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ABSTRACT. Given the complement of a hyperplane ar-
rangement, let Γ be the closure of the graph of the map
inverting each of its defining linear forms. The characteris-
tic polynomial manifests itself in the Hilbert series of Γ in
two different-seeming ways, one due to Terao and the other
to Huh and Katz. We define an extension of the no bro-
ken circuit complex of a matroid and use it to give a direct
Gröbner basis argument that the polynomials extracted from
the Hilbert series in these two ways agree.

Let A be an arrangement of n + 1 distinct hyperplanes in an
r + 1-dimensional vector space L over some field k. Assume that
A is essential, that is, that the intersection of all its hyperplanes
is {0}. We coordinatize A by fixing a linear form xi vanishing on
the ith hyperplane. These linear forms provide an injective linear map
L→ kn+1, and we will identify L with its image in kn+1 from now on.
The hyperplane arrangement A is then {L ∩ (xi = 0) | 0 ≤ i ≤ n}.
The arrangement complement L̃ = L \ A is the complement of

the coordinate hyperplanes. We can projectivize L̃ ⊆ kn+1 to form

P(L̃) ⊆ Pn.

Naturally associated to A is a matroid M of rank r + 1 represented
over k on the set of the n+ 1 hyperplanes in A, with no loops and no
collinear points. The matroid M encodes the dependencies among the
coordinate functions xi on L: a set of coordinate functions {xi | i ∈ C}
is linearly dependent if and only if C is a dependent set of M .

An important invariant associated to any matroid, and via this
to any hyperplane arrangement, is the characteristic polynomial
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χM (q), defined as

χM (q) =
∑
F⊆M

µ(0̂, F ) qr+1−r(F ),

where the sum is over the flats of the matroid M . Here µ denotes the
Möbius function, and r(F ) is the rank of the flat F .

The Cremona transformation Pn 99K Pn is defined by sending
(z0 : · · · : zn) to (z−1

0 : · · · : z−1
n ). The reciprocal plane RA is the

closure of the image of the Cremona transformation restricted to P(L̃),
embedded as a closed subvariety of Pn. The reciprocal graph ΓA
is the closure of the graph of the Cremona transformation restricted

to P(L̃), embedded as a closed subvariety of Pn × Pn. Note that
RA = π2(ΓA), where π2 denotes projection to the second factor.

In previous work, two ways have appeared of recovering the char-
acteristic polynomial from the above geometry. Terao [7, Thm. 1.2]
shows, in characteristic zero, that the Hilbert series of (the projective
coordinate ring of) RA is given by

H(RA; t) =

r+1∑
i=0

wi

(
t

1− t

)i

,

where (−1)iwi is the coefficient of qr+1−i in χM (q); note that χM (q) is
a polynomial in q of degree r + 1 whose coefficients alternate in sign.
Berget [1, Thm. 4.3] gives a characteristic free proof; another is implicit
in [6], discussed below. In terms of the Grothendieck ring K0(Pn), the
result means that

[RA] =

r∑
i=0

wi+1[(k∗)i],

where by [(k∗)a] we mean

[(k∗)a] =

a∑
j=0

(−1)j
(
a+ 1

j

)
[Pa−j ].

On the other hand, Huh and Katz [4, Thm. 1.1] show that the
cohomology class of ΓA in H2(2n−r)(Pn × Pn) is given by

[ΓA] =

r∑
i=0

wi[Pr−i × Pi],
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where (−1)iwi is the coefficient of qr−i in the reduced characteristic
polynomial χM (q) := χM (q)/(q − 1). This is a rather surprising
coincidence! By the Chern map, the class of a subvariety Y ⊆ X
in H∗(X) can be thought of as the leading terms of its class in
K0(X). Hence this coincidence between a K-class and a cohomology
class suggests a correspondence between the leading terms of [ΓA] ∈
K0(Pn × Pn) and all the terms of [RA] = [π2(ΓA)] ∈ K0(Pn). Note
that this relationship is not simply the one arising from pushforward
along the projection, which cannot be computed from only the leading
terms of [ΓA].

