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Abstract 

Chronic dietary exposure to the cyanobacterial toxin BMAA triggers neuropathology in 

non-human primates, providing support for the theory that BMAA causes a fatal 

neurodegenerative illness among the indigenous Chamorro people of Guam. However, 

since there are two stereoisomers of BMAA, it is important to know if both can occur in 

nature, and if so, what role they might play in disease causation. As a first step, we 

analysed both BMAA enantiomers in cyanobacteria, cycads and in mammals orally 

dosed with L-BMAA, to determine if enantiomeric changes could occur in vivo. BMAA in 

cyanobacteria and cycads was found only as the L-enantiomer. However, while the L-

enantiomer in mammals was little changed after digestion, we detected a small pool of 

D-BMAA in the liver (12.5%) of mice and in the blood plasma of vervets (3.6%), possibly 

as a result of racemisation. Chiral analysis of cerebrospinal fluid (CSF) of vervets and 

hindbrain of mice showed that the free BMAA in the central nervous system was the D-

enantiomer. In vitro toxicity investigations with D-BMAA showed toxicity, mediated 

through AMPA rather than NMDA receptors. These findings raise important 

considerations concerning the neurotoxicity of BMAA and its relationship to 

neurodegenerative disease. 

Keywords: chiral, enantiomer, neurodegenerative disease, 

neurotoxicity 
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Introduction 

-N-Methylamino-L-alanine (BMAA) is a neurotoxic amino acid produced by 

cyanobacteria, potentially also produced by other microorganisms such as diatoms 

(Jiang et al. 2014; Réveillon et al. 2016). Cyanobacteria of the genus Nostoc, are 

harboured in specialised coralloid roots of cycads, where they live in symbiosis (Banack 

and Cox, 2003). Human consumption of foods derived from cycads and animals that 

feed on cycads has been implicated in the development of Amyotrophic Lateral 

Sclerosis/ Parkinsonism Dementia Complex (ALS/PDC) among the Chamorro people of 

Guam (Whiting, 1963; Cox et al. 2003; Murch et al. 2004; Banack et al. 2006). BMAA 

has been shown to cause neurological damage in vitro (Rao et al. 2006; Lobner 2009) 

and in vivo (Spencer et al. 1987; Karamyan and Speth 2008; Nunn 2009; de Munck et 

al. 2013; Karlsson et al. 2015; Cox et al. 2016a).   

Cyanobacteria produce a wide range of toxic compounds, including hepatotoxins and 

neurotoxins (Codd et al. 2005). When isolated and grown as free-living organisms, the 

symbiotic cyanobacteria from cycads can produce BMAA, which accumulates in cycads 

(Cox et al. 2003). Furthermore, analysis of a wide range of non-symbiotic free-living 

cyanobacteria suggests that BMAA production can occur worldwide (Cox et al. 2005; 

Metcalf et al. 2008; Esterhuizen and Downing, 2008; Spacil et al. 2010).  

Vega and Bell (1967) and Vega et al. (1968) crystallised the L- enantiomer of BMAA 

from an alcohol extract of Cycas micronesica Hill [Cycadaceae] seeds. At that time, no 

D-BMAA was isolated and it was concluded that D-BMAA was not present in cycads. 

Furthermore, although L-BMAA has been shown to be toxic in a range of test systems, 
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the limited research into the toxicity of synthetic D-BMAA suggested that it has little or 

no toxicity (Vega et al. 1968; Polsky et al. 1972; Nunn et al. 1987). The implications of 

exposure to BMAA from the environment and its association with human disease are 

considered to be a result of exposure to the L- enantiomer of BMAA.  

A variety of analytical methods are available for the analysis of BMAA in a range of 

matrices (Cox et al. 2003, 2005; Metcalf et al. 2008; Pablo et al. 2009) including HPLC-

FLD, LC-MS, LC-MS/MS, GC-MS and amino acid analyser (e.g. Banack et al. 2007; 

Esterhuizen and Downing 2008). However, these methods do not discriminate between 

the L- and D- enantiomers of BMAA and at present little information is available as to 

which enantiomers of BMAA occur naturally. An HPLC method employing pre-

derivatisation of L- and D-BMAA as o-phthaldialdehyde derivatives worked well, 

successfully separating synthetic standards (Euerby et al. 1989). In order to provide 

useful information on the presence of this amino acid in environmental and clinical 

materials, chiral methods may become important to understand whether D-BMAA exists 

in nature, and also whether this can be related to toxicity events and human disease.   

