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Abstract 

 
Background and Aim: Preterm infants frequently receive blood transfusion (BT) 

during their stay in the neonatal unit. The aim of this study was to measure the 

effect of BT on cerebral and gut blood flow and oxygenation in preterm infants in 

relation to postnatal age. Another aim of the study was also to investigate the 

influence of measured pre-transfusion RCV on gut perfusion in preterm infants 

receiving first blood transfusion for clinical indication using NIRS and Doppler 

ultrasound scan. 

 

Methods: Preterm infants admitted to neonatal unit were recruited to three 

postnatal age groups: 1 to 7 days (group 1; n=20), 8 to 28 days (group 2; n=21) & 

≥29 days of life (group 3; n=18). Pre and post-BT Anterior Cerebral artery (ACA) 

Time Averaged Mean Velocity (TAMV) and Superior Vena Cava (SVC) flow were 

measured to assess cerebral blood flow. Pre and post-BT Superior mesenteric 

artery (SMA) peak systolic velocity was measured to assess gut or splanchnic 

blood flow. Cerebral and gut Tissue Haemoglobin Index (THI), Oxygenation Index 

(TOI) were measured from 15-20 minutes before to 15-20 minutes post-BT using 

NIRS. Cerebral and gut fractional tissue oxygen extraction (FTOE) was calculated 

from the TOI and saturation of oxygen (SaO2). Vital parameters and blood 

pressure (BP) were also measured continuously from overhead monitors. Pre-

transfusion red cell volume (RCV) was measured by fetal haemoglobin (HbF) 

dilution method and compared with the cerebral and gut perfusion and oxygenation 

changes following blood transfusion. The cerebral and gut perfusion and 
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oxygenation were also measured over a three hour period in 12 control infants not 

receiving blood transfusion. 

  

Results: There were 71 infants included in the study; of them 59 were study 

infants receiving blood transfusion and 12 were control infants. Amongst the vital 

parameters, mean BP increased significantly, and there was no significant change 

in heart rate (HR), respiratory rate (RR) or SaO2 following BT.  

 

Pre-transfusion ACA TAMV was higher in Group 2 and 3 compared to Group 1 

(p<0.001) which remained significant after multivariate analysis (p<0.05). Pre-

transfusion ACA TAMV decreased significantly (p≤0.04) in all 3 postnatal age 

groups; pre-transfusion SVC flow decreased significantly in Group 1 (p=0.03) and 

Group 3 (p<0.001) following transfusion. Pre-transfusion cTOI was significantly 

lower in Group 3 compared to Group 1 (p=0.02) which remained significant after 

multivariate analysis (p<0.011). The cTHI (p<0.001) and cTOI (p<0.05) increased 

significantly post-transfusion in all three postnatal age groups. PDA had no effect 

on these measurements. 

 

Pre-transfusion SMA PSV increased with postnatal age (group 3 vs. group 1: 

p<0.01; CI 0.6 to 0.1), proportion of feeds (>50% feeds: 0.91±0.4 vs. <50% feeds: 

0.71±0.4 m/sec, p<0.01); and decreased with presence of PDA (closed PDA: 

0.94±0.4 vs. open PDA: 0.68±0.3 m/sec, p=0.006, CI 0.07 to 0.45); but remained 

unaltered following transfusion. The pre-transfusion sTOI varied with postnatal age 
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(Group 2:44.6 vs. Group1: 36.7%; p=0.03, CI -0.6 to -15.2) on univariate analysis 

but was not significantly different on multivariate analysis; pre-transfusion sTOI 

was not influenced by feeds or presence of PDA. The sTHI and sTOI increased 

(p<0.01) and sFTOE decreased (p<0.01) significantly following transfusion in all 

postnatal age groups.  

 

When compared between infants with patent ductus arteriosus (PDA) to 

gestational and postnatal age matched infants with closed PDA the pre-transfusion 

baseline cerebral and gut oxygenation values were similar.   

 

Red cell volume (RCV) was measured in 14 preterm infants with indwelling arterial 

catheters. The median pre-transfusion RCV was 29.9 (20.6 - 38.7) ml/kg. RCV 

correlated well with haemoglobin (r=0.65, p<0.01) and haematocrit (r=0.60, 

p<0.01). Five infants had RCV <25 ml/kg. The SMA peak systolic velocity 

decreased significantly (p<0.03, CI 0.01 to 0.33) following transfusion in infants 

with RCV <25ml/kg and remained unaltered in those with RCV ≥25 ml/kg. The gut 

tissue oxygenation index (sTOI) increased significantly (p<0.01, CI 7.9 to 30.9) in 

those with RCV ≥25 ml/kg along with a subsequent decrease in the sFTOE and 

increase in sTHI. But the sTOI, sTHI or sFTOE did not increase in those infants 

with pre-transfusion RCV <25 ml/kg following transfusion. 

 

The pre-transfusion baseline anterior cerebral artery (ACA) time averaged mean 

velocity (TAMV) was significantly higher in the infants with pre-transfusion 
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haemoglobin (Hb) <11 g/dl compared to those with Hb level ≥11 g/dl (p<0.001). 

The pre-transfusion baseline superior vena cava (SVC) blood flow was though 

higher in infants with Hb <11g/dl this difference was not statistically significant 

(p=0.54). The ACA TAMV decreased significantly in both the groups following 

blood transfusion and was similar (17%) in those with a pre-transfusion Hb <11g/dl 

compared to those with a pre-transfusion Hb level ≥11g/dl (18%).  

 

When compared in relation to pre-transfusion Hb level (≥ or <11 g/dl), the pre-

transfusion cTOI and sTOI levels were similar. There was a significant increase in 

the cerebral tissue oxygenation index (cTOI) following blood transfusion in both 

groups with Hb level above (p=0.005; CI 2.2, 10.1) and below (p<0.0001; CI 3.9, 

8.9) 11g/dl. Similarly, the splanchnic tissue oxygenation also increased 

significantly in both group of infants with Hb ≥11g/dl (p=0.001; CI 6.6, 23.5) and Hb 

<11g/dl (p<0.0001; CI 7.3, 18.9) following blood transfusion.  

 

The changes in ACA TAMV, SVC flow, SMA PSV as well as cTOI and sTOI 

following blood transfusion were not significantly different between the postnatal 

age groups on multivariate analysis of covariates: gestational age, birth weight, 

pre-transfusion Hb and mean blood pressure, presence of PDA and volume of 

feed. 

 

In twelve control infants, heart rate (HR), respiratory rate (RR), systolic blood 

pressure (BP) and diastolic BP, mean arterial BP and SaO2 all remained stable at 
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the start of the NIRS measurements (pre-oximetry measurements) and at the end 

of NIRS measurements (post-oximetry measurements). The cerebral and 

splanchnic blood flow and tissue oximetry measurements remained similar over 

the three hour period of measurements.  

 

Conclusion: Baseline pre-transfusion cTOI decrease, ACA TAMV and SMA PSV 

increase with increasing postnatal age. Blood transfusion increased cTOI and cTHI 

and decreased cFTOE and ACA TAMV in all postnatal age groups. Blood 

transfusion improved intestinal tissue oxygenation (increase sTOI and sTHI and 

decrease sFTOE) without altering mesenteric blood flow velocity irrespective of 

postnatal age, pre-transfusion haemoglobin and presence of PDA. In infants with 

RCV <25ml/kg the SMA blood flow velocity decreased following blood transfusion, 

this could be due to an adaptive response to increased post-transfusion RCV. 

Unlike infants with RCV ≥25ml/kg, the gut oximetry markers did not improve 

following transfusion in those infants with RCV <25ml/kg. This may suggest that 

babies with pre-transfusion RCV <25 ml/kg may need larger volume of blood 

transfusion; larger studies are required to substantiate this finding.  
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1.1. Blood transfusion in neonatology 

 

1.1.1. History of blood transfusion 

 

William Harvey, the founder of modern physiology, described the circulation of 

blood in the body through heart in his pioneering experiments about four hundred 

years back. He published his work in a 72 page booklet ‘Exercitatio anatomica de 

motu cordis et sanguinis in animalibus’ (An Anatomical Exercise on the Motion of 

the Heart and Blood in Living Beings), more frequently referred to as ‘De motu 

cordis’. In this booklet Harvey described the two phases of cardiac movements: 

systole (contraction) and diastole (expansion)1. This was hailed by historian KF 

Russell as the greatest single contribution to anatomy and medicine in any century 

2. Following Harvey’s pioneering research with circulation of blood; research into 

blood transfusion began in the 17th century. In 1665 at a meeting of the Royal 

Society of London Christopher Wren demonstrated animal-to-animal transfusion of 

blood. The first animal-to-human blood transfusion was reported as early as 1667 

by Jean-Baptiste Denys of France. He transfused blood from a sheep to a 15-year-

old boy, who survived the transfusion3.  The first animal-to-human transfusion in 

England was performed by Lower and King five months later 4. After multiple fatal 

incidents, Denys rejected the idea of animal-to-human transfusion and this led to 

transfusion of blood to humans falling to disrepute and was subsequently been 

forbidden in France and England for the next 150 years. In nineteenth century, 

James Blundell, an obstetrician at Guy’s Hospital in London introduced human-to-

human blood transfusion into medical practice. He reported satisfactory benefit of 

transfusion in cases of post-partum haemorrhage in 1828 5.  Since then blood 
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transfusion has found its way in medical parlance and has evolved over the years 

to establish as a life-saving treatment.  

 

The concept of paediatric transfusions is as old as the history of blood transfusion 

itself. Infants in a neonatal intensive care unit are subjected to various laboratory 

and bedside blood tests to inform clinicians of their physiological status which in 

turn allow them to make necessary ventilatory changes. But preterm newborn 

infants are unable to replace the blood losses quickly, hence requiring frequent 

blood transfusions. Advances in the field of neonatology have led to increased 

survival of preterm newborn infants 6; blood transfusion patterns in the neonatal 

units (NNU) have changed over the last twenty to thirty years leading to more 

restrictive transfusion practice 7,8. 

 

1.1.2. Current blood transfusion practice 

 

Amongst the Extremely Low Birth Weight (ELBW) infants 90% receive packed red 

blood cell (PRBC) transfusions 8 and it is well recognised that patients in neonatal 

intensive care units (NICU) receive more PRBC transfusions than any other 

hospitalised group9,10. This is a result of  frequent blood losses from phlebotomy to 

monitor intensive care 11 in conjunction with an immature haematopoietic system 

12. It is also compounded by the fact that preterm infants have lower haemoglobin 

levels at birth 13. Over time the blood transfusion practice has been changing 14,15; 

in 1980s 80 to 90% of infants <1500 grams and 100% of infants <1000 grams 

would have received blood transfusion 7. Comparing the cohorts receiving blood 
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transfusion between 1982 and 1993 Maier et al have reported a remarkable drop 

in the frequency of transfusion from 7.0±7.4 to 2.3±2.7. This is primarily due to a 

decline in the pre-transfusion haematocrit threshold (33.6±2.8% to 29.8±5.1%) for 

transfusion over this period8.  

 

The three categories of newborn infants who receive blood transfusion include (1) 

infants with significant blood loss in the perinatal period, such as placental 

abruption, (2) infants with significant cardiopulmonary disease on high ventilatory 

requirement with an intention to keep haematocrit  >40% and (3) infants where 

haemoglobin (Hb <7 g/dl) or haematocrit (Hct <23%) is below a fixed level16. The 

third category include older preterm infants with lung disease such as Broncho-

pulmonary dysplasia (BPD), and stable growing infants with symptomatic anaemia 

(multiple apnoea, desaturation and bradycardia with a low Hb or Hct)16. PRBC 

transfusion depends not only on Hb and Hct but also on the amount of 

cardiorespiratory support [invasive ventilation versus continuous positive airway 

pressure (CPAP)], oxygen requirement and postnatal age of the infant17. Nearly 

half of the PRBC transfusions given to ELBW infants are given during the first 2 

weeks of life7,18, when these infants are sicker, needing large number of laboratory 

blood tests, weekly phlebotomy losses during this period can be as much as 10 - 

30% of the total blood volume (10 – 25 ml/kg)19. Average iatrogenic blood losses 

could be as much as 40 – 80 ml/kg 20,21 in infants with birth weight of <1000g.  

 

The neonatal blood transfusion guidelines rely on subjective findings and do not 

identify or target specific patient needs22,23. The various compensatory 

mechanisms a neonate uses to improve tissue oxygen metabolism are by 
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vasodilatation, increased cardiac output by increasing heart rate and by increased 

oxygen extraction from haemoglobin to meet metabolic demands. Anaemia 

impacts a patient’s clinical status when the oxygen carrying capacity of the blood 

drops below an adequate threshold to meet the demands of oxygen consumption 

in the tissue. But direct measurement of oxygen consumption is technically difficult 

and cumbersome. Theoretically, anaemia results in a patient being symptomatic 

when there is an imbalance between oxygen delivery and consumption, rather 

than at predefined Hb levels24. 

 

Clinicians are reliant on clinical signs, such as tachycardia, bradycardia, apnoea or 

desaturation episodes, along with traditional laboratory measurements, such as 

Hb, Hct, reticulocyte count and serum lactate to determine when infants require a 

PRBC transfusion25. The decision for blood transfusion is made by neonatal 

clinicians based on national26 and local hospital guidelines along with their clinical 

judgement. PRBC transfusions are administered only when clinicians predict that 

the benefit will outweigh the risks. However, because of its subjective nature, these 

judgements are dependent on local guideline and clinician’s perception27. As a 

result of this multiple known and unknown physiological factors are not always 

considered28. To improve the predictability of transfusion success, many protocols 

in addition to Hb, consider clinical state of the infant, their clinical symptoms, and 

respiratory support status29. This approach is nonspecific, as a change in vital 

signs or symptoms that often prompt a PRBC transfusion in neonatal unit (NNU) 

can occur for many reasons other than anaemia in a premature infant. These other 

potential aetiologies may include minor conditions like gastro-oesophageal reflux, 

apnoea of prematurity, to major conditions such as respiratory distress and 
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sepsis30. As a result, too frequently, there is no significant improvement following 

transfusion 28. 

 

1.1.3. Current evidence for haemoglobin thresholds 

 

There is no firm evidence about the threshold at which an infant should receive 

PRBC transfusion. In the presence of an equipoise following randomised trials of 

the benefits of liberal and restrictive blood transfusion 31-33, majority of the 

guidelines advocates low Hb thresholds for transfusion of preterm infants primarily 

based on retrospective or observational studies and also relying on adult studies of 

blood transfusion 34. The British Committee for Standards in Haematology (BCSH) 

published its revised guideline on blood transfusion in 200426 and the American 

Red Cross guideline for blood transfusion published its second edition in 200735. 

These guidelines stressed the importance of defining poor cardiopulmonary status, 

such as fractional inspired oxygen (FiO2) and its application in local practice. A 

comparison of some of these guidelines is shown in Table 1. In a new version of 

their blood transfusion guideline, the BCSH recommend Hb level threshold of <70 

g/L in late anaemia of preterm infants. The threshold can be increased upto 85 g/L 

depending on the clinical situation36.  

 

 

 

 

 



29 | P a g e  

 

Table 1: Comparison of British Committee for Standards in Haematology 
(BCSH), American, Australian and Canadian practice guidelines for PRBC 
transfusion in newborn infants 

 

Clinical status BCSH 

guideline 
26

 

American Red 
Cross Practice 
guideline 

35
 

 

Australian National 
Blood Authority 
guideline 

Canadian Blood 
services 
guideline 

Anaemia in the first 24 
hours 

Hb <12 g/dl or 
Hct <0.36 

-- 
 

No respiratory  support: 
Hb 10 – 12 g/dl 
Respiratory support 
Hb 11 – 13 g/dl 
 

On ECMO and 
Congenital cyanotic 
heart disease  
Hb <15 g/dl 

Infants receiving 
intensive care 
Severe 
cardiopulmonary 
disease (FiO2>0.35) 

Hb <12 g/dl or 
Hct <0.36 

Hct 40 – 45% Hb 11 – 13 g/dl Hb <12 g/dl 

Chronic oxygen 
dependency 
Moderate 
cardiopulmonary 
disease (CPAP or O2) 

Hb <11 g/dl Hct 30 – 35% Hb 8.5 – 11 g/dl Hb <10 g/dl 

Late anaemia, stable 
patient 

Hb < 7g/dl Hct 20 – 25% Hb 7 – 10 g/dl Hb <7 g/dl 

 

 

Various randomised controlled trials used different thresholds of transfusion for the 

liberal and restrictive groups; although the results of the two recent trials were not 

unambiguous they provide valuable insight into the outcomes achieved with 

current transfusion practice31,32. The results of Premature Infants in Need of 

Transfusion (PINT) trial (228 liberal vs. 223 restrictive) demonstrated no difference 

in death or survival with broncho-pulmonary dysplasia (BPD), severe retinopathy of 

prematurity, or brain injury at discharge32. On the contrary, Bell et al in the Iowa 

Transfusion Trial reported higher number of severe adverse brain events (defined 

as grade 4 IVH, periventricular leucomalacia, or both; 6 vs. 0; p=0.012) in those 

infants who received restrictive transfusion (n=47) compared to liberal transfusion 

(n=50)31. An important limitation of the two randomised trials 31,32 was the trivial 
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mean difference of the Hb thresholds used for the liberal and restrictive groups for 

transfusion particularly for late anaemia. The post hoc analysis of The PINT 

outcome study (PINTOS) where the neurodevelopment of infants were assessed 

at 18 to 21 months of corrected age37 and the 12 year follow up of Iowa 

Transfusion Trial where MRI brain scans were used to assess intracranial 

volume38, the results have been conflicting, where the first favoured liberal and the 

second restrictive transfusion. Details of the thresholds of transfusion used in 

these two and other transfusion trials are presented in Table 2. 

 
Table 2: Threshold used by different randomised trials for PRBC 
transfusions 
Trials Restrictive threshold Liberal threshold 

 

Blank et al (1984) 
39

 Transfusion according to clinical 
indication 
 

Transfuse if Hb <100 g/l 

Ransome et al (1989) 
40

 Hb levels <70 g/l or clinically 
symptomatic 
 

Hb levels <100 g/l 

Brooks et al (1999) 
41

 PRBC transfusion when clinically 
symptomatic 
 

PRBC transfusion if Hb<133 g/l 
 

Connelly et al (1998) 
42

 1
st
 postnatal week:110 g/l 

2
nd

 postnatal week: 
a.FiO2>40%: 110 g/l 
b.FiO2<40%: 90g/l 
3

rd
 postnatal week: 80 g/l* 

1
st
 postnatal week: 130 g/l 

2
nd

 postnatal week: 
a.FiO2>40%: 130 g/l 
b.FiO2<40%: 100 g/l 
3

rd
 postnatal week: 80 g/dl* 

 

Mukhopadhyay et al (2004) 
43

 Hb levels ≤100 g/l or 
Hct ≤ 30% 
 

Hb levels ≤133 g/l or 
Hct ≤ 40% 

Bell et al (2005) 
31

 Intubated: 113 g/l 
O2 or CPAP: 93 g/l 
No respiratory support: 67 g/l 
 

Intubated: 153 g/l 
O2 or CPAP: 127 g/l 
No respiratory support: 73 g/l 

Kirpalani et al (2006) 
32

 For infants requiring respiratory 
support (ventilation, CPAP or 
oxygen): 
Postnatal week 1: 115 g/l 
Week 2: 100 g/l 
Week 3 till discharge: 85 g/l 
 
For infants not requiring 
respiratory support: 

Postnatal week 1: 100 g/l 
Week 2: 85 g/l 
Week 3 till discharge: 75 g/l 
 

For infants requiring respiratory 
support (ventilation, CPAP or 
oxygen): 
Postnatal week 1: 135 g/l 
Week 2: 120 g/l 
Week 3 till discharge: 100 g/l 
 
For infants not requiring 
respiratory support: 

Postnatal week 1: 120 g/l 
Week 2: 100 g/l 
Week 3 till discharge: 85 g/l 
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Chen et al (2009) 
33

 Intubated: 116 g/l 
CPAP: 100 g/l 
No respiratory support: 73 g/l 
 

Intubated: 150 g/l 
CPAP: 133 g/l 
No respiratory support: 100 g/l 

Key: * When capillary rather than venous or arterial bloods were sampled the thresholds were 4% 
higher 

 

There are two randomised trials currently undergoing for investigation of 

neurodevelopmental outcome at 24 months of age in relation to liberal and 

restrictive transfusion practice44,45. The transfusion thresholds used for these two 

trials are presented in Table 3. The thresholds used in these two trials are chosen 

by investigators by consensus depending on various transfusion practices of 

various institutions. The presence of equipoise in deciding the need for transfusion 

in a preterm infant and the absence of current evidence is the main reason why 

transfusion thresholds are widely variable in practice as well as in various trials. 

 

Table 3: Transfusion thresholds of haematocrit level used in current trials 
 

ETTNO
44

 TOP
45

 

Age 

Liberal Restrictive 

Age 

Liberal Restrictive 

Critical Non 

critical 

Critical Non 

critical 

Critical Non 

critical 

Critical Non 

critical 

3-7 days <41 <35 <34 <28 Wk 1 38 35 32 29 

8-21 days <37 <31 <30 <24 Wk 2 37 32 29 25 

≥21 days <34 <28 <27 <21 ≥Wk 3 32 29 25 21 

 

ETTNO trial – Effects of Transfusion Thresholds on Neurocognitive Outcome 

TOP trial – Transfusion of Premature trial 
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1.1.4. Physiological response to anaemia and blood transfusion 

 

There is a general perception that anaemia may lead to tachycardia, hypotension, 

poor perfusion and impair oxygen delivery to tissues of newborn infants. 

Fredrickson et al examined the physiological adaptation to anaemia in preterm 

infants (n=41) who were already enrolled into a trial31 comparing two sets of 

haematocrit thresholds (liberal vs. restrictive) for transfusion. The vital parameters 

were measured before transfusion and were compared with the values following 

morning after transfusion. They noticed no significant change following transfusion 

in the oxygen consumption, mean fractional inspired oxygen (FiO2) or mean 

oxygen saturation (SaO2) in either group46. Kasat et al used caregivers’ perception 

of clinical improvement as a measure of benefit following PRBC transfusion with 

the objective of refining transfusion guidance. Care givers of 78 neonates were 

requested to complete a pre and post-transfusion survey on neonates receiving 

PRBC transfusion. Of these neonates, 18 (23%) received transfusion based on 

existing guidelines, 36 (46%) based on caregivers’ perception and 24 (31%) based 

on both. The neonates who received PRBC transfusion according to existing 

guidelines were more likely to be in their first week of life, had higher Hct, less 

symptomatic and were ventilated invasively. Those who received transfusion 

based on caregivers’ perception were more symptomatic and were receiving non-

invasive ventilation. The vital parameters were compared from before to 24 hours 

after blood transfusion. The characteristics of neonates who improved after PRBC 

transfusion were, low pre-transfusion Hct (p=0.02), presence of clinical signs 

(p=0.01) and undergoing non-invasive ventilation (p=0.002). Pre-transfusion 

tachycardia was found to be the most sensitive predictor (Odds ratio 6.48; 95% CI 

1.6-26, p=0.005) which demonstrated why one of the anticipated benefit of 
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transfusion is reduction of heart rate16. Similarly, Nelle et al (n=33) who compared 

vital parameters between before and 4 hours after blood transfusion also noticed a 

significant drop in heart rate (from 161 to 149 per minute; p = 0.005) following 

transfusion 47. Contrary to the findings of these studies the changes in the 

physiological parameters were not consistent in other studies. Dani et al (n=14) 

who compared with post-transfusion parameters 12 hours after blood transfusion 

and Alkalay et al (n=32) who recorded vital parameters at 1-2 hours, 2-4 hours, 4-7 

hours and 27-34 hours after transfusion found no difference in heart rate following 

transfusion48,49. Aladangady et al reported that heart rate correlated positively with 

measured blood volume of preterm infants born at 24-32 weeks gestation 27. One 

of the important things to consider is the timing of the measurement of heart rate 

following transfusion, which were not consistent in these studies and perhaps this 

was compounded by the clinical state of the infants studied. 

 

Systemic blood pressure is routinely monitored to inform neonatal circulatory 

status and has been shown to correlate with peripheral blood flow in hypotensive 

preterm infants 50. Acute perinatal haemorrhage such as placental abruption can 

lead to neonatal anaemia and hypotension prompting PRBC transfusion. Impact of 

PRBC transfusion on improving blood pressure is variable28,47,49, this could be due 

to the inconsistency of methods as well as timing of blood pressure 

measurements. The mean arterial blood pressure does not correlate with 

measured blood volume in premature infants 27. Systemic blood pressure is 

dependent on cardiac output as well as peripheral vascular resistance. In anaemic 

state the cardiac output is high in order to maintain tissue perfusion, this decreases 

following transfusion49. However, there is a subsequent increase in viscosity of 
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blood post-transfusion but no change in vascular hindrance (i.e. no change in 

vascular geometry) resulting in increased blood flow resistance or peripheral 

vascular resistance 47; this may in turn result in increased diastolic and mean 

systemic blood pressure.   

 

 

1.1.5. Benefits of blood transfusion 

 

Transfusion is considered to be beneficial when given to replace blood loss by 

internal or external haemorrhage including feto-maternal haemorrhage. When 

given to anaemic preterm infants to replace the phlebotomy blood loss, the 

benefits are not clear. Blood transfusion improves systemic oxygen transport and, 

in case of acute blood loss, replenishes low circulating blood volume. Blood 

transfusion has also been reported to increase cerebral oxygenation in stable 

preterm infants 51-54. Potential benefits of blood transfusion for anaemic preterm 

infants include decrease in the incidence of apnoea and periodic breathing 

28,31,33,55,56 and promotion of weight gain56,57. The two large clinical trials - the Iowa 

transfusion trial31 and the Premature Infants in Need of Transfusion trial (PINT) 32 

who compared liberal and restrictive blood transfusion criteria failed to provide 

clear evidence of benefit of either transfusion criteria.  

 

In the Premature Infants in Need of Transfusion Outcome Study (PINTOS)37 which 

enrolled 451 infants and followed them to 18-21 months of age, the primary 

outcome was available in 430. The primary composite outcome was death or the 

presence of cerebral palsy, cognitive delay, or severe visual or hearing 

impairment. There was no statistically significant difference in the primary outcome 
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as well as the pre-planned secondary outcomes, found in 94 (45%) of 208 in the 

restrictive group and 82 (38%) of 213 in the liberal group. A post hoc analysis after 

redefining cognitive delay [Bayley Mental Development Index score (MDI) 

redefined as <85 instead of <70 as planned before] showed that the Bayley 

cognitive MDI scale was marginally better in infants who received liberal blood 

transfusion. In an observational follow-up study of premature infants receiving two 

different volumes of blood transfusions in two neonatal units (15 ml/kg vs. 20 

ml/kg), von Lindern et al demonstrated that total transfused PRBC volume per kg 

body weight was not an independent predictor of the composite outcome (p = 0.96, 

OR 1.0, CI 0.9-1.1) defined as post discharge mortality, neuromotor developmental 

delay, blindness or deafness, evaluated at a mean corrected age of 24 months58. 

The Effects of Transfusion Thresholds on Neurocognitive Outcome of Extremely 

Low Birth-Weight Infants (ETTNO) study has completed recruitment in Germany, 

which is an observer-blinded randomised controlled clinical trial. 920 infants of 

400–999 g birth weight was randomised to restrictive or liberal transfusion trigger 

thresholds between 48 and 72 h of life, stratified by participating centre and birth 

weight (400–749 g/750–999 g). The study is currently following up the recruited 

infants to upto 24 months of corrected age and there are further plans of following 

them upto 5.5 years of age, looking into the primary outcome of death and 

neurodevelopmental impairment 44. Transfusion of Prematures study (TOP), an 

open, parallel group multicentre randomised controlled trial, has started its 

recruitment in US and is studying long term outcomes of extremely low birth weight 

(<1000 grams) premature infants at 22-26 months of age who received liberal 

compared to restrictive strategy for blood transfusion45. 
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1.1.6. Risks of blood transfusion 

 

Though PRBC transfusion can be life-saving in newborn infants with acute blood 

loss in the peri-partum period such as placental abruption and severe anaemia, 

there is an increasing unease with blood transfusion and its association with 

significant pathologies, such as intra-ventricular haemorrhages (IVH)59, retinopathy 

of prematurity 60 and necrotising enterocolitis (NEC)61. Blood transfusion has also 

been found to be an independent risk factor of in-hospital mortality in preterm 

infants 62,63. Risks associated with cross-matching are significantly lower due to 

rigorous screening and vigilance64. The complications now include a group of 

conditions ‘oxidative diseases’ which include elevated plasma non-transferrin 

bound iron65 and transfusions leading to possible overloading of liver with iron66 in 

very low birth weight (VLBW) infants, the clinical implications of which is unknown. 

Some studies have shown association between blood transfusions and risk of 

Broncho-pulmonary Dysplasia (BPD) 65,67,68, necrotising enterocolitis (NEC)69-71 

and Retinopathy of Prematurity (ROP)72,73,60 but the causal relationship is yet to be 

demonstrated. PRBC transfusion has also been reported as an independent risk 

factor for mortality62,63.  

 

Increase in mesenteric [superior mesenteric artery (SMA)] blood flow velocity in 

response to feeding in anaemic preterm infants is well known 74. In a clinical trial of 

22 infants [mean gestational age 27.3 (SD 2.3) weeks; mean chronological age of 

transfusion of 31.2 days, range 3 to 71 days] where infants were randomised to fed 

and not-fed groups during the transfusion, Krimmel et al demonstrated that this 

increased velocity in SMA following feeding which was evident pre-transfusion was 

attenuated in the immediate post-transfusion state. They speculated that this 
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attenuation of response may contribute to transfusion-associated NEC in these 

infants75. In a case controlled study (111 preterm infants with NEC ≥ Stage 2a 

were compared with 222 matched controls) blood transfusion showed a temporal 

relationship with the onset of NEC. There was a higher risk of developing NEC 

within 24 h (OR=7.60, P=0.001) and 48 h (OR=5.55, P=0.001) after transfusion70. 

In a large retrospective cohort study of 2311 preterm infants, Paul et al 71 

demonstrated that infants who received transfusion had increased risk (OR: 2.3; 

95% confidence interval: 1.2– 4.2) of developing NEC even after adjusting for 

confounding factors compared with infants who did not receive a transfusion. 

Christensen et al reported that one-third of cases in their series (40 out of 112) 

developed surgical NEC following a transfusion, in comparison two-thirds (72) 

developed NEC without any preceding blood transfusion. Infants who developed 

NEC following transfusion were of an earlier gestational age [mean 27 (90% CI 26-

28) weeks) vs. 30 (29-31) weeks; p<0.001], lower birth weight [mean 981 (90% CI 

835-1128) grams vs. 1371 (1245-1496) grams; p<0.001], were fed larger volume 

of milk prior to transfusion (p=0.04) and developed NEC later on in their life [mean 

23 (90% CI 20-27) days vs. 16 (13-19) days; p<0.001] 76. A recent meta-analysis of 

observational data of transfusion associated NEC (TANEC) concluded that recent 

exposure to transfusion was associated with NEC in premature infants 77. Three 

randomised controlled trials examining the benefits of transfusion using high and 

low haemoglobin thresholds have examined the development of NEC following 

blood transfusion31-33. Albeit not significant, the pooled OR (1.67; CI 0.82, 3.38) for 

NEC favoured high haemoglobin threshold (i.e. more common in infants in the 

restrictive transfusion group)78, thereby contradicting the association between 

blood transfusion and NEC.  After adjusting for covariates Singh et al have found 

that effect of low haematocrit was an independent risk factor for development of 
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NEC70. This corresponds with the reduced risk of NEC in infants in the liberal 

haemoglobin threshold group compared to the restricted group indicated in the 

randomised controlled trials 78. Recently a prospective, multicentre cohort study of 

598 VLBW infants has reported severe chronic anaemia to be associated with 

NEC and not blood transfusion79. These contradictory reports suggest that perhaps 

chronic severe anaemia puts the gut to risks of ischaemia and transfusion causes 

a reperfusion injury leading to development of conditions described as transfusion 

associated NEC. Another factor that remains unresolved is the effect of feeding 

during blood transfusion and the possible implications in the development of NEC. 

Perciaccante et al suggested that feeding during transfusion increases the 

incidence of NEC 80. In the first phase of the study, 7 out of 18 (38.9%) infants 

developed NEC within 48 hours of a transfusion. In the second phase by 

withholding feeds, none of the infants developed NEC within 48 hours of a blood 

transfusion. In a case-control study El-Dib et al compared the incidence of NEC 18 

months before and after implementation of strict policy of withholding feeds during 

blood transfusion. They reported a significant decrease in NEC from 5.3% to 1.3% 

(p = 0.047) following implementation of the new policy 81.  

 

Early blood transfusions suppress endogenous erythropoietin production, thereby 

lowering serum erythropoietin levels at a critical time in neurodevelopment82. 

Darbepoetin α and erythropoietin may serve as useful adjuncts to reduce the need 

of blood transfusion in preterm infants83. However, systematic reviews of early 84 

as well as late85,86 erythropoietin therapy in preterm infants have shown no 

significant clinical benefit in reducing the need for transfusion, on the contrary this 

may have resulted in inadvertent side effects such as ROP as described below. 

Nopoulos et al assessed brain structure and measured the brain volume in preterm 
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infants, at an average age of 12 years by using MRI brain scans of 44 infants from 

the participants of the original Iowa blood transfusion study (n=100) where preterm 

infants were randomised to liberal or restrictive threshold for transfusion. Preterm 

infants who received transfusions using liberal guidelines had smaller brain volume 

thereby demonstrating that restrictive transfusion is beneficial towards brain 

growth38. The limitations of the study are that only 44% of the initial cohort was 

studied and other factors influencing brain growth was not taken into account.  

