)− 1

3
ΘPµν . (A.2)

The t − t component of the shear is zero. To linear order we find that the r − r

component is,
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σrr = −1

3
X2

(
ψ̇ − 2(1− Φ)(HX −HY )− 4Crr(HX −HY )− 2

Br

XY
Y ′ − Bθ cot θ

Y

+
2

X
B′r −

1

Y
∂θBθ −

1

Y sin θ
∂φBφ − 3Ċrr

)
, (A.3)

the θ − θ component,

σθθ = −1

3
Y 2

(
ψ̇ + (1− Φ)(HX −HY ) + 2Cθθ(HX −HY ) +

BrY
′

XY
− Bθ

Y
cot θ

− B′r
X

+
2

Y
∂θBθ −

∂φBφ

Y sin θ
− 3Ċθθ

)
, (A.4)

and the φ− φ component,

σφφ = −1

3
Y 2 sin2 θ

(
ψ̇ + (1− Φ) (HX −HY ) + 2Cφφ (HX −HY ) +

BrY
′

XY
+ 2

Bθ

Y
cot θ

− B′r
X
− ∂θBθ

Y
− ∂φBφ

Y sin θ
− 3Ċφφ

)
. (A.5)

We also need the off-diagonal components. For the mixed temporal-spatial compo-

nents we get,

σtr =
2BrX

3
(HX −HY ) , σtθ = −BθY

3
(HX −HY ) , σtφ = −BφY sin θ

3
(HX −HY ) .

(A.6)

For the mixed spatial components we get,

σrθ =
1

3
CrθXY (HX −HY ) + ĊrθXY −

1

2
Y B′θ +

1

2
BθY

′ − 1

2
X∂θBr,

(A.7)

σθφ = −1

3
CθφY

2 sin θ (HX −HY ) +
1

2
˙CθφY

2 sin θ − 1

2
Y sin θ∂θBφ +

1

2
Y cos θBφ,

(A.8)

σrφ =
1

6
CrφXY sin θ (HX −HY ) +

1

2
˙CrφXY sin θ − 1

2
Y sin θB′φ +

1

2
sin θBφY

′.

(A.9)
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A.3. The LTB Ricci 3-scalar

The Ricci scalar on the spatial 3-hypersurfaces is given, in the background, as,

R̄(3) =
4X ′Y ′

X3Y
− 2Y ′2

X2Y 2
− 4Y ′′

X2Y
+

2

Y 2
, (A.10)

and the perturbed Ricci scalar is given by,

δR(3) =
4Crr
X2Y

(
Y ′2

Y
+ 2Y ′′ − 2X ′Y ′

X

)
− 2

Y 2
(2Cθθ)−

2

X2
(C ′′θθ + C ′′rr) (A.11)

+
2Crθ cot θ

X2Y
(X ′ − Y ′) +

2X ′(∂θCrφ)

X2Y
+

2X ′C ′θθ
X3

+
4Y ′C ′rr
X2Y

+
2X ′C ′φφ
X3

+
2 cot θ(∂θCθθ)

Y 2
−

6Y ′(C ′θθ + C ′φφ)

X2Y
− 4 cot θ(∂θCφφ)

Y 2
− 2(∂θθCφφ)

Y 2
+

2(∂θC
′
rθ)

XY

+
2(∂φC

′
rφ)

XY sin θ
+

2(∂θφCθφ)

Y 2 sin θ
.



Appendix B.

The Spatial Metric Trace

Perturbation in 2+2 Spherical

Harmonic Formalism

B.1. Background

The background LTB metric in the Clarkson, Clifton and February formalism is [59]

ds2 = −dt2 +
a2
‖(t, r)

(1− κr2)
dr2 + a2

⊥(t, r)r2dΩ2. (B.1)

This is the same metric in the same coordinates as that used in Chapter 3, Eq. (3.1).

This allows us to compare directly the perturbed metric components once the re-

lations between the background functions are known. In the rest of this section,

where a symbol is used in the Clarkson, Clifton and February formalism which has

a different meaning to the same symbol in this thesis we have made it calligraphic,

except for “v” which is made “v”. Also, a radial derivative is later defined which

differs slightly from that used in earlier sections of this thesis. To distinguish this

alternative radial derivative we use a dagger in place of the prime used in Ref. [59].

