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Abstract 

Genomic sequencing of pancreatic ductal adenocarcinoma (PDAC) tumours has 

highlighted the existence of wide genetic diversity alongside frequent mutations in 

KRAS, TP53 and SMAD4. Within this heterogeneity many components of the epigenetic 

machinery are mutated, including the histone H3 lysine 4 methyltransferases KMT2C 

and KMT2D, which are frequently subject to mutation and can identify patients with a 

more favorable prognosis. In this thesis low expression of KMT2C and KMT2D were 

shown to also define better outcome groups, with median survivals of 15.9 vs 9.2 

months (p = 0.029), and 19.9 vs 11.8 months (p = 0.001) respectively. Experiments 

across eight human pancreatic cell lines following their depletion suggest that this 

improved outcome may be due to attenuated cell proliferation, with decreased 

progression of cells from G0/G1 observed upon KMT2D loss. Whole transcriptome 

analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 

124 differentially expressed genes respectively, with 19 common to both. Gene set 

enrichment analysis revealed a significant downregulation of genes relating to cell-cycle 

pathways, confirmed by interrogation of the International Cancer Genome Consortium 

and The Cancer Genome Atlas PDAC data series. Furthermore, these experiments 

highlighted a potential role for NCAPD3, a subunit of the condensin II complex, as a 

PDAC outcome predictor across four patient gene expression series. Alongside this, 

Kmt2d depletion in cells derived from murine models of pancreatic cancer led to an 

increase in their response to the antimetabolites 5-fluorouracil and gemcitabine. Taken 

together, the studies herein suggest that lower levels of this methyltransferase may 

mediate the sensitivity of PDAC patients to particular treatments. Altogether, these data 

suggest a potential therapeutic benefit in targeting these methyltransferases within 

PDAC, especially in those patients that demonstrate higher KTM2C/D expression. 
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1.1 Pancreatic ductal adenocarcinoma (PDAC) 

1.1.1 Prevalence and epidemiology  

Pancreatic ductal adenocarcinoma (PDAC) makes up the majority of all pancreatic 

malignancies and is notoriously associated with a particularly poor overall survival (1). 

Typically patients present with invasion and metastases at diagnosis, both of which 

limit patient suitability for curative surgical resection, thereby leaving chemotherapy as 

the next best option (2). 

In the UK between 2000 and 2010, the incidence of PDAC increased by 3% to 14.5 

cases per 100000 person-years (3). In this way, pancreatic cancer has also been 

predicted to become the second largest leading cause of cancer-related deaths in the 

USA by 2030 (4). Studies looking at patient demographics have shown PDAC to be a 

disease predominantly associated with age, where 10% of patients (5), or fewer (3.7%) 

(3), develop the disease before 50, giving rise to a median age of 68 at diagnosis (2). 

The incidence of PDAC is three to four times higher in Northern Europe and America 

than in tropical countries (3), thus it is likely that genetic, sociodemographic and 

environmental risk factors are key contributors to the disease aetiology. Unlike with 

other cancers, only a small number of genetic features are known to predispose to 

PDAC, where familial clustering identifies only 10% of patients as having a first-degree 

relative also afflicted (6). The genetic features associated with familial PDAC include 

germline mutations in CDKN2A (7,8), STK11 (9,10), PRSS1 (11,12), BRCA1 (13,14), 

BRCA2 (15-17) and CFTR (18-21). The penetrance of these mutations is often low and, 

as suggested by Hezel et al., might be a feature of the complex disease aetiology and 

development, with a more influential role in the progression of precursor lesions, rather 

than disease initiation (22). Also supporting a potential underlying genetic component 

to PDAC development are the increased incidence rates in several different races (e.g. 

Ashkenazi Jews, Maoris, and Cajuns) (5). 

In addition to this genetic component, several environmental factors associate with 

PDAC incidence, with smoking as the most prominent (5). As with many cancers, data 

for numerous other environmental and lifestyle factors exist, however these are often 

contradictory. Those reported to confer an increased risk of PDAC include diets high in 

meat and fat, low in folate, and high in sugar, with diabetes, obesity and chronic 

pancreatitis therefore strongly associated with the disease (5,22-25). Interestingly, 

although many of these lifestyle factors are associated with increased social deprivation, 
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previous studies have not found the disease more prevalent within lower socioeconomic 

groups (3). 

1.1.2 Disease development  

The pancreas has both endocrine and exocrine functions key for digestion and blood 

glucose homeostasis. The endocrine portion contains numerous cell types that form the 

islets of Langerhans required for hormone secretion, making up 4.5% of the total 

pancreas volume (26). The remainder of the pancreas contains the acinar and ductal 

cells required for the production and transport of digestive enzymes into the intestinal 

tract. Histologically, PDAC, and its early precursor lesions, resemble these ductal cells 

and therefore the disease is thought to arise within this region (27). 

The three neoplastic precursor lesions proposed to be involved in the development of 

PDAC include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary 

mucinous neoplasia (IPMN), and mucinous cystic neoplasia (MCN). Of these, PanINs 

are the most common and, although highly prevalent in PDAC and pancreatitis, can 

sometimes be found in otherwise unaffected pancreata (28). PanINs are graded into 

three histological stages where progression from stage I through to III is characterised 

by increased disorganisation of the columnar mucinous epithelium with abnormal 

cellular appearance and mitosis (28-30) (Figure 1.1). 

In early stage PanIN I lesions, cells are columnar with round nuclei located adjacent to 

the basement membrane (30). In the intermediate PanIN II lesions, cell atypia and 

nuclear changes are detected, whilst PanIN III lesions show widespread tissue dysplasia 

with small clusters of epithelial cells being found in the lumen (30). In the final 

transition of PanIN III into PDAC, cells begin to invade through the basement 

membrane (30). Alongside histological evidence, this progression model is supported at 

the genetic level, where an accumulation of genetic alterations associates with increased 

PanIN stage (31-37)). 
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1.1.3 Mutational landscape of PDAC  

Next-generation sequencing approaches have accelerated our understanding of the 

recurring mutations present in PDAC (40-45). There appears to be a founder population 

of cells that have accumulated activating mutations in KRAS (present in > 90% of 

patients) (40,43), alongside frequent loss-of-function (LOF) mutations in TP53 (50-

75%) (43,46-49), and SMAD4 (~55%) (49,50). 

As a proto-oncogene, KRAS encodes a GTP(guanosine triphosphate)ase that is 

constitutively activated by point mutations that cause amino acid substitution. These 

predominantly involve changing the glycine residue from codon 12 (G12) into an 

aspartic acid (D), or a valine (V) residue. These nonsynonymous mutations cause 

GTPase-activating proteins to no longer bind KRAS and hydrolyse GTP into guanosine 

diphosphate (GDP) (51). This increased GTP causes continuous KRAS activation and 

persistent downstream signalling (51). 

The next most commonly mutated gene in PDAC is TP53. Unlike KRAS, where one 

amino acid residue is predominantly substituted, several TP53 residues are commonly 

altered in PDAC (data from the IARC TP53 Database [http://www-p53.iarc.fr/] (52)), 

where the most frequent are the arginine (R) residues from codons 175, 248 and 273. 

Each of these are located in the DNA-binding domain of p53 where, as a transcription 

factor, these nonsynonymous mutations alter its ability to regulate gene expression (53). 

wild-type (WT) p53 target genes are implicated in cell-cycle arrest, senescence, 

apoptosis and DNA repair pathways, thus it commonly acts as a tumour suppressor 

(53). Alongside a LOF, these mutations can also cause a gain-of-function (GOF), 

whereby mutant p53 can increase oncogenic gene expression (54). One GOF 

mechanism proposed, and of particular relevance to this thesis, is that mutant p53 

increases the expression of epigenetic enzymes involved in gene activation, such as the 

histone lysine methyltransferases KMT2A and KMT2D (55). 

In addition to these frequently mutated genes, sequencing studies have also highlighted 

great genetic heterogeneity in the disease, with a long list of less commonly mutated 

genes (> 5% of cases) found in PDAC (40-45). Therein, a remarkable number of 

recurring copy number changes and mutations are found in genes that encode 

components of the epigenetic machinery, thus some form of addiction to epigenetic 

dysregulation may be a feature of these tumours. Among these genes are those that 

encode the histone lysine methyltransferases KMT2C (mixed-lineage leukaemia 3 
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(MLL3)) and KMT2D (MLL2) (42,44,45), where mutations have been reported in up to 

16.7% and 6% of PDAC cases, respectively (40-45) (Table 1.1). 

In the disease progression model proposed by Hruban et al. (29,30), PanINs progress 

into PDAC via a series of lesions associated with an accumulation of mutations (33,37), 

telomere shortening (38) and increased chromosomal instability (39) (Figure 1.1). KRAS 

mutation occurs early on in the initial stages, where sequencing identified a codon 12 

mutation in 92% of microdissected PanIN I lesions (56)). In the intermediate PanIN II 

lesions, CDKN2A inactivation mutations begin to arise and can be found in 20% of 

PanIN II, and 36% of PanIN III, lesions (56). In the later PanIN stages, other 

inactivating mutations in genes such as SMAD4, TP53 and BRCA2 then begin to arise 

(37,49,57). 

Despite this greater understanding of the mutational and genetic landscape in disease 

development, there has yet to be an influx of new therapies offering increased clinical 

benefit. Thus, we need to understand the underlying biology and contribution of these 

mutations in an effort to develop new therapies with novel mechanisms of action to 

improve treatment and outcome. 
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Study Ref. Total n = 
KMT2C KMT2D 

n = % n = % 
Bailey et al. 2016 (40) 249a 18 7.2 14 5.6 

Sausen et al. 2015 (41) 101 7 6.9 5 5.0 

Waddell et al. 2015 (42) 100 8 8.0 6 6.0 

Witkiewicz et al. 2015b (43) 109 7 6.4 3 2.75 

Biankin et al. 2012 (44) 99 6 6.1 0 0.0 

Jones et al. 2008 (45) 24 4 16.7 0 0.0 

Table 1.1 – Percentage of PDAC patients with nonsynonomous mutations in KMT2C and 
KMT2D reported by various next-generation sequencing studies. Displayed are data for 
nonsynonomous mutations taken from the supplemental data tables provided by six studies. a This 
study initially also contained data from Waddell et al. (42) but has been excluded and is shown 
independently, b Data was obtained from microdissected tumours to enrich for tumour cellularity 
(43). 
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1.1.4 Preclinical models of PDAC 

PDAC tumours have a characteristically complex microenvironment due to a dense 

stromal desmoplasia comprised of extracellular matrix proteins, fibroblasts and immune 

cells (reviewed in (58) and (59)). To successfully function as a good preclinical model 

of PDAC, an in vivo system must recapitulate this complex tumour biology. Over recent 

years there has been a shift from simple cell line based syngeneic and xenograft ectopic 

mouse models towards more complex orthotopic and patient derived tumour xenograft 

(PDX) models. These PDX preclinical models are particularly useful because the 

patient tumour explant also includes patient stroma, thereby more faithfully reflecting 

primary tumour biology (60). Perhaps because of this retained donor stroma, these 

complex preclinical models have been effective in predicting clinical response for 

PDAC (61-63). 

PDX models do however have their limitations that prevent their more widespread use 

(reviewed in (64) and (65)). Briefly, these models rely upon a highly skilled workforce, 

are costly to run, lengthy in duration, and often limited by supply of clinical tumour 

samples. As PDX models require a cross-species xenograft, an immunodeficient murine 

host is also used so that the graft is not rejected. For this reason, although donor stroma 

and tumour is included, these models lack a complete microenvironment with innate 

immune system, thereby preventing the study of immunotherapeutics, and the roles of 

the immune system in disease development, invasion and metastasis. Finally, studies 

also show that the human tumour stroma transplanted will overtime be replaced by 

murine host stroma (66,67). For these reasons, PDX models often unfaithfully 

recapitulate the complex features of disease progression, invasion and metastasis. Since 

these processes are important features of PDAC, efforts have been invested into 

developing genetically engineered mouse models (GEMMs) that incorporate them. 

1.1.4.1 Genetically engineered mouse models of PDAC 

Over the years several PDAC GEMMs have been developed, each with their own 

specific biological characteristics. Using prior mutational knowledge of KRASG12D in 

PDAC development, the first significant pancreatic GEMM was developed by 

Hingorani et al. (68). In this model the Cre-Lox recombination system is employed to 

initiate KrasG12D expression in early pancreatic progenitor cells during embryogenesis 

(Figure 1.2). To achieve this, a genetic “STOP” sequence flanked by two LoxP sites is 

inserted directly before mutant KrasG12D and thereby preventing its transcription. This 

LoxP-STOP-LoxP (LSL) region generates a mouse functionally heterozygous for WT 
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Kras (Kras+/-), with a non-functional allele harbouring Lox-STOP-Lox-KrasG12D (LSL-

KrasG12D). By incorporating a transgene with the bacteriophage Cre recombinase under 

the control of the pancreatic-specific promoter Pdx-1, recombination of this LSL site is 

restricted to the pancreas, and elicits tissue specific expression of KrasG12D (Figure 1.2). 

These LSL-KrasG12D/+; Pdx-1-Cre (KC) mice develop all three grades of PanINs, akin to 

those found in humans (68). Alongside these lesions, Hingorani et al. also showed that 

mice could develop PDAC, with this mouse showing both local invasion and metastasis 

after a long latency period (6.25 months) (68). Following this KC model, several other 

groups developed models that incorporate other mutations found in human PDAC 

(including Cdkn2a, Trp53, Smad4, and Stk11, reviewed in (69-71)). Whilst many 

develop PDAC with metastasis, the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre 

(KPC) is the most commonly used model (72). In the KPC model, an additional LSL 

region is inserted before Trp53R172H, to create a mouse functionally heterozygous for 

both Kras and Tp53 (Kras-/+;Trp53-/+). Crossing these LSL-KrasG12D/+; LSL-

Trp53R172H/+ (KP) mice with Pdx-1-Cre mice creates KPC offspring with pancreatic-

specific expression of KrasG12D and Trp53R172H (72) (Figure 1.2). These KPC mice also 

develop PanINs, however now all mice develop PDAC with a median survival of five 

months (72). 

Alongside these models, KC mice have been combined with the Sleeping Beauty 

transposon system (73). Instead of designing GEMMs that specifically study the 

cooperation of designated mutations with KrasG12D to drive PDAC, this system uses 

mobile genetic elements to randomly integrate and interfere with genes throughout the 

genome. By determining the regions of transposon insertion in the subsequent tumours 

through sequencing, two groups identified candidate genes that promote progression of 

PanIN into PDAC (74,75). Interestingly, these screens highlighted significant roles for 

chromatin binding and chromatin modification pathways in PDAC tumourigenesis 

(74,75). 

The main limitations of these GEMMs are that each arises via a disease aetiology that is 

unrepresentative of human PDAC. As previously discussed, PDAC occurs 

predominantly in aged humans through a series of many genetic events in ductal cells. It 

is worth keeping in mind that Pdx-1 is expressed early in embryogenesis during 

pancreatic development (E8.5 onwards) (76), therefore mutant KrasG12D is expressed in 

both exocrine and endocrine cell types (68). These features raise several issues over 

their effectiveness in modelling the human disease. Firstly, KRAS mutations are not 
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acquired during human embryogenesis, and instead are a later in life event in PanINs 

(77). Next, the human disease originates from ductal or acinar cells (27) that acquire a 

heterogeneous range of mutations (41,42,44,45), and therefore it is unrepresentative to 

only induce two mutations in all pancreatic cells. 

Since the KC and KPC models were first generated, techniques in molecular biology 

have advanced, whereby some limitations could be addressed in a new generation of 

complex PDAC GEMMs. For example, Guerra et al. have developed inducible GEMMs 

that use a Tet-Off Cre-LoxP system, under the Elastase promoter, to induce acinar cell-

specific expression of KrasG12V, both alone (78) and in combination with loss of Cdkn2a 

or Trp53 (79). New GEMMs may begin to combine further novel cell specific 

promoters, with inducible control mechanisms, and multiple DNA recombinases. 
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Figure 1.2 – The tissue-specific Cre-Lox recombinase system used in the genetically engineered 
KC and KPC mouse models of PDAC. The schematic diagram depicts how tissue-specific Cre 
expression can initiate pancreas-sepcific expression of KrasG12D alone, or in combination with 
TrpR172H. In this way to generate the KC (68) and KPC (72) models, mice genetically engineered to 
express Cre under the Pdx-1 pancreatic progenitor cell promoter were crossed with mice genetically 
engineered to be heterozygous for the mutated genes transcriptionally repressed by a LoxP flanked 
STOP cassette. 
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1.1.5 Current treatments, resistance, and future therapies 

At diagnosis, PDAC patients typically present with advanced disease characterised by 

local tissue invasion and metastases. These features severely limit the opportunities for 

surgical resection but, despite common postoperative complications, it remains the 

current best option available (80). As a further treatment hurdle, the disease is often 

highly refractive to chemotherapy and thus the disease has an extremely poor prognosis 

(5-year survival of 8% (81), and median survival of 7 months). 

To date, current chemotherapies used in the adjuvant and neoadjuvant settings include 

gemcitabine, FOLFIRINOX (combined folinic acid, 5-fluorouracil (5-FU), irinotecan 

and oxaliplatin) and abraxane (nanoparticle, albumin-bound paclitaxel), whilst newer 

stromal- and tumour-targeted therapies have been proposed (reviewed in (82)). Despite 

these efforts resistance still arises frequently and rapidly causing patients to succumb to 

the disease. This rapid resistance likely involves both innate and acquired mechanisms 

that involve the complex microenvironment, heterogeneous somatic mutations, and the 

post-translational regulation of gene expression. 

PDAC tumours have a characteristically large and dense stromal compartment 

consisting of pancreatic stellate cells, fibroblasts, immune cells, and an abundance of 

extracellular matrix proteins that surrounds the cancer cells. This extensive tissue 

desmoplasia is often described as a ‘fortress’, whereby it actively provides a tumour 

supportive niche to promote immune system evasion, and shield the cancer cells from 

chemotherapy (83). As another hallmark, PDAC tumours develop with poor 

vascularisation, creating a hypoxic environment (83) that both prevents effective 

delivery of chemotherapy into the tumour, and promotes tumour aggression (84) and 

resistance (85). Together this stromal architecture limits the effectiveness of current 

chemotherapeutics, therefore there is much interest in stromal-targeted therapies to 

break down the fortress, ‘re-educate’ the immune system, and stabilise tumour 

vasculature. 

Although the role of the stromal compartment is undoubtedly important, resistance also 

arises through changes within the cancer cell. For example, a cell that once responded to 

chemotherapy may undergo genetic and epigenetic changes to alter its sensitivity to 

these chemotherapeutics. This thesis is therefore focused on the understudied 

component of epigenetics within PDAC, to help identify new therapies with novel 

mechanisms of action. 
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1.2 Epigenetics 
Historically the term ‘epigenetics’ has held several subtly different definitions. It has 

evolved from the original broad definition of ‘non-genetic heritable changes in 

phenotype’ to now describe ‘the regulatory mechanisms that govern the expression of 

genetic information’ (86). These mechanisms often control temporal and spatial 

expression of genes via reversible post-translational modifications, without altering 

DNA sequence (87). Although other epigenetic mechanisms exist, two of the most 

commonly described are the post-translational modifications on DNA at CpG 

(Cytosine-phosphate-Guanine) sites, and those on the histone tails that impact on DNA 

packaging (88). Broadly speaking, these mechanisms work by altering the interactions 

between DNA and various proteins to affect chromatin reorganisation and gene 

expression. 

1.2.1 The structure of chromatin  

In eukaryotic cells, DNA is packaged in nucleosomes through twice being wound 

around octamers containing pairs of the histones H2A, H2B, H3 and H4 (89) (Figure 

1.3). Both the linker histones (H1) and small segments of linker DNA structurally 

separate these nucleosomes. In regions of inactive gene transcription nucleosomes are 

further tightly packaged into heterochromatin, whilst near regions of active gene 

transcription, the appearance is more akin to “beads-on-a-string” that is associated with 

loosely packaged euchromatin (Figure 1.3). Both forms of chromatin are further coiled 

into chromatin fibres, which again are further coiled and packaged into chromosomes. 

Each histone within the nucleosome octamer has an N-terminal amino acid tail that 

protrudes out and may be post-translationally modified (90) (Figure 1.3). These 

modifications alter their interaction with DNA, and thereby facilitate the conversion of 

chromatin between the two states. Tightly packed heterochromatin renders the DNA 

inaccessible to transcription machinery, whereas the opposite is true for loosely 

packaged euchromatin. In this manner, histone modifications act to exert control over 

the transcription of regions of the genome. 
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Figure 1.3 – Structure and organisation of DNA packaging from chromatin to the nucleosome 
and changes associated with transcriptionally active and inactive states. A schematic diagram 
for different levels of DNA organisation in mammalian cells from the nucleosome to the 
chromosome (bottom to top), and for the changes associated with transcriptional activation (bottom, 
left to right). Chromosomes are made up of condensed 30nm chromatin fibres that, in turn, are 
comprised of coiled sections of tightly packaged nucleosomes and DNA known as heterochromatin. 
When this region becomes transcriptionally active, for example through reversible H3K4 
methylation, heterochromatin is converted into loosely packaged euchromatin. 
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1.2.2  ‘Readers’ ‘Writers’ and ‘Erasers’ 

The proteins involved in the epigenetic control mechanisms can be broadly classed as 

‘writers’, ‘erasers’ and ‘readers’ (91). The enzymatic ‘writers’ and ‘erasers’ contain 

domains to catalyse the addition, or removal, of covalent post-translational 

modifications, while ‘readers’ contain binding domains to recognise the modifications. 

This enables further protein recruitment, forming scaffolds and complexes that facilitate 

a diverse range of biological functions such as gene transcription, DNA repair, and even 

further epigenetic modification. 

In truth this broad classification is overly simplistic, where ‘writers’ and ‘erasers’ often 

also have binding domains for specific epigenetic marks. For example, members of the 

KMT2 family (see Section 1.3) contain a catalytic Su(var)3-9, E(z) (enhancer of zeste) 

and trithorax (SET) domain, and plant homeodomain (PHD) zinc fingers that recognise 

methylated H3 (92). Moreover, the epigenetic machinery often involves large protein 

complexes with many components considered to be ‘writers’, ‘erasers’, and ‘readers’. 

For example, the methyltransferases KMT2C and KMT2D form complexes that also 

contain the demethylase KDM6A (UTX) (93). This is perhaps unsurprising considering 

both the relatively large size of the nucleosome substrate, and that epigenetic modifiers 

work in tandem to alter the balance of modifications. 

1.2.3 Histone modification 

Epigenetic modifications of the DNA itself include methylation and 

hydroxymethylation, whereas a much wider range of post-translational marks exist for 

histone modification. Thus far histones have been described to be enzymatically 

modified by methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, 

ADP-ribosylation, and arginine deamination (reviewed in (90)). Depending of the 

chemistry for each modification, certain ones will only occur on specific amino acid 

residues with, for example, methylation only found on lysine and arginine residues (90). 

Epigenetic modifiers are further limited in their specificity, whereby they target select 

residues (94). Following the discovery of the first epigenetically active enzyme in 

humans (95), a large number have since been identified across a broad range of 

families, many of which are likely to have unique role in influencing gene expression 

and biological processes (reviewed in (96) and (97)). 

Together this range of histone modifications cooperates as part of a complex ‘histone 

code’, which allows cells to regulate chromatin structure and orchestrate gene 

expression programs (90). Although dissecting the information contained within this 
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complex ‘histone code’ is highly challenging, recent methods that combine chromatin 

immunoprecipitation (ChIP) with DNA sequencing (ChIP-seq) have helped greatly. 

ChIP-seq is widely used to identify DNA binding sites for transcription factors and 

epigenetic enzymes (e.g. (55)), and elucidate genome wide patterns of histone 

modification (e.g. (98)) (Figure 1.4). In this way, associations have been made between 

epigenetic marks and gene regions, such as promoters and enhancers, and provided 

insights into the functional roles of individual histone modifications. 

1.2.3.1 Histone methylation 

Epigenetic enzymes differentially methylate a large number of the lysine residues found 

within histone tails, where the majority of the methylation events known occur upon 

histone H3. Commonly methylated residues include K4, K9, K26, K27 and K36 

amongst others, where all can be un-, mono-, di- and tri-methylated (99). As part of the 

‘histone code’ this methylation of individual residues, to different levels, are associated 

with a range of functions (100). 

Lysine methylation is mediated by lysine-specific methyltransferases (KMTs) and 

requires the co-factor S-adenosyl-L-methionine (SAM) (101,102). These KMTs can be 

divided into two groups based on the presence, or absence, of a SET domain, however 

to date only KMT4 (DOT1L) falls into the latter (96). Across the many SET domain-

containing KMTs, there is a large variance in substrate residue specificity (97), which 

can also depend on methylation status (96), and can be mediated by various structural 

features and interacting partners (96). 

Until the discovery of the first lysine demethylase (KDM), KDM1A (LSD1) by Shi et 

al. (103,104), it was thought that methylated lysine residues were irreversible events 

that act like scars on the genome. Since then a large number of KDMs have been 

described that harbour a similar range in substrate specificity as the KMTs (97). 

Removal of these methyl groups by KDMs occurs through two mechanisms, with 

KDMs grouped accordingly (96). Briefly, these mechanisms either involve a flavin 

adenine dinucleotide (FAD)-dependent amine oxidase domain (e.g. KDM1A), or a 

Jumonji C (JmjC) domain, which requires α-ketoglutarate, molecular oxygen, and 

Fe(II) as cofactors (e.g. KDM2A) (96). 

1.2.3.1.1 H3K4 methylation 

Methylation of H3K4 is associated with transcriptionally poised and active genes 

(98,105,106). Studies by Barski et al. and Mikkelsen et al. in the late 2000s used ChIP-
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seq to identify the genome-wide profile of H3K4 methylation in both humans (98) and 

mice (105). Barski et al. showed all three H3K4 methylation states as being enriched at 

transcription start sites (TSSs), and as positively correlating with both RNA polymerase 

II binding and gene expression (98) (Figure 1.4). In line with this, Mikkelsen et al., and 

another study by Guenther et al. using ChIP-chip in human embryonic stem cells, 

showed that H3K4me3 is commonly associated with promoters (105,106). Promoters 

marked by H3K4me3 are described as poised while marked with repressive H3K27me3, 

and active when H3K27ac is present (107,108) (Figure 1.4). 

The amount and level of H3K4 methylation at promoters has been shown to increase 

with proximity to the TSSs (98,109) (Figure 1.4). While H3K4me3 is thought to recruit 

epigenetic ‘readers’ with PHD fingers (92), it is unclear as to whether this methylation 

gradient is transitional feature, or indeed has functions of its own. One role proposed is 

that this gradient is required for cell specific transcription factor recruitment, where 

H3K4me2 is identified at 90% of transcription factor binding regions (110) with 

differences depending on the cell type (111). 

Alongside its presence at promoters, H3K4 methylation has been identified at other 

genomic regions. The study by Barski et al., and another by Heintzman et al. using 

ChIP-chip in HeLa cells (109), also showed that H3K4me1 associates with enhancers 

(98), which again can be marked as poised or active by H3K27me3 and H3K27ac 

respectively (107,108) (Figure 1.4). Studies on H3K4me3 levels at enhancers are 

however somewhat contradictory, with both weak (108,109) and that similar to 

H3K4me1 (98) having been shown. Perhaps associated with these discrepancies, 

another group has since shown that the H3K4me3 mark might be indicative of enhancer 

activation (112). 

Besides marking enhancers, H3K4me1 is also present at insulators, where it may recruit 

proteins that indicate boundaries between differentially expressed genes (98,113). In 

addition, H3K4me1 can also define a group of promoters, without H3K4me3, that are 

transcriptionally repressed (113) (Figure 1.4). Therefore despite H3K4 methylation 

being traditionally associated with active gene transcription, other complex roles for 

each mark are likely to exist. To this end, rather than studying the marks themselves, it 

may be more useful to examine the biological functions of the epigenetic enzymes that 

maintain these marks.  
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Figure 1.4 – Profiles of chromatin marks found to associate with specific regions of 
transcriptionally active, poised and inactive genes. A schematic depiction of the associations 
between selected epigenetic marks and specific regions in active, poised and inactive genes. 
H3K27me3 is enriched at enhancer and promoter regions of inactive and poised genes to prevent 
active transcription, indicated by enriched RNA polymerase II (RNA Pol II) binding, until replaced 
by H3K27ac. While mainly associated with active and poised enhancers, H3K4me1 can also be 
found at inactive promoters, and on the periphery of active and poised promoters. These inactive 
promoters exhibit the full range of H3K4 methylation statuses, where the density of H3K4me3 is 
greatest proximal to the transcription start site (TSS). 
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1.3 The KMT2 family of lysine methyltransferases 

1.3.1 Members of the KMT2 family 

Methyltransferases and demethylases are required to actively balance H3K4 

methylation. In yeast only one H3K4 targeted SET domain containing protein is known 

(Set1), whereas four have been described in Drosophila melanogaster (dSet1, Trx 

(Trithorax), Trr (Trithorax-related), Ash1 (Absent, small or homeotic disc 1)) (114), and 

eight in humans (Figure 1.5). This structurally related group of proteins is called the 

KMT2 family and consists of KMT2A (MLL1/ALL1), KMT2B (MLL2/MLL4), 

KMT2C (MLL3/HALR), KMT2D (MLL2/ALR/MLL4), KMT2E (MLL5), KMT2F 

(SET1A), KMT2G (SET1B) and KMT2H (ASH1L) (97,115). In humans, the relative 

expression levels for each member has been shown to differ between tissue types (116). 

 

 

Figure 1.5 – The domain architecture for the KMT2 family of proteins in mammals. A 
schematic representation of the various domains found in each member of the KMT2 family of 
lysine specific methyltransferases using data from Simple Modular Architecture Research Tool 
(SMART) (117), inspired by figures in Zhang et al. (118), Rao and Dou (119) and (120). In all but 
two family members (KMT2E/H) the enzymatic SET domain is located at the C terminus. For 
KMT2F/G this domain is in close proximity to an N-SET domain and alongside the RNA 
recognition motif (RRM) is essential for complex formation (121) to promote trimethylation (122). 
Alongside the SET domain, a PHD finger and two phenylalanine/tyrosine-rich (FYR) regions 
(FYRC and FYRN) are found towards the C terminus of KMT2A-D, where these are juxtaposed in 
KMT2C/D. Multiple PHD fingers are also found at the N termini of KMT2A-D, where together they 
facilitate localisation to methylated histones (92). Unlike the other family members, KMT2C/D 
contain an HMG-box domain to bind DNA (123). The N termini of KMT2A/B differ from 
KMT2C/D and instead include multiple AT hooks and a CXXC zinc finger (ZF-CxxC) for DNA 
binding, and a bromodomain (BRD) to recognise acetylated lysine residues (124). Although its 
architecture is more distinct, KMT2H also contains many of these domains alongside bromo-
adjacent homology (BAH) and associated with SET (AWS) domains. 
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1.3.2 A note on the literature: MLL2 and MLL4 nomenclature inconsistencies 

The literature surrounding the KMT2 family of methyltransferases is somewhat 

convoluted (reviewed in (115)). Over the years the gene located at 12q13.12 with the 

human accession number NM_003482, has had many aliases. In 1998 the Human 

Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) initially 

approved MLL2 for this gene (115). The following year however, this was confounded 

when FitzGerald and Diaz referred to another gene at 19q13.12, accession number 

NM_014727, as MLL2 (125), before being further propagated by Huntsman et al. (126). 

As a result, there is often uncertainty towards which gene is being addressed when gene 

loci, accession numbers, and specific knowledge of the complexes are not reported. 

In addition to MLL2 being used for both genes (e.g. (116,127-129)), both have also been 

inconsistently referred to as MLL4 (e.g. (116,130,131)). In this way, the murine 

orthologue of the human gene on chromosome 12, located on the murine chromosome 

15, is often referred to as Mll4 (e.g. (130,132,133)), despite the Mouse Genomic 

Nomenclature Committee (MGNC) approving the designation Mll2 (115). To add 

further confusion, the murine orthologue of the human gene on chromosome 19, located 

on murine chromosome 7, was initially designated Wbp7 (115), but it too has been 

referred to as both Mll2 (e.g. (132,134,135)) and Mll4 (e.g. (129)). For these reasons a 

great deal of care and attention is required when both interpreting and drawing 

conclusions from many of the studies using the MLL2 and MLL4 nomenclature, 

especially where gene IDs or chromosomal locations are not stated (e.g. (136)). 

In light of the ambiguity that these inconsistencies introduced to the literature, other 

nomenclature systems have been used to provide some clarity. Originally, a little 

success was found by referring to the human gene on chromosome 12 as ALL-1 related 

gene (ALR) (137,138), however this was not widely used in the literature. The more 

recent nomenclature system proposed by Allis et al. included not just the KMT2 family, 

but other epigenetic enzymes that have had similar issues with naming conventions 

(97), and has since been propagated by Bogershausen et al. (115). This nomenclature 

system is gaining acceptance for many of these genes by both the HGNC and MGNC, 

however only time will tell if it helps to remove the ambiguity. Despite this however, 

some studies, and a review, have already begun to use this nomenclature inappropriately 

(e.g. (139-141)).  
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Table 1.2 – Nomenclature and gene identification details for the KMT2 family members. 
Displayed are both the old and new nomenclature (as proposed by (97)) used for the 
methyltransferases in human and mouse, relative to their homologues in Drosophila melanogaster 
(Dm). For each gene, designated IDs are given for the Human Genome Organisation Gene 
Nomenclature Committee (HGNC) and the Mouse Genome Informatics (MGI). cM = centimorgan, 
* = Alias not yet approved. 

  

Dm 

Old 
nomenclature 

New 
nomenclature Human Mouse 

Human Mouse Human Mouse HGNC 
ID Location MGI ID Location 

Trx 
MLL Mll1 KMT2A Kmt2a 7123 Chr11q23.3 96995 Chr9 

24.84 cM 

MLL4 Wbp7 KMT2B Kmt2b 158040 Chr19q13.12 109565 Chr7 
18.63 cM 

Trr 
MLL3 Mll3 KMT2C Kmt2c 13726 Chr7q36.1 2444959 Chr5 

12.35 cM 

MLL2 Mll2 KMT2D Kmt2d 7133 Chr12q13.12 2682319 Chr15 
54.8 cM 

- MLL5 Mll5 KMT2E Kmt2e 18541 Chr7q22.1 1924825 Chr5 
10.33 cM 

Set1 
SETD1A Setd1a KMT2F* Kmt2f* 29010 Chr16p11.2 2446244 Chr7 

69.73 cM 

SETD1B Setd1b KMT2G* Kmt2g* 29187 Chr12q24.31 2652820 Chr5  
62.8 cM 

Ash1 ASH1L Ash1l KMT2H* Kmt2h* 19088 Chr1q22 2183158 Chr3 
39.01 cM 
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1.3.3 KMT2 complexes and their roles 

Although the KMT2 family is structurally and functionally related, there are significant 

differences between the members. The most evident difference is that, despite the 

presence of a SET domain (Figure 1.5), KMT2E appears to lack functional 

methyltransferase activity (142), unless the SET domain is glycosylated (143). With the 

exception of KMT2E and KMT2H (142), each of the other KMT2 proteins act as the 

catalytic subunits within multimeric complexes to catalyse the addition of methyl 

groups to H3K4 residues (115,144). In the majority of the KMT2 family members the 

SET domain is located at the C terminus, however in KMT2H this domain is located 

towards the centre (145). This structural difference is likely a factor that causes KMT2H 

to form distinct complexes, where it can methylate H3K9 and H4K20 in addition to 

H3K4 (145). 

Each of these KMT2-containing complexes also exhibits differences in substrate 

specificities. In mammals, three types of KMT2 complexes exist; KMT2A/B, 

KMT2C/D, and KMT2F/G, where each are related to the Drosophila complexes Trx, 

Trr and dSet1, respectively (Error! Reference source not found.). Each of these 

complexes contains a KMT2 paralogue that likely arose from the Drosophila 

orthologues during mammalian evolution (reviewed in (119)). Each KMT2 complex 

also commonly includes the four subunits of WD repeat protein 5 (WDR5), 

retinoblastoma binding protein 5 (RBBP5), absent, small or homeotic disc 2 (ASH2) 

and Dumpy-30 (DPY30) (93,119). In addition to this core complex, other complex 

specific subunits can be found, where the expression of these non-core subunits, and 

therefore the complexes themselves, is greatly heterogeneous (93) and perhaps differs 

between cells. In this way, label-free quantitative mass spectrometry performed by van 

Nuland et al. showed that in HeLa cells, KMT2A/B complexes make up majority of 

KMT2 complexes (up to 50%), while the KMT2F/G and KMT2C/D complexes 

comprise the remaining 32% and 18%, respectively (93). Further to this, it was also 

estimated that within these cells and of the KMT2C/D complexes, KMT2D made up the 

majority (approximately 15% of all complexes, compared to 3%) (93). 

KMT2A and KMT2B complexes contain the unique subunits of Menin and host cell 

factor 1 (HCF1) (146), and act to predominantly catalyse H3K4me1/me2 formation 

(147,148). The KMT2C and KMT2D complexes contain the unique subunits of PTIP, 

PA1, NCOA6 and the lysine demethylase KDM6A (UTX), and mainly act as 

monomethyltransferases (94,113,118,120,149-153). The KMT2F and KMT2G 
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complexes contain the unique subunits of CXXC1, WDR82 and HCF1, and can catalyse 

all three H3K4 methylation states (H3K4me1/me2/me3) (154). 

 

 

Figure 1.6 – Subunit composition of the similar KMT2 complexes and their H3K4 
methyltransferase activity. In mammals the six KMT2 complexes can be sub-grouped into three 
groups (‘Trx-like’ for KMT2A/B, ‘Trr-like’ for KMT2C/D, and ‘dSET1-like’ for KMT2F/G) using 
their subunit composition and their similarity to the drosophila melanogaster complexes. For each 
complex the KMT2 methyltransferase subunit is in red, the four core subunits commonly found in 
all complexes are in yellow, and those in blue are unique subunits for each complex sub-type. Below 
each complex is the H3K4 methylation mark for which they have been shown to be active. 

 

The subunit diversity of these KMT2 complexes is likely to play a role in targeting the 

complexes to different genomic regions. In addition, because each has subtly different 

substrate and catalytic capabilities, they are likely to have differing functions at their 

targeted loci. For example, because H3K4me1 is found predominantly at enhancers 

(98,109), and the KMT2C/D complexes are monomethyltransferases (120,151), it is 

perhaps unsurprising that many studies have shown these complexes to be enriched, and 

enzymatically active, at enhancers marked with H3K4me1 (120,149-152). As the 

KMT2 family members and their complex subunits are heterogeneously expressed 

across tissue types (116), it is highly likely that the roles of these complexes in 

regulating transcription are context dependent. 

Besides their roles in histone posttranslational modification, it is worth noting that 

methyltransferases have been reported to have roles in signal transduction through the 

methylation of non-histone proteins (155,156). Unlike with protein phosphorylation, 

research into the area of non-histone protein methylation is comparatively understudied 

with much still remaining to be elucidated. Although little evidence exists, the KMT2 
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family of lysine methyltransferases may also act in this way having enzymatic activity 

on proteins besides H3K4. Perhaps supporting this potential is the observation by Zhang 

et al. where the yeast Kmt2 homologue, Set1, can methylate Dam1, which acts as the 

essential member within the DASH complex for chromosome segregation (157).  

1.3.3.1 KMT2 proteins implicated in medical conditions 

In normal cells the epigenetic ‘readers’, ‘writers’ and ‘erasers’ work together to 

maintain a balance of post-translational modifications to enhance or repress gene 

expression and maintain the chromatin structure. Since a large number of target genes 

can become mis-regulated if the epigenetic machinery goes awry, it is unsurprising that 

changes in it have been functionally implicated in number of medical conditions 

(reviewed in (158,159)). In this way, germline mutations in the KMT2 genes have been 

implicated in several neuropsychiatric disorders. 

In 2010, a sequencing study identified germline mutations in KMT2D as being a major 

cause of Kabuki syndrome (128). In this study, and a more recent systematic review of 

12 studies since, these mutations are described as heterozygous LOF that result in 

KMT2D haploinsufficiency (128,160). This syndrome is phenotypically characterised 

by distinct facial characteristics, cardiac, skeletal and immunological defects, and 

intellectual disabilities (128,161), and has been somewhat recapitulated in a mouse 

model with heterozygous loss of the Kmt2d SET domain (162). 

KMT2 family germline mutations have also been reported in other neuropsychiatric 

disorders. Whole-exome sequencing by Jones et al., identified de novo KMT2A 

mutations, with reduced gene expression, in five out of six individuals with 

Weidermann-Steiner syndrome (163). Furthermore, germline KMT2C mutations have 

been identified in both Autism spectrum disorder (164) and Kleefstra spectrum 

syndrome (165), while de novo KMT2F LOF mutations can be found in patients with 

schizophrenia (166,167). 

Although as yet unconfirmed, observations made in a review by Rao and Dou suggest 

that there may be a link between KMT2 germline mutations and cancer (119). The 

authors noted that schizophrenia patients have a significantly higher risk of developing 

colon cancer (168), where their own analysis of the Catalogue of Somatic Mutations in 

Cancer (COSMIC) database (169) showed a link for this cancer and KMT2F mutation 

(119). Alongside this, eight Kabuki syndrome individuals were reported to have 

developed cancer, however whether this is a bona fide link remains unknown (161). For 
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KMT2A and KMT2C germline mutation disorders, associations with cancer incidence 

have not been described (119). Despite this uncertainty linking KMT2 germline 

mutations with cancer, a greater wealth of knowledge exists for their somatic mutation. 
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1.4 The KMT2 family in Cancer  
The KMT2 family of methyltransferases actively catalyse the formation of epigenetic 

marks associated with gene expression and therefore it is perhaps unsurprising that 

several members have been implicated in a range of solid and haematological 

malignancies (reviewed in (119)). Next-generation exome sequencing of 3,281 tumours 

across 12 tumour types from The Cancer Genome Atlas (TCGA) identified KMT2 genes 

as among the most commonly mutated in many cancers (170,171), where these 

mutations are often nonsense and frameshifts that result in protein truncation (119). 

1.4.1 Leukaemia and Lymphoma 

As the previous MLL (mixed-lineage leukaemia) nomenclature suggests, mutations in 

these genes are implicated in haematological malignancies (reviewed in (172)). KMT2A 

is often rearranged by chromosomal translocation, giving rise to oncogenic fusion 

proteins implicated in both childhood and adult acute leukaemias (172). Although over 

70 different translocation fusion partners are known (119), five (AF4, AF6, AF9, AF10 

and ENL) represent approximately 80% of those found in these leukaemias (119,172). 

While the many fusion partners are likely to have different functions (172), KMT2A 

fusion proteins are hypothesised broadly to interact with transcription factors and add 

permissive epigenetic marks for continuous transcription of leukaemic genes (119,172). 