Racemisation and enantiomeric changes to amino acids is a well-recognised 

phenomenon, with alterations of pH, time, and temperature affecting this process to 

differing degrees (Friedman 2010). As the Chamorro people of Guam consume BMAA 

in free and protein-bound forms, derived from cycads (Cheng and Banack 2009), few if 

any studies have considered the potential for enantiomeric changes to this amino acid 

in vivo.  
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The occurrence of D-amino acids has been well documented in the bacterial Domain, 

with D-amino acids known to occur in secondary metabolites and peptides, including 

cyanobacterial toxins (Codd et al. 2005). In the mammalian brain, D-amino acids also 

occur, with D-serine and D-aspartic acid being produced by racemases that change the 

enantiomeric configuration of the L-amino acid. Such D-amino acids play important 

roles in mammalian neurochemistry (Kim et al. 2010; Baumgart and Rodriguez-Crespo 

2008; Krashia et al. 2016). Although D- amino acids are important in neurochemistry, 

their occurrence and the presence of enzymes involved in their racemisation and 

metabolism can be found in other tissues. The presence of D-glutamate in the heart 

(Ariyoshi et al. 2017), and D-aspartate and D-serine in tissues such as the testes, 

kidney, skin and skeletal system have been documented (Guevara and Mani, 2016; Ito 

et al. 2016). 

The purpose of this study was to develop a method and to analyse naturally-occurring 

enantiomers of BMAA and to determine whether any enantiomeric changes could occur 

during digestion in the mammalian gut after oral exposure. Furthermore, testing of D-

BMAA in in vitro toxicity systems was carried out. Such information may prove useful in 

understanding the fate and the potential toxicities of BMAA and its relationship to 

neurological disease. 

Materials and Methods  

Collection of cycads, growth of cyanobacteria and BMAA extraction 

Cycad seeds from Cycas micronesica Hill were collected at the Montgomery Botanical 

Garden, Coral Gables, Florida and transported to the Brain Chemistry Labs for 
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extraction. The fleshy sarcotesta was removed and the rigid sclerotesta was cut to 

expose the gametophyte. The gametophyte was removed and cut into small pieces for 

amino acid extraction. Free amino acids were extracted three times using 0.1 M 

trichloroacetic acid (TCA) with ultrasonication at room temperature at a concentration of 

61 mg dry wt. per ml

dried and stored at 4 °C until analysed. An isolate of Nostoc sp., isolated from a Cycas 

micronesica coralloid root, was maintained in BG11 medium supplemented with sodium 

nitrate for 4 years at 25ºC and with cool white fluorescent light at 25 E m-2 s-1, with 

periodic sub-culturing and freeze-drying of biomass. A collection underwent extraction in 

0.1 M TCA with ultrasonication at room temperature, prior to ultrafiltration and storage at 

4 °C.  

BMAA administration, plasma sampling and experimental design  

In order to obtain samples for chiral testing, a limited number of samples were available 

from two independent studies investigating the toxicology, metabolism and organ 

distribution of BMAA. For mice studies, animals were sacrificed, allowing samples of 

brain and liver to be obtained for analysis, whereas vervets were not sacrificed. 

Consequently, post-digestion in vervets, samples were obtained from blood plasma and 

for the central nervous system, CSF was collected. Although different samples were 

obtained from test organisms, they do represent collections post digestion and in the 

central nervous system for both species. 

Mice were bred and maintained under standard conditions (14 hr light:10 hr dark, 18-

23° C temp and 40-60% humidity, acidified H20, sterilized pine shaving bedding and 
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cages changed weekly) in the Research Animal Facility at The Jackson Laboratory. The 

nutritionally complete 6% fat NIH 31-based 5K52 diet (LabDiet, St Louis, MO) 

supplemented with or without L-BMAA was provided ad libitum in a 6-month chronic 

dosing experiment (25 mg/kg/day) in C57BL/6J background mice (JR#004435, The 

Jackson Laboratory). The pre-ground 5K52 diet was mixed with a 1g/100ml (1%) stock 

solution of L-BMAA to a final concentration of 20.83 mg per 100 grams of diet, formed 

into patties and dehydrated overnight in a low-heat dehydrating oven (45 C) and stored 

at 20 °C until use. Diet was supplied to the mice (4 per cage) in the food hopper and 

was replaced weekly. Dosing was based on a short dietary exposure study published by 

Cruz-Aguado et al. (2006). 

Animal care was in accordance with the National Research Council, Guide for the Care 

and Use of Laboratory Animals (1996), and approved by the Institutional Animal Care 

and Use Committee (protocol #01006).  Mice were euthanized by cervical dislocation, 

and liver and hindbrain were excised and stored at -80ºC. For extraction, once thawed, 

subsamples of the hindbrain and liver from a BMAA-dosed mouse were extracted with 

100µl 0.1M TCA (Sigma, St. Louis, MO). The extract was dried in a Speedvac (Thermo 

Savant Speedvac Plus, SC250DDA), and the residue resuspended with 50µl 2mM 

CuSO4 in Millipore DirectQ (DQ) water or 100µl 2mM CuSO4 in DQ water for liver and 

hindbrain extracts, respectively. The aqueous copper sulphate extracts were directly 

injected into the chiral HPLC system and fractions collected. The collected fractions 

were derivatised with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and 

analysed by UPLC-MS/MS. 
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Vervets (Chlorocebus sabaeus) obtained from the Behavioural Science Foundation 

(BSF) in St. Kitts, West Indies were fed L-BMAA. Animal care was in accordance with 

the National Research Council, Guide for the Care and Use of Laboratory Animals 

(1996), and approved by the Institutional Animal Care and Use Committee. 