 

1.1.7. Strategies to reduce blood transfusion 

 

The principal strategies to reduce transfusion in preterm infants involve improving 

admission blood volume and haemoglobin level and reducing the phlebotomy 

losses from various investigations. 

 

Delayed clamping of the umbilical cord: 

 

Delayed clamping of the umbilical cord at birth in a preterm neonate is a subject of 

much debate and although a number of randomised controlled trials in term and 

preterm infants have evaluated the benefits of delayed cord clamping (DCC) 

versus early cord clamping (ECC), the ideal timing of umbilical cord clamping is yet 

to be established.  

 

Studies involving term infants have demonstrated that about 80 ml of blood is 

transfused from placenta to the baby in the first minute, reaching upto 100 ml by 3 

minutes after birth. This extra blood along with the extra iron can increase the birth 

weight 87 and may help prevent iron deficiency in the first year of life88. Aladangady 
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et al demonstrated in a randomised clinical trial of preterm infants (24 – 32 weeks) 

that DCC increases the blood volume (mean blood volume in DCC group 74.4 

ml/kg compared to ECC group 62.7 ml/kg) at birth both in vaginal and caesarean 

section deliveries89. DCC increases Hb/Hct at birth in term 87 and preterm infants 90 

and reduces the need for blood transfusion in very low birth weight (VLBW) 

preterm infants in the first 6 weeks of life 91-94. 

 

A systematic review of randomised trials of early and delayed umbilical cord 

clamping in preterm infants demonstrated significant reduction in PRBC 

transfusion and incidence of IVH in the DCC group95-97. It has been reported that 

low Hb levels at birth is a risk factor for mortality in preterm infants <32 weeks of 

gestational age 98. The WHO recommended in the care of newborn infants of all 

gestational age groups that DCC could be beneficial in reducing the necessity for 

blood transfusion99.  

 

Stripping of the umbilical cord: 

 

Stripping the umbilical cord at birth from placenta to the infant significantly 

improves Hb/Hct at birth and reduces the need for PRBC transfusion in preterm 

infants; it also allays the anxiety of reduced access and delay in resuscitation 

during DCC in preterm infants100. The evidence to evaluate whether outcomes are 

improved by umbilical cord milking or stripping comes from a small randomized 

controlled trial100,101. In this study, premature infants (24-28 weeks gestation) were 

randomly assigned to immediate umbilical cord clamping (control group, n=20) or 

cord milking (milking group, 2-3 times over ~ 6 seconds) before clamping (n=20). 

The cord milking group had a decreased likelihood of receiving a transfusion 
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during the hospital stay (RR 0.5) and received fewer transfusions (1.7 vs. 4.0, 

p=0.02). In another randomised trial of 58 deliveries of premature infants (<33 

weeks of GA) Rabe et al demonstrated that the clinical benefits of umbilical cord 

stripping to infants are comparable to delayed cord clamping102.  

 

Admission laboratory blood tests from placenta: 

 

Routinely blood is taken from all VLBW infants soon after admission to NNU for 

blood culture (0.5 - 1 ml), blood gas, urea and electrolytes, blood sugar, calcium 

and phosphate, liver function test and full blood count (1-1.2 ml). Frequently for 

sicker infants other blood tests are also performed on admission (e.g. coagulation 

profile: 1.2 ml). In a small case controlled study (n=10) Carroll et al demonstrated 

the feasibility of taking blood from umbilical vein of the clamped placental end of 

the cord for all routine admission blood tests. Using this method, no blood was 

needed to be initially taken from the infant. They demonstrated that this resulted in 

a lower incidence of IVH (p=0.01), higher haemoglobin level at 24 h and fewer 

early blood transfusions (p=0.02)103. However, the sample size of this study is too 

small to substantiate the findings; this need to be confirmed by larger randomised 

controlled trials before routine clinical implementation.  

 

Autologous umbilical cord blood transfusion: 

 

The placenta has a large reservoir of residual fetal blood following delivery. 

Linderkamp et al demonstrated decreased residual placental blood volume from 

52±8 ml/kg of neonatal body weight after early cord clamping to 15±4 ml/kg after 

delayed cord clamping87. Salvaging this blood and storing this for autologous 
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transfusion for sick infants could be beneficial; as this will exclude the issues of 

donor blood related foreign antigens or infectious agents104-107. The process of 

harvesting cord blood from term pregnancies for stem cell transplantation has 

been successful and popular108. Although this method is feasible, associated 

problems such as insufficient volumes collected, clotting, haemolysis, infection risk 

and high costs have made it not feasible for clinical application109,110. 

  

Reducing phlebotomy losses and using point-of-care test analysers: 

 

Attempts have been made to decrease blood sampling by sending fewer 

specimens for laboratory tests, micro-sampling methods, using in-line blood gas 

and chemistry monitors in premature infants19. Bed-side blood analysers 

introduced in the 1990’s reduced phlebotomy losses, modern inline analysers and 

point-of-care blood test analysers have further helped to obtain required laboratory 

information while drawing less blood 111,112. Findings from a recent study indicated 

that using multi-parameter point-of-care analyser dropped transfusion rates for 

VLBW newborn infants by 48% (1.57 vs. 2.53, p<0.01), with fewer transfusions per 

transfused infant, and an 8.3% cost reduction 113. Technological advances in 

recent years have allowed in newer laboratory analysers, point of care testing 

devices and transcutaneous measurements which has resulted in measurements 

to be done in smaller and smaller volumes of blood and perhaps with no blood in 

the future 19,112-114. However, these technologies comes with a large price tag, need 

training for operators and may take longer to be commercially available to 

neonatology in future. 
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Recombinant erythropoietin (rEpo): 

 

A Cochrane meta-analysis of early rEpo usage84 in preterm infants concluded a 

reduction in number and volume of PRBC transfusions but this is of limited clinical 

importance. A recent randomised controlled study using Darbepoeitin and 

Erythropoietin early in life in premature infants has shown reduction in rate of 

transfusion83. Romagnoli et al suggested the association of early use of rEpo with 

ROP (>stage 2)115 and this was further concurred by 6 studies enrolling 930 infants 

with significant rise in ROP (>stage 2). A Cochrane analysis of late rEpo usage 

concluded a reduction of transfusions (RR 0.66; 95% CI 0.59 to 0.74). However, as 

with studies on early rEpo usage, the clinical significance of one or two fewer late 

PRBC transfusions are questioned85. Hence rEpo is still not considered to be an 

important substitute of PRBC transfusion in preterm infants. 

 

Implementing restrictive transfusion guideline: 

 

Significant variability exists in transfusion rates, within individual NNUs and 

between NNUs in the same geographic area116,117. Parents also insist on less 

transfusion and want to wait until this is absolutely necessary. Restrictive 

transfusion practice in preterm infants also reduces their exposure to multiple 

donors. Christensen et al demonstrated a significant decrease in transfusion rate 

and financial costs (saving of $780,074 over 12 months) in 4 NNUs following 

implementation and strict adherence (increase in compliance from 65% to >90%) 

to restrictive transfusion guideline118. During the 12 months following 

implementation of new guideline, compliance remained >95% every month 
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accompanied by yet lower transfusion rates with no change in the infant outcomes 

119. 

 

 

1.1.8. Summary of current practice of blood transfusion 

 

Blood transfusion is considered to be life-saving in an acutely bleeding infant, but 

the optimal timing and triggers of transfusion has remained elusive. Several 

randomised controlled trials have examined the effects of transfusion at different 

threshold levels of Hb and Hct but the benefits remained unclear. Over the years 

there is increasing speculation that although there are several benefits of 

transfusion, it might invite unintended risks. Transfusion may be associated with 

increased risks of IVH, ROP and BPD. There is a possible risk association with 

NEC but no direct causal relationship has been established so far. It is still not 

clear whether withholding of feeds during transfusion will reduce the incidence of 

TANEC. 

 

Various strategies can be used in combination to minimise frequency of blood 

transfusion in preterm infants. Lately, DCC or milking of cord has been recognised 

as an important tool to increase blood volume and minimise neonatal transfusion. 

The clinical advantage of early as well as late rEpo usage is questionable. Despite 

ambiguity of benefits of liberal and restrictive blood transfusion criteria in the large 

clinical trials there is a trend towards implementing a restrictive approach towards 

blood transfusion.  
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1.2. Assessing the need for blood transfusion 

 

1.2.1. Introduction 

 

Blood transfusion guidelines are subjective and vary between neonatal units; it 

does not identify or target specific patient needs 22,23. Clinicians rely on clinical 

features, such as tachycardia, apnoea or oxygen desaturation episodes, 

respiratory support along with traditional laboratory markers, haemoglobin (Hb) 

and haematocrit (Hct), to determine when their patients require a blood 

transfusion25,29. This approach is nonspecific, as a change in vital signs or 

symptoms that often prompts a blood transfusion in the neonatal unit (NNU) can 

be due to other clinical conditions 30,28. A selective marker that reflects oxygenation 

at a cellular level would be ideal to assist clinicians in determining transfusion 

needs. 

 

 

1.2.2. Laboratory measurements and blood transfusion 

 

1.2.2.1. Serum Lactate 

 

Serum lactate is an end product of strained anaerobic cellular metabolism and is 

elevated in tissue hypoxia, hypoperfusion or injury. Serum lactate has been 

investigated by researchers as a marker of tissue perfusion and its changes 

following blood transfusion in newborn infants 46,120,121 (Table 4).  
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Table 4: Serum lactate and blood transfusion 
 

Study reference Patient characteristics Measurements Findings 

Ross et al  

(1989)
56

 

16 preterm infants (≤32 weeks of 

gestational age, chronological age 

1 to 3 months) with Hct ≤0.29 

scheduled to be transfused, were 

randomised to blood transfusion vs. 

no transfusion  

Clinical: HR, apnoea/bradycardia 

Laboratory: lactate, serum erythropoietin 

 

PRBC transfusion significantly reduced HR 

(mean 6±2 bpm).  

Mean (SD) lactate significantly decreased from 

1.6 (0.4) to 0.9 (0.3) µmol/g following blood 

transfusion. 

Moller et al (1996)
120

 Studied 56 anaemic preterm infants 

(mean gestational age 31.8 weeks 

and chronological age 29.9 days) 

Group 1: asymptomatic anaemic 

infants (n=37) 

Group 2: symptomatic anaemic 

infants who received blood 

transfusion (n=19) 

Clinical: HR, capillary refill, SaO2 

Laboratory: Hb, lactate 

Ultrasound: Cardiac output, oxygen delivery 

 

There was no correlation between Hb and 

serum lactate in 56 infants studied 

Mean serum lactate significantly reduced from 

3.23 mmol/l to 1.71 following blood transfusion 

Serum lactate negatively correlated with 

oxygen delivery in infants who received 

transfusion 

Frey et al (2001)
122

 Studied 18 anaemic preterm infants 

[median (range) gestational age 

29.7 (24 – 38 ) weeks and 

Clinical: HR, RR, weight gain (g/week) 

Laboratory: Hct, pH, lactate, reticulocyte count 

 

Mean (SD) lactate significantly decreased from 

2.5 (1.0) to 1.7 (0.5) mmol/l following PRBC 

transfusion 
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chronological age 35 (10 – 74) 

days] 

No correlation between pre-transfusion lactate 

and pre-transfusion Hct, heart rate, respiratory 

rate and weight gain 

Takahashi et al 

(2009) 
121

 

Retrospective study of 12 VLBW 

infants [ mean(SD) gestational age 

26 (2) weeks, chronological age 68 

(35) days] 

Clinical: HR and SaO2 

Laboratory: Hb, lactate 

There was no significant correlation between 

pre-transfusion lactate and Hb  

Mean (SD) lactate significantly decreased from 

2.9 (1.1) to 2.1 (0.9) mmol/l following PRBC 

transfusion 

 

HR: Heart rate; SaO2: saturation of oxygen; Hb: Haemoglobin; Hct: Haematocrit; PRBC: packed red blood cell; SD: standard deviation; SIRS: Sudden 

Inflammatory response syndrome 
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In an adult series of 29 patients with Systematic Inflammatory Response Syndrome 

(SIRS), Mazza et al123 demonstrated an increase in haemoglobin levels following 

blood transfusion, this  was not accompanied by a significant change in lactate 

levels, [mean (SD) 1.87 (1.22) pre-transfusion to 1.56 (0.28) mmol/l post-

transfusion, p=0.28]. In a randomised study of 16 preterm infants Ross et al 

demonstrated that blood lactate may be useful to identify preterm infants who will 

benefit from blood transfusion56. It has been demonstrated that pre-transfusion 

serum lactate level decreases significantly following blood transfusion 120-122. The 

site of blood sampling was not consistent in these studies. However, Frey et al 

demonstrated that capillary whole blood lactate agrees well with arterial values in 

newborn infants 122. There was no correlation between pre-transfusion Hb and 

serum lactate in any of these studies 120,122. The mean pre-transfusion serum lactate 

levels ranged from 2-4 mmol/l in these studies, which on its own was not clinically 

significant. Capillary lactate levels could also vary depending on tissue perfusion 

factors such as cardiac output and stroke volume in addition to haematological 

parameters such as haemoglobin (Hb) and haematocrit (Hct). 

 

Serum lactate is a non-specific marker of cellular biochemistry and metabolism, 

which depends on tissue perfusion and oxygenation. Clinical conditions like 

congenital cardiac lesions, neonatal sepsis, poor ventilatory status and use of 

inotropes such as Adrenaline results in elevated serum lactate. Serum lactate may 

also be elevated during the first 24 to 48 hours of life in infants who suffered acute 

perinatal hypoxia as well as those with chronic placental insufficiency. Serum lactate 

is a non-specific marker of anaemia and on its own may not provide any added 

information to decide the requirement of blood transfusion in the preterm neonates.  
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1.2.2.2. Haemoglobin, Haematocrit and Reticulocyte count 

 

Neonatal blood transfusion guidelines26,35 rely heavily on Hb or Hct as an index of 

transfusion. Using Near Infra-Red Spectroscopy (NIRS) Van Hoften et al 

demonstrated that in premature infants pre-transfusion Hb correlated reasonably 

well with cerebral oxygenation (Spearman rank order test: r=0.414, p<0.005), and 

infants with Hb <9.7 g/dl showed significant increase in cerebral oxygenation 

following blood transfusion51. However, other researchers failed to demonstrate 

relationship between pre-transfusion Hb or Hct and cerebral, gut or peripheral tissue 

oxygenation. Bailey et al reported no correlation between pre-transfusion Hb and 

cerebral (r = - 0.01, p=0.98) or gut (r = - 0.26, p=0.17) tissue oxygenation 53. In 

another study by Seidel et al pre-transfusion Hct level did not correlate with either 

the pre-transfusion cerebral (r = - 0.09; p=0.45) or peripheral regional tissue 

oxygenation (r = - 1.14; p = 0.22)54. Wardle et al demonstrated a very weak 

correlation between pre-transfusion Hb and peripheral fractional oxygen extraction 

(pFOE) in preterm infants 124. This indicate that tissue oxygenation is not entirely 

dependent on Hb or Hct. Various other factors such as blood flow, blood pressure, 

fetal Hb percentage, acid base status, pCO2 levels, vascular resistance, vascularity 

of tissue and metabolism can all influence tissue oxygenation. Hence, relying only 

on Hb or Hct level as a surrogate of tissue oxygenation may not be accurate. 

 

Pre-transfusion Hct has a poor correlation with echocardiographic parameters such 

as stroke volume (SV), left ventricular output (LVO), left ventricular end systolic 

diameter (LVESD) and left ventricular end diastolic diameter (LVEDD) 49. None of 

these studies demonstrated a threshold of Hb or Hct at which tissue perfusion or 
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oxygenation is compromised. The findings of these studies demonstrate that the 

current pre-transfusion Hb and Hct do not necessarily reflect tissue perfusion and 

oxygenation.  

 

Reticulocyte count is a marker of bone marrow response to anaemia, and this 

alongwith Hb or Hct may be useful in deciding the need for PRBC transfusion. Some 

transfusion guidelines such as Canadian Paediatric Society recommend reticulocyte 

count <100 /µl (<5%) alongwith low Hb or Hct as a trigger for blood 

transfusion16,125,126. However, evidence on using reticulocyte count as an indicator of 

blood transfusion is lacking.  
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1.3. Doppler Ultrasound Scan 

 

 

1.3.1. Introduction 

 

In recent years, the capabilities of ultrasound flow imaging in assessing neonatal 

haemodynamic status have increased enormously. Bedside colour flow imaging is 

currently used in majority of tertiary neonatal units and due to its versatility and 

convenience its application has been extended to more demanding measurements 

in order to try and examine increasingly subtle changes in the fetal and neonatal 

circulations. It is also important to be aware of the various factors that affect the 

Doppler signal in a colour flow image or a Doppler sonogram. 

 

 

1.3.2. Basic principles 

 

In this section, some basic concepts of ultrasound scan are defined and 

explained127.  

 

The Nature of Ultrasound 

A sound wave of upto 20 kHz is audible to human ear. Ultrasound is a form of 

mechanical vibration or sound wave where the frequencies are more than the 

human audible range. For medical diagnostics, the frequency of ultrasound 

scanners typically range from 1 to 30 MHz and it follows the same physical laws as 

a sound wave as discussed below127.  
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Velocity 

Velocity of a wave is one of its basic properties and is dependent on the density and 

temperature of the medium it propagates through. The velocity of a sound wave in 

the human body is considered to be 1540 m/s127. 

The relation between velocity and frequency is expressed in the equation below: 
 

Frequency  

Frequency of a wave is described as the number of times (cycles) the wave returns 

to the baseline per second, expressed as cycles per second or Hertz (Hz).  

Wavelength 

Wavelength is another basic property of sound wave which is the total distance 

traversed by the wave on returning to the same relative position (Figure 1). Since 

the velocity of the waveform in a medium is constant, as the wavelength increases, 

the frequency will decrease. 

 

Amplitude  

Amplitude is described as the extent of maximum deviation of the waveform from 

the baseline (Figure 1). 

 

Figure 1. Basic properties of sound wave: wavelength, frequency and amplitude 
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1.3.3. Modes of Ultrasound scan 127 

M-mode 

The M-mode (motion mode, one dimension image) was the first ultrasound modality 

to record moving noises or echoes from the heart, and thus the movement or the 

motion of the image could be interpreted in relation to myocardial and valvular 

function. This is regularly used to measure size of cardiac chambers and diameter of 

blood vessels which is an important component for measurement of blood flow 

volume such as stroke volume and right ventricular output. 

 

2-dimensional (2D) imaging 

 

A 2D image is built up by firing an ultrasound wave (beam) vertically, waiting for the 

return echoes, maintaining the information and then firing a new line from a 

neighbouring transducer along the line of the ultrasound probe.  

 

Doppler Ultrasound Scan 

In ultrasound imaging, echoes received from most tissues will be at the same 

frequency as the transmitted beam. However, if echoes received are from tissues or 

blood cells that are moving, the transmitted and received frequencies will not be the 

same. This “shifted” frequency can be used to determine the relative velocity and 

the direction of these moving tissues. This effect is known as the Doppler Principle. 

The movement toward the transducer results in a higher received frequency 

(conventionally shown as red) and movement away in a lower received frequency 

(conventionally shown as blue).  
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The size of the Doppler signal is dependent on: 

(1) Velocity of blood: as velocity increases, so does the Doppler frequency  

(2) Ultrasound frequency: higher ultrasound frequencies give increased Doppler 

frequency. As in 2D-mode, lower ultrasound frequencies have better 

penetration. The choice of frequency is a compromise between better 

sensitivity to flow or better penetration. 

(3) The angle of insonation: the Doppler frequency increases as the Doppler 

ultrasound beam becomes more in line with the flow direction  

 

Pulse Wave Doppler 

In Pulse Wave Doppler, a single ultrasound wavefront is repeatedly fired. Echoes 

reflected from moving structure, including blood cells, experience a Doppler shift in 

frequency. The echo information obtained within the sample volume is analysed 

using the Doppler equation. From this information, the blood velocity can be 

determined. This allows for measurement or sampling to be done at the correct 

position of the flow. This is especially important where the blood flow velocity is not 

uniform and is limited by change in direction, motion of other structures such as 

valves and shunts such as patent ductus arteriosus. The frequency data is 

converted to velocity, and displayed in a moving strip format on the monitor. The 

highest detectable velocity is half of the rate at which the ultrasound lines are fired; 

this is known as Nyquist Limit. 

  

Continuous Wave (CW) Doppler 

With CW Doppler, the waves are transmitted and information is received 

simultaneously from the probe. This overcomes the maximum velocity limit, but the 
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exact place along the ultrasound line from where the velocity data is obtained 

cannot be determined (no range resolution). CW Doppler is used in diagnosing 

abnormalities in which range resolution is not important such as aortic outflow tract 

or when the sonographer is interested in the quantification of high velocity jets such 

as tricuspid regurgitant jets. 

 

Aliasing 

 

Pulsed wave systems suffer from a fundamental limitation known as aliasing. When 

pulsed waves are transmitted at a given sampling frequency (known as the pulse 

repetition frequency); the maximum Doppler frequency that can be truly measured is 

half the pulse repetition frequency. If the blood velocity and beam/flow angle being 

measured combine to give a value greater than half of the pulse repetition 

frequency, ambiguity in the Doppler signal occurs. This ambiguity is known as 

aliasing.  

 

1.3.4. Validation of Doppler ultrasound scans 

 

1.3.4.1. Cerebral Doppler scan measurements 

 

Other than near infra-red spectroscopy (NIRS), ultrasound being a bedside tool is 

the most convenient form of cerebral hemodynamic monitoring in critically ill 

neonates. Cerebral blood flow velocity (CBFV) can be measured in newborn infants 
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by monitoring the frequency shift of acoustic waves that scatter from moving red 

blood cells in the large cerebral arteries using trans-cranial Doppler (TCD) 128. 

 

In 42 preterm infants (28-33 weeks of gestational age) Greisen et al measured 

mean cerebral blood flow using continuous wave and range-gated Doppler 

ultrasound scan examination of anterior cerebral and internal carotid artery and 

compared this with 133Xe clearance. The pulsatility index, mean blood flow velocity 

and the end diastolic velocities were measured from the Doppler recordings. The 

correlation coefficients between the Doppler and 133Xe measurements ranged from 

0.41 to 0.82. The correlation coefficients were consistently higher for the range 

gated compared to the continuous wave Doppler, and was lower for the pulsatility 

index than for the mean flow velocity and end-diastolic flow velocity129. This 

indicates that range-gated Dopplers are more reliable than continuous waves in 

measuring mean and end-diastolic blood flow velocities in small cerebral arteries. 

Miles et al investigated six ultrasound measures of blood flow: Pourcelot’s pulsatility 

index, Gosling’s pulsatility index, area under curve, systolic, diastolic and mean 

amplitude. The measurements of an in vitro arterial model were compared with 

measurements from anterior cerebral arteries in 33 newborn infants with a diagnosis 

of either asphyxia or intra-ventricular haemorrhage or were normal stable infants. All 

the measures in the neonates showed excellent correlation with blood flow in the 

arterial model. The highest accuracy was obtained for pulsatility indices130. It can be 

inferred that pulsatility index measured by Doppler ultrasound scan correlates well 

with in-vitro models. 
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Traditionally, perfusion in the middle cerebral, anterior cerebral, and/or internal 

carotid arteries is monitored to assess global brain perfusion. The parameters 

measured with trans-cranial Doppler (TCD) include peak systolic, mean, and end 

diastolic velocities (i.e., PSV, MV, and EDV, respectively). The angle of insonation 

used to measure velocities with TCD may affect the values of PSV, MV and EDV 131. 

The resistance index is defined as: 

                      
                          

            
 

The pulsatility index is defined as: 

                       
                          

      
 

RI is a ratio that reflects cerebrovascular resistance. The sequence of changes in 

PSV, EDV, MV, and RI after birth in healthy infants has been well documented132-134. 

 

With additional information about the cross-sectional area (A) of the insonated 

vessel, cerebral blood flow velocity (CBFV) permits calculations of arterial cerebral 

blood flow (CBF) using the formula:  

CBF = CBFV x A. 

But, cerebral vessels are small in size, making their diameter difficult to measure135. 

To minimise this source of error relative changes in flow could be measured. In 

addition, these blood vessels often change calibre over time, leading to large errors 

in calculations of relative change, which in turn cause errors in estimates of the 

amount of oxygen and nutrients delivered to the surrounding tissue136-138. Although, 
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TCD measures cerebral blood flow velocity in the large vessels that supply perfusion 

to the brain; measuring regional variations in cerebral blood flow using TCD is not 

possible. 

 

1.3.4.2. Superior vena cava Doppler scan measurements 

 

One of the major problems in estimating systemic blood flow in neonates is the 

presence of intra-cardiac (patent foramen ovale) and extra-cardiac (patent ductus 

arteriosus) shunts at birth. This impairs use of left ventricular output (stroke volume) 

and right ventricular output as a marker of systemic blood flow and organ perfusion 

as it can lead to overestimation of the real systemic blood flow by up to 100%. 

Systemic blood pressure on the other hand does not correlate with systemic or 

organ perfusion139-141. Blood from the upper body drains to the superior vena cava 

(SVC), 80% of this flow is from brain137. This venous flow is unaffected by shunting 

that occurs both at ductal and atrial levels in preterm infants in the first few days of 

life and is a direct estimate of cerebral perfusion.  

 

The use of Doppler ultrasound to measure cardiac output and flow in vessels is a 

well-established and validated technique in neonates142-144. Doppler 

echocardiography of the SVC has been used previously to assess the function of 

the right heart in adults145-147 and children148,149, and to understand the 

haemodynamics of bidirectional cavo-pulmonary anastomosis150. Using thermo-

dilution or dye-dilution method to measure SVC flow in neonates is difficult. But a 

validation of SVC flow was possible with good correlation to left ventricular output in 
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neonates with a closed duct, which is a true representation of systemic blood flow in 

those babies144. Using cine magnetic resonance mapping in healthy adults 

Mohiaddin et al have reported that SVC flow was 35% of the cardiac output151 which 

is similar to the proportion of mean SVC flow to LV output measured by Doppler in 

preterm infants with a closed duct 152. Salim et al reported the changing pattern of 

the SVC flow in proportion to cardiac output in children150 and this was again similar 

to the flow found in newborn term infants by Evans et al135.  

 

But there are certain limitations of SVC flow measurement. Kluckow et al152 reported 

median intra-observer variability 8% and inter-observer variability 14%, which is 

comparable to other studies measuring reproducibility of Doppler techniques153. One 

of the major pitfalls of the measurement is the variability in the diameter of the SVC 

through the cardiac cycle, the average variability reported is 22% compared to 8-

15% for the main arteries152. Another limitation is the diameter of the vessel is not 

uniform as noted in MRI studies of SVC; the cross section of the SVC assumes the 

shape of a sickle wrapped around the ascending aorta and hence at times could be 

difficult to estimate the diameter of the vessel154. Also in infants who are ventilated 

may have a distended lung field it might be difficult to visualise the SVC in the true 

para-sternal view resulting in difficulty to measure the diameter.  Another potential 

problem is the normal variation of persistent left sided SVC which drains into the 

coronary sinus (0.3% of general population) which can amount to an 

underestimation of the SVC flow by 50%155.  
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1.3.4.3. Splanchnic circulation Doppler scan measurements 

 

The superior mesenteric artery (SMA) supplies the majority of the intestine from the 

second part of duodenum to the junction between the right two-third and left one-

third of the transverse colon 156. Hence, this is the major area of the intestine which 

is important in terms of absorption and abdominal pathology in a premature 

neonate. The majority of the cases of necrotising enterocolitis (NEC) a serious 

condition in preterm infant happens in this area of the intestine157. Measuring the 

SMA blood flow velocity can be helpful in assessing the haemodynamic status of 

small gut, and thereby may help in identifying early signs of reduced blood flow and 

vascular insufficiency of the intestine. Goldberg et al used transcutaneous Doppler 

to measure the aorto-mesenteric angle and size of the artery158. Animal studies and 

human studies using dye dilution techniques 159 have been used in the past to 

understand the flow of blood in the SMA. Later on SMA blood flow was also 

measured in an animal study using the spill-over angiographic reflux method 160 and 

the video-dilution technique161. Both of these required arterial catheterisation and 

injection of dye. The use of Doppler ultrasound scan in measuring arteries in the 

splanchnic circulation was attempted in 1982 in humans162. Qamar et al used a 

Duplex scanner to measure SMA blood flow velocity in 70 healthy human volunteers 

and found the mean coefficients of variability of the measurements as 6.8% over 

short term and 8.2% over long term163. Animal models such as a canine bleed-out 

model compared the difference between directly measured abdominal aorta blood 

flow and the same measured by a locally implanted pulsed Doppler flowmeter, 

where Doppler seems to overestimate by only 2%164. In another in vivo study of a 

pig model, abdominal aorta blood flow velocity measured by transcutaneous 

Doppler was well correlated with simultaneous electromagnetic measurements 



61 | P a g e  

 

(r=0.91)165. Canine SMA blood flow velocity measurements using an 

electromagnetic method was comparable to the transcutaneous Doppler method 

and had a similar variability as obtained by spill over technique166. The animal as 

well as the human studies indicates that the measurement of SMA blood flow 

velocity using Doppler ultrasound scan is feasible and reliable. However, various 

factors such as invasive ventilation, CPAP, feeds, presence of PDA, and coarctation 

of aorta or left ventricular outflow tract obstruction, antenatal redistribution of flow in 

umbilical artery or IUGR and medications such as Ibuprofen may all have important 

influence on the SMA blood flow velocity.  

 

 

1.3.5 Doppler USS and blood transfusion 

 

Doppler ultrasound scan can reliably measure changes in blood flow to various 

organs following blood transfusion and its effect on systemic and regional 

haemodynamics. However, the current Doppler measurements cannot be applied as 

a trigger of blood transfusion in clinical practice. Details of studies that investigated 

organ perfusion following blood transfusion using Doppler ultrasound scan are 

presented in Table 5.



62 | P a g e  

 

Table 5. Blood transfusion and organ perfusion measured by ultrasound scan 

 

Study Infant characteristics Measurements Findings 

Alkalay et al 

(2003)
49

 

Studied 32 stable anaemic 

preterm infants [median (IQR) 

GA 29 (28, 30), PNA 33.3 (31.9, 

34.9)] 

Group 1: Low Hct (≤21%) 

Group 2: Mid Hct (22-26%) 

Group 3: High Hct (≥27%) 

Blood was transfused in two 

aliquots of 10 ml/kg each 12 

hours apart 

SV, LVESD, LVEDD and CO measured on 

4 occasions: 1-3 hours before, 2-4 hours 

after 1
st
  aliquot, 4-7 hours and 24 -37 

hours after the 2
nd

 aliquot 

Hct  

 

There were no difference in the measured echo 

findings before and after blood transfusion in 

aggregate as well as Hct subgroup analysis 

 

Infants with low and mid-range Hct had significantly 

high SV (p=0.03), LVESD and LVEDD (p=0.003) 

compared to those with high range Hct 

Dani et al (2002)
48

 Studied 14 anaemic preterm 

infants [mean (SD) GA 29.6 

(22.6), PNA 29 (14) days] 

Cerebral Doppler USS of pericallosal 

artery: PSV, DV and RI before and after 

blood transfusion 

 

Diastolic velocity decreased and RI increased 

following blood transfusion 

 

PSV and Vmean did not change following blood 

transfusion 

Nelle et al (1994)
47

 Studied 33 anaemic preterm 

infants [mean (SD) GA 29 (5) 

Hct, blood viscosity (capillary viscometer) 

SV, CO 

SV decreased from 2.28 (0.57) ml/kg to 2.14 (0.46) 

(p=0.05) post-transfusion alongwith a decrease in HR 
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weeks and PNA 48 (21) days ICA, ACA and coeliac trunk flow velocities 

Systemic flow resistance: blood pressure to 

cardiac output ratio 

 

 

resulting in a significant reduction in CO (p=0.005) 

 

Blood flow velocities decreased in ACA by 23%, ICA 

by 8% and coeliac trunk by 12% (p=0.05) following 

transfusion 

 

Blood viscosity increased by 33% and systemic flow 

resistance by 23% following transfusion 

Krimmel et al 

(2009)
75

 

Studied 22 anaemic preterm 

infants [mean (SD) GA 27.3 

(2.3) weeks and PNA 31.2] 

Stratified by weight on the day of 

transfusion>/<1250 g and 

randomised to fed or unfed 

during transfusion 

SMA flow velocities measured 4 times: 

Pre-transfusion: pre and post-prandial 

Post-transfusion: pre and post-prandial 

 

Pre-transfusion SMA PSV (p=0.02) and Vmean 

(p=0.01) increased significantly in response to feeding 

but this was not noticed in the post-transfusion state. 

Similar finding was noticed in subgroup of infants 

weighing >1250 g but not in infants <1250 g. 

 

The above response was similar in infants 

randomised to fed or unfed during transfusion.  

 

SMA PSV and Vmean changes in response to feeding 

were similar between formula (n=7) and breast milk 

(n=15) fed infants  
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SV: stroke volume; LVESD: left ventricular end systolic diameter; LVEDD: left ventricular end diastolic diameter; CO: cardiac output; BT: Blood transfusion; RI: 

resistance index; ICA: internal carotid artery; ACA: anterior cerebral artery; BA: basilar artery; SMA: superior mesenteric artery; Vmean: mean velocity; PSV: peak 

systolic velocity; DV: diastolic velocity 
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1.4 Near Infra-Red Spectroscopy (NIRS) 

 

1.4.1 The principles of Near Infra-Red Spectroscopy 

 

NIRS operates on two basic principles: 

a) The biological tissue is relatively transparent to light in the near infra-red region 

of the light spectrum (700-1000 nm), and 

b) In tissue, there are compounds known as chromophores whose absorption of 

light is oxygenation status dependent  

 

Amongst the various electromagnetic waves, light within the visible spectrum 

(wavelength 450-700 nm) is not able to penetrate biological tissue to a depth greater 

than 1 cm because of attenuation as a result of powerful absorption and scattering 

by the tissue constituents. Studies have reported that at near infra-red (NIR) 

wavelengths (700-1000 nm) the absorption of light is significantly lower in biological 

tissues and it can penetrate tissues upto a depth of 8 cm 167. Biological tissues e.g. 

bone appear transparent allowing examination of substantial region of the tissue. 