From Eq. (B.1) and Eq. (3.1) we get,

X =
a‖√

(1− κr2)
, Y = a⊥r , H‖ ≡

ȧ‖
a‖

= HX , H⊥ ≡
ȧ⊥
a⊥

= HY ,

(B.2)
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where κ ≡ κ(r). The radial derivative defined in Ref. [59] for an arbitrary function,

F , is

F † =

√
(1− κr2)

a‖
F ′ =

F ′

X
, (B.3)

where the time derivative of the above radial derivative behaves as

(Ḟ )† − (F †)̇ = H‖F
† = HX

F ′

X
, (B.4)

B.2. Perturbations

The perturbed portion of the metric for axial perturbations [59] i.e. perturbations

which are odd modes of the spherical harmonic functions, Y(lm), is given as

δgµν ≡

(
0 haxial

A Ȳa
haxial
A Ȳa h Ȳab

)
,

(B.5)

and for the polar perturbations [59], i.e. perturbations which are even modes of the

spherical harmonic functions, Y(lm), as

δgµν ≡

(
hABY hpolar

A Ya
hpolar
A Ya a2

⊥r
2(KYγab +GY:ab)

)
.

(B.6)

In the above equations Y ≡ Y(lm) and are the various spherical harmonic functions

for scalar, vector and tensor equivalent perturbations (see Ref. [59]). The bar indi-

cates odd modes, no bar even. The index A runs over t and r, while a runs over

θ and φ. The colon represents the covariant derivative with respect to the met-

ric on the unit sphere. haxial
A , h, hAB, h

polar
A , K,G are the perturbation variables and

are functions of xA. By direct comparison between the perturbed metrics in both

formalisms i.e. Eq. (B.5) and Eq. (B.6) with Eq. (3.12) we find,

ψ =
1

3
(Crr+Cθθ+Cφφ) =

1

6

(
hrrY
X2

+
h Ȳθθ
Y 2

+
h Ȳφφ
Y 2 sin2 θ

+ 2KY +GY:θθ +
GY:φφ

sin2 θ

)
,

(B.7)

where we have used Bondi’s scale factors, X and Y as in Subsection 3.1.1, for
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brevity. The covariant form of the axial perturbed 4-velocities is

δuµ = (0, v̄ Ȳa), (B.8)

and the scalar perturbed 4-velocities are

δuµ =

[(
w̃n̂A +

1

2
hABû

B

)
Y , ṽ Ya

]
, (B.9)

where v̄, w̃, ṽ are all functions of xA, and n̂A is the unit spacelike radial vector and

ûA is the unit timelike vector. The contravariant form of the perturbed metric for

axial perturbations is

δgµν ≡


0 0 1

Y 2h
axial
t Ȳθ 1

Y 2 sin2 θ
haxial
t Ȳφ

0 0 − 1
X2Y 2h

axial
r Ȳθ − 1

X2Y 2 sin2 θ
haxial
r Ȳφ

1
Y 2h

axial
t Ȳθ − 1

X2Y 2h
axial
r Ȳθ − 1

Y 4h Ȳθθ − 1
Y 4 sin2 θ

h Ȳθφ
1

Y 2 sin2 θ
haxial
t Ȳφ − 1

X2Y 2 sin2 θ
haxial
r Ȳφ − 1

Y 4 sin2 θ
h Ȳθφ − 1

Y 4 sin4 θ
h Ȳφφ


(B.10)

and for the polar perturbations is

δgµν ≡


−httY 1

X2htrY 1
Y 2h

polar
t Yθ 1

Y 2 sin2 θ
hpolart Yφ

1
X2htrY − 1

X4hrrY − 1
X2Y 2h

polar
r Yθ − 1

X2Y 2 sin2 θ
hpolarr Yφ

1
Y 2h

polar
t Yθ − 1

X2Y 2h
polar
r Yθ − 1

Y 2 (KY +GY:θθ) − 1
Y 2 sin2 θ

GY:θφ
1

Y 2 sin2 θ
hpolart Yφ − 1

X2Y 2 sin2 θ
hpolarr Yφ − 1

Y 2 sin2 θ
GY:θφ − 1

Y 2 sin4 θ
(KY sin2 θ +GY:φφ)


(B.11)

where we have once again used Bondi’s scale factors, X and Y , for brevity. The
perturbed 4-velocity in contravariant form is

uµ =

[
1 +

1

2
httY, − Y

X2

(
1

2
htr +Xw̃

)
, (B.12)