The subjects used in this study were three adult male vervets (4.5 kg) that were housed 

in outdoor social groups.  Each outdoor enclosure measured approximately 30 m2 and 

contained perches and play structures. Subjects were always housed in social groups 

except during sampling.  Vervets were maintained on a modified diet, routinely fed two 

days of primate chow (Teklad NIB primate diet, Madison, WI, USA) per week and fresh 

produce only on other days (n=5). Slight variation occurred at times when produce was 

limited. L-BMAA was applied as a powder (70 mg/kg body weight) to a hollowed-out 

piece of fruit, and offered to the animals. No control animals were included and prior 

exposure to BMAA was considered to be minimal, and based on the dose of BMAA 

administered, considered to be unlikely to influence the concentrations in dosed 

animals. Animals were orally dosed every day and the dosing took place over 10 days 

with CSF and plasma collected under ketamine HCl (10 mg/kg) anaesthesia at 240 and 

244 hr, respectively. CSF was collected directly into cryovials and frozen and blood was 

collected in heparinised tubes which were centrifuged, prior to removal of the plasma 

and stored frozen. Vervets were not sacrificed for this study. One hundred microliters of 

the plasma and CSF from a BMAA-dosed vervet were dried in a Speedvac, prior to 

resuspension to the same volume with 2mM aqueous copper sulphate and fraction 

collection by chiral HPLC. The collected fractions were derivatised with AQC and 

analysed by UPLC-MS/MS. 
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Analysis of BMAA by UPLC-UV-MS 

BMAA was detected in the TCA extracts by comparison with a triple crystallised L-

BMAA standard (P. B. Nunn), a DL-BMAA mixture from Thesis chemistry (Cambridge, 

Ontario, Canada) and an L-BMAA standard (Sigma B-107, St. Louis, MO) after 

derivatisation with AQC by UPLC-UV/MS using the methods in Banack et al. (2007). 

Extracts found to contain BMAA according to retention time and molecular weight were 

separated by chiral HPLC. 

Chiral HPLC analysis and fractionation of TCA extracts 

Chiral separation of L- and D- BMAA was achieved using a Chirex 3126 chiral HPLC 

column (Phenomenex; 250 ×  4.6 mm i.d.) with mobile phases of 2 mM CuSO4 in water 

(eluent A) and 2 mM CuSO4 in 15% (v/v) aqueous acetonitrile (eluent B) using a Waters 

717 autosampler and Waters 1525 binary pump. A gradient elution was used: 100% A 

to 70% B from 0-13 min, curve 10, followed by a wash from 13-16 min of 70% B before 

returning to 100% A at 17 minutes, with a total run time of 35 minutes to condition the 

column prior to the next injection. Flow was maintained at 1.2 ml/min throughout. 

Detection was performed using a 2487 UV detector (Waters) at a wavelength of 254 

nm. The gradient was tested using a mix of 17 standard amino acids (Pierce #NCI0180) 

plus the L-BMAA isomers/enantiomers, L-2,4-diaminobutyric acid (L-DAB; #32830, 

Sigma, St. Louis, MO), N-(2-aminoethyl)glycine (AEG; A1153 TCI America; Banack et 

al., 2012), D-BMAA (P.B. Wyatt) and D-DAB (P.B. Nunn).  

Based on the amount of BMAA in the cycad TCA extract, a 1/50 dilution with 2 mM 

CuSO4 in water was prepared and separated by chiral HPLC, in order to not overload 
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the chiral column. Fractions corresponding to the retention time of L-BMAA, between L- 

and D-BMAA, and D-BMAA were collected by hand (approx. 1ml per fraction). Collected 

cycad fractions were analysed by UPLC-MS/MS after derivatisation with AQC. 

Separately, after drying in the Speedvac, the residue of each fraction was reconstituted 

with 100 µl 20 mM HCl and derivatised with AQC for UPLC-MS/MS analysis.  

The TCA extract from the cyanobacterium was dried, resuspended to the same volume 

with 2 mM CuSO4 in water, and injected directly onto the chiral HPLC column. Nine 

separate blank injections (2mM CuSO4 in water) and nine cyanobacterial extract 

injections, each of 10 µl, were performed and the fractions collected by hand (approx. 

1ml per fraction). The fractions were freeze-dried and each resuspended in 100 µl 20 

mM HCl. The nine chiral fractions from the blank and cyanobacterial injections were 

respectively pooled, to allow concentration of the free BMAA fractionated from the TCA 

extract, in comparison with a set of blank injections. The copper present in the pooled 

extracts was precipitated by addition of 10 µl 12 M NaOH for the cyanobacterial extract 

and the blank, to simplify the extract containing a low amount of BMAA for subsequent 

analysis. The suspensions were centrifuged to remove copper and the supernatants 

transferred to clean microcentrifuge tubes. To each cleared supernatant, 10 µl 12 M HCl 

were added to neutralise the sodium hydroxide and the solutions again freeze-dried. 