 

 

 

 

Figure 2: Different light absorbing and scattering compartments within tissue   
(With permission from C. Elwell: 1995 The physical principles of tissue 

spectroscopy. A practical users’ guide to near infrared spectroscopy)168 
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Thereby, NIRS can monitor the changes in concentration of those compounds which 

are present in tissue in significant concentration and whose absorption 

characteristics in the NIR region are well defined (Figure 2).  

 

The two main properties of light when travelling through tissues are scatter and 

absorption, the amount of each of these two properties depend on the wavelength of 

the light and the nature of tissue illuminated 169. These and other properties of light 

waves are discussed in more details below.  

 

 

1.4.2 Light waves 

 

The only electromagnetic waves that are visible to human are the visible light 

spectrum (400 – 700 nm). Red has the longest wavelength and violet the shortest 

(Figure 3). The sun as well as the light bulb is a source of visible light waves. 

 

 

Figure 3. Various electromagnetic waves and visible spectrum 
 

Infra-red and NIR waves: Infra-red light lies between the visible and microwave 

portions of the electromagnetic spectrum. The infrared wavelengths closer to the 

visible spectrum are called the ‘Near Infra-red (NIR)’ light and closer to the 
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microwave region are called the ‘Far Infra-red’ light. Infra-red radiation had 

wavelengths between about 700 to 1000 nm. 

 

1.4.3 Absorption of light 

 

 When incident on a particular tissue; light undergoes a process of absorption, 

attenuation, reflection, refraction, diffraction and scattering. If we consider a 

laboratory model of a cuvette containing a non-absorbing medium and dissolve an 

absorbing compound with concentration c (Figure 4), the amount of light this 

compound absorbs will depend upon the wavelength of the incident light. This 

wavelength dependent absorption is described by the absorption spectrum of the 

compound, in which the specific extinction coefficient of the compound (α) is 

expressed as a function of wavelength168. 

 

 

 

Figure 4: The cuvette model for absorption.  
An absorbing compound ‘c’ is dissolved in a non-absorbing medium. 
(With permission from C. Elwell: 1995 The physical principles of tissue spectroscopy. A 
practical users’ guide to near infrared spectroscopy)

168
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Since the solution does not scatter any light, the light travels in a straight line 

covering a distance otherwise known as optical pathlength (d). The intensity of 

the light incident on the solution is I0 and the intensity of light transmitted through the 

solution is I. I is less than I0 because some of the light has been absorbed or 

attenuated by the compound in the solution. This loss of light intensity (attenuation) 

is usually measured in units of optical density (OD) and can be described using the 

Beer-Lambert Law.  

 

The Beer Lambert law states that for a light absorbing compound dissolved in a non-

absorbing medium, the attenuation of light incident is proportional to the 

concentration of the compound in the solution (c), the specific extinction coefficient 

of the compound (α) and the optical pathlength (d), and their relationship can be 

demonstrated using the following equation168,170: 

 

                               A = log [  
 
  = α.c.d 

 

Where A = attenuation measured in OD 

  I0 = the light intensity incident on the medium 

  I = the light intensity transmitted through the medium 

α = specific extinction coefficient of the absorbing compound 

measured in   µmolar-1.cm-1 

c = the concentration of the absorbing compound in the solution 

measured in µmolar  

d = distance between the points the light enters and leaves the 

solution measured in cm 
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N.B. Optical density is a logarithmic unit (base 10) indicating the measure of number 

of orders of magnitude the light intensity is reduced when traversing the medium. 

 

The product of α.c is known as the absorption coefficient of the absorbing medium 

(µa). Therefore, the above equation can also be expressed as: 

 

            An = ln[  
 
  = µa.d 

 

Where An is the natural attenuation since µa is expressed in natural logarithmic units.  

 

The specific extinction coefficient indicates the level of absorption per µmol of the 

compound per litre of solution per cm. µa is used to represent absorption coefficient 

per centimetre (cm-1). The term extinction coefficient is expressed using base 10 

logarithmic units (log) and absorption coefficient using natural logarithmic units (ln).  

 

In a solution or tissue with multiple absorbing compounds, the overall extinction 

coefficient is simply the sum of the contributions of each compound. 

 

   A = [α1.c1 + α2.c2 + α3.c3 + ……..αn.cn].d 

 

 

1.4.4 Absorbers in tissue 

 

A chromophore is a compound which absorbs light in a certain spectral region. Each 

chromophore has got its own particular absorption spectrum (extinction coefficient 

against wavelength). The chromophores of interest for NIRS measurements are 
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those whose absorption varies with oxygenation status. It is also important to be 

aware of the role of other absorbers whose concentration is likely to remain fixed but 

still contributes to the total loss of light in tissue.  

 

Water: 

 

The absorption of light by water is relatively low between 200-900 nm. Above 900 

nm, absorption of light starts to rise with increasing wavelength, reaching a spectral 

peak at 970 nm. The living tissue has high water content, such as 80% in adult brain 

tissue 171. As water acts as a fixed constant absorber, for the purpose of clinical 

measurements water concentration in the tissue can be considered to be constant. 

 

Haemoglobin: 

 

The most important absorbers within the ‘window’ of transparency are the 

haemoglobin group. The absorption spectra of HbO2 and HHb in the wavelength 

range 450-1000nm have been extensively studied (Figure 5). The difference in the 

absorption levels between the two compounds in the visible range is noticeable; 

which explains the well-recognised phenomenon of arterial blood being bright red 

and venous or deoxygenated blood being more purple or blue. Though the 

absorption of both chromophores (HbO2 and Hb) decreases significantly in the NIR 

spectrum compared to the visible spectrum, it still remains significantly different 

allowing spectroscopic separation of the compounds to be possible using only a few 

sample wavelengths. At 800 nm also known as isobestic point, the extinction 

coefficients of the two compounds are identical, which can be used to calculate the 

haemoglobin concentration independent of oxygen saturation 172.  
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        (a)       (b) 

Figure 5: The absorption spectra of oxy-haemoglobin and deoxy-haemoglobin 
(a) in the whole spectrum and (b) in the near infra-red region  
(With permission from C. Elwell: 1995 The physical principles of tissue spectroscopy. A 
practical users’ guide to near infrared spectroscopy)

168
 

 
 

1.4.5 Scattering of light 

 

Scattering of light is an important phenomenon caused by the unpredictable 

variation in refractive index at a microscopic and macroscopic scale. The particle’s 

ability to scatter light is dependent on effective surface area and is called the total 

scattering cross section σs expressed in mm2. The density of the scattering particles 

within a solution is expressed in (number.ml) and called the number density ρ. The 

scattering coefficient, µs, for a medium containing a single type of scattering particle 

is expressed by the equation168: 

 

     µs = ρ.σs 

 

µs is expressed in mm-1 and is a measure of likelihood that a photon would be 

scattered in a given medium. 
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1.4.6 Spectroscopic measurements of tissue 

  

 The fibres which carry the NIR light to and from tissues are referred as the optical 

fibres; these are small cylindrical optodes containing prisms which direct the light 

on to the surface of the tissue. The distance between the two optodes known as 

inter-optode spacing (IOS) is the chord (straight line distance) rather than the arc 

between the two points. This assumption is based upon the fact that the light 

essentially becomes diffuse after a few millimetres of entering the tissue 173.  

 

 The chromophores of interest within the tissue, whose concentration vary with 

oxygenation, are HbO2, HHb and CtOx. Once d, α and DP are known the change in 

concentration of the chromophores can be easily computed from the measured 

change in attenuation (modified Beer Lambert Law)168. 

 

 The absolute concentration of a chromophore cannot be determined due to the 

effects of light scattering within the tissue. All NIRS measurements due to the effects 

of light scattering are expressed as absolute concentration changes of a 

chromophore from an arbitrary zero at the start of the measurement period 

(baseline). Thus using the NIRS technique the quantified changes in a tissue 

chromophore/oxygenation can be monitored non-invasively 170,172. 

 

The spectroscopic measurements required for my research are of brain and 

gut/splanchnic circulation. These will be detailed below:  
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1.4.7 Spectroscopic measurements of the brain 

  

 The quantified changes in the concentration of oxy-haemoglobin (HbO2) and deoxy-

haemoglobin (HHb) in micro molar unit can be measured non-invasively by NIRS 

techniques. Other parameters such as tissue oxygenation index (TOI: ratio of 

oxygenated to total haemoglobin in tissue) and tissue haemoglobin index (THI: sum 

of oxygenated and de-oxygenated haemoglobin in the tissue) can be measured from 

the changes in HbO2 and HHb. Using oxygen saturation of arterial haemoglobin, 

fractional tissue oxygen extraction (FTOE) can be calculated which can give a direct 

estimate of the oxygen availability and extraction balance. Cerebral blood flow 174 

and cerebral blood volume 175 are some of the haemodynamic parameters which 

can be estimated using these measurements. Figure 6 shows the experimental set 

up for spectroscopy measurement across head. 

    

  

Figure 6: Schematic experimental set up for NIRS measurement across the head 

(with permission from C. Elwell: 1995 The physical principles of tissue spectroscopy. A 
practical users’ guide to near infrared spectroscopy)

168
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1.4.8 Spectroscopic measurements of intestine 

 

Similar to brain, the changes in the intestinal HbO2 and HHb could be measured 

using NIRS; these measurements can then be used to measure Tissue oxygenation 

Index (TOI), tissue haemoglobin index (THI) and fractional tissue oxygen extraction 

(FTOE). The ratio of TOI of intestinal and brain oxygenation (SCOR = splanchnic 

cerebral oxygenation ratio) has been used by researchers to monitor the need of 

blood transfusion176,177. Figure 7 shows the experimental set up for measurements 

of intestinal oxygenation. 

 

  

Figure 7. Experimental set up for NIRS measurements of the gut/splanchnic 

circulation  

 

1.4.9 Types of NIRS devices 

 

Continuous wave NIRS device: 

This was the first and the most frequently used NIRS device 168, which uses lasers 

to generate near infra-red (NIR) light at different wavelengths. One major problem 

with this technique is that the precise pathlength of NIR light is unknown; it only 

measures absolute change in the concentration of chromophores and requires 
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biochemical or haemodynamic changes to occur in tissues for a measurement to be 

made178-180.  

 

Intensity modulated NIRS device: 

This device also calculates coefficients for absorption and scattering, which are 

required to make absolute measurements of chromophores 178.  

 

Time resolved NIRS device: 

Time resolved spectroscopy (TRS) or time domain spectroscopy has the benefit of 

measuring the actual pathlength of light, and capable of measuring absolute 

concentrations of chromophore. This system is expensive, cumbersome and hence 

not suitable for bedside measurement in a Neonatal Unit178-180.  

 

Spatially resolved NIRS device: 

Spatially resolved spectroscopy (SRS) also known as multi-distance spectroscopy is 

a NIRS device based on the principle that light intensity is measured at several 

different source-detector distances thereby enabling better quantification of the 

chromophores 181. The SRS system cancels out the chromophore changes in the 

superficial layers of the tissue illuminated by NIR light, and allows to measure 

changes in deeper tissue layers182. The SRS device is able to measure the ratio of 

HbO2 to total haemoglobin (HbO2 + HHb) and thus tissue oxygen saturation 179 ; this 

has been reported in the literature as regional saturation (rSO2) 
53 or tissue 

oxygenation index (TOI) 183. NIRO 300 is a spatially resolved NIRS device which can 

be used to measure TOI expressed as a ratio of oxygenated to total haemoglobin in 

percentage and Tissue Haemoglobin Index (THI) which is an index of a sum of 
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oxygenated and de-oxygenated haemoglobin in the tissue illuminated by the NIR 

light. NIRO 300 has a high degree of sensitivity and specificity to intracranial and 

extra cranial changes184. SRS has also got the advantage over TRS of being more 

portable and user friendly and provides measurements with a high time 

resolution185). 

 

1.4.10 Validation of cerebral NIRS measurements 

 

In practice, validation of NIRS measurements is difficult and limited, because of lack 

of availability of clinically applicable gold standards. It is also important to 

understand the ethical principles of research on neonates; validation between non-

invasively measured cerebral blood volume (CBV) by NIRS and CBV measured by 

CT scan or radiolabelled red blood cell dilution is neither practical nor ethical in sick 

ventilated newborn infants. Similarly, validating non-invasively measured cerebral 

venous oxygen saturation using NIRS with cerebral venous blood (sagittal sinus or 

jugular bulb) co-oximeter is not feasible for newborn infants; albeit the various NIRS 

techniques have been compared with other methods of assessment of tissue 

oxygenation and haemodynamics.  

 

1.4.10.1 Newborn animal studies 

 

Cerebral tissue oxygenation measurements using NIRS  in newborn piglets was 

found to correlate strongly with weighted mean arterial and sagittal sinus blood 

haemoglobin saturation (r=0.9, p<0.0001) 186. The CBV and CBF measured using 

NIRS and Indocyanine green (ICG) correlated well with measurements made in 

newborn piglets using CT scan 187. The CBV measured in newborn rats 188 and 
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immature lambs 189 using NIRS was almost identical to measurements by laser 

Doppler flowmetry and radio labelled indicators (125I-labelled serum albumin and 

51Cr-labelled red blood cells) respectively. Excellent agreement has been 

demonstrated between cerebral metabolic rate of oxygen (CMRO2) measured by the 

NIRS technique and simultaneous measurements obtained from arterial and sagittal 

sinus blood samples on piglets 190. The cerebral venous oxygen saturation 

measured by NIRS method agreed well with measurements made using superior 

sagittal sinus blood in newborn lambs191. 

 

1.4.10.2 Newborn infant and children studies 

 

The cerebral blood flow (CBF) measurement in newborn infants using NIRS 

technique has been validated with measurement using 133Xenon clearance192,193. 

Measurements of cerebral venous oxyhaemoglobin saturation in children and 

newborn infants using NIRS correlated well with co-oximetry of jugular venous bulb 

blood sample194-197. The peripheral venous oxyhaemoglobin saturation measured 

non-invasively using NIRS correlated well with direct measurement performed using 

peripheral 198 and central 199 venous blood sample. 

 

 

1.4.11 NIRS measurements of abdomen 

 

Animal studies 

 

A good correlation was demonstrated between the blood flow in the distal ileum and 

the mid-gut of the small bowel using Doppler ultrasound scan and the tissue 
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oxygenation of the liver using NIRS 200. In a study in rabbits, where the mesenteric 

artery was clamped for 30 minutes, a significant decrease in liver tissue oxygenation 

index (TOI) was seen after 90 minutes of occlusion of the SMA and is likely to be the 

consequence of bowel ischemia201.  

 

Human studies 

 

Teller et al202,203 was the first to use the measurement of tissue oxygenation index 

(TOI) of the liver as a possible parameter of intestinal flow. They found a decrease 

of TOI of the liver after feeding a bolus of breast milk. It can be inferred that changes 

in tissue oxygenation of the liver may reflect changes in the whole splanchnic bed 

and also, most importantly, changes in oxygen consumption of the liver itself.  

 

Other researchers have studied splanchnic oxygenation and perfusion by measuring 

splanchnic or abdominal oxygenation using NIRS. They have placed the NIRS 

probe on the abdominal wall in the hypogastrium to measure splanchnic tissue 

oxygenation changes. Petros and Fortune were the first to report this method 

demonstrating a decrease in splanchnic oxygenation in ischaemic conditions such 

as necrotising enterocolitis (NEC) and hypoxic ischaemic encephalopathy (HIE) in a 

small case series; they also reported that the ratio between cerebral and splanchnic 

oxygenation index known as the cerebro-splanchnic oxygen ratio (CSOR) can be 

used to identify early signs of ischaemia to the gut 177,204. They reported that CSOR 

had a 90% (56-100%) sensitivity to detect splanchnic ischemia, indicating that this 

might be a non-invasive way to detect necrotising enterocolitis early. Dave et al 

looked at the splanchnic tissue oxygenation during feeding and found that 

splanchnic tissue oxygenation increased during feeding in stable infants, but there 



79 | P a g e  

 

was no associated change in cerebral oxygenation205. Bailey et al also reported 

splanchnic cerebral oxygenation ratio (SCOR) to be an important index to inform the 

decision to PRBC transfusion176. It is important to note that all these studies were 

observational, with small sample size and were not validated against robust 

standardised techniques. One of the major limitations of measuring splanchnic 

tissue oxygenation is the structure and properties of the intestine itself. Intestine is a 

hollow structure, it is constantly mobile with peristalsis and presence of meconium or 

transitional stool make measurement of splanchnic or intestinal oxygenation very 

challenging. However, newer techniques and algorithms (such as stool interference 

algorithm) have shown significant promises 206.    

 

1.4.12 Limitations of NIRS technique 

 

The various limitations of NIRS technique has been detailed below: 

1) Measurement of NIRS signals requires ambient light to be blocked from 

optodes to prevent contamination of the signals that are being measured.  

2) An incorrect attachment of the sensor might lead to light escaping and 

consequent large errors. 

3) Heterogeneous tissue cannot be measured if the physical model assumes a 

homogenous tissue.  

4) The different NIRS methodologies show a different degree of susceptibility to 

movement artefacts; single distance measurements are highly sensitive 

while multi-distance geometrics are not.  

5) The most serious limitation of NIRS recordings is the difficulty in establishing 

the DPF178-180. 
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6) Peristalsis, meconium and transitional stool within the bowel make the NIRS 

measurements of bowel tricky but not impossible206. 

7) By principle NIRS measurements are relative to the initial baseline and are 

not absolute measurements. Using ratios such as tissue oxygenation index 

(TOI) might be a way to avoid this particular problem168. 

 

 

1.4.13 NIRS and blood transfusion 

 

The regional tissue oxygen saturation (rSO2) or tissue oxygenation index (TOI) of 

various organs and the balance between tissue oxygen supply and demand can be 

measured using Near-Infrared Spectroscopy (NIRS)207,208. Several researchers used 

NIRS to study the effect of blood transfusion on various tissues to identify a trigger 

for blood transfusion in newborn infants (Table 6).  

 

Fractional oxygen extraction (FOE) reflects the balance between oxygen delivery 

and consumption. In an observational study of 33 anaemic preterm infants Van 

Hoften et al found PRBC transfusion significantly improves cerebral tissue 

oxygenation (crSO2) and reduced fractional tissue oxygen extraction (FTOE)51.  

Similarly, Dani et al also noticed improvement in cerebral, renal and splanchnic 

tissue oxygenation and reduction in FTOE following transfusion in symptomatic 

anaemic preterm infants 52. Wardle et al reported that peripheral fractional oxygen 

extraction (pFOE) was significantly higher in the symptomatic anaemic preterm 

infants (0.43±0.06) compared to asymptomatic (0.33±0.05) and control (0.35±0.06) 

infants. The authors suggested that the elevated pFOE in symptomatic anaemic 

infants may be used as a marker of the need for blood transfusion124,209,210. The 
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same group later used FOE values as a trigger to transfuse in a pilot randomised 

trial. Infants less than 1500g birth weight who were stable and less than 2 weeks old 

were randomised to conventional or a NIRS based transfusion protocol.  
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Table 6. NIRS measurements to predict the need for blood transfusion 

 

Study reference Infant characteristics Measurements Findings 

van Hoften et al 

(2010)
51

 

Studied 33 preterm infants [median 

(range) gestational age 27.3 (25 – 34) 

weeks and chronological age 17 (1 – 

93) days]  

crSO2, tcSaO2 and FTOE measured 1 

hour pre-transfusion, 1 hour and 24 

hour post-transfusion 

FTOE=(tcSaO2 – crSO2)/tcSaO2 

 

 

crSO2 and FTOE correlated strongly with pre-

transfusion Hb 

 

tcSaO2 did not correlate with pre-transfusion Hb 

crSO2 increased and FTOE decreased following 

transfusion 

 

Increase in crSO2 levels and decrease in FTOE 

were most prominent in the those infants with 

Hb<9.7 g/dl  

Dani et al (2010)
52

 Studied 15 symptomatic anaemic 

preterm infants [mean (SD) gestational 

age 27 (2.4) weeks and chronological 

age 32 (23) days] 

 

crSO2, srSO2 and rrSO2 and FOE, 

CSOR, CROR 

CBF, RBF and SBF measured using 

Doppler ultrasound scan 

 

crSO2, srSO2, rrSO2, CSOR and CROR 

increased and FOE decreased during and 1 hour 

post-transfusion 

 

Wardle et al 

(1998)
124

 

Studied 94 preterm infants 

Group 1 – stable control infants not 

HbF fraction, RCV (HbF dilution 

method) 

Pre-transfusion mean (SD) pFOE was 

significantly higher in symptomatic 0.43 (0.06) but 
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transfused (n=52) 

[Median (range) GA 29 (28 – 31), PNA 

of measurement 18 (9 – 36) 

Group 2 – asymptomatic anaemic 

infants transfused (n=24) 

[Median (range) GA 26 (25 – 28), PNA 

of measurement 21 (11 - 35) 

Group 3 – symptomatic anaemic infants 

transfused (n=18) 

[Median (range) GA 28 (26 – 29), PNA 

of measurement 23 (16 - 37) 

 

Oxygen consumption, delivery and 

peripheral FOE (pFOE) 

 

not asymptomatic 0.33 (0.05) infants compared 

with control subjects 0.35 (0.06) 

 

Post-transfusion mean (SD) pFOE decreased 

significantly in symptomatic anaemic infants from 

0.43 (0.06) to 0.367 (0.06) p<0.001 

 

Pre-transfusion HbF (r=0.49, p<0.001) and RCV 

(r= - 0.48, p=0.04) correlated well with pFOE  

Pre-transfusion Hb had a weak correlation (r=-

0.21 p=0.04) 

Wardle et al 

(2002)
211

 

Randomised trial: 74 anaemic infants 

studied  

NIRS group (n=37) transfusion if FOE 

>0.47: [median (range) GA 29 (27 – 31), 

PNA 5 (3 – 8) 

Conventional group (n=37) transfused 

according to standard clinical practice: 

[median (range) GA 30 (27 – 32), PNA 

5 (3 – 8) 

Hb and pFOE 

 

 

Infants transfused according to the NIRS protocol 

were more likely to be transfused later and at a 

lower Hb than those transfused using 

conventional protocol 

 

Infants in the NIRS group spent a significantly 

longer period than those in the conventional 

group with Hb <10 g/dl 

 

In the NIRS group 66% (37/56) of transfusions 
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were given because of clinical reasons before 

reaching the treatment FOE threshold  

Bailey et al (2010)
53

 Studied 30 symptomatic anaemic 

preterm infants [Mean (SD) gestational 

age 28.4 (3) and chronological age 31.7 

(16.2) days 

Hb levels; crSO2 and srSO2 measured 

for 20 minute duration immediately 

before, during, immediately after and 12 

hours after blood transfusion 

 

Mean crSO2 and srSO2 values increased 

significantly following transfusion and this 

remained elevated 12 hours after transfusion 

 

Pre-transfusion Hb did not correlate with crSO2 

(r=-0.01 p = 0.98) or srSO2 (r=-0.26 p = 0.17)  

Bailey et al 

(2012)
176

 

Studied 52 premature anaemic infants 

(mean GA 28.6 weeks):  

Group 1: transfused (n=34) and  

Group 2: asymptomatic control (n=18) 

Hb, crSO2, srSO2 and SCOR 

 

Mean (SD) pre-transfusion SCOR values were 

significantly lower in infants who improved 

[0.61(0.22)] with transfusion compared to those 

without improvement [0.75 (0.16)] and 

asymptomatic control [0.77 (0.16)] 

 

Based on a ROC curve, symptomatic infants with 

a pre-transfusion SCOR ≤0.73 had the highest 

sensitivity and specificity for predicting 

improvement of symptoms of anaemia  

Seidel et al (2012)
54

 Studied 76 infants [mean (SD) GA 27 

(3) weeks and PNA 38 (22) days] 

Group 1: crSO2 ≥ 55% (n=51) 

crSO2, prSO2, SaO2before, during, 

immediately after and 24 hours after 

transfusion 

crSO2 and prSO2 increased significantly in all 

infants following transfusion 
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Group 2: crSO2<55% (n=25)  Increase in crSO2 following transfusion was 

significantly (p<0.005) higher in those infants with 

a pre-transfusion crSO2<55%  

 

Infants with pre-transfusion  crSO2<0.55 had 

significantly higher episodes of desaturations 

<80% (p<0.05) compared to infants with crSO2 

≥55% 

 

PNA: postnatal age; GA: gestational age; crSO2: cerebral regional O2 saturation; prSO2: peripheral regional O2 saturation; FTOE: fractional tissue oxygen 

extraction; tcSaO2: transcutaneous saturation of oxygen; srSO2: splanchnic regional O2 saturation; rrSO2: renal regional O2 saturation; CSOR: cerebro-splanchnic 

oxygenation ratio; CROR: cerebro-renal oxygenation ratio; HbF: foetal Haemoglobin; pFOE: peripheral fractional oxygen extraction; CBF: cerebral blood flow; 

RBF: renal blood flow; SBF: splanchnic blood flow; RCV: red cell volume 
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Infants transfused using conventional protocol received transfusion earlier and at a 

higher Hb compared to infants transfused based on NIRS protocol. Infants in the 

conventional group spent significantly shorter period with Hb <10 g/dl compared to 

the NIRS group. However, there was no difference in the number of transfusions 

received between the two groups. The postnatal age at discharge, weight at 

discharge, rate of weight gain, and rate of linear growth were not significantly 

different between the groups. In the NIRS group, 66% of transfusions were given 

because of clinical concerns before reaching the threshold of transfusion i.e. FOE 

>0.47. This may have been because clinicians relied on conventional indicators of 

transfusion or a peripheral FOE of 0.47 alone may not be a sensitive enough 

predictor of the need for transfusion211. 

 

Bailey et al studied 30 anaemic preterm infants and demonstrated improvement in 

gut and cerebral oxygenation following blood transfusion 53. In a separate study, the 

same group showed that the ratio between splanchnic rSO2 and cerebral rSO2 

(splanchnic cerebral oxygenation ratio – SCOR) can be a useful marker for PRBC 

transfusion. Infants with a low pre-transfusion SCOR (≤0.73) were more likely to 

improve after transfusion (likelihood ratio, 2.8; 95% confidence interval 1.1-6.7)176. 

Seidel et al measured crSO2 and prSO2 before, during, immediately after and 24 

hours after blood transfusion and noticed a significant improvement in cerebral and 

peripheral tissue oxygenation and perfusion as well as improvement in symptoms of 

anaemia on transfusing for anaemic infants with crSO2<55% compared to infants 

with crSO2 ≥55% 54.  
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1.4.14 Summary for NIRS 

 

Near Infra-red Spectroscopy (NIRS) can be used as a bedside non-invasive tool to 

monitor tissue oxygenation changes continuously. NIRS has been validated to 

measure cerebral tissue oxygenation and has been used in research extensively in 

measuring tissue oxygenation in splanchnic, renal and peripheral perfusion in 

preterm infants. It may help to monitor the requirement of oxygen delivery, routine 

monitoring in intensive care, management of hypotension and perhaps as a tool for 

neurodevelopmental prognosis in preterm infants. There is increasing evidence that 

NIRS can be a reliable non-invasive tool to measure tissue oxygenation which might 

help clinicians to identify the need for transfusion. 
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1.5 Red Cell Volume (RCV) 

 

1.5.1 Introduction 

 

The overall survival and outcomes of low birth weight preterm infants have 

progressively improved with advances in the fetal and newborn infant care212,213. 

Advances in neonatal resuscitation techniques and management214, use of 

managed clinical networks in UK215 and centralised neonatal transportation 216 have 

all resulted in improvement of preterm survival and outcomes. However, morbidity 

amongst the survivors still remains high213,217,218. One of the important factors that 

have an important role in the pathogenesis of morbidity and mortality is the 

instability of haemodynamic state in these infants in the first few hours of life219-222. 

 

It is important to maintain an optimal circulating blood volume (BV) in newborn 

infants undergoing intensive care. Delayed umbilical cord clamping in preterm 

infants can result in better cardiovascular stability by improving blood volume by 

30% and red cell volume by 60% compared to early umbilical cord clamping 223. Due 

to the changes in plasma volume in the first few days of life, blood haematocrit (Hct) 

values do not accurately reflect the true red cell volume (RCV) 224. In order to 

accurately reflect the effect of placental transfusion by delayed umbilical cord 

clamping, red cell volume measurements need to be precise and results must be 

related to specific clinical endpoints 225. However, measurements of RCV are 

laborious, cumbersome and expensive and require a dedicated biomedical lab for 

processing226. Albeit, rapid measurement of RCV can help clinicians understand 

haemodynamic changes to management and may help to decide the requirement of 

certain management such as blood transfusion208.  
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1.5.2 Importance of Red cell volume (RCV) 

 

The various haematological variables involved in oxygen delivery to the tissues 

include haemoglobin (Hb) concentration, red cell volume (RCV) and blood volume 

(BV)227-229. Low Hb levels at birth are known to be associated with poor short term 

outcomes and mortality in preterm infants98,230. Maintaining optimum blood volume is 

essential for cardiovascular stability in preterm infants. Hypovolaemia in critically ill 

patients may produce serious and unexpected physiological consequences and is 

reported to be associated with morbidity and mortality in critically ill adults231,232. 

Shoemaker et al studied 98 critically ill adult patients by comparing haemodynamic 

measurements of survivors (n=67) with non-survivors (n=31) and found lower stroke 

volume and BV in the non-survivors. This could be due to reduced cardiac output, 

oxygen availability and oxygen transport 232.  

 

The pre-transfusion RCV may be helpful in assessing the need for blood 

transfusion. Measuring pre-transfusion RCV in 73 sick newborn infants using HbF 

dilution method, Kinmond et al demonstrated that lower RCV at birth was associated 

with longer duration of assisted ventilation as well as time to discharge from hospital 

233. Using 50Cr tagged red blood cell dilution; Faxelius et al measured RCV and BV 

in 259 newborn infants (gestational age 28–41 weeks; birth weight 787-5386g) 

within 0.8-71 hours of birth, and found that 31% (n=14 out of 45) infants with RCV 

<30ml/kg and BV >70ml/kg died. 51% (n=49 out of 99) of those with RCV <30ml/kg 

and BV <70ml/kg died. The percentage mortality of those two groups was 

significantly high compared to the infants with BV>70ml/kg and RCV >30ml/kg234. 

These two studies indicate that a lower RCV can result in worse outcome.   

 

Using Biotin labeled red blood cell dilution Hudson and colleagues measured RCV 

in 42 preterm infants (gestational age 24-34 weeks) on the first day of life and 
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compared their clinical outcomes. They reported that overall clinical outcomes 

improved (p <0.05) with increasing RCV: intracranial haemorrhage, blood pressure, 

severity of respiratory illness (duration of ventilation, peak inspiratory pressure and 

oxygen requirement), transfusion needs, time to regain birth weight and survival. 

From regression analysis, gestational age was the most important variable; the best 

outcome was seen with RCV value of >40ml/kg 235. Linderkamp et al measured RCV 

in 128 preterm infants (gestational age 26-36 weeks) using 125I labeled human 

serum albumin within 2 hours of birth, and compared with the incidence of 

respiratory distress syndrome (RDS). Infants with RCV <35ml/kg showed a 

significantly higher incidence of RDS and mortality in spite of similar Apgar scores 

236. 

 

Excessive expansion of blood volume was also associated with worsening morbidity 

and mortality in critically ill adults 237-239 and newborn infants 240. In a multicentre 

study (n=3534; 146 Western European Adult Intensive Care Units), Vincent et al 

reported that there was a significant association between blood transfusion and 

mortality in adults. Authors also found that for similar degrees of organ dysfunction, 

patients who had a transfusion (categorical variable) had a higher mortality rate237. 

Ewer et al studied anonymised regional case notes (n=22 infants) of Project 27/28, 

a national case controlled study run by the Confidential Enquiry of Stillbirth and 

Deaths in Infancy in UK. This was compared to matched regional control infants 

(survivors; n=29). The primary outcome was death within 28 days. The infants who 

died received more than twice the volume expansion compared with controls in the 

first 48 hours of life (38.2 vs. 18.2ml/kg; p=0.007). There was no significant 

difference between the groups in lowest blood pressure or base excess within the 

first 12 hours of life. Newborn infants who received 30ml/kg volume expansion in 

the first 48 hours of life were more likely to die than those who received <30ml/kg 

(OR 4.5; 95% CI 1.2, 17.2) 240. Blood transfusion has been reported to be an 



91 | P a g e  

 

independent risk factor of mortality in preterm infants born at <32 weeks of 

gestational age 62. Others have also reported blood transfusion as an independent 

risk factor of in hospital mortality in preterm infants63. 

 

It is a common practice to give 10 to 20ml/kg of fluid bolus to a very low birth weight 

infant in the first few hours of life. A questionnaire study from Canada reported that 

97% of responded neonatologists with at least 10 year experience from level two 

and three neonatal intensive care units used a fluid bolus for blood pressure less 

than gestational age in weeks for infants born with birth weight less than 1500gms 

during the initial 72 hours of life, irrespective of their clinical condition. Normal saline 

was the predominant (95%) volume administered 241. In a National Survey of the 

level II and level III neonatal units in UK it has been shown that normal saline is the 

most commonly administered treatment for neonatal hypotension 242. Many 

neonatologists are keen to improve peripheral perfusion and blood pressure fairly 

quickly after birth as hypotension has been related to development of intra-

ventricular haemorrhage. However, routine administration of fresh frozen plasma 

(FFP) or colloid on admission and again 24 hours later failed to demonstrate any 

advantage for preterm infants born at less than 32 weeks gestation 243,244. 