These KMT2A translocations correlate with poor outcome for patients with acute 

lymphoblastic leukaemia (ALL) (173,174), and acute myeloid leukaemia (AML) (174-

176). 

KMT2D-inactivating mutations are commonly described in the non-Hodgkin 

lymphomas (NHLs) (177-180), whereby it has been shown that over 80% of follicular 

lymphomas (FLs) (179,180), and over 30% of diffuse large B-cell lymphomas 

(DLBCLs) (179) harbour KMT2D inactivating mutations. These KMT2D LOF 

mutations are thought to arise as driver mutations during the early events of 

tumourigenesis (180). In support of this, Kantidakis et al. recently used human 

colorectal carcinoma and mouse embryonic fibroblast cell lines to show that loss of 

KMT2D increased genomic instability, especially at regions of increased transcriptional 

stress (152). In line with this role of KMT2D as a tumour suppressor in NHLs, its 

mutation has been shown to increase B-cell proliferation, potentially through reduced 

levels of H3K4 methylation (181). In another concomitant study, this H3K4 

methylation loss was shown at known tumour suppressor genes, and others involved in 

B-cell differentiation, B-cell receptor signalling and activation (182). These studies in 
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NHLs, combined with the observation by Kantidakis et al. that differential methylation 

may contribute to genomic instability (152), provide a potential mechanism for KMT2D 

LOF in driving tumour formation. 

1.4.2 Solid cancers 

KMT2 aberrations have also been reported in a range of solid cancers 

(119,170,171,183). Upon examining the supplemental data for the 11 solid tumours 

described in Kandoth et al., 925 of the 1079 KMT2 mutations are non-silent (170). In 

line with this, COSMIC database analysis performed by Rao and Dou identified that 

these mutations are predominantly heterozygous and result in LOF (119). 

KMT2A mutations have been found in several cancers, including lung adenocarcinoma 

(184), transitional cell bladder cancer (185), endometrial carcinoma (186), and follicular 

thyroid cancer (187). In comparison, mutations in KMT2B, KMT2F and KMT2G appear 

to occur far less frequently in patient tumours (observations made from the COSMIC 

database in reviews by Neff and Armstrong (188), and Rao and Dou (119)). 

Despite its frequency of mutation in cancer, RNAi-mediated depletion of KMT2A 

reduced viability across a range of cell lines, with this effect stronger in malignant than 

non-malignant lines (189). KMT2A depletion negatively impacted on cell-cycle 

progression, where cells accumulated in the G2/M-phase, and induced apoptosis in vitro 

(189). This cell-cycle regulatory role is also supported observations that the KMT2A 

complex positively regulates expression of cyclin-dependent kinase inhibitors (190). 

Furthermore the KMT2A silencing also reduced tumour growth, with a potential role in 

angiogenesis, where endothelial cells in regions of hypoxia had high KMT2A expression 

(189). 

1.4.2.1 KMT2C and KMT2D 

A substantial number of mutations are found in KMT2C and KMT2D (119,188). As 

with KMT2A, these mutations are found in a wide range of solid malignancies including 

PDAC (40,41,44,45,191), among others (183,185,192-196). Thus far very few studies 

have examined these methyltransferases in PDAC, therefore their specific roles and 

mutation frequencies in this disease remain largely unknown and debatable, and 

therefore can only be inferred using observations from other solid tumours. 

Murine studies have suggested that mutations in Kmt2c, and perhaps therefore also 

Kmt2d, may be an important feature in tumour formation and development, whereby 

they act as tumour suppressors (74,75,133). Two groups, using the murine Sleeping 
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Beauty transposon system, identified Kmt2c mutations as cooperating with KrasG12D to 

accelerate the progression of PanIN to PDAC (74,75). Homozygous Kmt2c mutation 

can also combine with heterozygote loss of Trp53 to form ureter epithelial tumours 

(133). Despite KMT2 mutations being mostly heterozygous in human PDAC (119), 

these studies suggest that KMT2C mutations may be implicated in the development of 

this disease, where both KRAS and TP53 mutations are common events (37,56). 

Supporting this role in disease progression, a KMT2D mutation was identified as an 

event in the clonal evolution of one patient’s PDAC (197). Furthermore, given that 

Kantidakis et al. have associated KMT2D loss with genomic instability (152), and 

Waddell et al. showed KMT2D mutations as being primarily found in a locally 

rearranged subtype of PDAC (42), their loss may give rise to other somatic mutations 

that drive cancer progression through increased genomic instability. In this way it is 

perhaps unsurprising that KMT2C and KMT2D aberrations have been found during the 

clonal evolution and progression of many other cancer types (198). 

Alongside their apparent tumour suppressor roles, several studies have shown that these 

methyltransferases are also implicated in regulating cell proliferation across a variety of 

cancer types (55,133,135,136,138,151,181,199-203). From these studies, the roles of 

KMT2C and KMT2D in proliferation may be somewhat cell-type dependent. Loss of 

KMT2D expression and its activity have been shown to exert both negative 

(55,135,138,151,202) and positive (181,200) effects on cell proliferation, where the 

former occurs in solid cancers, and the latter in B cell malignancies. For KMT2C, the 

picture is perhaps clearer, where its activity has been shown to negatively correlate with 

(133,199,201,203), or at least have no effect on (136), the proliferation of cells derived 

from both solid (133,136,203) and haematological malignancies (201). This suppressive 

role of KMT2C in proliferation might indicate why KMT2C mutations have been 

associated with worse prognosis for patients with medulloblastoma (204). 

In addition to their mutation, KMT2 family members are differentially expressed in 

tumours and cancer cell lines compared to normal tissues (116). As KMT2C and 

KMT2D function as enzymes, it is likely that their reduced expression might 

functionally resemble LOF mutation. In this way, as with its mutation (204), reduced 

expression of KMT2C has been associated with poor prognosis in both breast (194) and 

gastric cancers (205). In contrast, the opposite has been found for the expression of 

KMT2D (194,202), and KMT2A (194) in breast cancer and their mutation in PDAC 

(41). 
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1.5 Statement of problem and thesis aims 
Within the treatment of PDAC, there is an unmet need for novel therapeutic approaches. 

For this reason, research into epigenetic proteins that influence many cell processes, 

such as cell proliferation, differentiation, metabolism, and response to therapy (206), 

may be of therapeutic benefit. Despite next-generation sequencing studies identifying 

KMT2C and KMT2D mutations in PDAC, little is known about their functional roles 

and the consequences of their change in disease. The work presented herein aimed to 

address this and understand how KMT2C and KMT2D may be involved in PDAC. In 

this way, this study set out to better understand the roles of these methyltransferases in 

PDAC, and explore whether they present novel opportunities for consideration as 

epigenetic therapies in this disease. To this end, data presented here have also been 

published in Cancer Research (207) (Appendix I ). 

The specific aims of this thesis are: 

x To examine whether KMT2C and KMT2D expression levels, like their LOF 

mutation, can identify PDAC patients with improved prognosis. 

x To investigate the proliferative effects associated with their depletion in vitro, 

with post-hoc cell-cycle analysis performed to further resolve mechanisms. 

x To identify and validate genes differentially expressed in upon the in vitro 

depletion of these methyltransferases in PDAC cells. Further bioinformatic 

analysis will be performed to identify pathways implicated upon depletion. 

x To relate data generated back to the clinical setting by comparing it with the 

patient gene expression profiles associated with KMT2C and KMT2D expression 

levels. 

x To explore whether their expression alters chemotherapy response in vitro, and 

to develop PDAC GEMMs to study their role in vivo. 
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2.1 Materials 

2.1.1 Cell lines and culture media 

Each cell line was routinely checked for mycoplasma contamination on a monthly basis 

using the MycoAlert PLUS kit (Lonza, Cat#: LT07-710). The authenticity of each 

human cell line was previously confirmed either by our colleagues, or ourselves, using 

small tandem repeat profiling conducted by LGC standards and American Type Culture 

Collection (ATCC). 

2.1.1.1 Human cell lines 

Cell line Cell origin Growth medium Reference 
PANC-1 Pancreas tumour DMEM (Sigma-Aldrich, Cat#: D5796), heat 

inactivated HyClone® FBS (10% v/v) 
(Thermo Fisher Scientific, Cat#: 12360273), 
penicillin (100units/ml) and streptomycin 
(100µg/ml) (Sigma Aldrich, Cat#: P4333) 

(208) 
Capan-2 Pancreas tumour (209) 

HPDE Pancreatic ductal 
epithelium (210) 

BxPC-3 Pancreas tumour 
RPMI-1640 (Sigma Aldrich, Cat#: R8758), 
heat inactivated FBS (10% v/v), penicillin 
(100units/ml) and streptomycin (100µg/ml) 

(211) 
SUIT-2 Liver metastasis (212) 
RWP-1 Liver metastasis (213) 

COLO 357 Lymph node 
metastasis (214) 

CFPAC1 Liver metastasis 

IMDM with HEPES (25mM) (Lonza, Cat#: 
BE12-726F), heat inactivated FBS (10% 
v/v), L-glutamine (2mM) (Sigma Aldrich. 
Cat#: G7513), penicillin (100units/ml) and 
streptomycin (100µg/ml) 

(21) 

Table 2.1 – List of human cell lines used. DMEM = Dulbecco’s Modified Eagle’s Medium. FBS = 
Foetal Bovine Serum. RPMI = Roswell Park Memorial Institute. IMDM = Iscove's Modified 
Dulbecco's Medium. PANC-1, Capan-2, BxPC-3, Suit-2, RWP-1 and CFPAC1 cell lines were a kind 
gift from Dr Tatjana Crnogorac-Jurcevic, and the HPDE cell line was a kind gift from Professor 
Yaohe Wang, both Barts Cancer Institute. The COLO 357 cell line was a kind gift from Dr Caroline 
Hill, Francis Crick Institute. 

 

2.1.1.2 Murine cell lines 

Cell line Cell origin Mouse genotype Growth medium 
DT6606 Pancreas tumour LSL-KrasG12D/+;  

Pdx-1-Cre (KC) (68) DMEM, heat inactivated FBS 
(10% v/v), penicillin 
(100units/ml) and streptomycin 
(100µg/ml) 

DT6585 Pancreas tumour 

TB32043 Pancreas tumour 
LSL-KrasG12D/+;  

LSL-Trp53R172H/+;  

Pdx-1-Cre (KPC) (72) 

Table 2.2 – List of murine cell lines used. Each cell line was a kind gift from Prof David Tuveson, 
Cold Spring Harbor Laboratory. 
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For the initial three passages of murine cells generated from the tumours of LSL-

KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre; Kmt2dFlox/+ and LSL-KrasG12D/+; LSL-

Trp53R172H/+; Pdx-1-Cre; Kmt2dFlox/Flox mice (see Section 2.1.7) were cultured using 

‘PDAC media’ prepared and sterilised using a 0.22µm vacuum filtration system 

(Millipore, Cat#: SCGPU05RE) before use (Table 2.3). For passages following these 

initial three DMEM supplemented with FBS (10% v/v), penicillin (100units/ml) and 

streptomycin (100µg/ml) was used. 

 

Concentration Regent name Supplier Cat # 
N/A DMEM/F12 Thermo Fisher Scientific 11320033 
5 mg/ml D-(+)-glucose Sigma-Aldrich G7021 
0.1 mg/ml Trypsin inhibitor I from soybean Sigma-Aldrich T9003 
0.5 % (v/v) Insulin-transferrin-selenium BD Biosciences 354352 
25 µg/ml Bovine pituitary extract Thermo Fisher Scientific 13028014 
20 ng/ml Epidermal growth factor BD Biosciences 354001 
5 nM  3,3',5 Triiodo-L-thyronine Sigma-Aldrich T6397 
1 µM Dexamethasone Sigma-Aldrich D4902 
100 ng/ml Cholera toxin B subunit Sigma-Aldrich C9903 
1.22 mg/ml Nicotinamide Sigma-Aldrich N0636 
5% (v/v) Nu-serum IV culture supplement BD Biosciences 355104 
100units/ml / 
100µg/ml Penicillin/Streptomycin  Sigma Aldrich P4333 

Table 2.3 – Constituents of ‘PDAC media’ used for the initial passages of cell lines generated 
from mice tumours.  

 

2.1.2 Buffers, solutions and reagents 

Tris-Buffered Saline (TBS) (10x) 

1.5M NaCl (Sigma-Aldrich, Cat#: 71380) and 200mM Trizma base (Sigma-Aldrich, 

Cat#: T1503) in deionised H2O; pH = 7.6 

TBS-Tween (1x) 

1:10 dilution of TBS (10x) in deionised H2O with 0.1% v/v Tween20 (Sigma-Aldrich, 

Cat#: P7949) 

Propidium Iodide (PI) Staining Solution 

50µg/ml PI (Sigma, Cat#: P4170) with 100µg/ml RNase A (Qiagen, Cat#: 19101) in 

Ca2+ and Mg2+ free Dulbecco’s Phosphate Buffered Saline (DPBS) (Sigma Aldrich, 

Cat#: D8537) 
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Complete Radioimmunoprecipitation Assay (RIPA) Lysis Buffer 

RIPA buffer (Sigma-Aldrich, Cat#: R0278) supplemented with one tablet of protease 

inhibitor cocktail I (Roche, Cat#: 11836153001) per 10ml, and 1:100 phosphatase 

inhibitor cocktail II (Sigma-Aldrich, Cat#: P5726) 

Isotonic Lysis Buffer 

20mM Trizma base pH = 7.5 (1:50 dilution from 1M stock), 100nM NaCl (1:50 dilution 

from 5M stock), 5mM MgCl2 (1:200 from 1M stock) (Sigma-Aldrich, Cat#: M8266), 

10% (v/v) glycerol (1:7.8 from 87% (v/v) stock) (Sigma-Aldrich, Cat#: 10795711), 

0.2% (v/v) Nonidet™ P 40 substitute (1:100 from 20% (v/v) stock) (Sigma-Aldrich, 

Cat#: 74385), 0.5mM DTT (1:1000 from 1M stock) (Roche, Cat#: 10197777001), 

supplemented with one tablet of protease inhibitor cocktail I per 10ml and 1:100 

phosphatase inhibitor cocktail II in deionised H2O 

High-Salt Lysis Buffer 

50mM Trizma base pH = 7.5 (1:20 dilution from 1M stock), 600nM NaCl (1:8.3 

dilution from 5M stock), 10% (v/v) glycerol (1:7.8 from 87% (v/v) stock), 0.2% (v/v) 

Nonidet™ P 40 substitute (1:100 from 20% (v/v) stock), 0.5mM DTT (1:1000 from 1M 

stock), supplemented with one tablet of protease inhibitor cocktail I per 10ml and 1:100 

phosphatase inhibitor cocktail II in deionised H2O 

Bicinchoninic Acid (BCA) Assay Reagent 

4% (w/v) copper (II) sulphate (Sigma-Aldrich, Cat#: C2284) diluted 1:50 in BCA 

(Sigma-Aldrich, Cat#: B9643) 

Tris-Acetate (TA) Running Buffer (1x) 

25ml NuPAGE® TA SDS running buffer (20x) (Thermo Fisher Scientific, Cat#: 

LA0041) in 475ml of deionised H2O 

3-(N-morpholino)propanesulfonic acid (MOPS) Running Buffer 

25ml NuPAGE® MOPS SDS running buffer (20x) (Thermo Fisher Scientific, Cat#: 

NP0001) in 475ml of deionised H2O 
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Equilibration Buffer 

25ml NuPAGE® transfer buffer (20x) (Thermo Fisher Scientific, Cat#: NP0006), 500µl 

NuPAGE® antioxidant (Thermo Fisher Scientific, Cat#: NP0005), and 50ml methanol 

(Thermo Fisher Scientific, Cat#: 11976961) in 425ml of deionised H2O 

Blocking buffer 

5% (w/v) BSA, or 5% (w/v) non-fat dry milk (Marvel), in 1x TBST 

DNA extraction buffer 

100mM NaCl, 50mM Trizma base, 25mM Ethylenediaminetetraacetic acid (EDTA) and 

1% (w/v) SDS in deionised H2O; pH = 8.0 

50x TAE buffer  

2M Trizma base, 1M acetic acid and 50mM EDTA pH = 8.0 
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2.1.3 Antibodies 

Protein Antibody Company, Cat#, Clone 

KMT2D Rabbit anti-
KMT2D Sigma-Aldrich, HPA035977, polyclonal 

β-Actin Mouse anti-
β-Actin Sigma-Aldrich, A1978, clone: AC-15 

PTPN14 Rabbit anti-
PTPN14 Cell Signalling Technologies, 13808, clone: D5T6Y 

Claudin 1 Rabbit anti-
Claudin1 Abcam, ab180158, clone: EPR9306 

Calumenin Rabbit anti-
Calumenin Abcam, ab137019, clone: EPR9075 

pro-MET & 
c-MET 

Rabbit anti-
MET Thermo Fisher Scientific, 18-2257, clone: CVD13 

NCAPD3 Rabbit anti-
CAP-D3 Bethyl Laboratories Inc., A300-604A, polyclonal 

ABCB1 Rabbit anti-
ABCB1 Abcam, ab170904, clone: EPR10364-57 

H3K4me3 Rabbit anti-
H3K4me3 Cell Signalling Technologies, 9751, clone: C42D8 

H3K4me2 Rabbit anti-
H3K4me2 

Cell Signalling Technologies, 9725,  
clone: C64G9 

H3K4me1 Rabbit anti-
H3K4me1 

Cell Signalling Technologies, 5326,  
clone: D1A9 

H3 Rabbit anti-
H3 

Cell Signalling Technologies, 9715,  
polyclonal 

Rabbit IgG Donkey anti-
rabbit IgG GE Healthcare, NA9340 

Mouse IgG Sheep anti-
mouse IgG GE Healthcare, NXA931 

Table 2.4 – List of antibodies used for western blots. For each protein and targeted antibody the 
species, company, catalogue number (Cat #), and clone are described. 

 

2.1.4 Small interfering RNA (siRNA) oligonucleotides  

Before use, all lyophilised siRNAs were first centrifuged and reconstituted with 

nuclease-free H2O (Thermo Fisher Scientific, Cat#: AM9937) to obtain stocks of 50µM 

(50pmole/µl) siRNA.  
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2.1.5 Genotyping polymerase chain reaction (PCR) primers 

To genotype mice and cell lines primers for PCR amplification of targeted DNA 

fragments were purchased from Sigma-Aldrich. For Cre, two primer pairs were used in 

one reaction with one pair targeted to an endogenous control gene and the other to Cre. 

For Kras, two primer pairs were used in two reactions with one pair targeted to the WT 

gene and the other to LSL-KrasG12D. For Trp53, three primers were used in one reaction 

with a pair targeted to the WT gene and a single forward primer targeted to LSL-

Trp53R172H. For Kmt2d, two primers were used in one reaction, with the pair generating 

different size products for the presence of LoxP sites. Details of the primers can be 

found in Table 2.7. 

 

Target gene 
Primers Agarose gel 

% (w/v) Name Sequence (5’->3’) 

Cre 

Cre F GCGGTCTGGCAGTAAAAACTATC 

3% Cre R GTGAAACAGCATTGCTGTCACTT 
Internal Ctrl F CTAGGCCACAGAATTGAAAGATCT 
Internal Ctrl R GTAGGTGGAAATTCTAGCATCATCC 

Kras Mutant LSL Kras F CCATGGCTTGAGTAAGTCTGC 

3% WT Kras R CGCAGACTGTAGAGCAGCG 

Kras WT WT Kras F GTCGACAAGCTCATGCGGG 
WT Kras R CGCAGACTGTAGAGCAGCG 

Trp53 
WT Trp53 F TTACACATCCAGCCTCTGTGG 

3% WT Trp53 R CTTGGAGACATAGCCACACTG 
LSL Trp53 F AGCTAGCCACCATGGCTTGAGTAAGTCTGCA 

Kmt2d Kmt2d F ACAGCCAGAAGCCGCCTG 1.5% Kmt2d R AGGTTAGCCACTAGCCCTTCC 

Table 2.7 - Primers for Genotyping PCR. For each primer the targeted gene name, primer name, 
sequences, and agarose gel percentage for electrophoresis are included. F – Forward, R – Reverse. 
All primers were purchased from Sigma-Aldrich. 
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2.1.6  RT-qPCR probes 

For duplex quantitative real-time PCRs (qRT-PCR), TaqMan® gene expression assays 

were purchased from Thermo Fisher Sciences. In each experiment the duplex reactions 

contained a FAM™/MGB probe primer for the gene of interest and an 18S ribosomal 

RNA (rRNA) endogenous control VIC®/TAMRA™ probe primer. Details of the probe 

primers, their targets and the product can be found in Table 2.8. 

 

Target 
Gene Assay ID (Cat #) Exons 

targeted 
Amplicon 

length 
Fluorophore-

Quencher 
KMT2C Hs01005521_m1 39-40 58 FAM-MGB 
KMT2D Hs00912416_m1 42-43 65 FAM-MGB 

18S 4310893E N/A 187 VIC-TAMRA 
Kmt2c Mm01156942_m1 39-40 53 FAM-MGB 

Table 2.8 – List of TaqMan® gene expression assay probes used. For each probe the target gene 
name, assay ID (Cat #), fluorophore and quencher are included. Details for the exons and transcripts 
targeted and amplicon length are also included. All probes were obtained from Thermo Fisher 
Sciences. 

 

2.1.7 Mice 

All mice were bred and maintained in a pathogen-free environment at the Biological 

Services Unit, Barts Cancer Institute, Queen Mary University of London. Mice were 

housed according to institutional welfare guidelines under the authority of the UK 

Home Office Project Licence (PPL 70/7411) and the Animals (Scientific Procedures) 

Act 1986. Experimental protocols and procedures were performed under the personal 

licence PIL 30/8960. LSL-KrasG12D/+; LSL-Trp53R172H/+ (KP) and homozygous Pdx-1-

Cre mice strains were both a kind gift from Professor Dave Tuveson (Cold Spring 

Harbor Laboratory, USA). Kmt2dFlox/Flox mice were a kind gift from Professor Francis 

Stewart (Bitechnology Center, Technische Universitat Dresden, Germany). These three 

strains were interbred to generate compound mutant mice on a 129/SvJae/C57Bl/6 

mixed background. 

For survival, mice were maintained for up to 8 months and culled when welfare 

endpoints were met according to the institutional guidelines where all were sacrificed 

due to PDAC disease burden. For each mouse the primary and any metastatic tumours 

were dissected (with 4mm3 portions of tumour taken aside where required to generate 

cell lines) and snap frozen in liquid nitrogen alongside other organ tissue samples. 
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2.1.7.1 Generation of cell lines from murine tumours 

Roughly 4mm3 portions of tissue taken from the tumours of mice were placed in a petri 

dish, washed with 10ml of cold DPBS, and finely diced using a scalpel. Tumour pieces 

were collected into a 15ml tube using 5ml of 1mg/ml collagenase V (Sigma-Aldrich, 

Cat#: C9263) diluted in DMEM/F12 and incubated on a shaker at 37°C for 45min. 

Sample was centrifuged at 214 x ɡ for 5min before supernatant was removed and pellet 

was resuspended in 3ml of 0.05% (v/v) trypsin at 37°C for 5min. To each sample 7ml of 

DMEM supplemented with 10% (v/v) heat inactivated FBS and 96µM CaCl2 was added 

before being washed three times by centrifugation at 214 x ɡ for 5min and the addition 

of 7ml of DMEM/F12. After the final centrifugation at 214 x ɡ for 5min cells and 

remaining tumour homogenate were resuspended in 2ml ‘PDAC media’ (Table 2.3) and 

plated in 60mm rat collagen I BioCoat™ culture dishes (VWR, Cat#: 734-0275). Cells 

were then cultured and maintained in Primaria™ 75cm² rectangular straight neck cell 

culture flasks (BD Biosciences, Cat#: 353810) and ‘PDAC media’ for three passages as 

described in Section 2.2 before being cultured and maintained in DMEM as described in 

Section 2.2. 
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2.2 Cell culture  

2.2.1 Cell line maintenance 

All cell lines were routinely cultured in a humidified incubator at 37°C with 5% (v/v) 

CO2. Cells were normally cultured in 175cm2 tissue culture flasks with 35ml of the 

appropriate growth media used for each cell line described in Table 2.1 and Table 2.1. 

2.2.2 Subculture of cell lines 

All of the human and murine cell lines were adherent in nature and were therefore 

subcultured once they reached 80% confluence. Growth medium was removed from the 

cell monolayer using a vacuum aspirator and the cells were washed twice with DPBS. 

Cells were then detached from the culture flask with 3ml of 0.1% (v/v) Ca2+ and Mg2+ 

free gamma irradiated porcine trypsin with 0.04% (v/v) EDTA (trypsin) (Sigma 

Aldrich, Cat#: 59418C) at 37°C. Once detached, trypsin was neutralised with fresh 

growth medium containing heat inactivated FBS to achieve an appropriate dilution 

(ranged from 1:10 to 1:20 depending on each cell line’s growth rate) before adding to 

1ml to a new flask with fresh medium. 

2.2.3 Storage of cell lines in liquid nitrogen 

For storage, cell line stocks were frozen and stored in liquid nitrogen. For each cell line, 

cells were centrifuged at 180 x ɡ for 5mins and resuspended in 10% (v/v) Dimethyl 

sulfoxide (DMSO) in heat inactivated FBS to get an approximate concentration of 

5x106 cells/ml and 1ml added to cryovials. These cryovials were then placed in a 

freezing container (Mr. Frosty, Nalgene, Sigma-Aldrich) and stored at -80°C overnight 

before being transferred to liquid nitrogen tanks. 

2.2.4 Recovery of cell lines from liquid nitrogen 

To recover frozen cell lines, the cryovials were rapidly defrosted by placing in a water 

bath pre-warmed to 37°C until the icy cell pellet was loose enough within the cryovial 

to be transferred to 30ml of pre-warmed complete culture medium. After the cells were 

totally thawed they were pelleted by centrifugation at 180 x ɡ for 5min. Supernatant 

containing the freezing medium was aspirated before the pellet was resuspended in 

fresh complete growth medium and transferred to a 175cm2 tissue culture flask for 

culture as described in 2.2.1. 
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2.3 RNA interference 
Prior to the day of transfection, each cell line was harvested using trypsin and plated 

overnight in 6-well plates with 2.5ml of appropriate growth medium, free from 

penicillin and streptomycin. Cells were then “forward transfected” by adding 500µl of 

RNA-lipid complexes to each well to give a final volume of 3ml. RNA-lipid 

transfection complexes were formed by combing Silencer® Select siRNAs (Thermo 

Fisher Scientific) with Lipofectamine RNAiMAX (Thermo Fisher Scientific, Cat#: 

13778) in Opti-MEM I medium (Thermo Fisher Scientific, Cat#: 11058-021) for 15min 

at room temperature (RT). Cells were incubated for 48 hours before beginning the 

experiments. In all experiments, protein was harvested and loss of KMT2D or Kmt2d 

was confirmed by western blot, as described in 2.5.1.  

2.3.1 Human cell transfection 

To take into account the differing growth rates of the human cell lines, the cells were 

initially seeded in 6-well plates with 2.5ml of appropriate growth medium, free from 

penicillin and streptomycin, at either 5x104
 cells/well (SUIT-2) and 8x104 cells/well 

(RWP1, CFPAC1, HPDE, BxPC-3, COLO 357, PANC-1 and Capan-2) for growth and 

cell cycle experiments, or 1x105
 cells/well (SUIT-2) and 1.6x105 cells/well for RNA 

sequencing (RNA-seq) and western blot experiments. For the transfection, the final 

RNA-lipid complex concentration of 8.33nM per well was achieved by combining 

25pmol of each siRNA with 5µl Lipofectamine RNAiMAX in 500µl Opti-MEM I 

medium. These RNA-lipid complexes were added to each well containing cells and 

incubated for 48 hours. 

2.3.1.1 Dual siRNA transfection 

PANC-1 cells were seeded at 8x104 cells/well overnight in 2.5ml of appropriate growth 

medium, free from penicillin and streptomycin and transfection performed as described 

in 2.3.1. To form the RNA-lipid transfection complexes used to simultaneously 

transfect cells with two siRNAs, 25pmol of each siRNA was combined with 

Lipofectamine RNAiMAX, in Opti-MEM I medium, for 15min at RT. These RNA-lipid 

complexes were added to each well containing cells and incubated for 48 hours. 

2.3.2 Murine cell transfection 

To transfect the DT6606, DT6585 and TB32043 cell lines, cells were initially seeded at 

4x104
 cells/well in 2.5ml of DMEM, free from penicillin and streptomycin. The final 

RNA-lipid complex concentration of 50nM per well for transfection was achieved by 

combining 150pmol of each siRNA with 5µl Lipofectamine RNAiMAX in 500µl Opti-
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MEM I medium. These RNA-lipid complexes were added to each well containing cells 

and incubated for 48 hours. 

2.4 In vitro assays 

2.4.1 Cell proliferation assay 

Following the 48-hour transfections described in 2.3.1, cells were washed with DPBS 

and 3ml of fresh penicillin and streptomycin free media were added. Cells were then 

cultured for a further 72 hours (120 hours total) before being detached with trypsin and 

counted using a Vi-Cell XR automated cell viability analyser (Beckman Coulter). For 

the dual KMT2C and KMT2D experiment, this cell counting was also performed every 

24 hours. 

2.4.2 Chemotherapeutic concentration-response assay 

Following the 48-hour transfections described in 2.3.2, DT6606, DT6885 and TB32043 

cells were washed with DPBS and detached with trypsin. Cells were then re-plated in 

96-well plates at 1x104 cells/well (DT6585 and TB32043) or 5x103 cells/well 

(DT6606), to take into account their differing growth rates. Following adherence 

overnight, medium in each well was replaced with 100µl DMEM with different 

concentrations of 5-FU (Accord Healthcare) or Gemcitabine (Hospira). After 72 hours 

incubation with the drugs, 10µl WST-1 reagent (Roche, Cat#: 11644807001) was added 

to each well and the optical density (OD) measured at 440nm (reference 630nm) after 

three hours. To generate log-concentration response curves, the percentage of cell 

viability was calculated using the maximal OD as representing 100% viability. 

2.4.3 Flow-cytometric analysis of cell-cycle 

For cell cycle analysis, cells were first seeded in triplicate wells and transfected as 

described in 2.3.1. At each experimental time point, cells were washed with DPBS, 

detached with trypsin and pelleted by centrifugation at 180 x ɡ and 4°C for 5min before 

being permeabilised in 1ml ice-cold 70% (v/v) ethanol (Thermo Fisher Scientific, Cat#: 

10542382). Permeabilised cells were stored at -80°C until all samples in an experiment 

were collected. Permeabilised cells were pelleted by centrifugation at 16000 x ɡ and 

4°C for 5min, washed with ice-cold DPBS and stained with propidium iodide (PI) 

staining solution for 15min at 37°C. The YG610/20 filter on the Fortessa II flow 

cytometer was used to examine PI staining of DNA in 30,000 cells. 
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2.4.3.1 Nocodazole cell-cycle block and release assay 

Cell cycle profiles for the eight cell lines were examined by flow-cytometric analysis as 

described in 2.4.3 at three experimental time points. For each siRNA, the first time 

point was at 48 hours post-transfection. The next time point, performed on cells in 

parallel wells, was following a 16-hour incubation with 400ng/ml nocodazole (Sigma, 

M1404). The final time point, also performed on cells in parallel wells, was at 24 hours 

after the nocodazole containing medium was replaced with fresh complete culture 

medium. 

2.5 Molecular biology 

2.5.1 Western blot 

2.5.1.1 Cell lysis 

2.5.1.1.1 Whole cell 

To prepare whole cell protein lysates, culture medium was aspirated and cells were 

washed twice with ice cold DPBS. To each well, 80µl of complete RIPA cell lysis 

buffer was added for 30min on ice. Lysates were harvested with cell scrapers and 

cellular debris removed by centrifugation at 16000 x ɡ and 4°C for 30min. Samples 

were stored at -20°C.  

2.5.1.1.2 Nuclear fraction 

To prepare nuclear fraction lysates, medium was aspirated and cells were washed twice 

with ice cold DPBS. Cells were then detached from the wells by incubating with 500µl 

of trypsin at 37°C, before being neutralised with 1ml fresh growth medium containing 

10% (v/v) heat inactivated FBS. Cells were pelleted by centrifugation at 180 x ɡ for 

5min, resuspended in 1ml DPBS, and again centrifuged at 180 x ɡ for 5min. DPBS was 

aspirated from the cell pellet and 200µl of isotonic lysis buffer was added. To facilitate 

lysis, samples were incubated for 10min on ice and homogenised ten times with a 

P1000 pipette and tip for three cycles. Efficiency of nuclei extraction was confirmed by 

trypan blue staining. Nuclei were pelleted by centrifugation at 16000 x ɡ for 20min and 

the supernatant containing the cytosolic fraction was retained and stored at -20°C. 

To the extracted nuclei, 80µl of high-salt lysis buffer was added for 30min on ice. 

Samples were sonicated using a Bioruptor® Plus sonication device (Diagenode, Cat#: 

B01020002) on the low power setting for six cycles of 15sec on and 60sec off. Samples 
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were centrifuged at 16000 x ɡ for 5min to remove cellular debris, and the nuclear 

fraction supernatant was stored at -20°C. 

2.5.1.2 Protein quantification 

Protein quantification was determined by BCA assay. In a 96-well plate, 200µl of BCA 

reagent was added to 10µl of samples, or bovine serum albumin (BSA) (Sigma-Aldrich, 

Cat#: A4503) standards, diluted in DPBS. Plates were incubated at 37°C for 30min and 

the OD measured at 595nm. Sample protein concentrations were calculated by 

interpolation from the standard curve generated. 

2.5.1.3 Sample preparation, gel electrophoresis and protein transfer 

Samples were prepared for loading by adding 5µl NuPAGE LDS sample buffer (4x) 

(Thermo Fisher Scientific, Cat#: NP0008), 2µl NuPAGE sample reducing agent (10x) 

(Thermo Fisher Scientific, Cat#: NP0009), and 13µl protein sample diluted in DPBS to 

achieve equal amounts of protein. In general, a minimum of 20µg of whole cell lysates, 

and 10µg of nuclear lysates, were prepared. Prepared samples were then heated at 70°C 

for 10min before loading on the gel.  

Gel electrophoresis was performed using an XCell SureLock mini-cell (Thermo Fisher 

Scientific, Cat#: EI0001) system. Depending on the protein under investigation, and 

thus the gel used, either TA (for NuPAGE® Novex® 3-8% TA gels (Thermo Fisher 

Scientific, Cat#: EA03785BOX)), or MOPS (for NuPAGE® Novex® 4-12% Bis-Tris 

gels (Thermo Fisher Scientific, Cat#: NP0336BOX)) running buffers were prepared. 

For the cell’s inner chamber, 500µl NuPAGE® antioxidant (Thermo Fisher Scientific, 

Cat#: NP0005) was added to 200ml of the appropriate 1x running buffer, and the 

remaining 300ml of running buffer was used for the cell’s outer chamber. Gels were run 

at 150V for 1 hour with a HiMark™ pre-stained protein standard (Thermo Fisher 

Scientific, Cat#: LC5699) used to follow the course of the gel electrophoresis, and later 

for analysis. 

For large molecular weight proteins, 3-8% TA gels were left for 15min in equilibration 

buffer before protein transfer. Samples were transferred onto either pre-activated 

polyvinylidene fluoride (PVDF), or nitrocellulose membranes by dry transfer using 

mini iBlot® transfer stacks (Thermo Fisher Scientific, Cat#: IB401002 and IB301002, 

respectively) and the iBlot® gel transfer device (Thermo Fisher Scientific, Cat#: 

IB1001UK) on program three for 10min. 
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2.5.1.4 Blocking and probing membrane 

Membranes were placed in the appropriate blocking buffer (Table 2.9) for an hour at RT 

and probed with primary antibodies (diluted in blocking buffer according to Table 2.9) 

overnight at 4°C. The next day, membranes were washed with 1x TBST (3 x 10min) 

and incubated with anti-rabbit, or anti-mouse, horseradish peroxidase-conjugated 

secondary antibodies, diluted in the appropriate blocking buffer (Table 2.9) for an hour 

at RT. 

 

Protein 
Primary staining solution Secondary staining solution 

Antibody Dilution Blocking 
buffer Antibody Dilution Blocking 

buffer 

KMT2D Rabbit anti-
KMT2D 1:1000 5% w/v non-fat 

milk; 1x TBST 
Donkey anti-
rabbit IgG 1:2000 

5% w/v non-
fat milk; 1x 
TBST 

β-actin Mouse anti-
β-Actin 1:5000 5% w/v non-fat 

milk; 1x TBST 
Sheep anti-
mouse IgG 1:5000 

5% w/v non-
fat milk; 1x 
TBST 

PTPN14 Rabbit anti-
PTPN14 1:1000 5% w/v non-fat 

milk; 1x TBST 
Donkey anti-
rabbit IgG 1:2000 

5% w/v non-
fat milk; 1x 
TBST 

Claudin 1 Rabbit anti-
Claudin1 1:2000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

Calumenin Rabbit anti-
Calumenin 1:1000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

pro-MET 
& c-MET 

Rabbit anti-
MET 1:1000 3% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

NCAPD3 Rabbit anti-
CAP-D3 1:2000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

ABCB1 Rabbit anti-
ABCB1 1:1000 5% w/v non-fat 

milk; 1x TBST 
Donkey anti-
rabbit IgG 1:2000 

5% w/v non-
fat milk; 1x 
TBST 

H3K4me3 Rabbit anti-
H3K4me3 1:1000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

H3K4me2 Rabbit anti-
H3K4me2 1:1000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

H3K4me1 Rabbit anti-
H3K4me1 1:1000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

H3 Rabbit anti-
H3 1:1000 5% w/v BSA; 

1x TBST 
Donkey anti-
rabbit IgG 1:2000 5% w/v BSA; 

1x TBST 

Table 2.9 – List of staining conditions used for western blots. For detection of each protein the 
details of both the primary and secondary staining solutions are included. For each staining solution 
details of the antibody (see Table 2.4), dilution, and the blocking buffer used are included. 
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2.5.1.5 Detection and visualisation 

Before detection, membranes were first washed with 1x TBST (3 x 10min). Staining 

was then visualised by incubation of the membrane with Amersham enhanced 

chemiluminescence (ECL), or ECL prime, western blot detection reagents (GE 

Healthcare, Cat#: RPN2106 and RPN2232 respectively), and developed using Super Rx 

X-ray films (Fujifilm) and a Konica Minolta SRX-101A medical film processor. 

For each membrane, and where required, the equivalence of protein loading (β-Actin), 

and total protein (e.g. Total H3), was confirmed by stripping and reprobing the 

membranes. 

For stripping the membranes, ReBlot Plus Strong Antibody stripping solution (10x) 

(Millipore, Cat#: 2504) was diluted 1:10 in deionised H2O. Membranes were then 

placed, with the protein coated side facing inwards, in a 50ml tube containing 10ml of 

1x ReBlot solution. Membranes were then incubated on a roller at RT for five, ten, or 

15min, depending on whether it is the first, second, or third time being stripped. 

Membranes were then removed from the 1x ReBlot solution and first placed in the 

appropriate blocking buffer (Table 2.9) for 5min. Membranes were then removed and 

re-blocked and probed as described in 2.5.1.4. 

2.5.2 RNA extraction 

To extract RNA from cells, the culture medium was first aspirated and cells washed 

twice with ice cold DPBS. After complete removal of DPBS, 350µl of the guanidine-

thiocyanate–containing buffer RLT (Qiagen, Cat#: 74104) with 1:100 β-

mercaptoethanol (Sigma-Aldrich, Cat#: M6250) was added to the cells in each well, 

whilst on ice. Cells and lysates were immediately removed from wells using a cell 

scraper and pipette to transfer into a microcentrifuge tube. Each sample lysate was 

homogenised by pulse vortex mixing and snap frozen with dry ice before being stored at 

-80°C. 

Total RNA species of greater than 200 nucleotides were isolated from cells using the 

RNeasy Mini Kit (Qiagen, Cat#: 74104) with an on-column DNase digestion (Qiagen, 

Cat#: 79254) according to the manufacturer’s instructions. Briefly, lysates were 

homogenised by centrifugation at 16000 x ɡ through QIAshredder (Qiagen, Cat#: 

79654) columns before an equal volume of 70% (v/v) ethanol (analytical grade ethanol 

(Sigma-Aldrich, Cat#: E7023)) was added. Homogenised lysates were then placed in 

RNeasy columns and centrifuged at 16000 x ɡ for 5sec so the membrane bound total 



Chapter 2: Materials and Methods 

 64 

RNA, whilst other cell debris passed through. To effectively remove other 

contaminants, such as genomic DNA, the RNeasy columns were washed with 350µl of 

buffer RW1 and centrifuged at 16000 x ɡ for 15sec, before being treated with 80µl 

(27.3 Kunitz units) of DNase I (10μl DNase I diluted with 70μl of buffer RDD) for 

15min at RT. Following this, the columns were again washed with 350µl of buffer RW1 

and centrifuged at 16000 x ɡ for 15sec. Columns were then washed a further two times 

using 500µl of buffer RPE (made up with analytical grade ethanol) and centrifugation at 

16000 x ɡ first for 15sec, and then for 2min, before centrifugation at 16000 x ɡ for 1min 

in an empty collection tube to eliminate carryover of buffer RPE. RNA was finally 

eluted into 30µl of nuclease-free H2O by centrifugation at 16000 x ɡ for 1min and 

quantified using a NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific). 

2.5.3 cDNA synthesis 

Single-stranded cDNA was synthesised from total RNA using the High Capacity cDNA 

Reverse Transcription kit (Thermo Fisher Scientific, Cat#: 4368814) according to the 

manufacturer’s instructions. Briefly, for each PCR the RNA samples were diluted with 

RNA/RNase-free H2O to get 14.2µl containing 1µg RNA. To get a final reaction 

volume of 20µl for each sample, 5.8µl of 2x reverse transcription master mix was 

prepared and added to PCR tubes on ice. The 2x reverse transcription master mix was 

prepared with 2µl of 10x RT buffer, 0.8µl of 25x dNTP mix (100mM), 2µl of 10x 

reverse transcription random primers and 1µl of MultiScribe™ reverse transcriptase. 

The PCRs were performed using a BioRad thermal cycler and the conditions optimised 

by the kit’s manufacturer (25°C for 10min, 37°C for 120min, 85°C for 10min). 

Following the completion of the PCR, samples were diluted 1:50 with RNA/RNase-free 

H2O to get a final concentration of 8ng of starting RNA/µl. 