Proudfoot and the second author [6] give an explanation of the
Terao result in terms of combinatorial commutative algebra by showing
that RA has a Gröbner degeneration to the Stanley–Reisner scheme
associated to the no broken circuit complex ∆NBC

M , whose faces
are counted by the characteristic polynomial. The no broken circuit
complex is a cone over the vertex corresponding to the first variable,
so one can define the reduced no broken circuit complex ∆RNBC

M

by deleting the cone point. The faces of ∆RNBC
M are counted by the

reduced characteristic polynomial. (The authors caution the reader
that sources differ as to whether ∆NBC

M should be called the “no broken
circuit complex” or the “broken circuit complex”.)

In this paper, we give a similar combinatorial commutative algebra
explanation for the Huh–Katz result by defining a family of extended
no broken circuit complexes ∆ENBC

M,≺ , one for each total order ≺
on {0, . . . , n}, and showing that ΓA has Gröbner degenerations to the
Stanley–Reisner schemes of ∆ENBC

M,≺ . Our simplicial complexes ∆ENBC
M,≺

are all pure with one facet for every face of ∆RNBC
M , explaining the

common appearance of the (reduced) characteristic polynomial in these
two different settings.

By counting the faces of ∆ENBC
M,≺ , we also obtain the bigraded Hilbert

series for ΓA, which is

H(ΓA; q, t) =

r∑
i=0

wi

(
1 +

q

1− q

)r+1−i(
t

1− t

)i(
1 +

t

1− t

)

=
1

1− qt

(
t

t− 1

)r+1

χM

(
t− 1

(1− q)t

)
.
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The coordinate ring of ΓA was recently independently studied by
Garrousian, Simis, and Tohaneanu [3]. We recover their results on a
presentation for the coordinate ring of ΓA. They furthermore show
that ΓA is arithmetically Cohen–Macaulay (Thm. 4.9). It would
be interesting to recover this result by showing that our complexes
∆ENBC

M,≺ are shellable for a well-chosen order ≺. Alexander Lazar has

exhibited an example of a non-shellable complex ∆ENBC
M,≺ , where M is

the projective geometry P3(F2) and ≺ is the natural order.
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1. The extended no broken circuit complex. Given a matroid
M of rank r + 1 on a ground set {0, . . . , n}, a circuit is a minimal
dependent set, and a broken circuit is the result of deleting the least
element from any circuit in the natural order 0 < 1 < · · · < n. The
no broken circuit complex ∆NBC

M is the simplicial complex whose
minimal nonfaces are the broken circuits of M . In other words, the
facets of ∆NBC

M are the maximal sets not containing a broken circuit.
Note that 0 is never in a broken circuit, and hence the vertex 0 is
always a cone point of ∆NBC

M . Following Brylawski [2], we define
the reduced no broken circuit complex ∆RNBC

M as the simplicial
complex obtained by deleting the vertex 0 from ∆NBC

M .

It is a classical result, due to Whitney [8, Sect. 7] for graphical ma-
troids and Brylawski [2, Thm. 3.3e] in general, that the characteristic
polynomial of M is given by

χM (q) =

r+1∑
i=0

(−1)iwi q
r+1−i,
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where wi (which is sometimes known as the i-th Whitney number of
the first kind) is the number of faces of ∆NBC

M with i vertices. Note
that the reduced characteristic polynomial satisfies

χM (q) = χM (q)/(q − 1) =

r∑
i=0

(−1)iwiq
r−i,

where wi is the number of faces of ∆RNBC
M with i vertices.

Given a second partial order ≺ on the set {0, . . . , n}, we de-
fine the extended no broken circuit complex ∆ENBC

M,≺ as fol-

lows. The complex ∆ENBC
M,≺ has 2(n + 1) vertices, which we denote

{x0, . . . , xn, y0, . . . , yn}. Given any face F ∈ ∆RNBC
M (including F = ∅),

let L(F ) be the basis of M containing F which is lexicographically max-
imal with respect to ≺. To be precise, let i↑ = {j | i ≺ j} be the up-set
generated by i in ≺. Then i ∈ L(F ) if i ∈ F or

rk(i↑ ∪ F ) > rk((i↑ \ {i}) ∪ F ).

Given any F ∈ ∆RNBC
M , define

F = {yi | i ∈ F} ∪ {xj | j ∈ L(F ) \ F} ∪ {y0}.