 

1.5.3 Red Cell Volume (RCV) of infants 

 

Red Cell Volume (RCV) 

 

RCV of 17-59ml/kg has been reported for newborn infants within the first 72 hrs of 

birth234,245-249. The majority of the studies have reported RCV on average from 30 to 

40ml/kg. The total RCV may vary depending on the presence of perinatal blood loss, 

gestational age at birth, mode of delivery, time of umbilical cord clamping, and the 

method used for RCV measurement (Table 7). 
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Measurement of Red Cell Volume 

 

RCV can be measured using various techniques including 50Cr, 51Cr and 99mTc 

labelled autologous RBC dilution techniques (Table 7). Radioactive labelling of red 

cells are not ethically acceptable in preterm infants due to high radiation exposure; 

so current techniques used are Biotin labelling 226,250-252 and HbF (fetal Hb) dilution 

technique following blood transfusion using flow cytometry or high performance 

liquid chromatography (HPLC)27,89,253,254. Recent studies using four different doses of 

Biotin in sheep have shown that all four densities can be used simultaneously and 

independently to determine RCV 250.  Biotin labelling and fetal haemoglobin dilution 

methods are found to be safe, feasible and comparable 255.   

 

Table 7. Measured Red Cell Volume (RCV) within 72 hours of birth 
 

Study 

reference 

Measurement 

Method 

Age at 

Measurement 

 

Comment RCV - 

ml/kg 

mean 

(range) 

Bratteby, 

1968
245

 

51
Cr-labelled autologous 

RBC dilution 

Within 72 hrs 

after birth 

No of infants - 27  

Gestation: 31-

42wks 

Vaginal delivery 

DCC – 5 min 

42.4  

(27.4-54.8) 

Faxelius et 

al, 1977
234

 

50
Cr-labelled autologous 

RBC dilution 

Within 71 hrs 

after birth 

No of infants – 

144 

Gestation: 28-

41wks 

No perinatal blood 

loss 

Variable cord 

clamping time  

32.4  

(range not 

reported) 
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Faxelius et 

al, 1977 

50
Cr-labelled autologous 

RBC dilution 

Within 71 hrs 

after birth 

No of infants – 

105 

Gestation: 28-

41wks 

With perinatal 

blood loss 

Variable cord 

clamping time  

26.3  

(range not 

reported) 

Robinson et 

al., 1978
248

 

Adult Hb dilution Within 0.5 to 

30 hrs after 

birth 

No of infants – 23 

Gestation: 29.2  

2.4wks 

Variable cord 

clamping time  

32.9  

(17-59) 

Quaife et al., 

1981
247

 

Tc-99m labelled 

autologous RBC dilution 

Exact time not 

reported 

No of infants – 62 

Gestation: term + 

preterm 

Variable cord 

clamping time 

32.2  9.2 

(range not 

reported) 

Strauss et al, 

2003
249

 

Biotin labelled 

autologous RBC dilution 

Within 24 hrs 

after birth 

No of infants – 24 

Gestation: 36wks 

Caesarean + 

Vaginal delivery  

Early cord 

clamping (15 

sec) 

36.8  6.3 

(range not 

reported) 

Aladangady 

et al 2004
27

 

HbF dilution (n=6)  

and  

Biotin labelled RBC 

dilution (n=32) 

Within 24 

hours of birth 

No of infants – 38 

Gestation:24-32 

wk 

Blood volume 

estimated from 

measured RCV 

35.5 ± 6 

(26.5 – 

52.5) 
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1.5.4 Summary for RCV 

 

Aladangady et al have demonstrated that clinicians’ ability to predict the actual 

circulating blood volume using clinical and laboratory assessments is poor27. The 

correlation between measured RCV as well as BV with haematocrit (Hct) of newborn 

infants is poor27,253. Mock et al reported a reasonable correlation between 

haemoglobin and RCV in preterm infants256. Hudson et al demonstrated that the pre-

transfusion RCV correlated well with changes in cardiac output following transfusion; 

infants with a pre-transfusion RCV of <25ml/kg showed a significant fall in cardiac 

output compared to those with >25ml/kg257. Aladangady et al27,89,258 and others253,256 

have demonstrated the feasibility of measuring reliable RCV using foetal 

haemoglobin dilution method in babies receiving first blood transfusion. 

 

Pre-transfusion RCV or BV could be a useful biomarker in deciding blood 

transfusion in newborn infants. Nevertheless, measurement of RCV and BV is time 

consuming; require either blood transfusion or injecting contrast (e.g. biotin) and the 

results may not be readily available before blood transfusion. These arguments 

preclude using measured RCV or BV as a trigger to decide blood transfusion in 

newborn infants.  
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1.6 Summary of Introduction 

 

Current blood transfusion guidelines are based on pre-transfusion Hb level or 

haematocrit and blood transfusion is recommended in chronic oxygen dependent 

preterm infants with a pre-transfusion Hb of <11 g/dl. It is not clear whether 

restrictive or liberal transfusion practice is beneficial for preterm infants. On the other 

hand both chronic anaemia and blood transfusion has been reported to be 

associated with gut injury and NEC. Severe anaemia is associated with a high 

cardiac output state and this decreases following blood transfusion. Pre-transfusion 

Red Cell Volume (RCV) <25 ml/kg is associated with significant reduction of cardiac 

output following blood transfusion. Hb concentration in the blood does not 

necessarily correlate with tissue oxygenation.  

 

Doppler ultrasound scan is a reliable bedside tool and can be used to assess blood 

flow to major organs such as brain and gut. NIRS is a reliable bedside tool to 

measure tissue oxygenation continuously in the brain and has recently been used to 

assess tissue oxygenation in the gut. Researchers have assessed tissue 

oxygenation changes using NIRS and blood flow changes using Doppler USS in 

preterm infants by combining infants of variable gestational and postnatal ages 

together as a single group. The haemodynamic changes in the transitional period 

are different from the stable preterm infant of later postnatal ages.  

 

The evidence for applying the current clinical and laboratory parameters as a trigger 

for blood transfusion is lacking. Further research is needed to understand the basic 

haemodynamics, oxygenation status and the effect of blood transfusion in these 

preterm infants in relation to gestational age, postnatal age, ventilation status, pre-
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transfusion Hb level, feeds and presence of intra and extra-cardiac shunts such as 

patent foramen ovale (PFO) and patent ductus arteriosus (PDA).    

  



97 | P a g e  

 

2 Study aims, objectives and 

hypothesis 
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2.1 Aims 

 

To investigate the effect of blood transfusion on gut and cerebral perfusion in 

preterm infants 

 

2.2 Objectives 

 

1. To measure gut and cerebral perfusion in preterm infants receiving blood 

transfusion for clinical indication using Near Infra-red Spectroscopy (NIRS) 

and Doppler ultrasound scan. 

2. To measure the pre-transfusion baseline cerebral and gut perfusion and 

oxygenation levels and compare them between three postnatal age groups. 

3. To compare the cerebral and gut blood flow and oxygenation changes 

following blood transfusion between gestational and postnatal age matched 

infants with and without patent ductus arteriosus (PDA). 

4. To compare the cerebral and gut blood flow and oxygenation changes 

following blood transfusion in preterm infants receiving varying amount of 

feeds. 

5. To continuously measure and compare vital parameters before and after blood 

transfusion.  

6. To study changes in the pre-transfusion laboratory parameters following blood 

transfusion.  

7. To study the effect of measured red blood cell volume (RCV) on gut and 

cerebral perfusion in preterm infants receiving first blood transfusion for 

clinical indication using NIRS and Doppler ultrasound scan. 
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8. To measure cerebral and gut blood flow and oxygenation in control infants and 

compare them with measurements of infants who received blood transfusion.      

 

2.3 Hypotheses 

 

a) Blood transfusion does not improve gut and cerebral perfusion in babies with Hb 

more than 11g/dl. 

b) Blood transfusion improves cerebral perfusion more than gut perfusion in babies 

with Hb less than 11 g/dl. 

c) Blood transfusion to babies with RCV >25ml/kg does not improve gut or cerebral 

perfusion 
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3 Study Methodology 
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This was a prospective single-centre observational study. 

 

 

3.1 Inclusion criteria  

 

Preterm infants born at 23 to 36+6 weeks admitted to neonatal unit of Homerton 

University Hospital receiving blood transfusion for clinical indication/s were eligible 

for the study.  

 

3.2 Exclusion criteria  

 

Preterm infants with below conditions were excluded from the study: 

1. Major congenital brain malformations (e.g. anencephaly, holoprosencephaly), 

intestinal malformations (gastroschisis, omphalocoele), chromosomal and 

genetic abnormalities (e.g. Trisomy 18, Trisomy 13) 

2. Significant abdominal pathology (e.g. proven NEC) 

3. Pre-existing cutaneous disease (e.g. epidermolysis bullosa, congenital icthyosis) 

4. Babies on HFOV or considered unstable for NIRS and Doppler measurement by 

the attending clinical team 
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3.3 Sample Size 

 

Study infants: 

A pragmatic sample size of 60 preterm (gestational age at birth 23 – 36+6 weeks) 

was selected. Infants were planned to be recruited to three postnatal age groups as 

shown below: 

Group 1 20 preterm infants between 1 to 7 days of postnatal age 

Group 2 20 preterm infants between 8 days to 28 days of postnatal age 

Group 3 20 preterm infants of ≥29 days of postnatal age 

The rationale for dividing the study population in three postnatal age groups was: 

1. Transitional circulation, intra and extra cardiac shunts and cardiorespiratory 

support is different between the groups. 

2. Haemoglobin threshold for transfusion is also different between the groups. 

 

Measurement of pre-transfusion Red cell volume (RCV) was planned in 20 infants 

with indwelling arterial catheter receiving their first blood transfusion among the 

above groups.  

 

Control infants: 

Measurement was planned in 12 control infants who were stable preterm infants, 

receiving invasive or non-invasive ventilation but was not receiving blood 

transfusion. This group was selected to measure intra-operator variability of Doppler 

measurements and to compare NIRS measurements with the infants in the 

transfused group. 
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Subgroups: 

I also planned to divide the study population into four subgroups: 

1. PDA groups: Gestational and postnatal age matched infants with open and 

closed PDA 

2. Feeding groups: Infants who received ≥ and <50% of enteral feeds 

3. Haemoglobin groups: Infants with pre-transfusion Hb level ≥ and <11 g/dl. 

4. Red cell volume groups: Infants with a pre-transfusion RCV ≥ and <25 ml/kg 

 

3.4 Overview of the study measurements 

 

The study measurements were performed in the following order. First pre-

transfusion Hb, Hct and blood gas parameters (pH, pCO2 and Lactate) were 

measured. This was followed by Doppler cerebral and gut blood flow measurements 

30-60 minutes before blood transfusion. After the Doppler measurements, the NIRS 

and continuous vital parameters measurements were started simultaneously. Blood 

transfusion was started 15-20 minutes after starting NIRS measurements. Blood 

was transfused over 3 hours and the NIRS and vital parameter measurements were 

continued during this period. These measurements were stopped 15-20 minutes 

post blood transfusion. The post-transfusion Doppler measurements were 

performed soon after the NIRS measurements were stopped (within 30-60 minutes 

post-transfusion). The post-transfusion laboratory blood tests (Hb, Hct and blood 

gas parameters) were performed after the Doppler measurements (Figure 8).  
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Figure 8: Overview of measurement steps 

 

Further details of the study measurements are described in the subsequent section. 

3.4.1 Measurements done before transfusion 
 

Cerebral and splanchnic blood flow was measured using Doppler ultrasound scan 

and the cerebral and splanchnic oximetry measurements were done using NIRO 

300 NIRS device. Apart from cerebral and splanchnic Doppler blood flow 

measurements the cardiac morphology was examined using 2D and Doppler 

echocardiography and presence of PDA was recorded. The ultrasound scan was 

performed in the following order: anterior cerebral artery Doppler, SVC VTI 

measurement, structural echocardiography, SVC diameter measurement, SMA 

Doppler measurements. Blood gas (pH, pCO2 and lactate) and haemoglobin and 

haematocrit were also measured pre-transfusion. Vital parameters were 

continuously recorded along with NIRS measurements. 
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3.4.1.1 Measurement of cerebral blood flow using Doppler Ultrasound 

scan 

Cerebral blood flow was assessed by measuring blood flow velocity in the anterior 

cerebral artery (ACA) and blood flow volume in the superior vena cava (SVC). A 

Logic P6 (GE Healthcare, USA) USS machine (Figure 9) with 7 MHz ultrasound 

probe was used for measurement of blood flows in anterior cerebral artery (ACA) 

and superior vena cava (SVC) within 30 minutes pre-blood transfusion.  

 

 

Figure 9. Logic P6 ultrasound scan machine (GE Healthcare, USA) on the left and 

blood flow measurement of a baby on the right. 

 

The USS probe was placed on the anterior fontanel in a parasagittal view, the ACA 

was identified and then the pulsed wave Doppler gate was placed in a straight 

segment of the artery to get the Doppler flow on the screen of the ultrasound 

scanner. The cursor was then placed on the Doppler waveform to measure the 

maximum (peak) systolic velocity and minimum (trough) diastolic velocity. Then by 

tracing the Doppler waveform the USS machine software estimated the time 

averaged mean velocity, resistance index (RI) and pulsatility index (PI) (Figure 10). 
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Figure 10. The ACA velocity measurements 

 

For measuring the SVC flow the Doppler probe was placed in the infra-

diaphragmatic region in the bi-caval view. The pulsed wave Doppler gate was 

placed over the SVC flow to measure the SVC Doppler velocity time integral (VTI) 

(Figure 11). The heart rate was recorded at the same time. Then the Doppler probe 

was placed over the chest in the true long axis and negotiated behind the aorta to 

get a view of the SVC. Following this the diameter of the SVC was measured using 

an M-mode view of the SVC in systole and diastole over 5-6 cardiac cycles to get a 

mean diameter. Finally the Doppler flow of the SVC was calculated by using the 

formula below in ml/kg/min152.  

         
{     (

  

 )}    

           
 

 

Where, SVC=superior vena cava, VTI=velocity time integral, d=diameter of the SVC, 

  HR=heart rate 

 

Peak systolic velocity 

Diastolic velocity 
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Figure 11. SVC VTI measurement 

 

3.4.1.2 Measurement of intestinal/splanchnic blood flow using Doppler 

Ultrasound scan 

The 7 MHz multi-frequency (5-7 MHz) Doppler probe was placed in a long axis view 

over the infra-diaphragmatic region, then the abdominal aorta and the superior 

mesenteric artery (SMA) was identified using 2D imaging and colour Doppler 

imaging. Then the pulsed wave Doppler gate was placed over the SMA in the 

direction of the flow and the Doppler waveforms were obtained (Figure 12). The 

peak systolic and trough (diastolic) velocity of the SMA was measured using this 

method and the values were averaged over 5-6 cardiac cycles. 

 

Figure 12. SMA flow measurements 

Peak systolic velocity 

Diastolic velocity 
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3.4.1.3 Measurement of vital parameters 

In order to download real-time vital parameters from overhead monitors, I searched 

for various options and identified ixTrend (ixellence, GmbH, Germany) software as 

the most feasible option for downloading data (six data points per second) from 

Phillips Intellivue MP70 monitors. I applied and received a grant from Garfield 

Weston Foundation, which enabled me to buy this software. With the help of the IT 

department at the Homerton University Hospital and the software support team at 

ixellence in Germany I managed to install the software into the study laptop and 

created a pathway for direct downloading of numeric parameters such as heart rate, 

saturation, respiratory rate and blood pressure from overhead monitors to a secured 

Homerton hospital network shared drive folder. Using ixTrend (ixellence GmBH, 

Germany) software continuous data from the overhead monitors (Philips Intellivue 

MP50 or MP70) (Figure 13a) was downloaded into the study laptop. The USB end 

of the connector cable (Figure 13b) was connected with the laptop and the other 

end (RJ45) was connected to the overhead monitors (Figure 13c).  

 

 

             

 

 

Figure 13. (a) Phillips Intellivue MP70 monitor, (b) RJ45 to USB cable and (c) RJ45 

and other ports available for Phillips Intellivue monitor. 

 

 

 

 

 

 

 

 

 

Figure (a) 

Figure (b) 

 

 

 
Figure (c)  
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The software was then initiated in the laptop (Figure 14) in order to start continuous 

downloading alongwith the NIRS measurements. 

 

Figure 14. Data downloading from overhead monitor using ixTrend software 

(Figure presented with permission from ixTrend, ixellence, GmbH, Germany) 

 

 

3.4.1.4 Measurement of cerebral perfusion using NIRS 

 

A NIRO 300 (Hamamatsu Photonics KK Japan), NIRS device was obtained for this 

study. I received training for initialising, performing measurements and downloading 

data from the NIRO 300 device from Dr Terence Leung, Department of Medical 

Physics and Biomedical Engineering at the University College London over a period 

of 2 weeks. Dr Leung also helped me in developing a Mat lab programme for 

downloading raw NIRS data in order to analyse them at specific time points in 

various epochs of measurements. The NIRS measurements were performed using 

the double channel NIRO 300 device (Hamamatsu Photonics KK, Japan) with a 

sample acquisition rate of 6Hz (Figure 15). Detailed NIRS measurement steps are 

shown in Appendix 1.  



110 | P a g e  

 

 

Figure 15. NIRO 300 NIRS device (Hamamatsu Photonics KK, Japan) on the left 

and a study infant with NIRS probe over forehead and lower abdomen (right) 

 

After the initial probe testing the NIRO probes were placed over the forehead and 

fixed under a hat. The probe was then initialized and was then ready to measure 

cerebral tissue oximetry changes of cerebral oxy-haemoglobin (cHbO2) and deoxy-

haemoglobin (cHHb). The cerebral tissue haemoglobin index (cTHI) and cerebral 

tissue oxygenation (cTOI) were measured continuously. The NIRO 300 was 

connected to the laptop through a USB port (RS232 to USB) for continuous 

downloading of these measurements. The cerebral NIRS measurements were 

started from 15-20 min before transfusion, and continuously measured until 15-20 

min post blood transfusion. Simultaneously oxygen saturation (SaO2) was also 

measured. Cerebral fractional tissue oxygenation extraction (cFTOE) was calculated 

from peripheral arterial saturation (SaO2) and cTOI using the formula below52: 

 

          (
         

    
) 

 

Where, cFTOE=cerebral fractional tissue oxygen extraction, SaO2=peripheral 

arterial saturation in percentage and cTOI=cerebral tissue oxygenation index 
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3.4.1.5 Measurement of gut/splanchnic perfusion using NIRS 

 

The NIRO 300 probe was placed over the hypogastrium in the midline and held in 

place with a single use tourniquet (Vygon ‘Vene K’ Quick Release, Vygon UK Ltd.). 

The intestinal or splanchnic tissue Hb Index (sTHI) in arbitrary units and tissue 

oxygenation index (sTOI) in percentage were measured using the NIRO 300, 

Hamamatsu Photonics K.K., Japan.  

The gut or splanchnic NIRS measurements were started from 15-20 min before 

transfusion, and continuously measured until 15-20 min post blood transfusion. 

Simultaneously oxygen saturation (SaO2) was also measured. Splanchnic FTOE 

(sFTOE) was calculated using measured SaO2 and sTOI using the formula below52: 

 

          (
         

    
) 

Where, sFTOE=splanchnic fractional tissue oxygen extraction, 

SaO2=peripheral arterial saturation, sTOI=splanchnic tissue 

oxygenation index 

 

 

 

3.4.2 Blood transfusion and measurements 

 

Blood transfusion was started 15-20 minutes after commencing NIRS and vital 

parameter measurements (Figure 8). Blood transfusion was given as per the 

current British Committee for Standards in Haematology (BCSH) guidance 26 with 15 

ml/kg of leukocyte depleted, cytomegalovirus negative, Sickle cell negative, plasma 

reduced packed red blood cells (hematocrit 50-70%) over a period of 3 hours. The 

decision for blood transfusion was made by the attending neonatal team, and this 
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was based on the Hb level and clinical condition of the baby in line with the BCSH 

guideline26. 

 

 

Measurements done during blood transfusion 

Throughout the period of blood transfusion NIRS measurements and vital 

parameters were continuously recorded and downloaded into the study laptop. The 

infants were minimally handled during this period, infants who were receiving feeds 

continued to receive nasogastric feeds during blood transfusion. None of the infants 

who were studied were receiving oral suck (bottle/breast) feeds during the 

measurements. 

 

 

3.4.3 Post blood transfusion measurements 

 

3.4.3.1 Measurements of cerebral and gut perfusion using NIRS 

 

Cerebral and gut oxygenation was measured continuously till 15-20 minutes post-

transfusion (Figure 8) and these measurements were downloaded to the study 

laptop which was connected to Homerton trust network drive (Figure 16 & 17). 

These measurements were stored under each individual filename for each infant in 

the Homerton network drive in the raw format (Figure 16). This was then converted 

using mathematical software Mat lab 2013b (Math works, USA) to an .OD format. 

Following this conversion, these data were analysed according to pre-planned time 

points in the Mat lab programme (Appendix 2). The pre-planned time point epochs 

were: T1 - 15 to 20 minutes before the start of blood transfusion, T2 - 1 hour into 

blood transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post 

blood transfusion.  
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3.4.3.2 Measurement of vital parameters 

 

The measurement of vital parameters was continued throughout the blood 

transfusion and was stopped at the same time as the NIRS measurement. The 

numeric data were then downloaded to the Homerton network drive under each 

infant individual filename after being converted to a comma separated version (.csv) 

Excel file (Figure 18). 

 

 

 

 

 

 

 

 

 

Figure 17. NIRS data continuously downloaded 

to the NIRO 300 device and then to the study 

laptop. 

 
 

 

 

 

Figure 16. Continuous NIRS recordings 

of a study infant 

 

Study 

laptop 

 

NIRO 300 

device 
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Figure 18. Exporting vital parameter data to csv file  

(Presented with permission from ixTrend, ixellence, GmbH, Germany) 

 

3.4.3.3 Measurement of cerebral blood flow using Doppler USS: 

The ACA and the SVC Doppler flow was measured following post-transfusion NIRS 

measurements. Practical Doppler ultrasound scan measurement steps were similar 

to pre-transfusion Doppler measurements (see section 3.4.1.1). 

 

3.4.3.4 Measurement of intestinal/splanchnic blood flow using 

Doppler USS: 

The SMA blood flow was measured along with cerebral blood flow measurements 

following post-transfusion NIRS measurements. Practical Doppler ultrasound scan 

measurement steps were similar to pre-transfusion Doppler measurements (see 

section 3.4.1.2). 

 

Similar to pre-blood transfusion measurements blood gas (pH, pCO2 and lactate) 

and haemoglobin and haematocrit were also measured post-transfusion. 
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3.4.4 Measurement in control infants 

Stable preterm infants not receiving blood transfusion were selected as control 

infants. Cerebral and splanchnic oximetry changes were measured over 3 hours 

using NIRO 300. Continuous vital parameters were also measured simultaneously 

with NIRS measurements using ixTrend software. Practical measurement steps of 

NIRS and vital parameters were similar to study infants as explained in section 

3.4.1.4, 3.4.1.5 and section 3.4.1.3 respectively.  

 

Anterior cerebral artery (ACA), superior vena cava (SVC) and superior mesenteric 

artery (SMA) blood flows were measured just before starting NIRS measurement 

and again after completion of NIRS measurement. Practical measurement steps of 

ACA, SVC and SMA blood flows were similar to study infants as explained in section 

3.4.1.1 and 3.4.1.2. 

 

3.4.5 Measurement of red cell volume (RCV) by Fetal 

haemoglobin dilution method: 

 

Red cell volume was measured in infants with indwelling arterial catheters using the 

fetal haemoglobin (HbF) dilution method. 0.3ml of infant's blood was collected just 

before (pre-transfusion sample) and 10-15 minutes after the completion of the blood 

transfusion (post-transfusion sample) from indwelling arterial catheter to measure 

fetal haemoglobin (HbF) percentage. HbF was measured by High Performance 

Liquid Chromatography (HPLC) using Bio-Rad Variant 1 Haemoglobin testing 

machine (Bio-Rad Laboratory Inc. Atlanta, USA). 0.3ml of donor blood sample was 

collected to measure the donor blood haematocrit (Hct). The exact amount of donor 
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blood transfused to the infant was noted in order to estimate the amount of donor 

red blood cells transfused (V) using measured donor blood Hct: 

 

                                                                  

 

Pre-transfusion RCV was then calculated using the following equation 253: 

         
                

                            
 

Where,  V = Total donor red cell volume transfused 

Post-BT HbF% = Post-blood transfusion HbF percentage 

Pre-BT HbF% = Pre-blood transfusion HbF percentage 

 

3.4.6 Other data collected: 

 

Demographic details: gestational age, birth weight, sex, ethnicity, age of the infant 

on the day of gut and cerebral perfusion measurements 

Maternal characteristics: pregnancy complications such as pre-eclampsia (PET), 

intra-uterine growth restriction (IUGR), antepartum haemorrhage (APH), 

chorioamnionitis and use of antenatal steroid 

PET was defined as pregnancy induced hypertension and proteinuria after 20 weeks 

of pregnancy.  

IUGR was defined as fetal abdominal circumference (AC) or estimated fetal weight 

(EFW) <10th centile and showing reduced growth velocity on consecutive scans 

three weeks apart. 
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APH was defined as bleeding from or in to the genital tract occurring from 24+0 

weeks of pregnancy and prior to the birth of the baby.  

Chorioamnionitis was defined as presence of at least two of the following factors: 

preterm pre-labour rupture of membranes alongwith maternal pyrexia, tachycardia, 

leucocytosis, uterine tenderness, offensive vaginal discharge and fetal tachycardia. 

Use of antenatal steroid was defined as receiving two doses of antenatal 

betamethasone 12 hours apart prior to delivery.  

Condition of the infant at birth: Admission haemoglobin (Hb) and haematocrit (Hct) 

Clinical parameters: respiratory and inotropic support; type, amount and frequency 

of enteral feed; Hb at birth and at transfusion; weight at birth and at transfusion; 

Ultrasound head findings and blood gas parameters such as pH, pCO2 and Lactate 

on the day of gut and cerebral perfusion measurements  

Indication/s for blood transfusion 

 

3.5 Statistical analysis: 

 

To understand the quality of Doppler ultrasound scan blood flow measurements 

intra-operator variability was determined. The Doppler ultrasound scan 

measurements of control infants were repeated within 3 hours and were analysed 

for intra-operator variability, reliability and repeatability using mean difference (MD) 

and Bland Altman method. 

 

Changes in Doppler measurements before and after blood transfusion and NIRS 

measurements before, during and after blood transfusion were analysed using a 

paired student t-test and repeated measures ANOVA. The pre-transfusion 

measurements between the three postnatal age groups were compared using 
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unpaired t-test and ANOVA. The cerebral and gut oximetry NIRS data  was 

analysed at specific time points of 15 minute epochs: T1 - 15 to 20 minutes before 

the start of the blood transfusion, T2 - 1 hour into blood transfusion, T3 - 2 hour into 

blood transfusion and T4 - 15 to 20 minutes post blood transfusion. The mean of 

these epochs were then compared using repeated measures ANOVA with 

Bonferroni correction. The pre and post-transfusion values of all other 

measurements were compared using paired (two-tailed) t-test.   

 

The infants were further subdivided to gestational age and postnatal age matched 

groups with or without PDA and the changes following transfusion was compared 

between the two groups. The infants were also subdivided into those receiving 

majority feeds (>50% feeds) with those with <50% feeds and the cerebral and gut 

perfusion between those infants were also compared.  

 

The effect of Hb more than 11 g/dl and RCV >25 ml/kg on the changes in Doppler 

and NIRS values was also investigated using repeated measures analysis of 

variance. An analysis of correlation was performed to ascertain the relationship 

between the haemoglobin (Hb) and cerebral and gut perfusion and oxygenation 

measurements.  

 

A multivariate analysis of variance (MANOVA) with covariates (MANCOVA) was 

performed using the following outcome (dependent) variables: pre-transfusion 

anterior cerebral artery time averaged mean velocity (ACA TAMV), superior vena 

cava (SVC) flow, superior mesenteric artery peak systolic velocity (SMA PSV), 

cerebral tissue oxygenation index (cTOI), cerebral tissue haemoglobin index (cTHI), 

splanchnic tissue oxygenation index (sTOI) and splanchnic tissue haemoglobin 

index (sTHI); changes following blood transfusion in ACA TAMV, SVC flow, SMA 

PSV, cTOI, cTHI, sTOI and sTHI. The covariates included in all these analyses were 
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gestational age, birth weight, pre-transfusion haemoglobin, blood pressure, 

presence of PDA and volume of feed. The outcomes (stated above) were analysed 

by categorising them to the following groups: postnatal age groups (Group 1: 1 to 7 

days; Group 2: 8 to 28 days and Group 3: ≥29 days), feeding groups (received 

<50% and ≥50% feeds) and Hb groups (pre-transfusion Hb <11g/dl and ≥11g/dl).  

 

Multivariate analysis of covariance (MANCOVA) is a statistical technique that is the 

extension of analysis of covariance (ANCOVA). The MANCOVA is used to 

investigate the statistical differences on multiple continuous dependent variables, 

assessed by an independent grouping or categorical variable, while controlling for a 

third list of variables known as covariates. Covariates are known as confounding 

factors, which are added to reduce error and that the analysis eliminates the 

covariates’ effect on the relationship between the independent grouping variable and 

the continuous dependent variables. 

 

The various assumptions for multivariate analysis were checked for each of the 

variables included: normality, homogeneity, independent random sampling, level 

and measurements of the variables, absence of multicollinearity and the relationship 

between covariates and dependent variables assessed by correlation analysis. A 

descriptive analysis of the outcome variables indicated that they were minimally 

skewed with small inter-quartile range (IQR). A descriptive analysis of the covariates 

indicated that they were normally distributed. Pre-transfusion RCV was not taken as 

a covariate and multivariate analysis of RCV groups (RCV <25ml/kg, n=5 and 

≥25ml/kg, n=9) was not possible due to very small number259.  

 

Using SPSS 22.0 software as the analysis tool for the multivariate analysis 

(MANCOVA) the dependent variables and the covariates were added to the various 
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required section for analysis and interpretation. All tests were performed at 5% level 

of statistical significance.  
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3.6 Ethical issues 

3.6.1 Research Ethics 

 

The study received research ethics approval from Charing Cross Research Ethics 

Committee (REC no.12/LO/0527); the study was also registered with the Homerton 

R&D department (Appendix 3 and 4). The study was subsequently adopted as a 

Portfolio study by National Institute of Health and Research (NIHR Study ID 13594). 

A major amendment of the research protocol was sought on April 2014 to study 

control infants which was granted by the Charing Cross REC. Informed written 

parental consent was obtained from parents before recruiting infants to the study 

(Appendix 5). The original signed consent form was kept the infants’ medical 

record, copy was given to the parents and one was stored in the study file. 

3.6.2 Data Storage 

 

The consent form and Doppler ultrasound findings (print outs) were stored in folders 

which were kept within locked filing cabinet in the Chief Investigator’s office at the 

Homerton University Hospital. The raw NIRS data and the continuous vital 

parameter data were stored in secured password protected Homerton Hospital 

network drive. The processing of both NIRS and vital parameter data were 

performed in the same drive and the post-processed data was kept as anonymised 

data with study ID. 

 

3.6.3 Research funding 

 

The study received funding from Hamamatsu Photonics KK Japan, Garfield Weston 

Foundation and HCA International.   
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4  Results 
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4.1 Infant and maternal characteristics 

 

4.1.1 Infant characteristics at birth 

 

 

Fifty nine infants were studied; infant and maternal characteristics of the study 

population who received transfusion are presented in Table 8. The median birth 

weight and gestational age of infants studied in the three groups were similar. The 

median haemoglobin (Hb) level at birth was also similar between the three groups 

as well as the control group. The ranges of Hb level at birth were wide although 

similar amongst the three groups. Amongst the total study population 20% of infants 

studied had maternal PET and IUGR. Maternal chorioamnionitis and antepartum 

haemorrhage were noticed in 42% and 30% of infants respectively. Mothers of 89% 

of infants received two doses of antenatal steroids prior to delivery. 

Table 8. Infant and maternal characteristics 

Characteristics 

 

Group 1 (1 – 7 days) 
n = 20 

Group 2 (8 – 28 days) 
n = 21 

Group 3 (≥29 days) 
n = 18 

Control group 

(1-7days=4, 8-28d=5, 
≥29days=3 

n = 12 

Gestational age  
(completed weeks)* 

26 (23 – 27) 25 (23 – 30) 26 (24 – 34)  27 (24 – 33) 

Birth weight (grams)* 763 (600 – 1180) 740 (600 – 1240) 793 (520 – 1746) 804 (528 – 2372) 

Haemoglobin at birth (g/dl)* 14.5 (9.8 – 20.7) 14.7 (10.0 – 17.4) 15.3 (10 – 18.9) 13.3 (10.5 – 16.1) 

Maternal PET
†
 3 (15) 5 (24) 4 (22) 2 (17) 

IUGR
†
 3 (15) 5 (24) 4 (22) 3 (25) 

Chorioamnionitis
†
 9 (45) 8 (38) 8 (44) 5 (42) 

Antepartum haemorrhage
†
 6 (30) 8 (38) 4 (22) 4 (33) 

Antenatal steroids
†
 17 (85) 20 (95) 16 (89) 10 (83) 

† 
Number (percentage),

 * 
Median (Range) 
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4.1.2 Infant characteristics at blood transfusion 

 

The infant characteristics on the day of blood transfusion are presented in Table 10. 