2.5.4 Quantitative Real-time PCR (qRT-PCR) analysis 

Duplex qRT-PCRs were performed on a StepOnePlus™ Real Time PCR system 

(Thermo Fisher Scientific, 4376600). For each experiment, iTaq™ Universal Probes 

Supermix (Bio-Rad, Cat#: 1725134) was used according to manufacturer’s instructions, 

with TaqMan® gene expression assays (Thermo Fisher Scientific) for the genes of 

interest, and an 18S ribosomal RNA (rRNA) endogenous control. Briefly, 8µl of the 

cDNA samples diluted in H2O, 8µl of the diluent H2O, and 8µl of the diluent H2O 

following a cDNA synthesis, were separately added in triplicates to 96-well qRT-PCR 

plates. To each well, 12µl of 2x qRT-PCR master mix was added to get a final reaction 

volume of 20µl. The 2x qRT-PCR master mix was comprised of 10µl 2x iTaq™ 
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Universal Probes Supermix, 1µl 18S rRNA VIC®/TAMRA™ probe primer, and 1µl 

target gene FAM™/MGB probe primers (described in 2.1.6 and Table 2.8) per reaction. 

Plates were sealed and centrifuged briefly before being run in 40 cycles of 95°C for 

15sec and 60°C for 60sec. 

Data were analysed using the 2-ΔΔCt method (215) to examine relative expression of 

each gene, where mRNA expression levels were normalised to 18s and then expressed 

relative to the normalised mRNA expression levels of the control treatment. 

2.5.5 Genotyping PCRs 

2.5.5.1 DNA extraction 

To extract DNA, 360µl of DNA extraction buffer with 15µl Proteinase K (10mg/ml) 

(Sigma-Aldrich, Cat#: P2308) was added to mouse ear snips, or cell pellets, in a 

microcentrifuge tube and heated at 55°C for greater than 2 hours. Samples were vortex 

mixed for 10sec, centrifuged at 16000 x ɡ and RT for 30sec and 125µl 5M NaCl. 

Samples were again vortex mixed for 10sec before being centrifuged at 16000 x ɡ and 

RT for 5min. To a new microcentrifuge tube 375µl of the middle phase (taking care not 

to disturb the pellet, or collect the top phase) was added to 205µl isopropanol. Samples 

were again vortex mixed for 10sec before being centrifuged at 16000 x ɡ and RT for 

10min. Supernatant was discarded and pellet was washed with 500µl of 70% (v/v) 

ethanol before being centrifuged at 16000 x ɡ and RT for 5min. Supernatant was again 

removed and pellet was left to air dry for 20min. Pellets were resuspended in 100µl 

nuclease-free H2O and stored at -20°C. 

2.5.5.2 PCRs 

PCR amplification of targeted DNA fragments for were set up for each reaction in 

200µl PCR tubes using 2µl of extracted DNA, 0.4µl dNTPs (10mM of each) (Qiagen, 

Cat#: 201912), 0.1µl HotStarTaq Plus polymerase (Qiagen, Cat#: 203601), 2µl 10x 

CoralLoad PCR buffer (Qiagen, Cat#: 203601), PCR primers for the gene(s) targeted 

(See Table 2.7) and nuclease-free H2O up to 20µl final reaction volume. Each PCR 

reaction was performed using a BioRad thermal cycler and the conditions specified for 

each reaction (Table 2.10).  

2.5.5.3 Agarose gel electrophoresis 

PCR products were run on agarose gels of different concentrations depending on the 

product (Table 2.7). Agarose gels were prepared by dissolving different amounts of 

agarose (Bioline, Cat#: BIO-41025) in 100µl 1x TAE solution by heating in a 
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microwave. Agarose gel solution was allowed to cool until hand-hot before 10µl 

GelRed™ DNA dye (VWR, Cat#: 41003) was added, and the gel was swirled and 

poured into a gel cassette with comb. Gels were allowed to set at RT before adding to 

gel tank, removing the comb and 1xTAE buffer added. PCR products and 5µl 

Hyperladder™ I (Bioline, Cat#: BIO-33026) size marker were loaded into each well. 

Gels were run at 90V for 30min before being visualised under ultraviolet light. 

 

Cycling programme Cre Kras Trp53 Kmt2d 
Initial activation step 5min, 95°C 5min, 95°C 5min, 95°C 5min, 95°C 
Denaturation 30sec, 94°C 30sec, 94°C 30sec, 94°C 30sec, 94°C 
Annealing 1min, 51.7°C 30sec, 62°C 30sec, 61°C 30sec, 64°C 
Extension 1min, 72°C 1min, 72°C 1min, 72°C 2min, 72°C 
Number of cycles 35 39 35 30 
Final extension 2min, 72°C 7min, 72°C 2min, 72°C 10min, 72°C 

Table 2.10 – Reaction conditions used for each gene 

 

2.6 RNA-seq and bioinformatic analysis 

2.6.1 Sample preparation, library preparation and RNA-seq 

Material for RNA-seq was generated as described in 2.5.2 following a transfection 

performed as described in 2.3.1. The total RNA isolated was quantified and its purity 

checked using a nanodrop spectrophotometer before being sent to Source BioScience 

for RNA-seq.  

At Source BioScience, the RNA was again quantified and its integrity measured, this 

time using an RNA 6000 nano assay kit (Agilent Technologies, Cat#: 5067-1511) on a 

2100 BioAnalyser (Agilent Technologies, Cat#: G2939AA). All but one of the samples 

used in the analysis had an RNA integrity number (RIN) > 9, with this one having a 

RIN = 7.3 (PANC1 KMT2C siRNA2). A TruSeq stranded total RNA library 

preparation kit with Ribo-Zero Gold (Illumina, Cat#: MRZG12324) was used to deplete 

cytoplasmic and mitochondrial rRNA from the RNA samples and prepare cDNA 

libraries. The libraries prepared for sequencing were next validated on the 2100 

BioAnalyser with a DNA 1000 kit (Agilent Technologies, Cat#: 5067-1504) and again 

after randomizing the samples into seven pools with a high sensitivity DNA analysis kit 

(Agilent Technologies, Cat#: 5067-4626). Paired end sequences (reads) of 100 bp in 

length were generated using seven lanes of a HiSeq 2000 sequencing system (Illumina). 
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RNA-seq data were deposited in Gene Expression Omnibus (GEO) under the accession 

number GSE75327. 

2.6.2 Alignment of reads and bioinformatic analysis 

Bioinformatic analysis of RNA-seq data was performed at Barts Cancer Institute, Queen 

Mary University of London by Dr Jun Wang. After FASTQ data quality check using 

FastQC, raw reads were aligned to the reference genome hg19 using Tophat2 (216). An 

average of 27.2M aligned paired-end reads (range 19.7-36.4M), corresponding to an 

average of 75.0% (range 59.2-82.2%) concordant pair alignment rate, were reported. 

The number of reads uniquely aligned (mapping quality score q > 10) to the exonic 

region of each gene were counted using HTSeq (217), based on the Ensembl annotation 

(version 74). KMT2C and KMT2D siRNA datasets were first analysed independently. 

Only genes that achieved at least one count per million (CPM) mapped reads in at least 

three samples were included, leading to 15,912 and 15,818 filtered genes in total for the 

respective KMT2C and KMT2D siRNA datasets. These genes were classified into 15 

RNA species, with protein-coding transcripts representing 81.8% and 82.3%, 

respectively. Read counts were further normalised using the conditional quantile 

normalisation (cqn) method (218), accounting for gene length and GC content. 

Differential expression analysis was then performed using the edgeR package (219), 

employing the generalised linear model (GLM) approach, for each siRNA versus its 

control pairwise comparison, adjusting for baseline differences between the cell lines, 

with an additive model design as “model.matrix(~cellline+siRNA_treatment)”. For each 

pairwise comparison, the significantly differentially expressed (DE) genes were selected 

using a double threshold of false discovery rate (FDR) < 0.05 and an absolute fold 

change of at least two.  

Next, common DE genes were identified between different siRNA versus control 

comparisons within the KMT2C and KMT2D siRNA datasets. On the basis of log2 fold 

changes of siRNA treated over control for all filtered genes, Gene Set Enrichment 

Analysis (GSEA) was performed for each comparison using the GSEA tool to identify 

the canonical pathways gene sets from the Molecular Signatures Database (MSigDB-C2 

v5.0) (220). The gene ontology (GO) biological process enrichment analysis was also 

performed for DE genes using the PANTHER classification system (221). 
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2.7 Statistics 

2.7.1 Statistical analysis of clinical and gene expression data 

Bioinformatic analysis of two large PDAC datasets, the International Cancer Genome 

Consortium (ICGC) (222) and The Cancer Genome Atlas (TCGA) (44), with both gene 

expression and clinical follow-up data available, was used by Dr Jun Wang to complete 

survival analysis. Data on 87 patients from the ICGC dataset were previously compiled 

and processed (223). Level 3 gene expression data for TCGA dataset was downloaded 

via TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). Only annotated and 

confirmed PDAC patients were selected (108 in total) (Table 2.11). RNA-seq by 

Expectation-Maximization (RSEM) normalised expression data for 20,501 genes were 

obtained. For each gene, low and high expression groups were determined using the 

method described by Mihaly et al. (224). Unlike arbitrarily using the median cut-off 

point this approach instead interrogates each percentile of expression between lower and 

upper quartiles in the Cox regression analysis to determine the best performing 

percentile threshold. 

Survival modelling and Kaplan-Meier (KM) analysis was undertaken using R statistical 

environment (“survival” package). Overall survival (OS) was defined as time from 

diagnosis to death, or to the last follow-up date for survivors. Log-rank test was used to 

calculate the KM p-values. The Cox proportional hazards model was fitted to every 

gene independently. 

Two additional PDAC gene expression profile (GEP) and clinical follow-up datasets, 

namely “Stratford” and “BCI_Zhang_merged”, compiled and processed previously 

(223), were also included for validation studies. 

2.7.2 Statistical analysis of in vitro and in vivo data 

All statistical analysis of in vitro and in vivo data was performed using the statistical 

tools provided in GraphPad Prism 5 for Mac. Specifics of the statistical tests used are 

detailed in the relevant figure legends. 
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Demographics and 
characteristics 

ICGC TCGA 

Sex   
   Male 53 (60.9%) 59 (54.6%) 
   Female 34 (39.1%) 49 (45.4%) 
Age   
   Median (IQR) 68 (60-75) 65 (57-73.25) 
   >=Population median 44 59 
   <Population median 43 48 
Race   
   White  93 (86.1%) 
   Black/African American  5 (4.6%) 
   Asian  6 (5.6%) 
   Hispanic/Latino  1 (0.9%) 
   Unknown  3 (2.8%) 
Tumour grade   
   1 2 (2.3%) 14 (13.0%) 
   2 53 (60.9%) 63 (58.3%) 
   3 30 (34.5%) 30 (27.7%) 
   4 2 (2.3%) 1 (0.9%) 
Tumour Stage   
   1  8 (7.4%) 
   2  93 (86.1%) 
   3  3 2.8%) 
   Discrepancy  1 (0.9%) 
Maximum tumour 
dimension 

  

   Median (IQR)  3.5 (2.85-4.5) 
   NA  9 
   >=Population median  53 
   <Population median  45 
Response   
   Stable disease  5 (4.6%) 
   Progressive disease  29 (26.9%) 
   Partial remission  7 (6.5%) 
   Complete remission  24 (22.2%) 
   Unknown  27 (25%) 
   NA  14 (12.9%) 
   Discrepancy  2 (1.9%) 

Table 2.11 - A table describing clinical characteristics of ICGC and TCGA. Included are the 
details for the patient demographics and tumour characteristics for the samples from the ICGC and 
the TCGA datasets that were included in the analysis. 
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3.1 Background 
The KMT2 family of methyltransferases catalyse the addition of methyl groups to a 

lysine residue on the tail of histone H3 (H3K4) (reviewed in (144)), where these marks 

are thought to support a local chromatin environment that facilitates gene expression 

(see 1.2.3.1.1). Inactivation of KMT2C and KMT2D arises through a combination of 

gene deletion and/or mutation in PDAC (40,41,44,45,191), and is a commonly recurring 

feature in several cancer types (reviewed in (119)). 

Previously, the increased expression of oncogenes, and reduced expression of tumour 

suppressor genes, have both been used to predict cancer prognosis (225,226). We 

therefore hypothesised that inter-patient fluctuations in KMT2C and KMT2D expression 

may also impart significant differences in outcome for PDAC patients. In this way, 

another group previously showed that low expression of KMT2D, and KDM6A (another 

KMT2C/D complex member), identifies breast cancer patients with improved survival 

(194,202). Whilst still to be examined in PDAC, KMT2C and KMT2D (and KMT2A) 

mutations have recently been shown to identify patients with better outcome (41). In 

this chapter, to determine whether a similar expression based phenomenon exists in 

PDAC, we used existing gene expression profile (GEP) data to assess whether KMT2C 

and KMT2D expression identifies patients with improved outcome. 

Moreover, the biological roles of KMT2C and KMT2D, and how they impact on 

PDAC, have thus far remained largely unknown. The roles of these methyltransferases 

appear to be cell type dependent, with both negative and positive effects on cell 

proliferation having been shown across a variety of cancer types 

(55,133,135,136,138,151,181,199-203). As KMT2C and KMT2D aberrations commonly 

result in LOF, an RNAi approach was therefore used to examine the effects of depleting 

KMT2C and KMT2D upon proliferation in a range of human pancreatic cell lines. 

3.2 Results 

3.2.1 Decreased KMT2C and KMT2D expression correlates with favourable 

outcome in PDAC 

To assess whether expression levels of these methyltransferases are linked with patient 

outcome, GEP data from the ICGC data series were used to compare clinical features of 

patients with tumours expressing different levels of KMT2C and KMT2D. Low levels of 

KMT2C and KMT2D expression were independently associated with better overall 

survival (OS). Patients whose tumours had low expression of KMT2C had a median 



Chapter 3: Results 

 72 

survival of 15.9 months compared to 9.2 months for patients with high expression (log-

rank p = 0.029) (Figure 3.1A). Perhaps more strikingly, differential expression of 

KMT2D was also effective at identifying patients with improved outcome, where 

patients with low expression had a median survival of 19.9 months compared to 11.8 

months for those with high expression (log-rank p = 0.001) (Figure 3.1B).  

Due to the similarities between KMT2C and KMT2D, we also examined whether their 

combined expression correlated with survival. Although less significant than either gene 

individually, combined low-level expression of KMT2C and KMT2D also correlated 

with improved outcome, with a median survival of 15.9 compared to 9.2 months (log-

rank p = 0.044) (Figure 3.1C). These studies provided some confidence that changes in 

expression of these methyltransferases impacted on PDAC biology and patient outcome. 

In support of observations from the ICGC data, similar trends were observed for 

KMT2C and combined KMT2C/D expression in TCGA dataset, however these results 

did not reach statistical significance (log-rank p = 0.07 and 0.24 respectively) (Figure 

3.2). In addition, KMT2D expression also failed to significantly highlight differences in 

survival within this dataset (log-rank p = 0.072) (Figure 3.2). 

Alongside the survival analysis for these high and low expression PDAC patient groups, 

the clinically annotated details for each group were identified. For the ICGC data only 

age and tumour grade were available, whereas for the TCGA data, both of these 

parameters plus tumour stage and primary therapy outcome success were available. 

Across the ICGC high/low groups the ages and tumour grades were roughly similar, and 

although not statistically tested there is a suggestion that the KMT2D low expressing 

group is perhaps slightly older than the high expressing group (Table 3.1). Across the 

TCGA high/low groups the age, tumour grade, stage and maximum dimension were 

similar, again with the suggestion that the age is slightly increased in the lower 

expressing groups (also not statistically tested) (Table 3.2). In light of these data 

multivariate and univariate analysis were performed to examine whether these clinical 

factors influence the survival observed. For the ICGC dataset KMT2C (p = 0.03566, HR 

= 1.921 (1.045 - 3.531)), KMT2D (p = 0.004160, HR = 5.952 (1.7573 - 20.159)) and 

their combined expression (p = 0.05750, HR = 1.870 (0.9803 - 3.567)) performed very 

well as prognostic markers independently of both age and tumour grade (Table 3.3). For 

the TCGA dataset, the trend of low expression associating with better survival still 

remained for KMT2C (p = 0.259437, HR = 1.439 (0.7644 - 2.710)), and combined 

KMT2C and KMT2D expression (p = 0.144319, HR = 1.719 (0.8306 - 3.560)), 
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independently of age, tumour stage, tumour grade and primary therapy outcome 

success, however neither were significant using a p<0.05 cutoff (Table 3.4). 

Overall, these observations are broadly consistent with the recent genetic data that 

showed 12 out of 101 patients with KMT2C or KMT2D LOF mutations had superior 

outcome when compared to patients with WT configurations (41). 
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Figure 3.1 – Kaplan-Meier (KM) survival analysis for KMT2C, KMT2D and combined 
expression in the ICGC dataset. Analysis of PDAC tumours from the ICGC dataset shows that 
lower KMT2C, KMT2D, and their combined expression correlates with improved patient survival. 
KM survival analysis graphs for assessing the prognostic value of high (red) and low (black) 
expression for KMT2C (A), KMT2D (B), and KMT2C/D combined (C) within the ICGC dataset. 
Numbers on the x-axis represent years.  
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Figure 3.2 - Kaplan-Meier (KM) survival analysis for KMT2C, KMT2D and combined 
expression in the TCGA dataset. Analysis of PDAC tumours from TCGA dataset suggests that 
lower KMT2C and combined KMT2C and KMT2D expression may correlate with improved patient 
survival, whereas the opposite may be true for KMT2D. KM survival analysis graphs for assessing 
the prognostic value of high (red) and low (black) expression for KMT2C (A), KMT2D (B), and 
KMT2C/D combined (C) within the TCGA dataset. Numbers on the x-axis represent years.  
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 KMT2C KMT2D KMT2C/D 
Demographics 

and 
characteristics 

High Low High Low High Low 

Number 34 53 70 17 26 61 
Sex       
   Male 23 (67.6%) 30 (56.6%) 42 (60.0%) 11 (64.7%) 18 (69.2%) 35 (57.4%) 
   Female 11 (32.4%) 23 (43.4%) 28 (40.0%) 6 (35.3%) 8 (30.8%) 26 (42.6%) 
Age       
   Median  
(IQR) 

 68.5  
(59-78) 

66  
(61-73) 

65.5  
(60-74) 

70  
(68-77) 

67.5  
(59-75.75) 

68  
(61-74) 

   >=68 17 26 31 13 13 31 
   <68 16 27 39 4 13 30 
Tumour grade       
   1 0 (0%) 2 (3.8%) 0 (0%) 2 (11.8%) 0 (0%) 2 (3.3%) 
   2 21 (61.8%) 32 (60.4%) 41 (58.6%) 12 (70.6%) 16 (61.5%) 37 (60.7%) 
   3 12 (35.3%) 18 (34.0%) 27 (38.6%) 3 (17.6%) 9 (34.6%) 21 (34.4%) 
   4 1 (2.9%) 1 (0.2%) 2 (2.9%) 0 (0%) 1 (3.8%) 1 (1.6%) 

Table 3.1 – Patients details of ICGC patient groups split using expression of KMT2C and/or 
KMT2C. Included are details of the patient demographics and tumour characteristics for the ICGC 
samples when patients are split into the high and low expression groups for KMT2C, KMT2D and 
both combined. 

  



Chapter 3: Results 

 77 

 KMT2C KMT2D KMT2C/D 
Demographics and 

characteristics 
High Low High Low High Low 

Number 49 59 56 52 83 25 
Sex       
   Male 25 (51.0%) 34 (57.6%) 30 (53.6%) 29 (55.8%) 44 (53.0%) 15 (60.0%) 
   Female 24 (49.0%) 25 (42.4%) 26 (46.4%) 23 (44.2%) 39 (47.0%) 10 (40.0%) 
Age       
   Median (IQR) 64  

(52-72) 
67  
(61.5-75) 

63.5  
(54.75-68) 

69.5  
(62.75-75) 

64  
(55.5-72) 

70  
(65-75) 

   >=65 23 36 24 35 40 19 
   <65 26 23 32 17 43 6 
Tumour grade       
   1 8 (16.3%) 6 (10.2%) 9 (16.1%) 5 (9.6%) 9 (10.8%) 5 (20.0%) 
   2 27 (55.1%) 36 (61.0%) 33 (58.9%) 30 (57.7%) 50 (60.2%) 13 (52.0%) 
   3 14 (28.6%) 16 (27.1%) 14 (2.0%) 16 (30.8%) 24 (28.9%) 6 (24%) 
   4 0 (0%) 1 (1.7%) 0 (0%) 1 (1.9%) 0 (0%) 1 (4%) 
Tumour Stage       
   1 3 (6.1%) 5 (8.5%) 3 (5.4%) 5 (9.6%) 6 (7.2%) 2 (8%) 
   2 43 (87.8%) 50 (84.7%) 49 (87.5%) 44 (84.6%) 72 (86.7%) 21 (84%) 
   3 1 (2%) 2 (3.4%) 1 (1.8%) 2 (38%) 2 (2.4%) 1 (4%) 
   4 2 (4.1%) 1 (1.7%) 3 (5.4%) 0 (0%) 3 (3.6%) 0 (0%) 
   Discrepancy 0 (0%) 1 (1.7%) 0 (0%) 1 (1.9%) 0 (0%) 1 (4%) 
Response       
   Stable disease 3 (6.1%) 2 (3.4%) 1 (1.8%) 4 (7.7%) 3 (3.6%) 2 (8%) 
   Progressive disease 15 (30.6%) 14 (23.7%) 15 (26.8%) 14 (26.9%) 22 (26.5%) 7 (28%) 
   Partial remission 5 (10.2%) 2 (3.4%) 4 (7.1%) 3 (5.8%) 6 (7.2%) 1 (4%) 
   Complete remission 10 (20.4%) 14 (23.7%) 14 (25%) 10 (19.2%) 21 (25.3%) 3 (12%) 
   Unknown 6 (12.2%) 21 (35.6%) 11 (19.6%) 16 (30.8%) 17 (20.5%) 10 (40%) 
   NA 10 (20.4%) 4 (6.8%) 10 (17.9%) 4 (7.7%) 13 (15.7%) 1 (4%) 
   Discrepancy 0 (0%) 2 (3.4%) 1 (1.8%) 1 (1.9%) 1 (1.2%) 1 (4%) 
Race       
   White 40 (81.6%) 53 (89.8%) 49 (87.5%) 44 (84.6%) 72 (86.7%) 21 (84%) 
   Black/African 
American 

4 (8.2%)  1 (1.7%) 3 (5.4%) 2 (3.8%) 4 (4.8%) 1 (4%) 

   Asian 2 (4.1%) 4 (6.8%) 2 (3.6%) 4 (7.7%) 3 (3.6%) 3 (12%) 
   Hispanic/Latino 0 (0%) 1 (1.7%) 1 (1.8%) 0 (0%) 1 (1.2%) 0 (0%) 
   Unknown 3 (6.1%) 0 (0%) 1 (1.8%) 2 (3.8%) 3 (3.6%) 0 (0%) 
Maximum tumour 
dimension 

      

   Median (IQR) 3.6  
(2.925-4.5) 

3.5  
(2.8-4.5) 

3.4  
(2.8-4.5) 

3.5  
(3-4.5) 

3.5  
(2.8-4.5) 

4  
(3-4.575) 

   NA 3 6 4 5 6 3 
   >=3.5mm 26 27 26 27 40 13 
   <3.5mm 20 26 26 20 37 9 

Table 3.2 - Patients details of TCGA patient groups split using expression of KMT2C and/or 
KMT2D. Included are details of the patient demographics and tumour characteristics for the TCGA 
samples when patients are split into the high and low expression groups for KMT2C, KMT2D and 
both combined. 
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 KMT2C KMT2D Combined KMT2C and 
KMT2D 

p-value Hazard 
ratio p-value Hazard 

ratio p-value Hazard ratio 
Expression risk 
group (high/low)       

   Multivariate 0.03566 1.921 (1.045 
- 3.531) 0.004160 5.952 (1.7573 

- 20.159 0.05750 1.870 (0.9803 - 
3.567) 

   Univariate 0.02 1.94 (1.06 -
3.56) 0.001 5.48 (1.69 - 

17.77) 0.044 1.93 (1.01 - 
3.69) 

Age 0.00175 1.048 (1.018 
- 1.079) 0.000318 1.056 (1.0251 

- 1.088) 0.00174 1.048 (1.0176 - 
1.079) 

Tumour grade 0.00493 2.161 (1.263 
- 3.699) 0.144477 1.519 (0.8665 

- 2.662) 0.00534 2.127 (1.2507 - 
3.618) 

Table 3.3 – Statistical analysis for clinical factors on survival in ICGC patient groups. Table 
displays data for multivariate (and univariate where stated) analysis for the clinical data provided by 
the ICGC dataset when patents are split using expression level of KMT2C and KMT2D. p-values and 
Hazard ratios are derived from Cox proportional hazards regression model. 

 

 

 

 KMT2C KMT2D Combined KMT2C and 
KMT2D 

p-value Hazard 
ratio p-value Hazard 

ratio p-value Hazard ratio 
Expression risk 
group (high/low)       

   Multivariate 0.259437 1.439 (0.7644 
- 2.710) 0.106925 0.605 (0.3284 

- 1.115) 0.144319 1.719 (0.8306 - 
3.560) 

   Univariate 0.07 1.63 (0.96 - 
2.78) 

0.072 0.61 (0.36 - 
1.05) 0.24 1.47 (0.77 - 

2.82) 
Age 0.077062 1.026 (0.9972 

- 1.056) 0.483110 1.010 (0.9823 
- 1.038) 0.053058 1.030 (0.9996 - 

1.061) 
Tumour stage 0.474146 1.220 (0.7077 

- 2.103) 0.460816 1.242 (0.6986 
- 2.207) 0.373286 1.273 (0.7485 - 

2.164) 
Tumour grade 0.461113 1.163 (0.7787 

- 1.736) 0.534646 1.132 (0.7651 
- 1.675) 0.509278 1.149 (0.7610 - 

1.734) 
Treatment partial 
remission/response 0.000372 9.026 (2.6875 

- 30.316) 0.000134 9.969 (3.0637 
- 32.438) 7.91e-05 10.548 (3.2742 - 

33.981) 

Table 3.4 – Statistical analysis for clinical factors on survival in TCGA patient groups. Table 
displays data for multivariate (and univariate where stated) analysis for the clinical data provided by 
the TCGA dataset when patents are split using expression level of KMT2C and KMT2D. p-values 
and Hazard ratios are derived from Cox proportional hazards regression model. 
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3.2.2 Validation of human cell lines for use as models of PDAC 

A number of cell lines have been established from both primary and metastatic tumours 

of PDAC patients. To examine the roles of KMT2C and KMT2D in PDAC, a panel of 

eight human pancreatic cell lines were used. Three cell lines were derived from primary 

tumours (PANC-1, BxPC-3, Capan-2), four were from metastatic tumour sites (SUIT-2, 

RWP-1, CFPAC-1, COLO 357), and one was an immortalised cell line derived from 

normal human pancreatic ductal epithelium (HPDE). As expected, these cancer cell 

lines harbour a range of mutations in four of the genes most commonly mutated in 

PDAC (Table 3.5). 

Although the mutation statuses of KMT2C and KMT2D have not been extensively 

described for these cancer cell lines, the Catalogue Of Somatic Mutations In Cancer 

(COSMIC) (169) database reports that SUIT-2, CFPAC-1, Capan-2, RWP-1, COLO 

357 and PANC-1 as having no mutations in either gene, and for the BxPC-3 only two 

silent point mutations (c.8091C>T and c.8184T>C) are described for KMT2D. For all 

cell lines, KMT2D expression could be detected by western blot (Figure 3.3), 

confirming that expression is not lost. Encouragingly, p53 was only detected for the 

lines reported to harbour TP53 mutations (SUIT-2, CFPAC-1, RWP-1, BxPC-3 and 

PANC-1, see Table 3.5 and Figure 3.3), where this expression was less pronounced in 

the CFPAC-1 cell line with a C242R mutation. These findings also indicate that our 

Capan-2 cells have a WT TP53 configuration (60,227), and not a 200bp insertion (228), 

or a R273H mutation (229), which have both also been reported in the literature. 

The expression of KMT2C and KMT2D were also assessed using qRT-PCR (KMT2C 

and KMT2D, Figure 3.4), where western blot for KMT2C cannot be performed due to 

the poor quality of commercially available antibodies. KMT2C mRNA was detected in 

all cell lines, where, assuming equal primer amplification efficiency, expression was 

typically greater than KMT2D mRNA (Figure 3.4). For seven of the eight cell lines, 

KMT2D mRNA expression showed a trend similar to that observed at the protein level 

with the exception of HPDE where mRNA expression was the greatest of all the cell 

lines examined. 

Overall, these cell lines represented a spectrum of backgrounds, reflecting the 

complexity of PDAC and therefore were subsequently used to examine the in vitro roles 

of these methyltransferases using RNAi.  
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Figure 3.3 – Expression of KMT2D and p53 protein across the eight cell lines. Western blot 
analysis detected KMT2D protein in each of the cell lines derived from primary (PANC-1, BxPC-3, 
Capan-2), or metastatic tumours (SUIT-2, CFPAC-1, RWP-1, COLO 357), and in one immortalized 
normal human pancreatic ductal epithelium (HPDE). Western blot analysis also detected p53 
overexpression in the five cell lines previously reported to harbour TP53 mutations (see Table 3.5). 
β-Actin was used as a loading control. 

 

 

 

Figure 3.4 – Expression of KMT2C and KMT2D mRNA across the eight cell lines. Expression 
of KMT2D (blue circles) and KMT2C (red squares) mRNA relative to the expression of 18S were 
detected by qRT-PCR in each of the eight cell lines. Data shown are mean values from technical 
triplicates.  
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3.2.3 KMT2C and KMT2D are depleted by targeted siRNAs  

To deplete KMT2C, four unique siRNAs targeting KMT2C mRNA were used across the 

eight cell lines. All four siRNAs were used in the PANC-1, SUIT-2 and COLO 357 cell 

lines, whereas only two (siRNA1 and siRNA4) were used for silencing in the other five 

cell lines (Capan-2, BxPC-3, RWP-1, CFPAC-1 and HPDE). The four KMT2C siRNAs 

used were targeted to several exons of the KMT2C mRNA transcript (18-19 (siRNA4), 

37 (siRNA2), and 38 (siRNA1 and siRNA3)), where all of which were able to deplete 

KMT2C mRNA in all cell lines tested, relative to control siRNA (Figure 3.5). For each 

cell line examined, KMT2C siRNA1 was the most effective (80±10%) at depleting 

KMT2C mRNA. Although knockdown of KMT2C by each siRNA was roughly similar, 

COLO 357 cells appeared to show the smallest relative reduction within the cell lines 

tested (maximum of 76% for KMT2C siRNA1 and minimum of 35% for KMT2C 

siRNA4). 

Following western blot analysis, clear reduction in KMT2D was achieved across the 

eight cell lines for the two siRNAs targeting exons 39 and 48 (Figure 3.6). A third 

siRNA targeting KMT2D also reduced KMT2D expression, however as it was later 

noted to only elicit minimal effects on cell proliferation, it was not included in later 

analyses. For seven of the eight cell lines tested, both KMT2D siRNAs resulted in a 

substantial depletion of KMT2D, with more conservative reductions observed in RWP-

1 cells. For the BxPC-3 cell line it is worth noting that because the cytostatic effect of 

KMT2D siRNA2 was so strong, minimal protein could be harvested; equal loading of 

protein was therefore challenging for this cell line. 

  



Chapter 3: Results 

 83 

 

 

 

 

Figure 3.5 – Depletion of KMT2C mRNA expression by targeted siRNAs across six pancreatic 
cell lines. Fold change in KMT2C mRNA expression, relative to levels of 18S, for each of the 
KMT2C targeted siRNAs, relative to treatment with untargeted control siRNA, as detected by qRT-
PCR across each of the cell lines tested. Data shown are mean values of in triplicates from up to five 
experimental replicates. For the PANC-1 cells data are from four experiments for control siRNA and 
KMT2C siRNA1, three experiments for KMT2C siRNA2 and 3, and one for KMT2C siRNA4. For 
SUIT-2 and COLO 357 cells data are from five experiments for control siRNA and KMT2C 
siRNA1, four experiments for KMT2C siRNA2 and 3, and one for KMT2C siRNA4. For BxPC-3, 
HPDE and RWP-1, cells data are from one experiment for control siRNA, KMT2C siRNA1, and 
KMT2C siRNA4.  
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Figure 3.6 – Depletion of KMT2D protein expression by targeted siRNAs in each of the eight 
cell lines. Western blot analysis to confirm the depletion of KMT2D protein expression by two anti-
KMT2D siRNAs, compared to an untargeted siRNA, in each of the eight cell lines. A third siRNA 
was cropped from the images between KMT2D siRNA1 and 2. β-Actin was used as a loading 
control. 
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3.2.4 Proliferation of cell lines following depletion of KMT2C and KMT2D 

3.2.4.1 KMT2C 

To examine its effect on proliferation, KMT2C was first depleted by two siRNAs 

(KMT2C siRNA1 and KMT2C siRNA4) across eight human pancreatic cell lines. 

Across these cell lines KMT2C depletion resulted in a variety of changes in their 

proliferative capacity (Figure 3.7). 

KMT2C siRNA1 did not alter proliferation in the RWP-1 and HPDE cell lines, whereas 

in the remaining six lines proliferation was reduced, although this was not statistically 

significant for SUIT-2. In five of the cell lines, KMT2C siRNA4 also elicited small 

(PANC-1, Capan-2 and RWP-1), or non-significant (COLO 357 and BxPC-3) decreases 

in proliferation. Although again non-significant, when the SUIT-2, CFPAC- and HPDE 

cells were treated with KMT2C siRNA4, small increases in cell number were observed.  

In light of these discrepancies, two additional siRNAs (KMT2C siRNA2 and KMT2C 

siRNA3) were examined in the PANC-1, SUIT-2 and COLO 357 cell lines. As before, 

these siRNAs elicited differing effects across the cell lines tested. As with KMT2C 

siRNA1, both these siRNAs significantly reduced proliferation in PANC-1 and SUIT-2 

cells, however this effect was less for KMT2C siRNA3. KMT2C siRNA2 did not 

significantly alter COLO 357 cell proliferation, whereas KMT2C siRNA3 did. 
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Figure 3.7 – Proliferation of the eight cell lines following KMT2C depletion. KMT2C mRNA 
depletion by targeted siRNAs impacts upon cell proliferation, where KMT2C depletion variably 
altered the proliferation of cells. Statistical significance was determined using a One-way ANOVA 
with Dunnett’s post-hoc analysis (* p < 0.05, ** p < 0.01, *** p < 0.001). For PANC-1, SUIT-2 and 
COLO 357 cells the data shown are mean values ± SD for three replicate wells performed on two 
separate days (one with control siRNA (grey), KMT2C siRNA1 (blue), KMT2C siRNA2 (red), 
KMT2C siRNA3 (green); and the other with control siRNA, KMT2C siRNA1 and KMT2C siRNA4 
(yellow)). For the other five cell lines, data shown are mean values ± SD for three replicate wells for 
control siRNA, KMT2C siRNA1, and KMT2C siRNA4.  
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3.2.4.2 KMT2D 

Independent silencing by two siRNAs targeted to KMT2D resulted in a significant 

reduction in the proliferation for all of the cell lines tested (Figure 3.8), highlighting an 

essential role for proliferation. Unlike with KMT2C (Figure 3.7), KMT2D depletion 

results were consistent, where both siRNAs significantly reduced cell proliferation in 

each cell line tested. 

The PANC-1, SUIT-2, COLO 357, BxPC-3 and HPDE cell lines were shown to be the 

most sensitive to KMT2D depletion, whereas the Capan-2, RWP-1 and CFPAC-1 cell 

lines were more moderately affected. These differences were not found to correlate with 

levels of KMT2C or KMT2D mRNA expression (Figure 3.4), KMT2D protein 

expression (Figure 3.3), reported mutational status of KRAS/TRP53/CDKN2A/SMAD4 

(Table 3.5), site of tumour (Table 3.5), or response to KMT2C siRNA1 (Figure 3.7). For 

the RWP-1 cell line, this diminished effect on proliferation most likely reflects the 

weaker knockdown observed by western blot (Figure 3.6). 
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Figure 3.8 – Proliferation of the eight cell lines following KMT2D depletion. Depletion of 
KMT2D by two anti-KMT2D siRNAs significantly inhibits cell proliferation. Statistical significance 
was determined using a One-way ANOVA with Dunnett’s post-hoc analysis (** p < 0.01, *** p < 
0.001). Data shown for each cell line are mean values for three replicate wells ± SD for control 
siRNA (grey), KMT2D siRNA1 (blue), and KMT2D siRNA2 (red).  
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3.2.4.3 Combined KMT2C and KMT2D 

KMT2C and KMT2D act within similar complexes and thus some functional 

compensation may exist between the two methyltransferases. As the preceding 

experiments only considered the proliferative effects of their individual depletion at one 

time point, the effect of depleting the methyltransferases simultaneously and over time, 

was examined in PANC1 cells (Figure 3.9). For each methyltransferase, the siRNAs 

that produced the greatest effect in PANC-1 cells (KMT2C siRNA2 (Figure 3.7) and 

KMT2D siRNA2 (Figure 3.8)) were used both separately and in combination. 

To account for any potential effect of adding double the amount of oligonucleotide on 

proliferation, we also included a control with an increased amount of control siRNA. 

This ‘double control’ showed no difference to the effect of a single dose of control 

siRNA (Figure 3.9). As before in our single experiments, KMT2D siRNA2 had a strong 

and significant effect in reducing proliferation at 72 hours, whereas KMT2C siRNA2 

demonstrated only a moderate effect on cell proliferation, at later time points. Similar to 

KMT2C siRNA2 alone, up to 72 hours a combination of the two siRNAs only produced 

a weak, albeit significant (p < 0.05), effect on proliferation relative to the controls. After 

this 72-hour time point however, cell proliferation was affected similarly to cells 

transfected with KMT2D siRNA2 alone. 

Altogether these three series of experiments suggest that KMT2D is essential for 

pancreatic cell proliferation, whereas the requirement of KMT2C for proliferation is not 

as critical and may depend upon other factors. 
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Figure 3.9 - Proliferation of PANC-1 following singular, and combined, depletion of KMT2C 
and KMT2D. Depletion of KMT2C and KMT2D in parallel imparts a similarly significant 
inhibition of proliferation as when KMT2D is depleted alone. Statistical significance was determined 
using a One-way ANOVA with Dunnett’s post-hoc analysis (* p < 0.05, ** p < 0.01, *** p < 0.001). 
Data shown for each cell line are mean values ± SD for three replicate wells for control siRNA (1x) 
(grey), control siRNA (2x) (grey with black outline), KMT2C siRNA2 (blue), KMT2D siRNA2 
(red), and dual depletion of both KMT2C and KMT2D by these siRNAs (green with black outline).  
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3.2.5 Effects of KMT2D depletion on cell-cycle 

Following this observation on cell proliferation, PI staining was used to assess whether 

the cell-cycle was altered upon KMT2D depletion. Under normal conditions, staining 

cells with PI produced a histogram with two peaks. The larger of the two peaks, at a 

lower PI intensity, represents the diploid (2N) cells before DNA synthesis whilst the 

smaller peak, at double the PI intensity, represents the tetraploid (4N) cells having 

doubled their DNA content before cell division. Using these peaks, cells within each 

phase of the cell-cycle can be identified. The cells within the 2N peak are in either of 

the first two growth phases of the cell-cycle (G0/G1), cells within the 4N peak are in 

either the second growth phase or the mitotic phase (G2/M), whereas cells found in the 

region between the two peaks are undergoing DNA synthesis in S-phase. Cells with a PI 

intensity of less than the 2N peak (<2N) are those undergoing apoptosis, whilst the cells 

with a PI intensity of greater than the 4N peak (>4N) are considered to be polyploid. 

3.2.5.1 Nocodazole block and release assay 

Mitosis is a critical stage of the cell-cycle in which the cell divides into two daughter 

cells. Within the process of mitosis, during prometaphase, cells polymerise 

microtubules to form the mitotic spindles required for separating chromatids for 

division. The small molecule nocodazole inhibits microtubule polymerisation, and 

therefore results in an M-phase cell-cycle brake at the spindle checkpoint. Upon 

removal of nocodazole, the cells overcome the M-phase brake and recover to resume 

cell division. To examine how cells without KMT2D progress through the cell cycle, 

and see whether they reach and then release from this checkpoint, cells transfected with 

control, or KMT2D targeted siRNAs, were treated with nocodazole, and the changes in 

cell-cycle profiles examined (Figure 3.10). 

Under normal “untreated” conditions (U) PI staining gave “normal” cell cycle profiles 

for each of the six cell lines examined, both when KMT2D was expressed and depleted 

(Figure 3.10 and Figure 3.11). In the cell lines treated with KMT2D siRNAs however, 

there appeared to be a small yet distinctive increase in proportion of cells in G0/G1 (an 

average of 4% increase for KMT2D siRNA1, and 12% for KMT2D siRNA2 across the 

cell lines compared to control siRNA) (Figure 3.10 and Figure 3.11). 

For the six cell lines treated with control siRNA, nocodazole treatment (N) produced a 

large accumulation of cells in G2/M. When KMT2D was depleted in each of these cell 

lines, this nocodazole induced G2/M increase was either completely absent, or 

diminished (Figure 3.10 and Figure 3.11). This reduced response to nocodazole upon 
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KMT2D depletion was greatest in the SUIT-2, PANC-1 and COLO 357 cell lines, and 

weakest in the RWP-1, Capan-2 and BxPC-3 cell lines (Figure 3.11). Upon removal of 

this nocodazole G2/M block (R), the majority cells divided and progressed into the 

G0/G1, whilst a small number instead either become polyploid, or undergo apoptosis 

(Figure 3.11). From these experiments we were able to demonstrate that KMT2D 

depletion results in a retention of cells in the G0/G1-phase, where, unlike cells treated 

with control siRNA, they do not reach the nocodazole G2/M block. 

 

 

 

Figure 3.10 – KMT2D is required for cells to reach the nocodazole G2/M-phase block. 
Depletion of KMT2D by two anti-KMT2D siRNAs prevents G2/M nocodazole block in six cell lines 
(PANC-1, SUIT-2, COLO 357, BxPC-3, Capan-2, and RWP-1). Cell DNA content stained using 
propidium iodide (PI) at three experimental time points. The first was immediately after transfection 
(Untreated, black traces), next was following a 16-hour incubation with 400ng/ml nocodazole 
(Nocodazole, blue traces), and finally at 24 hours after the nocodazole block was removed 
(Recovery, red traces). Data shown are representative histograms from the SUIT-2 cell line for the 
number of cells and their intensity of PI staining. The gates shown were used to identify the 
proportion of cells in the apoptotic, G0/G1, S, G2/M, and polyploid phases (from left to right).  
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3.2.5.2 Changes in cell-cycle profile over time 

Although the KMT2D depletion appears to perturb cell proliferation by rendering the 

cells “trapped” in G0/G1, it is unknown what happens to these cells over a longer 

timeframe. It is possible that these cells might remain in G0/G1, eventually undergo 

apoptosis, or pass slowly through G0/G1 and into the other cell-cycle phases. To 

investigate these longer-term effects of KMT2D depletion on cell-cycle, PANC-1 cells 

were again transfected with either control siRNA or KMT2D siRNAs, and the cell-cycle 

profiles examined at 24-hour intervals over a 120-hour period (Figure 3.12). 