Thus, putting aside y0 which will be a cone point, L(F ) is the set of
subscripts of vertices of F , with F distinguished within it as the set of
subscripts of y-variables. The facets of ∆ENBC

M,≺ are the sets F ; in other
words,

∆ENBC
M,≺ = {G | G ⊆ F , F ∈ ∆RNBC

M }.

2. Squarefree initial ideals and Stanley–Reisner rings. Let
S = k[x0, . . . , xn, y0, . . . , yn] be the bihomogeneous coordinate ring of
Pn × Pn, and fix a total term order on S. Given f ∈ S, init f is the
largest monomial in the support of f . Given an ideal I ⊆ S, its initial
ideal is init I = {init f | f ∈ I}. Since our term order is a total order,
init I is a monomial ideal. It is a general fact that there exists a flat
degeneration from the scheme V (I) to V (init I) preserving the Hilbert
series and hence the cohomology class.

Let ∆ be a simplicial complex with vertex set {x0, . . . , xn, y0, . . . , yn}.
The Stanley–Reisner ideal I(∆) ⊆ S is the squarefree monomial ideal
generated by

∏
v∈A v for all subsets A such that A 6⊆ ∆. The nonzero

monomials of S/I(∆) are precisely those whose variables are faces of ∆,
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so the bigraded Hilbert series with x-degree counted by q and y-degree
counted by t is given by

(1) H(S/I(∆); q, t) =
∑
F∈∆

(
q

1− q

)x(F )(
t

1− t

)y(F )

,

where the sum is over all faces F in ∆ and x(F ) and y(F ) denote
respectively the number of x-vertices and y-vertices in F .

Since I(∆) is squarefree, the subscheme V (∆) of Pn × Pn defined
by I(∆) is reduced, and its irreducible components are the subspaces
spanned by v ∈ F as F ranges over the maximal faces of ∆. Hence the
class of V (∆) in H∗(Pn × Pn) is

(2) [V (∆)] =
∑
F

[Px(F )−1 × Py(F )−1],

where the sum is now over all faces F of maximal dimension (which in
general may not be all maximal faces).

3. Main theorem and proof. Our main theorem is the following.

Theorem 1. Let ΓA be the reciprocal graph. Fix a total order ≺
on {0, . . . , n}. Let > be a term order on S such that xi > xj if i ≺ j
while yi > yj if i > j, and any term that is a multiple of ya0 is less than
any term of the same degree that is not. Then

(1) (Also [3, Thm. 4.2]) The defining ideal I(ΓA) ⊆ S is generated
by the following elements:
•
∑

i∈C aixi, where C is a circuit and the ai ∈ k define the
relation given by the circuit.

•
∑

i∈C ai
∏

j∈C\{i} yj, where C is a circuit and ai are as

above.
• xiyi − x0y0, for all i with 1 ≤ i ≤ n

(2) The initial ideal init I(ΓA) ⊆ S is generated by the following
elements:
•
∏

i∈B yi, where B is a broken circuit
• xj

∏
i∈I yi, where I is any subset of {1, . . . , n} (so not

including 0) and rk(j↑ ∪ I) = rk((j↑ \ {j}) ∪ I). (Note
this includes the degenerate case where j ∈ I.)
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(3) The initial ideal init I(ΓA) is the Stanley–Reisner ideal I(∆ENBC
M,≺ )

of the extended no broken circuit complex.

Proof. Let J be the ideal generated by the elements listed in part
(1), and let K be the ideal generated by the elements of part (2). We
will show that J ⊆ I(ΓA) and that I(∆ENBC

M,≺ ) ⊆ K ⊆ init J . We first
explain how to conclude the proof using these facts.