Patent ductus arteriosus (PDA) was noted in 32 (54%) infants on echocardiography, 

of these only six (15%) were >14 days of postnatal age; otherwise normal cardiac 

morphology. Majority of infants in Group 1 (infants received transfusion on day 1 to 

day 7), and eight each in the other two groups (Group 2: day 8 to day 28 and Group 

3: ≥day 29) were receiving antibiotics for presumed sepsis; blood culture results 

were noted to be subsequently negative for all. Three infants in Group 1, two in 

Group 2 and one in Group 3 were on single inotropic support (Dopamine 

@5mcg/kg/min in all infants) for hypotension, the dose remained unchanged for the 

duration of the measurements. Three infants in Group 1, one in Group 2 and three in 

Group 3 had significant (≥Grade 4) intra-ventricular haemorrhage (IVH) before 

transfusion. Further details of IVH amongst the study infants are shown in Table 9. 

There was no progression of these findings on repeat cranial ultrasound scan 

following transfusion in any of the infants in the three groups. 

Table 9. Infants with various grades of intra-ventricular haemorrhage (IVH)  

Grades of IVH  

(Papille staging)
260

 

Group 1 (1 – 7 ds) 
n = 20 

Group 2 (8 – 28 
ds) 

n = 21 

Group 3 (≥29 
ds) 

n = 18 

No IVH 9 16 11 

Grade 1 6 4 3 

Grade 2 2 0 1 

Grade 3 0 0 1 

Grade 4 or PVL 3 1 3 
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The majority of the infants in Groups 1 and 2 were ventilated by invasive 

conventional ventilation. A high proportion of infants in Group 3 were receiving non-

invasive ventilation or breathing in air (Table 10).     

 

Table 10. Infant characteristics at blood transfusion 
 

 

Characteristics 
 

Group 1 (1 – 7 ds) 
n = 20 

Group 2 (8 – 28 ds) 
n = 21 

Group 3 (≥29 ds) 
n = 18 

Chronological age (days)* 5 (1 – 7) 14 (8 – 27) 45 (29 – 93) 

Weight at transfusion 
(grams)* 

774 (700 – 1180) 805 (680 – 1250) 1125 (887 – 2045) 

Invasive/Non-invasive 
ventilation/nasal cannula 
oxygen or breathing in air

†
 

13 (65)/7(35)/0 (0) 13 (62)/7 (33)/1 (5) 6 (33)/9 (50)/3 (17) 

Presence of PDA
†
 19 (95) 12 (57) 1 (6) 

Presumed sepsis on 
antibiotics

†
 

19 (95) 8 (38) 8 (44) 

Pre-transfusion Hb (g/dl)* 11.0 (8.5 – 13.1) 10.3 (7.7 – 12.2) 9.2 (7 – 10.9) 

Total fluids (ml/kg/d)* 150 (90 – 180) 150 (100 – 180) 165 (100 – 180) 

Total feeds (ml/kg/d)* 18 (0 – 70) 120 (0 – 180) 155 (0 – 180) 

† 
Number (percentage),

 * 
Median (Range) 

 

The proportion of feeds in the study population increased with postnatal age. In 

Group 1 ten infants were not receiving any feeds, the other ten were receiving 

hourly bolus nasogastric feeds, one infant was on preterm formula and the rest were 

on maternal expressed breast milk (MEBM). In contrast, in Group 2 two infants were 

unfed, two were receiving 2 hourly and the rest were on hourly bolus feeds with 

MEBM. Only two infants in Group 3 were unfed, while 15 infants were fed with 

MEBM, one was fed formula, and all infants were on 1 to 2 hourly feed. None of the 
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infants studied developed feed intolerance, clinical or radiological signs of NEC 

following blood transfusion. 

 

4.2 Vital Parameters 

 

4.2.1 Baseline vital parameters 

 

The mean values of baseline pre-transfusion vital parameters are shown in Table 

11. The mean pre-transfusion respiratory rate (RR), heart rate (HR) and peripheral 

arterial saturation (SaO2) were similar between infants of the three groups apart 

from the mean pre-transfusion HR which was significantly higher in Group 1 

compared to Group 3 (p=0.02, 95% CI 1.5 to 16.6). The mean pre-transfusion 

systolic, mean and diastolic blood pressure (BP) increased with postnatal age and 

was significantly higher in the later postnatal age group (Group 3) compared to the 

earlier groups (Group 1 and Group 2) of infants.  

 

4.2.2 Changes in vital parameters following transfusion 

 

The mean values of the post-transfusion vital parameters are shown in Table 11. 

There was no significant difference in HR, RR and SaO2 following blood transfusion 

in all the three groups of infants. There was a significant increase in the systolic BP 

following blood transfusion in infants of Group 1; this was not evident in the older 

postnatal age groups. The diastolic and mean BP increased significantly following 

blood transfusion in infants of all the three postnatal age groups. 
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Table 11. Blood transfusion (BT), vital and laboratory parameters 
 

Vital and laboratory parameters 
Mean (SD) 

Group 1 (1 – 7 days) 
n = 20 

Group 2 (8 – 28 days) 
n = 21 

Group 3 (≥29 days) 
n = 18 

 Pre-BT Post-BT p value Pre-BT Post-BT p value Pre-BT Post-BT p value 

Heart rate (bpm) 159.1 (8.8) 157.1 (15.1) 0.67 153 (13.4) 153 (14.9) 0.99 150.0 (11.7) 149.4 (13.0) 0.90 

Respiratory rate (bpm) 53.2 (12.3) 50 (11.7) 0.13 48.5 (10.2) 48.4 (8.3) 0.91 52.8 (13.9) 52.1 (11.4) 0.73 

Arterial saturation (SaO2)% 93.2 (2.9) 93.2 (2.5) 0.96 91.9 (3.5) 92.3 (4.0) 0.67 93.0 (3.8) 93.2 (4.1) 0.88 

Systolic BP (mm of Hg) 46.7 (6.6) 51.6 (4.9) <0.01 54.9 (9.6) 57.7 (11.7) 0.07 62.2 (14.0) 63.7 (12.1) 0.45 

Diastolic BP (mm of Hg) 24.3 (3.1) 30.7 (4.7) <0.01 31.4 (5.4) 35.8 (8.3) <0.01 31.3 (6.0) 36.2 (6.6) 0.01 

Mean BP (mm of Hg) 32.7 (3.7) 37.9 (3.7) <0.01 39.9 (6.3) 43.4 (8.1) 0.02 43.2 (7.9) 46.2 (6.6) 0.02 

Haemoglobin (g/dl) 11.2 (1.3) 13.0 (1.6) <0.01 10.3 (1.0) 13.5 (1.1) <0.01 9.1 (1.2) 12.2 (1.2) <0.01 

Haematocrit 0.32 (0.04) 0.40 (0.05) <0.01 0.29 (0.03) 0.39 (0.04) <0.001 0.25 (0.04) 0.36 (0.03) <0.01 

pH 7.3 (0.07) 7.3 (0.05) 0.50 7.3 (0.05) 7.3 (0.06) 0.57 7.3 (0.05) 7.3 (0.05) 0.30 

pCO2 5.8 (1.2) 5.9 (0.9) 0.47 6.6 (1.0) 6.7 (1.3) 0.72 6.9 (1.4) 6.6 (1.5) 0.11 

Lactate (mmol/l) 2.5 (1.3) 1.8 (0.5) 0.02 1.5 (0.7) 0.9 (0.5) 0.03 1.3 (0.6) 1.3 (0.4) 0.82 
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4.3 Laboratory parameters 

 

4.3.1 Baseline laboratory parameters 

 

The baseline laboratory parameters measured are shown in Table 11. The mean 

pre-transfusion haemoglobin decreased with postnatal age and was higher in Group 

1 compared to Group 2 (p=0.03, 95% CI 0.07 to 1.56) and Group 3 (p<0.001, 95% 

CI 1.25 to 2.88). The pre-transfusion pH and pCO2 were similar between the three 

postnatal age groups of infants. Though the pre-transfusion baseline serum lactate 

levels were higher in the infants of the early group (Group 1: infants transfused 

between 1st to 7th day of life) compared to the other two groups, but this was not 

statistically significant.   

 

4.3.2 Changes in laboratory parameters following transfusion 

 

The pre and post-transfusion laboratory parameters are shown in Table 11. There 

was significant increase in post-transfusion Hb and Hct in all three groups of infants. 

There was a significant drop in serum lactate levels in Group 1 and 2 infants 

following blood transfusion. There was no significant difference between the mean 

pre and post blood transfusion pH and pCO2 levels in the blood gas in infants of all 

three groups. 
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4.4 Measurement of blood flow 

4.4.1 Intra-operator variability of Doppler measurements 

 

The Doppler ultrasound scan measurements of the blood flow to the brain and gut 

were analysed for intra-operator variability. The Doppler measurements include 

anterior cerebral artery (ACA) peak systolic velocity; ACA time averaged mean 

velocity (TAMV), superior vena cava (SVC) flow, superior mesenteric artery (SMA) 

peak systolic velocity (PSV) and superior mesenteric artery (SMA) diastolic velocity. 

The Doppler measurements were performed on 12 control infants by me and the 

measurements were repeated at 3 hours. These infants did not receive blood 

transfusion and there were no alterations of management during the intervening 

period. 

 

The mean and standard deviations (SD) of the Doppler flow measurements are 

shown in Table 12 below. The mean difference of these parameters varied between 

0.01 to 0.02 m/sec in blood flow velocities and 9.1 ml/kg/min in blood flow volume 

measurements. 

 

Table 12. Mean and standard deviations of the Doppler measurements on two 

consecutive occasions 

Measurements  
(Mean±SD) 

1st measurement 2nd measurement Mean difference 

ACA peak velocity 
(m/sec) 

0.39±0.08 0.38±0.07 0.01 

ACA time averaged mean velocity 
(m/sec) 

0.21±0.04 0.20±0.02 0.01 

SVC flow 
(ml/kg/min) 

53.8±19.4 44.7±22.3 9.1 

SMA peak velocity 
(m/sec) 

0.97±0.31 0.95±0.44 0.02 

SMA diastolic velocity 
(m/sec) 

0.11±0.06 0.13±0.03 0.02 
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The findings of intra-operator variability of Doppler ultrasound scan measurements 

analysed using Bland-Altman method of comparison showed significant agreement 

between the two sets of measurements; this is demonstrated in the Table 13 below. 

Table 13. Bland Altman analysis of Doppler measurements 

 

Measurement 
 

Limits of agreement 
Mean  difference 

(CI) 
Pitman’s test of 

difference in variance 

ACA peak systolic 
velocity 
 

-0.092 to 0.106 
0.007  

(-0.026 to 0.040) 
r=-0.335, p=0.314 

ACA time 
averaged mean 
velocity 
 

-0.035 to 0.058 
0.012 

(-0.004 to 0.027) 
r=0.012, p=0.969 

SVC flow 
 

-14.194 to 14.454 
0.130 

(-4.993 to 5.253) 
r=-0.142, p=0.696 

SMA peak systolic 
velocity 
 

-0.293 to 0.284 
-0.005 

(-0.101 to 0.092) 
r=-0.071, p=0.835 

SMA diastolic 
velocity 
 

-0.041 to 0.062 
0.010 

(-0.007 to 0.028) 
r=-0.418, p=0.201 

 

 There was significant correlation between the two consecutive measurements 

thereby demonstrating repeatability of measurements. The consecutive Doppler 

measurements clearly show consistency and reliability of the individual 

measurements. Amongst the cerebral blood flow measurements, the ACA peak 

systolic velocity and time averaged mean velocity showed 85% and 72% 

repeatability respectively, while the SVC flow was repeatable in 79%. Amongst the 

gut blood flow measurements the SMA peak systolic velocity was repeatable in 77% 

and the diastolic velocity in 85% cases.  
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4.4.2 Blood flow to brain 

4.4.2.1 ACA blood flow measurements 

 

The mean pre-transfusion Anterior Cerebral Artery (ACA) peak systolic velocity 

(PSV) and time averaged mean velocity (TAMV) showed an increasing trend with 

postnatal age (Table 14 and Figure 19). The mean pre-transfusion ACA PSV was 

higher in Group 2 infants compared to Group 1 (p=0.06) and Group 3 infants 

compared to Group 2 (p=0.11) but this was not significant. The mean pre-

transfusion ACA TAMV was significantly higher in Group 3 (0.27±0.07 m/sec) 

compared to Group 1 (0.17±0.05 m/sec; p<0.0001, CI 0.06 to 0.14), and Group 2 

(0.19±0.06, p<0.001, CI 0.03 to 0.12).  

 

The pre-transfusion ACA TAMV remained significantly higher in Group 3 compared 

to Group 1 (p=0.016, CI 0.014 to 0.128) and Group 2 (p=0.009, CI 0.014 to 0.094) 

after a multivariate analysis including the covariates such as gestational age, birth 

weight, pre-transfusion Hb, blood pressure, presence of PDA and volume of feed.  

 

The mean pre-transfusion ACA PSV and TAMV decreased significantly post-

transfusion in all the three Groups (Table 14 and Figure 19). The mean pre-

transfusion ACA Resistance Index (RI) and Pulsatility Index (PI) were similar in 

infants of all three groups, and there was no significant change in ACA RI and PI 

following transfusion in all three groups. 
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Figure 19. Blood transfusion (BT) and changes in ACA TAMV  

Group 1: 1 to 7 days, Group 2: 8 – 28 days and Group 3: ≥29 days of postnatal age 

Key: † p<0.05 comparison between the pre-blood transfusion ACA mean velocity between 

the groups and * p<0.05 comparison between pre and post-transfusion   
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Table 14. Blood transfusion (BT) and cerebral Doppler blood flow parameters 
 

Blood flow parameters 
Mean (SD) 

Group 1 (1 – 7 days) 
n = 20 

Group 2 (8 – 28 days) 
n = 21 

Group 3 (≥29 days) 
n = 18 

 Pre-BT Post-BT p value Pre-BT Post-BT p value Pre-BT Post-BT p value 

ACA peak systolic velocity (m/sec) 0.32 
(0.09) 

0.27 
(0.09) 

0.04 0.38 
(0.11) 

0.33 
(0.09) 

0.02* 0.54 
(0.14) 

0.44 
(0.09) 

0.04 

ACA time averaged mean velocity 
(m/sec) 

0.17 
(0.05) 

0.14 
(0.04) 

0.01 0.19 
(0.04) 

0.16 
(0.05) 

<0.01* 0.27 
(0.07) 

0.23 
(0.05) 

<0.01 

ACA RI 0.82 
(0.07) 

0.83 
(0.05) 

0.65 0.86 
(0.05) 

0.85 
(0.07) 

0.57 0.84 
(0.07) 

0.83 
(0.07) 

0.66 

ACA PI 1.53 
(0.25) 

1.56 
(0.20) 

0.67 1.73 
(0.26) 

1.68 
(0.30) 

0.53 1.70 
(0.32) 

1.58 
(0.26) 

0.57 

SVC flow (ml/kg/min) 105.2 
(55.9) 

92.4 
(40.7) 

0.03 91.0 
(35.1) 

95.5 
(39.5) 

0.16 98.9 
(22.6) 

77.9 
(23.6) 

<0.01 
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4.4.2.2 SVC blood flow measurements 

 

The mean pre-transfusion Superior Vena Cava (SVC) flow was higher in Group 1 

infants compared to other two groups. The pre-transfusion SVC flow was noted to 

be higher in older Group 3 compared to relatively younger Group 2 infants but this 

was not significant. The pre-transfusion SVC flow showed no significant differences 

between the postnatal age groups (Group 1 vs. Group 2: p=0.16, CI 0.54 to 3.23 

and Group 2 vs. Group 3: p=0.45, CI 0.04 to 13.11) following multivariate analysis 

including all the covariates mentioned earlier.  

 

The mean SVC flow decreased significantly following blood transfusion in Group 1 

and 3 infants but there was no significant change in Group 2 infants where there 

was an increasing trend noted (Table 14 and Figure 20). 

 

 

Figure 20. Blood transfusion (BT) and changes in SVC flow 

Group 1: 1 to 7 days, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age 

* p<0.05 comparison between pre and post-transfusion 
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4.4.2.3 ACA and SVC blood flow in infants with and without PDA 

 

Doppler measurement of infants with PDA (n=11, mean gestational age=25 wk & 

mean postnatal age=16 days) were compared to gestational age (mean=26 wk) and 

postnatal age (mean=17 days) matched infants with closed PDA (n=11). The basic 

characteristics of these infants are presented in Table 15.  

Table 15: Basic characteristics of matched infants with or without PDA 
 

Characteristics 

 

Infants with PDA 

n=11 

Infants without PDA  

n=11 

Difference 
between groups 

Gestational age (completed 

weeks)* 
25 (23 – 29) 26 (23 – 29) 

NS 

Birth weight (grams)* 730 (600 – 1014) 740 (592 – 1240) 
NS 

Haemoglobin at birth (g/dl)* 14.7 (10.0 – 15.9) 14.7 (10.5 – 17.4) 
NS 

Chronological age (days)* 16 (8 – 42) 17 (6 – 40) 
NS 

Maternal PET
†
 4 (36) 6 (54) 

NS 

IUGR
†
 4 (36) 6 (54) 

NS 

Chorioamnionitis
†
 5 (45) 3 (27) 

0.04 

Antepartum haemorrhage
†
 5 (45) 3 (27) 

0.04 

Antenatal steroids
†
 10 (90) 11 (100) 

NS 

Weight at transfusion (grams)* 814 (680 – 1043) 900 (1250) 
NS 

Pre-transfusion Hb (g/dl)* 10.3 (9.6 – 12.2) 9.7 (8.9 – 11.1) 
0.07 

Total fluids (ml/kg/d)* 135 (100 – 150) 150 (120 – 180) 
NS 

Total feeds (ml/kg/d)* 40 (0 – 165) 150 (0 – 180) 
<0.001 

Invasive/Non-invasive 

ventilation/nasal cannula 

oxygen or breathing in air
†
 

10/1/0 8/2/1 
NS 

Presumed sepsis on 

antibiotics
†
 

6 (55) 2 (19) 
<0.001 

 

* Median (Range), † Number (percentage)  
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The ACA TAMV and SVC blood flow results are demonstrated in Figure 21. The 

mean pre-transfusion ACA TAMV was similar in the infants with PDA (0.19±0.05 

m/s) compared to those with closed PDA (0.21±0.07 m/s, p = 0.45, CI -0.07 to 0.03). 

The mean pre-transfusion SVC flow was higher in those with open PDA 

(102.98±42.5 ml/kg/min) compared to closed-PDA Group but this was not 

statistically significant (87.66±30.3 ml/kg/min, p=0.352 95% CI -16.09 to 46.7).  

 

The ACA TAMV decreased significantly following blood transfusion in both PDA 

Group (p=0.04, CI 0.01 to 0.05) and the closed-PDA Group (p=0.01, CI 0.01 to 0.06) 

of infants. The SVC flow remained similar following transfusion in both PDA (p=0.99, 

CI -13.5 to 13.3) as well as the closed-PDA Group (p=0.83, CI -11.5 to 9.4). 

 

 

Figure 21. Blood transfusion, cerebral blood flow and PDA 

* p<0.05 comparison between pre and post-transfusion 

  

102.98 102.92 

87.66 86.62 

80.00

85.00

90.00

95.00

100.00

105.00

Pre-BT Post-BT

SV
C

 f
lo

w
 (

m
l/

kg
/m

in
) 

PDA open

PDA closed0.19 
0.17* 

0.21 

0.18* 

0.10

0.15

0.20

0.25

Pre-BT Post-BT

A
C

A
 T

A
M

V
 (

m
/s

e
c)

 

PDA open

PDA closed



137 | P a g e  

 

4.4.3 Blood flow to gut 

4.4.3.1 SMA blood flow measurements 

 

The mean baseline pre-transfusion superior mesenteric artery (SMA) peak systolic 

velocity (PSV) showed an increasing trend with postnatal age (Group 2 vs. Group 1, 

p=0.09 and Group 3 vs. Group 2, p=0.14) and was significantly higher in older 

postnatal age (Group 3: infants transfused at ≥29 days of age) infants compared to 

younger (Group 1: infants transfused between day 1 to day 7 of life) infants (p<0.01; 

CI 0.6, 0.1).  

 

The pre-transfusion SMA PSV remained significantly higher in Group 3 compared to 

Group 1 (p=0.024, CI 0.012 to 0.054) infants after multivariate analysis including the 

covariates such as gestational age, birth weight, pre-transfusion Hb, blood pressure, 

presence of PDA and volume of feed.  

 

The SMA diastolic velocity was similar between the three postnatal age groups. The 

mean pre-transfusion SMA PSV showed a decreasing trend following transfusion in 

all the three groups but this was not statistically significant (Table 16 and Figure 

22). The SMA diastolic velocity remained unaltered following transfusion in all the 

three postnatal age groups. The ultrasound software did not allow measuring the 

SMA TAMV.  
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Figure 22. Blood transfusion (BT) and Superior mesenteric artery (SMA) peak 

systolic velocity (PSV) 

Group 1: 1 to 7 days, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age  



139 | P a g e  

 

Table 16. Blood transfusion (BT) and Superior Mesenteric Artery (SMA) Doppler blood flow parameters 

 

Blood flow parameters 
Mean (SD) 

Group 1 (1 – 7 days) 
n = 20 

Group 2 (8 – 28 days) 
n = 21 

Group 3 (≥29 days) 
n = 18 

 Pre-BT Post-BT p value Pre-BT Post-BT p value Pre-BT Post-BT p value 

SMA peak systolic velocity (m/sec) 0.63 (0.32) 0.59 (0.23) 0.51 0.81 (0.33) 0.73 (0.24) 0.22 0.97 (0.40) 0.88 (0.32) 0.32 

SMA diastolic velocity (m/sec) 0.12 (0.05) 0.12 (0.04) 0.65 0.13 (0.04) 0.12 (0.04) 0.45 0.13 (0.04) 0.12 (0.02) 0.37 
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4.4.3.2 SMA blood flow in fed and unfed infants 

 

The whole study population was divided into infants who received majority feeds 

(≥50%) and those who received <50% feeds. The basic characteristics of the infants 

are presented in Table 17.  

Table 17. Basic characteristics of infants who received feeds ≥ or <50% of total 

fluids 

Characteristics 

 

Feeds ≥50% 

n=27 

Feeds <50% 

n=32 

Difference 
between groups 

Gestational age (completed 

weeks)* 
25 (24 - 34) 26 (23 – 27) 

NS 

Birth weight (grams)* 745 (520 – 1746) 763 (592 – 1180) 
NS 

Haemoglobin at birth (g/dl)* 14.7 (9.8 – 17.1) 15.5 (10 – 19.2) 
NS 

Chronological age (days)* 28 (13 – 93) 6 (1 – 62) 
<0.001 

Maternal PET
†
 7 (26) 5 (16) 

NS 

IUGR
†
 5 (18) 5 (16) 

NS 

Chorioamnionitis
†
 11 (41) 10 (31) 

NS 

Antepartum haemorrhage
†
 9 (33) 6 (19) 

NS 

Antenatal steroids
†
 23 (85) 31 (97) 

0.075 

Weight at transfusion (grams)* 1000 (790 – 1760) 794 (540 – 1520) 
NS 

Pre-transfusion Hb (g/dl)* 10.0 (7.0 – 11.4) 10.9 (8.5 – 12.6) 
NS 

Total fluids (ml/kg/d)* 150 (120 -180) 150 (90 – 180) 
NS 

Total feeds (ml/kg/d)* 150 (60 - 180) 15 (0 – 70) 
<0.001 

Invasive/Non-invasive 

ventilation/nasal cannula 

oxygen or breathing in air
†
 

16/11/0 16/12/4 
NS 

Presence of PDA
†
 12 (44) 20 (62) 

<0.001 

Presumed sepsis on 

antibiotics
†
 

14 (52)  21 (65) 
<0.001 

* Median (Range), † Number (percentage)  
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The mean pre-transfusion SMA PSV was significantly higher in infants who were 

mostly fed (receiving >50% feeds, n=32) compared to those who were receiving 

lesser amount (receiving <50% feeds, n=27) of feeds (0.91±0.35 vs. 0.71±0.35 

m/sec; p<0.01); this remained significant after multivariate analysis of the covariates 

(p=0.02, CI 1.2 to 2.2). The SMA PSV showed a decreasing trend following 

transfusion but was not significant in either of the groups (Figure 23). The pre-

transfusion baseline SMA diastolic velocity was similar in both feeding groups 

(p=0.89) and showed no significant change post-transfusion (p=0.79).  

 

Figure 23. Blood transfusion (BT) and changes in SMA peak systolic velocity (PSV) 

in relation to percentage of feeds  

* p<0.05 comparison between baseline pre-transfusion measurements 

 

4.4.3.3 SMA blood flow in infants with and without PDA 
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infants with closed PDA (0.84±0.4 vs. 0.77±0.3 m/s, p = 0.006, CI 0.07, 0.45) 

(Figure 24). The pre-transfusion SMA diastolic velocity was similar between the two 

PDA groups. The SMA PSV reduced following blood transfusion but was not 

significant in infants with both PDA (p=0.29, CI -0.05, 0.15) and closed-PDA Group 

(p=0.19, CI -0.04, 0.20) (Figure 24). The SMA diastolic velocity also remained 

unchanged post-transfusion.    

 

  

Figure 24. Blood transfusion (BT) and changes in SMA PSV in relation to PDA  

* p<0.05 comparison between baseline pre-transfusion measurements 
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4.5 Measurement of tissue oximetry 

 

4.5.1 Cerebral tissue oximetry 

 

4.5.1.1 Baseline cerebral tissue oximetry 

 

Cerebral tissue haemoglobin index (cTHI) 

The mean pre-transfusion baseline cerebral tissue haemoglobin index (cTHI) values 

in the postnatal age groups are shown in Figure 25. The pre-transfusion baseline 

cTHI values were significantly lower in Group 2 infants (8-28 days of postnatal age) 

compared to Group 1 (1 to 7 days of postnatal age), however, this difference was 

not significant on multivariate analysis (p=0.14) including the covariates.   

 

Figure 25. Blood transfusion and changes in cerebral tissue haemoglobin 

index (cTHI) 

Group 1: birth to 7
th
 day, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age  

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion; * p<0.05 comparison between pre and post-transfusion 

† p<0.05 comparison between Group 1 and Group 2  
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Cerebral tissue oxygenation Index (cTOI) 

There was a decreasing trend in the mean baseline pre-transfusion cTOI levels with 

increasing postnatal age (Figure 26). The mean pre-transfusion cTOI levels were 

significantly lower in Group 3 infants compared to Group 1 (p=0.02, 95% CI 2.09 to 

25.44). The pre-transfusion cTOI was significantly higher in Group 1 (p=0.011, CI 

5.3 to 38.02) compared to Group 3 on multivariate analysis including the covariates 

mentioned earlier.   

4.5.1.2 Cerebral tissue oximetry and blood transfusion 

 

Cerebral tissue haemoglobin index (cTHI) 

The absolute cTHI level (in arbitrary units) changes over time are also described in 

percentage change (taking pre-transfusion level as baseline) to further help 

understanding the alteration over time. The percentage changes in the mean 

cerebral tissue haemoglobin index (cTHI) values are shown in Figure 26. There was 

a consistent increasing trend in cTHI levels following blood transfusion in infants of 

all three groups except in the first hour of transfusion in Group 1. While the maximal 

increase in cTHI happened earlier in Group 3, the percentage increase maximised 

post-transfusion in all the three groups (p<0.001; Table 17). The cTHI increased at 

a higher rate following transfusion in older preterm infants in Group 3 compared to 

the infants in their first week of life (Group 1; Figure 26).  

 

Cerebral tissue oxygenation Index (cTOI) 

The mean pre-transfusion cTOI increased significantly following transfusion in all the 

three postnatal age Groups. There was an increasing trend in mean cTOI over time 

but it did not reach statistical significance until the end of transfusion (Table 17; 
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Figure 26). The percentage increase in post-transfusion cTOI from baseline was 

5%, 11% and 12% in Group 1, Group 2 and Group 3 infants respectively. 
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Table 17. Blood transfusion (BT) and cerebral NIRS parameters according to postnatal age groups 
 

Cerebral oximetry 
parameters 
Mean (SD) 

Group 1 (1 – 7 days) 
n = 17

†
 

Group 2 (8 – 28 days) 
n = 20

††
 

Group 3 (≥29 days) 
n = 15

†††
 

 Pre-BT Post-BT p value Pre-BT Post-BT p value Pre-BT Post-BT p value 

Cerebral tissue haemoglobin 
index (cTHI) (percentage 
increase from baseline) % 

34.6 (11.5) 50.6 (14.9) <0.001 28.0 (10.4) 63.2 (19.9) <0.001 32.6 (12.5) 68.2 (17.6) <0.001 

Cerebral tissue oxygenation 
index (cTOI) % 

71.0 (15.8) 74.6 (12.6) <0.05 66.0 (12.3) 73.7 (11.8) <0.01 57.2 (13.2) 64.1 (12.6) <0.01 

Cerebral fractional tissue 
oxygen extraction (cFTOE) 

33.1 (10.9) 25.7 (11.4) 0.003 33.3 (12.3) 22.8 (11.0) 0.002 40.6 (10.3) 32.6 (11.5) 0.005 

 

†
 3 infants, 

††
 1 infant and 

†††
 3 infants excluded from this analysis due to motion artefacts 
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Figure 26. Blood transfusion (BT) and changes in cerebral NIRS parameters 

Group 1: birth to 7
th
 day, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age  

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes 

post blood transfusion 
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Cerebral fractional tissue oxygen extraction (cFTOE) 

The baseline pre-transfusion cFTOE was similar in Group 1 and Group 2 infants 

(Figure 27). The baseline pre-transfusion cFTOE was significantly higher (p<0.01) 

in older age group infants (Group 3) compared to younger preterm infants (Group 1 

and Group 2). The mean pre-transfusion cFTOE decreased significantly in all the 

three postnatal age group infants (Figure 27 and Table 17). 

 

Figure 27. Cerebral fractional tissue oxygen extraction (cFTOE) and blood 
transfusion 

Group 1: 1 to 7 days, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age  

† Comparison between Group 3 and Group 1 and 2 

* p<0.05 comparison between pre and post-transfusion 
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4.5.1.3 Cerebral tissue oximetry and PDA 

 

Cerebral tissue oximetry measurements were also compared between gestational 

and postnatal age matched groups with open and closed PDA (Table 15). The 

baseline mean pre-transfusion cTOI was higher in the PDA Group (69.9±13.4 %) 

compared to the closed-PDA Group (63.2±13.6%) but this was not significant 

(p=0.24, CI -5.0 to 18.7).  

 

There was a similar pattern of increase noticed in cTOI in both the groups during 

blood transfusion (Figure 28). The cTOI increased significantly in all the time points 

at 1 hour (T2), 2 hours (T3) and post-transfusion (T4) when compared to baseline 

pre-transfusion values in both the groups with and without PDA (Figure 28). The 

cTHI increased consistently at all the time points and was similar in infants with or 

without PDA (Figure 28). 

 

4.5.1.4 Multivariate analysis of changes in cerebral blood flow and 

tissue oximetry  

 

On multivariate analysis, the changes in the ACA TAMV, SVC flow and cTOI post-

transfusion were not significantly different between the postnatal age group infants 

and were independent of the covariates: gestational age, birth weight, pre-

transfusion Hb, mean BP, presence of PDA and feeding volume.   
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Figure 28. Blood transfusion and changes in cTOI and cTHI in PDA and closed-PDA group of infants 

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes 

post blood transfusion 

* p<0.05 comparison within groups at specific time points 
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4.5.2 Gut tissue oximetry 

4.5.2.1 Baseline gut tissue oximetry 

 

Intestinal or splanchnic tissue haemoglobin index (sTHI) 

The mean pre-transfusion baseline sTHI levels in the postnatal age groups are 

shown in Figure 29. The baseline sTHI levels in Group 3 (≥29 days of postnatal 

age) infants were significantly lower compared to Group 1 and Group 2 infants. 

However, there was no significant difference noted of the pre-transfusion sTHI levels 

between the postnatal groups after multivariate analysis.  

  

Figure 29. Mean sTHI levels in the different postnatal age group infants. 

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion 

Intestinal or splanchnic tissue oxygenation Index (sTOI) 

The mean pre-transfusion baseline sTOI levels in the postnatal age groups are 

shown in Table 18 and Figure 31. The mean pre-transfusion sTOI was significantly 

higher in Group 2 infants compared to Group 1 (44.6 vs. 36.7 %; p=0.03, 95% CI -
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0.6, -15.2). The mean pre-transfusion sTOI was similar between the postnatal age 

groups on multivariate analysis (Group 2 vs. Group 1: p=0.14, CI -2.7 to 18.9) and 

was independent of all the confounding factors.  

     

4.5.2.2 Gut tissue oximetry and blood transfusion 

 

Intestinal or splanchnic tissue haemoglobin index (sTHI) 

The sTHI levels increased consistently during transfusion in all three postnatal age 

groups and the pattern of increase was identical except in the first hour of 

transfusion in Group 3 (Figure 30). While the maximal increase in sTHI happened 

later in Group 3, the percentage increase maximised post-transfusion in all the three 

groups (p<0.001; Table 18). The sTHI increased by 39%, 45% and 47% in Group 1, 

Group 2 and Group 3 respectively.  

 

Figure 30. Blood transfusion and changes in splanchnic tissue haemoglobin index 

(sTHI).  

Group 1: 1 - 7 days, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age 
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Intestinal or splanchnic tissue oxygenation Index (sTOI) 

The mean pre-transfusion sTOI showed an increasing trend over time but it did not 

reach statistical significance until the end of transfusion (Table 18, Figure 31). The 

baseline sTOI increased by 42%, 29% and 30% following transfusion in Group 1, 

Group 2 and Group 3 infants respectively. 