After drying, the residue was resuspended with 100µl 20mM HCl and the solutions were 

derivatised with AQC. Subsequently, the derivatised amino acids of both the blank and 

the cyanobacterial TCA chiral fractions were dried and resuspended in DQ water 

equivalent to a 3×  concentration step for UPLC-MS/MS analysis. 

UPLC-MS/MS analysis of BMAA 
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AQC-derivatised samples of TCA extracts or fractions after collection from the chiral 

HPLC were run on a triple quadrupole UPLC-MS/MS system (Thermo Scientific 

Finnigan TSQ Quantum UltraAM, San Jose, CA) after separation with a Waters Acquity-

UPLC system with a Binary Solvent Manager, Sample Manager and a Waters AccQTag 

Ultra column (part# 186003837, 2.1x100 mm) at 55 °C.  Separation was achieved using 

gradient elution at 0.65 ml/min with 0.1% formic acid in water (eluent A) and 0.1% 

formic acid in acetonitrile (eluent B): 0.0 min= 99.1%A; 0.5 min= 99.1%A curve 6; 2 

min= 95%A curve 6; 3 min= 95%A curve 6; 5.5 min= 90%A curve 8; 6 min= 15%A curve 

6; 6.5 min =15%A curve 6; 6.6 min=99.1%A curve 6; 8 min =99.1%A curve 6. Nitrogen 

gas was supplied to the heated electrospray ionisation (HESI) probe with a nebulising 

pressure of 40 psi and a vaporiser temperature of 400 °C. The mass spectrometer was 

operated under the following conditions: the capillary temperature was set at 270 °C, 

capillary offset of 35, tube lens offset of 110, aux gas pressure of 35, spray voltage 

3500V, source collision energy of 0, and multiplier voltage of -1719V. A divert valve was 

used during equilibration and cleaning phases of the gradient. The second quadrupole 

was pressurised to 1.0 mtorr with 100% argon. The precursor ion was set for m/z 459 

which excludes in the first quadrupole ions of all other masses from analysis. During 

BMAA analysis of cycad extracts, collision-induced dissociation (CID) was achieved in 

the second quadrupole using the following transitions: m/z 459 to m/z 119 CE 21; m/z 

459 to m/z 289 CE 17; m/z 459 to m/z 171 CE 38. The resultant four product ions (m/z 

119, 289, 171, 188) were scanned by the third quadrupole, subsequently detected, and 

their relative abundances quantified in comparison with AQC-derivatised N-(2-

aminoethyl)glycine (AEG), L-BMAA and L-2,4-diaminobutyric acid (L-DAB) standards. 
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For cyanobacterial extracts, the precursor ion of m/z 459 was monitored for CID 

daughter ions of m/z 171, 289, 119, 258 (BMAA, CE 21eV), 214 (AEG, CE 35eV) and 

188 (DAB, CE 38eV), with the latter three being qualifier ions for the different isomers. 

The quantification of L- and D-BMAA was carried out using L-BMAA standards in water 

using the transition 459>171. LOD (48 fmol) and LOQ (0.48 pmol) were calculated using 

the EPA Method Detection Level (Betz et al. 2011; Banack et al. 2014). 

In vitro toxicity assessment of D-BMAA 

Timed pregnant Swiss Webster mice were obtained from Charles River Laboratories 

(Wilmington, DE, USA).  Mixed cortical cell cultures containing neurons and astrocytes 

were prepared from foetal (15-16 day gestation) mice as previously described (Lobner, 

2000).  The mice were handled in accordance with a protocol approved by the institutional 

animal care committee.  All experiments were performed on mixed cultures 13-15 days 

in vitro (DIV).  Toxicity was induced by exposure to BMAA for 24 hours in media as for 

plating except without serum.  All exposure media contained 26 mM NaHCO3, as it has 

been shown previously that HCO3- is required for expression of NMDA receptor-mediated 

BMAA toxicity (Weiss and Choi, 1988).  Cell death was assessed by the measurement of 

lactate dehydrogenase (LDH), released from damaged or destroyed cells, in the 

extracellular fluid 24 hours after the beginning of the insult.  Blank LDH levels were 

subtracted from insult LDH values and results normalized to 100% neuronal death caused 

by 500 M NMDA.  Control experiments have shown previously that the efflux of LDH 

occurring from either necrotic or apoptotic cells is proportional to the number of cells 

damaged or destroyed (Koh and Choi, 1987; Lobner, 2000).   In none of the conditions in 

the studies presented was there any evidence of glial cell death observed (assessed by 
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trypan blue staining).  Therefore, results are presented as percent neuronal death, 

determined by subtracting blank LDH release levels from experimental condition LDH 

release and dividing by the total LDH release levels induced by exposure to NMDA and 

then expressing as a percentage. Cells were not counted when plating as astrocytes are 

present which are dividing cells, so initial plating is not necessarily correlated with final 

cell numbers. All compounds were made up in water at a stock concentration 1000 x the 

final concentration, therefore vehicle controls were not believed to be necessary. Blank 

LDH levels mean LDH release in cultures without drug treatment. 