1

Y 2

(
v̄ Ȳθ + ṽ Yθ − haxialt Ȳθ − hpolart Yθ

)
,

1

Y 2 sin2 θ

(
v̄ Ȳφ + ṽ Yφ − haxialt Ȳφ − hpolart Yφ

)]
,

where the last three terms correspond directly with vr, vθ, vφ respectively in the

formalism of Chapter 3. Substituting Eq. (B.12), Eq. (B.7), Eq. (B.3) and Eq. (B.2)



B.2: Perturbations 109

into Eq. (3.47) we get

−ζSMTP =
1

6

(
(1− κr2)

a2‖
hrrY +

h Ȳθθ
a⊥2r2

+
h Ȳφφ

a⊥2r2 sin2 θ
(B.13)

+ 2KY +GY:θθ +
GY:φφ

sin2 θ

)
+
δρ

3ρ̄

+
1

3

{
∂θ

∫
1

a⊥2r2

(
v̄ Ȳθ + ṽ Yθ − haxial

t Ȳθ − hpolar
t Yθ

)
dt

+ ∂φ

∫
1

a⊥2r2 sin2 θ

(
v̄ Ȳφ + ṽ Yφ − haxial

t Ȳφ − hpolar
t Yφ

)
dt

+ cot θ

∫
1

a⊥2r2

(
v̄ Ȳθ + ṽ Yθ − haxial

t Ȳθ − hpolar
t Yθ

)
dt

− ∂r

∫
Y(1− κr2)

a‖2

(
1

2
htr +

a‖√
(1− κr2)

w̃

)
dt

−

((
a‖√

(1− κr2)

)†
+ 2

(a⊥r)
†a‖

a⊥r
√

(1− κr2)

+
ρ̄†a‖

ρ̄
√

(1− κr2)

)∫
(1− κr2)

a2‖
Y

(
1

2
htr +

a‖√
(1− κr2)

w̃

)
dt

}
,

which is our gauge invariant quantity, conserved on all scales with only adiabatic

pressure perturbations, but expressed in terms of the perturbation functions used

in [59]. This relates directly to the density perturbation on constant curvature

hypersurfaces through Eq. (3.50)

δρ̃
∣∣∣
ψ=0

= −3ρ̄ζSMTP .

Equation (B.13) is clearly more complicated than Eq. (3.47).



Appendix C.

Gauge Transformations, Relations

and Alternative Gauges

C.1. General Gauge Transformations

We now give the gauge transformations for the perturbed quantities used in Chapters

3 and 4 and in Subsection C.2 below for easy reference. Following the notation of

Ref. [122], quantities in the new coordinate system are denoted by a tilde. We use

the active approach throughout.

The matter variables, the velocity and the density perturbations, transform as

˜̂vα = v̂α +
δt

a
, (C.1)

δ̃ρα = δρα − ˙̄ραδt , (C.2)

where v̂α is defined in Eq. (4.23).

The perturbations of the metric transform as

Φ̃ = Φ− δ̇t , (C.3)

ψ̃ = ψ +Hδt , (C.4)

B̃ = B − a ˙δx+ δt , (C.5)

Ẽ = E − δx . (C.6)
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C.2. Flat to Longitudinal Gauge Relations

The relation between the velocity in flat gauge (ψ̃ = Ẽ = 0) and in longitudinal

gauge (B̃ = Ẽ = 0) is given by

v̂α(flat) = vα(long) +B(flat) . (C.7)

The relation for the density perturbations is

δρα(flat) = δρα(long) − a ˙̄ραB(flat) . (C.8)

The transformation behaviour of the metric perturbations and the fact that Φ = ψ

in longitudinal gauge (from the trace free part of the i−j component of the Einstein

field equations, Eq. (C.16)) in the absence of anisotropic stress gives

B(flat) = −
Φ(long)

Ha
. (C.9)

C.3. Longitudinal Gauge with with Arbitrary

Numbers of Fields and DM Fluids

As mentioned in Section 4.2.2.2 the Pyessence code was originally written in lon-

gitudinal gauge as this is the one commonly used in the literature in the field, see

e.g. [68]. However due to numerical instabilities caused by the constraint Eq. (C.17)

for Φ below, this version was abandoned. We include the equations below for refer-

ence and completeness.