 

Figure 31. Blood transfusion and changes in splanchnic tissue oxygenation (sTOI) 
 

Group 1: 1 - 7 days, Group 2: 8 – 28 days, Group 3: ≥29 days of postnatal age 

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion 

 

Intestinal or splanchnic fractional tissue oxygen extraction (sFTOE) 

The mean pre-transfusion sFTOE was significantly lower in Group 2 infants 

compared to Group 1 (64.7 % vs. 51.4%, p=0.02, CI 1.1, 17.6). The mean pre-

transfusion sFTOE decreased significantly post-transfusion in all the three groups 

(Table 18). 
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Table 18. Blood transfusion (BT) and splanchnic NIRS parameters according to postnatal age groups 
 

 

Splanchnic oximetry 
parameters 
Mean (SD) 

Group 1 (1 – 7 days) 
n = 17

†
 

Group 2 (8 – 28 days) 
n = 20

††
 

Group 3 (≥29 days) 
n = 15

†††
 

 Pre-BT Post-BT p value Pre-BT Post-BT p value Pre-BT Post-BT p value 

Splanchnic tissue 
haemoglobin index (sTHI) 
(percentage increase from 
baseline) % 

Zeroed 
baseline 

39.4 0.001 Zeroed 
baseline 

45.4 0.001 Zeroed 
baseline 

47.5 0.001 

Splanchnic tissue 
oxygenation index (sTOI) % 

36.7 (19.3) 52.1 (20.8) 0.01 44.6 (10.4) 57.6 (14.3) 0.01 41.3 (10.4) 53.8 (16.5) 0.01 

Splanchnic fractional tissue 
oxygen extraction (sFTOE)% 

64.7 (13.4) 44.4 (20.3) 0.004 51.4 (11.5) 37.0 (14.9) 0.005 55.6 (11.8) 42.7 (15.1) 0.0004 

 

†
 3 infants, 

††
 1 infant and 

†††
 3 infants excluded from this analysis due to motion artefacts 
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4.5.2.3 Gut tissue oximetry and feeds 

 

The pre-transfusion baseline splanchnic tissue Haemoglobin index (sTHI) was 

higher in majority fed (>50% feeds) infants compared to those receiving <50% 

feeds, but this was not statistically significant (38.2±13.8 vs. 31.8±7.9, CI -0.2, 12.8; 

p=0.06). Similarly, the pre-transfusion baseline sTOI was comparable between the 

two groups of infants (43.1±8.7% vs. 39.3±13%, p=0.23, CI -2.5, 10.1).  

The sTOI and sTHI increased and sFTOE decreased significantly post-transfusion in 

both feeding groups (Table 19).  

Table 19. Gut tissue oximetry and blood transfusion in feeding groups 

Gut tissue oximetry 

measurements  

(Mean ± SD) 

Feeds (>50%) Feeds (<50%) 

 Pre-BT Post-BT P value Pre-BT Post-BT P value 

Splanchnic tissue 

oxygenation index (sTOI: %)  

43.1 

(8.7) 

59.5 

(14) 
<0.001 

39.3 

(13) 

50.6 

(16) 
<0.001 

Splanchnic tissue 

haemoglobin index (sTHI: 

arbitrary units)  

38.2 

(13.8) 

46.2 

(13) 
<0.001 

31.8 

(7.9) 

53.2  

(17) 
<0.001 

Splanchnic fractional tissue 

oxygen extraction (sFTOE: %) 

53.4 

(10) 

36.1 

(14) 
<0.001 

57.6 

(14) 

45.7  

(17) 
<0.001 

  

4.5.2.4 Gut tissue oximetry and PDA 

 

The baseline mean pre-transfusion sTOI was similar in the PDA Group (44.7±10.2 

%) and the closed-PDA Group (43.1±10.1%; p=0.73, CI -7.6, 10.7). The sTOI and 

sTHI increased significantly in all the time points at 1 hour (T2), 2 hours (T3) and 
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post-transfusion (T4) when compared to baseline pre-transfusion values in both the 

groups with and without PDA (Figure 32). The sFTOE decreased in both groups 

post-transfusion (p<0.001).  

 

 

 

Figure 32. Blood transfusion and Splanchnic Tissue Oxygenation Index (sTOI) and 

Tissue Haemoglobin Index (sTHI) in relation to PDA 

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion 
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4.5.2.5 Multivariate analysis of changes in splanchnic blood flow 

and tissue oximetry 

 

The changes in SMA PSV and sTOI following blood transfusion were not 

significantly different between the postnatal age group infants and were not 

influenced by covariates: gestational age, birth weight, pre-transfusion Hb, mean 

blood pressure, presence of PDA and feeding volume on multivariate analysis.  

 

4.5.3 Measurements of control infants 

4.5.3.1 Basic characteristics of control infants 

There were twelve infants in the control group. Of them four were studied in the first 

week of life, five between day 8 to day 28 of life and three were ≥29 days of 

postnatal age. The mean gestational age at birth was 29±5 weeks and birth weight 

was 1400±972 grams. The mean postnatal age of measurement was 20±15 days. 

The mean haemoglobin (Hb) level at birth was 13.3±2.8mg/dl and the pre-

measurement Hb was 10.3±2.8mg/dl. Two infants were undergoing invasive 

ventilation, five each were undergoing non-invasive ventilation or breathing in air. 

None of the babies were on inotropic support or receiving treatment for suspected or 

proven sepsis. Eight infants had no IVH and four had Grade 1 haemorrhage. These 

infants were receiving a total mean fluid volume of 144±25 ml/kg and a total volume 

of feeds of 110±64 ml/kg.  

 

The heart rate (HR), respiratory rate (RR), systolic blood pressure (BP) and diastolic 

BP, mean arterial BP and SaO2 all remained stable at the start of the NIRS 

measurements (pre-oximetry measurements) and at the end of NIRS measurements 

(post-oximetry measurements) as shown in Table 20. 
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Table 20. Vital parameters in control infants 

Vital parameters  
Pre-oximetry 

measurements 
Post-oximetry 
measurements 

Difference 
between groups 

Heart rate (bpm) 157.3±12.6 158.2±9.3 NS 

Respiratory rate (bpm) 
52.6±12.6 49.2±11.7 NS 

Systolic BP (mm Hg) 
46.8±7.0 47.4±5.8 NS 

Diastolic BP (mm Hg) 24.5±3.3 25.7±2.9 NS 

Mean BP (mm Hg) 
36.0±3.8 37.3±3.2 NS 

SaO2 93.2±2.7 93.0±1.9 NS 

 

  

4.5.3.2 Tissue oximetry of control infants 

The mean cerebral tissue oximetry measurements in each epoch remained 

unchanged over the three hour period of measurement. This was same for the 

splanchnic tissue oxygenation measurements as well (Table 21).  

 

Table 21. Tissue oxygenation of control infants 

Tissue oxygenation 
measurements  
Mean (SD) 

T1 T2 T3 T4 

cTOI 
71.1 (18.3) 71.9 (19) 71.2 (16.9) 72.0 (15) 

cTHI 
38.0 (7.3) 38.1 (7.6) 39.6 (7.6) 39.8 (7.8) 

sTOI 
42.1 (8.1) 43.1 (8.2) 43.8 (8.3) 43.5 (7.7) 

sTHI 
50 (10.1) 48.3 (11.9) 50.7 (12.2) 50.9 (10.1) 

 

 

4.6 Measurement of red cell volume 

4.6.1 Infant characteristics 

 

Red cell volume was measured using fetal haemoglobin (HbF) dilution method in 17 

preterm infants with indwelling arterial catheters. The characteristics of those infants 
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who had red cell volume (RCV) measurements are detailed in Table 22. Of the 17 

infants studied the RCV measurement was unavailable for three infants: one pre-

transfusion sample was clotted, one post-transfusion sample was insufficient and 

one post-transfusion blood sample was lost in the lab; the RCV measurement was 

available for the rest of the 14 infants.  

 

Table 22. Infant characteristics of those who had RCV measured 
 

Infant characteristics Median (Range) 

Gestational age (weeks) 26 (23 – 27) 

Birth weight (grams) 830 (700 – 1240) 

Chronological age at RCV measurement (days) 2 (1 – 14) 

Total volume of fluids (ml/kg/day) 150 (90 – 180) 

Total volume of feeds (ml/kg/day) 15 (0 – 180) 

Pre-transfusion haemoglobin (g/dl) 11.2 (8.7 – 12.7) 

Pre-transfusion haematocrit (%) 32 (26 – 38) 

Weight of baby on RCV measurement day (grams) 810 (700 – 1180) 

Pre-transfusion RCV (ml/kg) 29.9 (20.6 – 38.7) 

 

 

There were 5 infants whose pre-transfusion RCV was <25 ml/kg and 9 whose RCV 

was >25 ml/kg. The basic characteristics of these subgroups are presented in Table 

23. As planned earlier the cerebral and gut blood flow and oximetry were further 

analysed between those subgroups. 
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Table 23: Basic characteristics of infants with pre-transfusion RCV <25 or ≥25 ml/kg 
 

Characteristics 

 

RCV <25 ml/kg  

n=5 

RCV ≥25 ml/kg  

n=9 

Difference 
between groups 

Gestational age (completed 

weeks)* 
25 (24 – 28) 26 (24 – 27) 

NS  

Birth weight (grams)* 790 (600 – 1240) 830 (715 – 1000) 
NS 

Haemoglobin at birth (g/dl)* 14.5 (10.0 – 16.1) 14.5 (10.5 – 16.5) 
NS 

Chronological age (days)* 6 (1 – 14) 2 (1 – 6) 
0.03 

Maternal PET
†
 2 (40) 3 (33) 

NS 

IUGR
†
 2 (40) 3 (33) 

NS 

Chorioamnionitis
†
 3 (60) 4 (44) 

NS 

Antepartum haemorrhage
†
 2 (40) 3 (33) 

NS 

Antenatal steroids
†
 4 (80) 7 (78) 

NS 

Weight at transfusion (grams)* 805 (540 – 1150) 810 (715 – 1000) 
NS 

Pre-transfusion Hb (g/dl)* 9.8 (8.7 – 10.6) 12.6 (10.7 – 13.1) 
<0.001 

Total fluids (ml/kg/d)* 150 (120 – 180) 120 (90 – 180) 
0.04 

Total feeds (ml/kg/d)* 50 (15 -180) 0 (0 – 20) 
<0.001 

Invasive/Non-invasive 

ventilation/nasal cannula 

oxygen or breathing in air
†
 

3/2/0 5/4/0 
NS 

Presence of PDA
†
 3 (60) 6 (67) 

NS 

Presumed sepsis on 

antibiotics
†
 

2 (40) 4 (44) 
NS 

* Median (Range), † Number (percentage)   

 

4.6.2 Red cell volume measurements 

 

Details of the pre-transfusion red cell volume measurements in all the infants are 

shown in Appendix 8. The donor haematocrit ranged from 0.53 to 0.69 and the pre-
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transfusion red cell volume ranged from 20.6 to 38.7 ml/kg. There were five infants 

whose pre-transfusion RCV was <25 ml/kg and nine had ≥25 ml/kg.     

4.6.3 Haemoglobin and red cell volume 

 

Pre-transfusion haemoglobin showed good correlation (r=0.65, p<0.01) with pre-

transfusion red cell volume on Pearson correlation statistics (Figure 33). Similarly, 

pre-transfusion haematocrit also showed good correlation (r=0.60, p<0.01) with pre-

transfusion RCV (Figure 33). 

 

 

Figure 33. Relationship between Hb and Hct level and red cell volume 

4.6.4 Red cell volume and cerebral blood flow and oximetry 

 

Five infants had RCV <25 ml/kg while nine had ≥25 ml/kg. The baseline pre-

transfusion ACA PSV (0.42±0.11 m/sec) and ACA TAMV (0.22±0.05 m/sec) were 

higher in those with pre-transfusion RCV <25 ml/kg compared to those with RCV 

≥25 ml/kg (0.30±0.07 m/sec and 0.15±0.05 m/sec respectively). The ACA peak 
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systolic velocity decreased significantly following blood transfusion in those with 

RCV ≥25 ml/kg; although there was decreasing trend in those with RCV <25 ml/kg 

this was not statistically significant (Table 24). There was no significant change in 

either ACA time averaged mean velocity or SVC flow in either of these two groups of 

infants. The baseline pre-transfusion cTOI was higher in infants with RCV <25 ml/kg 

(77.9±17.4%) compared to those with RCV ≥25 ml/kg (66.4±19.1%) but this was not 

statistically significant. The pre-transfusion cTHI was similar between the two groups 

(Table 24). There was an increasing trend in cerebral TOI following blood 

transfusion in those with RCV ≥25 ml/kg, and a significant increase in the cerebral 

THI were noticed post-transfusion in both groups.  

 

4.6.5 Red cell volume and gut blood flow and oximetry 

 

Though there was no difference in the pre-transfusion peak systolic velocity (PSV) 

of the SMA following transfusion in the group with RCV ≥25 ml/kg; there was a 

significant decrease in the SMA PSV following transfusion (p=0.03, CI 0.01, 0.33) in 

the group with RCV <25 ml/kg (Table 24). The splanchnic tissue oxygenation index 

(sTOI) increased significantly in those with RCV ≥25 ml/kg (p<0.01, CI 7.9, 30.9) 

along with a subsequent decrease in the sFTOE and increase in sTHI. There was 

no change in the sTOI, sTHI or sFTOE in those infants with pre-transfusion RCV 

<25 ml/kg (Table 24). 

 

A similar multivariate analysis using MANCOVA could not be performed for RCV 

groups in view of the small sample size (n=14) and even smaller sample size in 

each of the groups (RCV <25ml/kg=5 and ≥25ml/kg=9).  
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Table 24. Changes in measurement parameters in relation to red cell volume (RCV) values  

(n=14, 17 infants were attempted) 

 

Parameters 
measured 
Mean (SD) 

RCV <25 
(n=5) 

RCV ≥25 
(n=9) 

 Pre-BT Post-BT P value; CI Pre-BT Post-BT P value; CI 

ACA PSV  
(m/sec) 

0.42 
(0.11) 

0.32 
(0.08) 

0.28; -0.14 to 0.33 
0.30 

(0.07) 
0.23 

(0.07) 
0.01; 0.02 to 0.11 

ACA TAMV 
(m/sec) 

0.22 
(0.05) 

0.16 
(0.04) 

0.31; -0.08 to 0.19 
0.15 

(0.05) 
0.13 

(0.03) 
0.15; -0.01 to 0.07 

SVC flow 
(ml/kg/min) 

160.4 
(51.5) 

130.7 
(29.1) 

0.16; -21.8 to 81.0 
79.4 

(16.9) 
76.4 

(14.9) 
0.65; -11.9 to 18.1 

SMA PSV 
(m/sec) 

0.77 
(0.11) 

0.59 
(0.07) 

0.03; 0.01 to 0.33 
0.62 

(0.28) 
0.56 

(0.16) 
0.57; -0.17 to 0.28 

cTOI 
(%) 

77.9 
(17.4) 

80.5 
(11.6) 

0.55; -18.2 to 13.0 
66.4 

(19.1) 
71.4 

(13.9) 
0.06; -10.4 to 0.5 

cFTOE 
(%) 

27.9 
(0.9) 

21.4 
(0.6) 

0.10; -6.9 to 20.0 
41.1 
(8.1) 

31.8 
(7.4) 

0.006; 3.9 to 31.8 

cTHI 
(arbitrary units) 

32.2 
(3.8) 

39.8 
(5.3) 

0.01; -11.7 to -3.5 
34.7 
(6.5) 

44.8 
(8.6) 

0.0001; -13.3 to -6.9 

sTOI 
(%) 

45.4 
(22.6) 

45.0 
(10.5) 

0.97; -35.6 to 36.1 
37.4 

(11.1) 
56.8 

(21.5) 
0.0046; -30.9 to -7.9 

sFTOE 
(%) 

51.7 51.7 0.85; -10.6 to 23.1 59.3 38.9 0.002; 8.5 to 28.4 

sTHI 
(arbitrary units) 

35.3 
(7.9) 

51.3 
(15.9) 

0.83; -36.9 to 5.1 
48.7 

(14.4) 
67.2 

(17.0) 
0.0012; -26.3 to -10.7 
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4.7 Relationship between Hb and tissue perfusion 

 

The study population was divided into two groups depending on the pre-transfusion 

Hb level of 11g/dl as previously decided. There were 15 infants whose Hb at 

transfusion was ≥11g/dl, and 44 infants who were transfused when Hb was <11g/dl. 

Further details of the infant and maternal characteristics of these two groups are 

detailed in Table 25. The two groups had similar gestational age, birth weight and 

Hb level at birth. The groups with pre-transfusion Hb of <11g/dl had higher incidence 

of antepartum haemorrhage (APH). They were also older (postnatal age), higher 

weight at transfusion and were on higher volume of feeds compared to those where 

blood was transfused with pre-transfusion Hb ≥11g/dl. 

Table 25. Infant and maternal characteristics of the two groups with Hb≥11 and 
<11g/dl 

Characteristics 

 

Hb≥11g/dl 
n=15 

Hb<11g/dl 
n=44 

Difference 
between 
groups 

Gestational age (completed weeks)* 26 (23 – 27) 25 (23 – 31) NS 

Birth weight (grams)* 768 (592 – 1180) 745 (540 – 1746) NS 

Haemoglobin at birth (g/dl)* 14.1 (10.0 – 19.2) 14.7 (9.8 – 20.7) NS 

Chronological age (days)* 5 (1 – 26) 18 (1 – 73) <0.001 

Maternal PET
†
 4 (27) 11 (25) NS 

IUGR
†
 4 (27) 8 (18) 0.04 

Chorioamnionitis
†
 7 (47) 18 (41) NS 

Antepartum haemorrhage
†
 3 (20) 15 (34) 0.03 

Antenatal steroids
†
 

15 (100) 
38 (86) 0.03 

Weight at transfusion (grams)* 780 (630 – 1180) 914 (660 – 2045) NS 

Pre-transfusion Hb (g/dl)* 12.0 (11.0 – 13.1) 9.8 (7.0 – 10.9) 0.01 

Total fluids (ml/kg/d)* 135 (90 – 180) 150 (100 – 180) NS 

Total feeds (ml/kg/d)* 8 (0 – 160) 115 (0 – 180) <0.001 

Invasive/Non-invasive ventilation/nasal 
cannula oxygen or breathing in air

†
 

2 (13)/8 (53)/6 (40) 2 (5)/14 (32)/26 (59) 
NS 

Presence of PDA
†
 1 (7) 31 (71) <0.001 

Presumed sepsis on antibiotics
†
 6 (40) 29 (66) 0.04 

* 
Median (Range), 

† 
Number (percentage)
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4.7.1 Haemoglobin and blood flow 

 

The effect of pre-transfusion Haemoglobin level on the degree of cerebral and gut 

blood flow changes following blood transfusion was analysed by dividing the study 

infants into two groups with Hb ≥11g/dl and <11g/dl. The pre-transfusion baseline 

anterior cerebral artery (ACA) time averaged mean velocity (TAMV) was significantly 

higher in the infants with pre-transfusion Hb <11 g/dl (0.23±0.07 m/sec) compared to 

those with Hb level ≥11 g/dl (0.16±0.04 m/sec, p<0.001) (Figure 34); this remained 

significant after multivariate analysis (p=0.01, CI 1.1 to 2.4) including all the 

covariates: gestational age, birth weight, blood pressure, presence of PDA and 

volume of feed. The pre-transfusion baseline superior vena cava (SVC) blood flow 

was also higher in infants with Hb <11g/dl but this was not statistically significant 

(100.1±36.8 compared to 93.2±39.1 ml/kg/min, p=0.54). The ACA TAMV decreased 

significantly in both the groups following blood transfusion (Figure 34) and the 

degree of decrease was similar (17%) in those with a pre-transfusion Hb <11g/dl 

(from 0.23±0.07 to 0.19±0.06 m/sec, p<0.001) compared to those with a pre-

transfusion Hb level ≥11g/dl (from 0.16±0.04 to 0.13±0.03 m/sec; p=0.03; 18%). The 

baseline SVC flow decreased in both Hb groups post-transfusion but this was not 

statistically significant (p=0.07). 

 

The baseline pre-transfusion superior mesenteric artery (SMA) peak systolic velocity 

(PSV) was higher in infants with a pre-transfusion Hb <11g/dl (0.85±0.35 m/sec) 

compared to those with a pre-transfusion Hb of ≥11g/dl (0.66±0.39 m/sec) but this 

was not statistically significant (p=0.08). 
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Figure 34. Anterior cerebral artery (ACA) time averaged mean velocity (TAMV) and 

superior vena cava (SVC) flow in the groups with pre-transfusion Hb levels ≥ and <11g/dl. 

* p<0.05 comparison between pre and post-transfusion; † p<0.05 comparison between 

groups with Hb <11 and Hb ≥11g/dl 

 

The pre-transfusion SMA PSV decreased in both group of infants with Hb level 

<11g/dl (from 0.85±0.35 to 0.78±0.29 m/sec; p=0.1) and ≥11g/dl (from 0.66±0.39 to 

0.62±0.21 m/sec; p=0.4) but these changes were not significant (Figure 35).  

 

Figure 35. Superior mesenteric artery peak systolic velocity in the groups with pre-

transfusion Hb levels ≥ and <11g/dl.  
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4.7.2 Haemoglobin and tissue oximetry 

4.7.2.1 Changes in tissue oxygenation in relation to Hb level 

 

In order to find the effect of pre-transfusion Hb level on the degree of cerebral and 

gut tissue oxygenation changes, the total study population was divided into infants 

with Hb <11g/dl and Hb ≥11g/dl (Table 25). The pre-transfusion cTOI levels were 

similar between the two groups (Figure 36). A repeated measures ANOVA showed 

that there was a significant increase in the cerebral tissue oxygenation index (cTOI) 

following blood transfusion in both groups with Hb level above (p=0.005; CI 

2.2,10.1) and below (p<0.0001; CI 3.9,8.9) 11g/dl (Figure 36). 

 

Figure 36. Pre-transfusion Haemoglobin and cerebral tissue oxygenation index 

(cTOI) and changes following blood transfusion 

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion 

 



168 | P a g e  

 

Similarly, the pre-transfusion sTOI levels were similar between the two groups 

(Figure 37). The splanchnic tissue oxygenation also increased significantly in both 

group of infants with Hb ≥11g/dl (p=0.001; CI 6.6, 23.5) and Hb <11g/dl (p<0.0001; 

CI 7.3, 18.9) following blood transfusion (Figure 37). 

 

Figure 37. Pre-transfusion haemoglobin and splanchnic tissue oxygenation (sTOI) 

level and changes following blood transfusion  

T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into blood 

transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion 

 

In infants with Hb <11g/dl the cTOI increased by 9.8% and the sTOI increased by 

31.4%. In the infants with Hb ≥11g/dl cTOI increased by 9.2% and the sTOI 

increased by 38.2%.  
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5  Discussion 
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5.1 Overall summary of results 

 

The study has demonstrated that pre-transfusion baseline cerebral blood flow 

increases with increasing postnatal age; the pre-transfusion intestinal or splanchnic 

blood flow increases with increasing postnatal age. The pre-transfusion baseline 

cerebral tissue oxygenation decreases while the intestinal or splanchnic oxygenation 

does not significantly increase with increasing postnatal age. Overall blood 

transfusion improves cerebral and splanchnic tissue oxygenation extraction balance 

(i.e. increase in oxygenation and decrease in FTOE) in preterm infants irrespective 

of postnatal age. The cerebral blood flow velocities as well as venous return from 

upper body decreases following blood transfusion, whereas there was no 

appreciable change in intestinal blood flow velocity post-transfusion. The blood 

pressure increases but there is no immediate change in other vital parameters such 

as heart rate, respiratory rate and oxygen saturation following blood transfusion in 

preterm infants. The degree of change in blood pressure following blood transfusion 

decreases with increasing postnatal ages. Both cerebral and splanchnic 

oxygenation improved following blood transfusion in infants with pre-transfusion 

RCV ≥25 ml/kg. In infants with pre-transfusion red cell volume (RCV) <25ml/kg the 

intestinal blood flow velocity decreased following blood transfusion. The gut 

oxygenation extraction balance improved following transfusion in those infants with 

RCV ≥25ml/kg, but this improvement was not noticed in those with pre-transfusion 

RCV <25ml/kg. A multivariate analysis using MANCOVA could not be performed 

because of the small sample size of the RCV groups259.  
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Blood transfusion improved cerebral and splanchnic tissue oxygenation irrespective 

of pre-transfusion haemoglobin levels of ≥ or <11 g/dl. Though blood transfusion 

reduced cerebral blood flow there was no significant change in intestinal blood flow 

post-transfusion irrespective of the pre-transfusion Hb levels. Blood transfusion 

improved gut oxygenation more than cerebral oxygenation in infants with pre-

transfusion haemoglobin <11 g/dl.  

 

Pre-transfusion baseline blood flow velocity of the anterior cerebral artery and the 

SVC flow was similar in infants between the open and closed PDA groups, while the 

SMA velocity was higher in the closed PDA group. The blood flow velocity 

decreased significantly in the ACA following transfusion but there were no changes 

in the SVC flow or SMA blood flow velocity in both groups. The pre-transfusion 

baseline cerebral and gut tissue oxygenation was similar between the two matched 

PDA groups and increased significantly following blood transfusion in both groups.  

 

In the following sections I will discuss these findings in detail and compare with the 

current literature. I will also discuss the strengths and limitations of this study, the 

generalisability and future directions in research in line with the current study.    

 

5.2 Infants studied  

 

It is well known that majority of the preterm infants receive at least one blood 

transfusion during their stay in the neonatal unit225. In this study I aimed to recruit 60 
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infants receiving blood transfusion divided into three post-natal age groups (Group 

1: 1-7 days, Group 2: 8-28 days and Group 3: ≥29 days). The main reason for 

recruiting to three postnatal age groups is the difference in haemodynamics due to 

presence of intra-cardiac shunts such as patent foramen ovale (PFO) and extra-

cardiac shunts such as patent ductus arteriosus (PDA)152, incremental feeding 

volumes and different haemoglobin (Hb) or haematocrit (Hct) threshold for 

transfusion in infants of different postnatal age groups 26. The previous researchers 

who demonstrated tissue oxygenation52-54 or changes in blood flow following blood 

transfusion49,52, studied infants of wide postnatal ages together as a single group. In 

the current study, in addition, majority of infants in Group 1 (1-7 days of age) were 

receiving some form of ventilatory support while those in older postnatal age group 

(Group 3 ≥29 days) were receiving less amount of invasive ventilatory support. 

These physiological and haemodynamic variability as well as the variable 

management according to their gestational and postnatal maturity can result in a 

variable effect on the degree of changes caused by blood transfusion on blood flow 

and tissue oxygenation of brain and gut. 

 

For this study a pragmatic sample size of 20 infants in each study group and 12 

infants in the control group (stable infant not receiving blood transfusion) were 

chosen. Previous researchers have demonstrated that a sample size of 10 infants 

are required to identify a 10% increase in cerebral or splanchnic tissue oxygenation 

index at the end of transfusion with 80% power at 0.05 level52,261. This indicates that 

the sample size chosen in the current study is appropriate to demonstrate the 

degree of change in tissue oxygenation.  
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Out of the 97 infants consented for the study; measurements were performed in 59 

infants who received blood transfusion and 12 control infants. 97 (94%) out of 103 

parents of study infants approached consented for their baby to be studied. 12 

(70%) out of 17 parents of control infants also agreed for their infant to participate in 

the study. Amongst the infants whose parents declined to participate in the study, 

the majority of those who were receiving transfusion were sick and the effect of 

transfusion may have been different in them. In many cases the consent was taken 

prior to possibility of transfusion and was further discussed with parents when the 

transfusion was imminent. However, many transfusions happened during out of 

hours (6pm – 8am), over weekends, whilst I was on-call with clinical commitments or 

on annual leave. The clinical team made the decision to transfuse based on 

transfusion guidance26, cardiorespiratory deterioration and increase in ventilatory or 

oxygen requirement. Informed written consent was taken for every infant and the 

study protocol and a copy of the consent form were attached to the clinical records.  

 

Apart from the three groups who received transfusion the study recruited 12 infants 

of similar gestational and postnatal age groups and similar antenatal and infant 

characteristics as controls. The measured changes in the cerebral and splanchnic 

blood flow and tissue oximetry in the study group and the control group were 

compared and it is one of the strengths of this study. This enabled me to 

differentiate between physiological variability over time and the true changes in 

cerebral and splanchnic tissue blood flow and oxygenation following transfusion.  
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Bailey53, Dani52 and Seidel54 have measured tissue oxygenation changes following 

blood transfusion in preterm infants of 5 to 93 days of postnatal age with a wide 

range of pre-transfusion Hb and Hct together as a single group. Bailey et al studied 

35 preterm infants (28.4±3.0 weeks) with a mean birth weight 1115±426 grams, pre-

transfusion Hb of 9.3±1.2g/dl and transfused at a mean postnatal age of 31.7±16.2 

days. Of the 30 patients who were included in the final analysis 5 were on 

conventional ventilatory support, 7 were on CPAP, 10 were on nasal cannula and 

rest of the 8 babies were on no respiratory support. None of the infants studied by 

Bailey et al were in the first week of postnatal age where they are most sick and 

require blood transfusions, which is in contrast to the present study. Dani et al 

measured cerebral, splanchnic and renal perfusion before and after blood 

transfusion in 15 preterm infants (mean gestational age of 27.0±2.4 weeks, birth 

weight 904±235 g) at a mean postnatal age of 32±23 days of life. Dani et al studied 

infants of a wide range of postnatal age, who would surely have variable 

physiological and haemodynamic status, but this was not analysed separately; this 

is in contrast to the current study. Seidel et al measured cerebral and peripheral 

regional oxygen saturation before and after transfusion in 93 preterm infants (mean 

gestational age of 27±3 weeks) who were transfused at a mean age of 38±22 days. 

Twelve infants were excluded due to incomplete NIRS data. Eight of the infants 

studied were on conventional ventilator, 41 were on CPAP and the 27 were on no 

respiratory support. In contrast to the current study Seidel at al did not measure 

infants receiving transfusion in the first week of life and the majority of them were 

receiving non-invasive ventilatory support or on no respiratory support at all. Sandal 

et al261 studied 23 symptomatic patients with anaemia who were <30 weeks of 

gestational age, who were ≥1 months of postnatal age and had a pre-transfusion 

Hct of ≤27%. Mintzer et al 262 studied 10 infants (gestational age 26±0 weeks) 
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receiving transfusion in the first week of postnatal age. However, both studies did 

not measure blood flow to the brain and gut concurrently in the same infants during 

blood transfusion which is in contrast to the current study where both blood flow and 

tissue oxygenation was measured in the brain and gut during transfusion. Alakalay 

et al measured the effect of blood transfusion on cardiac output and other 

echocardiography measurements such as left ventricular diameter in systole and 

diastole and blood flow in the aorta in 32 preterm infants with a median gestational 

age of 29 (IQR 28,30) weeks and postnatal age 33.3 (IQR 31.9,34.9) weeks49.  It is 

evident from all these observational studies that the study population was of a wide 

spectrum of gestational and postnatal ages receiving variable degrees of ventilatory 

support. In contrast, in the present study infants were divided into three groups 

based on postnatal age to minimise the effect of postnatal maturity on 

haemodynamic and oximetry changes measured.  

 

At the outset we have planned to recruit infants to  three postnatal age study groups 

in order to investigate their variable adaptation to postnatal haemodynamic changes 

as well as the effect following transfusion, this is one of the important strengths of 

the study.  

         

5.3 Vital parameters 

 

One of the strengths of this study is the continuous recording of vital parameters 

before, during and post-transfusion. The previous studies have only reported vital 

parameter recordings from observational charts that recorded random hourly values 
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pre and post-transfusion. There was no change in heart rate (HR) following blood 

transfusion in all three infant groups in the present study but other researchers have 

reported a significant decrease in heart rate16,47. Kasat et al noted tachycardia to be 

the most notable and sensitive predictor of a benefit from blood transfusion (OR 

6.48, p=0.005)16. Nelle et al measured physiological parameters before and four 

hours after blood transfusion in 33 preterm infants (mean gestational age 29±5 

weeks, birth weight 1153±390 grams and a postnatal age of 48±21 days) and 

reported a significant reduction in heart rate (from 161±14 to 149±12 bpm, p=0.005) 

along with stoke volume47. On the contrary, in keeping with the current study, Dani 

et al did not notice significant change in heart rate (133±8 pre-transfusion to 122±8 

one hour post-transfusion, p=NS) following blood transfusion52. Bailey53 and Seidel54 

also did not notice changes in heart rate following blood transfusion. Pre-transfusion 

tachycardia is an adaptive mechanism by which preterm infants maintain a high 

cardiac output in response to the declining haematocrit to maintain tissue perfusion 

49. It is quite possible that the pre-transfusion tachycardia takes considerable 

amount of time (at least 12 hours) to settle and adapt to the increased haematocrit 

and viscosity following blood transfusion16,47, whereas most of the observational 

studies including the current study recorded heart rate upto one hour post-

transfusion.   

 

Some of the previous studies in older clinically stable preterm infants have reported 

no significant difference in mean blood pressure (MBP) following blood 

transfusion47,52.  Nelle et al measured mean blood pressure using Dinamap and 

noticed no change in MBP following blood transfusion (56.4±7.9 to 58.1±7.9 

mmHg)47. Similarly Dani et al did not notice any change in MBP following blood 
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transfusion (56±7 to 56±6 mmHg)52. Contrary to these findings, in the current study 

there was a significant increase in the MBP following blood transfusion in all the 

three postnatal age groups studied. These findings could be due to the different time 

points these vital parameters were measured in these studies. Whereas, Nelle et al 

measured MBP at 4 hours following transfusion, Bailey, Dani and the current study 

recorded MBP upto 1 hour post-transfusion. In the current study, the pre-transfusion 

mean blood pressure was higher in the older preterm group compared to the earlier 

preterm infants, it is well recognised that mean blood pressure in preterm infants 

increases with postnatal age 263. None of the previously reported observational 

studies have described findings according to postnatal age groups and hence it is 

difficult to compare the findings of the current study with them.  