When the PANC-1 cells treated with control siRNA were evaluated over several days, 

the number and proportion of cells in G0/G1 slowly increased, while those in the S and 

G2/M-phases reduced (Figure 3.12). This is perhaps to be expected where an increase in 

confluence can affect further growth and proliferation due to increased contact 

inhibition. In contrast to this, KMT2D depletion led to a decrease in both the number 

and proportion of PANC-1 cells in G0/G1 (Figure 3.12). This decrease in G0/G1 was 

accompanied by a concomitant increase in the apoptotic fraction, whilst the proportions 

of polyploid and G2/M-phase cells remained similar (Figure 3.12). From this 

experiment, it is likely that KMT2D is required for cells to progress out of G0/G1, and, 

if KMT2D is depleted, cells are retained in G0/G1 before eventually undergoing 

apoptosis. 
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3.2.6 Effects of KMT2C and KMT2D depletion on the levels of H3K4 

methylation and total H3 

To examine whether altered levels of H3K4 methylation accompany KMT2C and 

KMT2D depletion, western blots were performed to detect changes in the global levels 

of mono- (H3K4me1), di- (H3K4me2) and tri- (H3K4me3) methylation (Figure 3.13). 

Changes in these marks were examined in PANC-1 cells at both 48 and 120 hours 

following transfection with two KMT2D siRNAs, three KMT2C siRNAs, and a control 

siRNA. 

For both methyltransferases, at 48 hours post-transfection, no striking changes in any of 

the methyl marks could be determined (Figure 3.13). At 120 hours, both KMT2D 

siRNAs appeared to reduce the level of all three H3K4 methylation marks compared to 

control siRNA, where these reductions were perhaps greater for H3K4me1 and 

H3K4me3, than H3K4me2 (Figure 3.13). Total H3 was also decreased in cells 

transfected with KMT2D siRNAs (Figure 3.13). KMT2C depletion had minimal effects 

on H3K4 methylation at 120 hours, where of the three marks, H3K4me2 particularly 

unaffected (Figure 3.13). 

Taken together the results in this chapter suggest that the methyltransferase KMT2D is 

required for normal cell-cycle progression, where its loss prevents cell proliferation due 

to G0/G1 cell-cycle arrest and subsequent apoptosis, and thus may confer an improved 

prognosis. 

 

Figure 3.13 – Changes in levels of H3K4 methylation due to depletion of KMT2D. Western blot 
analysis shows that in PANC-1 cells the levels of H3K4 mono-methylation (H3K4me1), di-
methylation (H3K4me2), tri-methylation (H3K4me3), and total H3 are affected by KMT2D 
depletion at 72 hours post-transfection (120hr), but not immediately following the 48-hour 
transfection when compared to an untargeted siRNA. Total H3 was used as loading control.  
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3.3 Discussion  
Mutations in KMT2C and KMT2D (and KMT2A) have recently been shown to impart 

significantly improved overall, and progression free, survival in PDAC (41). In 

addition, within the setting of breast cancer, KMT2D (and KDM6A, another member of 

the KMT2C/D containing complex) expression has been reported also correlate with 

improved outcome (202). Until now, whether inter-patient fluctuations in the expression 

of these methyltransferases also confer a benefit to PDAC patients has not been 

established. By comparing matched GEP and patient outcome in two publically 

available data series, we could group patients depending on the level of expression for 

these methyltransferases before comparing differences in survival.  

For both genes, independent and combinatory low and high expression patient groups 

were determined using the commonly used auto-cut-off method (see (238-242) for 

examples) described by Mihaly et al. (224). As opposed to arbitrarily selecting the 

median as a cut-off point, this approach instead tested each percentile of expression 

between the lower and upper quartiles in a Cox regression analysis to determine the 

optimal percentile threshold. For the ICGC PDAC data series, this approach uncovered 

a strong favourable link with the low expression of these histone modifiers (Figure 3.1), 

where this could also be resolved using the median cut-off point, albeit this was less 

significant (data not shown). Although a significant observation was not replicated in 

the TCGA data series, there was the same trend of low expression correlating with 

improved survival for either KMT2C alone, or in combination with KMT2D (Figure 

3.2). Unlike within the ICGC dataset, a correlation between improved survival and low 

KMT2D expression alone was not replicated in the TCGA series (Figure 3.2B).  

The exact reason for this discordance requires further investigation, where we 

hypothesise that it may arise from factors that differ between the patient populations 

(Table 2.11, Table 3.1 and Table 3.2), which are affected by sample inclusion 

criteria/requirements, or the methods and techniques used to generate the TCGA and 

ICGC data. Despite this however, the multivariate analysis for the ICGC dataset showed 

that KMT2C and/or KMT2D expression performed well as prognostic markers 

independently of age and tumour grade (Table 3.3). Although a similar trend was 

observed in the TCGA dataset for KMT2C and combined KMT2C and KMT2D 

expression, independent of age, tumour stage, tumour grade, and primary therapy 

outcome success, this was not significant (p > 0.05) (Table 3.4). Thus, the prognostic 

potential of KMT2C and KMT2D expression still requires further testing in additional 
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pancreatic cancer GEP datasets, however this is challenging since such datasets with 

large patient cohorts and detailed clinical parameters outside of the ICGC and TCGA 

are still lacking. 

Although much research has been done in oncology to identify promising disease 

biomarkers, relatively few have actually shown clinical effectiveness (243). These 

shortcomings are often attributed to experimental or analytical problems and biases, and 

are likely to only  be resolved by rigorous reporting and better guidelines (244). To this 

end, in 2005 McShane et al. produced the ‘REporting recommendations for tumour 

MARKer prognostic studies’ (REMARK) criteria so that researchers reading studies 

that follow these criteria can better understand the usefulness and context of any 

findings (244). To achieve this the REMARK criteria (clearly explained and elaborated 

on in a checklist by Altman et al. (245)) provide information on how best to report and 

design studies. The information covered by the REMARK checklist (245) can be found 

in the present study. In this way our identification of KMT2C and KMT2D expression as 

a PDAC outcome biomarker is likely to be robust, as highlighted by the similarities to 

that observed by Sausen et al. for LOF mutation (41). 

The molecular biological mechanisms by which these methyltransferases may influence 

patient outcome will be undoubtedly complex, where their role in maintaining H3K4me 

to facilitate the expression of many genes is likely to be implicated. To begin to 

understand the roles of these methyltransferases, a series of in vitro experiments were 

performed in this study with RNAi to silence their expression in a panel of human 

pancreatic cell lines. Throughout the literature there was, in general, a good consensus 

for the mutational status of the KRAS, TP53, CDKN2A, and SMAD4 genes in these cell 

lines (Table 3.5). Reports on the TP53 and CDKN2A mutational status of the Capan-2 

cell line are ambiguous with various groups showing TP53 as WT (60,227), having a 

200bp deletion (228,237), or a R273H mutation (229), and CDKN2A as being WT 

(60,229), or having a 7bp insertion (231). These discrepancies may be due to 

incomplete sequencing, or mismanagement of cell lines arising through 

misidentification (246), cross contamination, or genomic drift. 

The CFPAC-1 cell line was derived from a patient with cystic fibrosis (CF) (21). 

Mutations in the CF transmembrane conductance regulator (CFTR) are reported to be 

associated with chronic idiopathic pancreatitis (19,20), and therefore acts as risk factor 

for young onset PDAC (18). Despite the genetic characteristics of CFPAC-1 being well 

described, the presence of a CFTR mutation perhaps renders this cell line better suited 
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for studies on PDAC development and pathogenesis in CF patients (as has been 

suggested by Deer et al. (247)), where its origins might potentially be confounding and 

mask observations, such as the true roles of KMT2C and KMT2D in PDAC. For these 

reasons both the Capan-2 and CFPAC-1 cell lines were only used to examine the effects 

of KMT2C and KMT2D depletion on cell proliferation and not taken forward in other 

experiments. 

Expression of p53 was examined across the panel of pancreatic cell lines, both as a 

proxy for the presence of a TP53 mutation, and also because interactions between 

KMT2C/KMT2D and p53 have been reported (133,248) (Figure 3.3). Although subtle, 

there is a suggestion in our data that TP53 mutant cell lines, which overexpress p53, 

have slightly increased KMT2D expression when compared to those with a WT 

configuration (Figure 3.3 and Table 3.5). This supports recent findings by Zhu et al. 

which show that various p53 GOF mutants, including p53(R275H), bind to KMT2D 

whereas their depletion reduces KMT2D expression (55). In addition, because 

Kantidakis et al. recently showed that KMT2D LOF contribute to genome instability 

and further DNA damage (152), increased KMT2D expression in TP53 mutants may act 

a compensatory mechanism to minimise further DNA damage. 

The silencing experiments, which resulted in near complete loss of these 

methyltransferases (Figure 3.5 and Figure 3.6), showed that depleted KMT2D led to a 

marked reduction in proliferation in all eight pancreatic cell lines (Figure 3.8). This was 

consistent with previous studies in a range of human (55,138,151,202) and murine (135) 

cells, supporting an overlapping role of KMT2D across a variety of solid cancers. While 

KMT2C was variably implicated in the proliferation of PDAC cells (Figure 3.7), this 

effect was much less pronounced than that of KMT2D (Figure 3.8 and Figure 3.9). 

Unlike KMT2D, loss of KMT2C has been shown to either have no effect on (136), or 

increase (133,199,201,203) the proliferation of cells derived from both solid 

(133,136,203) and haematological malignancies (201). 

Our experiments also go a step further than these studies, whereby we also examined 

the possibility of complementary roles for KMT2C and KMT2D. Of those mentioned 

above, only Matkar et al. compares data between both, however discrepancies in their 

use of nomenclature (see 1.3.2) renders their findings somewhat ambiguous, where 

there is either no effect, or a decrease, on proliferation (136). Since our data showed 

effects for loss of either methyltransferase on proliferation, we postulate that some, but 

by no means a complete, functional redundancy exists between the KMT2C and 
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KMT2D complexes. This may well also explain the observation by Sausen et al. that no 

tumour contains both a KMT2D and KMT2C mutation (41). 

In the TP53 GOF mutation study by Zhu et al., the authors showed that TP53 mutations 

were required for KMT2D depletion to negatively affect proliferation (55), however 

whether expression of WT p53 could rescue from this effect was not examined. In our 

experiments, we did not observe this requirement for GOF TP53 where KMT2D 

depletion affected both WT and TP53 mutant cells alike. In addition, it is worth 

pointing out that despite the varied effects of KMT2C depletion across the cell lines, 

these effects did not correlate with TP53 mutation status. 

Following KMT2D knockdown by KMT2D siRNA2, cell number remained the same, 

with only a marginal decrease then eventually observed at 120 hours (Figure 3.9). This 

suggests that the initial effect of KMT2D depletion is cytostatic rather than inducing 

cell death. To further consider this, we performed cell-cycle analysis following KMT2D 

depletion. These experiments showed that cells devoid of KMT2D arrest in the G0/G1-

phases, where nocodazole could not elicit a G2/M-phase block (Figure 3.10 and Figure 

3.11). Previously, Issaeva et al. reported that despite KMT2D depletion substantially 

reducing HeLa cell growth, only a small increase in apoptotic “sub-G1” cells with no 

other prominent cell-cycle profile differences were observed (138). Contrary to this and 

supporting what we observe in “untreated” cell-cycle profiles (Figure 3.10 and Figure 

3.11), two studies in murine cells have shown an increase in G1-phase cells upon Kmt2d 

depletion (135,249). Using nocodazole we have taken this a step further whereby we 

showed that these cells accumulated in G1 without KMT2D do not pass through S-phase 

to reach the nocodazole pro-metaphase block (Figure 3.10). Following on from this, to 

determine the fate of these KMT2D depleted and G1 arrested cells, the cell-cycle 

profiles of transfected PANC-1 cells were examined up to 120 hours. Over time, 

without KMT2D the number of cells in the G0/G1-phase decreased, while the apoptotic 

fraction increased (Figure 3.12). 

The normal progression of cells through the cell-cycle is largely dependent upon a 

variety of proteins including cyclins, cyclin-dependent kinases (CDKs), and CDK 

inhibitors (CDKIs) (reviewed in (250)), the expression of which is tightly controlled. 

Although we did not explore this possibility further here, it may be that KMT2D is 

required for the correct temporal and spatial expression of cell cycle regulatory proteins, 

and thus promotes progression through the cell cycle. Interestingly, from experiments 
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performed in mouse embryonic cells, Wan et al. showed that Kmt2d loss was associated 

with increased levels of the CDKIs p16ink4a and p27Kip1 (135). 

The methyltransferases KMT2C and KMT2D are thought to predominantly act by 

catalysing the monomethylation of H3K4 (94,113,118,120,150,151), where both 

enzymes contain catalytic SET domains (118). For this reason, their role in facilitating 

progression of cells through the cell-cycle is likely dependent upon their histone 

directed methyltransferase activity, therefore as a preliminary investigation we 

performed western blots to determine changes in the global levels of these marks 

(Figure 3.13). At the early time point, no discernable change in the three H3K4 

methylation states, or total H3, were detected upon KMT2D or KMT2C depletion. At 

120 hours however, all three methylation marks were reduced upon KMT2D loss, 

although since the levels of total H3 also decreased in a similar manner, whether this is 

a result of decreased methyltransferase activity or a feature of the increased apoptosis 

cannot be discerned. As with the proliferation experiments, another feature to bear in 

mind is that for KMT2C only mRNA, and not protein, depletion could be confirmed. 

Although unlikely, in this way the methyltransferase activity of KMT2C may remain, 

leaving H3K4 methylation largely unaffected. It may also be that where no changes in 

methylation were seen, compensatory mechanisms involving the remaining KMT 

methyltransferases may exist to maintain the marks, where only the depletion of each 

was studied in isolation. Other limiting features of this technique are that it only 

examines global levels of these marks on histones, where any subtler and gene loci 

specific methylation effects, and those also on non-histone proteins, are overlooked. 

Previously, several others have also examined the methyltransferase activity of KMT2C 

and KMT2D where, until more recently, the results have been varied 

(94,138,150,251,252). Using human cell lines, Goo et al. reported that these complexes 

only have weak H3K4 methyltransferase activity (252), however only KMT2C data was 

provided. In contrast, Mo et al. commented that no methyltransferase activity could be 

demonstrated for KMT2D (251), whereas Issaeva et al. reported clear H3K4 

methyltransferase activity (138). In more recent studies however, both complexes are 

shown to specifically implement H3K4 monomethylation (94,118,153), especially at 

enhancers (120,150-152) and promoters (113), with perhaps also a weak dimethylation 

effect (120,151-153), where Zhang et al. showed this to increase with time (118). This 

proposed subtle, yet gene loci-targeted, role might provide one explanation for our 

observed lack of a change in global H3K4 methylation at 48 hours. In this way, 
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Kantidakis et al. did not observe differences in genomic H3K4me1 upon Kmt2d loss in 

murine embryonic fibroblasts, and perhaps surprisingly instead noted a marginal 

increase in H3K4me1-3 at genes damaged when Kmt2d is lost (152). Together these 

studies suggest that these methyltransferases alter gene expression through specific gene 

targeted H3K4 methylation changes. 

In summary, within this chapter, and in line with the REMARK criteria (245), we have 

identified a role for KMT2D and KMT2C as prognostic predictors of PDAC outcome, 

supporting a case for the incorporation of their mutation and expression into existing 

patient stratification strategies. We speculate that this improved outcome may be a 

result of the reduced cell proliferation caused by KMT2D depletion, where it appears to 

hold a key role in cell progression out of G0/G1. The functional effects of these 

methyltransferases are likely due to their roles in orchestrating gene expression through 

maintaining H3K4 methylation. To better understand specific effects and gene targets of 

KMT2D and KMT2C, which are likely be both subtle and great in number, in the next 

chapter we use a large-scale gene expression approach with follow up analysis. 
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4.1 Background 
KMT2C and KMT2D function as catalytic subunits within complexes to catalyse H3K4 

methylation (144). H3K4 trimethylation is generally associated with active gene 

expression, particularly at promoters, whereas monomethylated H3K4 (H3K4me1) is 

found at actively transcribed (94,98,109,112) and poised (107) enhancers. KMT2C and 

KMT2D preferentially act as monomethyltransferases at these active genomic regions, 

therefore it is likely our functional observations are regulated through changes in the 

expression of a range of genes. In support of this, Kantidakis et al. have previously 

shown that KMT2D mutation results in a loss of transcription-associated H3K4 

methylation (152). 

Since complexes containing KMT2C and KMT2D broadly associate with a large range 

of genomic loci (120,149-152), a large-scale gene expression analysis is required to 

capture the true extent of the changes to the transcriptome. This approach was used in 

the present chapter to determine which genes are affected upon the depletion of these 

epigenetic modifiers. KMT2C and KMT2D specific RNAi was used to silence gene 

expression in three PDAC cell lines and isolated total RNA for RNA sequencing (RNA-

seq). These RNA samples were sent to Source Bioscience for quality control and RNA-

seq whilst Dr Jun Wang at Barts Cancer Institute (BCI) performed all of the 

bioinformatic analysis. 

After initially identifying the genes differentially expressed (DE) upon loss of KMT2D, 

or KMT2C, gene set enrichment analysis (GSEA) was performed to identify 

significantly altered pathways. Following this, these profiles were superimposed onto 

the ICGC and TCGA datasets to assess the biological process enrichment of genes that 

strongly correlate with KMT2C and KMT2D expression. Comparing these pathways 

against the RNA-seq GSEA data helped identify genes commonly associated with 

histone methyltransferase expression that might also confer an improved clinical 

outcome. 

4.2 Results  

4.2.1 Generation of KMT2C and KMT2D depleted RNA samples for RNA-seq 

Total RNA samples were generated for RNA-seq from three PDAC cell lines (PANC-1, 

SUIT-2 and COLO 357) at 48 hours after siRNA transfection. KMT2C was depleted in 

the three cell lines using three targeted siRNAs (KMT2C siRNA1, KMT2C siRNA2, and 

KMT2C siRNA3), while KMT2D was depleted using two targeted siRNAs (KMT2D 
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siRNA1 and KMT2C siRNA2). Before samples were sent to an external service 

provider Source BioScience (www.sourcebioscience.com) for sequencing, the depletion 

of both KMT2C (mRNA) and KMT2D (mRNA and protein) was first confirmed. The 

concentration and RNA integrity were confirmed to be of sufficient quality in-house 

before samples were sent to Source BioScience for library preparation, and sequencing. 

4.2.1.1 Knockdown of KMT2C and KMT2D for RNA-seq studies 

Each targeted siRNA resulted in the knockdown of KMT2C, or KMT2D, at the mRNA 

(Figure 4.1A), and/or protein levels (Figure 4.1B) when compared to the scrambled 

control. A decrease in the expression of KMT2D mRNA in the PANC-1 cell line by 

both KMT2C siRNA1 and KMT2C siRNA3 was observed (Figure 4.1A, left). This 

effect for KMT2C siRNA3 was also detected at the protein level in both the PANC-1 

and COLO 357 cell lines (Figure 4.1B). In comparison, KMT2C mRNA expression was 

only slightly decreased by one KMT2D siRNA (KMT2D siRNA1) in PANC-1 cells, 

otherwise an increase in KMT2C was observed. This stronger increase in KMT2C 

mRNA by KMT2D siRNAs, than KMT2D by KMT2C siRNAs, may perhaps be 

indicative of a greater compensatory response to overcome the greater anti-proliferative 

effects induced by KMT2D depletion. 
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Figure 4.1 – KMT2D and KMT2C targeted siRNAs reduce expression of KMT2D mRNA and 
protein, and KMT2C mRNA respectively. A, RT-qPCR analysis showing changes in KMT2D and 
KMT2C mRNA expression in the three cell lines (PANC-1 (black circles), SUIT-2 (red triangles) 
and COLO 357 (blue squares)) following transfection with the two KMT2D siRNAs, the three 
KMT2C siRNAs, or the scramble negative control siRNA. Data shown are normalized mean values 
from technical triplicates. B, Western blot analysis showing that the two KMT2D siRNAs reducing 
KMT2D levels in three cell lines (PANC-1, SUIT-2 and COLO 357), whereas for the three KMT2C 
and control siRNAs it remains relatively unaffected. A third siRNA was cropped from the images 
between KMT2D siRNA1 and 2. 
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4.2.1.2 Quality control of samples 

Before RNA sequencing was performed, two quality checks were made. Firstly an 

initial basic measurement was made using a Nanodrop spectrophotometer, and a second 

more stringent evaluation using a BioAnalyser at Source BioScience (Table 4.1). From 

the Nanodrop readings, all samples contained at least 167ng/μl of RNA. The 

280nm/260nm absorbance ratios suggested that the RNA samples had good levels of 

purity (> 2). Although the 260nm/230nm ratios suggested that some samples had some 

guanidine thiocyanate contamination (< 1), it has been reported that 260nm/230nm 

ratios of < 1 do not affect the library preparation (253). From the Bioanalyser analysis 

the RNA samples were deemed to be of a quality suitable for sequencing where RNA 

integrity was close to 10 for all but one sample, where this was > 7. 

 

QMUL (BCI) Nanodrop Source 
Bioscience Bio analyser 

Sample ID Conc 
(ng/μl) 

260/280 
(nm) 

260/230 
(nm) ID Conc 

(ng/µl) RIN 

PANC-1 

Control siRNA 224.5 2.1 1.83 SOL6268 261 9.8 
KMT2D siRNA1 266.5 2.11 1.83 SOL6269 294 9.6 
KMT2D siRNA2 200.9 2.11 1.93 SOL6271 219 9 
KMT2C siRNA1 372.3 2.09 2.19 SOL6272 342 10 
KMT2C siRNA2 167 2.15 0.67 SOL6273 228 7.3 
KMT2C siRNA3 312.7 2.11 1.46 SOL6274 390 9.2 

SUIT-2 

Control siRNA 553.8 2.2 1.84 SOL6567 657 10 
KMT2D siRNA1 457.1 2.1 1.97 SOL6568 558 10 
KMT2D siRNA2 312.6 2.12 2.11 SOL6570 405 10 
KMT2C siRNA1 410 2.13 0.72 SOL6571 466 10 
KMT2C siRNA2 314.4 2.13 1.97 SOL6572 245 10 
KMT2C siRNA3 501.3 2.22 1.93 SOL6573 378 10 

COLO 357 

Control siRNA 588.3 2.15 0.84 SOL6560 564 10 
KMT2D siRNA1 389.4 2.13 1.86 SOL6561 395 10 
KMT2D siRNA2 505.4 2.13 2.18 SOL6563 519 10 
KMT2C siRNA1 312 2.13 2.12 SOL6564 323 10 
KMT2C siRNA2 516.2 2.14 2.14 SOL6565 500 10 
KMT2C siRNA3 252.2 2.14 2.06 SOL6566 276 9.6 

Table 4.1 – Nanodrop and BioAnalyser quality control measurements of samples. Table 
contains data for the RNA concentration, purity (260nm/280nm and 260nm/230nm), and RNA 
integrity number (RIN) for each sample as quantified using the Nanodrop and BioAnalyser.  
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4.2.2 Genes differentially expressed following depletion of KMT2C or KMT2D 

Transcriptomes for the PANC-1, SUIT-2 and COLO 357 cell lines, where KMT2C or 

KMT2D had been depleted using targeted siRNAs, or control siRNA, were assessed 

using 100 bp paired-end deep RNA sequencing generating approximately 36 million 

paired-end reads per sample. Bioinformatic analysis was focused on DE protein-coding 

genes shared between the individual siRNAs for the three PDAC cell lines. There were 

good correlations in the log2 fold changes for all quantified genes within the KMT2C 

and KMT2D siRNA datasets between the different siRNAs when compared to control 

siRNA (correlation coefficients ranging from 0.39 to 0.60, p < 0.05) (Figure 4.2). 

KMT2C silencing resulted in differential expression of 790 genes in total, with 31 of 

these common across all three siRNAs tested (Figure 4.3 and Figure 4.4). For these 31 

common DE genes, the fold changes ranged from 0.18 (downregulated, AKR1B10) to 

6.51 (upregulated, ANO3), with 27 genes demonstrating an increase, and four 

demonstrating a decrease, in expression. KMT2D silencing resulted in a total of 1202 

DE genes, with 124 of these common to both siRNAs across the three lines (Figure 4.3 

and Figure 4.5). Fold changes for the KMT2D DE genes ranged from 0.14 

(downregulated, C2orf54) to 24.43 (upregulated, KRT6B), with 40 genes exhibiting a 

decrease, and 84 an increase, in gene expression. 

Interestingly, there was an overlap of 19 commonly DE genes in the KMT2C and 

KMT2D siRNA datasets (Figure 4.3). Each of these genes demonstrated a consistent 

directional fold change between the two methyltransferase (Table 4.2 and Table 4.3). 
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Figure 4.2 – Correlation in differential gene expression between the siRNAs, for both KMT2C 
and KMT2D within the RNA-seq data. All sufficiently quantified differentially expressed genes 
were used for the overall correlation analysis between different targeted siRNAs for both genes. 
Horizontal and vertical lines indicate log2 fold change = 1 and -1, r  = Pearson’s correlation 
coefficient. 
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Figure 4.3 - Venn diagram depicting the commonality between the DE genes for each targeted 
siRNA. Bioinformatic analysis of RNA-seq data identified DE genes common across the three cell 
lines (PANC-1, SUIT-2 and COLO 357) for the two KMT2D siRNAs, and three KMT2C siRNAs, 
compared to the negative control siRNA. Numbers within each set of the Venn diagram displays the 
number of DE genes for each siRNA across the three cell lines, where 19 genes were found to be 
common across all siRNAs and cell lines. 

 

 

Figure 4.4 – Heatmap depicting the normalised expression of the DE genes for all three 
KMT2C targeted siRNAs. Bioinformatic analysis of RNA-seq data identified 31 DE genes 
common across the three cell lines (PANC-1, SUIT-2 and COLO 357) for the three KMT2C siRNAs 
compared to the negative control siRNA. Heatmaps show the levels of expression for each of the 31 
commonly DE genes, where gene downregulation and upregulation are represented by the colours 
blue and red, respectively. DE genes are listed in Appendix II   



Chapter 4: Results 

 111 

 

 

 

 

Figure 4.5 - Heatmap depicting the normalised expression of the DE genes for both KMT2D 
targeted siRNAs. Bioinformatic analysis of RNA-seq data identified 124 DE genes common across 
the three cell lines (PANC-1, SUIT-2 and COLO 357) for the two KMT2D siRNAs compared to the 
negative control siRNA. Heatmaps show the levels of expression for each of the 124 commonly DE 
genes, where gene downregulation and upregulation are represented by the colours blue and red, 
respectively. DE genes are listed in Appendix III   
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4.2.2.1 Increased expression of MET, Calumenin, Claudin-1, PTPN14 and 

PIP4K2A 

Five of the 19 genes common to all siRNAs for both methyltransferases were selected 

for validation. Four of these were previously associated with pancreatic cancer (MET 

(42,254), PTPN14 (255), Calumenin (255) and Claudin-1 (256,257)) whilst a fifth 

(PIP4K2A) encodes a lipid kinase involved in cell signal transduction (258). The RNA-

seq values for the number of reads per kilobase of transcript per million mapped reads 

(RPKM) showed that methyltransferase depletion increased the expression for each of 

these genes (Figure 4.6A). These changes were confirmed at the protein level by 

western blot (Figure 4.6B). Data generated for each gene are described in the sections 

below. 

4.2.2.1.1 MET (MET Proto-Oncogene, Receptor Tyrosine Kinase) 

MET is a proto-oncogene that encodes for a precursor protein (pro-MET) for the 

receptor tyrosine kinase, MET (also known as c-MET, or hepatocyte growth factor 

receptor (HGFR)). In malignant cells, aberrations in MET activation occur not only 

through increased amounts of ligand, but also through ligand-dependent and ligand-

independent mechanisms such as gene over expression, amplification, or mutation 

(reviewed in (259)). Previously, large meta-analyses have shown that high MET 

expression is associated with poor prognosis and survival in both gastric (260) and 

breast (261) cancers. Moreover, in PDAC patients with stage I and II disease, high MET 

expression levels have also been shown to identify those with a high risk of relapse and 

poor survival (254). 

Under control conditions, each of the three cell lines expressed the cleaved MET 

protein, with no uncleaved pro-MET detected (Figure 4.6B). As expected from the 

RNA-seq data, depletion of KMT2C or KMT2D resulted in increased MET expression. 

This was most striking in the SUIT-2 cell line, and least so in the PANC-1 cell line, 

mirroring previous observations for untreated cell lines by Di Renzo et al. (262). 

Interestingly, and in contrast with this study, only the uncleaved 170kDa precursor 

protein was detected when SUIT-2 cells were devoid of the methyltransferases. 

4.2.2.1.2 PTPN14 (Protein Tyrosine Phosphatase, Non-Receptor Type 14) 

The PTPN14 gene encodes for a Class I, non-receptor type, protein-tyrosine 

phosphatase called PTPN14 (also called Pez, PTPD2, or PTP36), and has been 

proposed as a tumour suppressor (263). PTPN14 is involved in the dephosphorylation 
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of tyrosine residues on range of substrates (264), with roles for PTPN14 reported in cell 

proliferation (265,266), cell adhesion (265,266), migration (263,264,267), protein 

trafficking (264), and response to chemotherapy (268). 

The expression of PTPN14 before methyltransferase depletion was higher in primary 

PANC-1 cells than in the metastatic SUIT-2 and COLO 357 cell lines (Figure 4.6). 

When the PANC-1 cell line was treated with KMT2C and KMT2D siRNAs, a strong 

increase in PTPN14 was noted, which was more pronounced following KMT2D 

depletion (Figure 4.6B). SUIT-2 and COLO 357 cells exhibited smaller increases in 

PTPN14 expression (Figure 4.6, where for COLO 357 this weak increase was only 

observed following KMT2C depletion, and not KMT2D (Figure 4.6B). Of the KMT2C 

siRNAs, across the three cell lines, KMT2C siRNA2 had a much weaker effect on 

PTPN14 expression, however this was not observed in the RNA-seq RPKM data 

(Figure 4.6). 

4.2.2.1.3 PIP4K2A (Phosphatidylinositol-5-Phosphate 4-Kinase Type 2 Alpha) 

PIP4K2A encodes a lipid kinase that, like PTPN14, is involved in the transduction of 

intracellular signals. PIP4K2A functions as a kinase to facilitate the phosphorylation of 

phosphatidylinositol-5-phosphate (PI(5)P), converting it into phosphatidylinositol 4,5-

bisphosphate (PI(4,5)P2) (258). PI(4,5)P2 is a substrate for the membrane bound G 

protein-coupled receptor (GPCR) activated enzyme, phospholipase C (PLC), where 

PI(4,5)P2 is converted into the secondary messengers diacylglycerol (DAG) and inositol 

1,4,5-triphosphate (IP3), whereby IP3 facilitates intracellular Ca2+ release (269). 

Although more subtle than with the other proteins, especially when KMT2C is depleted, 

PIP4K2A expression was increased when the cells did not express the H3K4 

methyltransferases (Figure 4.6B). 

4.2.2.1.4 CALU (Calumenin) 

CALU encodes for a low-affinity Ca2+ binding, endoplasmic reticulum (ER) located, 

(CREC) family protein called Calumenin (270,271). The storage of cellular Ca2+ within 

the ER has two distinct roles in facilitating cellular processes. Firstly, the resulting low 

cytoplasmic Ca2+ levels mean that Ca2+ release into the cytoplasm functions as an 

intracellular signal. Secondly, the high Ca2+ levels contained within the ER helps 

chaperone proteins to facilitate protein folding and secretion (272). Calumenin has 

previously been implicated in secretory pathways (271,273) where its low Ca2+ binding 

capacity has been proposed to impact Ca2+ homeostasis (274) and sensing, rather than in 

buffering (275). In addition to this ER function, Calumenin itself is secreted into the 
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extracellular space (255,273,276) where it inhibits cell migration by preventing the 

degradation of extracellular matrix (ECM) by matrix metalloproteinase (MMP) (255). 

As with the other highlighted genes, Calumenin expression was increased in the three 

cell lines upon KMT2C or KMT2D depletion (Figure 4.6B). 

4.2.2.1.5 CLDN1 (Claudin-1) 

CLDN1 encodes for the transmembrane protein Claudin-1, a member of the Claudin 

family of tight junction proteins. Tight junction protein complexes containing Claudins 

are found between the membranes of neighbouring epithelial cells are essential for the 

formation of a cell barrier (277). The increase in CLDN1 expression due to the 

depletion of KMT2C, or KMT2D, was found to be greatest in the SUIT-2 and COLO 

357 metastatic cell lines, whereas PANC-1 cells only exhibited a minor increase upon 

KMT2D depletion (Figure 4.6). 
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Figure 4.6 – Increased mRNA and protein expression for five genes selected from the 19 
commonly DE genes A, Changes in the RPKM values for five of the 19 commonly DE genes (MET, 
PTPN14, PIP4K2A, CALU and CLDN1), each increasing upon treatment with KMT2D or KMT2C 
siRNAs. B, Western blot analysis to validate the expressional changes of the five DE genes 
following transfection with the two KMT2D siRNAs, the three KMT2C siRNAs, or the scramble 
negative control siRNA. A third siRNA was cropped from the images between KMT2D siRNA1 and 
2. Pro-MET = Uncleaved-MET, c-MET = Cleaved-MET.  
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4.2.2.2 Decreased expression of ABCB1 

In addition to the five common DE genes described above, ABCB1 was also selected for 

validation. This gene was selected because, unlike the other genes, its expression was 

decreased by the loss of KMT2D, and thus is more likely to be a direct targeted of H3K4 

methylation. ABCB1 encodes an ATP-dependent efflux pump called ATP-binding 

cassette sub-family B member 1 (ABCB1, also known as P-glycoprotein 1 (Pgp), 

multidrug resistance protein 1 (MDR1), or CD243), and has been linked with increased 

drug resistance in a range of cancers (278), including pancreatic cancer (279). The 

expression of ABCB1 was specific to the two cell lines of metastatic origin (SUIT-2 and 

COLO 357), where its decreased expression upon KMT2D silencing was particularly 

evident in the SUIT-2 cell line (Figure 4.7). 

 

 

Figure 4.7 – Decreased mRNA and protein expression of ABCB1 upon KMT2D depletion. 
RNA-seq RPKM data and western blot analysis for the decrease in ABCB1 expression across the cell 
lines following treatment with KMT2D siRNAs. A third siRNA was cropped from the images. 

 

4.2.3 GSEA of differentially expressed genes 

In light of the overlapping data between the transcriptomes for the KMT2C and 

KMT2D depleted cell lines, GSEA was employed to explore the significant differences 

between the targeted and control siRNAs in all curated canonical pathways (Table 4.8). 

In support of the proliferation and cell-cycle studies (Chapter 3), the following six 

pathways were significantly downregulated (FDR < 0.05) compared to controls in all 

siRNA experiments; cell-cycle, cell-cycle mitotic, DNA replication, DNA repair, 

mitotic M-M/G1-phases and Fanconi pathways, all of which relate to cell-cycle and 

DNA maintenance (Table 4.8). In addition to these, several others relating to cell-cycle 

checkpoints and cell apoptosis were identified as being affected, however significance 

was not reached in all five of the pair-wise comparisons. 



Chapter 4: Results 

 119 

Moreover, the telomere maintenance, meiotic recombination, and chromosome 

maintenance pathways, were each significantly downregulated in the KMT2D siRNA 

datasets, whilst also demonstrating an overall less pronounced trend towards 

downregulation in the KMT2C siRNA dataset (Figure 4.8). Interestingly, the translation 

pathway was differentially altered by each methyltransferase, where its upregulation 

was associated with KMT2D depletion, and conversely downregulated upon KMT2C 

depletion. In addition, data suggests that other pathways, such as the packaging of 

telomere ends, processing of capped intron containing pre-mRNA, and mRNA 

processing pathways may also be differentially altered by the methyltransferases 

(Figure 4.8). Taken together, these differences may highlight different, non-redundant 

roles for the two H3K4 methyltransferases. 
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Figure 4.8 – Heatmap to depict the normalized enrichment score (NES) for the significantly 
enriched pathways upon KMT2C or KMT2D depletion as determined by GSEA. Bioinformatic 
analysis of the DE genes produced NES for the most enriched pathways following the depletion of 
KMT2D or KMT2C by siRNAs. A negative NES indicates a downregulation in siRNA treated 
samples in relation to control (blue), and the opposite for a positive NES (red). Pathways 
significantly downregulated by all examined siRNAs are noted in red text.  
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4.2.4 Pathway analysis of PDAC patient GEP data confirms changes in cell-cycle 

To assess whether these pathways could also be found in the clinical data biological 

process enrichment was performed on the genes that correlated strongly (Pearson’s 

correlation p < 0.001) with KMT2C/D expression levels from the ICGC and TCGA 

human pancreatic cancer datasets (see 3.2.1). In this way, for the genes that correlated 

positively with combined KMT2C/D expression the PANTHER classification system 

identified a significant enrichment for the cell-cycle (adjusted (adj.) p = 1.45x10-2 for 

ICGC dataset (Table 4.4); adj. p = 1.02x10-6 for TCGA (Table 4.5)), mitosis (adj. p = 

1.62x10-3 for TCGA (Table 4.5)), and DNA repair (adj. p = 1.61x10-2 for TCGA (Table 

4.5)) pathways. 

In addition to these commonly downregulated pathways, translation was the most 

overrepresented biological pathway for these genes, where expression showed 

significant negative correlation with KMT2C/D (adj. p = 2.21x10-4 for ICGC (Table 4.6) 

and adj. p = 5.76x10-30 for TCGA (Table 4.7)).  

Overall, the pathways identified from the correlations with KMT2C/D expression in 

clinical datasets, were consistent with the most significantly downregulated, and 

upregulated, pathways from in the in vitro RNA-seq experiments (Figure 4.8).  
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4.2.4.1 Identification of potentially implicated genes 

Among the 94 and 257 cell-cycle genes that showed significant positive correlation with 

combined KMT2C/D expression from the respective ICGC (Table 4.4) and TCGA 

(Table 4.5) datasets, three (NCAPD3, CDKL1 and EIF2AK4) were significantly 

downregulated in at least one KMT2C/D siRNA experiment. Each of the three genes 

showed significant positive correlations with the expression of KMT2C/D in both the 

ICGC and TCGA datasets (NCAPD3: r = 0.36, p = 5.56x10-4 and r = 0.38, p = 5.19x10-

5; CDKL1: r = 0.33, p = 1.86x10-3 and r = 0.57, p = 1.36x10-10; EIF2AK4: r = 0.27, p = 

1.04x10-2 and r = 0.36, p = 1.13x10-4, respectively (Table 4.8 and Figure 4.9). Using 

cBioPortal (280,281) the individual gene expression correlation between KMT2C, 

KMT2D and these three genes could also be investigated in the TCGA dataset. For 

KMT2C a positive correlation could be found with KMT2D (r = 0.69), NCAPD3 (r = 

0.38) and CDKL1 (r = 0.46), where only the correlation between KMT2D and CDKL1 

r = 0.39) was shown (Figure 4.10). Data for the other gene comparisons could not be 

distinguished as cBioPortal only shows data for genes with a Pearson’s correlation of 

greater than 0.3 or less than -0.3. 

We next tested the ICGC and TCGA datasets to examine whether the expression of 

each of these genes correlated significantly with patient outcome. For each of the three 

genes, the patients with low-level expression had significantly better OS rates, however 

for EIF2AK4 this only reached the p < 0.1 threshold, rather than p < 0.05, in the ICGC 

dataset (Figure 4.11 and Figure 4.12). 

Given the striking correlations in these datasets, we went on to test these associations in 

two additional human pancreatic cancer cohorts, the Stratford and BCI_Zhang_merged 

datasets (223). For NCAPD3, both datasets showed significant correlations (log-rank p 

= 0.042 for Stratford dataset and p = 2.12x10-4 for BCI_Zhang_merged dataset) (Figure 

4.12). The candidacy of both CDKL1 and EIF2AK4 was not supported in these 

additional cohorts, where low EIF2AK4 expression showed only a marginally 

significant correlation with improved survival in the BCI_Zhang_merged dataset 

(Figure 4.12). In fact, the opposite was observed for CDKL1, where lower expression 

correlated significantly with a worsened survival in the BCI_Zhang_merged dataset 

(Figure 4.12). 

Interestingly, for NCAPD3 a significant downregulation of expression was observed in 

our KMT2D siRNA datasets, but not the KMT2C siRNA datasets, when compared to 
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control (KMT2D siRNA1, FDR = 0.0299; KMT2D siRNA2, FDR = 1.37x10-18) (Table 

4.8 and Figure 4.13A). To examine whether these changes were translated to the protein 

level, western blots were performed to confirm that reduced NCAPD3 expression was 

an effect specific to KMT2D, and not also KMT2C (Figure 4.13B). Whilst this 

reduction in expression was true for both KMT2D siRNAs, it is worth pointing out that 

the effect of KMT2D siRNA2 was far greater than that of KMT2D siRNA1 across the 

three cell lines. 

Collectively, the results from these experiments suggest that KMT2C and KMT2D have 

roles in regulating the expression of a wide range of genes, but especially those relating 

to the cell-cycle and DNA maintenance. This in turn impacts on clinical outcome in 

patients. Of the DE genes, NCAPD3 emerges as being a good candidate for further 

investigation, since its expression is preferentially decreased upon KMT2D depletion. 

Furthermore, it holds an important role within the cell-cycle, and is a remarkable 

predictor for improved PDAC outcome.  
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Figure 4.9 – Correlation of gene expression for NCAPD3, CDKL1, and EIF2AK4 with 
KMT2C/D Significant positive correlations between the three genes (NCAPD3, CDKL1 and 
EIF2AK4) and KMT2C/D combined expression levels for both the ICGC and TCGA datasets. The 
Pearson’s correlation coefficient and associated p-values are shown for each set.  



Chapter 4: Results 

 129 

 

Figure 4.10 – Correlation of individual gene expression for NCAPD3 or KMT2D with KMT2C, 
and CDKL1 with KMT2C or KMT2D. Using cBioPortal ((280,281)) for the TCGA provisional 
dataset highlighted significant positive correlations between these individual genes. The Pearson’s 
correlation coefficient is shown for each. Due to availability only data for the TCGA could be 
interrogated (and not the ICGC), where only the genes with a Pearson’s correlation of greater than 
0.3 or less than -0.3 could be obtained. 
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Figure 4.11 – Correlation of NCAPD3, CDKL1, and EIF2AK4 expression with overall survival 
in the ICGC and TCGA datasets. KM survival analysis of PDAC tumours from the ICGC (left) 
and TCGA (right) datasets show significant negative correlations of patient survival with high (red) 
and low (black) expression of NCAPD3 (top), CDKL1 (middle) and EIF2AK4 (bottom). Numbers on 
the x-axis represent years. HR = Hazard ratio.  
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Figure 4.12 – Correlation of NCAPD3, CDKL1 and EIF2AK4 expression with overall survival 
in the Stratford and BCI_Zhang_merged datasets. KM survival analysis of PDAC tumours from 
the Stratford (left) and BCI_Zhang_merged (right) datasets show negative correlations of patient 
survival with high (red) and low (black) expression of NCAPD3 (top), CDKL1 (middle) and 
EIF2AK4 (bottom). Numbers on the x-axis represent years. HR = Hazard ratio.  
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Figure 4.13 – Decreased mRNA and protein expression of NCAPD3 following depletion of 
KMT2C or KMT2D. A, Changes in the RNA-seq RPKM data for NCAPD3 showing a decrease in 
expression following the depletion of KMT2D, but not KMT2C, by targeted siRNAs. B, Western 
blot analysis to validate the expression change for NCAPD3 at the protein level upon the depletion 
of KMT2D, but not KMT2C, by targeted siRNAs. 