Since ∆ENBC
M,≺ is pure-dimensional, I(∆ENBC

M,≺ ) defines an equidimen-
sional and reduced scheme. Hence if A is a monomial ideal containing
I(∆ENBC

M,≺ ) such that we have the equality

[V (S/A)] = [V (∆ENBC
M,≺ )] ∈ H∗(Pn × Pn)

of cohomology classes (or equivalently of bidgrees), thenA = I(∆ENBC
M,≺ ) [5,

Exer. 8.13]. By construction, for each face F ∈ ∆RNBC
M , we have a facet

F ∈ ∆ENBC
M,≺ , and every facet has r + 2 vertices. Furthermore, F has

r − |F |+ 1 x-vertices and |F |+ 1 y-vertices. Hence, by Equation (2),

[V (∆ENBC
M,≺ )] =

∑
F∈∆RNBC

M

[Pr−|F | × P|F |],

where the sum is over all faces F of ∆RNBC
M .

On the other hand, Huh and Katz [4, Thm. 1.1] show that

[ΓA] =

r∑
i=0

wi[Pr−i × Pi],

where (−1)iwi is the coefficient of qr−i in χM (q). Since wi is the
number of faces of ∆RNBC

M with i vertices, [ΓA] = [V (∆ENBC
M,≺ )]. Taking

an initial ideal preserves the cohomology class, so [V (init I(ΓA))] =
[V (∆ENBC

M,≺ )], and init I(ΓA) = I(∆ENBC
M,≺ ). Therefore,

I(∆ENBC
M,≺ ) = K = init J = init I(ΓA),

and J = I(ΓA).

To show J ⊆ I(ΓA), we show the generators of each type vanish
on ΓA. The generators involving only the x variables come from the

relations defining the linear space L. On a point in L̃ where xi 6= 0 for
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all i,

yi =
1

xi
,

so
xiyi = xjyj

for all i and j, and in particular for j = 0. Also, given a relation∑
i∈C

aixi = 0

on L coming from a circuit C, we have relations∑
i∈C

ai
yi

= 0,

or, clearing denominators,∑
i∈C

ai
∏

j∈C\{i}

yj = 0.

To show K ⊆ init J , for each generator of g ∈ K, we find f ∈ J such
that init f = g. If B is a broken circuit, then B is some circuit C with
its first element removed, and hence

∏
i∈B yi is the leading term of∑

i∈C
ai

∏
j∈C\{i}

yj .

On the other hand, given a subset I ⊆ {1, . . . , n} and some element
j ∈ {0, . . . , n} such that

rk(j↑ ∪ I) = rk((j↑ \ {j}) ∪ I),

either we are in the degenerate case where j ∈ I, where xjyj ∈ init J
since xjyj − x0y0 ∈ J , or there is some circuit C including j and a
subset of (j↑ \ {j}) ∪ I. Let

h =
∑
k∈C

akxk ∈ J

be the relation given by C. Consider

h′ =

(∏
i∈I

yi

)
h ∈ J.
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We can write

h′ = aj

(∏
i∈I

yi

)
xj+

∑
k∈C∩(j↑\{j})

ak

(∏
i∈I

yi

)
xk+

∑
k∈C\j↑

ak

(∏
i∈I

yi

)
xk.

Note that, if k ∈ C and k 6� j, then k ∈ I, so

h′ = aj

(∏
i∈I

yi

)
xj+

∑
k∈C∩(j↑\{j})

ak

(∏
i∈I

yi

)
xk+

∑
k∈C\j↑

ak

 ∏
i∈I\{k}

yi

xkyk.

Since xiyi − x0y0 ∈ J for all i,

h′′ = h′ +
∑

k∈C\j↑

ak

 ∏
i∈I\{k}

yi

 (x0y0 − xkyk)

= aj

(∏
i∈I

yi

)
xj +

∑
k∈C∩(j↑\{j})

ak

(∏
i∈I

yi

)
xk

+
∑

k∈C\j↑

ak

 ∏
i∈I\{k}

yi

xkyk +
∑

k∈C\j↑

ak

 ∏
i∈I\{k}

yi

 (x0y0 − xkyk)

= aj

(∏
i∈I

yi

)
xj +

∑
k∈C∩(j↑\{j})

ak

(∏
i∈I

yi

)
xk +

∑
k∈C\j↑

ak

 ∏
i∈I\{k}

yi

x0y0

∈ J.

The first term is the leading term, since it contains no y0 and xj > xk
for all k � j, so

inith′′ = xj
∏
i∈I

yi ∈ K.

To show I(∆ENBC
M,≺ ) ⊆ K, suppose∏

a∈A

∏
b∈B

xayb 6∈ K.