 

While blood pressure in the majority of the infants in the early group (Group 1: 1-7 

days) was measured using invasive indwelling arterial catheter (11 out of 20), blood 

pressure was measured using non-invasive oscillometric technique (Dinamap) in the 

majority of the infants in the other two groups (Group 2: 18 out of 21 and Group 3: 

all 18 infants). It is possible that analysing together the blood pressure measured by 

two different methods would have affected the findings of the present study. 

However, systolic and diastolic blood pressures were also measured 

simultaneously, showing a similar trend to mean blood pressure post-transfusion. In 

a study of 398 infants between 24 to 32 weeks of gestational age, serial 

measurement of systolic blood pressure using three different methods have shown 

good agreement between invasive and Doppler measurement; but there was wider 

variation between oscillometric (Dinamap) and Doppler measurement methods of 

blood pressure264.    
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There was no noticeable change in oxygen saturation (SaO2) and respiratory rate 

following blood transfusion in any of the three groups of infants in the current study. 

Dani et al similarly did not notice any changes in SaO2 following blood transfusion. 

In older preterm infants, Fredrickson et al also did not notice any difference in the 

SaO2, FiO2 and oxygen consumption between two groups receiving liberal (n=22) 

and restrictive (n=19) transfusion 46. Whereas other researchers16,46 have compared 

random recording from observational charts from few hours to days before, and few 

hours to 1-2 days after blood transfusion, we have compared continuous recordings 

of vital parameters from 15-20 minutes pre to post-transfusion.  

 

5.4 Laboratory parameters 

 

As expected the pre-transfusion haemoglobin (Hb) and haematocrit (Hct) levels 

increased significantly post-transfusion in this study. Leukocyte depleted, 

cytomegalovirus negative, Sickle cell negative, plasma reduced and cross-matched 

packed red blood cells (hematocrit 50-70%), were transfused over a period of 3 

hours through an intravenous cannula which is a standard practice in most neonatal 

units in the UK. Overall the mean pre-transfusion Hb and Hct were comparable to 

the reported studies16,32,54. Bailey et al reported mean pre-transfusion Hb level of 

9.3±1.2g/dl which subsequently increased by 3.1±1.3g/dl following transfusion53. 

Dani et al reported an increase of mean pre-transfusion Hct level of 27.1±2.1% to 

43.3±2.7% post-transfusion52. Nelle et al transfused infants at a mean pre-

transfusion Hb level of 8.8±1.5g/dl which subsequently increased to 12.2±1.7g/dl 

post-transfusion47. Transfusion of infants in the current study was decided by the 
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attending clinical team based on British Committee for Standards in Haematology 

(BCSH) blood transfusion guidance26, hence the pre-transfusion Hb or Hct levels 

were significantly different between the three postnatal age group of infants studied. 

 

One of the strengths of this study is the measurement of pre and post-transfusion 

blood gas parameters such as pH, pCO2 and serum lactate levels in all infant 

transfused, which has significant effects on cerebral265, splanchnic266 and 

pulmonary267,268 blood flow . Cerebral vascular vasodilatation 269,270 and pulmonary268 

and intestinal vascular vasoconstriction266 with increasing pCO2 has been well 

documented. Blood flow volume depends on the fourth power of the radius of the 

vessels; which would explain a small change in the diameter of the vessels resulting 

in significant changes in the blood flow. Such an important factor of blood flow has 

not been taken into account in previous studies demonstrating changes in the blood 

flow following blood transfusion47,48,52,271. In the current study the pre and post-

transfusion blood gas pH and pCO2 levels were not different thereby minimising 

their effects on the changes in cerebral and splanchnic blood flow. Mintzer et al 

measured laboratory parameter changes in preterm infants receiving transfusion in 

the first week of life and noted no change in pH, base deficit, lactate and creatinine 

following blood transfusion. The pre-transfusion mean haematocrit level was 

35.2±1.2% which increased to 38.5±1.2% post-transfusion262. In the current study 

the Group 1 infants (postnatal age 1-7 days) showed no difference in pH and pCO2 

post-transfusion but showed a significant reduction in the serum lactate levels; this 

could be due to a lower pre-transfusion Hct of 32±4% in the current study compared 

to Mintzer et al, which increased to 40±5% post-transfusion.  
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But serum lactate level has its own limitations; Frey et al122 using multiple regression 

noticed that pre-transfusion serum lactate did not correlate with pre-transfusion Hct, 

heart rate, respiratory rate, number of apnoea/bradycardia and weight gain. From 

these findings they concluded that since serum lactate does not correlate with other 

conventional parameters of compromised tissue oxygenation it adds very little to 

inform the decision to transfuse infants. Similarly, other researchers reported no 

correlation between pre-transfusion Hb and serum lactate levels 120-122 thereby 

demonstrating the lack of significance of serum lactate in deciding the requirement 

of blood transfusion56,208. Whereas Fredrickson46, Moller120, Frey122 and Takahashi121 

showed a significant drop in serum lactate levels, Mintzer262 reported no decrease in 

serum lactate levels post-transfusion. Fredrickson et al noticed a significant drop in 

serum lactate level following transfusion in both liberal (from 1.1±0.2 to 0.7±0.1 

mmol/L, p<0.0001) and restrictive (from 1.1±0.2 to 0.9±0.2 mmol/L, p=0.032) 

transfusion groups thereby demonstrating a shift in the aerobic metabolism of the 

tissue following transfusion46. In the current study, there was a significant drop in 

serum lactate levels following blood transfusion in infants less than 28 days of age 

(Group 1 and 2) despite normal pre-transfusion levels, but there was no appreciable 

change in older infants (Group 3). One can speculate that preterm babies are more 

susceptible to low haemoglobin and oxidative stress in the first 4 postnatal weeks 

compared to the older preterm infants which is reflected in the findings of this study. 

This could also be related to maturational changes in the preterm haemodynamics, 

changes in peripheral vascular tone and resistance resulting in better peripheral 

tissue perfusion and changes in the composition of haemoglobin from fetal to adult 
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haemoglobin over time allowing easier dissociation of oxygen to the tissues to meet 

the metabolic demand. 

    

5.5 Doppler measurements 

 

The ultrasound scan measurements included a sequential echocardiography of 

cardiac morphology and superior vena cava (SVC) flow measurement. It also 

involved performing a cranial ultrasound scan to identify cranial abnormalities, 

intracranial bleeds and measuring anterior cerebral artery (ACA) blood flow 

velocities. Finally the ultrasound scan involved measuring superior mesenteric artery 

(SMA) blood flow velocities.  

 

Doppler ultrasound scan is operator dependent and depends on the technique of the 

operator. Hence in 12 control infants I performed paired measurements in each 

infant 3 hours apart and compared the intra-operator variability and repeatability 

which was satisfactory and similar to the reported literature74,152,153. Groves et al 

have reported using MRI scans that the cross section of the SVC is crescent shaped 

as it wraps around the ascending aorta, this results in faulty measurements of the 

diameter of the SVC which is an obvious important component of the SVC flow 

measurement154. However, the SVC measurements in the current study are 

comparable to the echocardiographic measurements in the reported 

literature152,153,272. 
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Noori et al have demonstrated in haemodynamically stable term neonates the 

perceived positive linear relationship between cerebral blood flow and pCO2 may not 

be present on postnatal day one; further, on postnatal day three and possibly day 

two a pCO2 threshold exists for this relationship, above which the cerebral blood 

flow response to increasing pCO2 levels may result in reperfusion injury resulting in 

IVH269. However, in the current study the pCO2 levels remained similar before and 

after transfusion and none of the infants developed new or worsening of IVH 

following transfusion.  

 

It has been reported previously that mean blood flow velocity in the anterior cerebral 

artery (ACA) 47 and pericallosal artery 52 decreases following blood transfusion, 

possibly due to increased resistance in the cerebral blood flow due to increased 

viscosity of blood 273. Significant increase in the diastolic blood pressure in the 

current study indirectly indicates increase in peripheral vascular resistance. In 

accordance with the findings of the previous studies there was significant decrease 

in the mean ACA time averaged mean velocity (TAMV) in all the three postnatal age 

group of infants in the current study. Infants of various gestational and postnatal age 

groups were merged together as a single group in previous studies47,48. In the 

current study, the baseline pre-transfusion blood flow velocity as well as the degree 

of their response to blood transfusion was different in the three infant groups 

studied. The pre-transfusion baseline mean ACA TAMV was lower during the first 

week of life (Group 1) and significantly higher in infants who were more than 28 

days old (Group 3). This may be due to maturational changes but also could be 

attributed to older (Group 3) infants being transfused at a lower Hb threshold 

compared to the Group 1 infants. This finding can be supported from a study by 
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Deeg et al in a group of 121 healthy premature and full term infants, who noticed an 

exponential increase in ACA flow velocity with increasing conceptional age and also 

noted a linear increase in ACA TAMV with increasing postnatal age274.    

 

Superior Vena Cava (SVC) flow volume is a more reliable marker of preterm 

neonatal cerebral blood flow compared to left or right ventricular output in the 

presence of intra-cardiac shunts such as patent foramen ovale (PFO) and extra-

cardiac shunts such as patent ductus arteriosus (PDA)152. Low SVC flow has been 

associated with development of IVH in preterm infants272. Using SVC flow as a 

surrogate of cerebral blood flow volume in order to assess changes following blood 

transfusion is strength of this study. Kluckow et al have demonstrated an increase in 

median (range) SVC blood flow from 76 (34–143) ml/kg/min on day one to 93 (55-

111) ml/kg/min at around 48 hours of life in stable preterm infants152, these values 

were comparable to the present study infants in the first week of their postnatal age. 

In the current study the SVC blood flow volume decreased following blood 

transfusion during the first week of life and in the infants who were more than 4 

weeks of age. Alkalay et al have shown that anaemic preterm infants develop a high 

cardiac output state and this decrease significantly following blood transfusion 49. 

There was no statistically significant change in the SVC flow in the Group 2 (8-28 

days of age) infants perhaps indicating a more stable cardiovascular state or blood 

being transfused at a higher baseline Hb level before haemodynamic 

decompensation. It has been reported in the past by using NIRS technique that 

cerebral blood volume (CBV) decreases following blood transfusion in anaemic 

preterm infants. Koyano et al275 have demonstrated significant decrease in CBV 

following transfusion (number of infants studied was 19); this was thought to be an 
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improvement from a compensatory rise in CBV in the anaemic state. Dani et al 

using NIRS techniques have also demonstrated a decrease in cerebral blood 

volume following transfusion. Koyano et al conducted their study in 19 preterm 

infants (median gestational age 27.1 weeks, range 23.5 – 30.4 weeks) of wide 

postnatal age range (2 – 85 days, median 39 days); Dani et al performed 

measurements in 14 infants (mean gestational age 29.6±2.6 weeks) of 29±14 days 

of mean postnatal age. Because of the wide postnatal age range of the infants 

included in these studies, this information should be interpreted cautiously. The 

maturational changes in the cerebral circulation and absence of cerebral 

autoregulation in the early postnatal age and development of autoregulation later on 

in life may play an important role in the changes in cerebral blood volume following 

transfusion which was not taken into account in these studies. In contrast, the 

infants were recruited to postnatal age groups in the current study and showed 

significant decrease in the SVC flow following blood transfusion in the earlier (1-7 

days) and late (≥29 days) infants but was not noted in the infants between 8-28 days 

of postnatal age. The decrease in CBV275 in conjunction with the significant 

decrease in cardiac output49 following transfusion correspond to a decrease in the 

upper body flow and venous return i.e. SVC flow following blood transfusion as was 

shown in the current study. 

 

PDA is an important determinant of cerebral blood flow in preterm infants269. One of 

the strengths of the current study is the demonstration of the interaction of PDA on 

the cerebral blood flow and oxygenation response to blood transfusion in gestational 

and postnatal age matched preterm infants. The baseline pre-transfusion mean ACA 

TAMV and SVC flow were not statistically different between the groups with open 



185 | P a g e  

 

and closed PDA thereby demonstrating similar upper body blood flow in either 

group. However, this may be confounded by the small study size and perhaps larger 

studies may be able to show significant differences between the two groups. Martin 

et al 276 have reported reversed diastolic blood flow in the cerebral arteries, with 

pulsatility index (PI) being significantly higher in infants with large PDA (p<0.0001) 

compared to those with a small PDA and controls with no PDA. In the current study 

the size of the PDA was not measured, but there was no noted reversed flow in the 

descending aorta in any of these infants studied. Measuring spectral analysed EEG 

and EEG response to photic stimulation, Kurtis et al 277 have demonstrated that the 

degree of decreased cerebral blood flow in infants with a significant PDA is not 

sufficient to cause any significant alteration in electrocortical activity. From the 

findings of Kurtis et al one can speculate that cerebral blood flow alteration caused 

by a significant PDA may not have any impact on the cerebral activity.    

 

The pre-transfusion superior mesenteric artery (SMA) peak systolic velocity (PSV) 

was significantly higher in older postnatal age group infants in the current study and 

this may reflect  maturational change, but this could also be complicated by other 

factors such as presence of PDA, different modes of ventilatory support and higher 

amount of feed intake as demonstrated in stable preterm infants by Havranek et 

al278. In 20 preterm infants (gestational age 28±2 weeks, birth weight 1002±173g) by 

measuring SMA flow and relative vascular resistance (RVR: calculated as mean 

arterial blood pressure divided by mean blood flow velocity) upto 14 days of life 

Yanowitz et al279 noticed no change in the SMA relative vascular resistance (RVR) 

over time in the first two weeks of life. They also noticed that the baseline pre-

prandial SMA mean blood flow velocity (BFV) was significantly higher in those 
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infants where feeds were started early rather than late but the response to feeds 

was similar in both the groups279. This is in keeping with the current study where 

increase in the baseline pre-transfusion peak systolic velocity of SMA was noticed 

over increasing postnatal age and feeding volume. The baseline pre-prandial SMA 

PSV and mean velocity may also be dependent on ventilation and CPAP as 

suggested by Havranek et al280. In eighteen stable preterm infants (gestation 

32.1±1.1 weeks, birth weight 1793±350g) at a mean age of 2.5±0.8 days they 

noticed significantly lower baseline SMA mean velocity and PSV in infants who were 

on CPAP compared to those where CPAP was taken off. In 38 preterm infants with 

various grades (size) of PDA Havranek et al reported that the baseline pre-prandial 

SMA blood flow velocity was lower in the large PDA group, with marked significance 

in the end-diastolic phase (p=0.002) 281. The findings of Havranek et al cannot be 

compared with the current study as the size of the PDA was not measured.  

 

Presence of a large haemodynamically significant PDA can lead to ductal steal 

phenomenon; this was first described in preterm infants by Cassels et al 282. Van Bel 

et al described the association between necrotising enterocolitis (NEC) and PDA 283. 

Shimada et al reported that pulsatility index (PI) in the abdominal aorta was 

significantly higher in infants with severe respiratory distress syndrome (RDS), and it 

decreased to control levels after closure of the PDA284. Freeman-Ladd compared the 

ratio of the pulsatility indices of left pulmonary artery to aorta with pulsatility index of 

the SMA and reported significant negative correlation (r=-0.47, p<0.008). They 

concluded that hypoperfusion and hypoxia associated with large PDA may 

contribute to the developmental of NEC285. In the current study the measurement of 

the PDA were recorded alongwith the Doppler measurements of the SMA blood 
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flow; but none of the infants had reversal of flow or ductal steal noted in descending 

aorta or SMA.   

 

In the present study there was a decreasing tend but no significant change in SMA 

flow velocity post-transfusion in all the three groups of infants studied, which is 

similar to the findings of Dani et al 52. Though not comparable to our measurements, 

Nelle et al reported a 12% decrease in coeliac artery flow velocity following blood 

transfusion in 33 clinically stable preterm infants (mean gestational age 29 ± 5 

weeks and mean postnatal age 48 ± 21 days)47. They also noticed a 21% increase 

in the red cell transport (blood flow velocity x packed cell volume) in the coeliac 

artery following transfusion indicating improved oxygen delivery despite reduced 

blood flow to the gut.  

 

Pitzele et al 286 measured pre and post-prandial SMA blood flow velocity of 21 

VLBW preterm infants (gestation 26±1.6 weeks, birth weight 819±240g), who were 

older than 14 days and were tolerating bolus enteral feeds three hourly. The 

measurements were performed pre, immediately post and 24 and 48 hours after 

blood transfusion. Post-feed SMA blood flow velocities which increased significantly 

pre-transfusion (p<0.001) were attenuated in the immediate post-transfusion period 

(p=0.22) but normalised 24 hour post-transfusion (p=0.004), this was irrespective of 

the presence of PDA. Similar blunting of response to feeds immediately post-

transfusion with normalisation of response at 48 and 96 hours post-transfusion was 

noticed by Krimmel et al75; these two studies suggest that though there might be a 

blunting of post-feed response to the SMA blood flow velocities immediately post-

transfusion this normalises within 24 hour after transfusion. These studies may have 

clinical implications of feeds initiation post-transfusion amongst preterm infants. 
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Though there was no significant change in SMA blood flow velocities post-

transfusion in three study groups in the current study, there was a significant 

decrease in the SMA PSV in a small number of infants with pre-transfusion red cell 

volume of <25ml/kg. These measurements were performed immediately post-

transfusion, the number of infants studied was small (n=5) and none of the infant 

developed any signs of feed intolerance or signs of NEC post-transfusion. But this 

may have clinical implications if this finding is replicated in a larger study group. It is 

well known that transfusion associated NEC is seen in extreme preterm infants, who 

are severely anaemic and are of older postnatal age287,288. At present the evidence 

is still not strong to suggest withholding of feeds during or post-transfusion in 

preterm infants receiving blood transfusion to prevent NEC.          

   

5.6 NIRS measurements 

 

NIRO 300 (Hamamatsu Photonics KK, Japan) is one of various commercially 

available near infra-red spectroscopy (NIRS) devices. Studies have shown the 

reproducibility and mean variability of the commercially available devices vary with 

each other. Recently by measuring and comparing regional saturations using NIRO 

200 (Hamamatsu Photonics K.K, Japan), the INVOS 5100c (Somanetics, USA), the 

Fore-Sight (CAS Med Inc., California, USA) and the SenSmart X-100 (NONIN, 

Minnesota, USA), Schneider et al reported that they showed highly significant 

variation in local cerebral tissue oxygenation levels and hence concluded NIRS 

should only be used for measurements of trend rather than absolute values in 

preterm infants 289. Hence, the results of spot tissue oxygenation measurements 

using NIRS devices should be interpreted with caution. The NIRS device in the 
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present study was mainly used to measure tissue oxygenation changes following 

blood transfusion. 

  

Use of NIRS for measuring cerebral oximetry is well known and validated as 

described earlier (please see section 6.4.19). However, measuring other 

organ/tissue oximetry using NIRS has been reported in increasing numbers, such as 

splanchnic/gut oximetry52,53,176, peripheral50,54,209 and renal52,290 oximetry. NIRS is a 

validated method of continuous measurement of cerebral tissue oxygenation in 

animal models 291 and measurement of cerebral blood volume in preterm 

infants258,292. NIRS have been used in various observational studies to measure 

cerebral tissue oxygenation in the past 20-30 years 293. Greisen et al argued that to 

use NIRS as a clinical tool, NIRS oximetry measurements must demonstrate an 

added benefit in a randomised controlled clinical trial in newborn infants. They 

suggested that cerebral oximetry measurements must be used to reduce the risk of 

a clinically relevant endpoint such as death or neurodevelopmental delay294. A 

series of randomised controlled trials were developed in the last few years to try and 

ascertain the usefulness of NIRS as a clinical aid. Cerebral NIRS oximetry is 

currently being studied to aid newborn resuscitation in delivery room 295, to monitor 

cerebral autoregulation 296 and daily monitoring in neonatal units 297, and its role in 

management of neonatal hypotension 298,299. 

 

The present study has demonstrated that blood transfusion in preterm infants 

increased cerebral tissue oxygenation index (cTOI) as well as cerebral tissue 

haemoglobin index (cTHI) during the first week (Group 1), 8th to 28th day (Group 2) 
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and ≥29 days (Group 3) of life. Other devices such as INVOS 5100c uses regional 

tissue oxygen saturation (rSO2) as a marker of tissue oximetry which is similar to the 

tissue oxygenation index (TOI) used by Hamamatsu NIRO 300 device. Cerebral 

regional tissue oxygenation (CrSO2) as well as cTOI is a marker of tissue 

oxygenation and they represent the percentage of oxygenated Hb compared to the 

total Hb in the tissue traversed by the near infra-red light 300. The cerebral tissue 

haemoglobin index (cTHI) is another cerebral tissue oxygenation measurement, and 

indicates the total concentration of Hb in the tissues and is in essence proportional 

to red cell volume in the tissue. The current study has demonstrated that the pre-

transfusion baseline cerebral tissue oxygenation as well as the response of cerebral 

tissue oxygenation following transfusion is dependent on the postnatal age of the 

preterm infant. Similar to the present study other researchers have shown increase 

in CrSO2 and decrease in cerebral fractional oxygen extraction (FOEC) following 

transfusion in stable preterm infants with a gestational age range between 25 and 

34 weeks51-54. In these studies preterm infants of 5 to 93 days of age with variable 

haemodynamic status and a wide range of pre-transfusion Hb were examined 

together as a single group. In the present study infants were divided into three 

groups based on postnatal age to minimise the effect of postnatal maturity on 

haemodynamic changes measured. The present study also demonstrated that as 

postnatal age of infants increased, the baseline pre-transfusion cTOI decreased. 

Similar to the present study findings, McNeill et al reported a decrease in CrSO2 as 

infant’s chronological age increased by studying 14 preterm infants between 29 to 

34 weeks of gestation290. The pre-transfusion cTOI  during the first week of life in the 

present study is comparable to the reported normative values of 57 to 75% 301. The 

lower pre-transfusion cTOI in older (≥29 days) preterm infants compared to the 

earlier infants (1-7 days) in the current study could be due to physiological 
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maturational changes or lower pre-transfusion Hb levels. The percentage increase 

in cTOI as well as cTHI was also different in the postnatal age groups in the current 

study, demonstrating variable effect of blood transfusion in different postnatal ages. 

The cTHI levels increased in all chronological age groups indicating an increase in 

cerebral tissue haemoglobin level following blood transfusion. This merely indicates 

an increase in tissue haemoglobin concentration in the cerebral tissue following 

blood transfusion and does not necessarily mean there was an increase in the 

cerebral blood volume. Calculating from changes in cerebral total Hb concentration 

(HbT) using NIRS in 14 preterm infants (mean gestational age 29.6±2.6 and mean 

birth weight 1430±332 grams), Dani et al have demonstrated a decrease in cerebral 

blood volume following transfusion  48, similar changes were noticed by Koyano et 

al275. In the current study the cerebral blood volume was not measured.  

 

The mean baseline pre-transfusion cTOI level in the preterm infants with open PDA 

was also similar to gestational age and postnatal age matched infants with closed 

PDA in the current study. This exhibits compensatory mechanism by which the 

upper body blood flow is maintained and so is the cerebral tissue oxygenation in the 

presence of PDA. Using Doppler measurements of cerebral blood flow velocities 

and spectral EEG it has been demonstrated that PDA does not cause any significant 

change in the cerebral functional activity despite having reversal of flow in aorta277. 

The increase in cTHI and cTOI levels during and post-transfusion in the current 

study was similar in both groups with open and closed PDA which indicated that 

PDA had no effect on the cerebral blood flow and oximetry response to blood 

transfusion in this study group.  
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Splanchnic tissue oximetry measurement using NIRS is feasible and has been 

reported in literature in the context of ischaemia177,204, PDA302, feeding205 and blood 

transfusion52-54,262. In a small case series (transfusion related NEC group: n=4 and 

non-NEC group: n=4) Marin et al have demonstrated that blood transfusion resulted 

in a greater fluctuation of the rSO2 above and below pre-transfusion baseline levels 

in those infants who went on to develop NEC post-transfusion compared to the non-

NEC infants receiving blood transfusion. She speculated that the sharp decline from 

baseline could be due to development of pneumoperitoneum, mesenteric ischaemia 

or reduced perfusion while the wide fluctuation of rSO2 may be due to ischaemia 

reperfusion injury303. The splanchnic regional saturation has been reported to 

change with postnatal age over the first three weeks of postnatal age in stable 

preterm infants290. In 12 preterm infants (29 to 33 weeks of gestation) McNeill et al 

demonstrated that the median splanchnic regional oxygenation decreased over the 

first week and then started to increase over the next two weeks. The day to reach 

the lowest value (median nadir) was variable between 4.5 to 7 days depending on 

the gestational age; the earlier nadir (at 4.5 days) was noted in the higher 

gestational age group (32-33 weeks) infants compared to 29-30 week infants290. 

This clearly indicates the variability of splanchnic regional saturation in stable 

preterm infants across postnatal age, resulting in variable pre-transfusion baseline 

tissue oxygenation which has not been taken onto account in previous studies of 

blood transfusion. Gillam-Krakauer et al measured abdominal regional saturation by 

placing NIRS probe on the abdomen in the midline below the umbilicus for a period 

of three days in 18 stable 25-31 week (median birth weight 1203 g, median age 5 

days) infants and compared the findings with changes in SMA velocity from 
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immediately before to 10, 60 and 120 minutes after feeding. The changes in 

abdominal rSO2 was significantly associated with SMA velocity changes from fasting 

to 60 to 120 minutes after feeding (p=0.016) 304. Marin303 and Fortune177 have noted 

wider fluctuation from the baseline and a suppressed baseline splanchnic regional 

oxygen saturation  in preterm infants with NEC. These studies indicate that 

abdominal NIRS measurements are feasible and can record true changes in 

splanchnic oxygenation in various clinical scenarios.  

    

Pre-transfusion splanchnic tissue oxygenation (sTOI) and tissue haemoglobin index 

(sTHI) increased and splanchnic fractional tissue oxygen extraction (sFTOE) 

decreased with increasing postnatal age in the current study, however, these 

changes were not significant on multivariate analysis. The pre-transfusion sTOI and 

sTHI increased and sFTOE decreased significantly post-transfusion in all the 

postnatal age groups thereby demonstrating a true improvement in the balance 

between tissue oxygen delivery and extraction following blood transfusion. 

 

In the current study blood transfusion in preterm infants increased sTOI and sTHI 

and decreased sFTOE during the first week (Group 1), 8th to 28th day (Group 2) and 

≥29 days (Group 3) of life thereby demonstrating a true improvement in the balance 

between tissue oxygen delivery and extraction post-transfusion. Bailey et al also 

reported a significant increase in splanchnic regional oxygen saturation (srSO2) in 

preterm infants more than seven days of age (n=30; mean postnatal age 31.7±16.2 

days) from a baseline 41.3±2.2% to 48.2±2.5% following transfusion53. Dani et al 

studied srSO2 changes in preterm infants (n=15; mean postnatal age 32±23 days) 

and noted similar changes (pre-transfusion 54±12% to 70±8% post-transfusion)52. 

Mintzer et al reported an increase in srSO2 and decrease in fractional tissue oxygen 
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extraction (FTOE) following transfusion by studying 10 preterm infants (mean 

gestational age 26±0 weeks) during the first week of life, and speculated that these 

NIRS parameters could be used to evaluate the relationship between oxygen 

delivery and consumption262. 

 

Infants who received more than 50% feeds in the current study had higher trend of 

pre-transfusion sTOI and sFTOE indicating better balance of tissue oxygen delivery 

and extraction than those with less amounts of feeds. In concurrence with previous 

reports205,278 the current study has shown that pre-transfusion baseline blood flow in 

the splanchnic circulation was higher in the predominantly fed infants. There was a 

significant increase in sTOI and decrease in sFTOE following transfusion in both the 

groups of infants in this study irrespective of the amount of feeds; this indicates 

improvement in the balance between tissue oxygen delivery and extraction following 

blood transfusion irrespective of the amount of feeds. None of these infants 

developed NEC or demonstrated decline in the oxygen delivery and extraction 

balance during blood transfusion.  

 

This study also demonstrated that splanchnic tissue oxygenation (sTOI) as well as 

splanchnic tissue haemoglobin index (sTHI) increased and fractional tissue oxygen 

extraction (sFTOE) decreased following blood transfusion irrespective of the 

presence of PDA by comparing infants with PDA to gestational and postnatal age 

matched infants with closed PDA. The pre-transfusion baseline gut tissue oximetry 

was similar in infants with open and closed PDA indicating that either PDA had no 

effect on splanchnic oxygenation levels or that the PDA in these infants was not 

significant enough to demonstrate a difference in the oximetry levels.  
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Though results from the current study indicate that blood transfusion improves 

oxygen delivery to the splanchnic tissues its clinical implications should be 

interpreted carefully. None of these infants were severely anaemic for a prolonged 

period and hence the splanchnic tissue may not have been hypoxic pre-transfusion 

protecting them from NEC as suggested in the literature288. The median (range) pre-

transfusion Hb was 11.0 (8.5 – 13.1) g/dl in Group 1 (1-7 days), 10.3 (7.7 – 12.2) 

g/dl in Group 2 (8 – 28 days) and 9.2 (7 – 10.9) in Group 3 (≥29 days) in the current 

study. Pooled data from the retrospective studies have shown that the infants who 

developed NEC following transfusion compared to those with classical NEC were 

younger (27 weeks vs. 28 weeks), had lower birth weight (864 g vs. 1120 g) and had 

lower haematocrit pre-transfusion (26% vs. 32%) 288. Eighteen out of 59 infants 

transfused in the current study had a pre-transfusion haematocrit (Hct) ≤26%. But 

none of them had abnormal splanchnic tissue oxygenation changes post-

transfusion. After adjusting for covariates Singh et al have found that effect of low 

haematocrit was an independent risk factor for the development of NEC70. This 

corresponds with the reduced risk of NEC in infants in the liberal haemoglobin 

threshold group compared to the restricted group indicated in the randomised 

controlled trials 78. A recent retrospective study has shown significantly reduced risk 

of developing NEC in those infants who had more exposure to blood transfusion287. 

To substantiate the conclusion that anaemia may lead to tissue hypoxia and early 

blood transfusion to maintain a higher haematocrit may be protective towards 

developing NEC, factors such as exogenous erythropoietin has been reported to 

lower the risk of developing NEC305 in very low birth weight infants; but whether this 

is by limiting anaemia, protecting against hypoxic injury or by directly reducing 

oxidant activity in the tissues remains to be explored 305. In our neonatal unit 
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Erythropoietin is not routinely used to treat anaemia; none of the infants studied 

received erythropoietin as part of their management. 

   

5.7 RCV, blood transfusion and organ perfusion 

 

We are aware that red cell volume (RCV) may not correlate consistently with Hb or 

Hct levels in neonates 208 and measuring RCV is not straightforward, needs labelling 

of RBC (Biotin)27,306 in a biomedical lab or can only be measured after blood 

transfusion (Fetal haemoglobin dilution method)27,253. For the purpose of this study I 

used fetal Hb dilution technique to measure pre-transfusion RCV. Despite a strict 

approach we failed to measure fetal Hb blood samples for 3 infants. One pre-

transfusion sample was deemed insufficient, one post-transfusion sample was 

clotted and one post-transfusion sample was lost after reaching the lab.  

 

The median pre-transfusion red cell volume in the current study was 29.9 (20.6 – 

38.7) ml/kg, these infants were all receiving transfusion within the first two weeks of 

life (median 2 days, range 1 – 14 days) while the median pre-transfusion 

haematocrit was 32 (range 26 – 38)%. The RCV measured using fetal haemoglobin 

(HbF) dilution method in the current study is comparable to previously reported 

measured RCV using various methods such as HbF dilution, Biotin labelled red cell 

dilution and Indocyanine green (ICG) dilution in preterm infants27,234,249,307. 

Aladangady et al measured red cell volume to determine total blood volume on the 

first day of life in 38 infants; they used fetal haemoglobin (HbF) dilution method in 6 

infants and biotinylated red blood cells (RBC) dilution in 32 infants. The mean RCV 
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reported by Aladangady et al was 35.4 ml/kg (range 18.0 – 48.3 ml/kg)27 which is 

slightly higher than the measured RCV in the current study. Leipala et al measured 

blood volume (BV) simultaneously using HbF dilution and Indocyanine green (ICG) 

dilution techniques in 8 preterm infants receiving blood transfusion for clinical 

indication. The mean RCV was 33.6±12 ml/kg using ICG method and 32.1±5.2 

ml/kg using HbF dilution technique307 which is comparable to the present study 

findings. Mock et al measured RCV using Biotin labelling in 26 infants with mean 

gestational age at birth of 28±2 weeks and a mean postnatal age of 37±16 days at 

the time of measurement and noticed the mean circulating RCV was 22.9±7.6 ml/kg; 

the range was 11.9 to 43.9 ml/kg256. Strauss et al compared the effects of early 

versus delayed umbilical cord clamping using traditional haematocrit and red cell 

volume determination using biotinylated RBCs. The red cell volume measured 

following delayed cord clamping was 42.1±7.8 ml/kg compared to early cord 

clamping of 36.8±6.3 ml/kg, this difference was not appreciated by traditional 

measurement of haematocrit249. Hudson et al measured RCV by simultaneously 

using HbF and Biotinylated RBCs in 13 preterm infants (gestational age 25 -34 

weeks) and noted strong correlation (r=0.989) between the two methods235. The 

infants in the current study population were all sick preterm infants in their first two 

weeks of life; they were receiving invasive or non-invasive ventilatory support 

thereby resulting in regular blood tests to optimise ventilation. Nevertheless, the 

RCV measured in the current study were comparable to the existing reports.      