 
 

4.3 Discussion  
To explore the potential downstream effectors of KMT2C and KMT2D, and the 

pathways affected by their loss in pancreatic cancer, the transcriptome changes 

associated with their depletion were examined. Although not in pancreatic cancer, an 

earlier study Issaeva et al. had performed microarray analysis on HeLa cells that had 

undergone retroviral transduction with KMT2D shRNA vectors (138). In a more recent 

direct approach to examine genes targeted by the KMT2D complex, Guo et al. 

combined the use of both chromatin immunoprecipitation DNA sequencing (ChIP-seq) 

and gene expression microarray analysis techniques (248). These experiments were 

performed in colorectal carcinoma cells (HCT116, which harbours a homozygous 

KMT2C inactivating frameshift mutation (282)) somatically targeted with a recombinant 

adeno-associated virus (rAAV) vector to either express KMT2D-Flag (for ChIP-seq), or 

to create a KMT2D-null cell line (248). Both of these microarray based studies showed 

that genes regulated by KMT2D were associated with a diverse range of cell functions 

and pathways. Importantly, and perhaps most interestingly, Guo et al. note that the 

KMT2D complex’s binding loci, and its specific functions, are likely to be “exogenous 

signalling- and/or cellular context-dependent” (248) and so in this chapter the roles of 

KMT2C and KMT2D were analysed by RNA-seq in PDAC cell lines. 
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For the RNA-seq analysis, RNA samples were generated from the PANC-1 SUIT-2 and 

COLO 357 cell lines at 48 hours post-transfection with siRNA. To reflect the highly 

metastatic and mutationally diverse nature of PDAC, the three cell lines were selected 

so as to include lines derived from both primary and metastatic sites, with a range of 

gene mutations (Table 3.5). PANC-1 was chosen as it originates from a primary tumour 

(208), whereas SUIT-2 and COLO 357 originate from the metastatic sites (liver (212) 

and celiac axis lymph node (214), respectively) of PDAC patients. Of those available 

only cell lines that harboured an oncogenic G12D KRAS mutation were selected since 

this mutation is found in almost all PDAC patient tumours (40). Capan-2 was excluded 

for consideration as a result of the ambiguous reports on its TP53 and CDKN2A 

statuses, as discussed in the previous chapter. CFPAC-1 was also excluded due to its 

potentially confounding CF origins (21). A time point of 48 hours post-transfection was 

selected for generating the RNA samples in an attempt to minimise the capture of 

secondary transcriptional effects resulting from reduced proliferation/increased 

apoptosis described in the previous chapter. Upon confirming the depletion of each 

methyltransferase for the siRNAs, potential compensatory and off-target effects were 

also noted, whereby mRNA expression was increased for the non-targeted KMT2 

methyltransferase, especially KMT2C upon KMT2D depletion (Figure 4.1). This is 

perhaps not surprising given the homology between the two genes and the fact that they 

form complexes that are identical to one another, where they are proposed to have 

similar roles in H3K4 methylation. 

In order to identify robust gene signatures, we focused primarily on the changes 

consistent across the three cell lines and siRNA experiments. These RNA-seq 

experiments highlighted changes in 1202 genes for KMT2D siRNAs (124 common to 

both siRNAs, Figure 4.5) and 790 genes for KMT2C siRNAs (31 common to the three 

siRNAs, Figure 4.4) (Figure 4.3). The more striking phenotypic effect of reduced 

KMT2D (Chapter 3) was concordant with a higher number of DE genes upon depletion 

of this methyltransferase. Interestingly, for both methyltransferases the majority of the 

common DE genes were increased upon their depletion (KMT2D, 84 up and 40 down; 

KMT2C, 27 up and four down). This is unexpected considering the link between H3K4 

methylation and active gene expression and contrasts with that found by Issaeva et al. 

and Guo et al. (Issaeva et al. HeLa, 74 downregulated with only two genes upregulated 

(138); Guo et al. HCT116 cells, 301 downregulated with 51 genes upregulated (248)). 

As was also suggested by Guo et al., these upregulated genes may be indirect, or 

secondary, effects of losing these important methyltransferases. The greater number of 
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these genes observed in our data relative to these studies may reflect the nature of the 

models and techniques used. For example, the RNA-seq technique used here is an 

unbiased approach to examine gene expression, whereas their use of a DNA microarray 

for gene expression is limited by number of gene probes examined and its reduced 

accuracy for lowly expressed genes. Both studies also used stably generated cell lines 

which survive in the absence of KMT2D; it is therefore possible that they do not exhibit 

such drastic compensatory changes as an acute depletion of these methyltransferases 

might trigger, particularly where the PDAC cell lines used here are more dependant on 

their expression. In addition this may be a feature of our stringent analysis, where we 

focused in on changes common to three cell lines for all siRNAs, which may have 

filtered out more subtle decreases in gene expression. 

Of the 19 DE genes commonly upregulated by KMT2C and KMTD siRNAs, perhaps 

the most notorious is the proto-oncogene MET (Figure 4.6). In a study by Di Renzo et 

al. it was shown that c-MET is upregulated in PDAC compared to the adjacent 

“normal” tissue (262). In more recent studies it has been shown that MET expression is 

associated with poor prognosis and survival in multiple cancer types (254,260,261). In 

the study by Di Renzo et al., MET was highly expressed in PDAC cell lines, especially 

those that show a high degree of differentiation, where stimulation of these cells with 

HGF resulted in increased cell proliferation, motility and invasion (262). From this we 

currently speculate that the increased expression of MET may be an indirect result to 

counteract and compensate for the negative effects of KMT2D depletion on 

proliferation. 

As with MET, PIP4K2A has also been proposed to have pro-tumorigenic roles, where 

its depletion is shown to abrogate the clonogenic potential of AML cells (283). Jude et 

al. showed that this was associated with an accumulation of the cyclin-dependent kinase 

inhibitors CDKN1A (p21CIP1/WAF1) and CDKN1B (p27KIP1), which cause G1 arrest and 

apoptosis (283). This requirement of PIP4K2A agrees with our in vitro findings. In this 

way, as described with MET above, this inverse relationship in expression may be 

indicative of compensatory mechanisms. 

Unlike MET and PIP4K2A, the protein-tyrosine phosphatase PTPN14 has been 

reported to act as a tumour suppressor (263). In a previous study that performed 

microarray analysis of orthotopic xenograft tumours generated by implanting MiaPaca-

2 cells into the pancreata of SCID (severe combined immunodeficiency) mice, the 

expression of PTPN14 was found to be significantly decreased at the tumour invasion 
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front and in liver metastasis, compared to the primary tumour (284). In addition, 

PTPN14 was found to be localised to the nucleus in low-density proliferating cells, but 

cytoplasmic in confluent conditions, where this nuclear translocation was also observed 

at the cell migration front following scratch wounding (267). This therefore suggests 

that PTPN14 may have a role in transcriptional regulation at sites of metastasis and 

invasion. The underlying mechanism may be similar to that proposed by Huang et al., 

for the transcription factor YAP (Yes-associated protein) in modifying the sensitivity of 

ovarian cancer cells to various anti-cancer agents (268). In this study, the authors used 

immunoprecipitation mass spectrometry to show that PTPN14 complexes with YAP 

through its WW domains, and the PPXY domains of PTPN14, to negatively regulate 

YAP-associated transcription and sensitise cells to a number of therapeutic agents 

(268). From these experiments, and the negative associations for PTPN14 in metastasis 

(268,284), invasion (268,284), proliferation, and drug resistance (268), one possibility is 

that increasing PTPN14 expression, as shown for KMT2 methyltransferase depletion, 

might dampen some of these more aggressive features in PDAC. 

Another protein that may have a role in invasion and metastasis is the tight junction 

protein Claudin-1 (285). Tight junction proteins are essential for maintaining intact 

membrane barriers between neighbouring epithelial cells. During cell migration, 

invasion, and metastasis, tumour cells dissociate from the bulk primary tumour mass by 

overcoming these tight junctions (286). Previously, in a study looking at the 

overexpression and knockdown of Claudin-1 in lung adenocarcinoma cell lines, Chao et 

al. showed that Claudin-1 expression suppressed migration and invasion in vitro, and 

metastasis in vivo using an intravenous SCID mouse model (285). In addition, there was 

a strong positive correlation of improved survival in lung adenocarcinoma patients with 

increased CLDN1 expression at the mRNA and protein levels (285). A recent study in 

258 patients was unable to replicate this however (287). A final point of interest from 

Chao et al. was that, within their microarray data, CLDN1 overexpression resulted in a 

decrease in the expression of KMT2D (285), supporting an argument for their inverse 

regulation. In this regard, and with relation to our observations, increased Claudin-1 due 

to reduced KMT2C and KMT2D may be indicative of a diminished invasive, migratory, 

and metastatic cell phenotype, and therefore could be a factor in the associated increase 

in PDAC patient survival. 

Within the list of 19 commonly DE genes upon KMT2C/D depletion we also identified 

an increase in Calumenin expression (Figure 4.6). Calumenin, a Ca2+ binding protein, 
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has been described to not only have a traditional intracellular role within the secretory 

pathway (271,273), but to also act extracellularly (255,273,276) to prevent ECM 

degradation by MMPs (255). Again, as with the overcoming of tight junction cell-cell 

contacts described above, this degradation of ECM is required for tumour invasion and 

metastasis. This potential role of Calumenin is further supported by Ding et al. who 

used proteome analysis to show that Calumenin expression was higher in hepatocellular 

carcinoma (HCC) cells with lower metastatic potential (288). In line with this, 

Calumenin was also found to be less in a metastatic cell line than a primary cell line 

generated from the same head and neck squamous cell carcinoma patient (289). Wang 

et al. also demonstrated using immunohistochemistry that Calumenin expression was 

less in HCC and pancreatic carcinoma tissues than normal tissue, where for HCC this 

was also much weaker in tumours of higher grades than lower grades (255). These 

studies suggest that increased Calumenin may also be protective against tumour 

invasion and metastasis. 

Alongside these DE genes common to both methyltransferases, we also chose to 

investigate ABCB1. The observation that ABCB1 expression was decreased upon 

KMT2D (Figure 4.7), but not KMT2C, depletion was intriguing for several reasons. 

Firstly, this could be a mechanism by which reduced KMT2D resulted in stronger anti-

proliferative (Figure 3.8 and Figure 3.9) and expression-associated survival predictions 

(Figure 3.1B), when compared to KMT2C (Figure 3.7 and Figure 3.1A, respectively). 

Secondly, given that the expression of ABCB1 was decreased following 

methyltransferase depletion, it is more likely to be a direct target of the KMT2D 

complex. It is well established that ABCB1, and other members of the ATP-binding 

cassette (ABC) superfamily of transporters are implicated in the development of 

multidrug resistance, where its expression associates with resistance in many cancer 

types (278,279). Somewhat supporting this role for KMT2D in regulating ABC drug 

resistance genes, the study performed by Guo et al. showed that the ABC family 

members ABCC2 and ABCC3 were both downregulated upon loss of KMT2D (248). 

Interestingly, expression of ABCB1 was only detected in the metastatic cell lines, and 

not the primary cell lines. In agreement with our results, Walsh et al. found that a 

significantly higher proportion of malignant melanoma metastases expressed ABCB1, 

compared to the primary tumours (290). While requiring further experimentation, this 

may suggest that reduced expression of ABCB1 is indicative of either reduced 

metastatic potential, or of a less aggressive disease. 
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Despite this evidence that potentially implicates many of the 19 commonly DE genes in 

PDAC, together this gene signature did not predict prognosis in any of the four PDAC 

GEP datasets tested (ICGC, TCGA, Stratford, or BCI_Zhang_merged) based on 

consensus clustering and OS (data not shown). Moreover, patient clustering based on 

this 19-gene signature alone did not show a significant enrichment in high or low 

KMT2C/D expression (data not shown). This lack of an association may reflect the 

complex nature of examining many genes, where although some may be implicated in 

the reduced KMT2D survival benefit, others could have arisen as compensatory 

mechanisms. Taken together, observations for PTPN14, Claudin-1, Calumenin and 

ABCB1, suggests that reduced KMT2C and KMT2D may elicit a favourable 

phenotype, which perturbs the aggressive disease features of invasion, metastasis, and 

resistance. As with the 19-gene signature, the expression of these genes was also not 

associated with improved survival (data not shown). These results may reflect the 

inherent complexity when making direct comparisons between primary and cell line 

data, and might also represent secondary, or compensatory, mechanisms caused by 

complete loss of protein, a feature unlikely to be reflected physiologically. 

In addition to testing the contribution of individual genes, GSEA was employed to 

determine which pathways were altered upon depletion of either KMT2C or KMT2D. 

This analysis highlighted significant changes (FDR < 0.05) in six pathways, with three 

directly relating to the cell-cycle, highlighting changes in the mitotic M- and G1-phases 

(Figure 4.8). The remaining pathways related to DNA maintenance with DNA 

replication, DNA repair, and the Fanconi anaemia pathways also demonstrated 

significant decreases (Figure 4.8). These top downregulated pathways support the in 

vitro work (Chapter 3), which showed cell proliferation as being negatively impacted, 

due to a reduction in cell cycle, when KMT2D was depleted. In Chapter 3 the in vitro 

cell proliferation assay showed KMT2C depletion to cause a small, but variable and 

non-statistically significant, decrease in cell proliferation (Figure 3.7). Here, at the 

transcriptional level, GSEA indicated that genes relating to the cell-cycle were 

decreased in expression upon KMT2C depletion, in line with that for KMT2D depletion 

(Figure 4.8). In this way, although a functional role in cell cycle regulation cannot be 

excluded for KMT2C, it is possible some role still exists, albeit a functionally weaker 

one than KMT2D. 

Other groups have also previously performed microarray analysis to determine 

differences in gene expression between cells with and without KMT2D (138,248). The 
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affected pathways identified through pathway analysis for both of these studies were not 

concordant with each other, or our GSEA findings. Issaeva et al., stated that their top 

significantly downregulated genes were mainly implicated in cell adhesion, 

cytoskeleton reorganisation and transcriptional regulation (138). The pathways 

downregulated in the study by Guo et al. were mainly comprised of those involved in 

cAMP signalling, retinoic acid signalling, and B cell signalling (248). This discrepancy 

between the genes expressed and pathways altered may be indicative of the different 

cell types and systems used, especially considering our data were generated in 

transiently transfected cell lines that normally express KMT2C and KMT2D. However, 

even accounting for this difference, when we focused attention on genes that associated 

with KMT2C/D expression from the ICGC and TCGA PDAC datasets, a significant 

overrepresentation of cell-cycle genes was found to positively correlate with KMT2C/D 

gene expression (Table 4.4 and Table 4.5). In addition to the cell-cycle pathway, data 

from the TCGA also showed that both the mitosis and DNA repair pathways showed 

significant positive correlation with KMT2C/D expression providing additional 

confidence for the robustness of these experiments. From the GSEA for the RNA-seq 

data, genes associated with the translation pathway were increased upon KMT2D 

depletion, but intriguingly however, the converse was true for KMT2C depletion 

(Figure 4.8). In line with the KMT2D data, pathway analysis of the ICGC and TCGA 

data identified that the translation pathway also showed significant negative correlation 

with the expression of KMT2C/D (Table 4.6 and Table 4.7). As discussed above with 

the increased differential expression of the individual genes, we are working on the 

premise that this increased translation may either be a secondary effect of their 

reduction, or a compensatory mechanism for the proliferative stress caused by their 

depletion. 

Next, to test if there was any other gene specific overlaps between the clinically 

annotated ICGC and TCGA data and our RNA-seq data, we compared the cell-cycle 

genes identified from the pathway analysis against our RNA-seq expression profiles. 

This comparison identified NCAPD3, CDKL1 and EIF2AK4, where each showed 

concurrent direction and magnitude of fold change (Table 4.8). For each of these three 

genes, the PDAC clinical outcome associated with high and low expression for each 

gene was examined. Encouragingly, high and low expression of NCAPD3 proved to be 

a good predictor of outcome in all four GEP series (ICGC, TCGA, Stratford, or 

BCI_Zhang_merged) where lower expression was associated with improved outcome 

(Figure 4.11 and Figure 4.12). For CDKL1 and EIF2AK4 the two additional datasets did 
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not support the associations of their decreased expression with improved outcome 

(Figure 4.12). 

NCAPD3 encodes for the D3 subunit of the condensin II complex known as NCAPD3 

(also known as CAP-D3, and previously designated KIAA0056 by the Human 

Unidentified Gene-Encoded (HUGE) project (291)). NCAPD3 is known to be involved 

in chromosome condensation and reorganisation (292) and its depletion has been 

demonstrated by an RNAi screen in HeLa cells to result in mitotic arrest, binucleated 

cells and abnormal spindle formation, but not cell death (293). This effect may be 

mediated by the phosphorylation of NCAPD3 at threonine 1415 and serine 1419 by 

Cdk1 and Plk1 respectively during the prophase, where this is thought to be required for 

chromatin condensation (294). The condensing II complex is recruited through the 

interaction of NCAPD3 with H4K20me1, which is regulated by the lysine demethylase 

PHF8 that in turn is recruited by H3K4 methylation (295). Thus there may be a distinct 

interaction between loss of H3K4 methylation upon methyltransferase depletion and 

this mechanism that impedes progression of cells through the cell-cycle. 

Within our RNA-seq data, and in the protein validation that followed, a reduction of 

NCAPD3 expression was found across the three tested cell lines upon KMT2D 

depletion, but not KMT2C depletion (Figure 4.13). Due to the role of NCAPD3 and 

condensin II in chromosome organisation (292), it also is interesting to note that our 

GSEA pathway analysis highlighted a predominant role for KMT2D and not KMT2C in 

chromosome maintenance. Therefore a protein, like NCAPD3, that is involved in 

chromosome organisation, cell-cycle progression and is only decreased by KMT2D, is 

likely to be a good candidate for the more notable effects of KMT2D on cell 

proliferation and patient survival. For this reason we can postulate that the improved 

survival noted for lower KMT2D expression is, at least in part, indicative of its effect on 

reducing NCAPD3 expression. Despite these striking associations of decreased 

NCAPD3 expression with improved PDAC outcome in all four datasets, the converse 

has previously been found for prostate cancer, where expression instead associated with 

improved outcome (296). Whilst in contrast with our observations in PDAC, this 

positive association in prostate cancer is surprising considering the critical role of this 

protein in cell-cycle progression (293), something also noted by the authors (296). 

In summary, in this chapter we combined RNAi and RNA-seq to determine the 

transcriptome changes associated with KMT2D or KMT2C depletion in three PDAC 

cell lines. Our data show that while expression of many genes is altered upon the 
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depletion of these methyltransferases, a significant proportion are decreased in 

pathways relating to cell-cycle and DNA maintenance. Similar pathways also correlated 

with KMT2C/D expression in human PDAC patients, where comparisons to our in vitro 

data highlighted a potential role for NCAPD3. As NCAPD3 expression was diminished 

upon reduced KMT2D expression, and its expression negatively correlated with patient 

survival, this gene is a good candidate for the functional effects of reduced KMT2D. 
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5.1 Background 
In the previous chapters, functional and transcriptional data demonstrated that KMT2D, 

and to a lesser extent KMT2C, have roles in maintaining the cell-cycle progression and 

proliferation of human pancreatic cell lines. While this coincides with observations 

across a range of human solid cancer cell lines (55,138,151,202), few studies have been 

performed in murine models to examine the roles of Kmt2d and Kmt2c in solid cancer. 

GEMMs for Kmt2d loss (120,152,162) do exist although these have not been used thus 

far to investigate its in vivo role in solid cancers, with studies instead relying on human 

cell xenografts (151,202,297). Alongside these, GEMMs with global functionally null 

Kmt2c have also been created (120,132), whereby these mice develop ureter epithelial 

tumours, especially when combined with Trp53 haploinsufficiency (133). 

In this chapter, we set out to use mouse cell lines generated from the KC (68) and KPC 

(72) mouse models in RNAi experiments to elucidate the roles of Kmt2c and Kmt2d in 

in vitro models. Alongside this, KC and KPC mice were generated with pancreas 

specific loss of Kmt2d to begin preliminary in vivo studies into the role of this 

methyltransferase in PDAC. 

5.2 Results  

5.2.1 Depletion of Kmt2c and Kmt2d in mouse cell lines 

In order to deplete Kmt2c expression, two unique siRNAs targeting exons 38 and 52 of 

the Kmt2c mRNA transcript (Kmt2c siRNA1 and Kmt2c siRNA2, respectively) were 

tested across three murine cell lines. Two of these pancreatic cell lines (DT6606 and 

DT6585) were derived from KC tumours (68), with the third (TB32043) from a KPC 

animal (72). Due to poor quality of Kmt2c antibodies for western blot, depletion of 

Kmt2c mRNA was examined by qRT-PCR. Both Kmt2c siRNAs resulted in a depletion 

of Kmt2c mRNA for the three cell lines, when compared to transfection with control 

siRNA (Figure 5.1A). Although Kmt2c knockdown by each siRNA was similar across 

the cell lines, Kmt2c siRNA2 appeared to elicit a far greater relative reduction in 

DT6585 cells than Kmt2c siRNA1 (88% compared to 43%, Figure 5.1A). 

For Kmt2d knockdown, western blot analysis showed a clear reduction in protein was 

achieved in the three cell lines for two of the siRNAs targeted to Kmt2d mRNA (Kmt2d 

siRNA1 targeting exons 54 and 55, and Kmt2d siRNA2 targeting exon 40) (Figure 

5.1B). A third siRNA targeting Kmt2d mRNA was also used (Kmt2d siRNA3 targeting 
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exons 46 and 47), although this siRNA was less efficient than siRNA1 and siRNA2, 

particularly in the TB32043 cell line (Figure 5.1B). 

At 120 hours following siRNA transfection, WST-1 viability assays showed no changes 

upon Kmt2c, or Kmt2d, depletion (Figure 5.2). Although the cell number was not 

directly measured as previously in human cell lines (see 3.2.4), the assay used here does 

provide an indirect measure of proliferation over 72 hours since cells were harvested 

and the same number re-plated following the 48 hours of siRNA treatment. The absence 

of an effect on proliferation in these murine lines was also confirmed using BrdU 

incorporation experiments and cell-cycle analysis (Eleni Maniati, data not shown). 

 

 

Figure 5.1 – Kmt2c and Kmt2d targeted siRNAs reduce expression of Kmt2c mRNA, and 
Kmt2d protein respectively. A, RT-qPCR analysis showing fold change in Kmt2c mRNA 
expression, relative to 18S, for the three cell lines (TB32043 (blue triangles), DT6606 (black circles) 
and DT6585 (red squares)) following transfection with two Kmt2c siRNAs, relative to treatment 
with untargeted control siRNA. Data shown are normalised mean values from technical triplicates. 
B, Western blot analysis showing that two Kmt2d siRNAs (Kmt2d siRNA1 and Kmt2d siRNA2) 
deplete Kmt2d levels in three cell lines (TB32043, DT6606 and DT6585), relative to treatment with 
untargeted control siRNA, whereas a third (Kmt2d siRNA) is less effective. β-Actin was used as a 
loading control.  
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Figure 5.2 – Depleting Kmt2c or Kmt2d does not affect viability of the murine pancreatic 
cancer cell lines. A, Kmt2c cell viability was examined using WST-1 reagent for cells transfected 
for 48 hours before being re-plated and incubated for a further 72 hours. Data shown are mean OD 
values for triplicate wells from five experimental replicates ± SD for untransfected (black), control 
siRNA (grey), Kmt2c siRNA1 (blue), and Kmt2c siRNA2 (red). B, Kmt2d cell viability was 
examined using WST-1 reagent for cells transfected for 48 hours before being re-plated and 
incubated for a further 72 hours. Data shown are from mean OD values for triplicate wells from five 
experimental replicates ± SD for untransfected (black), control siRNA (grey), Kmt2d siRNA1 (blue), 
and Kmt2d siRNA2 (red). 
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5.2.2 Response of murine cell lines to chemotherapy 

Following the absence of a cellular phenotype upon methyltransferase depletion, we 

next assessed whether changes to the murine cells may be subtler and require an 

additional stimulus. Since changes in human cell line proliferation were accompanied 

by cell-cycle abnormalities, it was next examined as to whether these H3K4 

methyltransferases have a role in mediating cell response to chemotherapeutics that 

inhibit the cell cycle. To this end the nucleoside analogue antimetabolites gemcitabine 

and 5-FU were used, both of which are frequently used in PDAC treatment (see 1.1.5). 

To determine the response of the cell lines to each drug, a simple experimental design 

was followed, where an equal number of transfected cells were initially seeded and 

WST-1 assays performed at 72 hours post-drug treatment, for each sample replicate, at 

each concentration used. 

5.2.2.1 Optimisation of concentration range for Gemcitabine and 5-FU 

In order to determine the appropriate range of concentrations to use in the RNAi 

experiments, response curves were compiled over a range of concentrations for each 

drug in untransfected cells. For each cell line, gemcitabine treatment resulted in curves 

with steep Hill slopes (> -1) around 1x10-7.25 M (Figure 5.3A). Although the three cell 

lines produced similar growth IC50 (gIC50) values (the concentration of drug required to 

elicit a 50% reduction in cell growth) for gemcitabine, they each differed in their 

sensitivity to the higher drug concentrations. At these higher gemcitabine 

concentrations, TB32043 appeared to be the most resistant, with only a reduction in 

viability to 30% possible. The DT6606 and DT6585 cell lines showed approximately 

equal sensitivity at these higher concentrations, where a reduction to around 20% 

viability was achieved. 

Across the three cell lines 5-FU treatment produced distinct concentration-response 

curves, where gIC50 values ranged from 1x10-6.12 M (DT6606) to 1x10-3.63 M (TB32043) 

(Figure 5.3A). Mirroring the gemcitabine response data, the TB32043 cell line appeared 

to be the least sensitive and DT6606 the most sensitive of the three cell lines. 

Interestingly, TB32043 expresses higher basal levels of Kmt2d mRNA than the other 

two cell lines (Figure 5.3B).  
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Figure 5.3 – Sensitivity of murine cell lines from the KC and KPC models to Gemcitabine and 
5-FU. A, Sensitivity of the three untreated murine cell lines (TB32043 (blue triangles), DT6606 
(black circles) and DT6585 (red squares)) to gemcitabine and 5-FU was examined using WST-1 to 
determine cell viability after 72 hours of drug treatment. Data shown are mean OD values from 
technical triplicate wells normalised to maximal OD for each biological replicate (n = 2 for 
TB32043 and DT66585; n = 5 for DT6606). B, Expression of Kmt2d mRNA relative to the 
expression of 18S was detected by qRT-PCR for the three cell lines. Data shown are mean values 
from technical triplicates. 
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5.2.2.2 Changes in sensitivity following Kmt2c or Kmt2d depletion 

Kmt2c depletion had no impact across the three cell lines on their sensitivity to 

gemcitabine or 5-FU (Figure 5.4). In contrast, striking changes in the concentration-

response curves were observed following Kmt2d depletion for both drugs (Figure 5.5). 

Kmt2d siRNA1 and Kmt2d siRNA2 notably altered the concentration-response curves 

while the ‘least efficient’ third siRNA (Kmt2d siRNA3) and the control siRNA closely 

resembled the untransfected cells (Figure 5.5). Kmt2d silencing led to an increase in 

gemcitabine sensitivity at the higher concentrations, where as little as 10% viability 

could be achieved, more than two fold less than that of control cells (Figure 5.5). For 

the 5-FU concentration-response curves, Kmt2d silencing elicited a horizontal shift left 

with approximately 10-fold less 5-FU required to elicit the same reduction in viability 

(Figure 5.5). 

Previously decreased expression of the multidrug resistance gene ABCB1 was observed 

in the human PDAC cell lines following depletion of KMT2D (Figure 4.7), but not 

KMT2C. To examine whether Abcb1 might be implicated in the drug sensitivity 

observed in these murine cell lines, its expression upon Kmt2d depletion was examined 

in TB32043 cells. No decrease in Abcb1 expression was observed for this cell line 

(Figure 5.6) and therefore while a strong link exists between Kmt2d expression and 

drug response, the precise mechanism of action is still open to speculation. 
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Figure 5.6 – Expression for Abcb1 remains unaffected by Kmt2d depletion. Western blot 
analysis shows decreased expression of Kmt2d, but not Abcb1, in TB32043 cells following 
treatment with two Kmt2d siRNAs compared to control siRNA. 

 

5.2.3 Generation of Kmt2d knockout KC and KPC mice 

In light of evidence implicating Kmt2c aberration in the formation of uroepithelial 

(132,133) and PDAC (74,75) tumours, an in vivo PDAC model with pancreas specific 

deletion of Kmt2d was developed. To this end, a breeding scheme was designed using 

LSL-KrasG12D/+; LSL-Trp53R172H/+ (KP), homozygous Pdx-1-Cre, and Kmt2dFlox/Flox 

mice to generate offspring with WT, heterozygous, or homozygous deletion of Kmt2d 

in the pancreata of KC and KPC mice (Figure 5.7). KP and homozygous Pdx-1-Cre 

mice strains were both obtained from Professor Dave Tuveson (Cold Spring Harbor 

Laboratory, USA), while Kmt2dFlox/Flox mice were obtained from Professor Francis 

Stewart (Bitechnology Center, Technische Universitat Dresden, Germany). The Kmt2d 

flanked LoxP construct has been previously described (152), where LoxP sites flank 

exons 3-5 of Kmt2d so that upon Cre recombination the resulting frame shift results in 

a premature TGA stop codon. 

Kmt2dFlox/Flox mice were first bred with KP mice to generate KP; Kmt2dFlox/+ offspring 

at a Mendelian ratio of 1/4. In parallel, Kmt2dFlox/Flox mice were also bred with 

homozygous Pdx-1-Cre mice to generate hemizygous Pdx-1-Cre/- (C); Kmt2dFlox/+ 

offspring. Finally to generate mice with the desired genotypes, KP; Kmt2dFlox/+ and C; 

Kmt2dFlox/+ mice were crossed to generate KC and KPC mice that are heterozygote, 

homozygote, or WT for Kmt2dFlox (Mendelian ratios of 1/16, 1/32 and 1/32, 

respectively) (Figure 5.7). To ensure the correct pairing of mice, and identify offspring 

with the desired genotype, PCRs were performed on DNA extracted from mouse ear 

snips for Cre, Kras, Trp53, Kmt2d, and as required an endogenous positive control 

gene (Figure 5.8).  
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Figure 5.7 – Breeding scheme for generating KPC mice with loss of Kmt2d. To generate both 
KC and KPC mice with different Kmt2dFlox zygosities, three breeding pairs were set up over two 
generations. First Kmt2dFlox/Flox mice were separately bred with LSL-KrasG12D/+; LSL-Trp53R172H/+ 
(KP) mice, or Pdx-1-Cre/Pdx-1-Cre mice. Resulting offspring were genotyped to set up breeding 
pairs of KP; Kmt2dFlox/+ and C; Kmt2dFlox/+ mice for generating mice with the range of genotypes 
required. Given in brackets are the Mendelian ratios for the expected numbers of offspring for each 
genotype. 
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Figure 5.8 – PCR assays used to determine offspring genotype. Agarose gel electrophoresis for 
PCR products from DNA extracted from mouse ear snips to determine the presence of transgenes, 
mutant alleles, and WT alleles for Cre, Kras, Trp53 and Kmt2d. Given in brackets are the sizes of 
the products generated by the PCRs. 
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5.2.3.1 Phenotype of Kmt2d loss-of-function in KPC and KC mice 

The PCR used for genotyping Kmt2d can also produce a 227 bp product for the 

remaining single LoxP site upon recombination of the flanked LoxP cassette (Kmt2dΔ

). In this way, cell lines generated from tumours arising in the KPC; Kmt2dFlox/+ and 

KPC; Kmt2dFlox/Flox mice could be genotyped to confirm that genetic recombination of 

the LoxP site had occurred in transformed epithelial cells (Figure 5.9). When tested, 

cell lines generated from KPC; Kmt2dFlox/Flox (E1.1 and E15.1P) and KPC; 

Kmt2dFlox/+(E2.1P) tumours displayed the expected products for homozygote or 

heterozygote floxed allele recombination respectively. Another cell line was also 

generated from a KPC; Kmt2dFlox/Flox tumour (E8.5L), however poor-quality DNA 

resulted in a smeared PCR product. Nevertheless the mouse-of-origin genotype had 

already been successfully assessed, and thus this cell line was also included for further 

assessment of Kmt2d protein expression. 

To confirm Kmt2d knockout in tumour cells at the protein level, western blots were 

performed using lysates generated from the compound mutant cell lines (E1.1, E15.1P, 

E2.1P and E8.5L) and control Kmt2d-WT KC and KPC cell lines (Figure 5.10). 

Kmt2d protein knockout was clearly confirmed in KPC; Kmt2dΔ /Δ  cells (E1.1, 

E15.1P, E8.5L). KPC; Kmt2dΔ/+ cells (E2.1P) however expressed Kmt2d at similar 

level to those from control Kmt2d-WT KC and KPC mice, indicating that loss of one 

allele does not result in any detectable reduction of Kmt2d. 

The survival for each mouse genotype was assessed to determine whether Kmt2d loss 

alters the disease in the KC and KPC models. Survival for each animal was based on 

the date at which animals had to be culled for welfare issues associated with PDAC 

tumour burden. No significant difference was found in the survival of KPC mice 

harbouring heterozygous, or homozygous deletion of Kmt2d (p = 0.2099 by log-rank, 

Mantel-Cox) (Figure 5.11), with no overt differences in the tumour histology noted 

(Eleni Maniati, data not shown). In addition, there was no earlier onset of disease for 

either model, where KC mice did not develop disease irrespective of Kmt2d status (up 

to 8 months) (Figure 5.11). As low numbers of WT KPC mice were obtained from our 

breeding scheme, comparative survival data for 45 untreated KPC mice from other 

studies ongoing in our laboratory (Dr Juliana Candido) are also included in Figure 

5.11. 
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Figure 5.9 – Genotype of Kmt2d cell lines. Agarose gel electrophoresis for the products of PCR 
primer pairs used to determine the presence of LoxP sites in the Kmt2d gene in DNA extracted 
from cell lines generated from the mice. Given in brackets are the sizes of products generated by 
the PCRs. 

 

Figure 5.10 – Expression of Kmt2d across a range of murine cell lines generated from the 
KC, KPC, and KPC; Kmt2d models. Western blot analysis detected Kmt2d protein in each of 
the cell lines derived from the KC (DT6606 and DT6585), KPC (TB32043, TB 32047 and 
TB32048), and KPC; Kmt2d heterozygous (E2.1P) mouse models. Either weak or no Kmt2d was 
detected in the cell lines derived from the tumours of KPC; Kmt2d homozygous (E1.1, E8.5L and 
E15.1P) mice. β-Actin was used as a loading control. 
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Figure 5.11 – Mice heterozygous and homozygous for loss of Kmt2d do not exhibit significant 
difference in overall survival compared to WT KC and KPC counterparts. KM survival 
analysis showed that KC mice do not succumb to PDAC regardless of Kmt2d status (up to 8 
months) (Grey lines, KC; Kmt2dFlox/Flox n = 5, KC; Kmt2dFlox/+ n = 7, KC n = 3). For KPC mice KM 
analysis showed that Kmt2d status does not significantly alter overall survival (P = 0.2099 by log-
rank, Mantel-Cox) (Blue line: KPC; Kmt2dFlox/Flox n = 8, Red line: KPC; Kmt2dFlox/+ n = 15, Black 
line: KPC n = 48 [45 from laboratory’s historic data, including 3 littermates from the present 
study]). 
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5.3 Discussion 
Considering the vast genetic heterogeneity now known to exist in PDAC (40-45), we 

sought to further assess the functional impact of Kmt2d depletion in the genetically 

defined KPC and KC murine model systems. Broadly speaking, the majority of 

functional studies for Kmt2d in murine systems have to date predominantly focused on 

its effects in the early stages of cell differentiation and embryogenesis 

(113,120,135,249). Interestingly in these Kmt2d models, Wan et al. demonstrated that 

its depletion reduced embryonic stem cell proliferation in vitro (135), while Ang et al. 

observed in vivo myocardium hypoplasia when depletion was restricted to 

cardiomyocytes (249). In contrast to these two studies however, Lee et al. found no 

change in proliferation when Kmt2d was depleted in Kmt2c null pre-adipocytes. In 

line with an effect on proliferation, RNA-seq studies in cardiac tissue and myoblasts 

have shown a decrease in expression of cell-cycle genes upon Kmt2d depletion 

(113,249) (including Lee et al. for myocytes but not for adipocytes (120)), supported 

by in vitro observations for depletion increasing the fraction of G1 cells (135,249). In 

our pancreatic KC and KPC cell lines Kmt2d knockdown did not have any detectable 

effect on cell viability, growth or cell-cycle progression (Figure 5.2 and Dr Eleni 

Maniati data not shown). Taken together these data indicate Kmt2d likely has cell-type 

and context dependent roles, something also proposed by Lee et al. 

Despite Kmt2d siRNAs not altering KC and KPC cell line proliferation, Kmt2d 

depletion did render the cells more sensitive to the exposure of gemcitabine or 5-FU 

(Figure 5.5). Interestingly, increased sensitivity was specific to cells devoid of Kmt2d, 

where this difference in effects between the methyltransferases is encouragingly in line 

with their impact on patient outcome (see 3.2.1), and proliferation of human cells in 

vitro (see 3.2.4). This link between Kmt2d expression and chemotherapy sensitivity 

demonstrated by RNAi might also be inherent to cells based on their basal levels of 

expression for this gene. In particular, the KPC-derived TB32043 cell line retains both 

the highest native Kmt2d mRNA expression and was found to be the least sensitive to 

drug treatment among those tested (Figure 5.3). This higher Kmt2d mRNA expression 

in TB32043 (Trp53 mutant) compared to the KC-derived DT6606 and DT6585 cell 

lines (Trp53 WT), is reminiscent of our human cell line data where it may also support 

a link between TP53 mutation and an increase in KMT2D expression (Figure 3.3). 

Nevertheless further experiments into these observations are required since many other 
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intrinsic factors (e.g. acquired mutations or differences in proliferation rates) are likely 

to be at play. 

Since loss of Kmt2d and not Kmt2c increased sensitivity to 5-FU and gemcitabine it 

will be important to understand the downstream mediators of these methyltransferases. 

As mentioned in Chapter 4, ABCB1 (a well-established multidrug resistance gene 

(278,279,298)) was decreased in human cells upon KMT2D but not KMT2C depletion 

(Figure 4.7). In the KPC cell line tested, Kmt2d depletion did not result in a decrease 

of this resistance-associated protein (Figure 5.6), suggesting that Abcb1 does not 

mediate the increased drug sensitivity. 

Gemcitabine and 5-FU are nucleoside analogue antimetabolites that inhibit cell-cycle 

progression and induce DNA damage. Within the literature Kmt2d loss has been 

shown to promote both of these features where, alongside the cell-cycle data 

(discussed above and in the preceding chapters), Kantidakis et al. have shown KMT2D 

LOF as increasing genome instability and DNA damage (152). Therefore, our current 

working hypothesis is that the increased sensitivity to these drugs upon Kmt2d 

depletion is likely through the enhancement of one, if not both, of these actions. 

Intriguingly, Kmt2d depletion had different effects on the 5-FU and gemcitabine 

concentration-response curves (Figure 5.5), which perhaps reflects differences in their 

pharmacological actions. It has been well reported that 5-FU treatment causes G1-S 

arrest across a wide range of cell types (299-305). Considering the proposed role for 

Kmt2d in G1 progression, it is perhaps not surprising that murine cells show increased 

sensitivity at each concentration of 5-FU following Kmt2d depletion, where ten-fold 

less 5-FU was required to elicit the same response, thus resulting in a leftwards shift in 

the whole response curve (Figure 5.5). In contrast to 5-FU, Kmt2d depletion enhanced 

response to gemcitabine only at higher concentrations (Figure 5.5). One plausible 

explanation is that Kmt2d depletion may work in a more general way to promote 

gemcitabine cytotoxicity, in comparison to being a direct modulator of the mechanism 

of action for 5-FU. Gemcitabine predominantly induces S-phase arrest (306-308), 

rather than a G1 arrest (309), and therefore the G1-phase arrest caused by Kmt2d loss 

may combine synergistically with gemcitabine to cause cytotoxicity. 

Within the literature there is very little evidence for the in vivo effects of depleting 

these methyltransferases in solid malignancies. Kmt2c has been separately reported to 

cooperate with Trp53+/- (133) and KrasG12D (74,75) to promote the formation of 

uroepithelial (132,133) and PDAC tumours (74,75), respectively. To date there are no 
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in vivo reports into Kmt2d mutations and the formation of solid malignancies. To 

investigate whether Kmt2d deletion has a tumorigenic role in PDAC, we combined 

pancreas specific loss of Kmt2d with the well established KC (68) and KPC (72) 

models (Figure 5.7). 

Germline Kmt2d-/- or Kmt2c-/- mice show several abnormal phenotypes (120,162). Lee 

et al. showed whole body homozygous loss of Kmt2d to result in embryonic lethality 

around E9.5 (120) whereas for Kmt2c this was lethal at a later perinatal stage (120), 

thus alluding to their different roles in development. This essential role for Kmt2d is 

likely due to its role in heart development and function where, using a conditional 

cardiac tissue knockout model, Wan et al. have shown that although heterozygous 

mice are viable, homozygous loss causes lethality between E9 and E14 (249). 

Although mice with unspecific global heterozygous Kmt2d or Kmt2c loss are also 

viable (120), Bjornsson et al. have shown functionally heterozygous Kmt2d+/βGeo mice 

to exhibit facial features and hippocampal memory defects (162) in line with human 

individuals affected by Kabuki syndrome (128,161). 

The KC model has been extensively used to examine whether genetic alterations 

cooperate with mutant KrasG12D in PanIN progression and PDAC formation (reviewed 

in (69-71)). KC mice, carrying only the KrasG12D mutation, show complete penetrance 

for all PanIN stages with slow and very infrequent PDAC development (only two mice 

from a cohort of 29 develop tumours at 6.25 and 8.25 months) (68). Studies 

introducing other mutations into KC mice, showed that other events are required for 

full progression into invasive and metastatic PDAC, with the introduction of 

Trp53R172H causing 100% mortality within 12 months for all 28 mice generated (72). 