 

Results 

Using chiral HPLC, L- and D-BMAA enantiomer standards could be clearly 

distinguished from standard amino acids and the BMAA isomers, the achiral N-(2-

aminoethyl)glycine (retention time 2 minutes), D-2,4-diaminobutyric acid (retention time 

4 mins), which roughly co-eluted with L-2,4-diaminobutyric acid (Fig. 1A). The difference 

in retention time between the two BMAA enantiomers was approximately 1 minute, with 

L-BMAA eluting from the column before D-BMAA (Fig. 1B). UPLC-UV/MS and MS/MS 

analysis showed that the TCA extract from seeds of Cycas micronesica contained 

BMAA. Analysis of a TCA extract from the cycad gametophyte by chiral HPLC indicated 

peaks with the same retention time as L-BMAA, but not for D-BMAA (Fig. 1C). As the 

sensitivity of the chiral method was approximately 100 times less than standard amino 

acid analysis techniques employed for BMAA, the chiral HPLC method was developed 

and used as a sample preparation technique to a) remove interfering compounds in the 

analysis of BMAA, b) to separate and determine what enantiomers of BMAA are present 
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and c) as a multiple fractionation tool to collect enantiomers (Fig. 2). The cycad extract 

(Fig. 1C) was fractionated into 3 fractions from 7.5 to 8.2 minutes, 8.3 to 8.7 minutes 

and 8.8 to 9.4 minutes by chiral HPLC. These fractions were then analysed by UPLC-

MS/MS to confirm the presence of BMAA enantiomers. In the L-BMAA fraction a peak 

at 4.95 minutes was observed in the fractionated cycad, consistent with the BMAA 

standards (Fig. 3A). The peak collected between L- and D-BMAA showed a trace 

amount of BMAA and although a peak was observed in the third fraction, analysis of the 

ratios of daughter ions indicated that D-BMAA was not present or was below limits of 

detection (Fig. 3B, Table 1). In comparison with a BMAA standard, retention times and 

daughter ions were consistent for BMAA in the first two fractions. The presence of trace 

amounts of BMAA in the DL- fraction was considered to be carry-over from the 

collection of the L-enantiomer fraction. Although slight shifts in retention time were 

observed from day to day, no significant retention time shifts were noted. Before 

fractionation, the chiral HPLC system was calibrated with fresh L- and D-BMAA 

standards and these time windows were used for the fractionation of unknown samples. 

Therefore, we do not expect to witness cross-contamination of L- and D- BMAA in 

fractions. 

As the concentration of BMAA in cycads is much greater than that in cyanobacteria, the 

chiral method was used to collect multiple fractions with retention times corresponding 

to those of L- and D-BMAA from a symbiotic Nostoc TCA extract, in comparison with an 

identical set of blank injections. Samples were purified and concentrated and analysed 

by LC-MS/MS after derivatisation with AQC. UPLC-MS/MS analysis of blank fractions 

showed no BMAA enantiomers to be present, whereas the presence of L-BMAA was 
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confirmed in the TCA extract from the Nostoc symbiont (Fig. 3C, Table 1). Based on the 

variation in daughter ion ratios for cycads and cyanobateria (Table 1), only L-BMAA was 

confirmed with the ion ratios for D-BMAA being outside that expected for synthetic 

standards. 

Chiral analysis was performed on tissues from animals dosed with L-BMAA. Chiral 

HPLC analysis of the stock L-BMAA showed the preparation administered was 

exclusively the L-enantiomer for both the BMAA administered to mice and vervets (this 

study, Cox et al., 2016b). Analysis of the free BMAA in these tissues showed that the 

mouse liver and the vervet plasma was predominantly the L-enantiomer (Fig. 4, Table 

2), showing little, if any, racemization of L-BMAA occurs before its appearance in serum 

or liver.  In contrast, figure 5 shows that the majority of BMAA determined by UPLC-

MS/MS analysis of the chiral fractions in brain or CSF was the D-enantiomer (also Table 

2). As enantiomeric mixtures were observed, the percentage of L-BMAA and D-BMAA 

in each extract was assessed. Using the peak areas from the MS/MS chromatograms to 

calculate the amount of BMAA in each enantiomeric fraction, the liver and plasma 

contained predominantly L-BMAA (plasma, 96.4%; liver, 87.5%), whereas only D-BMAA 

was detected in the hindbrain and CSF. A further comparison of the amounts of BMAA 

in the various chiral fractions from unspiked tissues was carried out with 2.23 nmol/mg 

wet wt. of L-BMAA versus 0.35 nmol/mg wet wt. of D-BMAA in the mouse liver and 0.62 

nmol/mg wet wt. of D-BMAA in the mouse hindbrain. In vervet tissues, 20.3 µmol/ l of 