 

The effect of blood transfusion on cerebral and gut blood flow and perfusion was 

also analysed in relation to the RCV of the preterm infants. This is the first study to 

explore the effect of pre-transfusion baseline RCV on cerebral and gut blood flow 
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and oxygenation changes following blood transfusion. There was a significant 

decrease in the pre-transfusion anterior cerebral artery peak systolic velocity 

following transfusion in infants with pre-transfusion RCV ≥25 ml/kg but no change in 

the time averaged mean velocity. The Superior Vena Cava flow also remained 

unaltered indicating no significant increase in the cerebral blood flow post-

transfusion. There was no change in Anterior Cerebral Artery velocities or Superior 

Vena Cava flows post-transfusion in infants with RCV<25ml/kg. This indicates that 

cerebral blood flow remains unaltered following transfusion in both infant groups 

with RCV ≥ or <25ml/kg. There is no similar published data to directly compare with 

these findings. Progressive haemodilution using 6% hetastarch (haematocrit diluted 

from 45% to 20%) in rat models have shown significant increase in forebrain 

cerebral blood flow 308; these changes would be similar to the effect of anaemia in 

neonates and the opposite response to blood transfusion with increasing 

haematocrit levels. Using radiolabelled method of measuring cerebral blood flow in 

rat models, Todd et al have demonstrated that in a normal brain cerebral blood flow 

does not change following volume expansion despite  an increase in cardiac output 

measured by thermodilution technique 309. These animal experiment findings 

supports the present study findings that cerebral blood flow is protected to some 

extent irrespective of RCV in preterm infants. The number of infants with pre-

transfusion RCV (n=12) studied was small, particularly the infants with RCV 

<25ml/kg (n=5) and this may have influenced the present study findings.  

 

The Superior Mesenteric Artery (SMA) peak systolic velocity remained unaltered in 

infants where RCV was ≥25ml/kg, whereas in infants with RCV<25ml/kg the SMA 

PSV decreased significantly post-transfusion. It has been previously reported that 
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the risk of necrotising enterocolitis is higher in infants with lower pre-transfusion 

haemoglobin70,288,310. However, a drop in SMA PSV does not necessarily indicate a 

decrease in tissue oxygenation or perfusion, it merely reflect an adaptive response 

to increased red cell volume following blood transfusion. Studies with larger number 

of infants may be able to further substantiate the findings taking into account the 

effect of the covariates in a multivariate analysis259.   

 

Hudson et al 257 compared whether haemoglobin concentration or RCV was a better 

predictor of outcome of red cell transfusion. They measured haemoglobin and 

haematocrit levels and RCV simultaneously in 24 preterm infants (24-34 weeks of 

gestational age) and measured their cardiac output (CO) pre and post-transfusion 

as a measure of benefit following transfusion. After excluding those infants with PDA 

(n=4), they noted that CO did not decrease significantly following transfusion in 

those infants with a RCV ≥25 ml/kg but showed a significant drop if the RCV was 

<25 ml/kg257. In the current study, there was no change in cerebral blood flow but 

there was a significant drop in the SMA PSV following blood transfusion in those 

infants with a pre-transfusion RCV <25 ml/kg, this could be due to a fall in cardiac 

output noticed by Hudson et al257 and in relation to significant anaemia as noted by 

Alkalay et al49. Supported by the findings of these studies one can speculate that in 

light of the findings of the current study blood should always be transfused prior to 

RCV dropping to levels of <25 ml/kg. Randomised controlled trials using RCV and 

other measures of tissue perfusion could help to substantiate this threshold of blood 

transfusion.    
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The cerebral tissue oxygenation index (cTOI) increased and cerebral fractional 

tissue oxygen extraction (cFTOE) decreased in the current study following blood 

transfusion in infants with RCV ≥25ml/kg but this was not statistically significant. 

These changes were similar in infants with RCV <25ml/kg. There was a significant 

increase in the cerebral tissue haemoglobin index (cTHI) post-transfusion in both the 

two groups. These findings indicate that cerebral oxygenation changes following 

blood transfusion was similar in infants who had a pre-transfusion RCV ≥ or <25 

ml/kg. There are no published reports to compare these findings.  

 

The intestinal tissue oxygenation index did not demonstrate any change following 

transfusion in the infants with pre-transfusion RCV <25ml/kg, which is in contrast to 

those with pre-transfusion RCV ≥25ml/kg, who demonstrated a significant increase 

in the intestinal oxygenation (sTOI) post-transfusion. One can speculate from these 

findings that in infants with a pre-transfusion red cell volume of <25 ml/kg the blood 

flow velocity decreases and there was no change in splanchnic tissue oxygenation, 

which may link low pre-transfusion haemoglobin as a predisposing factor and blood 

transfusion as a contributory factor to development of intestinal tissue ischaemia 

and subsequent development of necrotising enterocolitis. The present study findings 

may also imply that the amount of donor blood cells transfused was not sufficient 

enough to improve intestinal oxygenation in infants with lower pre-transfusion RCV 

(<25 ml/kg). But the clinical implication of these results should be interpreted with 

caution. These measurements were performed in a small number of infants who 

were all <14 days of postnatal age when transfusion associated NEC is rare, so the 

clinical relevance of the findings of the current study cannot be substantiated.  
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Blood transfusion and cerebral and gut perfusion in relation to red cell 

volume 

The current study has demonstrated that blood transfusion improves cerebral and 

gut oxygenation infants with RCV >25ml/kg but there was no change in gut 

oxygenation following blood transfusion in those infants with pre-transfusion 

RCV<25 ml/kg. There was a significant drop in SMA peak systolic velocity following 

transfusion in those infants with pre-transfusion RCV<25 ml/kg. Pre-transfusion 

RCV of 25 ml/kg was used as a cut off in the current study in relation to the findings 

of Hudson et al who demonstrated a significant drop in cardiac output following 

blood transfusion in infants with a pre-transfusion baseline RCV of <25 ml/kg257. The 

current study has demonstrated that the cerebral tissue oxygenation increases 

irrespective of the pre-transfusion RCV.    

     

5.8 Haemoglobin, blood transfusion and organ 

perfusion 

 

The current study has demonstrated that blood transfusion results in reduced blood 

flow to the brain and simultaneously increased cerebral tissue oxygenation in 

preterm infants of all postnatal age groups irrespective of pre-transfusion Hb level of 

≥ or <11 g/dl. In infants with Hb <11g/dl the cTOI increased by 9.8% and the sTOI 

increased by 31.4%. In the infants with Hb ≥11g/dl cTOI increased by 9.2% and the 

sTOI increased by 38.2%. These findings indicated that in both groups of infants 

with Hb ≥ or <11g/dl the sTOI improved significantly more compared to the cTOI 
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levels post-transfusion. It also demonstrated that the percentage increase in 

cerebral or splanchnic tissue oxygenation post transfusion in both the Hb groups (≥ 

and <11 g/dl) was similar. While some of the reported literature have shown no 

correlation between Hb level and cerebral52 or gut tissue52,53 oxygenation, others 

have demonstrated a reasonable correlation with peripheral209, cerebral51,54,311 and 

splanchnic290 tissue oxygenation. Other factors that determine cerebral and 

splanchnic perfusion and tissue oximetry are percentage of fetal haemoglobin, acid-

base status and autoregulation of perfusion of organs such as brain.  

 

The current study has also demonstrated that the degree of increase in gut 

oxygenation was more compared to the changes in cerebral oxygenation post-

transfusion. Whether this is due to protective autoregulatory mechanism in the 

preterm brain or a normal physiological phenomenon in preterm infants remains to 

be explored.  
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5.9 Limitations 

 

Study infants all received 15 ml/kg of cross matched donor red blood cells with 

varied haematocrit (Hct) concentration (50-70%). The effect of donor blood 

haematocrit on cerebral or gut perfusion as well as oxygenation changes noticed 

following transfusion cannot be excluded. Infants due to receive blood transfusion 

for clinical indication were studied and decision to give a blood transfusion was 

made by the attending clinical team based on infants’ clinical condition and 

haemoglobin (Hb) as per departmental transfusion and BCSH guidance26, hence 

selection bias cannot be excluded. Infants who were felt unstable for NIRS and 

Doppler measurements by the clinical team were excluded (n=5). Infants who 

received blood transfusion during standard working hours (08:00 to 18:00 hours) 

were studied and those who received blood transfusion during out of hours were 

excluded, there is a possibility that this might have excluded anaemic and very sick 

infants. I aimed to recruit 20 infants to each group; managed to recruit 20 to Group 1 

(1-7 days) and 21 infants to Group 2 (8-28 days) but 18 infants to group 3 (≥29 days 

of life). This is unlikely to influence the study findings. Previous researchers have 

demonstrated that a sample size of 10 infants are required to identify a 10% 

increase in cerebral or splanchnic tissue oxygenation index at the end of transfusion 

with 80% power at 0.05 level52,261. Compared to other reported studies that 

combined infants of various postnatal ages together and examined them as a single 

group 52,53 in the current study the infants were recruited into three postnatal age 

groups to avoid confounders such as adaptive physiological haemodynamic 

changes and study findings. Fewer babies were ventilated in group 3 compared to 

group 1 and 2. However, the pre and post transfusion blood gas pH and pCO2 were 

similar in all three groups of infants studied, and hence ventilation status is unlikely 
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to have impact on the study findings. Six infants were receiving Dopamine 

(5mcg/kg/min) and this is unlikely to influence the study findings as the dosage of 

Dopamine infusion remained unchanged for the duration of the measurements. 

 

To improve the quality of the study Doppler blood flow to the brain and gut were 

measured alongwith NIRS measurements. Doppler measurements have their own 

limitations of intra and inter-operator variability and repeatability. All Doppler 

measurements were performed by me with good intra-operator variability and 

repeatability and were comparable to the reported literature74,152,153. Utmost care 

was taken to minimise the angle of insonation to the direction of blood flow to get a 

true measurement.      

 

NIRS measurement has its own inherent limitations and extreme care was taken to 

minimise movements, handling of the baby and ambient light sources during NIRS 

measurements. Splanchnic or intestinal tissue oxygenation measurement is known 

to be associated with some assumptions. Intestine is not a solid organ, it is not static 

and the venous to capillary proportion in the intestinal tissue is not clearly known. 

The basic properties of intestine such as hollow tube like structure, peristaltic 

movements, presence of faeces and meconium make it difficult to measure 

splanchnic tissue oxygenation. Hence the splanchnic tissue oxygenation 

measurements have not been extensively validated. However, the present study has 

shown steady splanchnic oxygenation over 3 hours in control infants (not received 

blood transfusion) and a significant improvement in oxygenation in study infants 

following blood transfusion. This implies that measurement of intestinal oxygenation 
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by NIRS device is feasible and reliable. The splanchnic and cerebral oxygenation 

measurements of seven infants were excluded from the analysis due to motion 

artefacts, which is comparable to other reported NIRS studies254,258.  

 

One of the limitations of the study is the measurement of cerebral tissue 

oxygenation upto 20 minutes following transfusion. Other researchers have 

measured cerebral tissue oxygenation at one 48, four and 24 hours 54 post-

transfusion, and reported persistence of increased tissue oxygenation state 

following transfusion in more stable preterm infants.  Similarly researchers have 

measured splanchnic tissue oxygenation up to one52 and 1253 hours post-

transfusion, and reported persistence of increased tissue oxygenation state 

following transfusion in more stable preterm infants.   

 

Fetal haemoglobin (HbF) dilution method was used for measurement of red cell 

volume. This method can only be used reliably upto the second blood transfusion, 

because of recurrent dilution of HbF at each transfusion. Another major limitation of 

this technique is that a post-transfusion sample is required to measure post-

transfusion HbF level which is required to calculate the red cell volume. Thus by 

using this method red cell volume cannot be measured pre-transfusion and so 

cannot be used to identify the requirement of transfusion. However, other methods 

such as Biotin labelling are cumbersome and require dedicated biomedical lab for 

measurements which was beyond the scope of this study. Despite strict adherence 

to protocol I failed to measure fetal Hb in 3 infants where blood samples were sent 

to the lab. One pre-transfusion sample was deemed insufficient, one post-
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transfusion sample was clotted and one post-transfusion sample was lost in the lab. 

The number of infants where red cell volume was measured was small, The 

reliability of a multivariate analysis depends on the number of infants studied, and 

the ratio of sample size to the number of variables and matrices of the covariates 

involved259; this prevented performing a multivariate analysis of covariates for the 

RCV groups.  

 

5.10 Conclusion 

 

This study has demonstrated that the pre-transfusion baseline cerebral tissue 

oxygenation index (cTOI) decreases with increasing chronological age of preterm 

infants. Blood transfusion increases cTOI and cerebral tissue haemoglobin index 

(cTHI) in preterm infants of all postnatal age groups but this is more pronounced in 

older age group (≥29 days of age). The baseline anterior cerebral artery (ACA) time 

averaged mean velocity (TAMV) increases and the baseline pre-transfusion superior 

vena cava (SVC) flow decreases as infant’s postnatal age increase. The ACA TAMV 

decreases significantly following transfusion in all postnatal age group infants. The 

pre-transfusion superior vena cava (SVC) flow decreases post-transfusion after 1st 

week of life but not consistently, cerebral autoregulation may play an important role 

in this. The cerebral perfusion decreases following blood transfusion during the first 

week and after 28 days of life in preterm infants. Similar pre-transfusion baseline 

values in infants with patent ductus arteriosus (PDA) to gestational and postnatal 

age matched infants with closed PDA indicate compensatory mechanisms of 

preterm circulation by which it adapts to anemia in the presence of PDA. These 

findings indicate that cerebral blood flow and oximetry response to blood transfusion 
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in preterm infants is dependent on the postnatal age, and future randomised trials of 

blood transfusion should be planned taking into account the effect of postnatal age 

on cerebral blood flow and oximetry.  

 

The study demonstrated the feasibility and reliability of using NIRS device to 

measure splanchnic oxygenation changes by comparing measurements between 

study and control groups of infants.  It has also demonstrated that pre-transfusion 

mesenteric blood flow increases with postnatal age. Pre-transfusion splanchnic 

blood flow also varies with feeding status and presence of PDA. The study has also 

demonstrated that blood transfusion improves intestinal tissue perfusion without 

altering mesenteric blood flow velocity following transfusion irrespective of postnatal 

age, feeding status and presence of PDA. NIRS may be a useful non-invasive 

bedside monitoring tool to detect early signs of compromised oxygenation-extraction 

balance in splanchnic tissue. The effect of postnatal age on splanchnic tissue 

oxygenation should be taken into account in future clinical trials related to gut 

circulation in preterm infants.  

 

Amongst the vital parameters recorded, blood pressure increases significantly 

following blood transfusion in infants of all postnatal age groups following blood 

transfusion. There was no immediate effect on heart rate and oxygen saturation 

following blood transfusion.  
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The cerebral oximetry markers increased significantly following blood transfusion 

irrespective of the pre-transfusion baseline RCV. In infants with pre-transfusion red 

cell volume (RCV) <25ml/kg the splanchnic blood flow velocity decreased following 

blood transfusion. The gut oximetry markers improved significantly following 

transfusion in those infants with RCV ≥25ml/kg, but this improvement was not 

noticed in those with RCV <25ml/kg. This may suggest that babies with pre-

transfusion RCV <25 ml/kg may need larger volume of blood transfusion; larger 

studies are required to substantiate this finding in a multivariate analysis.  

 

The percentage increase in cerebral or splanchnic tissue oxygenation post 

transfusion in both the Hb groups (≥ and <11 g/dl) was similar. In both groups of 

infants with Hb ≥ or <11g/dl the splanchnic oxygenation improved significantly more 

compared to the cerebral oxygenation levels post-transfusion.  
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5.11 Future directions 

 

The relationship between haemoglobin (Hb) and tissue oxygenation is not clear. 

Hence using the standard laboratory and bedside markers to decide blood 

transfusion in preterm infants has the inevitability of unintended outcomes. There is 

a need to establish the pre-transfusion Hb and Hct threshold that significantly 

improves cerebral and splanchnic oxygenation following blood transfusion without 

causing harm in preterm infants. The organ perfusion and oxygenation can be 

studied non-invasively using Doppler USS and NIRS respectively. These markers of 

tissue perfusion and oxygenation could then be used in randomised controlled trials 

to identify the threshold of blood transfusion in preterm infants at which level the 

maximum benefit of transfusion could be achieved. Current ongoing large 

multicentre trials receiving liberal and restrictive transfusion may help clinicians in 

future to identify the threshold of Hb or Hct at which blood transfusion will be most 

effective. Some of these trials are also measuring the long-term 

neurodevelopmental outcomes of blood transfusion. Future studies of the effect of 

blood transfusion should also take into consideration the effect of donor blood 

haematocrit. 

 

The relationship between development of transfusion associated NEC in older 

extreme preterm infants with low pre-transfusion haemoglobin and intestinal tissue 

hypoxia remains uncertain312. Retrospective and observational studies have 

examined the association and temporal relationship between blood transfusion and 

development of NEC61. Whereas retrospective studies implicated blood transfusion 

as an important association for development of NEC, randomised controlled trials 
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favoured blood transfusion for reduced incidence of NEC78. Subsequently studies 

have linked pre-transfusion anemia to development of NEC following blood 

transfusion70. Though this theory is plausible the evidence is not clear about this 

association. Future studies should investigate the tissue markers of hypoxia or 

reduced perfusion associated with anemia in preterm infants. It has been 

demonstrated that in response to hypoxia in the tissues, a tissue marker called 

hypoxia-inducible factor (HIF) increases the expression of erythropoietin and 

vascular endothelial growth factor (VEGF)313. Relatively recently, it has been 

reported that VEGF could be an important biomarker to help clinicians decide the 

requirement of blood transfusion314. In an effort to identify early signs of NEC 

researchers have demonstrated a higher expression of faecal volatile organic 

compounds (VOC)315,316 in those infants who subsequently developed NEC. Other 

factors such as liver fatty acid binding protein (L-FABP), intestinal fatty acid binding 

protein (I-FABP) and trefoil factor 3 (TFF3) has been investigated as well. In pilot 

studies in preterm infants who developed radiologic and surgically confirmed NEC 

these are found in significantly higher levels when compared with those that did not 

show confirmed signs of NEC317-319. There are strong arguments that these markers 

have shown substantial link with tissue ischaemia and may be used to identify early 

signs of NEC. Measuring these factors of tissue hypoxia or damage may help us 

identify early signs of intestinal ischaemia caused by anaemia. Future studies of 

measurement of markers of tissue hypoxia may help clinicians to decide the 

requirement of blood transfusion and achieve the maximal benefits of transfusion.  

 

The question of whether or not to hold feeds during and after blood transfusion still 

remain unanswered. Future randomised trials should be directed to measure 
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intestinal tissue oxygenation in infants receiving blood transfusion where feeds were 

withheld compared to those where feeds were continued during transfusion. Tissue 

markers of hypoxia as noted above could be used in conjunction to assess early 

signs of intestinal tissue hypoxia and cytokine release prior to development of NEC. 

The response of the splanchnic vasculature to blood transfusion depends on the 

balance between mesenteric vasoconstriction and relaxation induced by intestinal 

endothelial production of nitric oxide. A recent study has shown blood transfusion in 

enterally fed preterm lambs (n=16)  promotes mesenteric vasoconstriction and 

impairs vaso-relaxation by reducing mesenteric arterial endothelial nitric-oxide 

synthase 320. Animal research aiming to identify the response to inhaled nitric oxide 

(iNO) during blood transfusion should be conducted to identify mesenteric tissue 

hypoxia; findings of such studies may help to design randomised controlled trials 

using iNO during transfusion to reduce or prevent the risk of transfusion associated 

NEC in preterm infants. 

 

Further studies should also be aimed to minimise blood loss by regular phlebotomy 

losses and minimising the amount of blood needed for regular blood tests using 

bedside kits and further improvements in non-invasive techniques of measuring 

serum bilirubin, haemoglobin, electrolytes, blood gas parameters such as pCO2 and 

pO2. Studies should also be aimed at developing better storage techniques and 

using fresher blood for neonates at the same time strike a balance of reducing the 

number of donors used in the lifetime of the preterm neonate. Further studies should 

also look into identifying non-infective factors transfused such as unknown proteins 

and other factors which might have an effect on the response to blood transfusion.  
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7  Appendices 
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7.1 Appendix 1: Measurement of cerebral and 

splanchnic oximetry using NIRO-300 

 

Near Infrared Spectroscopy (NIRS) monitor  

The NIRS device (Figure 38) used in the current study was NIRO-300 (Hamamatsu 

Photonics, Hamamatsu KK, Japan). NIRO-300 has both functional capabilities of 

difference spectroscopy and Spatially Resolved Spectroscopy (Hamamatsu 

Photonics, Hamamatsu KK, Japan). 

 

             

      Figure 38: NIRO-300 (Hamamatsu Photonics, Hamamatsu KK, Japan) 

 

There are two main parts in NIRO-300:  

1) Measurement Unit and  

2) Display Unit (Hamamatsu Photonics K.K., 2000). 
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The Measurement Unit of the device has the following sections (Figure 39):  

a) Main body 

b) Measurement Unit – Display Unit cable 

c) Detection Probe (Figure 39) 

d) Emission Probe (Figure 39) 

e) Probe Holder (Figure 39) 

f) Light attenuator: The light attenuator is used to reduce the amount of irradiated 

light where the light absorption by the measured tissue is very small. 

                

 

                             

                            

          

 

 

 

                                 

Figure 39: Measurement Unit of NIRO-300 and Detection Probe and Probe Holder 

(Hamamatsu Photonics, Hamamatsu KK, Japan) 

 

 

Connector for MU-DU 

cable 

 
Detection Probe  

 

Emission Probe 
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The Display Unit has the following parts (Figure 40 and 41):  

a) Main body 

b) Power supply cable 

c) Detection Probe 

d) Emission Probe 

               

Figure 40: Display Unit (DU) (Hamamatsu Photonics, Hamamatsu KK, Japan) 

1. Power switch: The switch to turn ON/OFF the main power. 

2. Power lamp: The light to indicate the ON/OFF status of the power supply.  

3. Display: Measured data are graphically displayed together with the numeric 

values. Measurement parameters are also displayed. At the bottom of the screen, 

the Function menus and functions are displayed, which are controlled by the 

Function switches (11) just below the screen.  
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4. Start/Stop switch: The switch to start/stop the measurement. 

5. Measurement lamp: The light to indicate the measurement (started/stopped) 

state. 

6. Zero set switch: The switch to reset the concentration change data back to zero 

(base line). 

7. Event switch: The switch to place an Event marker on the graph (events are 

numbered sequentially). 

8. Alarm stop switch: The switch to temporarily silence the alarm. 

9. Menu select switch: The switch to select the function menus. 

10. [] / [] switch: The switch to scroll the graphs forward/ backward or to 

increase/decrease the parameter values in the currently selected function. 

11. Function switches: The switches to perform the functions displayed on the 

screen. Functions are changed automatically depending on the function menu 

selected by the ‘Menu select’ switch (9). 

 

Safety of NIRO-300: 

Electricity: Class 1 (IEC601-1-1988) degree of protection against electrical shock. 

Laser: Class 1 (IEC 825-1-1993) irradiation to patient. 

The laser calibration is automatically done by performing the Initialisation before the 

measurement.   
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Measurement of cerebral and splanchnic tissue oximetry 

Step 1. NIRO-300 device and probe testing 

1. Cleaning the NIRO-300 monitor:  

The NIRO-300 monitor (including the probes and cables) was cleaned with sterile 

alcohol wipes for the cleaning of medical devices (Alco wipe, Seton Healthcare 

Group, England) just before and soon after BV measurement. 

 

2. Cable connection:  

Emission probe (Figure 41): The screw at the upper left corner of the Measurement 

Unit released and the guard plate removed. The connector end of the Emission 

probe inserted to laser emitor slot and fixed by turning the lock ring clockwise. 

The guard plate is fixed by the screw after fixing the Emission Probe. 

                       

Figure 41: Emission Probe connection 
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Detection Probe (Figure 42): The connector end of the Detection Probe connected 

to the detection probe slot in the Measurement Unit. The Detection Probe connected 

properly by positioning the connector marker (white spot) correctly. The Detection 

Probe connector end inserted into the receptacle until it is locked properly (clicked). 

 

                          

Figure 42: Detection Probe connection 

 

Measurement Unit – Display Unit (MU-DU) Cable: The MU-DU cable connected to 

Measurement Unit and Display Unit by inserting the cable into the connector until it 

is locked (clicked).   

 

3. NIRO–300 monitor power turned on:  

The previous data stored in the Data Memory is loaded and displayed after turning 

on the power switch.  

Caution: the lasers start to fire when the power switch is turned on.  



237 | P a g e  

 

4. Enter into the measurement screen:  

The ‘Start Here’ key pressed to enter into the measurement screen (Figure 40). The 

‘Data Clear’ window appears on pressing ‘Start Here’ key. The previous data stored 

in the Data Memory deleted by selecting Yes on Data Clear window using the []/ [] 

switches. On pressing the Enter key, the previous stored data is cleared and the 

Measurement Screen asking for probe test will appear. 

 

5. Probe test:  

To perform the Probe Test, the ‘Yes’ key selected on the probe test window using 

the []/ [] switches. The probes attached to the test phantom in the Measurement 

Unit (Figure 40).  

The Probe Test is performed by pressing the Enter key. After successful Probe Test, 

the ‘Probe Test OK’ message appears on the Display Unit screen. All the above 

procedures repeated where the Probe Test failed (“Probe Test Error”). 

Note: The probe test is performed to test the total probe sensitivity and the 

sensitivity difference between the three sensors in the detection probe.  

The most common reason for Probe Test Error is dirt on the detection probe. When 

Probe Test Error message appeared, the surface of the probes gently wiped with 

sterile alcohol wipes (Alco wipe, Seton Health Group, England) and the Probe Test 

repeated. The probe test needs to be correct in order to start the process. 
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Step 2. Initialisation of probe following probe test 

1. Placing probe to holder:  

The emission probe and detection probe placed into the black probe holder as 

shown in the figure 39.  

2. Placement of probe onto baby:  

Cerebral oximetry measurement: The NIRO-300 optical probe was attached to the 

baby’s forehead. This is fixed in place under the hat used for invasive ventilation or 

CPAP to minimise movement and ambient light interference.  

Splanchnic oximetry measurement: The second NIRO-300 optical probe was placed 

over the hypogastrium (area below umbilicus) in the midline and held in place using 

a single use tourniquet (Vygon ‘Vene K’ Quick Release, Vygon UK Ltd.).   

Gentle pressure was applied to the probe to improve contact. 

3. Initialisation:  

The initialisation window appears on pressing the Initialisation key on the Display 

Unit (Figure 40). The Yes key selected on the Initialisation window using []/ [] 

switches. 

The Enter switch on the Display Unit was pressed to start the Initialisation 

procedure. When the Initialisation was successfully completed, Initialisation OK 

message was displayed on the Display Unit screen.      

Note: In some babies the message “Signal Overflow” appeared during the 

Initialisation procedure because the detected light was too large for the 

measurement. This may be due to very small absorption of light by the measured 
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tissue. In such babies, the Light Attenuator was used to reduce the irradiated light 

(Figure 43), and successful Initialisation achieved. 

 

                                   

Figure 43: Light Attenuator helping in initialisation 

 

4. Measurement parameter setting:  

The distance between the Emission Probe and Detection Probe entered; the probe 

distance was 5cm. The DPF used in this study was 5.13.  
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Step 3. NIRS measurement of cerebral and splanchnic tissue oximetry 

 

1. Connection of NIRO-300 device with study laptop for continuous measurement: 

the NIRO-300 device was connected to the study laptop using RS232C to USB 

cable and the NIRO-300 software was opened in the laptop. The laptop was now 

ready for continuous downloading of NIRS measurements. 

 

2. Measurement start:  

The Start/Stop switch pressed to start measurement. The NIRS data was 

continuously recorded for 15-20 minutes before the blood transfusion was started.   

 

3. Measurement stop:  

After the blood transfusion was completed, the NIRS measurements were continued 

for a period of another 15-20 minutes and then the Start/Stop switch pressed again 

to stop the measurement. 

The probes attached to the baby removed. 

The ON/OFF power switch pressed to turn off the main power supply.  

The probes and cables disconnected carefully to avoid the damage to fragile optical 

fibres. 
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Step 4. Data recording in the laptop and further analysis:  

Each baby measurement data stored in laptop was then transferred and stored in 

the secured password protected network drive of Homerton hospital.  

First the NIRS data is stored in .NI3* format as individual case files. This was then 

converted to an .OD format using a mathematical software called Mat lab (Mat Lab 

2013a, Math works, US).  

 

Using the same software programme the data was then analysed for four epochs 

(each of 15 minutes): T1 – 15-20 minutes pre blood transfusion, T2 – 1 hour of 

blood transfusion, T3 – 2 hour of blood transfusion and T4 – 15-20 minutes post 

blood transfusion.  

 

The mean of these epochs were recorded to statistical software SPSS 22.0 and 

further analysed. 
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7.2 Appendix 2: Vital parameter measurement steps using 

ixTrend 

 

For continuous measurement of vital parameters Phillips Intellivue MP70/MP50 

monitor was used and the data was continuously downloaded from the overhead 

monitor to the study laptop using ixTrend software (ixellence GmBH, Germany). The 

license for the software was purchased and the software downloaded to the study 

laptop.  

Steps of downloading and analysing the vital parameters are described below: 

Step 1. Connection to the Phillips Intellivue monitor 

An RJ45 to USB cable was used to connect the Phillips Intellivue monitor with the 

study laptop (Figure 44). The RJ45 cable was inserted to the overhead monitor and 

the USB cable to the laptop. 

 

Figure 44. Demonstrating the connections for the Phillips Intellivue monitor and the 

connector cable 

RJ 45 port in the Phillips 

Intellivue monitor 

 

RJ 45 end of cable 

 

USB end of cable 
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Step 2. Initiating the software at the laptop and connect with the overhead 

monitor 

After the cable connection between the laptop and the overhead monitor the 

software (ixTrend 2.0) was initialised in the laptop.  

1. Linking the Phillips Intellivue patient monitor to the Laptop 

Under Resources all the available monitors are seen, the required monitor can then 

be connected to the laptop. Select the required monitor by right-clicking on it and 

click ‘Connect’ (Figure 45). 

 

Figure 45. Connecting the monitor with the laptop using the software 

2. Choosing the patient 

Now either a new patient can be created or an existing patient can be loaded. 

To create a new patient an empty file will come up. It needs to be filled up with the 

patient’s data. The star-marked data fields are mandatory. 

In order to select an existing patient the patient file the required file can be clicked to 

open it. 
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Step 3. Signal settings 

Confirm the patient choice by clicking ‘Next’ or ‘Finish’. Finish links the laptop to the 

patient monitor and the data is now ready to be transferred. When clicking finish a 

diagram profile will need to be created or an already created profile (e.g. ECG and 

Heart rate) needs to be chosen. After the profile is chosen then click ‘Finish’ and the 

data will start downloading. 

Step 4. Stopping the recording 

When the blood transfusion is finished the data still continues to be downloaded for 

another 15-20 minutes and then the ‘Stop’ button is clicked in the software. The 

recording will stop immediately. 

Step 5. Storing the recordings 

The session file (e.g. 21/03/13 12.00 hrs to 21/03/13 16.00 hours) from the resource 

menu is now double clicked (Figure 46) and the numeric values (heart rate, 

respiratory rate, saturation, systolic, mean and diastolic blood pressure) are clicked.  

 

Figure 46. Identifying the session file in the software 
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After this click ‘File’ and go to ‘Data Export’. The data is then exported from the 

session file of the particular patient to a comma separated version (.csv) file. In the 

format settings click ‘semicolon’, ‘comma (1.2.3)’, ‘milliseconds since 01.01.1970’ 

and ‘standard export (one file)’, and then click ‘Finish’. In that way all numeric values 

will be recorded to a single file. 

 

Step 6. Analysing the data 

The data was the analysed using a Mat Lab programme (Mat Lab 2013a, Math 

works, USA). The epochs of 15 minutes before and after blood transfusion were 

analysed using this programme and the mean of these epochs were then analysed 

using statistical software SPSS 22.0.     
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7.3 Appendix 3: NHS Research ethics approval 

 



247 | P a g e  

 

 



248 | P a g e  

 

 

 

  



249 | P a g e  

 

7.4 Appendix 4: Homerton R&D approval 
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7.5 Appendix 5: Consent form for study infants 
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7.6 Appendix 5: Consent form for control infants 
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7.7 Appendix 6: Parent information leaflet for study infants 
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7.8 Appendix 7: Parent information leaflet for control infants 
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7.9  Appendix 8. Details of pre-transfusion RCV 

measurements  

 

Infant Pre-BT 

HbF 

Post-BT 

HbF 

Donor 

blood (ml) 

Donor Hct RCV (ml) RCV 

(ml/kg) 

1 57.8 42.9 15.6 0.69 30.8 38.0 

2 57.5 45.4 11.0 0.63 26.2 35.1 

3 61.6 47.3 16.0 0.61 32.3 38.7 

4 80.1 61.0 14.0 0.58 25.9 28.8 

5 80.8 61.6 12.0 0.54 20.8 28.7 

6 80.4 61.5 15.0 0.56 27.3 27.9 

7 80.3 59.5 12.0 0.55 18.9 24.5 

8 48.5 37.6 11.0 0.66 25.0 35.0 

9 56.5 39.1 9.0 0.55 11.1 20.6 

10 70.8 57.0 12.0 0.57 28.3 37.7 

11 67.5 51.2 15.0 0.53 21.9 24.3 

12 59.9 47.1 12.6 0.65 30.1 37.4 

13 73.2 51.6 17.0 0.61 24.8 21.5 

14 68.5 48.5 12.0 0.55 17.9 23.6 
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