Unlike Trp53R172H, Kmt2d loss does not appear to substantially cooperate with 

KrasG12D to accelerate PDAC formation and in accordance with the original KC 

studies (68), our KC mice regardless of Kmt2d status did not form any tumours by 

eight months (Figure 5.11). This observation might be supported by experiments 

combining KC mice with the Sleeping Beauty transposon system, where no Kmt2d 

insertions were identified in the PDAC tumours formed (74,75). Since TP53 has been 

shown to enhance tumourigenesis in Kmt2c mutant mice (133), we also examined 

Kmt2d loss in KPC mice. We did not note any significant difference in survival or 

metastatic disease compared to WT KPC mice (Figure 5.11), with survival again 

similar to that previously reported by Hingorani et al. (72). 
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The breeding scheme for generating the compound mutant mice resulted in a 

129/SvJae/C57Bl/6 mixed genetic background. A mixed strain background has been 

described as having the potential for introducing variability (310). In addition, the 

mixed background restricts the use of cell lines generated from the tumours of these 

mice in transplantable models due to potential histocompatibility mismatches. 

Considering the similarities between the two methyltransferases, and the cooperation 

noted between Kmt2c aberration and KrasG12D mutation (74,75) and Trp53 

haploinsufficiency (133), one might have hypothesised similar disease promoting 

effects for Kmt2d loss. Furthermore, KMT2D loss has been shown to increase 

genomic instability in both mouse and human cells (152), and thus a contribution 

towards disease progression might have been expected in mice. To examine whether 

this instability also occurs in the tumours or PanIN lesions of our models it would be 

interesting to sequence tissue DNA to assess whether Kmt2d loss in this setting 

increases somatic mutation. We cannot rule out, and indeed it may seem reasonable to 

conclude, that the absence of pro-tumorigenic effect in the KPC model upon Kmt2d 

loss could be due to the KrasG12D and Trp53R172H mutations already driving a very 

aggressive disease. In this way, the comparatively weaker effects of Kmt2d depletion 

could have been diluted. This lack of a tumour promotion by Kmt2d loss, compared to 

that reported for Kmt2c loss in ureter epithelial (133) and PDAC tumours (74,75), 

perhaps also suggests differences between the roles of their mutation in disease 

progression. 

In addition to examining survival, we also collected tissue samples from these mice for 

further ex vivo analysis and assessment of whether Kmt2d loss alters the grade of the 

PanIN lesions found, tumour architecture, or tumour microenvironment. From these 

tumours we also generated cell lines to confirm Kmt2d recombination and protein loss 

in the tumour (Figure 5.9 and Figure 5.10), where they may have potential for use in 

future in vitro and in vivo studies. 

In summary, herein we have used RNAi to determine the in vitro effects of Kmt2c and 

Kmt2d depletion on three murine cell lines derived from the KC and KPC models. 

Alongside this work, we also developed compound GEMMs to study the in vivo role 

of Kmt2d loss in PDAC. Our data show that unlike in human cell lines, depletion of 

the methyltransferases alone does not alter the proliferation of our murine KC and 

KPC cell lines. Interestingly however, the sensitivity of these cell lines to 5-FU and 

gemcitabine was increased upon the depletion of Kmt2d, but not Kmt2c. We are in the 
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early stages of exploring whether these findings translate into the clinic, and therefore 

while our in vivo models did not highlight differences in disease progression, they 

represent important new resources for further investigations.  
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6.1 Overview of findings, future work and therapeutic implications 
New sequencing technologies have greatly improved accessibility to the cancer genome 

and have highlighted that alongside frequent mutations in KRAS, TP53 and SMAD4, a 

wide genetic diversity exists in PDAC tumours (40-45). Of particular note has been the 

detection of many mutations in epigenetic regulators that have become an established 

feature of this disease, and indeed most cancers (159). Members of the KMT2 family 

are among the most commonly mutated genes in cancer (170,171), with KMT2C and 

KMT2D mutations in up to 16.7% (45) and 6% (42) of PDAC cases, respectively. 

Despite this however, little is known about their roles and the consequences of their 

aberration. The present work offers an insight into the roles of KMT2C and KMT2D in 

PDAC and gives some indication of their potential as novel therapeutic opportunities 

for the treatment of this cancer. 

The genetic alterations of KMT2C and KMT2D in PDAC are almost uniformly LOF 

mutations (41); thus our initial rationale reasoned that inter-patient fluctuations in 

KMT2C and KMT2D expression might also convey favourable outcome to PDAC 

patients. By comparing matched gene expression profiles and outcome in publically 

available PDAC datasets, a strong favourable signal linked with low expression of these 

methyltransferases was uncovered. This directed my subsequent studies into the effects 

of their depletion and led me to hypothesise that a combination of both their expression 

and mutation in patient tumours could be clinically used to predict prognosis. While not 

examined in this thesis, there is potential to test whether these patients with better 

outcome can also be captured by immunohistochemical analysis. Such an approach may 

have a much wider application, where it is technically simpler and cheaper than targeted 

DNA sequencing. Since this would also detect other mechanisms that disrupt these 

enzymes, this may also help to identify a greater number of patients who might benefit 

from stratification and targeted therapy, rather than just the minority that carry 

mutations (40-45). Going forward, a deeper appreciation of the functional differences 

between mutations is also required, where lesions can be expected to render the 

methyltransferase enzymatically inactive, unaffected, or even alter substrate specificity 

(94). 

Our in vitro KMT2D silencing experiments led to a marked reduction in the 

proliferation of all eight human pancreatic cell lines tested. This is consistent with 

previous studies in a variety of human (55,138,151,202) and murine (135) cell types, 

and thus supports a fundamental and overlapping role for KMT2D across solid cancers. 
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In contrast to KMT2D, the impact of KMT2C depletion is not as well defined, both 

within the literature and the present study, where loss of this methyltransferase has been 

associated with no effect (136), an increase (133,199,201,203), or a decrease (Figure 3.7 

and Figure 3.9) in cell proliferation. This suggests its roles may be cell type and context 

dependent, or indeed depend on the expression of other epigenetic regulators. This 

difference between KMT2C and KMT2D, is also perhaps supported by patient survival 

data, where in other cancers reduced KMT2C expression, and mutation (204), has been 

associated with poor prognosis in both breast (194) and gastric cancers (205); while in 

breast cancer, reduced KMT2D expression is associated with improved prognosis 

(194,202). 

To investigate the requirement of KMT2D for proliferation, I determined the cell-cycle 

changes associated with KMT2D depletion in a series of human PDAC cell lines. My 

analysis identified that the underlying mechanism of reduced proliferation involves cells 

arresting in the G1-phase, implying that KMT2D is permissive for progression into the 

S-phase. The only prior study in human cells with cell-cycle data was carried out by 

Issaeva et al. in HeLa cells following KMT2D depletion, where no changes to the G0/G1 

population were noted (138). Nevertheless, they did not incorporate agents to induce a 

cell-cycle block in either the S or G2/M-phases, which may thereby explain why a G1 

arrest was not resolved. My results are however consistent with studies using murine 

embryonic stem cells, and those generated from hearts at E13.5, where substantial 

increases in G0/G1 cells were observed upon Kmt2d loss (135,249). 

Alongside these experiments, we sought to explore the broad downstream effects of 

KMT2C and KMT2D depletion in PDAC through RNA-seq analysis. In order to 

identify the more robust gene signatures, rigorous criteria whereby the focus was 

primarily on the changes consistent across the three cell lines and siRNAs used. 

Applying less stringent criteria may reveal additional potentially interesting genes and 

pathways, where expression data are stored and open to further interrogation under the 

accession number GSE75327. In line with a requirement of KMT2D, and perhaps 

KMT2C, in cell-cycle progression, GSEA identified a significant reduction of many 

genes associated with the cell-cycle and DNA-maintenance pathways in both KMT2C 

and KMT2D depleted cells. These results are in accordance with studies from RNA-seq 

studies in mice cardiac tissue and myoblasts upon Kmt2d depletion (113,120,249), but 

differ to microarray studies on stably depleted human cells, where neither noted changes 

to the cell-cycle pathway (138,248). The identification of this role in the cell-cycle is 
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supported further by our pathway analysis of patient expression-survival data (Table 4.4 

and Table 4.5) and that of Sausen et al., who commented that patients with KMT2A, 

KMT2C, and KMT2D mutations also exhibit expressional differences in genes 

associated with cell-cycle progression (41). 

The impact of methyltransferase activity on cell-cycle progression has potentially 

significant clinical implications. To further refine the cell line RNA-seq data, 

comparisons were made against publically available gene expression datasets obtained 

from primary PDAC samples. For the genes identified with a concurrent direction of 

fold change, we then tested whether their expression also correlated with clinical 

outcome. This approach highlighted NCAPD3 as potentially having a novel role in 

PDAC, establishing its reduced expression as a strong predictor of outcome in all four 

datasets tested (ICGC, TCGA, Stratford and BCI_Zhang), and demonstrates the power 

of this experimental approach in identifying potentially drugable pathways. NCAPD3 

acts as the critical subunit of the condensin II complex required for chromosome 

condensation and reorganisation (292). Considering these roles of the complex, it is 

perhaps unsurprising that NCAPD3 RNAi results in M-phase arrest (293), rather than 

the G1 arrest observed upon KMT2D depletion, where we currently hypothesise that 

NCAPD3 is unlikely to mediate the effects of KMT2D in G1. Indeed, we are far from 

understanding the role that NCAPD3 holds in PDAC, with many fundamental questions 

that remain to be addressed. Whether the gene is a direct or indirect target of KMT2D, 

what exactly its role may be, and whether it is accountable for the decreased 

chromosome reorganisation and maintenance observed in our RNA-seq data (Figure 

4.8) remain to be uncovered. 

The observed effects of KMT2D silencing indicate that it directly or indirectly regulates 

cell cycle proteins that promote G1 progression, and thus its depletion results in G1 

arrest. The cyclin-dependent kinase inhibitors p16ink4a and p27Kip1 have previously been 

shown to increase upon Kmt2d depletion (135). Since both block G1 to S-phase 

transition (311), a negative regulator of their expression may prove to be a good 

candidate gene. In a similar way to determine target genes, ChIP based techniques have 

previously been employed to determine genomic regions directly targeted by KMT2D 

(150,151,248). As noted by Guo et al., the lack of quality antibodies has stifled this 

approach to identify target genes for KMT2D (248) and KMT2C. To overcome this for 

KMT2D, Guo et al. developed a human colorectal carcinoma cell line with a Flag-tag 

motif knocked into the endogenous gene (248) so that Flag-tag-ChIP-seq could be 
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performed. Upon comparison of this ChIP-seq data to known enhancer regions (312), 

the enhancer elements targeted by KMT2D could be uncovered (150,151). While we 

appreciate cell specific differences will undoubtedly exist, it is likely that direct targets 

of this methyltransferase in PDAC could be attained using enhancer mark (i.e. 

H3K4me1, H3K27Ac and H3K27me3) ChIP-seq following RNAi, and comparing this, 

alongside our RNA-seq data, to those data from Guo et al. and Hu et al. (150,151). This 

approach however would be challenging since the current field linking enhancers to 

their regulated genes remains relatively underdeveloped (313).  

While ChIP techniques examine direct chromatin modifications and protein binding, 

other next-generation sequencing coupled technologies have been developed to 

interrogate chromatin biology (314) and therefore could be used to examine how 

KMT2D and KMT2C differentially regulate chromatin structure, and thus genomic 

expression. Chromosome confirmation capture technologies can be used to investigate 

the spatial organisation and interactions of chromatin, and thereby may help to better 

elucidate links between enhancers and their regulated genes (315). DNase-seq, 

formaldehyde-assisted isolation of regulatory elements (FAIRE-seq), and ‘Assay for 

Transposase Accessible Chromatin’ (ATAC-seq) techniques each use a different 

experimental approach to identify open regions of ‘active’ chromatin, whereas the 

micrococci nuclease digestion (MNase-seq) technique instead highlights the regions of 

high nucleosome occupancy (316) often found at regulatory sequences (317). While 

these constantly developing approaches each have their own advantages and uses, they 

also come with biases and limitations that must be carefully considered (314). 

Predominantly, although promising, there remains significant hurdles in understanding 

and interpreting these new data types (314,315). 

Since differences in clinical benefit associated with these methyltransferases likely 

involve a number of complex interactions that can only be modelled in vivo, we 

generated compound KC and KPC mouse models with pancreas specific loss of Kmt2d. 

Unlike the improved survival for patients with LOF mutations (41) and low expression 

(Figure 3.1), our preliminary investigations showed that Kmt2d loss did not appear to 

alter the disease phenotype in mice (Figure 5.11), perhaps reflecting the lesser impact 

observed in murine cell lines following Kmt2d depletion. Despite murine cell 

proliferation not being affected, our studies did show that depletion of Kmt2d led to an 

increase in 5-FU and gemcitabine sensitivity. Whether this phenomenon would occur in 

vivo remains untested. However, 5-FU and gemcitabine are both commonly used in 
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PDAC treatment (82), where often patients subsequently acquire resistance (318), so 

this observation is potentially a clinically important finding. Since homozygous LOF 

mutations and total loss of protein are not found in patients (119,128,160), it would be 

of interest to evaluate whether heterozygous Kmt2dFlox/+ PDAC mice also show 

improved response to these treatments. Although this gives some insight into the 

potential benefit of KMT2D depletion as a therapeutic avenue, key differences will exist 

between total loss of protein and the more physiologically relevant scenarios of 

mutation, reduced expression, and pharmacological intervention. While mice 

harbouring LOF mutations could be generated using new gene editing techniques, it 

would be more clinically relevant to study pharmacological inhibition. While many 

inhibitors have been designed to lysine methyltransferases (319,320), those that target 

the catalytic site of KMT2C and KMT2D have yet to be developed (321). Since data 

suggest differing roles for Kmt2c and Kmt2d, where Kmt2d loss is sensitising, further 

investigations are required into whether a pan-, or homologue specific inhibitor would 

be required. This is especially true regarding the inhibition of KMT2C, where its 

mutation and reduced expression has been associated with poor prognosis in other 

cancers (194,204,205), thus causing concern that targeting this homologue may in some 

instances be detrimental. 

Considering the clinical link between these methyltransferases and genes in the cell-

cycle pathway, patients with low KMT2D expression may also show enhanced 

sensitivity to chemotherapy. In this way, the clinically annotated gene expression and 

mutation datasets could be further investigated to evaluate whether patient KMT2C and 

KMT2D expression and/or mutation correlate with treatment-based outcome. Notably, 

the tumour samples used in these studies were obtained at surgery, leading to a potential 

bias in favour of patients suitable for surgery (2), and therefore while challenging, value 

may also be found in examining these histone methyltransferases using post-mortem 

samples. If it is possible to establish a link with treatment response in PDAC, we 

postulate that the expression and mutation of these methyltransferases could both be 

used to inform future patient treatment regimes. 

Alongside this stratification, KMT2D pharmacological inhibition may be effective in 

combination therapy, especially for those with high expression and no mutation. 

Epigenetic therapy promises great benefits over existing therapies currently used in the 

clinic, where inhibitors can help redress the dysregulated transcriptional balance in 

cancer cells by altering the expression of several proteins and pathways simultaneously 
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(322). While this may prevent or modulate resistance (323), the multifaceted 

mechanism of action may also mean that less drug is required for response, thereby 

reducing off target side effects (324). Despite these advantages, there are still 

limitations to consider, including off target toxicity and, since the process of epigenetic 

regulation takes time through an accumulation of marks, patients may require far 

longer-term treatment before any benefits may be realised. Also, and particularly within 

the setting of PDAC, unless these interventions also impact on the tumour stroma they, 

like current therapies, are likely to be felled by the ‘stromal fortress’. 

By referring back to our human cell line transcriptome data, we formed two hypotheses 

for how Kmt2d depletion may increase sensitivity. Since ABCB1 functions as a drug-

efflux pump with a broad specificity (298) it is expected that its expression is positively 

associated with multidrug resistance across many cancer types (278,279,325). While 

further validation is required, this is unlikely to be a major mechanism of increased 

sensitivity here, since Abcb1 expression remained stable following Kmt2d depletion in 

the mouse cell line tested. In addition, ABCB1 overexpression has before been reported 

to correlate with increased gemcitabine sensitivity in PDAC (326), therefore, we feel 

other mechanisms, such as those behind the G1 arrest upon KMT2D depletion, are more 

credible. 

Although not noted in our murine cells, previous studies have showed G1 arrest to occur 

(135,249). In this way, because 5-FU induces a G1-S arrest (299-305), and gemcitabine 

a S-phase (306-308) and not G1 (309) arrest, Kmt2d depletion may directly increase 5-

FU sensitivity (i.e. enhances its effect at all concentrations), while indirectly promoting 

gemcitabine cytotoxicity. In addition to the cell-cycle effects, KMT2D loss has also 

been shown to increase genomic instability (152), where its mutation associates with a 

locally rearranged subtype of PDAC (42). Although not explored within this thesis, it 

will be worth testing whether depletion may promote increased cytotoxicity in this way, 

since in PDAC increased genomic instability correlates positively with response to 

DNA damaging agents (42). 

As proposed by Kantidakis et al., this increased genomic instability upon KMT2D loss 

might also have a role in promoting tumourigenesis (152), especially in PDAC with 

regards to the disease development model proposed by Hruban et al. (29,30), where 

aberration may facilitate the acquisition of driver mutations. This logic, taken together 

with studies showing Kmt2c aberration as promoting tumourigenesis (74,75,132,133), 

make it surprising that disease onset for KC and KPC mice was not altered upon Kmt2d 
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loss. While this may be due to the already aggressive nature of KPC tumours, it is 

plausible, and worth investigating, that Kmt2d loss manifests as promoting increased 

genetic heterogeneity and PanIN progression. 

Overall, this thesis shows that reduced KMT2D expression imparts a better survival in 

PDAC, likely due a critical role in maintaining cell progression through the G1-phase of 

the cell-cycle, which in turn may enhance sensitivity to chemotherapy. Since low 

KMT2D expression also associates with increased breast cancer survival (194,202), 

these findings for KMT2D might also be applicable in the study of other solid cancers. 

Although similarities exist between KMT2C and KMT2D, much work still remains to 

evaluate the specific contribution of these methyltransferases in PDAC. 

 



Chapter 7: References 

 169 

 

 

 

 

 

Chapter 7 References 

  



Chapter 7: References 

 170 

1. Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic 
cancer across the world. HPB : the official journal of the International Hepato 
Pancreato Biliary Association 2008;10:58-62. 

2. Insulander J, Sanjeevi S, Haghighi M, Ivanics T, Analatos A, Lundell L, et al. 
Prognosis following surgical bypass compared with laparotomy alone in 
unresectable pancreatic adenocarcinoma. Br J Surg 2016. 

3. Keane MG, Horsfall LJ, Rait G, Pereira SP. Sociodemographic trends in the 
incidence of pancreatic and biliary tract cancer in UK primary care. PloS one 
2014;9:e108498. 

4. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian 
LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of 
thyroid, liver, and pancreas cancers in the United States. Cancer research 
2014;74:2913-21. 

5. Lowenfels AB, Maisonneuve P. Epidemiology and risk factors for pancreatic 
cancer. Best Pract Res Clin Gastroenterol 2006;20:197-209. 

6. Schenk M, Schwartz AG, O'Neal E, Kinnard M, Greenson JK, Fryzek JP, et al. 
Familial risk of pancreatic cancer. Journal of the National Cancer Institute 
2001;93:640-4. 

7. Lynch HT, Brand RE, Hogg D, Deters CA, Fusaro RM, Lynch JF, et al. 
Phenotypic variation in eight extended CDKN2A germline mutation familial 
atypical multiple mole melanoma-pancreatic carcinoma-prone families: the 
familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer 
2002;94:84-96. 

8. Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P, et al. CDKN2A 
germline mutations in familial pancreatic cancer. Ann Surg 2002;236:730-7. 

9. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, 
Booker SV, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. 
Gastroenterology 2000;119:1447-53. 

10. Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC, et al. 
Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in 
pancreatic and biliary cancers. The American journal of pathology 
1999;154:1835-40. 

11. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, 
et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen 
gene. Nature genetics 1996;14:141-5. 

12. Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK, Jr., Perrault 
J, et al. Hereditary pancreatitis and the risk of pancreatic cancer. International 
Hereditary Pancreatitis Study Group. Journal of the National Cancer Institute 
1997;89:442-6. 

13. Thompson D, Easton DF, Breast Cancer Linkage C. Cancer Incidence in 
BRCA1 mutation carriers. Journal of the National Cancer Institute 
2002;94:1358-65. 

14. Lynch HT, Deters CA, Snyder CL, Lynch JF, Villeneuve P, Silberstein J, et al. 
BRCA1 and pancreatic cancer: pedigree findings and their causal relationships. 
Cancer Genet Cytogenet 2005;158:119-25. 

15. Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, et al. BRCA2 
germline mutations in familial pancreatic carcinoma. Journal of the National 
Cancer Institute 2003;95:214-21. 

16. Ozcelik H, Schmocker B, Di Nicola N, Shi XH, Langer B, Moore M, et al. 
Germline BRCA2 6174delT mutations in Ashkenazi Jewish pancreatic cancer 
patients. Nature genetics 1997;16:17-8. 



Chapter 7: References 

 171 

17. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. 
Germline BRCA2 gene mutations in patients with apparently sporadic 
pancreatic carcinomas. Cancer research 1996;56:5360-4. 

18. McWilliams R, Highsmith WE, Rabe KG, de Andrade M, Tordsen LA, 
Holtegaard LM, et al. Cystic fibrosis transmembrane regulator gene carrier 
status is a risk factor for young onset pancreatic adenocarcinoma. Gut 
2005;54:1661-2. 

19. Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, et al. 
Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. The 
New England journal of medicine 1998;339:645-52. 

20. Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. 
Relation between mutations of the cystic fibrosis gene and idiopathic 
pancreatitis. The New England journal of medicine 1998;339:653-8. 

21. Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, Hon CT, 
et al. A cystic fibrosis pancreatic adenocarcinoma cell line. Proceedings of the 
National Academy of Sciences of the United States of America 1990;87:4012-6. 

22. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics 
and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006;20:1218-49. 

23. Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol 2008;3:157-88. 
24. Kasenda B, Bass A, Koeberle D, Pestalozzi B, Borner M, Herrmann R, et al. 

Survival in overweight patients with advanced pancreatic carcinoma: a 
multicentre cohort study. BMC Cancer 2014;14:728. 

25. Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS. 
Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 
2001;286:921-9. 

26. Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, Mardare L, Popescu I, Dima S, 
et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci 
Rep 2015;5:14634. 

27. Esposito I, Konukiewitz B, Schlitter AM, Kloppel G. Pathology of pancreatic 
ductal adenocarcinoma: facts, challenges and future developments. World J 
Gastroenterol 2014;20:13833-41. 

28. Andea A, Sarkar F, Adsay VN. Clinicopathological correlates of pancreatic 
intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases 
without pancreatic ductal adenocarcinoma. Mod Pathol 2003;16:996-1006. 

29. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman 
SN, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and 
classification system for pancreatic duct lesions. Am J Surg Pathol 2001;25:579-
86. 

30. Hruban RH, Maitra A, Goggins M. Update on pancreatic intraepithelial 
neoplasia. International journal of clinical and experimental pathology 
2008;1:306-16. 

31. Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, Cameron 
JL, et al. Multicomponent analysis of the pancreatic adenocarcinoma 
progression model using a pancreatic intraepithelial neoplasia tissue microarray. 
Mod Pathol 2003;16:902-12. 

32. Moskaluk CA, Hruban RH, Kern SE. p16 and K-ras gene mutations in the 
intraductal precursors of human pancreatic adenocarcinoma. Cancer research 
1997;57:2140-3. 

33. Yamano M, Fujii H, Takagaki T, Kadowaki N, Watanabe H, Shirai T. Genetic 
progression and divergence in pancreatic carcinoma. The American journal of 
pathology 2000;156:2123-33. 



Chapter 7: References 

 172 

34. Heinmoller E, Dietmaier W, Zirngibl H, Heinmoller P, Scaringe W, Jauch KW, 
et al. Molecular analysis of microdissected tumors and preneoplastic intraductal 
lesions in pancreatic carcinoma. The American journal of pathology 
2000;157:83-92. 

35. Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. 
The American journal of pathology 2000;156:1821-5. 

36. Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic 
cancer. Clinical cancer research : an official journal of the American Association 
for Cancer Research 2000;6:2969-72. 

37. Luttges J, Galehdari H, Brocker V, Schwarte-Waldhoff I, Henne-Bruns D, 
Kloppel G, et al. Allelic loss is often the first hit in the biallelic inactivation of 
the p53 and DPC4 genes during pancreatic carcinogenesis. The American 
journal of pathology 2001;158:1677-83. 

38. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL, et al. 
Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. 
The American journal of pathology 2002;161:1541-7. 

39. Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, Hamayasu H, Fujiwara M, 
Tomita K, et al. Gradual telomere shortening and increasing chromosomal 
instability among PanIN grades and normal ductal epithelia with and without 
cancer in the pancreas. PloS one 2015;10:e0117575. 

40. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. 
Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 
2016;531:47-52. 

41. Sausen M, Phallen J, Adleff V, Jones S, Leary RJ, Barrett MT, et al. Clinical 
implications of genomic alterations in the tumour and circulation of pancreatic 
cancer patients. Nature communications 2015;6:7686. 

42. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole 
genomes redefine the mutational landscape of pancreatic cancer. Nature 
2015;518:495-501. 

43. Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, et al. 
Whole-exome sequencing of pancreatic cancer defines genetic diversity and 
therapeutic targets. Nature communications 2015;6:6744. 

44. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns 
AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance 
pathway genes. Nature 2012;491:399-405. 

45. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core 
signaling pathways in human pancreatic cancers revealed by global genomic 
analyses. Science 2008;321:1801-6. 

46. Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C, et al. Pancreatic 
adenocarcinomas frequently show p53 gene mutations. The American journal of 
pathology 1993;142:1534-43. 

47. Redston MS, Caldas C, Seymour AB, Hruban RH, da Costa L, Yeo CJ, et al. 
p53 mutations in pancreatic carcinoma and evidence of common involvement of 
homocopolymer tracts in DNA microdeletions. Cancer research 1994;54:3025-
33. 

48. Barton CM, Staddon SL, Hughes CM, Hall PA, O'Sullivan C, Kloppel G, et al. 
Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. 
British journal of cancer 1991;64:1076-82. 

49. Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, Yeo 
CJ, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: 
evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer 
research 2000;60:2002-6. 



Chapter 7: References 

 173 

50. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et 
al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. 
Science 1996;271:350-3. 

51. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, 
et al. The Ras-RasGAP complex: structural basis for GTPase activation and its 
loss in oncogenic Ras mutants. Science 1997;277:333-8. 

52. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact 
of mutant p53 functional properties on TP53 mutation patterns and tumor 
phenotype: lessons from recent developments in the IARC TP53 database. Hum 
Mutat 2007;28:622-9. 

53. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 
2012;26:1268-86. 

54. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013;15:2-8. 
55. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, et al. Gain-of-

function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 
2015;525:206-11. 

56. Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of 
somatic mutations in most early-stage pancreatic intraepithelial neoplasia. 
Gastroenterology 2012;142:730-33 e9. 

57. Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the 
development of pancreatic intraepithelial neoplasia: evidence and implications. 
The American journal of pathology 2000;156:1767-71. 

58. Neesse A, Algul H, Tuveson DA, Gress TM. Stromal biology and therapy in 
pancreatic cancer: a changing paradigm. Gut 2015;64:1476-84. 

59. Xie D, Xie K. Pancreatic cancer stromal biology and therapy. Genes Dis 
2015;2:133-43. 

60. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi 
S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from 
cell lines and primary tumors and displaying varying metastatic activity. 
Pancreas 2004;29:193-203. 

61. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, De Jesus-Acosta A, Jones 
S, Maitra A, et al. Personalizing cancer treatment in the age of global genomic 
analyses: PALB2 gene mutations and the response to DNA damaging agents in 
pancreatic cancer. Molecular cancer therapeutics 2011;10:3-8. 

62. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari 
C, et al. Tumor engraftment in nude mice and enrichment in stroma- related 
gene pathways predict poor survival and resistance to gemcitabine in patients 
with pancreatic cancer. Clinical cancer research : an official journal of the 
American Association for Cancer Research 2011;17:5793-800. 

63. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, 
Karikari C, et al. An in vivo platform for translational drug development in 
pancreatic cancer. Clinical cancer research : an official journal of the American 
Association for Cancer Research 2006;12:4652-61. 

64. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical 
samples into mouse models. Cancer research 2013;73:5315-9. 

65. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. 
Patient-derived xenograft models: an emerging platform for translational cancer 
research. Cancer Discov 2014;4:998-1013. 

66. Hoffman RM, Bouvet M. Imaging the microenvironment of pancreatic cancer 
patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice 
expressing GFP, RFP, or CFP. Cancer Lett 2015. 



Chapter 7: References 

 174 

67. Delitto D, Pham K, Vlada AC, Sarosi GA, Thomas RM, Behrns KE, et al. 
Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate 
retention of tumor morphology through incorporation of murine stromal 
elements. The American journal of pathology 2015;185:1297-303. 

68. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et 
al. Preinvasive and invasive ductal pancreatic cancer and its early detection in 
the mouse. Cancer cell 2003;4:437-50. 

69. Mazur PK, Siveke JT. Genetically engineered mouse models of pancreatic 
cancer: unravelling tumour biology and progressing translational oncology. Gut 
2012;61:1488-500. 

70. Guerra C, Barbacid M. Genetically engineered mouse models of pancreatic 
adenocarcinoma. Mol Oncol 2013;7:232-47. 

71. Gopinathan A, Morton JP, Jodrell DI, Sansom OJ. GEMMs as preclinical 
models for testing pancreatic cancer therapies. Dis Model Mech 2015;8:1185-
200. 

72. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et 
al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability 
and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer cell 
2005;7:469-83. 

73. McGrail M, Hatler JM, Kuang X, Liao HK, Nannapaneni K, Watt KE, et al. 
Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid 
tumor formation in zebrafish. PloS one 2011;6:e18826. 

74. Perez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver 
AL, et al. The deubiquitinase USP9X suppresses pancreatic ductal 
adenocarcinoma. Nature 2012;486:266-70. 

75. Mann KM, Ward JM, Yew CC, Kovochich A, Dawson DW, Black MA, et al. 
Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in 
pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences 
of the United States of America 2012;109:5934-41. 

76. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. 
PDX-1 is required for pancreatic outgrowth and differentiation of the rostral 
duodenum. Development 1996;122:983-95. 

77. Lohr M, Kloppel G, Maisonneuve P, Lowenfels AB, Luttges J. Frequency of K-
ras mutations in pancreatic intraductal neoplasias associated with pancreatic 
ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 
2005;7:17-23. 

78. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-
Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic 
ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer cell 
2007;11:291-302. 

79. Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, 
Canamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic 
cancer by inhibiting oncogene-induced senescence. Cancer cell 2011;19:728-39. 

80. Sukharamwala P, Thoens J, Szuchmacher M, Smith J, DeVito P. Advanced age 
is a risk factor for post-operative complications and mortality after a 
pancreaticoduodenectomy: a meta-analysis and systematic review. HPB : the 
official journal of the International Hepato Pancreato Biliary Association 
2012;14:649-57. 

81. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for 
clinicians 2016;66:7-30. 



Chapter 7: References 

 175 

82. Kleger A, Perkhofer L, Seufferlein T. Smarter drugs emerging in pancreatic 
cancer therapy. Annals of oncology : official journal of the European Society for 
Medical Oncology / ESMO 2014;25:1260-70. 

83. Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, et al. Stromal 
biology and therapy in pancreatic cancer. Gut 2011;60:861-8. 

84. Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J, et al. Hypoxia-inducible factor-
1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by 
activating transcription of the actin-bundling protein fascin. Cancer research 
2014;74:2455-64. 

85. Cheng ZX, Wang DW, Liu T, Liu WX, Xia WB, Xu J, et al. Effects of the HIF-
1alpha and NF-kappaB loop on epithelial-mesenchymal transition and 
chemoresistance induced by hypoxia in pancreatic cancer cells. Oncology 
reports 2014;31:1891-8. 

86. Felsenfeld G. A brief history of epigenetics. Cold Spring Harb Perspect Biol 
2014;6. 

87. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome 
integrates intrinsic and environmental signals. Nature genetics 2003;33 
Suppl:245-54. 

88. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream 
oncology. Nature medicine 2011;17:330-9. 

89. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 
2000;403:41-5. 

90. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. 
Cell research 2011;21:381-95. 

91. Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, 
misinterpreted and mis-erased in human cancers. Nature reviews Cancer 
2010;10:457-69. 

92. Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG. Diverse functions 
of PHD fingers of the MLL/KMT2 subfamily. Biochimica et biophysica acta 
2014;1843:366-71. 

93. van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M, Timmers HT. 
Quantitative dissection and stoichiometry determination of the human 
SET1/MLL histone methyltransferase complexes. Molecular and cellular 
biology 2013;33:2067-77. 

94. Weirich S, Kudithipudi S, Kycia I, Jeltsch A. Somatic cancer mutations in the 
MLL3-SET domain alter the catalytic properties of the enzyme. Clin Epigenetics 
2015;7:36. 

95. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, et al. 
Regulation of chromatin structure by site-specific histone H3 
methyltransferases. Nature 2000;406:593-9. 

96. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: 
establishment, regulation, and biological impact. Molecular cell 2012;48:491-
507. 

97. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, et al. New 
nomenclature for chromatin-modifying enzymes. Cell 2007;131:633-6. 

98. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-
resolution profiling of histone methylations in the human genome. Cell 
2007;129:823-37. 

99. Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic 
landscape through histone readers. Nat Struct Mol Biol 2012;19:1218-27. 

100. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat 
Rev Mol Cell Biol 2005;6:838-49. 



Chapter 7: References 

 176 

101. Min J, Feng Q, Li Z, Zhang Y, Xu RM. Structure of the catalytic domain of 
human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 
2003;112:711-23. 

102. Schapira M. Structural Chemistry of Human SET Domain Protein 
Methyltransferases. Curr Chem Genomics 2011;5:85-94. 

103. Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F, et al. Coordinated 
histone modifications mediated by a CtBP co-repressor complex. Nature 
2003;422:735-8. 

104. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone 
demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 
2004;119:941-53. 

105. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. 
Genome-wide maps of chromatin state in pluripotent and lineage-committed 
cells. Nature 2007;448:553-60. 

106. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin 
landmark and transcription initiation at most promoters in human cells. Cell 
2007;130:77-88. 

107. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme 
N, et al. Tissue-specific analysis of chromatin state identifies temporal 
signatures of enhancer activity during embryonic development. Nature genetics 
2012;44:148-56. 

108. Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple 
classes of enhancers with distinct cellular functions. Genome Res 2011;21:1273-
83. 

109. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. 
Distinct and predictive chromatin signatures of transcriptional promoters and 
enhancers in the human genome. Nature genetics 2007;39:311-8. 

110. Wang Y, Li X, Hu H. H3K4me2 reliably defines transcription factor binding 
regions in different cells. Genomics 2014;103:222-8. 

111. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, 
et al. Genomic maps and comparative analysis of histone modifications in 
human and mouse. Cell 2005;120:169-81. 

112. Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, 
et al. H3K4 tri-methylation provides an epigenetic signature of active enhancers. 
The EMBO journal 2011;30:4198-210. 

113. Cheng J, Blum R, Bowman C, Hu D, Shilatifard A, Shen S, et al. A role for 
H3K4 monomethylation in gene repression and partitioning of chromatin 
readers. Molecular cell 2014;53:979-92. 

114. Hallson G, Hollebakken RE, Li T, Syrzycka M, Kim I, Cotsworth S, et al. dSet1 
is the main H3K4 di- and tri-methyltransferase throughout Drosophila 
development. Genetics 2012;190:91-100. 

115. Bogershausen N, Bruford E, Wollnik B. Skirting the pitfalls: a clear-cut 
nomenclature for H3K4 methyltransferases. Clin Genet 2013;83:212-4. 

116. Rabello Ddo A, de Moura CA, de Andrade RV, Motoyama AB, Silva FP. 
Altered expression of MLL methyltransferase family genes in breast cancer. Int 
J Oncol 2013;43:653-60. 

117. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and 
status in 2015. Nucleic Acids Res 2015;43:D257-60. 

118. Zhang Y, Mittal A, Reid J, Reich S, Gamblin SJ, Wilson JR. Evolving Catalytic 
Properties of the MLL Family SET Domain. Structure 2015;23:1921-33. 

119. Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of 
methyltransferases. Nature reviews Cancer 2015;15:334-46. 



Chapter 7: References 

 177 

120. Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, et al. H3K4 mono- and di-
methyltransferase MLL4 is required for enhancer activation during cell 
differentiation. Elife 2013;2:e01503. 

121. Dehe PM, Dichtl B, Schaft D, Roguev A, Pamblanco M, Lebrun R, et al. Protein 
interactions within the Set1 complex and their roles in the regulation of histone 
3 lysine 4 methylation. The Journal of biological chemistry 2006;281:35404-12. 

122. Schlichter A, Cairns BR. Histone trimethylation by Set1 is coordinated by the 
RRM, autoinhibitory, and catalytic domains. The EMBO journal 2005;24:1222-
31. 

123. Malarkey CS, Churchill ME. The high mobility group box: the ultimate utility 
player of a cell. Trends in biochemical sciences 2012;37:553-62. 

124. Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the 
bromodomain. Oncogene 2007;26:5521-7. 

125. FitzGerald KT, Diaz MO. MLL2: A new mammalian member of the trx/MLL 
family of genes. Genomics 1999;59:187-92. 

126. Huntsman DG, Chin SF, Muleris M, Batley SJ, Collins VP, Wiedemann LM, et 
al. MLL2, the second human homolog of the Drosophila trithorax gene, maps to 
19q13.1 and is amplified in solid tumor cell lines. Oncogene 1999;18:7975-84. 

127. Natarajan TG, Kallakury BV, Sheehan CE, Bartlett MB, Ganesan N, Preet A, et 
al. Epigenetic regulator MLL2 shows altered expression in cancer cell lines and 
tumors from human breast and colon. Cancer Cell Int 2010;10:13. 

128. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, 
Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause 
of Kabuki syndrome. Nature genetics 2010;42:790-3. 

129. Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling R, Bahari-Javan S, Benito-
Garagorri E, et al. Histone-methyltransferase MLL2 (KMT2B) is required for 
memory formation in mice. J Neurosci 2013;33:3452-64. 

130. Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, et al. PTIP associates with 
MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. 
The Journal of biological chemistry 2007;282:20395-406. 

131. Cho YW, Hong S, Ge K. Affinity purification of MLL3/MLL4 histone H3K4 
methyltransferase complex. Methods Mol Biol 2012;809:465-72. 

132. Lee S, Lee DK, Dou Y, Lee J, Lee B, Kwak E, et al. Coactivator as a target gene 
specificity determinant for histone H3 lysine 4 methyltransferases. Proceedings 
of the National Academy of Sciences of the United States of America 
2006;103:15392-7. 

133. Lee J, Kim DH, Lee S, Yang QH, Lee DK, Lee SK, et al. A tumor suppressive 
coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 
methyltransferase MLL3 or its paralogue MLL4. Proceedings of the National 
Academy of Sciences of the United States of America 2009;106:8513-8. 

134. Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, et al. The 
histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in 
development and spermatogenesis. Epigenetics Chromatin 2009;2:5. 

135. Wan X, Liu L, Ding X, Zhou P, Yuan X, Zhou Z, et al. Mll2 controls cardiac 
lineage differentiation of mouse embryonic stem cells by promoting H3K4me3 
deposition at cardiac-specific genes. Stem Cell Rev 2014;10:643-52. 

136. Matkar S, Sharma P, Gao S, Gurung B, Katona BW, Liao J, et al. An Epigenetic 
Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via 
FOXO/c-Myc Axis. Cancer cell 2015;28:472-85. 

137. Prasad R, Zhadanov AB, Sedkov Y, Bullrich F, Druck T, Rallapalli R, et al. 
Structure and expression pattern of human ALR, a novel gene with strong 



Chapter 7: References 

 178 

homology to ALL-1 involved in acute leukemia and to Drosophila trithorax. 
Oncogene 1997;15:549-60. 

138. Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM, Nakamura T, et al. 
Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations 
in cell adhesion and growth. Molecular and cellular biology 2007;27:1889-903. 

139. Agha Z, Iqbal Z, Azam M, Ayub H, Vissers LE, Gilissen C, et al. Exome 
sequencing identifies three novel candidate genes implicated in intellectual 
disability. PloS one 2014;9:e112687. 

140. Hopkin AS, Gordon W, Klein RH, Espitia F, Daily K, Zeller M, et al. 
GRHL3/GET1 and trithorax group members collaborate to activate the 
epidermal progenitor differentiation program. PLoS Genet 2012;8:e1002829. 

141. Zhang X, Wen H, Shi X. Lysine methylation: beyond histones. Acta Biochim 
Biophys Sin (Shanghai) 2012;44:14-27. 

142. Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK, 
et al. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, 
represses cyclin A2 expression, and promotes myogenic differentiation. 
Proceedings of the National Academy of Sciences of the United States of 
America 2009;106:4719-24. 

143. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, et al. 
GlcNAcylation of a histone methyltransferase in retinoic-acid-induced 
granulopoiesis. Nature 2009;459:455-9. 

144. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms 
of regulation in development and disease pathogenesis. Annual review of 
biochemistry 2012;81:65-95. 

145. An S, Yeo KJ, Jeon YH, Song JJ. Crystal structure of the human histone 
methyltransferase ASH1L catalytic domain and its implications for the 
regulatory mechanism. The Journal of biological chemistry 2011;286:8369-74. 

146. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, et al. 
Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase 
complex with menin to regulate Hox gene expression. Molecular and cellular 
biology 2004;24:5639-49. 

147. Wu L, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, et al. ASH2L regulates 
ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in 
higher eukaryotes. Molecular cell 2013;49:1108-20. 

148. Patel A, Vought VE, Dharmarajan V, Cosgrove MS. A conserved arginine-
containing motif crucial for the assembly and enzymatic activity of the mixed 
lineage leukemia protein-1 core complex. The Journal of biological chemistry 
2008;283:32162-75. 

149. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, et 
al. Remodeling of the enhancer landscape during macrophage activation is 
coupled to enhancer transcription. Molecular cell 2013;51:310-25. 

150. Hu D, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A. The 
MLL3/MLL4 branches of the COMPASS family function as major histone 
H3K4 monomethylases at enhancers. Molecular and cellular biology 
2013;33:4745-54. 

151. Guo C, Chen LH, Huang Y, Chang CC, Wang P, Pirozzi CJ, et al. KMT2D 
maintains neoplastic cell proliferation and global histone H3 lysine 4 
monomethylation. Oncotarget 2013;4:2144-53. 