L-BMAA and 464 nmol/ l of D-BMAA were recorded in vervet plasma, versus 176 

nmol/ l of D-BMAA in CSF.  
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As the potential long-term toxicity of D-BMAA is little understood or not known, in vitro 

experiments were carried out with D-BMAA. Both enantiomers of BMAA were shown to 

cause neuronal cell death in a dose-dependent manner (Figure 6 A,B), with significant 

neuronal death occurring at mM concentrations. When neuronal cell death was 

measured in the presence of MK801 (Figure 6 C,D), this NMDA receptor agonist 

prevented neuronal cell death in the presence of L-BMAA but not in the presence of D-

BMAA. When neurons were incubated with D-BMAA (Figure 6 E), neuronal cell death 

could be prevented using the AMPA receptor agonist NBQX, but not the calcium 

permeable AMPA receptor agonist NASPM. 

Discussion 

The discovery of BMAA and its toxic properties more than four decades ago have 

inspired a wealth of scientific research.  To date, only the L-BMAA enantiomer has been 

crystallized from cycad extracts and the synthetically produced D-BMAA enantiomer 

has been considered non-toxic (Vega and Bell 1967; Vega et al. 1968, Polsky et al. 

1972; Nunn et al. 1987; Nunn 2009). The finding that BMAA is produced by 

cyanobacteria (Cox et al. 2003; 2005), raises the question of the possible presence of 

the D-BMAA enantiomer in cyanobacteria, particularly because cyanobacteria are well-

known to produce and incorporate D-amino acids into other compounds (Codd et al. 

2005). For example, D-alanine and D-glutamic acid are common components of the 

cyanobacterial heptapeptide microcystins (Codd et al. 2005).  In order to understand the 

environmental occurrence of BMAA and to better understand the relationship between 

cycads and their cyanobacterial symbionts, we developed a chiral HPLC method to 

determine which BMAA enantiomers occur in cycads and to determine whether small 
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concentrations of previously undetected D-BMAA may be present (Vega and Bell 1967; 

Vega et al. 1968). Although D-BMAA was not observed in the cycad extract in the 

original work of Vega and Bell (1967) and Vega et al. (1968), its absence may have 

been due to the sample preparation methods used. If D-BMAA was present in the cycad 

extracts, the likelihood of confirming its presence would be increased if chiral HPLC was 

used. Since exposure to BMAA has been implicated in the development of Amyotrophic 

Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) on Guam (Banack and 

Cox 2003; Murch et al. 2004; Cox et al. 2016a) and BMAA has been identified in the 

Pablo et al. 2009), a greater understanding of L- and D-BMAA enantiomers might shed 

further light on disease aetiology.   

 Fractionation of a TCA extract from Nostoc isolated from Guamanian cycad 

coralloid root and a TCA extract of cycad gametophyte tissue did not indicate the 

presence of D-BMAA, whereas the L-enantiomer was positively identified using the 

chiral method described herein. The use of chiral HPLC as a fractionation tool had 

certain advantages due to the fact that multiple fractions could be iteratively collected 

and combined to increase the potential concentration of BMAA for later mass 

spectrometric analysis. Furthermore, this fractionation method also removed interfering 

compounds from the sample matrix, thus simplifying the mass spectrometric analysis 

and providing separation of BMAA enantiomers from the structural isomers L-2,4-DAB 

(Banack et al. 2010), D-2,4-DAB and the achiral AEG (Banack et al. 2012). This is 

largely because only two approximate 1 minute windows were collected resulting in a 

large number of compounds being retained by the chiral column or eluting at a different 



18  

time which would not be present in the fractions during subsequent analysis. The chiral 

method shown here will be useful for investigating which free BMAA enantiomers exist 

in a wide range of plant, cyanobacterial and clinical materials.  

Amyotrophic Lateral Sclerosis/ Parkinsonism Dementia Complex (ALS/PDC) among the 

Chamorro people has been linked to high concentrations of BMAA in their diet (Banack 

et al. 2006; Bradley and Mash 2009; Banack and Murch 2009; Cox et al. 2016a). In 

mammals, food is processed within the mouth and stomach, with the potential to alter 

the enantiomeric ratio of L- and D-amino acids due to changes in pH and temperature 

(Friedman 2010), although no changes were noticed with L- or D-BMAA stored in HCl 

(data not shown). Since the traditional Chamorro diet included BMAA-containing 

washed cycad flour and flying foxes (Banack and Cox 2003; Banack et al. 2006; Cheng 

and Banack 2009), there is a possibility that BMAA enantiomers present in their food 

may be transformed to a racemic mixture during digestion. Analysis of mouse liver and 

vervet plasma indicated that after oral administration and digestion of L-BMAA, the 

majority of this amino acid was still present as the L-enantiomer. In contrast, D-BMAA 

was the only free enantiomer found in the central nervous system of both mice and 

vervets. Since, the D-enantiomer has not previously been described in nature, then a 

mechanism for the interconversion between BMAA enantiomers in mammals might 

exist.  Within the mammalian brain, enzymes such as serine racemase [EC.5.1.1.18] 

are present that racemise L-serine to D-serine, which is then used as a neurotransmitter 