Then B does not contain a broken circuit, and for every a ∈ A,

rk((B \ {0}) ∪ a↑) > rk((B \ {0}) ∪ (a↑ \ {a})).
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Note B \ {0} is a face F ∈ ∆RNBC
M , and A ⊆ L(F ) by our condition on

elements of A, so

{xa | a ∈ A} ∪ {yb | b ∈ B} ⊆ L(F ) ∈ ∆ENBC
M,≺ .

Hence, ∏
a∈A

∏
b∈B

xayb 6∈ I(∆ENBC
M,≺ ). �

4. Hilbert series. In this section, we state and prove our formula
for the bigraded Hilbert series of S/I(ΓA) and show how the Terao and
Huh–Katz results follow from this formula.

Proposition 2. The bigraded Hilbert series of S/I(ΓA) is

H(ΓA; q, t) =
1

1− qt

(
t

t− 1

)r+1

χM

(
t− 1

(1− q)t

)
.

Proof. Because I(∆ENBC
M,≺ ) is an initial degeneration of I(ΓA), it has

the same Hilbert function. Computing H(∆ENBC
M,≺ ; q, t) is an enumera-

tive problem, by (1).

We carry out this count by means of a partition of the faces
of ∆ENBC

M,≺ . To wit, given any face F ∈ ∆RNBC
M , let

J(F ) = {G ∈ ∆ENBC
M,≺ | G ∩ {y1, . . . , yn} = {yi | i ∈ F}}.

The subscripts of the y-vertices (not including y0) of any facet of ∆ENBC
M,≺

make up a face of ∆RNBC
M , so the same is true for any face of ∆ENBC

M,≺ .

Hence {J(F ) | F ∈ ∆RNBC
M } gives a partition of ∆ENBC

M,≺ .

Next we show that J(F ) is in fact the interval [{yi | i ∈ F}, F ], so
that G ∈ J(F ) if and only if

{yi | i ∈ F} ⊆ G ⊆ F .

Since F ∩ {y1, . . . , yn} = F , we have [{yi | i ∈ F}, F ] ⊆ J(F ). Now
suppose we have a face G ∈ J(F ) ⊆ ∆ENBC

M,≺ . Then G ⊆ H for some

H ⊇ F ∈ ∆RNBC
M . However, if F ⊆ H, then L(F )\F ⊇ L(H)\H, where

L(F ) has the meaning it had in Section 1, because if j is independent
of H ∪ (j↑ \ {j}), then j is also independent of F ∪ (j↑ \ {j}). Hence,
G ⊆ F .
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The contribution of J(F ) to the Hilbert function is∑
G∈J(F )

(
q

1− q

)x(G)(
t

1− t

)y(G)

(3)

=

(
1 +

q

1− q

)|L(F )\F |(
t

1− t

)|F |(
1 +

t

1− t

)
=

tr

(1− q)(1− t)r+1

(
1− t

(1− q)t

)r−|F |

,

since |L(F )| = r+ 1 for all F . The Hilbert function is the sum of these
contributions, and there are wi faces F of ∆RNBC

M with |F | = i, giving

H(S/I(ΓA); q, t) =
tr

(1− q)(1− t)r+1
·

r∑
i=0

wi

(
1− t

(1− q)t

)r−i

=
(−t)r

(1− q)(1− t)r+1
· χM

(
t− 1

(1− q)t

)
=

1

1− qt

(
t

t− 1

)r+1

χM

(
t− 1

(1− q)t

)
. �

Since RA is the second projection of ΓA, we may recover H(RA; t)
by evaluating q at 0, corresponding to intersection with the subring
k[y0, . . . , yn] of S. This evaluation is

H(S/I(ΓA); 0, t) =

(
t

t− 1

)r+1

χM

(
t− 1

t

)
agreeing with the result of Terao.

Agreement with the result of Huh and Katz, invoking (2), was
used in our proof. Note, though, that this cohomology class can
also be calculated directly from the Hilbert series using the method
of multidegrees [5, Sect. 8.5].