For a given DM species, α, the evolution equation for the perturbation is

˙δρα + 3H(δρα + δPα)−
(

3Φ̇ +
k2vα
a

)
(ρ̄α + P̄α) = −

∑
I

κCIα(ρ̄α − 3P̄α) ˙δϕI

−
∑
I

κCIα(δρα − 3δPα) ˙̄ϕI . (C.10)

Momentum conservation is given by

v̇α = κ
∑
I

CIα(ρ̄α − 3P̄α)
δϕI
a

+ 3H
˙̄Pα
˙̄ρα

(vα)−H(vα)− Φ

a
− δPα
a(ρ̄α + P̄α)

. (C.11)
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The evolution equation for the fields, labelled I, J , is

δ̈ϕI + 3H ˙δϕI +
∑
J

V,ϕIϕJ δϕJ − 4Φ̇ ˙̄ϕI +
k2

a2
δϕI + 2V,ϕI Φ− 2

∑
α

κCIα(ρ̄α − 3P̄α)Φ

−
∑
α

κCIα(δρα − 3δPα) = 0. (C.12)

The Einstein Field Equations are as follows. From the 0− 0 component we get

3H(Φ̇ +HΦ) +
k2

a2
Φ = −κ

2

2

[∑
α

δρα +
∑
I

(−Φ ˙̄ϕ2
I + ˙δϕI ˙̄ϕI + V,ϕI δϕI)

]
. (C.13)

From the 0− i component we get

Φ̇ +HΦ = −κ
2

2

[∑
α

avα(ρ̄α + P̄α)−
∑
I

˙̄ϕIδϕI

]
. (C.14)

From the trace of i− j component we get

Φ̈+4HΦ̇+(3H2 +2Ḣ)Φ =
κ2

2

[∑
α

δPα −
∑
I

(
Φ ˙̄ϕ2

I − ˙δϕI ˙̄ϕI + V,ϕI δϕI

)]
. (C.15)

From the trace-free part of the i− j component we get

ψ = Φ, (C.16)

since σs = 0.

From Eq. (C.13) and Eq. (C.14) we get

Φ =

(∑
I

˙̄ϕ2
I −

2k2

(κa)2

)−1 [∑
α

(
δρα − 3Havα(ρ̄α + P̄α)

)
+

∑
I

(δϕ̇I ˙̄ϕI + V,ϕI δϕI + 3H ˙̄ϕIδϕI)

]
(C.17)

C.4. Synchronous Comoving Gauge with

Arbitrary Numbers of Fields and DM Fluids

Synchronous gauge had been considered for use in the Pyessence code. This was

partly because it has been used in codes such as CAMB and CLASS [132; 133]. The
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equations from Section 4.2.2 are presented here in synchronous co-moving gauge

(Φ̃ = B̃ = ṽ = 0), but otherwise in full generality, allowing for multiple fields and

fluids. This is done for reference and completeness. For a given DM species, α, the

evolution equation for the perturbation is

˙δρα + 3H(δρα + δPα)−
(

3ψ̇ + k2Ė
)

(ρ̄α + P̄α) = −
∑
I

κCIα(ρ̄α − 3P̄α) ˙δϕI

−
∑
I

κCIα(δρα − 3δPα) ˙̄ϕI . (C.18)

Momentum conservation is given by

κ
∑
I

CIα(ρ̄α − 3P̄α)δϕI =
δPα

ρ̄α + P̄α
. (C.19)

The evolution equation for the fields, labelled I, J , is

δ̈ϕI + 3H ˙δϕI +
∑
J

V,ϕIϕJ δϕJ −
(

3ψ̇ + k2Ė
)

˙̄ϕI +
k2

a2
δϕI

−
∑
α

κCIα(δρα − 3δPα)− 2κ
∑
α

CIα(ρ̄α = 0. (C.20)

The Einstein Field Equations are as follows. From the 0− 0 component we get

3H(ψ̇) +
k2

a2
(ψ +Ha2Ė) = −κ

2

2

[∑
α

δρα +
∑
I

( ˙δϕI ˙̄ϕI + V,ϕI δϕI)

]
. (C.21)

From the 0− i component we get

ψ̇ =
κ2

2

∑
I

˙̄ϕIδϕI . (C.22)

From the trace of i− j component we get

ψ̈ + 3Hψ̇ =
κ2

2

[∑
α

δPα +
∑
I

(
˙δϕI ˙̄ϕI − V,ϕI δϕI

)]
. (C.23)

From the trace-free part of the i− j component we get

σ̇s +Hσs + ψ = 0, (C.24)
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where σs is the scalar shear and σs = a2Ė.
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