(Baumgart and Rodriguez-Crespo 2008). A number of amino acids are known to affect 

the activity of this enzyme (Dunlop and Neidle 2005) and BMAA may be a substrate for 

or affect the activity of this enzyme. If BMAA were shown to interfere with serine 
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racemase, it could alter the delicate balance of amino acids in the central nervous 

system.   Furthermore, incorporation of L-BMAA into proteins can be blocked by L-

serine, suggesting that these two amino acids may have metabolic as well as structural 

similarities (Dunlop et al. 2013).  

A further consideration is whether L- or D-BMAA is actively transported into the brain. 

Our analyses indicate that the L-enantiomer is found in the circulatory system whereas 

the D-enantiomer is the free enantiomer in the central nervous system. The 

transportation and uptake of BMAA into the brain is considered to occur through the L1 

transport system for large neutral amino acids, and although inefficient, BMAA was 

observed to accumulate in the brain (Duncan et al. 1991; Xie et al. 2013). This uptake 

occurs as a result of the essentially uncharged nature of BMAA at pH 7.4 (Nunn and 

Ponnusamy 2009), along with leucine, valine, methionine, histidine, isoleucine, 

tryptophan, phenylalanine and threonine (Bradley 2009). It has been previously 

demonstrated that the toxic effects of BMAA can be inhibited by leucine in Drosophila 

(Zhou et al. 2009) and in rats (Smith et al. 1992) which supports the suggestion that 

BMAA may be transported across the blood brain barrier by the L1 transport system. 

Work by Liu et al. (2009) has discovered a second transport system (Xc-) which is also 

inhibited by BMAA, and it is possible that BMAA may also cross cell membranes using 

this system. Therefore, it would seem unlikely that the D-enantiomer would be actively 

transported, as evidenced by the fact that serine racemase is present within the central 

nervous system to convert L- to D- serine. This reasoning, along with the data showing 

L-BMAA in the blood plasma and liver versus D-BMAA in the brain and CSF, suggests 

that the free D-BMAA is produced within the brain itself.   
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A second racemase in the brain, aspartate racemase [EC.5.1.1.13] produces D-aspartic 

acid, which is an endogenous ligand for NMDA receptors (Kim et al. 2010). The 

presence of a number of racemases and D-BMAA in the brains and CSF of mice and 

vervets, respectively, raises a further question concerning what other non-protein amino 

acids may be converted from their L- to D- enantiomers, which may or may not cause 

adverse effects. Furthermore, it is possible that other racemases, in addition to serine- 

and aspartate racemase may exist in the mammalian brain, having the potential to 

racemise L- to D-BMAA. 

Based on the preliminary in vitro toxicological studies carried out here D-BMAA does 

appear to have some neurotoxicity, although via a different mechanism to that observed 

with L-BMAA. Further studies examining the toxicity of D-BMAA are required to 

determine whether enantiomeric changes to BMAA result in neurological deficits. Chiral 

HPLC analysis of human brains known to contain BMAA may shed some light on which 

of these scenarios is more likely. A third possibility is that deficiencies in the serine 

racemase enzyme itself may constitute a risk factor for neurodegeneration. 

The finding that L-BMAA can be converted from the L- to D- enantiomer raises 

interesting questions concerning the etiology of sporadic ALS, and further studies to 

determine the molecular mechanisms which interconvert this amino acid may shed new 

light on the causes of ALS and its association with neurotoxic amino acids. 
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Figure 1. Chiral separation of L-BMAA, D-BMAA and L-2,4-diaminobutyric acid (L-DAB) 

from a standard mixture of amino acids. (A) chiral separation of a L- and D- BMAA 

standard (solid line) from a mixture of standard amino acids and L-2,4 DAB (hatched 

line). (B) comparison of a DL-BMAA standard (solid line) with a L-BMAA standard 

(hatched line). (C) A DL-BMAA standard (hatched line) compared with chiral HPLC 

analysis of a TCA extract from cycads (solid line).  

 

 

 

 

 

 

 

A 

Time (mins) 

B 
C 

Time (mins) 
Time (mins) 



28  

Figure  2.  Schematic  overview  of  the  chiral  fractionation  procedure.  
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Figure  3.  UPLC-­‐MS/MS  analysis  of  AQC-­‐derivatised  fractions  obtained  by  chiral  HPLC  for  the  presence  of  

L-­‐  and  D-­‐BMAA  in  cycads  and  cyanobacteria.  (A)  cycad  L-­‐BMAA  fraction;  (B)  cycad  D-­‐BMAA  fraction;  (C)  

cyanobacteria  L-­‐BMAA  fraction;  (D)  cyanobacteria  D-­‐BMAA  fraction.  Grey  area  shows  the  retention  time  

of  BMAA  and  the  CID  daughter  ions  isolated  from  a  parent  mass  of  m/z  459.    