5. Example: Braid arrangement for A3. We work out the
details for the matroid of braid arrangement of A3, also known as the
graphical arrangement for the complete graph K4. This is a matroid
of rank 3 on 6 elements, with characteristic polynomial χK4

(q) = q3 −
6q2+11q−6 and reduced characteristic polynomial χK4

(q) = q2−5q+6.

Considered as a set of vectors in k4, we can realize the arrangement as
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x0 = e1 − e2, x1 = e1 − e3, x2 = e1 − e4, x3 = e2 − e3, x4 = e2 − e4,
and x5 = e3 − e4. The circuits of this arrangement are:

{x0 − x1 + x3, x1 − x2 + x5, x0 − x2 + x4, x3 − x4 + x5,

x0 − x1 + x4 − x5, x0 − x2 + x3 + x5, x1 − x2 − x3 + x4}.

The broken circuits are the sets {1, 3}, {2, 5}, {2, 4}, {4, 5}, {1, 4, 5},
{2, 3, 5} and {2, 3, 4}. (The last three broken circuits contain other
broken circuits and hence are non-minimal nonfaces.) The facets of
the no broken circuit complex ∆NBC

K4
are {0, 1, 2}, {0, 1, 4}, {0, 1, 5},

{0, 2, 3}, {0, 3, 4}, and {0, 3, 5}. The number of facets should be the
constant term of the characteristic polynomial, which is correct. The
facets of the reduced no broken circuit complex ∆RNBC

K4
are {1, 2},

{1, 4}, {1, 5}, {2, 3}, {3, 4}, and {3, 5}, and the other faces are the
empty set and the five vertices.

Let us take ≺ to be the natural order ≤. The facets of the extended
no broken circuit complex ∆ENBC

K4,≤ are

{y0, x2, x4, x5}, {y0, y1, x4, x5}, {y0, y2, x4, x5}, {y0, y3, x2, x5},
{y0, y4, x2, x5}, {y0, y5, x2, x4}, {y0, y1, y2, x4}, {y0, y1, y4, x5},
{y0, y1, y5, x4}, {y0, y2, y3, x5}, {y0, y3, y4, x2}, and {y0, y3, y5, x2}.

Hence the cohomology class of V (∆ENBC
K4,≤ ) in H∗(P5 × P5) is

[V (∆ENBC
K4,≤ )] = [P2 × P0] + 5[P1 × P1] + 6[P0 × P2].

The ideal I(ΓK4
) can be presented, with each polynomial written in

term order, as

I(ΓK4
) = 〈x0 − x1 + x3, x1 − x2 + x5, x0 − x2 + x4, x3 − x4 + x5,

x1y1 − x0y0, x2y2 − x0y0, x3y3 − x0y0, x4y4 − x0y0, x5y5 − x0y0,

y1y3 − y0y3 + y0y1, y2y5 − y1y5 + y1y2, y2y4 − y0y4 + y0y2,

y4y5 − y3y5 + y3y4〉.

The initial ideal init I(ΓK4
) is given by

init I(ΓK4) = 〈x0, x1, x3, x2y1, x2y2, x4y3, x5y1y2, y3y4x5, y1y3, y2y5, y2y4, y4y5〉.

For example, x2y1 ∈ init I(ΓK4
) since 2 is dependent on {1, 5} ⊆

{1, 3, 4, 5}.
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The Hilbert series of S/I(ΓK4) is given by

H(ΓK4 ; q, t) =

(
1 +

q

1− q

)3(
1 +

t

1− t

)
+ 5

(
1 +

q

1− q

)2(
t

1− t

)(
1 +

t

1− t

)
+ 6

(
1 +

q

1− q

)(
t

1− t

)2(
1 +

t

1− t

)
=

(
t3

(1− qt)(t− 1)3

)
·

((
t− 1

(1− q)t

)3

− 6

(
t− 1

(1− q)t

)2

+ 11

(
t− 1

(1− q)t

)
− 6

)
.

Setting q = 0 gives

H(RK4 ; t) = 1 + 6

(
t

1− t

)
+ 11

(
t

1− t

)2

+ 6

(
t

1− t

)3

=

(
t3

(t− 1)3

)((
t− 1

t

)3

− 6

(
t− 1

t

)2

+ 11

(
t− 1

t

)
− 6

)
.
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