152. Kantidakis T, Saponaro M, Mitter R, Horswell S, Kranz A, Boeing S, et al. 
Mutation of cancer driver MLL2 results in transcription stress and genome 
instability. Genes Dev 2016;30:408-20. 



Chapter 7: References 

 179 

153. Tang Z, Chen WY, Shimada M, Nguyen UT, Kim J, Sun XJ, et al. SET1 and 
p300 act synergistically, through coupled histone modifications, in 
transcriptional activation by p53. Cell 2013;154:297-310. 

154. Shilatifard A. Chromatin modifications by methylation and ubiquitination: 
implications in the regulation of gene expression. Annual review of 
biochemistry 2006;75:243-69. 

155. Liu H, Galka M, Mori E, Liu X, Lin YF, Wei R, et al. A method for systematic 
mapping of protein lysine methylation identifies functions for HP1beta in DNA 
damage response. Molecular cell 2013;50:723-35. 

156. Biggar KK, Li SS. Non-histone protein methylation as a regulator of cellular 
signalling and function. Nat Rev Mol Cell Biol 2015;16:5-17. 

157. Zhang K, Lin W, Latham JA, Riefler GM, Schumacher JM, Chan C, et al. The 
Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome 
segregation. Cell 2005;122:723-34. 

158. Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic 
genes. Hum Genet 2013;132:359-83. 

159. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P. Mutations 
in regulators of the epigenome and their connections to global chromatin 
patterns in cancer. Nature reviews Genetics 2013;14:765-80. 

160. Liu S, Hong X, Shen C, Shi Q, Wang J, Xiong F, et al. Kabuki syndrome: a 
Chinese case series and systematic review of the spectrum of mutations. BMC 
Med Genet 2015;16:26. 

161. Cheon CK, Ko JM. Kabuki syndrome: clinical and molecular characteristics. 
Korean J Pediatr 2015;58:317-24. 

162. Bjornsson HT, Benjamin JS, Zhang L, Weissman J, Gerber EE, Chen YC, et al. 
Histone deacetylase inhibition rescues structural and functional brain deficits in 
a mouse model of Kabuki syndrome. Science translational medicine 
2014;6:256ra135. 

163. Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV, Holder-
Espinasse M, et al. De novo mutations in MLL cause Wiedemann-Steiner 
syndrome. Am J Hum Genet 2012;91:358-64. 

164. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. 
Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 
2014;515:209-15. 

165. Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS, Vissers LE, 
et al. Disruption of an EHMT1-associated chromatin-modification module 
causes intellectual disability. Am J Hum Genet 2012;91:73-82. 

166. Takata A, Xu B, Ionita-Laza I, Roos JL, Gogos JA, Karayiorgou M. Loss-of-
function variants in schizophrenia risk and SETD1A as a candidate 
susceptibility gene. Neuron 2014;82:773-80. 

167. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-
of-function variants in SETD1A are associated with schizophrenia and 
developmental disorders. Nat Neurosci 2016;19:571-7. 

168. Hippisley-Cox J, Vinogradova Y, Coupland C, Parker C. Risk of malignancy in 
patients with schizophrenia or bipolar disorder: nested case-control study. Arch 
Gen Psychiatry 2007;64:1368-76. 

169. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. 
COSMIC: exploring the world's knowledge of somatic mutations in human 
cancer. Nucleic Acids Res 2015;43:D805-11. 

170. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational 
landscape and significance across 12 major cancer types. Nature 2013;502:333-
9. 



Chapter 7: References 

 180 

171. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, 
et al. Discovery and saturation analysis of cancer genes across 21 tumour types. 
Nature 2014;505:495-501. 

172. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and 
leukaemia stem-cell development. Nature reviews Cancer 2007;7:823-33. 

173. Chen CS, Sorensen PH, Domer PH, Reaman GH, Korsmeyer SJ, Heerema NA, 
et al. Molecular rearrangements on chromosome 11q23 predominate in infant 
acute lymphoblastic leukemia and are associated with specific biologic variables 
and poor outcome. Blood 1993;81:2386-93. 

174. Cerveira N, Lisboa S, Correia C, Bizarro S, Santos J, Torres L, et al. Genetic 
and clinical characterization of 45 acute leukemia patients with MLL gene 
rearrangements from a single institution. Mol Oncol 2012;6:553-64. 

175. Chen Y, Kantarjian H, Pierce S, Faderl S, O'Brien S, Qiao W, et al. Prognostic 
significance of 11q23 aberrations in adult acute myeloid leukemia and the role 
of allogeneic stem cell transplantation. Leukemia 2013;27:836-42. 

176. Tamai H, Yamaguchi H, Hamaguchi H, Yagasaki F, Bessho M, Kobayashi T, et 
al. Clinical features of adult acute leukemia with 11q23 abnormalities in Japan: a 
co-operative multicenter study. Int J Hematol 2008;87:195-202. 

177. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. 
Discovery and prioritization of somatic mutations in diffuse large B-cell 
lymphoma (DLBCL) by whole-exome sequencing. Proceedings of the National 
Academy of Sciences of the United States of America 2012;109:3879-84. 

178. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, et al. 
Analysis of the coding genome of diffuse large B-cell lymphoma. Nature 
genetics 2011;43:830-7. 

179. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et 
al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. 
Nature 2011;476:298-303. 

180. Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, et al. Integrated genomic 
analysis identifies recurrent mutations and evolution patterns driving the 
initiation and progression of follicular lymphoma. Nature genetics 2014;46:176-
81. 

181. Zhang J, Dominguez-Sola D, Hussein S, Lee JE, Holmes AB, Bansal M, et al. 
Disruption of KMT2D perturbs germinal center B cell development and 
promotes lymphomagenesis. Nature medicine 2015;21:1190-8. 

182. Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, et al. The 
histone lysine methyltransferase KMT2D sustains a gene expression program 
that represses B cell lymphoma development. Nature medicine 2015;21:1199-
208. 

183. Ford DJ, Dingwall AK. The cancer COMPASS: navigating the functions of 
MLL complexes in cancer. Cancer Genet 2015;208:178-91. 

184. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. 
Somatic mutations affect key pathways in lung adenocarcinoma. Nature 
2008;455:1069-75. 

185. Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of 
chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature 
genetics 2011;43:875-8. 

186. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, 
Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial 
carcinoma. Nature 2013;497:67-73. 



Chapter 7: References 

 181 

187. Swierniak M, Pfeifer A, Stokowy T, Rusinek D, Chekan M, Lange D, et al. 
Somatic mutation profiling of follicular thyroid cancer by next generation 
sequencing. Mol Cell Endocrinol 2016;433:130-7. 

188. Neff T, Armstrong SA. Recent progress toward epigenetic therapies: the 
example of mixed lineage leukemia. Blood 2013;121:4847-53. 

189. Ansari KI, Kasiri S, Mandal SS. Histone methylase MLL1 has critical roles in 
tumor growth and angiogenesis and its knockdown suppresses tumor growth in 
vivo. Oncogene 2013;32:3359-70. 

190. Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y, et al. 
Menin and MLL cooperatively regulate expression of cyclin-dependent kinase 
inhibitors. Proceedings of the National Academy of Sciences of the United 
States of America 2005;102:749-54. 

191. Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, et al. 
Novel somatic and germline mutations in cancer candidate genes in 
glioblastoma, melanoma, and pancreatic carcinoma. Cancer research 
2007;67:3545-50. 

192. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The 
genomic landscapes of human breast and colorectal cancers. Science 
2007;318:1108-13. 

193. Wang XX, Fu L, Li X, Wu X, Zhu Z, Fu L, et al. Somatic mutations of the 
mixed-lineage leukemia 3 (MLL3) gene in primary breast cancers. Pathol Oncol 
Res 2011;17:429-33. 

194. Liu L, Kimball S, Liu H, Holowatyj A, Yang ZQ. Genetic alterations of histone 
lysine methyltransferases and their significance in breast cancer. Oncotarget 
2015;6:2466-82. 

195. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The 
consensus coding sequences of human breast and colorectal cancers. Science 
2006;314:268-74. 

196. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. 
Whole-genome sequencing of liver cancers identifies etiological influences on 
mutation patterns and recurrent mutations in chromatin regulators. Nature 
genetics 2012;44:760-4. 

197. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis 
occurs late during the genetic evolution of pancreatic cancer. Nature 
2010;467:1114-7. 

198. Zhao ZM, Zhao B, Bai Y, Iamarino A, Gaffney SG, Schlessinger J, et al. Early 
and multiple origins of metastatic lineages within primary tumors. Proceedings 
of the National Academy of Sciences of the United States of America 
2016;113:2140-5. 

199. Kanda H, Nguyen A, Chen L, Okano H, Hariharan IK. The Drosophila ortholog 
of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue 
growth. Molecular and cellular biology 2013;33:1702-10. 

200. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A, et al. 
DNA-damage-induced differentiation of leukaemic cells as an anti-cancer 
barrier. Nature 2014;514:107-11. 

201. Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, et al. MLL3 is a 
haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer cell 
2014;25:652-65. 

202. Kim JH, Sharma A, Dhar SS, Lee SH, Gu B, Chan CH, et al. UTX and MLL4 
coordinately regulate transcriptional programs for cell proliferation and 
invasiveness in breast cancer cells. Cancer research 2014;74:1705-17. 



Chapter 7: References 

 182 

203. Xia M, Xu L, Leng Y, Gao F, Xia H, Zhang D, et al. Downregulation of MLL3 
in esophageal squamous cell carcinoma is required for the growth and metastasis 
of cancer cells. Tumour Biol 2015;36:605-13. 

204. Bien-Willner GA, Mitra RD. Mutation and expression analysis in 
medulloblastoma yields prognostic variants and a putative mechanism of disease 
for i17q tumors. Acta Neuropathol Commun 2014;2:74. 

205. Li B, Liu HY, Guo SH, Sun P, Gong FM, Jia BQ. Association of MLL3 
expression with prognosis in gastric cancer. Genet Mol Res 2014;13:7513-8. 

206. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin 
modifications. Molecular cancer therapeutics 2009;8:1409-20. 

207. Dawkins JB, Wang J, Maniati E, Heward JA, Koniali L, Kocher HM, et al. 
Reduced Expression of Histone Methyltransferases KMT2C and KMT2D 
Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. 
Cancer research 2016;76:4861-71. 

208. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G. Establishment of a 
continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine 
pancreas. International journal of cancer Journal international du cancer 
1975;15:741-7. 

209. Kyriazis AA, Kyriazis AP, Sternberg CN, Sloane NH, Loveless JD. 
Morphological, biological, biochemical, and karyotypic characteristics of human 
pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse. 
Cancer research 1986;46:5810-5. 

210. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, et al. Immortal human 
pancreatic duct epithelial cell lines with near normal genotype and phenotype. 
The American journal of pathology 2000;157:1623-31. 

211. Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, et al. 
Characterization of a new primary human pancreatic tumor line. Cancer Invest 
1986;4:15-23. 

212. Iwamura T, Katsuki T, Ide K. Establishment and characterization of a human 
pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and 
carbohydrate antigen 19-9. Jpn J Cancer Res 1987;78:54-62. 

213. Dexter DL, Matook GM, Meitner PA, Bogaars HA, Jolly GA, Turner MD, et al. 
Establishment and characterization of two human pancreatic cancer cell lines 
tumorigenic in athymic mice. Cancer research 1982;42:2705-14. 

214. Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG. 
Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma. 
International journal of cancer Journal international du cancer 1980;25:591-8. 

215. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 
2001;25:402-8. 

216. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: 
accurate alignment of transcriptomes in the presence of insertions, deletions and 
gene fusions. Genome biology 2013;14:R36. 

217. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 2015;31:166-9. 

218. Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq 
data using conditional quantile normalization. Biostatistics 2012;13:204-16. 

219. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics 
2010;26:139-40. 

220. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 



Chapter 7: References 

 183 

genome-wide expression profiles. Proceedings of the National Academy of 
Sciences of the United States of America 2005;102:15545-50. 

221. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER 
version 7: improved phylogenetic trees, orthologs and collaboration with the 
Gene Ontology Consortium. Nucleic Acids Res 2010;38:D204-10. 

222. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International 
Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics 
data. Database (Oxford) 2011;2011:bar026. 

223. Haider S, Wang J, Nagano A, Desai A, Arumugam P, Dumartin L, et al. A 
multi-gene signature predicts outcome in patients with pancreatic ductal 
adenocarcinoma. Genome Med 2014;6:105. 

224. Mihaly Z, Kormos M, Lanczky A, Dank M, Budczies J, Szasz MA, et al. A 
meta-analysis of gene expression-based biomarkers predicting outcome after 
tamoxifen treatment in breast cancer. Breast cancer research and treatment 
2013;140:219-32. 

225. Lee HS, Lee HK, Kim HS, Yang HK, Kim WH. Tumour suppressor gene 
expression correlates with gastric cancer prognosis. The Journal of pathology 
2003;200:39-46. 

226. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe 
DG, et al. A gene-expression signature to predict survival in breast cancer across 
independent data sets. Oncogene 2007;26:1507-16. 

227. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, et al. 
Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene 
in pancreatic adenocarcinoma. Nature genetics 1994;8:27-32. 

228. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M. Comparative 
analysis of mutations in the p53 and K-ras genes in pancreatic cancer. 
International journal of cancer Journal international du cancer 1994;58:185-91. 

229. Naumann M, Savitskaia N, Eilert C, Schramm A, Kalthoff H, Schmiegel W. 
Frequent codeletion of p16/MTS1 and p15/MTS2 and genetic alterations in 
p16/MTS1 in pancreatic tumors. Gastroenterology 1996;110:1215-24. 

230. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, et al. Genetic 
profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and 
DPC4/Smad4. Virchows Archiv : an international journal of pathology 
2001;439:798-802. 

231. Huang L, Goodrow TL, Zhang SY, Klein-Szanto AJ, Chang H, Ruggeri BA. 
Deletion and mutation analyses of the P16/MTS-1 tumor suppressor gene in 
human ductal pancreatic cancer reveals a higher frequency of abnormalities in 
tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer 
research 1996;56:1137-41. 

232. Hsiang D, Friess H, Buchler MW, Ebert M, Butler J, Korc M. Absence of K-ras 
mutations in the pancreatic parenchyma of patients with chronic pancreatitis. 
American journal of surgery 1997;174:242-6. 

233. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, et al. 
DPC4 gene in various tumor types. Cancer research 1996;56:2527-30. 

234. Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, Horii A. Characterization 
of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human 
pancreatic cancer cell lines. Oncology reports 2001;8:89-92. 

235. Aoki Y, Hosaka S, Tachibana N, Karasawa Y, Kawa S, Kiyosawa K. 
Reassessment of K-ras mutations at codon 12 by direct PCR and sequencing 
from tissue microdissection in human pancreatic adenocarcinomas. Pancreas 
2000;21:152-7. 



Chapter 7: References 

 184 

236. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification 
maps. Nature reviews Genetics 2007;8:286-98. 

237. Saiki AY, Caenepeel S, Cosgrove E, Su C, Boedigheimer M, Oliner JD. 
Identifying the determinants of response to MDM2 inhibition. Oncotarget 
2015;6:7701-12. 

238. O'Mara TA, Zhao M, Spurdle AB. Meta-analysis of gene expression studies in 
endometrial cancer identifies gene expression profiles associated with 
aggressive disease and patient outcome. Sci Rep 2016;6:36677. 

239. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-
validation of survival associated biomarkers in gastric cancer using 
transcriptomic data of 1,065 patients. Oncotarget 2016;7:49322-33. 

240. Ouderkirk-Pecone JL, Goreczny GJ, Chase SE, Tatum AH, Turner CE, Krendel 
M. Myosin 1e promotes breast cancer malignancy by enhancing tumor cell 
proliferation and stimulating tumor cell de-differentiation. Oncotarget 
2016;7:46419-32. 

241. Bai Y, Li LD, Li J, Lu X. Targeting of topoisomerases for prognosis and drug 
resistance in ovarian cancer. J Ovarian Res 2016;9:35. 

242. Rai R, Zhang F, Colavita K, Leu NA, Kurosaka S, Kumar A, et al. 
Arginyltransferase suppresses cell tumorigenic potential and inversely correlates 
with metastases in human cancers. Oncogene 2016;35:4058-68. 

243. Schilsky RL, Taube SE. Tumor markers as clinical cancer tests--are we there 
yet? Semin Oncol 2002;29:211-2. 

244. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, et al. 
REporting recommendations for tumour MARKer prognostic studies 
(REMARK). British journal of cancer 2005;93:387-91. 

245. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting 
Recommendations for Tumor Marker Prognostic Studies (REMARK): 
explanation and elaboration. PLoS Med 2012;9:e1001216. 

246. Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T. Analysis of 
TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 
2014;35:756-65. 

247. Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et 
al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 
2010;39:425-35. 

248. Guo C, Chang CC, Wortham M, Chen LH, Kernagis DN, Qin X, et al. Global 
identification of MLL2-targeted loci reveals MLL2's role in diverse signaling 
pathways. Proceedings of the National Academy of Sciences of the United 
States of America 2012;109:17603-8. 

249. Ang SY, Uebersohn A, Spencer CI, Huang Y, Lee JE, Ge K, et al. KMT2D 
regulates specific programs in heart development via histone H3 lysine 4 di-
methylation. Development 2016;143:810-21. 

250. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of 
regulation, deregulation and therapeutic targets in cancer. Cell Prolif 
2003;36:131-49. 

251. Mo R, Rao SM, Zhu YJ. Identification of the MLL2 complex as a coactivator 
for estrogen receptor alpha. The Journal of biological chemistry 
2006;281:15714-20. 

252. Goo YH, Sohn YC, Kim DH, Kim SW, Kang MJ, Jung DJ, et al. Activating 
signal cointegrator 2 belongs to a novel steady-state complex that contains a 
subset of trithorax group proteins. Molecular and cellular biology 2003;23:140-
9. 



Chapter 7: References 

 185 

253. Shin H, Shannon CP, Fishbane N, Ruan J, Zhou M, Balshaw R, et al. Variation 
in RNA-Seq transcriptome profiles of peripheral whole blood from healthy 
individuals with and without globin depletion. PloS one 2014;9:e91041. 

254. Neuzillet C, Couvelard A, Tijeras-Raballand A, de Mestier L, de Gramont A, 
Bedossa P, et al. High c-Met expression in stage I-II pancreatic adenocarcinoma: 
proposal for an immunostaining scoring method and correlation with poor 
prognosis. Histopathology 2015;67:664-76. 

255. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular 
calumenin suppresses ERK1/2 signaling and cell migration by protecting 
fibulin-1 from MMP-13-mediated proteolysis. Oncogene 2015;34:1006-18. 

256. Kondo J, Sato F, Kusumi T, Liu Y, Motonari O, Sato T, et al. Claudin-1 
expression is induced by tumor necrosis factor-alpha in human pancreatic cancer 
cells. International journal of molecular medicine 2008;22:645-9. 

257. Borka K, Kaliszky P, Szabo E, Lotz G, Kupcsulik P, Schaff Z, et al. Claudin 
expression in pancreatic endocrine tumors as compared with ductal 
adenocarcinomas. Virchows Archiv : an international journal of pathology 
2007;450:549-57. 

258. Wilcox A, Hinchliffe KA. Regulation of extranuclear PtdIns5P production by 
phosphatidylinositol phosphate 4-kinase 2alpha. FEBS Lett 2008;582:1391-4. 

259. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance 
of c-Met in breast cancer: a review. Breast Cancer Res 2015;17:52. 

260. Peng Z, Zhu Y, Wang Q, Gao J, Li Y, Li Y, et al. Prognostic significance of 
MET amplification and expression in gastric cancer: a systematic review with 
meta-analysis. PloS one 2014;9:e84502. 

261. Yan S, Jiao X, Zou H, Li K. Prognostic significance of c-Met in breast cancer: a 
meta-analysis of 6010 cases. Diagn Pathol 2015;10:62. 

262. Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR. Expression 
of the Met/hepatocyte growth factor receptor in human pancreatic cancer. 
Cancer research 1995;55:1129-38. 

263. Liu X, Yang N, Figel SA, Wilson KE, Morrison CD, Gelman IH, et al. PTPN14 
interacts with and negatively regulates the oncogenic function of YAP. 
Oncogene 2013;32:1266-73. 

264. Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, et al. The tyrosine 
phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. 
Sci Signal 2015;8:ra18. 

265. Ogata M, Takada T, Mori Y, Oh-hora M, Uchida Y, Kosugi A, et al. Effects of 
overexpression of PTP36, a putative protein tyrosine phosphatase, on cell 
adhesion, cell growth, and cytoskeletons in HeLa cells. The Journal of biological 
chemistry 1999;274:12905-9. 

266. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. The protein tyrosine 
phosphatase Pez is a major phosphatase of adherens junctions and 
dephosphorylates beta-catenin. Mol Biol Cell 2003;14:2520-9. 

267. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. Translocation of protein 
tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with 
induction of cell proliferation. J Cell Sci 2000;113 ( Pt 17):3117-23. 

268. Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A, et al. 
YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is 
negatively regulated by the non-receptor type protein tyrosine phosphatase 14. 
Oncogene 2013;32:2220-9. 

269. Mikoshiba K. IP3 receptor/Ca2+ channel: from discovery to new signaling 
concepts. J Neurochem 2007;102:1426-46. 



Chapter 7: References 

 186 

270. Yabe D, Nakamura T, Kanazawa N, Tashiro K, Honjo T. Calumenin, a Ca2+-
binding protein retained in the endoplasmic reticulum with a novel carboxyl-
terminal sequence, HDEF. The Journal of biological chemistry 1997;272:18232-
9. 

271. Honore B, Vorum H. The CREC family, a novel family of multiple EF-hand, 
low-affinity Ca(2+)-binding proteins localised to the secretory pathway of 
mammalian cells. FEBS Lett 2000;466:11-8. 

272. Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding 
chaperones of the endoplasmic reticulum. Cell Calcium 2002;32:269-78. 

273. Vorum H, Hager H, Christensen BM, Nielsen S, Honore B. Human calumenin 
localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 
1999;248:473-81. 

274. Jung DH, Mo SH, Kim DH. Calumenin, a multiple EF-hands Ca2+-binding 
protein, interacts with ryanodine receptor-1 in rabbit skeletal sarcoplasmic 
reticulum. Biochemical and biophysical research communications 2006;343:34-
42. 

275. Mazzorana M, Hussain R, Sorensen T. Ca-Dependent Folding of Human 
Calumenin. PloS one 2016;11:e0151547. 

276. Wang Q, Feng H, Zheng P, Shen B, Chen L, Liu L, et al. The intracellular 
transport and secretion of calumenin-1/2 in living cells. PloS one 
2012;7:e35344. 

277. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, et al. 
Clostridium perfringens enterotoxin fragment removes specific claudins from 
tight junction strands: Evidence for direct involvement of claudins in tight 
junction barrier. J Cell Biol 1999;147:195-204. 

278. Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A, Bussey KJ, et 
al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in 
cancer cells. Cancer cell 2004;6:129-37. 

279. Pang L, Word B, Xu J, Wang H, Hammons G, Huang SM, et al. ATP-Binding 
Cassette Genes Genotype and Expression: A Potential Association with 
Pancreatic Cancer Development and Chemoresistance? Gastroenterology 
research and practice 2014;2014:414931. 

280. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. 
Integrative analysis of complex cancer genomics and clinical profiles using the 
cBioPortal. Sci Signal 2013;6:pl1. 

281. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio 
cancer genomics portal: an open platform for exploring multidimensional cancer 
genomics data. Cancer Discov 2012;2:401-4. 

282. Watanabe Y, Castoro RJ, Kim HS, North B, Oikawa R, Hiraishi T, et al. 
Frequent alteration of MLL3 frameshift mutations in microsatellite deficient 
colorectal cancer. PloS one 2011;6:e23320. 

283. Jude JG, Spencer GJ, Huang X, Somerville TD, Jones DR, Divecha N, et al. A 
targeted knockdown screen of genes coding for phosphoinositide modulators 
identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and 
survival. Oncogene 2015;34:1253-62. 

284. Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, et al. Gene 
expression profiling of liver metastases and tumour invasion in pancreatic 
cancer using an orthotopic SCID mouse model. British journal of cancer 
2007;97:1432-40. 

285. Chao YC, Pan SH, Yang SC, Yu SL, Che TF, Lin CW, et al. Claudin-1 is a 
metastasis suppressor and correlates with clinical outcome in lung 
adenocarcinoma. Am J Respir Crit Care Med 2009;179:123-33. 



Chapter 7: References 

 187 

286. Martin TA, Jiang WG. Loss of tight junction barrier function and its role in 
cancer metastasis. Biochimica et biophysica acta 2009;1788:872-91. 

287. Sun B-s, Yao Y-q, Pei B-x, Zhang Z-f, Wang C-l. Claudin-1 correlates with 
poor prognosis in lung adenocarcinoma. Thoracic Cancer 2016:n/a-n/a. 

288. Ding SJ, Li Y, Shao XX, Zhou H, Zeng R, Tang ZY, et al. Proteome analysis of 
hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with 
different metastasis potentials. Proteomics 2004;4:982-94. 

289. Wu W, Tang X, Hu W, Lotan R, Hong WK, Mao L. Identification and 
validation of metastasis-associated proteins in head and neck cancer cell lines by 
two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis 
2002;19:319-26. 

290. Walsh N, Kennedy S, Larkin AM, Tryfonopoulos D, Eustace AJ, Mahgoub T, et 
al. Membrane transport proteins in human melanoma: associations with tumour 
aggressiveness and metastasis. British journal of cancer 2010;102:1157-62. 

291. Kikuno R, Nagase T, Nakayama M, Koga H, Okazaki N, Nakajima D, et al. 
HUGE: a database for human KIAA proteins, a 2004 update integrating 
HUGEppi and ROUGE. Nucleic Acids Res 2004;32:D502-4. 

292. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T. Differential 
contributions of condensin I and condensin II to mitotic chromosome 
architecture in vertebrate cells. Cell 2003;115:109-21. 

293. Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, et al. An 
endoribonuclease-prepared siRNA screen in human cells identifies genes 
essential for cell division. Nature 2004;432:1036-40. 

294. Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, et al. 
The initial phase of chromosome condensation requires Cdk1-mediated 
phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev 
2011;25:863-74. 

295. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, et al. PHF8 
mediates histone H4 lysine 20 demethylation events involved in cell cycle 
progression. Nature 2010;466:508-12. 

296. Lapointe J, Malhotra S, Higgins JP, Bair E, Thompson M, Salari K, et al. hCAP-
D3 expression marks a prostate cancer subtype with favorable clinical behavior 
and androgen signaling signature. Am J Surg Pathol 2008;32:205-9. 

297. Bossi D, Cicalese A, Dellino GI, Luzi L, Riva L, D'Alesio C, et al. In Vivo 
Genetic Screens of Patient-Derived Tumors Revealed Unexpected Frailty of the 
Transformed Phenotype. Cancer Discov 2016. 

298. Higgins CF. Multiple molecular mechanisms for multidrug resistance 
transporters. Nature 2007;446:749-57. 

299. Martino-Echarri E, Henderson BR, Brocardo MG. Targeting the DNA 
replication checkpoint by pharmacologic inhibition of Chk1 kinase: a strategy to 
sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy. 
Oncotarget 2014;5:9889-900. 

300. Filgueiras Mde C, Morrot A, Soares PM, Costa ML, Mermelstein C. Effects of 
5-fluorouracil in nuclear and cellular morphology, proliferation, cell cycle, 
apoptosis, cytoskeletal and caveolar distribution in primary cultures of smooth 
muscle cells. PloS one 2013;8:e63177. 

301. Guo X, Goessl E, Jin G, Collie-Duguid ES, Cassidy J, Wang W, et al. Cell cycle 
perturbation and acquired 5-fluorouracil chemoresistance. Anticancer Res 
2008;28:9-14. 

302. Li MH, Ito D, Sanada M, Odani T, Hatori M, Iwase M, et al. Effect of 5-
fluorouracil on G1 phase cell cycle regulation in oral cancer cell lines. Oral 
Oncol 2004;40:63-70. 



Chapter 7: References 

 188 

303. Mirjolet JF, Didelot C, Barberi-Heyob M, Merlin JL. G(1)/S but not 
G(0)/G(1)cell fraction is related to 5-fluorouracil cytotoxicity. Cytometry 
2002;48:6-13. 

304. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama JI, Yamamura T, et 
al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal 
carcinoma cells: a novel target mechanism concept for pharmacokinetic 
modulating chemotherapy. Cancer research 2001;61:1029-37. 

305. Tokunaga E, Oda S, Fukushima M, Maehara Y, Sugimachi K. Differential 
growth inhibition by 5-fluorouracil in human colorectal carcinoma cell lines. Eur 
J Cancer 2000;36:1998-2006. 

306. Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A. Sensitization 
of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle 
perturbation and impact of administration schedule in vitro and in vivo. BMC 
Cancer 2013;13:604. 

307. Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, 
Vermeulen K, et al. Cell cycle effect of gemcitabine and its role in the 
radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 
2003;57:1075-83. 

308. Carpinelli G, Bucci B, D'Agnano I, Canese R, Caroli F, Raus L, et al. 
Gemcitabine treatment of experimental C6 glioma: the effects on cell cycle and 
apoptotic rate. Anticancer Res 2006;26:3017-24. 

309. Hamed SS, Straubinger RM, Jusko WJ. Pharmacodynamic modeling of cell 
cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. 
Cancer Chemother Pharmacol 2013;72:553-63. 

310. Doetschman T. Influence of genetic background on genetically engineered 
mouse phenotypes. Methods Mol Biol 2009;530:423-33. 

311. Kang YK, Kim WH, Jang JJ. Expression of G1-S modulators (p53, p16, p27, 
cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. Hum 
Pathol 2002;33:877-83. 

312. Consortium EP. A user's guide to the encyclopedia of DNA elements 
(ENCODE). PLoS biology 2011;9:e1001046. 

313. Yao L, Berman BP, Farnham PJ. Demystifying the secret mission of enhancers: 
linking distal regulatory elements to target genes. Crit Rev Biochem Mol Biol 
2015;50:550-73. 

314. Meyer CA, Liu XS. Identifying and mitigating bias in next-generation 
sequencing methods for chromatin biology. Nature reviews Genetics 
2014;15:709-21. 

315. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional 
organization of genomes: interpreting chromatin interaction data. Nature reviews 
Genetics 2013;14:390-403. 

316. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, et al. 
MNase titration reveals differences between nucleosome occupancy and 
chromatin accessibility. Nature communications 2016;7:11485. 

317. Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, et al. 
High nucleosome occupancy is encoded at human regulatory sequences. PloS 
one 2010;5:e9129. 

318. Schober M, Jesenofsky R, Faissner R, Weidenauer C, Hagmann W, Michl P, et 
al. Desmoplasia and chemoresistance in pancreatic cancer. Cancers (Basel) 
2014;6:2137-54. 

319. Wagner T, Jung M. New lysine methyltransferase drug targets in cancer. Nat 
Biotechnol 2012;30:622-3. 



Chapter 7: References 

 189 

320. Hui C, Ye T. Synthesis of lysine methyltransferase inhibitors. Front Chem 
2015;3:44. 

321. Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and 
demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016;8:57. 

322. Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in 
solid tumours--lessons from the past. Nat Rev Clin Oncol 2013;10:256-66. 

323. Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised 
epigenetic states and acquired drug resistance in cancer. Nature reviews Cancer 
2014;14:747-53. 

324. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid 
tumours: a review of clinical trials. Clin Epigenetics 2015;7:127. 

325. Shen DW, Pastan I, Gottesman MM. In situ hybridization analysis of acquisition 
and loss of the human multidrug-resistance gene. Cancer research 
1988;48:4334-9. 

326. Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt 
CL, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug 
resistance-associated protein-overexpressing human cancer cell lines. British 
journal of cancer 2003;88:1963-70. 

 

 



 

 190 

 

 

 

 

 

Appendix I  Publication in Cancer Research 
 



Therapeutics, Targets, and Chemical Biology

Reduced Expression of Histone
Methyltransferases KMT2C and KMT2D Correlates
with Improved Outcome in Pancreatic Ductal
Adenocarcinoma
Joshua B.N. Dawkins, Jun Wang, Eleni Maniati, James A. Heward, Lola Koniali,
Hemant M. Kocher, Sarah A. Martin, Claude Chelala, Frances R. Balkwill,
Jude Fitzgibbon, and Richard P. Grose

Abstract

Genes encoding the histone H3 lysine 4 methyltransferases
KMT2C and KMT2D are subject to deletion and mutation in
pancreatic ductal adenocarcinoma (PDAC), where these lesions
identify a group of patients with a more favorable prognosis. In
this study, we demonstrate that low KMT2C and KMT2D
expression in biopsies also defines better outcome groups, with
median survivals of 15.9 versus 9.2 months (P ¼ 0.029) and
19.9 versus 11.8 months (P ¼ 0.001), respectively. Experiments
with eight human pancreatic cell lines showed attenuated cell
proliferation when these methyltransferases were depleted,
suggesting that this improved outcome may reflect a cell-cycle
block with diminished progression from G0–G1. RNA-seq anal-
ysis of PDAC cell lines following KMT2C or KMT2D knock-
down identified 31 and 124 differentially expressed genes,
respectively, with 19 genes in common. Gene-set enrichment

analysis revealed significant downregulation of genes related to
cell-cycle and growth. These data were corroborated indepen-
dently by examining KMT2C/D signatures extracted from the
International Cancer Genome Consortium and The Cancer
Genome Atlas datasets. Furthermore, these experiments
highlighted a potential role for NCAPD3, a condensin II com-
plex subunit, as an outcome predictor in PDAC using existing
gene expression series. Kmt2d depletion in KC/KPC cell lines
also led to an increased response to the nucleoside analogue 5-
fluorouracil, suggesting that lower levels of this methyltrans-
ferase may mediate the sensitivity of PDAC to particular treat-
ments. Therefore, it may also be therapeutically beneficial to
target these methyltransferases in PDAC, especially in those
patients demonstrating higher KTM2C/D expression. Cancer Res;
76(16); 4861–71. !2016 AACR.

Introduction
Pancreatic ductal adenocarcinomas (PDAC) make up the

majority (>90%)of all pancreaticmalignancies and are associated
with particularly poor overall survival (1). Patients typically
present with invasion and metastases at diagnosis, limiting the
opportunities for curative surgical resection. The introduction of
next-generation sequencing approaches has accelerated our
understanding of the recurring codingmutations present in PDAC
(2–6). There appears to be a founder population of cells that have
accumulated activating mutations in KRAS (>90%; ref. 6), along-

side loss-of-function mutations in TP53 (50%–75%; refs. 7–10)
and SMAD4 ("55%; refs. 10, 11). In addition, a significant
number of other recurring copy number changes and mutations
targeting components of the epigenome have been identified,
including the histone lysine (K) methyltransferases KMT2C
(MLL3) andKMT2D (MLL2; refs. 2–6). Intriguingly, theseKMT2C
andKMT2Dmutations appear to identify a group of patients with
better outcome relative to those with wild-type configuration (5),
suggesting that depletion of these methyltransferases may either
define less aggressive forms of PDAC, or serendipitously improve
the efficacy of existing therapies, where the mechanisms under-
lying this effect are not known.

The KMT2 family of histone lysine methyltransferases con-
sists of KMT2A (MLL1/ALL1), KMT2B (MLL2/MLL4), KMT2C
(MLL3/HALR), KMT2D (MLL2/ALR/MLL4), KMT2E (MLL5),
KMT2F (SET1A), KMT2G (SET1B), and KMT2H (ASH1L;
ref. 12). These family members, with the exception of KMT2E
and KMT2H, act as catalytic subunits within mammalian
COMPASS-like complexes to catalyze the addition of methyl
groups to a lysine residue on the amino tail of histone H3
(H3K4; ref. 13). H3K4 exists in unmethylated, monomethy-
lated (H3K4me1), dimethylated (H3K4me2), and trimethy-
lated (H3K4me3) states, where H3K4me1 is typically associ-
ated with enhancers and H3K4me3 with promoters (14). These
KMT2 complexes appear to have different substrate specificities
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to catalyze the formation of H3K4me1 (KMT2C and KMT2D;
refs. 15, 16), H3K4me1/me2 (KMT2A and KMT2B; refs. 17, 18),
and H3K4me1/me2/me3 (KMT2F and KMT2G; ref. 19).

Our focus here is restricted to two of these methyltransferases
identified as potential key players in PDAC. Loss of KMT2C and
KMT2D in cancer is expected to impact upon gene expression;
however, such changes appear to be cell type–dependent, with
both negative and positive effects on cell proliferation reported
(15, 20–28). We set out to understand how these methyltrans-
ferases impact uponPDACbiology, andwhether theymaypresent
novel opportunities for patient stratification, personalized ther-
apies, or even therapeutic targets.

Materials and Methods
Cell lines

Human tumor cell lines PANC-1 and Capan-2, and the immor-
talized human pancreatic ductal epithelial cell line, HPDE, were
cultured in DMEM (Sigma Aldrich); BxPC-3, SUIT-2, RWP-1 and
COLO 357 in RPMI1640medium (Sigma Aldrich); and CFPAC-1
cells in Iscove's modified Dulbecco's medium with 25 mmol/L
HEPES (Lonza) and 2 mmol/L L-glutamine (Sigma Aldrich).
PANC-1, Capan-2, HPDE, BxPC-3, SUIT-2, RWP-1, and
CFPAC-1 were obtained from ATCC. All human cell lines were
obtained between 2008 and 2012, and authenticated between
2011 and 2016 using small tandem repeat profiling conducted by
LGC standards and ATCC. DT6606, DT6586, and TB32034 cell
lines, derived from the LSL-KrasG12D/þ;Pdx-1-Cre (KC; ref. 29;
DT6585 and DT6606) and LSL-KrasG12D/þ;LSL-Trp53R172H/þ;
Pdx-1-Cre (KPC; ref. 30; TB32043) mice models of PDAC, were
cultured in DMEM (Sigma Aldrich). DT6606, DT6585, and
TB320343 were kindly provided by David Tuveson (Cold Spring
Harbor Laboratory). For each cell line, medium was supplemen-
ted with 10% heat-inactivated FBS (Life Sciences Solutions), 100
U/mL penicillin, and 100 mg/mL streptomycin (Sigma Aldrich).
All cell lines were resuscitated from authentic stocks, cultured for
less than twomonths at 37"Cand5%CO2, and routinely screened
for mycoplasma.

RNAi transfection
Cells were plated in 6-well plates with 2.5 mL growth medium

without penicillin and streptomycin for forward lipid transfection
with Silencer Select siRNAs (Life Sciences Solutions) and Lipo-
fectamine RNAiMAX (Life Sciences Solutions; Supplementary
Table S1). For human cell transfection, a final concentration of
8.3 nmol/L per well was achieved by combining 25 pmol siRNA
with 5 mL Lipofectamine in 500-mL Opti-MEM I medium (Life
Sciences Solutions) for 15 minutes, before adding to wells for 48
hours. The protocol was the same for murine cell transfection,
with 150 pmol siRNA used instead to achieve a final concentra-
tion of 50 nmol/L. In all experiments, loss of KMT2D/Kmt2d or
KMT2C/Kmt2c expressionwas confirmed byWestern blot analysis
or real-time PCR.

Western blot analysis
To prepare protein lysates, culture medium was removed, cells

were washed twice with Dulbecco's PBS (DPBS), and RIPA buffer
[Sigma-Aldrich; supplemented with protease inhibitor cocktail I
(Roche) and 1:100 phosphatase inhibitor cocktail II (Sigma-
Aldrich)] was added for 30minutes on ice. Lysates were harvested
with cell scrapers and cellular debris removed by 30-minute

centrifugation at 16,000 rcf and 4"C. Protein quantification was
determined in a bicinchoninic acid (BCA) assay [4% w/v copper
(II) sulphate (Sigma-Aldrich) diluted 1:50 in bicinchoninic acid
(Sigma-Aldrich)]. Samples were run on NuPAGE Novex 3%–8%
Tris-Acetate or 4%–12%Bis-Tris gels (Life Sciences Solutions) and
transferred to preactivated polyvinylidene difluoride membranes
by iBlot dry transfer (Life Sciences Solutions). Membranes were
blocked for an hour with 5%w/v BSA (Sigma-Aldrich), or 5%w/v
nonfat dry milk (Marvel), in Tris-buffered saline with Tween 20
(TBST) and probed with primary antibodies diluted in blocking
buffer overnight at 4"C. Membranes were washed with TBST,
incubated with rabbit or mouse horseradish peroxidase–conju-
gated secondary antibodies diluted in blocking buffer, for an hour
at room temperature, and washed with TBST (Supplementary
Table S2 for primary and secondary antibodies). Staining was
visualized by incubation with Amersham Enhanced Chemilumi-
nescence (ECL), or ECL prime, Western blotting detection
reagents (GE Healthcare) and developed using Super Rx X-ray
films (Fujifilm) and a Konica Minolta SRX-101A medical film
processor. Equivalence of protein loaded for each sample was
confirmed by b-actin staining.

Cell proliferation assay
The eight cell lines were seeded in 6-well plates at either 5# 104

cells/well (SUIT-2) or 8# 104 cells/well (all other cell lines). After
a 48-hour transfection, cells were washed with DPBS and 3 mL of
fresh penicillin- and streptomycin-free media were added. Cells
were cultured for 72hours before detachmentwith trypsin (Sigma
Aldrich) and counted using a Vi-Cell XR automated cell viability
analyzer (Beckman Coulter).

Flow-cytometric analysis of cell cycle
Cells seeded in triplicate wells of 6-well plates at either 1.5 #

105 cells/well (SUIT-2), or 2# 105 cells/well (all other cell lines),
were transfected for 48 hours. Three wells per treatment were
harvested and analyzed across three time points (48 hours after
transfection, 16-hour treatment with 400 ng/mL nocodazole, and
24 hours after medium was replaced). Cells were pelleted by
5-minute centrifugation at 16,000 rcf and 4"C and permeabilized
with 1 mL ice-cold 70% ethanol. Cells were stored at $80"C
before washing with ice-cold DPBS and staining with propidium
iodide [PI; 50 mg/mL PI (Sigma-Aldrich) with 100 mg/mL RNase A
(Qiagen) inDPBS] for 15minutes at 37"C. The YG610/20filter on
the Fortessa II flow cytometer was used to examine DNA staining
in 30,000 cells.

Real-time PCR analysis
To validate selective knockdown of KMT2C or KMT2D mRNA

by siRNAs, total RNA was isolated from cells, after 48-hour
transfection, using theRNeasyMini Kitwith anon-columnDNase
digestion (Qiagen). Extracted RNA was quantified using a Nano-
drop spectrophotometer and reverse transcribed into cDNA using
a High-Capacity cDNA Reverse Transcription Kit (Life Sciences
Solutions). Duplex real-time PCRs were performed using iTaq
Universal Probes Supermix (Bio-Rad) and TaqMan gene expres-
sion assays (Life Sciences Solutions) to examine expression of the
gene of interest and the 18S ribosomal RNA internal housekeep-
ing standard (Supplementary Table S3).Datawere analyzed using
a 2$DDCt method (31) to examine relative expression of each
gene, where mRNA expression levels were normalized to levels
of 18S rRNA for the targeted siRNAs, and then expressed relative to
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normalized mRNA expression levels of the control siRNA
treatment.