  

  

  

  

  



30  

Figure  4.  UPLC-­‐MS/MS  analysis  of  chiral  HPLC  fractions  from  mouse  liver  and  vervet  plasma.  A,  mouse  

liver  L-­‐BMAA  fraction;  B,  mouse  liver  D-­‐BMAA  fraction;  C,  vervet  plasma  L-­‐BMAA  fraction;  D,  vervet  

plasma  D-­‐BMAA  fraction.  Grey  areas  show  the  retention  time  of  BMAA,  with  daughter  ions  isolated  from  

a  parent  mass  of  m/z  459.  
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Figure  5.  UPLC-­‐MS/MS  analysis  of  free  BMAA  in  mouse  hindbrain  and  vervet  CSF.  A,  mouse  hindbrain  L-­‐

BMAA  fraction;  B,  mouse  hindbrain  D-­‐BMAA  fraction;  C,  vervet  CSF  L-­‐BMAA  fraction;  D,  vervet  CSF  D-­‐

BMAA  fraction.  Grey  areas  show  the  retention  time  of  BMAA,  with  daughter  ions  isolated  from  a  parent  

mass  of  459.  

  

   



32  

Figure  6.  Toxicity  assessment  of  L-­‐  and  D-­‐  BMAA  in  an  in  vitro  LDH  release  assay  for  neuronal  cell  death.  

A,  effect  of  L-­‐BMAA  on  LDH  release;  B,  effect  of  D-­‐BMAA  on  LDH  release;  C,  effect  of  3mM  L-­‐BMAA  on  

LDH  release  in  the  presence  of  MK-­‐801  (10   M);  D,  effect  of  1mM  D-­‐BMAA  on  LDH  release  in  the  

presence  of  MK-­‐801  (10   M);  E,  effect  of  1mM  D-­‐BMAA  on  LDH-­‐release  in  the  presence  of  NBQX  (10  

M)  and  NASPM  (10   M).    Bars  show  %  neuronal  death  (mean  +  SEM,  n  =  8-­‐16).    *  Indicates  significant  

difference,  P  <  0.05  (one-­‐way  ANOVA  followed  by  the  Bonferroni  t-­‐test). N  values  represent  individual  

wells  on  a  plate,  n  =  8-­‐16  indicate  2-­‐4  independent  experiments  (cultures  prepared  from  different  sets  

of  embryos).  
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Table 1. Daughter ion ratios for AQC-derivatised BMAA isolated from fractionation of an 

underivatised extract from cycads and cyanobacteria after selection for parent ion at 

m/z 459 in comparison with a BMAA standard.  

Daughter ion   Daughter ion ratios (Cycad)  

m/z   BMAA std   L-BMAA fraction   D-BMAA fraction  

119   15.6   17.2   16.5  

171   100   100   100  

188   0   0   0.2  

289   33.4   28.8   54.8  

 

Daughter ion ratios (Cyanobacteria)  

Daughter 
ion m/z  

BMAA std   Blank inj* 

L-BMAA  

Nostoc 

L-BMAA  

Blank inj* 

D-BMAA  

Nostoc 

D-BMAA  

119   18.45   0.66   12.5   8.49   0.8  

171   100   100   100   100   100  

188   0.32   0.87   0.86   0.35   0.19  

214   0.03   16.79   0.51   2.89   1.63  

258   2.06   1.4   3.34   1.4   0.3  

289   28.25   0.7   23.35   0.7   20.52  

 
* An equivalent set of blank injections and chiral fractionations were carried out to 
compare to the cyanobacterial TCA extract chiral fractionation.    
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Table  2.  BMAA  daughter  ion  ratios  for  L-­‐  and  D-­‐BMAA  fraction  windows  collected  from  mouse  (liver,  

hind  brain)  and  vervet  tissues  (plasma,  cerebral  spinal  fluid)  from  animals  dosed  with  L-­‐BMAA  in  

comparison  with  BMAA  standards.  

Daughter  ion   BMAA  std   Mouse  liver   Mouse  hindbrain  

m/z      L-­‐  fraction   D-­‐fraction   L-­‐fraction   D-­‐fraction  

119   15.1   15.1   10.3   12.5   15.8  

171   100   100   100   100   100  

289   31.1   29.6   42.2   32.5   31.0  

      Vervet  plasma   Vervet  CSF  

      L-­‐fraction   D-­‐fraction   L-­‐fraction   D-­‐fraction  

119   17.6   17.3   25.8   0.6   17.0  

171   100   100   100   100   100  

214   0   0.1   2.2   7.0   0.4  

258   6.2   4.0   3.3   10.3   1.9  

289   31.2   29.5   32.8   2.4   30.2  
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