RNA sequencing and analysis
Material for RNA sequencing (RNA-seq) was generated from

cells seeded at either 1! 105 cells/well (SUIT-2) or 1.6! 105 cells/
well (PANC-1 andCOLO357) in 6-well plates and transfected for
48 hours. Total RNA was isolated (as above), quantified, and
integrity measured using a RNA 6000 nano assay kit on a
2100 BioAnalyzer (Agilent). A Ribo-Zero Gold kit (Illumina)
was used to deplete rRNA from RNA samples and cDNA libraries
were prepared using the TruSeq stranded total RNA library
preparation kit (Illumina). Libraries prepared for sequencing
were validated on the 2100 BioAnalyzer with a DNA 1000 kit
(Agilent) and again after randomizing the samples into seven
pools with a high sensitivity DNA analysis kit (Agilent). Paired-
end sequences (reads) of 100 bp in length were generated using
seven lanes of a HiSeq 2000 (Illumina). RNA-seq data have
been deposited in Gene Expression Omnibus (GEO) under the
accession number GSE75327 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc¼GSE75327).

After FASTQ data quality check using FastQC, raw reads were
aligned to the reference genome hg19 using Tophat2 (32). An
average of 27.2 M aligned paired-end reads (range 19.7–36.4 M),
corresponding to an average of 75.0% (range 59.2%–82.2%)
concordant pair alignment rate, were reported (Supplementary
Table S4). The number of reads uniquely aligned (mapping
quality score q > 10) to the exonic region of each gene were
counted using HTSeq (33), based on the Ensembl annotation
(version 74). KMT2C and KMT2D siRNA datasets were first
analyzed independently. Only genes that achieved at least one
count per million (CPM) mapped reads in at least three samples
were included, leading to 15,912 and15,818filtered genes in total
for the respectiveKMT2C andKMT2D siRNAdatasets. These genes
were classified into 15 RNA species, with protein-coding tran-
scripts representing 81.8% and 82.3%, respectively. Read counts
were further normalized using the conditional quantile normal-
ization (cqn) method (34), accounting for gene length and GC
content. Differential expression analysis was then performed
using the edgeR package (35), employing the generalized linear
model (GLM) approach, for each siRNAversus its control pairwise
comparison, adjusting for baseline differences between the cell
lines, with an additive model design as "model.matrix
(#celllineþsiRNA_treatment). " For each pairwise comparison,
the significantly differentially expressed (DE) genes were selected
using a double threshold of false discovery rate (FDR) < 0.05 and
an absolute fold change of at least two. Common DE genes were
then identified between different siRNA versus control compar-
isonswithin theKMT2C andKMT2D siRNAdatasets.On the basis
of log2 fold changes of siRNA treated over control for all filtered
genes, gene-set enrichment analysis (GSEA) was performed for
each comparison using the GSEA tool to identify the canonical
pathways gene sets from the Molecular Signatures Database
(MSigDB-C2 v5.0; ref. 36). The gene ontology (GO) biological
process (BP) enrichment analysiswas alsoperformed forDEgenes
using the PANTHER classification system (37).

Statistical analysis of clinical and expression data
Two large PDAC datasets, the International Cancer Genome

Consortium (ICGC; ref. 38) and The Cancer Genome Atlas
(TCGA; ref. 3), with both gene expression and clinical follow-up

data available,wereused to complete survival analysis.Data on87
patients from the ICGC dataset were previously compiled and
processed (39). Level 3 gene expression data for TCGA dataset
were downloaded via TCGAdata portal (https://tcga-data.nci.nih.
gov/tcga/). Only annotated and confirmed PDAC patients were
selected (108 in total). RNA-seq by Expectation-Maximization
(RSEM) normalized expression data for 20,501 genes were
obtained. For each gene, low and high expression groups were
determined using the method described previously (40). Briefly,
each percentile of expression between lower and upper quartiles
was used in the Cox regression analysis and the best performing
threshold of percentile was determined. As an example, the
selection of high and low expression groups for KMT2C and
KMT2D in the ICGC and TCGA datasets are shown (Supplemen-
tary Fig. S1A).

Survivalmodeling andKaplan–Meier (KM) analysiswas under-
taken using R statistical environment ("survival" package). Over-
all survival (OS)was defined as time fromdiagnosis to death, or to
the last follow-up date for survivors. Log-rank test was used to
calculate the KM P values. The Cox proportional hazards model
was fitted to every gene independently.

Two additional PDAC gene expression profiles (GEP) and
clinical follow-up datasets, namely "Stratford" and "BCI_Zhang_-
merged," compiled and processed previously (39), were also
included for validation studies.

Cell chemotherapy response assay
The three murine cell lines (DT6606, DT6585, and TB32043)

were seeded in 6-well plates at a density of 4! 104 cells/well. After
48-hour transfection, cells werewashedwithDPBS, detachedwith
trypsin, and replated in 96-well plates at 1 ! 104 cells/well
(DT6585 and TB32043), or 5 ! 103 cells/well (DT6606). After
adherence, medium was replaced with DMEM containing differ-
ent concentrations of 5-fluorouracil (5-FU; Accord Healthcare).
After 72-hour incubation, WST-1 reagent (Roche) was added to
each well and the optical density (OD) measured at 440 nm
(reference 630 nm) after 3 hours. To generate log–dose response
curves, percentage of cell viability was calculated using the max-
imal OD as 100% viability.

Results
Decreased KMT2C/D expression correlates with favorable
outcome in PDAC patients

Inactivation of KMT2C and KMT2D arises through a combi-
nationof genedeletion and/ormutation inPDAC(2–6). To assess
whether expression levels of these methyltransferases are also
linked to patient outcomes, we used gene expression profile
(GEP) data from the ICGC and TCGA patient series to compare
clinical features of patients with tumors expressing different levels
ofKMT2C andKMT2D. In the ICGCdataset, we observed that low
levels of KMT2C and KMT2D expression were independently
associated with better OS (KMT2D, median 19.9 vs. 11.8months,
log-rank P¼0.001, Fig. 1A; KMT2C, median 15.9 vs. 9.2 months,
log-rank P ¼ 0.029, Fig. 1B). Combined low-level expression of
KMT2C and KMT2D also correlated with longer survival (median
15.9 vs. 9.2months, log-rank P¼ 0.044, Supplementary Fig. S1B).
A similar trendwas alsoobserved inTCGAdataset, forKMT2C and
combined KMT2C/D expression; however, these results did not
reach statistical significance (Supplementary Fig. S1C). Overall,
these observations are consistent with recent genetic data
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demonstrating that 12 of 101 patients with KMT2C or KMT2D
loss-of-function mutations have a superior outcome compared
with patients with a wild-type configuration (5).

Silencing of KMT2C/D expression reduces proliferation
To determine the cellular effects of depleting KMT2C and

KMT2D, three siRNAs were used to silence both methyltrans-
ferases in a panel of eight human pancreatic cell lines; three
derived from primary tumors (PANC-1, BxPC-3, Capan-2), four
frommetastatic sites (SUIT-2, RWP-1, CFPAC-1, COLO 357), and
one immortalized from the human pancreatic ductal epithelium
(HPDE; Supplementary Fig. S2A and S2B). KMT2D silencing by
two siRNAs located to different regions of the transcript (exons 39
and 48) resulted in a reduction of KMT2D protein (Fig. 2A) and,
consistent with previous studies in medulloblastoma and colo-
rectal cancer cells (15), reduced cell proliferation significantly in
all cell lines tested (Fig. 2B). A third siRNA targeting KMT2D
produced a less pronounced effect on growth inhibition and was
not included in further analyses. KMT2C silencing resulted in
significant, albeit less pronounced, reductions in cell proliferation
for the three cell lines tested (Supplementary Fig. S2C and S2D).

To examine whether these changes in cell proliferation were
accompanied by cell-cycle anomalies, analysis of KMT2D-
silenced cells was performed using propidium iodide and a
G2–M blocking agent, nocodazole. In these experiments, cells
treated with control siRNA accumulated within the G2–Mphases,
contrasting with an observed G0–G1 block in KMT2D-depleted
cells (Fig. 3A). When the cell-cycle profile of PANC-1 cells was
evaluated over several days at 24-hour intervals,KMT2D silencing
led to a decrease in the number and proportion of cells in G0–G1

with a concomitant increase in the apoptotic fraction (Fig. 3B and
Supplementary Fig. S2E). Taken together, these experiments sug-

gest that KMT2D contributes towards normal cell-cycle progres-
sion, with loss of thismethyltransferase leading to cell-cycle arrest
and subsequent apoptosis.

KMT2C and KMT2D share overlapping gene signatures
To better understand the mechanism(s) responsible for the

cellular effects of KMT2C/D, we assessed the transcriptional
changes in response to KMT2C and KMT2D depletion in three
PDAC cell lines (PANC-1, SUIT-2, and COLO 357). These cell
lines were selected to include a range of background mutations
and both primary and metastatic tumors. KMT2C and KMT2D
were targeted individually across the three cell lines using siRNAs,
with each targeted siRNA resulting in a measurable and specific
reduction of KMT2C or KMT2D expression, compared with the
scrambled control (Fig. 4A and B). Total RNA was isolated 48
hours after siRNA treatment and transcriptomes were assessed by
RNA-seq using 100-bp paired-end deep sequencing (Supplemen-
tary Table S4). Resultant RNA-seq profiles confirmed knockdown
of both KMT2C and KMT2D methyltransferases in their corre-
sponding experiments (Supplementary Fig. S3A and S3B).

We focussed our attention on differentially expressed protein-
coding genes shared between the individual siRNAs and all three
PDAC cell lines, noting correlations in log2 fold changes for all
quantified genes within the KMT2C and KMT2D siRNA datasets
between different siRNAs compared with control (correlation
coefficients ranging from 0.39 to 0.60, Supplementary Fig.
S3C). As our data support a greater role for KMT2D than KMT2C,
in our analysis, we report data in this order. Taking each methyl-
transferase separately to start, we observed a total of 567 and 759
DE genes for KMT2D siRNAs 1 and 2, respectively, with 124 genes
common to both siRNAs and the three lines (Fig. 4C and D;
Supplementary Table S5). Fold changes for the DE genes ranged
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Figure 1.
KM survival analysis to assess prognostic value of KMT2D (A) and KMT2C (B) expression in the ICGC dataset. Numbers on the x-axis are in the unit of years.
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from 0.14 (downregulated, C2orf54) to 24.43 (upregulated,
KRT6B), with 40 genes exhibiting a decrease, and 84 an increase,
in gene expression. KMT2C silencing resulted in differential
expression across 790 genes, with 31 common across all three
siRNAs tested (Fig. 4C and D; Supplementary Table S6). For these
31 commonDE genes, the fold changes ranged from 0.18 (down-
regulated, AKR1B10) to 6.51 (upregulated, ANO3), with 27 genes
demonstrating an increase, and four a decrease, in expression.
There was a striking overlap between DE genes in the KMT2C and
KMT2D siRNA datasets, with 19 genes common to both methyl-
transferases, each demonstrating consistent directional and fold
changes between the two methyltransferases (Supplementary
Table S6).

Four of these genes were selected for validation based on their
previous associations with pancreatic cancer [c-MET (2, 41),
Calumenin (42), Claudin-1 (43, 44), and PTPN14 (45)], with
Western blot analysis confirming expression changes of each
at the protein level (Fig. 4E and Supplementary Fig. S4A). ABCB1,
which encodes an ATP-dependent efflux pump andwas decreased
by KMT2D siRNA treatment, was also included in the validation
panel, as its expression has been linked with an increase in
drug resistance in pancreatic cancer (46). Decreased expression
of ABCB1, identified by RNA-seq to be specific to KMT2D silenc-
ing in the two metastatic cell lines, was confirmed by Western
blot analysis (Supplementary Fig. S4B). Global levels of
H3K4me1/me2/3 remained largely unchanged at 48 hours after
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Figure 2.
Depletion of KMT2D reduces cell
proliferation. A, Western blot analysis
confirmed reduced expression of
KMT2D at 72 hours after transfection
with KMT2D-targeted siRNA duplexes
in eight cell lines. A third siRNA was
cropped from the images.B, depletion
of KMT2D significantly inhibits cell
proliferation (one-way ANOVA with
Dunnett post hoc analysis, !! , P < 0.01;
!!! , P < 0.001), where proliferation of
the eight cell lines was examined by
performing a cell count at 72 hours
after KMT2D siRNA transfection. Data
shown are mean values for three
replicate wells performed on the same
day " SD for control siRNA, KMT2D
siRNA1, and KMT2D siRNA2.
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KMT2D siRNA transfection in PANC-1 cells; however, after 120
hours, KMT2D depletion was accompanied by a global reduction
in H3K4me1/3 and, to a lesser extent, H3K4me2 and total H3
(Supplementary Fig. S4C).

Analysis of pathways associated with silenced KMT2C or
KMT2D

In light of the overlapping data between the transcriptomes of
KMT2C- and KMT2D-depleted lines, GSEA was employed to
explore the significant differences between targeted and control
siRNAs in all curated canonical pathways. In support of our
proliferation and cell-cycle studies, six pathways (cell-cycle,
cell-cycle mitotic, DNA replication, DNA repair, mitotic M-M/
G1 phases, and Fanconi pathways) were significantly downregu-
lated (FDR < 0.05) in all siRNA experiments compared with
controls (Fig. 5A and B). Other pathways relating to cell-cycle
checkpoints and apoptosis were also affected, although signifi-

cance was not reached for all five pairwise comparisons. Three
pathways of note (telomeremaintenance, meiotic recombination
and chromosome maintenance) were highly downregulated in
the KMT2D siRNA datasets, but to a lesser extent in the KMT2C
siRNA experiments (Fig. 5A and B).

Clinical correlation of expression of targeted genes
Using the ICGC and TCGA human pancreatic cancer datasets,

we next assessed the biological process enrichment of genes that
strongly correlated (Pearson correlation P < 0.001) with
KMT2C/D expression levels (Supplementary Table S7). To this
end, the PANTHER classification system identified a significant
enrichment of the cell cycle [adjusted (adj.) P ¼ 1.45e"02 for
ICGC dataset; adj. P ¼ 1.02e"06 for TCGA], mitosis (adj. P ¼
1.62e"03 for TCGA), and DNA repair (adj. P ¼ 1.61e"02 for
TCGA) pathways for genes that positively correlated with com-
binedKMT2C/D expression. In addition, translationwas found to
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Figure 3.
Loss of KMT2D expression blocks cells in G0–G1 before cells undergo apoptosis. A, cell-cycle analysis of the SUIT-2 cell line, which is representative of the
eight cell lines tested. Profiles and graphs show that cells with reduced KMT2D do not accumulate in G2–M after 16 hours of 400 ng/mL nocodazole treatment due to
their retention in the G0–G1 fraction. (U, untreated; N, nocodazole; R, recovery). B, graphs depicting the cell-cycle profiles of PANC-1 cells over 168 hours at
24-hour intervals showing that cells blocked in G0–G1, due to KMT2D loss, begin to undergo apoptosis.
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be the most overrepresented biological pathway for genes,
where expression showed significant negative correlation with
KMT2C/D (adj. P ¼ 2.21e"04 for ICGC and adj. P ¼ 5.76e"30
for TCGA). The pathways observed to correlate with KMT2C/D

expression in human pancreatic cancer datasets were therefore
consistent with the most significantly downregulated and upre-
gulated pathways following KMT2C/D knockdown in our
PDAC cell lines (Fig. 5A).
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RNA-seq identifies changes in gene expression following loss of KMT2D or KMT2C. A and B, KMT2D- and KMT2C-targeted siRNAs reduce expression of KMT2DmRNA
and protein, and KMT2C mRNA, respectively. A, Western blot analysis showing the two KMT2D siRNAs reducing KMT2D levels in three cell lines (PANC-1, SUIT-2,
and COLO 357), whereas for the three KMT2C and control siRNAs it remains largely unaffected. B, RT-qPCR analysis showing changes in KMT2D and KMT2C mRNA
expression in the three cell lines [PANC-1 (black circles), SUIT-2 (red triangles), and COLO 357 (blue squares)] after transfection with two KMT2D siRNAs, three
KMT2C siRNAs,or the scramblenegativecontrol siRNA.Data shownarenormalizedmeanvalues fromtechnical triplicates.CandD,bioinformaticanalysisofRNA-seqdata
identifies DE genes common across the three cell lines for the two KMT2D siRNAs and three KMT2C siRNAs, compared with the negative control siRNA. C, Venn
diagram depicting the commonality for the DE genes of each siRNA across the three cell lines, where 19 were found to be common across all siRNAs and
cell lines. D, heatmaps for KMT2D and KMT2C datasets showing their 124 and 31 commonly DE genes, respectively. E, Western blot analysis validating expression
changes of four DE genes at the protein level for the two KMT2D siRNAs and three KMT2C siRNAs. A third siRNA was cropped from images A and E.
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Among the 94 and 257 cell-cycle genes (significantly positively
correlated with combined KMT2C/D expression) from the ICGC
and TCGA datasets, respectively (Supplementary Table S8), we
identified three (NCAPD3, CDKL1, and EIF2AK4) as being sig-
nificantly downregulated in at least one KMT2C/D siRNA exper-
iment (Supplementary Table S9). Furthermore, patientswith low-
level expression of these three genes were found to have better OS
rates in both the ICGC and TCGA datasets (Fig. 5C and Supple-
mentary Fig. S5A). We focused primarily on NCAPD3, a subunit
of the condensin II protein complex involved in chromosome
condensation, due to its significant positive correlations with
KMT2C/D expression in the ICGC and TCGA datasets (r ¼
0.36, P ¼ 5.56e"04 and r ¼ 0.38, P ¼ 5.19e"05, respectively,
Supplementary Fig. S5B), and significant associations with clin-
ical outcome in two additional human pancreatic cancer cohorts
(log-rank P ¼ 0.042 for Stratford dataset and P ¼ 2.12e"04 for
BCI_Zhang_merged dataset, Supplementary Fig. S5C). The can-
didacy of CDKL1 and EIF2AK4 was not supported in these two
additional cohorts (Supplementary Fig. S5C). Interestingly,
NCAPD3 showed significant downregulation in our KMT2D
siRNA datasets compared with control (FDR < 0.05), whereas its
expression remained almost unchanged in the KMT2C siRNA

datasets, findings that were confirmed at the protein level (Fig.
5D). These data are consistent with GSEA pathway analysis (Fig.
5B), which highlighted a predominant role for KMT2D, but not
KMT2C, in chromosome maintenance.

Kmt2d depletion increases 5-FU sensitivity
The dependence of PDAC cells on KMT2D for survival and the

cell-cycle inhibition renders it an appealing therapeutic target. We
postulated that lower expression, and/ormutation, could increase
sensitivity to commonly used chemotherapies that target cell-
cycle processes, providing one potential mechanism for favour-
able outcome seen in patients with lowerKMT2D expression. This
hypothesis was tested using murine Kmt2d siRNAs in three cell
lines derived from the KC (DT6585 and DT6606; ref. 29) and
KPC (TB32043; ref. 30 ) genetically engineered mouse models of
pancreatic cancer (Fig. 6A). We were unable to perform these
experiments in human cell lines as loss of KMT2D affected their
cell proliferation (Fig. 2), something that was not seen in the three
murine cell lines (Supplementary Fig. S6A). In both KC and KPC
lines we observed an increase in their sensitivity to the nucleoside
analogue 5-FU, with exposure to 10-fold less 5-FU capable of
eliciting the same reduction in cell viability when used in
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Figure 5.
GSEA identifies significant enrichment of genes relating to the cell-cycle, cell growth, and DNA repair pathways upon loss of KMT2D, potentially contributing
to an improved patient outcome. A, heatmap showing changes in the normalized enrichment score (NES) for the upmost enriched pathways following loss of
KMT2D or KMT2C. A negative NES indicated the downregulation in siRNA-treated samples in relation to control. Pathways significantly downregulated by all
examined siRNAs are noted in red. B, selected enrichment score plots for genes in the REACTOME cell-cycle and telomere maintenance pathways. C, KM survival
analysis of the ICGC and TCGA datasets to show significant negative correlations of patient survival with high (red) and low (black) expression of NCPAD3.
Numbers on the x-axis represent years. D, expression analysis data showing significantly reduced NCAPD3 expression, both by RNA-seq (top) and
Western blotting (bottom), for the two KMT2D siRNAs. This reduction was minimal for the three KMT2C siRNAs.
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combination with Kmt2d depletion (Fig. 6B). Interestingly, this
increased sensitivity to 5-FU was specific to Kmt2d loss (Supple-
mentary Fig. S6B–S6D), in accordance with our human data
where, relative to KMT2D, KMT2C loss had weaker effects on cell
proliferation (Supplementary Fig. S2D) and less of an impact on
patient survival (ICGC data; Fig. 1).

Discussion
The identification of mutations in several key methyl and

acetyltransferases are nowan established feature ofmanydifferent
cancers (47). Mutations in these enzymes are deemed insufficient
for cancer initiation alone, with many of these lesions associated
with various developmental disorders (48), where mutations in
KMT2D are responsible for Kabuki syndrome (49). KMT2C and
KMT2D represent a second tier ofmutations in PDACoccurring at
a lower frequency compared with mutations in KRAS, TP53, and
SMAD4. The actual frequencies ofKMT2C andKMT2Dmutations
in PDAC are still debatable (2–6). This is further complicated by
different mechanisms of inactivation that include chromosomal
deletion and variations in the nature and location of mutations,
resulting in missense or truncation, and therefore loss of the
functional enzymatic methyltransferase SET domain from the
carboxyl-terminal.

In our study, we reasoned that inter-patient fluctuations in
expression of these methyltransferases might impart significant
changes in outcome. We were intrigued by our initial studies
comparing matched GEP and outcome in publically available
PDAC series that uncovered a strong favorable signal linked with
lowexpressionof these histonemodifiers; something that has also
been previously reported for KMT2D in breast cancer (24). It is
reassuring that expression of these methyltransferases is consis-

tent with recent studies that link mutations in these genes, and
another family member (KMT2A), with improved overall and
progression-free survival in PDAC (5).

The molecular mechanisms by which these methyltransferases
contribute to PDAC development and/or influence patient out-
come are likely to be complex, with the H3K4me1-3 chromatin
marks potentially altering expression of many target genes. Our
silencing experiments, which resulted in near complete loss of
these methyltransferases and led to a marked reduction in pro-
liferation effects of KMT2D in eight pancreatic cell lines, were
consistent with previous studies using gene editing in other tumor
settings (15), supporting someoverlapping function across tumor
types. Indeed, our studies go one step further by also implicating
KMT2C in cell proliferation, suggesting that these proteins have
somewhat complementary roles in PDAC, and may well explain
the observation that KMT2D and KMT2C mutations arise inde-
pendently of each other (5, 50).

We therefore went on to explore the potential downstream
effectors ofKMT2C andKMT2D loss in pancreatic cancer, focusing
on changes common to both methyltransferases. Our RNA-seq
experiments and subsequent GSEA analysis highlighted changes
in DNA replication, repair, and cell cycle, echoing the results of
our initial in vitro observations. To identify the more robust gene
signatures, we focused primarily on changes consistent across the
three cell lines, and siRNA experiments. This highlighted several
proteins previously implicated in PDACbiology including c-MET,
Calumenin, Claudin-1, and PTPN14, all of which were upregu-
lated in our experiments and are known to impact on a range of
distinct pathways and processes (41, 42, 44, 51). Indeed, all four
were included in the 19-gene signature that was common to
KMT2D and KMT2C in our siRNAs profiles. This gene signature,
however, did not predict prognosis in any of the four PDAC GEP
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Figure 6.
Depletion of Kmt2d increases sensitivity of murine pancreatic cancer cells to 5FU. A, Western blot analysis showing the reduction in Kmt2d expression by
two Kmt2d targeted siRNAs in the three murine KC (DT6606 and DT6585) and KPC (TB32043) cell lines. B, reduced Kmt2d expression results in a leftward shift
in 5-FU dose–cell viability response curves, showing that Kmt2d depletion renders each of the cell lines more sensitive to 5-FU treatment. Cell viability was
examined using WST-1 after 72 hours of 5-FU treatment. Data shown are mean OD values from technical triplicate wells normalized to maximal OD for each of two
biological replicates for control siRNA (black squares), Kmt2d siRNA1 (light gray circles), and Kmt2d siRNA2 (dark gray triangles).
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datasets tested (ICGC, TCGA, Stratford, or BCI_Zhang_merged)
based on consensus clustering and OS (data not shown), leading
us to speculate that these genes may contribute instead to PDAC
development. Moreover, patient clustering based on this 19-gene
signature alone did not show a significant enrichment in high or
low KMT2C/D expression (data not shown). While unexpected,
this may reflect the inherent complexity in direct comparisons
between primary and cell line data, and may also be a measure of
the complete loss of protein induced by siRNA, a feature unlikely
to be reflected physiologically, where other compensatory
mechanisms might be induced. When we instead focused on
genes significantly correlated with KMT2C/D expression from the
ICGC and TCGA datasets, it was encouraging to find that signif-
icant overrepresentation of the cell-cycle signature positively
correlated with KMT2C/D gene expression. We could refine this
cell-cycle compartment by comparing against our RNA-seq
expression profile, identifying several common genes with con-
current direction of fold change and magnitude. An examination
of the contribution of each gene in turn, and their clinical
associations, highlighted a potentially novel role for theNCAPD3
subunit of the condensin II complex in PDAC biology. This
chromosome condensation protein demonstrated a 1.3–4.1 fold
reduction in expression across the three tested cell lines for
KMT2D, and encouragingly was a good predictor of outcome in
all four GEP series. Having confirmed these findings at the protein
level, NCAPD3 is now the focus of ongoing experiments.

Further work remains to determine the mechanisms by which
loss or reduced activity of thesemethyltransferases associates with
improved patient outcome. In some pilot experiments, we have
examined changes in sensitivity to chemotherapywhenKmt2d, or
Kmt2c, were depleted. For these experiments, we used cell lines
derived frommurinemodels of PDACwhose proliferation, unlike
human cell lines, remained unaffected by methyltransferase
depletion. Here we noted that Kmt2d silencing increased sensi-
tivity to the antimetabolite 5-FU, suggesting that favorable out-
come linkedwithKMT2D low expressionmight be attributable to
an improved response to chemotherapy. This effect was not
associated with a change in the levels of Abcb1 (data not shown),
which has previously been shown to be a mediator of 5-FU
response (52). This overall effect was specific to Kmt2d, asmurine
cells were not sensitized to 5-FU upon Kmt2c depletion, perhaps
reflecting the weaker impact of low KMT2C expression on patient
outcome.

In summary, we have identified roles for KMT2D, KMT2C, and
a new role for NCAPD3 expression as prognostic predictors in

PDAC. The data support the incorporation of combined KMT2C/
D mutation and gene expression into existing risk stratification
models. In addition, we report that loss of KMT2D, and to a lesser
extent KMT2C, impacts on the cell-cycle and DNA replication
pathways, leading to a reduction in cell proliferation. Overall, our
studies point to therapeutic benefits of targeting these methyl-
transferases in PDAC, especially in those patients that demon-
strate higher KTM2C/D expression.
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Appendix II  List of genes commonly 

differentially expressed upon loss of KMT2C 
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Downregulated 
Name Description 

AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) [Source: HGNC Symbol; 
Acc:382] 

CHST4 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 4 [Source: HGNC Symbol; 
Acc:1972] 

CYP4F3 cytochrome P450, family 4, subfamily F, polypeptide 3 [Source: HGNC Symbol; 
Acc:2646] 

PKHD1 polycystic kidney and hepatic disease 1 (autosomal recessive) [Source: HGNC Symbol; 
Acc:9016] 

 

Upregulated 
Name Description 

ANO3 anoctamin 3 [Source: HGNC Symbol; Acc:14004] 
BANF1 barrier to autointegration factor 1 [Source: HGNC Symbol; Acc:17397] 
BANF1P3 barrier to autointegration factor 1 pseudogene 3 [Source: HGNC Symbol; Acc:43883] 
CALU calumenin [Source: HGNC Symbol; Acc:1458] 
CLDN1 claudin 1 [Source: HGNC Symbol; Acc:2032] 
H3F3AP4 H3 histone, family 3A, pseudogene 4 [Source: HGNC Symbol; Acc:42980] 
KIAA1024 KIAA1024 [Source: HGNC Symbol; Acc:29172] 
MAPK1IP1L mitogen-activated protein kinase 1 interacting protein 1-like [Source: HGNC Symbol; 

Acc:19840] 
MBTPS1 membrane-bound transcription factor peptidase, site 1 [Source: HGNC Symbol; 

Acc:15456] 
MET met proto-oncogene [Source: HGNC Symbol; Acc:7029] 
MSRB3 methionine sulfoxide reductase B3 [Source: HGNC Symbol; Acc:27375] 
NRBF2 nuclear receptor binding factor 2 [Source: HGNC Symbol; Acc:19692] 
OPN1SW opsin 1 (cone pigments), short-wave-sensitive [Source: HGNC Symbol; Acc:1012] 
PCDHA11 protocadherin alpha 11 [Source: HGNC Symbol; Acc:8665] 
PDCD6 programmed cell death 6 [Source: HGNC Symbol; Acc:8765] 
PIP4K2A phosphatidylinositol-5-phosphate 4-kinase, type II, alpha [Source: HGNC Symbol; 

Acc:8997] 
PPP2R1B protein phosphatase 2, regulatory subunit A, beta [Source: HGNC Symbol; Acc:9303] 
PTPMT1 protein tyrosine phosphatase, mitochondrial 1 [Source: HGNC Symbol; Acc:26965] 
PTPN1 protein tyrosine phosphatase, non-receptor type 1 [Source: HGNC Symbol; Acc:9642] 
PTPN14 protein tyrosine phosphatase, non-receptor type 14 [Source: HGNC Symbol; Acc:9647] 
RBPJ recombination signal binding protein for immunoglobulin kappa J region [Source: 

HGNC Symbol; Acc:5724] 
SLC36A1 solute carrier family 36 (proton/amino acid symporter), member 1 [Source: HGNC 

Symbol; Acc:18761] 
SRPR signal recognition particle receptor (docking protein) [Source: HGNC Symbol; 

Acc:11307] 
TAPT1 transmembrane anterior posterior transformation 1 [Source: HGNC Symbol; 

Acc:26887] 
TCEB3 transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A) [Source: 

HGNC Symbol; Acc:11620] 
TOMM20 translocase of outer mitochondrial membrane 20 homolog (yeast) [Source: HGNC 

Symbol; Acc:20947] 
WSB1 WD repeat and SOCS box containing 1 [Source: HGNC Symbol; Acc:19221] 
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differentially expressed upon loss of KMT2D 
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Downregulated 
Name Description 

PTAFR platelet-activating factor receptor [Source: HGNC Symbol; Acc:9582] 
C2orf54 chromosome 2 open reading frame 54 [Source: HGNC Symbol; Acc:26216] 
SERTAD4 SERTA domain containing 4 [Source: HGNC Symbol; Acc:25236] 
LIN28B lin-28 homolog B (C. elegans) [Source: HGNC Symbol; Acc:32207] 
CISH cytokine inducible SH2-containing protein [Source: HGNC Symbol; Acc:1984] 
PVRL4 poliovirus receptor-related 4 [Source: HGNC Symbol; Acc:19688] 
ANKRD2 ankyrin repeat domain 2 (stretch responsive muscle) [Source: HGNC Symbol; 

Acc:495] 
PIK3CB phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta [Source: 

HGNC Symbol; Acc:8976] 
KRT80 keratin 80 [Source: HGNC Symbol; Acc:27056] 
LIFR-AS1 LIFR antisense RNA 1 [Source: HGNC Symbol; Acc:43600] 
HNRNPA1P33 heterogeneous nuclear ribonucleoprotein A1 pseudogene 33 [Source: HGNC 

Symbol; Acc:44990] 
SNCG synuclein, gamma (breast cancer-specific protein 1) [Source: HGNC Symbol; 

Acc:11141] 
RBPMS2 RNA binding protein with multiple splicing 2 [Source: HGNC Symbol; 

Acc:19098] 
RP5-1120P11.1 -  
ANGPTL4 angiopoietin-like 4 [Source: HGNC Symbol; Acc:16039] 
AC112229.1 -  
GPR63 G protein-coupled receptor 63 [Source: HGNC Symbol; Acc:13302] 
FAM46B family with sequence similarity 46, member B [Source: HGNC Symbol; 

Acc:28273] 
LYPLA1P3 lysophospholipase I pseudogene 3 [Source: HGNC Symbol; Acc:44007] 
MCAM melanoma cell adhesion molecule [Source: HGNC Symbol; Acc:6934] 
MMRN2 multimerin 2 [Source: HGNC Symbol; Acc:19888] 
FUT4 fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific) [Source: 

HGNC Symbol; Acc:4015] 
AMER1 APC membrane recruitment protein 1 [Source: HGNC Symbol; Acc:26837] 
AC013268.3 - 
ADORA1 adenosine A1 receptor [Source: HGNC Symbol; Acc:262] 
HOXB-AS4 HOXB cluster antisense RNA 4 [Source: HGNC Symbol; Acc:40285] 
RP11-244F12.3 - 
POLQ polymerase (DNA directed), theta [Source: HGNC Symbol; Acc:9186] 
TMPPE transmembrane protein with metallophosphoesterase domain [Source: HGNC 

Symbol; Acc:33865] 
CHML choroideremia-like (Rab escort protein 2) [Source: HGNC Symbol; Acc:1941] 
TMEM184A transmembrane protein 184A [Source: HGNC Symbol; Acc:28797] 
ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1 [Source: HGNC 

Symbol; Acc:40] 
GPR157 G protein-coupled receptor 157 [Source: HGNC Symbol; Acc:23687] 
EIF5A2 eukaryotic translation initiation factor 5A2 [Source: HGNC Symbol; Acc:3301] 
C9orf41 chromosome 9 open reading frame 41 [Source: HGNC Symbol; Acc:23435] 
LYPLA1 lysophospholipase I [Source: HGNC Symbol; Acc:6737] 
ETV4 ets variant 4 [Source: HGNC Symbol; Acc:3493] 
MDC1 mediator of DNA-damage checkpoint 1 [Source: HGNC Symbol; Acc:21163] 
REEP5 receptor accessory protein 5 [Source: HGNC Symbol; Acc:30077] 
H1F0 H1 histone family, member 0 [Source: HGNC Symbol; Acc:4714] 
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Upregulated 
Name Description 

SLC2A12 solute carrier family 2 (facilitated glucose transporter), member 12 [Source: 
HGNC Symbol; Acc:18067] 

CRK v-crk avian sarcoma virus CT10 oncogene homolog [Source: HGNC Symbol; 
Acc:2362] 

CDK20 cyclin-dependent kinase 20 [Source: HGNC Symbol; Acc:21420] 
SCEL sciellin [Source: HGNC Symbol; Acc:10573] 
TCEB3 transcription elongation factor B (SIII), polypeptide 3 (110kDa, elongin A) 

[Source: HGNC Symbol; Acc:11620] 
THSD7A thrombospondin, type I, domain containing 7A [Source: HGNC Symbol; 

Acc:22207] 
ERCC5 excision repair cross-complementing rodent repair deficiency, complementation 

group 5 [Source: HGNC Symbol; Acc:3437] 
RSL24D1 ribosomal L24 domain containing 1 [Source: HGNC Symbol; Acc:18479] 
PCSK7 proprotein convertase subtilisin/kexin type 7 [Source: HGNC Symbol; Acc:8748] 
C1D C1D nuclear receptor corepressor [Source: HGNC Symbol; Acc:29911] 
PIP4K2A phosphatidylinositol-5-phosphate 4-kinase, type II, alpha [Source: HGNC 

Symbol; Acc:8997] 
DYRK1B dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B [Source: 

HGNC Symbol; Acc:3092] 
HMBOX1 homeobox containing 1 [Source: HGNC Symbol; Acc:26137] 
IL1RL1 interleukin 1 receptor-like 1 [Source: HGNC Symbol; Acc:5998] 
CAMK1D calcium/calmodulin-dependent protein kinase ID [Source: HGNC Symbol; 

Acc:19341] 
RP1-283E3.8 - 
DSG3 desmoglein 3 [Source: HGNC Symbol; Acc:3050] 
CIRBP cold inducible RNA binding protein [Source: HGNC Symbol; Acc:1982] 
NRBF2 nuclear receptor binding factor 2 [Source: HGNC Symbol; Acc:19692] 
PLS3 plastin 3 [Source: HGNC Symbol; Acc:9091] 
EPHA7 EPH receptor A7 [Source: HGNC Symbol; Acc:3390] 
TP63 tumor protein p63 [Source: HGNC Symbol; Acc:15979] 
FAM32A family with sequence similarity 32, member A [Source: HGNC Symbol; 

Acc:24563] 
LIPH lipase, member H [Source: HGNC Symbol; Acc:18483] 
SLC9A3 solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), member 

3 [Source: HGNC Symbol; Acc:11073] 
NEK11 NIMA-related kinase 11 [Source: HGNC Symbol; Acc:18593] 
GRB10 growth factor receptor-bound protein 10 [Source: HGNC Symbol; Acc:4564] 
MAPKAP1 mitogen-activated protein kinase associated protein 1 [Source: HGNC Symbol; 

Acc:18752] 
BANF1 barrier to autointegration factor 1 [Source: HGNC Symbol; Acc:17397] 
PCDH18 protocadherin 18 [Source: HGNC Symbol; Acc:14268] 
ATP9A ATPase, class II, type 9A [Source: HGNC Symbol; Acc:13540] 
NTN1 netrin 1 [Source: HGNC Symbol; Acc:8029] 
FLRT3 fibronectin leucine rich transmembrane protein 3 [Source: HGNC Symbol; 

Acc:3762] 
LRP1B low density lipoprotein receptor-related protein 1B [Source: HGNC Symbol; 

Acc:6693] 
AP1S3 adaptor-related protein complex 1, sigma 3 subunit [Source: HGNC Symbol; 

Acc:18971] 
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SOX4 SRY (sex determining region Y)-box 4 [Source: HGNC Symbol; Acc:11200] 
BCO2 beta-carotene oxygenase 2 [Source: HGNC Symbol; Acc:18503] 
HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 [Source: HGNC Symbol; Acc:5211] 
AC007383.3 - 
MBTPS1 membrane-bound transcription factor peptidase, site 1 [Source: HGNC Symbol; 

Acc:15456] 
SLC7A2 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 

[Source: HGNC Symbol; Acc:11060] 
GOPC golgi-associated PDZ and coiled-coil motif containing [Source: HGNC Symbol; 

Acc:17643] 
PTPN14 protein tyrosine phosphatase, non-receptor type 14 [Source: HGNC Symbol; 

Acc:9647] 
H3F3AP4 H3 histone, family 3A, pseudogene 4 [Source: HGNC Symbol; Acc:42980] 
MAOB monoamine oxidase B [Source: HGNC Symbol; Acc:6834] 
TMEM154 transmembrane protein 154 [Source: HGNC Symbol; Acc:26489] 
FAM217B family with sequence similarity 217, member B [Source: HGNC Symbol; 

Acc:16170] 
TNFRSF8 tumor necrosis factor receptor superfamily, member 8 [Source: HGNC Symbol; 

Acc:11923] 
PCDHA11 protocadherin alpha 11 [Source: HGNC Symbol; Acc:8665] 
MET met proto-oncogene [Source: HGNC Symbol; Acc:7029] 
FAM49B family with sequence similarity 49, member B [Source: HGNC Symbol; 

Acc:25216] 
MCFD2 multiple coagulation factor deficiency 2 [Source: HGNC Symbol; Acc:18451] 
TOMM20 translocase of outer mitochondrial membrane 20 homolog (yeast) [Source: HGNC 

Symbol; Acc:20947] 
CALU calumenin [Source: HGNC Symbol; Acc:1458] 
WSB1 WD repeat and SOCS box containing 1 [Source: HGNC Symbol; Acc:19221] 
ADAM32 ADAM metallopeptidase domain 32 [Source: HGNC Symbol; Acc:15479] 
CLDN1 claudin 1 [Source: HGNC Symbol; Acc:2032] 
SLC6A20 solute carrier family 6 (proline IMINO transporter), member 20 [Source: HGNC 

Symbol; Acc:30927] 
KIAA1024 KIAA1024 [Source: HGNC Symbol; Acc:29172] 
CCDC81 coiled-coil domain containing 81 [Source: HGNC Symbol; Acc:26281] 
PPP2R1B protein phosphatase 2, regulatory subunit A, beta [Source: HGNC Symbol; 

Acc:9303] 
PTPMT1 protein tyrosine phosphatase, mitochondrial 1 [Source: HGNC Symbol; 

Acc:26965] 
RP11-126O22.1 - 
GPR137B G protein-coupled receptor 137B [Source: HGNC Symbol; Acc:11862] 
ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide [Source: HGNC Symbol; 

Acc:251] 
LGR5 leucine-rich repeat containing G protein-coupled receptor 5 [Source: HGNC 

Symbol; Acc:4504] 
RBPJ recombination signal binding protein for immunoglobulin kappa J region [Source: 

HGNC Symbol; Acc:5724] 
XYLT1 xylosyltransferase I [Source: HGNC Symbol; Acc:15516] 
S100A9 S100 calcium binding protein A9 [Source: HGNC Symbol; Acc:10499] 
MSRB3 methionine sulfoxide reductase B3 [Source: HGNC Symbol; Acc:27375] 
GLDN gliomedin [Source: HGNC Symbol; Acc:29514] 
MXD4 MAX dimerization protein 4 [Source: HGNC Symbol; Acc:13906] 
CMYA5 cardiomyopathy associated 5 [Source: HGNC Symbol; Acc:14305] 
BANF1P3 barrier to autointegration factor 1 pseudogene 3 [Source: HGNC Symbol; 

Acc:43883] 
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YPEL2 yippee-like 2 (Drosophila) [Source: HGNC Symbol; Acc:18326] 
SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 [Source: HGNC 

Symbol; Acc:8584] 
SULT1E1 sulfotransferase family 1E, estrogen-preferring, member 1 [Source: HGNC 

Symbol; Acc:11377] 
PMFBP1 polyamine modulated factor 1 binding protein 1 [Source: HGNC Symbol; 

Acc:17728] 
IFNWP19 interferon, omega 1 pseudogene 19 [Source: HGNC Symbol; Acc:5451] 
TNFRSF11B tumor necrosis factor receptor superfamily, member 11b [Source: HGNC 

Symbol; Acc:11909] 
TBC1D3F TBC1 domain family, member 3F [Source: HGNC Symbol; Acc:18257] 
LYPD6B LY6/PLAUR domain containing 6B [Source: HGNC Symbol; Acc:27018] 
CTD-2231H16.1 - 
KRT6B keratin 6B [Source: HGNC Symbol; Acc:6444] 

 


